134 research outputs found

    PDNAsite:identification of DNA-binding site from protein sequence by incorporating spatial and sequence context

    Get PDF
    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community

    Prediction of DNA-Binding Proteins and their Binding Sites

    Get PDF
    DNA-binding proteins play an important role in various essential biological processes such as DNA replication, recombination, repair, gene transcription, and expression. The identification of DNA-binding proteins and the residues involved in the contacts is important for understanding the DNA-binding mechanism in proteins. Moreover, it has been reported in the literature that the mutations of some DNA-binding residues on proteins are associated with some diseases. The identification of these proteins and their binding mechanism generally require experimental techniques, which makes large scale study extremely difficult. Thus, the prediction of DNA-binding proteins and their binding sites from sequences alone is one of the most challenging problems in the field of genome annotation. Since the start of the human genome project, many attempts have been made to solve the problem with different approaches, but the accuracy of these methods is still not suitable to do large scale annotation of proteins. Rather than relying solely on the existing machine learning techniques, I sought to combine those using novel “stacking technique” and used the problem-specific architectures to solve the problem with better accuracy than the existing methods. This thesis presents a possible solution to the DNA-binding proteins prediction problem which performs better than the state-of-the-art approaches

    Prediction of DNA-Binding Proteins and their Binding Sites

    Get PDF
    DNA-binding proteins play an important role in various essential biological processes such as DNA replication, recombination, repair, gene transcription, and expression. The identification of DNA-binding proteins and the residues involved in the contacts is important for understanding the DNA-binding mechanism in proteins. Moreover, it has been reported in the literature that the mutations of some DNA-binding residues on proteins are associated with some diseases. The identification of these proteins and their binding mechanism generally require experimental techniques, which makes large scale study extremely difficult. Thus, the prediction of DNA-binding proteins and their binding sites from sequences alone is one of the most challenging problems in the field of genome annotation. Since the start of the human genome project, many attempts have been made to solve the problem with different approaches, but the accuracy of these methods is still not suitable to do large scale annotation of proteins. Rather than relying solely on the existing machine learning techniques, I sought to combine those using novel “stacking technique” and used the problem-specific architectures to solve the problem with better accuracy than the existing methods. This thesis presents a possible solution to the DNA-binding proteins prediction problem which performs better than the state-of-the-art approaches

    EL_PSSM-RT:DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation

    Get PDF
    Background: Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. Results: In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. Conclusions: We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance issue between binding and non-binding residues. A web service of EL_PSSM-RT ( http://hlt.hitsz.edu.cn:8080/PSSM-RT_SVM/ ) is provided for free access to the biological research community

    Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature

    Get PDF
    Motivation: In this work, we aim to develop a computational approach for predicting DNA-binding sites in proteins from amino acid sequences. To avoid overfitting with this method, all available DNA-binding proteins from the Protein Data Bank (PDB) are used to construct the models. The random forest (RF) algorithm is used because it is fast and has robust performance for different parameter values. A novel hybrid feature is presented which incorporates evolutionary information of the amino acid sequence, secondary structure (SS) information and orthogonal binary vector (OBV) information which reflects the characteristics of 20 kinds of amino acids for two physical–chemical properties (dipoles and volumes of the side chains). The numbers of binding and non-binding residues in proteins are highly unbalanced, so a novel scheme is proposed to deal with the problem of imbalanced datasets by downsizing the majority class

    Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art

    Get PDF
    Background: RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition ‘code’ that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. Results: We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Na¨ıve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequencebased classifiers that use a position-specific scoring matrix (PSSM)-based representation (PSSMSeq) outperform those that use an amino acid identity based representation (IDSeq) or a smoothed PSSM (SmoPSSMSeq); (ii) Structure-based classifiers that use smoothed PSSM representation (SmoPSSMStr) outperform those that use PSSM (PSSMStr) as well as sequence identity based representation (IDStr). PSSMSeq classifiers, when tested on an independent test set of 44 proteins, achieve performance that is comparable to that of three state-of-the-art structure-based predictors (including those that exploit geometric features) in terms of Matthews Correlation Coefficient (MCC), although the structure-based methods achieve substantially higher Specificity (albeit at the expense of Sensitivity) compared to sequence-based methods. We also find that the expected performance of the classifiers on a residue level can be markedly different from that on a protein level. Our experiments show that the classifiers trained on three different non-redundant protein-RNA interface datasets achieve comparable cross-validation performance. However, we find that the results are significantly affected by differences in the distance threshold used to define interface residues. Conclusions: Our results demonstrate that protein-RNA interface residue predictors that use a PSSM-based encoding of sequence windows outperform classifiers that use other encodings of sequence windows. While structure-based methods that exploit geometric features can yield significant increases in the Specificity of protein-RNA interface residue predictions, such increases are offset by decreases in Sensitivity. These results underscore the importance of comparing alternative methods using rigorous statistical procedures, multiple performance measures, and datasets that are constructed based on several alternative definitions of interface residues and redundancy cutoffs as well as including evaluations on independent test sets into the comparisons

    RNABindRPlus: A Predictor that Combines Machine Learning and Sequence Homology-Based Methods to Improve the Reliability of Predicted RNA-Binding Residues in Proteins

    Get PDF
    Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence-derived features of RNA-binding proteins. A webserver implementation of both methods is freely available at http://einstein.cs.iastate.edu/RNABindRPlus/

    An overview of bioinformatics tools for epitope prediction: Implications on vaccine development

    Get PDF
    AbstractExploitation of recombinant DNA and sequencing technologies has led to a new concept in vaccination in which isolated epitopes, capable of stimulating a specific immune response, have been identified and used to achieve advanced vaccine formulations; replacing those constituted by whole pathogen-formulations. In this context, bioinformatics approaches play a critical role on analyzing multiple genomes to select the protective epitopes in silico. It is conceived that cocktails of defined epitopes or chimeric protein arrangements, including the target epitopes, may provide a rationale design capable to elicit convenient humoral or cellular immune responses. This review presents a comprehensive compilation of the most advantageous online immunological software and searchable, in order to facilitate the design and development of vaccines. An outlook on how these tools are supporting vaccine development is presented. HIV and influenza have been taken as examples of promising developments on vaccination against hypervariable viruses. Perspectives in this field are also envisioned
    corecore