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Abstract 

 

DNA-binding proteins play an important role in various essential biological processes such as 

DNA replication, recombination, repair, gene transcription, and expression. The identification 

of DNA-binding proteins and the residues involved in the contacts is important for 

understanding the DNA-binding mechanism in proteins. Moreover, it has been reported in the 

literature that the mutations of some DNA-binding residues on proteins are associated with 

some diseases. The identification of these proteins and their binding mechanism generally 

require experimental techniques, which makes large scale study extremely difficult. Thus, the 

prediction of DNA-binding proteins and their binding sites from sequences alone is one of the 

most challenging problems in the field of genome annotation. Since the start of the human 

genome project, many attempts have been made to solve the problem with different approaches, 

but the accuracy of these methods is still not suitable to do large scale annotation of proteins. 

Rather than relying solely on the existing machine learning techniques, I sought to combine 

those using novel “stacking technique” and used the problem-specific architectures to solve the 

problem with better accuracy than the existing methods. This thesis presents a possible solution 

to the DNA-binding proteins prediction problem which performs better than the state-of-the-

art approaches. 

 

 

 

 

Keywords: Machine Learning, Large-Scale Data Analysis, Bioinformatics, DNA-Binding 

Proteins, DNA-Binding Residue. 
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Introduction 

1.1 Thesis Overview 

With the exponential growth of proteomic data and the enormous complexities involved in 

their modeling, bioinformatics becomes essential for the management and mining of biological 

data in modern biology, medicine and drug discovery. The development of computational tools 

to solve the problem requires the expertise from many fields of computer science, like i) Data 

science for mining, collection and preparation of data, ii)  Scientific Computing to extract 

useful knowledge from large sets of data and mathematically quantify the knowledge as 

characteristics features, iii) Machine Learning to develop novel algorithms to model the data 

using features, and iv) Statistical and Probabilistic Analysis to empirically evaluate the model 

by comparative analysis and visualize the outputs. These methods have been utilized 

throughout the course of the thesis to develop novel tools for the prediction of DNA-binding 

proteins and their binding sites using sequence information only. 

 

1.2 Contribution of the Thesis 

Given the primary sequence of a protein as input, prediction of protein function is important 

for large scale annotations of various protein sequences gained from various large-scale 

genome sequencing projects. This thesis aims to solve the problem partially by providing a 

framework for the annotation of proteins based on their DNA-binding affinity. This work 

presents a framework for predicting if the protein is DNA-binding or not and if it is then what 

are its binding sites. The predictors developed in this work outperform all the other state-of-

the-art predictors by a huge margin. The main aim of this thesis is to serve as a stepping stone 

for other similar predictions of protein functions and the use of complex stacked learners based 

architecture to solve machine learning problems.  
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1.3 Technical Results of the Thesis 

- A stacked predictor for the prediction of DNA-binding proteins from sequences 

This work presents a predictor, called StackDPPred, for the prediction of DNA-binding 

proteins using only the sequence information. In this work, I have developed a new stacking 

based prediction framework that utilizes a pool of base learners and a Support Vector Machine 

(SVM) on the meta layer to perform better predictions. Although the framework is developed 

for DNA-binding proteins, it can easily be tuned for other predictions. The predictor was 

developed using Python and is available online as both standalone code and as a web server. 

The performance of the predictor has been measured by employing various rigorous 

evaluation metrics. The results manifest that StackDPPred provides well-balanced and 

biologically relevant outputs for proteins of different lengths and with a wide variety of DNA-

binding sites. 

 

- A SVM based predictor for prediction of DNA-binding residues 

In addition to DNA-binding proteins predictor, this work presents a predictor for the prediction 

of DNA-binding sites in the DNA-binding proteins using only the sequence information. 

Various useful features such as predicted disorder from DisPredict [1] along with other relevant 

features like evolutionary profile, monograms, bigrams and predicted torsion angles which 

helps improve the prediction accuracy are explored. In this work, Support Vector Machine 

(SVM) prediction framework has been proposed, which performs better than the state-of-the-

art approaches. The performance of our predictor has been measured through standard 

evaluation metrics and through case studies. The results from our study shows that the predictor 

is well balanced on all the performance metrics and provides biologically relevant prediction 

of DNA-binding sites.  
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1.4 Thesis Organization 

The main goal of this thesis is to develop computational tools for the prediction of DNA-

binding proteins and their binding sites using only the sequence information. The rest of the 

thesis is organized as follows: Chapter 2 discusses the design and development of 

StackDPPred, a predictor of DNA-binding proteins. The framework is based on a pool of 

machine learning methods that are stacked together for superior performance. Chapter 3 

describes the design and development of a predictor of DNA-binding sites in proteins. The 

framework is based on a Support Vector Machine (SVM) based architecture and is found to 

significantly outperform the state-of-the-art methods. Finally, Chapter 4 concludes this work, 

states the major contributions and provides brief future directions for further research to make 

the tools as accurate as possible. 

 

1.5 Related Publications 

Parts of this thesis work have been presented as poster and submitted to the Oxford journal of 

Bioinformatics for publication. The rest of the work is under preparation for publication. Below 

is the list of the publications: 

1. Pujan Pokhrel, Avdesh Mishra and Md Tamjidul Hoque, “StackDPPred: Stacking based 

prediction of DNA-binding proteins from sequences.” 6th Annual LA Conference on 

Computational Biology and Bioinformatics. 2018. (poster) 

2. Avdesh Mishra, Pujan Pokhrel and Md Tamjidul Hoque, “StackDPPred: A stacking based 

prediction of DNA-binding proteins from sequences.” Oxford Bioinformatics. (submitted) 

3. Pujan Pokhrel, Avdesh Mishra and Md Tamjidul Hoque, “Prediction of DNA-binding sites 

from sequences using support vector machines.” (preparing for submission) 
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Chapter 2 

StackDPPred: A Stacking based Prediction of DNA-binding Protein from Sequences 

 

2.1. Introduction 

DNA-binding proteins carry out many crucial intercellular and intracellular functions such as 

DNA replication and repair, transcriptional regulation, the combination and separation of 

single-stranded DNA and other biological activities associated with DNA. In the eukaryotic 

cells, histone, which is a usual type of DNA-binding protein, often helps in packaging 

chromosomal DNA into a compact structure. Similarly, DNA-binding proteins, such as 

restriction enzymes, are DNA-cutting enzymes, which are found in bacteria that recognize and 

cut DNA only at a particular sequence of nucleotides to serve a host-defense role. DNA-binding 

proteins represent a broad category of proteins, which are found to be highly diverse in structure 

as well as in sequence. Structurally, they have been divided into 8 structural groups, which are 

further classified into 54 structural families [2, 3]. Additionally, it has been reported that 2 to 

3% of a prokaryotic genomes and 6 to 7% of a eukaryotic genomes encode DNA-binding 

proteins [2, 4]. Moreover, the past decade has witnessed tremendous progress in genome 

sequencing [5-8]. According to the genome online database, the complete sequenced genomes 

of almost 1000 cellular organisms have been released, and about 5000 active genome 

sequencing projects are on the way [9, 10]. The unprecedented amount of genetic information 

has provided a plethora of protein sequences [11], posing a challenging problem of annotating 

them and elucidating their functions. Thus, the task of identifying DNA-binding proteins has 

become crucial.  
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In the early days, the identification of DNA-binding proteins was carried out by 

experimental techniques, including filter binding assays, genetic analysis, chromatin 

immunoprecipitation on microarrays and X-ray crystallography. However, it is both time-

consuming and expensive to identify DNA-binding proteins purely based on biochemical 

experiments. Particularly, given the abundance of biological sequences generated in the post-

genomic era. Hence, it is important to develop computational methods for fast and effective 

identification of DNA-binding proteins.  

The computational methods refer to a wide range of approaches that capture various 

information such as structural, sequence and other physicochemical properties. Many attempts 

have been made in identifying DNA-binding proteins and many effective computational 

prediction methods have been proposed in the literature for analyzing them. The computational 

approaches for the identification of DNA-binding proteins can be divided into two broad 

categories: i) template based; and ii) machine learning based. Template-based methods can be 

further classified into two classes, one of which utilizes a structural comparison protocol and 

the other employs a sequence comparison protocol. The structural comparison protocol detects 

significant structural similarity between the query and a template known to bind DNA at either 

the domain or the structural motif, to assess the DNA-binding preference of the target sequence 

[12, 13]. Likewise, sequence comparison protocol (such as PSI-BLAST) detects significant 

sequence similarity between the query and a template known to bind DNA, to evaluate the 

DNA-binding preference of the target sequence [14]. Unlike template-based methods, machine 

learning methods do not employ direct structural comparison, rather they learn the relevant 

predictive model to make predictions by finding a pattern in the input feature space. Various 

machine learning algorithms such as support vector machine (SVM) [15-18], neural network 

[19-23], random forest  [24], naïve Bayes classifier [25, 26], nearest neighbors algorithm [27] 

and ensemble classifiers [28-30] have been employed to construct a good predictive model.  
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The task of predicting DNA-binding proteins using machine learning, involves two 

important steps: i) extraction of relevant features; and ii) selection of an appropriate 

classification algorithm. Depending on the feature extraction mechanism, the existing 

predictive methods can be classified into two different categories: i) extraction of relevant 

features from the structure of the protein [1, 31-33]; and ii) extraction of relevant features from 

the sequence of amino acids [10, 34-36]. According to Xu et al. [37], the accuracy of structure-

based prediction methods for DNA-binding proteins is usually higher but, those cannot be used 

in high throughput annotation because those require a high-resolution 3D structure of the 

protein sequence. Thus, to date, various computational methods have been proposed for 

identifying DNA-binding proteins directly from their amino acid sequences. These methods 

independently explore four different categories of protein sequence features and four different 

kinds of sequence encoding methods [37-41]. Specifically, the four different categories of 

features include: (a) composition information; (b) structural and functional information; (c) 

physicochemical properties; and (d) evolutionary information. The four different kinds of 

encoding methods are: (a) overall composition-transition-distribution called OCTD (global 

method); (b) autocross-covariance (ACC) transformation (nonlocal method); (c) split amino 

acid (SAA) transformation (local method); and (d) PSSM distance transformation called 

PSSM-DT. These methods have been studied in detail in the relevant research work [37, 42, 

43]. However, most of the proposed methods are limited in their ability to explain how protein-

DNA interactions occur. Thus, it is essential to identify new features, effective encoding 

techniques and advanced machine learning techniques that can help further improve our 

understanding of DNA-protein interactions with higher accuracy.  

This study explores, different features, encoding techniques and machine learning 

approaches, to further improve the prediction accuracy and understand the binding mechanism 

of DNA-protein interaction. The proposed method, StackDPPred, utilizes two different types 
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of features: PSSM profile and residue wise contact energy profile. It uses four different types 

of feature transformation techniques: PSSM-DT, residue probing transformation [44], 

evolutionary distance transformation [38], residue wise contact energy matrix transformation 

[38], and a machine learning ensembles, known as stacking [45]. The development of 

StackDPPred offered a significant improvement in prediction accuracies based on the 

benchmark and independent test data when compared to the state-of-the-art predictors. 

 

2.2 Methods 

This section describes the procedure for benchmark and independent test data preparation, 

feature extraction and encoding, performance evaluation metrics and machine learning 

framework development. 

 

2.2.1 Dataset 

The benchmark dataset [37] that contains 525 DNA-binding protein sequences and 550 non 

DNA-binding protein sequences is used. In this implementation, only 518 DNA-binding 

proteins and 545 non DNA-binding proteins are used as the PSSM profile of 7 DNA-binding 

proteins and 5 non DNA-binding proteins using PSI-BLAST [46] could not be obtained.  

An independent test dataset PDB186 [40] is used to compare the performance of 

StackDPPred with the state-of-the-art approaches. This dataset consists of 93 DNA-binding 

proteins and 93 non-DNA-binding proteins selected from the PDB to validate the quality of 

predictions. 

 

2.2.2 Feature Extraction 

To create an effective machine learning method to predict DNA-binding proteins from 

sequence alone, various features derived from the Position Specific Scoring Matrix (PSSM) 
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and the Reside Wise Contact Energy Matrix (RCEM) are used, which are described next. 

 

2.2.2.1 Position Specific Scoring Matrix (PSSM) feature 

The PSSM captures the conservation pattern in multiple alignments and stores it as a matrix of 

scores for each position in the alignment. High scores represent more conserved positions and 

scores close to zero or negative, represent weakly conserved positions. Thus, PSSM captures 

the evolutionary information in proteins. Evolutionary information is one of the most important 

kinds of information for protein functionality annotation in biological analysis and is widely 

used in many studies [1, 22, 47-50]. For this study, the PSSM profile of every protein sequence 

is obtained by executing three iteration of PSI-BLAST against NCBI’s non-redundant database 

[46]. The PSSM profile is a matrix of L*20 dimensions, which can be represented as follows: 

𝑃𝑆𝑆𝑀 =  

[
 
 
 
𝑃1,1 𝑃1,2 … 𝑃1,20

𝑃2,1 𝑃2,2 … 𝑃2,20

⋮
𝑃𝐿,1

⋮
𝑃𝐿,2

⋮
…

⋮
𝑃𝐿,20]

 
 
 

 (1) 

 

where, L is the length of the protein and Pi,j represents the occurrence probability of amino acid 

i at position j of the protein sequence, the rows represent the position of amino acid in the 

sequence and the columns represent the 20 standard amino acid types. The large positive scores 

indicate conserved positions, which in turn implies critical functional residues that are required 

to perform various intermolecular interactions. 

 

2.2.2.2 Residue Wise Contact Energy Matrix (RCEM) feature 

Structural stability of proteins is the result of a large number of inter and intra-residual 

interactions. The energy contribution of these interactions can be approximated by the energy 

functions extracted from known structures [1, 49, 51-55].  
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Table 1: RCEM table used in the proposed experiment. 

 A C D E F G H I K L M N P Q R S T V W Y 

A -1.65 -2.83 1.16 1.8 -3.73 -0.41 1.9 -3.69 0.49 -3.01 -2.08 0.66 1.54 1.2 0.98 -0.08 0.46 -2.31 0.32 -4.62 

C -2.83 -39.5 -0.82 -0.53 -3.07 -2.96 -4.98 0.34 -1.38 -2.15 1.43 -4.18 -2.13 -2.91 -0.41 -2.33 -1.84 -0.16 4.26 -4 .46 

D 1.16 -0.82 0.84 1.97 -0.92 0.88 -1.07 0.68 -1.93 0.23 0.61 0.32 3.31 2.67 -2.02 0.91 -0.65 0.94 -0.71 0. 90 

E 1.8 -0.53 1.97 1.45 0.94 1.31 0.61 1.3 -2.51 1.14 2.53 0.2 1.44 0.1 -3.13 0.81 1.54 0.12 -1.07 1. 29 

F -3.73 -3.07 -0.92 0.94 -11.2 0.35 -3.57 -5.88 -0.82 -8.59 -5.34 0.73 0.32 0.77 -0.4 -2.22 0.11 -7.05 -7.09 -8.80 

G -0.41 -2.96 0.88 1.31 0.35 -0.2 1.09 -0.65 -0.16 -0.55 -0.52 -0.32 2.25 1.11 0.84 0.71 0.59 -0.38 1.69 -1.90 

H 1.9 -4.98 -1.07 0.61 -3.57 1.09 1.97 -0.71 2.89 -0.86 -0.75 1.84 0.35 2.64 2.05 0.82 -0.01 0.27 -7.58 -3.20 

I -3.69 0.34 0.68 1.3 -5.88 -0.65 -0.71 -6.74 -0.01 -9.01 -3.62 -0.07 0.12 -0.18 0.19 -0.15 0.63 -6.54 -3.78 -5.26 

K 0.49 -1.38 -1.93 -2.51 -0.82 -0.16 2.89 -0.01 1.24 0.49 1.61 1.12 0.51 0.43 2.34 0.19 -1.11 0.19 0.02 -1.19 

L -3.01 -2.15 0.23 1.14 -8.59 -0.55 -0.86 -9.01 0.49 -6.37 -2.88 0.97 1.81 -0.58 -0.6 -0.41 0.72 -5.43 -8.31 -4.90 

M -2.08 1.43 0.61 2.53 -5.34 -0.52 -0.75 -3.62 1.61 -2.88 -6.49 0.21 0.75 1.9 2.09 1.39 0.63 -2.59 -6.88 -9.73 

N 0.66 -4.18 0.32 0.2 0.73 -0.32 1.84 -0.07 1.12 0.97 0.21 0.61 1.15 1.28 1.08 0.29 0.46 0.93 -0.74 0.93 

P 1.54 -2.13 3.31 1.44 0.32 2.25 0.35 0.12 0.51 1.81 0.75 1.15 -0.42 2.97 1.06 1.12 1.65 0.38 -2.06 -2.09 

Q 1.2 -2.91 2.67 0.1 0.77 1.11 2.64 -0.18 0.43 -0.58 1.9 1.28 2.97 -1.54 0.91 0.85 -0.07 -1.91 -0.76 0.01 

R 0.98 -0.41 -2.02 -3.13 -0.4 0.84 2.05 0.19 2.34 -0.6 2.09 1.08 1.06 0.91 0.21 0.95 0.98 0.08 -5.89 0.36 

S -0.08 -2.33 0.91 0.81 -2.22 0.71 0.82 -0.15 0.19 -0.41 1.39 0.29 1.12 0.85 0.95 -0.48 -0.06 0.13 -3.03 -0.82 

T 0.46 -1.84 -0.65 1.54 0.11 0.59 -0.01 0.63 -1.11 0.72 0.63 0.46 1.65 -0.07 0.98 -0.06 -0.96 1.14 -0.65 -0.37 

V -2.31 -0.16 0.94 0.12 -7.05 -0.38 0.27 -6.54 0.19 -5.43 -2.59 0.93 0.38 -1.91 0.08 0.13 1.14 -4.82 -2.13 -3.59 

W 0.32 4.26 -0.71 -1.07 -7.09 1.69 -7.58 -3.78 0.02 -8.31 -6.88 -0.74 -2.06 -0.76 -5.89 -3.03 -0.65 -2.13 -1.73 -12.3 

Y -4.62 -4.46 0.9 1.29 -8.8 -1.9 -3.2 -5.26 -1.19 -4.9 -9.73 0.93 -2.09 0.01 0.36 -0.82 -0.37 -3.59 -12.3 -2.68 

 

However, the energy functions require that the 3D structure be known in order to compute 

the summation of such energies. Thus, they are not applicable for proteins whose structure is 

not known or for intrinsically disordered proteins (IDPs) [56] . Moreover, it was found that 

IDPs are very common in DNA-binding proteins, particularly in disordered tails [44, 57]. Thus, 
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to inherently incorporate important information regarding the amino acid interactions and 

intrinsically disordered regions (IDRs), the predicted residue wise contact energies are 

employed. These contact energies are derived in [44], using 674 protein’s primary sequences 

by the least square fitting with the contact energies derived from tertiary structure of 785 

proteins. The RCEM is a 𝟐𝟎 × 𝟐𝟎 dimensional matrix whose rows and columns represent 20 

standard amino acids. Table 1. shows the RCEM table [44] that is used in this work. 

 

2.2.3 Feature Extraction from PSSM profile 

This section describes various feature extraction techniques utilized to obtain a fixed 

dimensional feature vector from the PSSM profile to encode protein sequences. 

 

2.2.3.1 PSSM-Distance Transformation (PSSM-DT) feature 

Two forms of PSSM distance transformation techniques [37] are used to transform the PSSM 

information into fixed dimensional vectors. Given a PSSM (Equation (1)) of protein sequences, 

two distance transformation schemes were used: i) the PSSM distance transformation for pairs 

of same amino acids (PSSM-SDT); and ii) the PSSM distance transformation for pairs of 

different amino acids (PSSM-DDT), to extract fixed sized feature vectors.  

PSSM-SDT features approximately measure the occurrence probabilities for the pairs of 

the same amino acids separated by a distance d along the sequence in a sequence, which can 

be calculated as: 

𝑃𝑆𝑆𝑀-𝑆𝐷𝑇(𝑗, 𝑑) =  ∑ 𝑃𝑖,𝑗 ∗  𝑃𝑖+𝑑,𝑗/(𝐿 − 𝑑)

𝐿−𝑑

𝑖=1

 (2) 

 

where, j is one type of the amino acid, L is the length of the sequence, Pi,j is the PSSM score of 

amino acid j at position i, and Pi+d,,j is the PSSM score of amino acid j at position i+d. Through 
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this approach, 20*D number of PSSM-SDT features were generated, where D is the maximum 

range of d (d = 1, 2…, D).  

Similarly, PSSM-DDT calculates the occurrence probabilities for pairs of different amino acids 

separated by a distance of d along the sequence, which can be calculated as: 

𝑃𝑆𝑆𝑀-𝐷𝐷𝑇(𝑖1, 𝑖2, 𝑑) =  ∑ 𝑃𝑗,𝑖1 ∗  𝑃𝑗+𝑑,   𝑖2 /(𝐿 − 𝑑)

𝐿−𝑑

𝑗=1

 (3) 

where, 𝑖1 and 𝑖2 represent two different types of amino acids. The total number of features 

obtained by PSSM-DDT are 380*D. Furthermore, D = 5, was found [37] to perform the best. 

As previously published benchmark dataset is used in this study, the same value of D found 

in previous study [37]  is used in our experiment. 

 

2.2.3.2 Residue Probing Transformation (RPT) feature 

RPT, proposed by Jeong et al. [58], emphasizes domains with similar conservation rates by 

grouping domain families based on their conservation score in the PSSM profile. Here, each 

probe is a standard amino acid, and corresponds to a particular column in the PSSM profile. 

The rows in the PSSM profile are divided into 20 groups according to 20 different standard 

amino acids. Then, for each group, the sum of the PSSM values in every column are computed, 

leading to a feature vector of a 𝟐𝟎 × 𝟐𝟎 dimensional matrix, called RPT matrix, represented 

as in Equation (4): 

𝑅𝑃𝑇 =  

[
 
 
 
𝑆1,1 𝑆1,2 … 𝑆1,20

𝑆2,1 𝑆2,2 … 𝑆2,20

⋮
𝑆20,1

⋮
𝑆20,2

⋮
…

⋮
𝑆20,20]

 
 
 

 (4) 

The RPT matrix (Equation (4)) is then transferred into a feature vector of 400 dimensions, as 

shown in Equation (5): 
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𝑉 = [𝑓𝑠1,1
, 𝑓𝑠1,2 , ⋯ , 𝑓𝑠𝑖,𝑗

, ⋯ , 𝑓𝑠20,20
] (5) 

where, 𝑓𝑠𝑖,𝑗
 is calculated using Equation (6): 

𝑓𝑠𝑖,𝑗
= 

𝑠𝑖,𝑗

𝐿
 (𝑖, 𝑗 = 1,2,⋯ , 20) (6) 

 

2.2.3.3 Evolutionary Distance Transformation (EDT) feature 

The EDT extracts the information of the non-co-occurrence probability for two amino acids 

separated by a certain distance d in a protein from the PSSM profile [38]. Here, d is the distance 

between these two amino acids in a sequence (𝒅 = 𝟏, 𝟐,… , 𝑳𝒎𝒊𝒏-𝟏), where 𝑳𝒎𝒊𝒏 is the length 

of the shortest protein in the benchmark dataset. For example, 𝒅 = 𝟏 implies that the two amino 

acids are consecutive; 𝒅 = 𝟐 implies that there is one amino acid between the two, and so on 

till d = 𝑳𝒎𝒊𝒏-𝟏. The EDT feature vector computed from the PSSM profile can be represented 

as (7):  

𝑃 = [𝜕1, 𝜕2, ⋯ , 𝜕Ω] (7) 

where,  is an integer that represents the dimension of the vector whose value is 400. The non-

co-occurrence probability of two amino acids separated by distance d (here, d ranges from 1 to 

D, where, D is the maximum value of d) can be computed using Equation (8): 

𝑓(𝐴𝑥, 𝐴𝑦) =  ∑
1

𝐿 − 𝑑
 ∑(𝑃𝑖,𝑥 − 𝑃𝑖+𝑑,𝑦)2

𝐿−𝑑

𝑖=1

𝐷

𝑑=1

 (8) 

where, 𝑃𝑖,𝑥 and 𝑃𝑖+𝑑,𝑦 are the elements in the PSSM profile; 𝐴𝑥 and 𝐴𝑦 represent any of the 20 

different amino acids in the protein. Finally, each element in feature vector P is obtained as 

given in Equation (9):  

{𝜕1 = 𝑓(𝐴1, 𝐴2)} 

{𝜕2 = 𝑓(𝐴2, 𝐴2)} 

           ⋯ 

(9) 
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{𝜕400 = 𝑓(𝐴20, 𝐴20)} 

 

2.2.4 Feature extracted from RCEM 

Depending on the type of amino acid, a 20-dimensional vector for each amino acid in a 

sequence is obtained from the rows of RCEM (see Table 1). Thus, for a protein sequence of 

length L, an L × 20-dimensional matrix 𝐸𝑚 is obtained. Next, the matrix 𝐸𝑚 is transformed into 

a feature vector of 20 dimensions by calculating the column-wise sum. If the element of matrix 

𝐸𝑚 is represented by 𝑒𝑖,𝑗, where i represents the amino acid index in a sequence (rows) and j 

represents 20 standard amino acid types (columns), the column-wise sum of matrix 𝐸𝑚 can be 

obtained using Equation (10):  

𝑓(𝐴𝑗) =  ∑𝑒𝑖,𝑗 

𝐿

𝑖=1

(𝑗 = 1,2,⋯ , 20) (10) 

 

Then, the final feature vector, RCEM-Transformation (𝑅𝐶𝐸𝑀𝑇) = [𝐸1, 𝐸2, … , 𝐸20] is obtained 

by dividing each element in RCEMT by the total sum of the elements in the same vector, which 

can be represented as shown in Equation (11): 

 

 

2.2.5 Performance Evaluation 

The performance of StackDPPred is measured by the jackknife validation approach. In 

jackknife validation, every sample is tested by the predictor trained with all the other samples 

in the benchmark set. Various performance evaluation measures listed in the Table 2 are 

𝑅𝐶𝐸𝑀𝑇(𝐸𝑖) =  
𝐸𝑖

𝐿
 (11) 



14 

 

employed to test the predictive capacity of the proposed method as well as to compare it with 

the state-of-the-art methods. 

 

Table 2: Name and definition of the evaluation metric. 

Name of Metric Definition 

True Positive (TP) Correctly predicted DNA-binding proteins 

True Negative (TN) Correctly predicted non DNA-binding proteins 

False Positive (FP) Incorrectly predicted DNA-binding proteins 

False Negative (FN) Incorrectly predicted non DNA-binding proteins 

Recall/Sensitivity/True Positive Rate 

(TPR/SN) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity/True Negative Rate (TNR/SP) 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Fall-out Rate/False Positive Rate (FPR) 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Miss Rate/False Negative Rate (FNR) 𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Accuracy (ACC) 𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Balanced Accuracy (Bal_ACC) 1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1 score (Harmonic mean of precision and 

recall) 

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Mathews Correlation Coefficient (MCC) (𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

Strength (ST) ST = (SN + SP)/2 

 

Moreover, AUC and ROC performance measures are used to further evaluate the proposed 

method. AUC is the area under the receiver operating characteristics (ROC) curve and is 



15 

 

commonly used to evaluate a predictor to see how well it separates two classes of information, 

i.e., in this case, DNA-binding versus non DNA-binding proteins. 

 

2.2.6 Explored Base and Meta Classifiers 

In order to find the base-classifiers to use in the first-stage and the meta-classifier to use in the 

second-stage of stacking framework, six different machine learning algorithms are explored 

and they are:  

i) Support Vector Machine (SVM): SVM [39] with the radial basis function (RBF) kernel is 

used as one of the base-classifiers as well as a meta-classifier. SVM classifies by maximizing 

the separating hyperplane between two classes and penalizes the instances on the wrong side 

of the decision boundary using a cost parameter, C. The RBF kernel parameter, γ and the cost 

parameter, C are optimized to achieve the best jackknife validation accuracy using a grid search 

[59]. The best values of the parameters of the base-classifier SVM are found to be C = 23.50 and 

γ = 2-11.25. Likewise, the best values of the parameters of the SVM, used as meta-classifier, are 

C = 211 and γ = 2-16.25. 

ii) Logistic Regression (LogReg): LogReg [60-62] with L2 regularization is used as one of 

the base-classifiers. LogReg measures the relationship between the dependent variable, which 

is categorical (in our case: a protein being DNA-binding or not), and one or more independent 

variables by generating an estimation probability using logistic regression. The parameter, C 

which controls the regularization strength is optimized to achieve the best jackknife validation 

accuracy using grid search [59]. In my implementation, I found C = 0.1 results in the best 

accuracy. 

iii) Extra Trees (ET) Classifier: Extremely randomized tree or ET [63] which is one of the 

ensemble methods is explored as a base-learner here. ET fits a number of randomized decision 
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trees from the original learning sample and uses averaging to improve the predictive accuracy 

and control over-fitting. The ET model is constructed with 1,000 trees and the quality of a split 

is measured by the Gini impurity index. 

iv) Random Decision Forest (RDF) Classifier: RDF [64] is used as one of the methods for 

base-classifiers. It operates by constructing a multitude of decision trees on various sub-

samples of the dataset and outputs the mean prediction of the decision trees to improve the 

predictive accuracy and control over-fitting. In my implementation of the RDF ensemble 

learner, I have used bootstrap samples to construct 1,000 trees in the forest. 

v) K Nearest Neighbor (KNN) Classifier: KNN [65] classifier is used as one of the methods 

for base-classifiers. The KNN operates by learning from the K number of training samples 

closest in distance to the target point in the feature space. The classification decision is 

produced based on the majority votes coming from the neighbors. In this work, the value of K 

is set to 9 and all the neighbors are weighted uniformly. 

vi) Bagging (BAG) Classifier: Bootstrap aggregation or BAG [66] is explored as one of the 

methods for base-classifiers in this study. The BAG method forms a class of algorithms which 

builds several instances of a classifier/estimator on random subsets of the original training set 

and then aggregates their individual predictions to form a final prediction. The BAG method is 

useful for reducing variance in the prediction. In this study, the bagging classifier is fit on 

multiple subsets of data with the repetitions using 1,000 decision trees, and the outputs are 

combined by weighted averaging. 

2.2.7 Framework of StackDPPred 

In this study, a stacking technique [45] is applied to develop the StackDPPred predictor for 

DNA-binding proteins. Stacking is an ensemble technique used to combine information from 

multiple predictive models to generate a new model. It provides a scheme for minimizing the 
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generalization error rate of one or more predictive models and has been successfully applied in 

several machine learning tasks [67-71].  

Stacking framework involves two-stages of learning. The classifiers of the first-stage and 

second-stage are called base-classifier and meta-classifier respectively. A pool of base-

classifiers is employed in the first-stage. Then, using meta-classifier in the second-stage, the 

outputs of the base-classifiers are combined with the aim of reducing the generalization error. 

To enrich the meta-classifier with more information on the solution space, it is desirable to use 

classifiers that are different from each other based on their underlying operating principle as 

the base-classifiers. 

In order to find the base-classifiers to use in the first-stage and the meta-classifier to use in 

the second-stage of stacking framework, six different machine learning algorithms: (a) Support 

Vector Machine (SVM), (b) Logistic Regression (LogReg), (c) Extra Trees (ET), (d) Random 

Decision Forest (RDF), (e) K Nearest Neighbor (KNN) and (f) Bagging (BAG) are explored.  

All of the above mentioned classifiers are built and tuned using scikit-learn [72]. To select a 

pool of algorithms to be used as the base-classifiers for the stacked model (SM), three different 

combinations of base-classifier are evaluated. The three different combinations of base-

classifiers formed and tested in this study are:  

i) SM1: includes SVM, LogReg, KNN and RDF,  

ii) SM2: includes SVM, LogReg, KNN and ET, and  

iii) SM3: includes SVM, LogReg, KNN and BAG. 

As RDF, ET and BAG are tree based methods, they are individually combined with the other 

three methods, SVM, LogReg and KNN, whose underlying principles are different from each 

other. For all of the above combinations SM1, SM2 and SM3, the meta-level classifier is SVM. 

The jackknife validation of the above three combinations show that the SM1 when combined 
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with SVM provides the best accuracy. Thus, four classifiers SVM, LogReg, KNN and RDF are 

employed as base-classifiers in the StackDPPred framework. The output probabilities (binding 

probability p and non-binding probability (1-p)) generated by the four base-classifiers are 

combined with the original 2,820 features and used as input features to train a new SVM 

classifier (meta-classifier) which is then used to obtain a robust StackDPPred classifier. The 

framework of StackDPPred is shown in Figure 1. 

 

Fig. 1. Overview of the StackDPPred prediction framework. 
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2.3 Results 

In this section, first the results of the potential base-classifiers for the development of 

StackDPPred is presented. Then, the performance of StackDPPred on the benchmark dataset 

and the independent test dataset is reported. 

 

2.3.1 Selection of Base-classifiers 

To select the best combination of classifiers to be used as the base-classifiers, first the 

performance of six different machine learning methods, SVM, LogReg, KNN, RDF, BAG and 

ET, on the benchmark dataset are analyzed. The individual predictive ability of each of the 

classifiers is obtained using the jackknife validation approach and is shown in Table 3. 

Table 3 highlights that the optimized SVM with RBF-kernel gives an outstanding jackknife 

validation accuracy compared to other methods in this application. The SVM with RBF-kernel 

gives the best recall (completeness of the classifier in predicting DNA-binding proteins), 

specificity (completeness of the classifier in predicting non DNA-binding proteins), fall out 

rate (measures misclassification of non DNA-binding proteins as binding proteins), miss rate 

(measures misclassification of DNA-binding proteins as non DNA-binding proteins), balanced 

accuracy (measures overall completeness of the predictor), accuracy (measures the correctness 

of the predictor), precision (measures the exactness of the predictor), F1 score (measures 

overall correctness of the predictor) and MCC (another balanced measure of correctness of the 

predictor). Similarly, based on all of the performance measures provided in Table 3, LogReg 

provides the second highest performance. As the learning principle of SVM and LogReg are 

different from each other and they are the two highest performing methods, they are selected 

as two of the base-classifier initially. Next, out of the remaining four classifiers KNN, RDF, 

ET and BAG, the KNN is selected, which operates by learning from the K number of training 

samples closest in distance to the target point as the third base-classifier. Finally, one out of the 
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three remaining ensemble based classifiers, RDF, ET and BAG, is selected as the fourth base-

classifier and formulated 3 models, namely SM1, SM2, and SM3. 

 

Table 3. Comparisons of various base learners on the benchmark dataset using jackknife cross-

validation. 

    Metric/Method LogReg ET KNN SVM BAG RDF 

    Sensitivity 0.7851 0.6737 0.6602 0.8030 0.6988 0.6853 

    Specificity 0.7559 0.7522 0.7945 0.8055 0.7596 0.7761 

    Fall out rate 0.2440 0.2477 0.2055 0.1945 0.2403 0.2238 

    Miss Rate 0.2142 0.3262 0.3397 0.1969 0.3011 0.3146 

    Bal. Accuracy 0.7708 0.7130 0.7273 0.8043 0.7292 0.7307 

    Accuracy 0.7705 0.7385 0.7291 0.8043 0.7422 0.7440 

    Precision 0.7537 0.7210 0.7533 0.7969 0.7342 0.7442 

    F1 score 0.7693 0.6966 0.7037 0.8000 0.7161 0.7135 

    MCC 0.5415 0.4276 0.4594 0.6084 0.4595 0.4637 

 

Table 4. Comparisons of stacked models with different set of base-classifiers through jackknife 

validation. 

Method/

Metric 

Sensitivity Specificity Fall out 

rate 

Miss 

Rate 

Bal. 

ACC 

Accuracy Precision F1 score MCC 

SM1 0.911 0.888 0.111 0.088 0.899 0.899 0.898 0.899 0.799 

SM2 0.899 0.884 0.115 0.100 0.892 0.891 0.880 0.890 0.783 

SM3 0.901 0.882 0.117 0.098 0.892 0.891 0.879 0.890 0.783 

 

Table 4 shows that the SM1, SM2 and SM3 stacked model categories provide similar 

performance. However, SM1, which includes SVM, LogReg, KNN and RDF as base-

classifiers and another SVM as a meta-classifier provides the best performance. Thus, SM1 is 

selected as a final predictor. 
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2.3.2 Performance Comparison on Benchmark Dataset 

This section compares the performance of StackDPPred with the state-of-the-art methods on 

the benchmark dataset. The quantities for all the evaluation metrics for the state-of-the-art 

methods, iDNA-Prot [17], DNABinder [37], DNA-Prot [73] and PSSM-DT[37] are obtained 

from Xu et al. [37]. 

 

Table 5. Comparisons of StackDPPred with other state-of-art methods on benchmark dataset 

through jackknife validation. 

Method/Metric ACC Sensitivity Specificity MCC AUC 

PSSM-DT          

(imp. %) 

0.7996 

(12.50%) 

0.8191 

(11.24%) 

0.7800 

(13.9%) 

0.6220 

(28.5%) 

0.8650 

(11.56%) 

iDNA-Prot         

(imp. %) 

0.7540 

(19.21%) 

0.8381 

(8.72%) 

0.6473 

(37.2%) 

0.5000 

(59.8%) 

0.7610 

(24.1%) 

DNAbinder        

(imp. %) 

0.7358 

(22.26%) 

0.6647 

(37.08%) 

0.8036 

(10.5%) 

0.4700   

(70%) 

0.8150 

(15.95%) 

DNA-Prot          

(imp. %) 

0.7255 

(24.0%) 

0.8267 

(10.22%) 

0.5976 

(48.6%) 

0.4400 

(81.5%) 

0.7890 

(19.8%) 

StackDPPred     

(avg. imp. %) 

0.8996 

(19.5%) 

0.9112 

(36.4%) 

0.8880 

(27.6%) 

0.7990 

(60.0%) 

0.9449 

(17.8%) 

Here, imp. and avg. stands for improvement and average respectively. 

From Table 5, it can be observed that StackDPPred performs higher than all of the state-

of-the-art methods. Specifically, StackDPPred provides 19.5%, 36.4%, 27.6%, 60.0% and 

17.8% improvement on average over PSSM-DT, iDNA-Prot, DNAbinder and DNA-Prot 

methods based on ACC, sensitivity, specificity, MCC and AUC respectively. 

Furthermore, Figure 2 presents the ROC curves generated by StackDPPred and PSSM-DT 

while the predictions are evaluated through jackknife validation on the benchmark dataset. The 

proposed predictor StackDPPred is only compared with PSSM-DT as it is the highest 

performing method among those listed in Table 5. The ROC curves show the TPR 

(sensitivity)/FPR (1-specificity) pairs at different classification thresholds. The curves 

highlight the strength of StackDPPred in achieving a high TPR of ≥ 85% (rate of correct 
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prediction of DNA-binding proteins) at a very low FPR of ≤ 20%. Whereas, PSSM-DT 

provides TPR of ≥ 80% at a cost of higher FPR of ≥ 20%. Moreover, the AUC score given by 

StackDPPred is 9.30% higher than that of PSSM-DT when evaluated on benchmark dataset. 

These results show that StackDPPred is a promising predictor. 

 

Fig. 2. Comparisons of ROC curves and AUC scores given by StackDPPred and PSSM-DT on 

benchmark dataset. 

2.3.3 Performance Comparison using Independent Test Dataset  

In this section, the performance of StackDPPred is further compared with the state-of-the-art 

methods on an independent test dataset, PDB186. The PDB186 dataset was recently 

constructed by Lou et al [40] to validate the quality of DNA-binding predictions. It consists of 

93 DNA-binding proteins and an equal number of non-DNA-binding proteins. Some proteins 

on the benchmark dataset which share more than 25% sequence similarity to proteins in 

PDB186 dataset were removed using the program BLASTCLUST [74] to remove homologous 

bias. Then, StackDPPred was trained on the benchmark dataset and tested on the independent 
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test dataset. Table 6 lists the predictive results of StackDPPred and the state-of-the-art methods 

including PSSM-DT [37], iDNA-Prot [17], DNA-Prot [73], DNAbinder [37], DNA-BIND 

[75], DNA-Threader [76] and DBPPred [40] on the PDB186 dataset. 

Table 6. Comparisons of StackDPPred with the state-of-the-art methods on independent 

dataset, PDB186. 

Methods ACC Sensitivity Specificity MCC AUC 

PSSM-DT        

(imp. %) 

0.8000 

(8.20%) 

0.8709 

(6.18%) 

0.7283 

(10.73%) 

0.6470 

(13.8%) 

0.8740 

(1.58%) 

iDNA-Prot        

(imp. %) 

0.6720 

(28.8%) 

0.6770 

(36.6%) 

0.6670 

(20.9%) 

0.3440 

(114.1%) 

0.8330 

(6.58%) 

DNA-Prot        

(imp. %) 

0.6180 

(40.06%) 

0.6990 

(32.3%) 

0.5380 

(49.9%) 

0.2400 

(206.8%) 

0.7960 

(11.5%) 

DNAbinder      

(imp. %) 

0.6080 

(42.4%) 

0.5700 

(95.7%) 

0.6450 

(25.0%) 

0.2160 

(240.9%) 

0.6070 

(46.3%) 

DNA-BIND     

(imp. %) 

0.6770 

(27.8%) 

0.6670 

(62.2%) 

0.6880 

(17.21%) 

0.3550 

(115.1%) 

0.6940 

(27.9%) 

DBPPred          

(imp. %) 

0.7690 

(12.6%) 

0.7960 

(16.2%) 

0.7420  

(8.7%) 

0.5380   

(36.9%) 

0.7910 

(12.2%) 

StackDPPred   

(avg. imp. %) 

0.8655 

(26.7%) 

0.9247 

(41.5%) 

0.8064 

(22.1%) 

0.7363 

(121.3%) 

0.8878 

(11.7%) 

Here, imp. and avg. stands for improvement and average respectively. 

Table 6 indicates that based on the independent test dataset the StackDPPred outperforms 

PSSM-DT, iDNA-Prot, DNA-Prot, DNAbinder, DNA-BIND and DNAPred methods on 

average by 26.7%, 41.5%, 22.1%, 121.3% and 11.7% based on ACC, sensitivity, specificity, 

MCC and AUC respectively. 

Moreover, Figure 3 presents the ROC curves generated by StackDPPred and PSSM-DT 

while the predictions are evaluated on the independent test dataset. As PSSM-DT is the highest 

performing among the existing methods, the performance of StackDPPred is directly compared 

with PSSM-DT. The curves in Figure 2 highlight the strength of StackDPPred in achieving a 

high TPR of ≥ 85% (rate of correct prediction of DNA-binding proteins) at a very low FPR of 

around 20%. Whereas, PSSM-DT provides TPR of ≥ 80% at a cost of higher FPR ≥ 20%. In 
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addition, the AUC score given by StackDPPred is 2.30% higher than that of PSSM-DT when 

evaluated on an independent test dataset. This indicates that the proposed method, 

StackDPPred outperforms the existing methods and is a very promising predictor. 

 

Fig. 3. Comparison of ROC curve and AUC scores given by StackDPPred and PSSM-DT 

on an independent test dataset. 

 

2.4 Conclusions 

This work presents a design and development of a stacking based machine learning technique, 

called StackDPPred, for the prediction of DNA-binding proteins given the protein sequence. 

With an aim to improve the prediction accuracy of DNA-binding proteins, different feature 

extractions and encoding techniques along with the advanced machine learning technique 

called stacking has been investigated and utilized. Important features such as evolutionary 

information feature and residue-wise contact energy are extracted from the PSSM and RCEM 

respectively. Next, these features are used to train the ensemble of predictors at the first-stage 
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(base-layer). Then, the output of the predictors at the base-layer are combined using another 

SVM at the second-stage (meta-layer). As a result, the meta-learner SVM of the StackDPPred 

achieves an ACC of 89.96%, MCC of 0.7990 and AUC of 94.50% on a benchmark dataset, 

whereas the base-learner SVM achieves an ACC of 80.43% and MCC of 0.60849. This 

achievement, allows us to conclude that stacking technique helps reduce the generalization 

error and thus can improve accuracy significantly. As for the commonly used independent test 

dataset PDB186, StackDPPred attains an ACC of 86.56%, MCC of 0.7363 and AUC of 

88.78%. This study reveals that the proposed method, StackDPPred, outperforms existing 

methods based on both benchmark validation and independent test datasets. These promising 

results indicate that StackDPPred can be effectively used for large-scale annotation of proteins 

based on DNA-binding affinity, given only the sequence information. 
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Chapter 3 

Prediction of DNA-binding residues from sequences 

3.1 Introduction 

DNA-binding proteins play an important role in normal life cycle of an organism including 

DNA replication, transcription, repair, packaging and gene expression [77]. Various studies 

have reported that almost 2-3% of prokaryotic genome and 6-7% of eukaryotic genome encode 

DNA-binding proteins [4, 78]. Literature shows that the interactions between proteins and 

DNA occur through intermediate contacts [79]. Moreover,  Bullock and Fersht [80] have 

shown that mutations of DNA-binding residues, such as those on the tumor repressor protein 

P53, may predispose individuals to cancer. It can thus be seen that the identification of DNA-

binding residues is not only important for biological research (function annotation) but also for 

understanding pathogenesis of many diseases. Traditionally, protein-DNA interaction sites 

have been studied through biochemical experimental techniques such as nuclear magnetic 

resonance (NMR) spectroscopy [81], electrophoretic mobility shift assays (EMSAs) [82, 83],  

X-ray crystallography [84], peptide nucleic acid (PNA)-assisted identification of RNA binding 

proteins (RBPs) (PAIR) [85], MicroChIP [86], Fast ChIP [87], and conventional chromatin 

immunoprecipitation (ChIP) [88]. However, these methods are often laborious, time-

consuming and often, costly. With rapidly increasing quantity of protein sequences, it is 

important to devise an objective computational method for the prediction of DNA-binding 

sites. 

Various methods have been proposed in literature for the identification of DNA-binding 

sites in proteins. The features used in these prediction methods can be categorized into three 

types: sequence features, structure features and evolutionary features.  In the early days, 

structural and sequence based features were mostly used for prediction since evolutionary 

features were hard to compute due to the lack of computing power. Some of the classifiers 
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developed in the early days include the Support Vector Machine (SVM) classifier developed 

by Ahmad et al. [79], which utilized only sequence features, such as the local amino acid 

composition and solvent accessible surface area. Similarly, Tsuchiya et al. [89] used only 

structural features, such as electrostatic potential on the surface and the shape of the molecular 

surface. Likewise, Bhardwaj et al. [90] used both sequence and structure information, such as 

solvent accessibility, local composition, net charge, and electrostatic potentials. The later SVM 

classifier proposed by Bhardwaj et al. [91] used structure features such as the net charge of a 

residue, occurrence in a cationic patch, and the average potential on a residue in addition to the 

features used in their previous work [90]. It has been reported through various studies that 

evolutionary features are important for the identification of DNA-binding proteins [92] [93] 

[94]. The accuracy of the methods without evolutionary features is generally lower and the 

classifier is often skewed due to imbalanced number of samples. Thus, the inclusion of 

evolutionary information for the prediction of DNA-binding residues can improve the 

accuracy. 

The last decade has seen a tremendous growth in the computing power which has made 

computing evolutionary features, which are often time consuming, much easier. Specifically, 

evolutionary features are represented in the form of Position Specific Scoring Matrix (PSSM) 

which are usually calculated in the two ways: (a) Concatenation methods that do encoding of 

the residues by concatenating PSSM scores in a sliding window, and (b) Combination methods 

that do the encoding of the residues by combining PSSM scores with other physiochemical 

properties like hydrophobicity, torsion angles, molecular mass and other frequency profiles. 

For example, the classifier proposed by Wang et al. [94] combined the three physiochemical 

properties including hydrophobicity, side chain pKa value, molecular mass and frequency 

profile to calculate the relevant physiochemical features for the target and context residues, and 

used their mean and standard deviation to construct the feature space. Similarly, Ma et al. [95] 
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combined the PSSM score of the residue with four physiochemical properties like lone electron 

pairs, hydrophobicity, side chain pKa value and molecular mass in their work. Likewise, 

concatenation methods have been used alone or in combination with other structural and 

physiochemical features to encode the residues. The work of Ahmad and Sarai [79] 

concatenated the PSSM scores of residues within a sliding window around the target residue 

to construct feature vectors. Similar methods have been used by several other classifiers. For 

example, the predictor called SVM-PSSM, proposed by Ho et al. [96] used a combination of 

concatenation methods, as well as other sequence and structural features. Likewise, the SVM 

classifier proposed by Ofran et al. [77] integrated the concatenation features and sequence 

features with solvent accessibility and predicted secondary structure for improved accuracy. 

In this study, various properties about the protein sequences have been studied such as 

amino acid composition type, PSSM values of amino acids, physicochemical properties, 

predicted structural properties, torsion angles and the disorder values. To get as much 

information about the target and the context residues as possible, a sliding window was used 

and the features, concatenated to achieve a superior predictive performance. Furthermore, a 

Support Vector Machine (SVM) based predictor was used as the machine learning method for 

the classification task.  

3.2 Materials and Methods 

In this section, various data sources, data processing methods, input feature generation 

methods, algorithm design and performance evaluation for the prediction of DNA-binding 

residues are discussed. 

3.2.1 Dataset Preparation 

To evaluate the predictive performance of the proposed method for DNA-binding residue 

prediction and to compare it with other existing state-of-the-art classifiers, a widely used 
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benchmark dataset PDNA-224 [97] for DNA-binding residue prediction was used. All the 

proteins in both datasets have sequence similarity ≤ 25% to each other. 

 

3.2.2 Evaluation Metrics 

The performance of the proposed method was measured using 5-fold cross validation. Various 

performance evaluation measures listed in the Table 2 to test the predictive capacity of the 

proposed method as well as to compare it with the state-of-the-art methods 

3.2.3 Input Features 

To obtain the relevant information about the residues, features that included useful properties 

like sequence information, evolutionary information as well as the predicted structural 

information (Table 1) were chosen. Some studies in the literature have revealed that the 

information about correct folding of protein is encoded in amino acid sequence and the disorder 

contents [98] . Because the information about the binding affinity of proteins is encoded not 

only in the evolutionary information, but also in other structural and physiochemical properties 

[32, 95, 99], these features were combined with evolutionary features for better prediction. 

First, the amino acid type (AA), which is indicated by one numerical value out of twenty and 

other seven physicochemical properties(PP) were used as features to predict the DNA-binding 

residues. In addition to that, this study used the Position Specific Scoring Matrix (PSSM) as 

input features which was generated by running three iterations of PSI-BLAST [46] against the 

NCBI’s non-redundant database [100]. The PSSM values were then normalized to get mean of 

zero and standard deviation of one using a PSSM normalizing factor of 9. Similarly, the 

predicted sequence based secondary structure (SS) for helix, sheet and coil residues were 

computed using the program SPINE-X [101]. Likewise, the predicted solvent accessibility 

(ASA) [102] and predicted backbone dihedral torsion angle fluctuations (Φ and Ψ) [103] were 

used  to gain the information about the structural properties of the amino acids. 
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Table 7. List of features used in the prediction of DNA-binding residues from sequences 

Feature Category Feature Count 

Amino Acid (AA) 1 

Physicochemical Properties 7 

PSSM profile 20 

Secondary Structure Content 3 

Accessible Surface Area 1 

Torsion Angle Fluctuation 2 

Monogram 1 

Bigram 20 

Disorder 2 

Residue Wise Contact Energy Potential 20 

Total 77 

 

Since the information about the binding residues is encoded in the overall structure of the 

protein, the features which contribute to the overall three dimensional structure level should be 

included in the feature vectors by using the monograms and bigrams [104] as features. Various 

studies have shown that the conserved evolutionary information obtained from the amino acid 

sequence can be transformed to the three dimensional structure level by computing monograms 

and bigrams [1, 105]. Monogram feature matrix (1 * 20) and bigram feature matrix (20 * 20) 

for each sequence was calculated from its PSSM values. One monogram value and twenty 

bigram values for each type of amino acid were included as feature vectors. Studies suggest 

that the functional sites of the proteins that contribute to binding with other substrates is 

encoded in the order and disorder probability of amino acids [1]. Furthermore, the information 

about the disorder and structural stability of the proteins was incorporated by including disorder 
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values from Dispredict [1] and the Residue Wise Contact Energy potential [52]. All the features 

used in this study are shown in Table 7. 

The literature  shows that the native interactions and the contacts of the neighboring 

residues play an important role in determining protein structure and protein folding dynamics 

[106, 107] and also in determining the DNA-binding preference of the residues [18, 79]. So, to 

get the information about the context residues within the feature space of each residue, the 

proposed method uses a sliding window with the target residue at the center of the window. 

The values in each column of the neighboring residues were then concatenated and then used 

as features for the proposed predictor. After wise, the optimal value of the sliding window size 

was determined by running the 3-fold cross validation on a randomly chosen sample from the 

benchmark dataset. The value of window size was experimentally found to be 11. The features 

were then scaled within the range [-1, +1] before being used for the prediction. 

3.2.4 Machine Learning Method 

Support Vector Machine(SVM) was used in this study as the machine learning method to 

capture the information about the DNA-binding residues 

i) Support Vector Machine (SVM): SVM [39] with the radial basis function (RBF) kernel is 

used in this study. SVM classifies by maximizing the separating hyperplane between two 

classes and penalizes the instances on the wrong side of the decision boundary using a cost 

parameter, C. The RBF kernel parameter, γ and the cost parameter, C are optimized to achieve 

the best jackknife validation accuracy using a grid search [59]. 

3.3 Test Procedures and Results 

3.3.1 Performance of 3-fold cross validation on the benchmark dataset for deciding the 

size of the sliding window 
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Because the benchmark dataset is so large and takes too long to run, only 10% of the sample 

was used to test for the sliding window. 

Table 8. Performance of various window sizes on the benchmark dataset using the default 

SVM for DNA-binding residue prediction 

 

 

The training data was shuffled at the residue level and the samples were taken in random 

to get a general representative sample of the whole dataset. The performance of the proposed 

Window 

/ Metric 

TPR TNR Bal 

ACC 

ACC FPR FNR Precision F1 MCC 

3 0.56414 0.83524 0.69969 0.81770 0.16476 0.43586 0.19150 0.28594 0.25013 

5 0.64915 0.85203 0.75059 0.83890 0.14797 0.35085 0.23282 0.34272 0.32063 

7 0.68006 0.85438 0.76722 0.84310 0.14562 0.31994 0.24417 0.35933 0.34205 

9 0.70325 0.85630 0.77977 0.84640 0.14370 0.29675 0.25292 0.37204 0.35836 

11 0.72798 0.84668 0.78733 0.83900 0.15332 0.27202 0.24724 0.36912 0.35998 

13 0.72025 0.83941 0.77983 0.83170 0.16059 0.27975 0.23679 0.35641 0.34628 

15 0.73261 0.81792 0.77527 0.81240 0.18208 0.26739 0.21773 0.33569 0.32817 

17 0.74652 0.82016 0.78334 0.81540 0.17984 0.25348 0.22309 0.34353 0.33847 

19 0.75270 0.81514 0.78392 0.81110 0.18486 0.24730 0.21977 0.34020 0.33633 

21 0.75580 0.80905 0.78242 0.80560 0.19095 0.24420 0.21495 0.33470 0.33145 

23 0.74498 0.80030 0.77455 0.80030 0.19587 0.25502 0.20830 0.32557 0.32030 

25 0.73261 0.80274 0.76767 0.79820 0.19726 0.26739 0.20440 0.31962 0.31204 

27 0.73725 0.79001 0.76363 0.78660 0.20999 0.26275 0.19541 0.30894 0.30195 

29 0.75580 0.79215 0.77397 0.78980 0.20785 0.24420 0.20099 0.31753 0.31415 

31 0.75116 0.78830 0.76973 0.78590 0.21170 0.24884 0.19708 0.31224 0.30788 

33 0.75580 0.78274 0.76927 0.78100 0.21726 0.24420 0.19397 0.30871 0.30510 

35 0.76507 0.77066 0.76787 0.77030 0.22934 0.23494 0.18750 0.30119 0.29897 

37 0.76507 0.76211 0.76359 0.76230 0.23789 0.23493 0.18199 0.29403 0.29143 

39 0.75425 0.76136 0.75781 0.76090 0.23864 0.24575 0.17941 0.28987 0.28504 
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method was then evaluated using a default SVM with different size of sliding window to 

determine the optimal window size. The values obtained are displayed in the Table 8. 

It can be seen from Table 8 that the optimal performance is found at the window size of 11 

which has Sensitivity of 0.728, Specificity of 0.847, Balanced Accuracy of 0.787 and Overall 

Accuracy of 0.839. The best Sensitivity is obtained at window size 34 and 37 which is 0.765 

and best Specificity is obtained at the window size of 9 which is 0.856. However, the window 

size of 11 was used since it provides the best balanced accuracy which is an important metric 

for measuring the predictive performance of various machine learning methods in an 

imbalanced dataset. The classifier is then optimized in the next section which gives better 

performance than the un-optimized Support Vector Machine (SVM) classifier. 

 

3.3.2 Performance of 5-fold cross validation on the benchmark dataset 

Note that the preliminary extensive analysis of the performance of various window sizes is 

done using default parameters for SVM. For each run of the algorithm with the total number 

of residues (Residuetotal ) in a dataset, the feature matrix of dimension Residuetotal × 77 was 

used. To trade off between the performance and time complexity of parameter selection and 

model generation, the optimum parameters for the SVM were selected using 10% of the 

benchmark dataset. SVM with the penalty for class weights was used to find the optimum 

values of C and gamma and generate the model. The main motivation behind using the class 

weight penalty parameter is to balance the effect of highly skewed dataset which contains a 

high number of non DNA-binding residues and a very low number of DNA-binding residues. 

The best values of C and gamma is found to be 2-1 and 2-5 using gridsearch on the benchmark 

dataset. The improvement of performance with the optimized parameters over the non-

optimized parameters was significant. The optimized model obtained an Accuracy of 0.9331 

which is better than any other method proposed in the dataset. Finally, the optimal values of C 
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and gamma was used to train the SVM on the whole dataset using 5 fold cross validation. Table 

9 states the performance of the proposed method with the other state-of-the-art methods on the 

benchmark dataset. 

 

 Table 9. Performance of the SVM based method with other state-of-the-art methods on the 

benchmark dataset using 5-fold cross-validation for DNA-binding residue prediction 

Methods ACC MCC TPR TNR ST 

Ma et al.                    

(% imp) 

0.7666 

(21.74) 

0.27  

(96.5) 

0.6895     

(45.03) 

0.7725  

(12.18) 

0.7310 

(27.68%) 

Li et al                      

(% imp) 

0.7865  

(18.67) 

0.29  

(83.0) 

0.6948      

(43.93) 

0.7934  

(9.22) 

0.7441   

(25.42%) 

EL_PSSM-RT 

(% imp) 

0.7809  

(19.51) 

0.34 

(56.08) 

0.7958     

(25.66) 

0.7798 

(11.13) 

0.7878              

(18.47%) 

Proposed method  

(avg.% imp) 

0.93331 

(19.97) 

0.53067 

(78.53) 

1.0000 

 (38.20) 

0.86662 

(10.84) 

0.93331 

(23.86) 

 Here, imp. stands for improvement and avg stands for average. 

 

Table 9 shows that the proposed method significantly outperforms Ma et al [95], Li et al [97] 

and EL_PSSM-RT[108] on the benchmark dataset. Specifically, the proposed method 

outperforms other state-of-the-art approaches by 19.97% for ACC, 78.53% for MCC, 38.20% 

for Sensitivity, 10.84% for specificity and 23.86% for Strength. Thus, the proposed method 

can be efficiently used for prediction of DNA-binding residues. 

 

3.4 Future Work 

Since the thesis timeline didn’t allow me to perform the test on the independent dataset, the 

future works will measure the performance of our proposed method on the independent test 

dataset PDNA-62 [79]. The future work on the identification of DNA-binding residues will 

specifically focus on the complex stacking based architectures and several approaches to 

balance the dataset so as to improve the prediction accuracy. The methods will also be tested 

on several other datasets so as to establish the consistency in performance. 
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3.5 Conclusions 

It has been observed through experimental analyses that DNA-protein interactions occur due 

to the immediate contacts between the DNA residues and the protein residues. Thus, the 

identification of the residues involved in the contacts is very important in order to understand 

the mechanism of DNA-protein interaction. In this study, the importance of various sequence-

based, evolutionary, physicochemical, torsion angles and predicted structure based features 

were studied and the information about the context residues was included to design the 

predictor. It was found that the proposed approach outperforms all the other state-of-the-art 

methods on the benchmark dataset. The future work on the DNA-binding residues prediction 

problem will focus on using more benchmark and independent datasets and measure their 

performance to demonstrate the superiority of the proposed approach for identification of 

DNA-binding residues. 
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Chapter 4 

Conclusions and Recommendations 

In this work, I strived for the methodical discovery and characterization of new biological 

properties of proteomic data. I performed computational modeling of several structural and 

interaction properties of proteins to better understand their roles in biological processes 

through machine learning approaches. The comprehensive research objective addressed the 

applications in three disciplines: 

1) Bioinformatics, which includes the development and implementation of various tools for 

bioinformatics applications using novel algorithms which will help in efficient access and 

management of different types of biological information. 

2) Computational Biology, which includes the analysis and interpretation of various types of 

data including nucleotide and amino acid sequences, protein domains and their structures 

to perform an efficient analysis of biological features. 

3) Machine Learning, which involves the development of novel learning algorithms to 

perform an advanced analysis of the data and get as much information from the feature 

space as possible. 

In this chapter, I first present a quick summary of the contributions and then some directions 

for future research and finally conclude by some concluding remarks. 

 

4.1 Summary 

In this section, the contributions of this thesis are summarized. 
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StackDPPred: I have developed a stacked predictor for the prediction of DNA-binding proteins 

from sequence information only. In this research, I performed large scale proteomic data 

collection, purification and analysis from multiple sources such as UniProt [11] and NCBI non-

redundant database. To develop the predictor, various machine learning methods like Support 

Vector Machines, Logistic Regression, k Nearest Neighbors, Random Forest were used. I 

carried out the tuning of parameters of all these methods through grid search and used the 

optimal values to develop our predictor.  

SVM based predictor of DNA-binding residues: In this section, a new SVM based predictor 

has been developed for the prediction of DNA-binding residues using only the sequence 

information. For this task, various novel features like monogram, bigrams, predicted structural 

features and residue-wise contact energy potential have been utilized to develop the predictor. 

The predictor outperforms all the other state-of-the-art approaches.  

 

4.2 Future Scopes 

This section discusses the future scope of the research that has been conducted under this 

thesis. The possible future directions (but not limited to) are the following: 

Section 2.3 of Chapter 2, discusses the possibility of combining various machine learning 

methods for efficient prediction of DNA-binding proteins using sequence information only. It 

has been observed that when machine learning methods are combined according to their 

operating principle, superior performance is obtained over using individual methods. 

Moreover, the StackDPPred only uses the features from the PSSM matrix and the RCEM 

matrix to obtain the proposed accuracy. The accuracy of the predictor can be further improved 

by employing important novel structural and sequence-based features as well as by including 
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more training samples. Furthermore, it would be interesting to see the performance of our 

method with an extended pool of base learners. 

Chapter 2 discusses the performance of the Support Vector Machine (SVM) based 

architecture for the prediction of DNA-binding residues using only sequence information. It is 

observed that with the inclusion of relevant features and the use of better machine learning 

methods can significantly improve the prediction accuracy. The methods used in this study will 

further be incorporated with other complex stacking based learners to significantly improve the 

predictive capability to make the predictors as near-accurate as possible. 

Moreover, it would be interesting to see the performance of the novel stacking methods on 

other datasets, including but not limited to other prediction problems in bioinformatics. 

 

4.3 Conclusions 

The development of various computational methods for large-scale fast annotation and analysis 

of biological data to study the structure and function of proteins from sequence information, 

such as the ones developed in this thesis, can help guide and later, outgrow the use of 

experimental techniques for these tasks. The methods used in this study could be further 

extended to the analysis and the study of other kinds of proteins serving other functions. 

Although the methods presented in this thesis don’t provide near-optimal performance, with 

the availability of more data and with the use of advanced methods, these tools could be used 

as near-accurate optimizers for the prediction of DNA-binding proteins and their binding sites. 

To conclude, to pursue a predictive understanding of the information about the binding 

affinity of the proteins, development of computational frameworks based on the solid 

mathematical foundations and algorithms as well as the statistical evaluation is important. Fast 

and efficient annotation of the functional properties of the proteins can help us keep up with 
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the rapid pace of biological research and furthermore, will contribute to the applications in 

other sciences and engineering domains involving predictive understanding and reasoning. All 

the tools, datasets and code for the tools developed under this thesis are publicly available as 

open source. I hope that these contributions, particularly StackDPPred and the SVM based 

DNA-binding residue predictor will serve as useful tools for advancing the computing as well 

as biological sciences, particularly in proteomics research and applications using machine 

learning. 
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