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Exploitation of recombinant DNA and sequencing technologies has led to a new concept in vaccination in
which isolated epitopes, capable of stimulating a specific immune response, have been identified and
used to achieve advanced vaccine formulations; replacing those constituted by whole pathogen-formu-
lations. In this context, bioinformatics approaches play a critical role on analyzing multiple genomes to
select the protective epitopes in silico. It is conceived that cocktails of defined epitopes or chimeric pro-

ieyf’vor‘i_55 d . tein arrangements, including the target epitopes, may provide a rationale design capable to elicit conve-
Dggi?sfs eterminants nient humoral or cellular immune responses. This review presents a comprehensive compilation of the

most advantageous online immunological software and searchable, in order to facilitate the design and
development of vaccines. An outlook on how these tools are supporting vaccine development is pre-
sented. HIV and influenza have been taken as examples of promising developments on vaccination
against hypervariable viruses. Perspectives in this field are also envisioned.
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1. Introduction

Exploitation of vaccination as a tool in fighting wide spread dis-
eases has resulted in substantial strides in the combat against
many infectious diseases such as influenza, smallpox, varicella,
pertussis, diphtheria, tetanus, polio, hepatitis, and rotavirus [1,2].
The conventional vaccines, which include attenuated or killed
agents, might take up to 15 years of development; this includes
cultivation of the desired microorganism at a larger scale and
under proper conditions as well as an effective inactivation with
a subsequent evaluation of vaccine immunogenicity. Although this
kind of vaccines has saved countless lives, it can have unfavorable

Abbreviations: HIV, Human Immunodeficiency Virus; rDNA, recombinant DNA
technology; MHC, major histocompatibility complex; HLA, human leukocyte
antigen; PSSM, Position Specific Scoring Matrices; ANN, Artificial Neuronal
Networks; QM, quantitative matrices; KISS, Kernel-based Inter-allele peptide
binding prediction SyStem; SVM, support vector machine; WAPP, Whole Antigen
Processing Pathway; CTL, cytotoxic T cell; PI, Protrusion Index; gp120, envelop
glycoprotein gp120; gag, structural polyprotein; mAb, monoclonal antibody; MCC,
Matthews correlation coefficient; HA, hemagglutinin; NA, neuraminidase; TAP,
transporter associated protein; APC, antigen presenting cells; SEPPA, Spatial Epitope
Prediction of Protein Antigens; ATP, adenosine triphosphate; AIDS, acquired
immunodeficiency syndrome; RV144, Thai HIV phase III prime/boost vaccine trial.

* Corresponding author. Fax: +52 444 826 2440.
E-mail address: rosales.s@fcq.uaslp.mx (S. Rosales-Mendoza).

http://dx.doi.org/10.1016/j.jbi.2014.11.003
1532-0464/© 2014 Elsevier Inc. All rights reserved.

consequences as adverse effects, induce the disease or, in some
instances, even death [3-5].

Bioinformatics is a field of science in which several disciplines
such as biology, computing, and information technology converge
to organize and store large amounts of biological information dri-
ven by advances generated in genetics, molecular biology, and bio-
technology [6]. One goal of bioinformatics is to streamline and
interpret, effectively and timely, information from the genome,
transcriptome, and/or proteome [7]. This discipline aims to pro-
mote health benefits including the area of vaccines.

The development of bioinformatics tools along with advances in
recombinant DNA technology (rDNA) and the knowledge on the
host immune response and the genetic background of the patho-
gen will lead to new vaccines against diseases that currently have
few or no control measures in just 1 or 2 years through computer
in silico predictions to define targets [8] see Fig. 1. The vaccines
developed through rDNA technologies are designed to be safer,
more efficacious, and/or less expensive than traditional vaccines.
In order to achieve these aims, a thorough understanding of the
disease agent, particularly, critical epitopes to induce the appropri-
ate immunological reaction is required [9-11].

While the availability of the complete genome sequence per-
mits the identification of all potential protein products, this infor-
mation could be not sufficient to allow for the identification of the
subset of proteins that are in fact expressed at any stage of the life
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of the pathogen. Proteomics also play an important role in this field
as it can serve as a complementary strategy to the genomic-based
approaches using immunomics techniques to identify and charac-
terize immunogenic proteins. Vaccinomics, which consists on the
characterization of host response to immunization, provides valuable
information on pathogen-host cell interaction to validate candidate
antigens. The information obtained from these disciplines also speeds
the identification and characterization of new antigens [12].

Proteomic experiments conducted on bacterial species have not
only been verified with data obtained from genome sequencing
and bioinformatic analyses but have also lead to the discovery of
new proteins, which could be potential new vaccine candidates
[12-14]. An extensive review focused on the impact of proteomics
on the development of antibacterial and antiviral vaccines was
published by Adamczyk-Poplawska [12].

It is important to note that the standard bioinformatics web
tools presented here, are not enough for detailed analysis of
whole genomes. The immunoinformatics is a discipline whose
main objective is to convert large-scale immunological data, using
computational and mathematical approaches, to understand and
organize these large scale data to obtain immunologically mean-
ingful interpretations [15,16]. The tools in this field are based
on statistical and machine learning system and are used for stud-
ies in modeling molecular interactions (such as antigen process-
ing and presentation) and also plays a role in defining new
hypotheses related to understand the immune system mecha-
nisms [17,18].

This review is intended to provide a gateway to some of the
most useful online immunological softwares and searchable dat-
abases for genomes analyses, based in our own experience and a
laborious search in the literature and web databases, providing
an outlook on how these tools have aided on the vaccine develop-
ment field particularly on the development of epitope-based
vaccines.

2. Epitope-based vaccines

Epitopes are of particular interest to both clinical and basic bio-
medical researchers as they hold huge potential for vaccine design,
disease prevention, diagnosis, and treatment. Using rDNA technol-
ogies, we can isolate specific epitopes which can replace the whole
pathogen in a vaccine. However, within the diversity of epitopes in
a pathogen, it is important to notice that not all of the epitopes,

Bioinformatics
tools

Vaccine type

even those that seem to be dominant, are equal in their ability to
elicit antibody production [19-21].

Besides producing particular immunogens instead whole patho-
gens, rDNA has allowed for a rational vaccine design comprising the
production of chimeric proteins that opens a wide number of
possibilities for immunogen design; including the conception
of multiepitopic vaccines having advantages such as: several
immunoprotective epitopes are included in a single molecule,
immunodominant but non-protective epitopes are discarded, and
epitopes exerting adjuvant effects such as promiscuous T cell
epitopes can be included to enhance immunogenicity [22]. These
features offer the possibility of designing multitarget, highly
efficient vaccines. However a requisite for the design of such
immunogens consists on the discovery of the immunoprotective
epitopes and the variants when genetic variability is of relevance
for a particular pathogen.

The epitope-driven vaccine is an attractive concept that is
being successfully pursued in a large number of research groups,
especially to the development of vaccines targeting conserved
epitopes in variable or rapidly mutating pathogens [23,24].

The selected epitopes in a vaccine should ideally be conserved
across different stages of the pathogen and its variants. Further-
more it should be taken into consideration the desired immune
response. Cytotoxic T cell-mediated response is elicited by a path-
way comprising intracellular antigen processing with linear epi-
topes as predominant targets [21]. In this regard, the epitopes
selected for a vaccine must have binding affinity with more than
one major histocompatibility complex (MHC) allele and must cover
a major population [25,26].

The proteins that contain many epitopes recognized by the
common MHC alleles are known as promiscuous binders [26].
The human leukocyte antigen (HLA) supertype refers to a set of
HLA alleles with overlapping peptide binding specificities. The
alleles in the given HLA super type often represent the same epi-
tope, which refers to the region on the surface of an antigen capa-
ble of eliciting an immune response for T cell recognition [25,27].

On the other hand, elicitation of humoral responses relies on
the recognition of linear epitopes and conformational epitopes.
The latter constitute a challenge for chimeric vaccine design as
they must retain their native conformation to be functional [28].
Therefore, knowledge on the whole antigen structure is necessary
to aid on the rational design of vaccines targeting conformational B
cell epitopes [27].

= T helper and B
cell epitope
servers

= HLA-lII
databases

Humoral response =

= T helper and T
cell epitope
servers

= HLA-l databases

Cellular response

Fig. 1. Schematic representation of the workflow to identify epitopes for vaccine development.
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In this context, bioinformatics approaches can contribute to the
design of epitope-based vaccines. Using these tools, an appropriate
in silico selection of epitopes can be accomplished [29,30].

3. Bioinformatics tools to predic potential T cell
binding-epitopes

The first step on applying bioinformatics to vaccine develop-
ment consists on discriminating epitopes that are potentially
immunoprotective from epitopes that are not. Since T-cell epitopes
are bound in a linear form to MHCs, the interface between ligands
and T-cells can be modeled with accuracy [31]. It is currently
well-known that epitopes link together into the binding groove
of MHC Class I and Class II molecules through interactions
between their R group side chains and pockets located on the floor
of the MHC [32-34]. Based on this knowledge, a large number of
T-cell epitope-mapping algorithms have been established and used
to develop tools to rapidly identify putative T-cell epitopes
[31,35,36].

MHC-I binding predictors are currently very efficient and have
wide allelic coverage, a prediction accuracy in the range of
90-95% positive prediction value has been estimated [29,37,38].
Among the numerous servers for MHC-I alleles is included
RANKPEP, which predicts peptide binders to MHC-I and MHC-II
molecules from protein sequences or sequence alignments using
Position Specific Scoring Matrices (PSSMs). In addition, it predicts
those MHC-I ligands whose C-terminal end is likely to be the result
of proteasomal cleavage [39]. This is a friendly platform who offers
the most wide allelic coverage to MHC-I and MHC-II alleles (118
and 67 alleles, respectively) for human and mouse. To search
epitopes sequences for MHC-I ligands using PSSMs,a dynamic
algorithm written in Python is used; which scores all protein
segments with the length of the PSSM width and sorts them
accordingly. Scoring starts at the beginning of each sequence and
the PSSM is slid over the sequence one residue at a time until
reaching the end of the sequence. Furthermore, to narrow down
the potential binders from the list of ranked peptides, a binding
threshold is defined as the score value that includes 90% of the
peptides within the PSSM. This binding threshold is built into each
matrix, delineating the range of putative binders among the top
scoring peptides [39].

The IEDB Analysis Resource database uses NetMHCpan as pre-
diction method since 2011. This method generates a quantitative

Table 1
Comprehensive list of T cell epitope prediction servers.

prediction of the affinity of any peptide-MHC class I interaction,
covering HLA-A and HLA-B for humans as well as chimpanzee,
macaque, gorilla, cow, pig and mouse. This constitutes one of the
few databases that include this variety of organisms [37].

nHLAPred is another comprehensive tool for the prediction of
MHCI binding peptides for 67 MHC alleles. The prediction of alleles
is based on Artificial Neural Networks (ANNs) and quantitative
matrices (QM). The predicted MHC binders are filtered to potential
CTL epitopes by using proteasomal matrices. Although this server
offers two options (Compred and ANNPred), the most wide-rang-
ing is Compred; based on the hybrid approach of artificial neural
networks and quantitative matrices [40].

NetMHC server predicts binding of peptides to a number of dif-
ferent HLA alleles using ANNs. ANNs have been trained for 78 dif-
ferent human MHC (HLA) alleles representing all 12 HLA-A and -B
Supertypes. Furthermore predictions for 41 animals like monkey,
cattle, pig, and mouse alleles are available [38].

Kernel-based Inter-allele peptide binding prediction SyStem
(KISS) predicts whether 9-mer peptides will bind an MHC-I molecule
for 64 alleles using a support vector machine (SVM) multitask Kernel
to leverage the available training information across the alleles,
which improves its accuracy especially for the alleles with few
known epitopes. The predictor is trained on databases which contain
known epitopes from SYFPEITHI, MHCBN, LANL, and IEDB databases.

Although there are other servers available to identify MHC-I
binding predictors, the servers described above are the most com-
plete in terms of allelic coverage and the identification of alleles in
other organism besides human, however a more detailed list of
MHC-I binding predictors available on-line is presented in Table 1.

TAP is a transporter associated with the MHC class I restricted
antigen processing. TAP is heterodimeric transporter that belongs
to the family of ABC transporters and uses the energy provided
by ATP hydrolysis to translocate the peptides across the endoplas-
mic reticulum membrane. The transporter is composed of two pro-
teins named TAP-1 and TAP-2. The subset of this transported
peptide will bind MHC class I molecules. These MHC-peptide com-
plexes are translocated on the surface of antigen presenting cells
(APCs), with a subsequent potential of mounting T cell immune
responses [41-43]. The TAP binding prediction softwares available
include TAPPred, EpiJen, and WAPP (Table 2). TAPPred is an on-line
tool to predict binding affinity of peptides toward the TAP
transporter. The prediction of TAP binding peptides is crucial in
identifying the MHC-I restricted T cell epitopes. The prediction is

Server name Link Predictive server for Predictive method

MHC I MHC II
EpiJen http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm 24 Multi-step algorithm
SYFPEITHI http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm 42 7 Published motifs
ANNPRED http://www.imtech.res.in/raghava/nhlapred/neural.html 30 ANN-regression
BIMAS http://www-bimas.cit.nih.gov/molbio/hla_bind/ 11 Published coefficient tables
ProPred | http://www.imtech.res.in/raghava/propred1/ 47 Quantitative matrix
ProPred http://www.imtech.res.in/raghava/propred/ 51 Quantitative matrix
MHCPred http://www.ddg-pharmfac.net/mhcpred/MHCPred/ 14 11 Additive method
MHC2Pred http://www.imtech.res.in/raghava/mhc2pred/ 42 SVM-based method
NetMHC http://www.cbs.dtu.dk/services/NetMHC/ 57 ANN based method
PREDEP http://margalit.huji.ac.il/Teppred/mhc-bind/index.html 13 Published coefficient tables
RANKPEP http://bio.dfci.harvard.edu/RANKPEP/ 118 62 PSSM
SVMHC http://abi.inf.uni-tuebingen.de/Services/SVMHC 33 51 SVM-based method
IEDB binding http://tools.immuneepitope.org/analyze/html/mhc_processing.html 77 ANN and SMM method
EpiVax http://www.epivax.com/ 6 8 Epimatrix algorithm
MMBPred http://www.imtech.res.in/raghava/mmbpred/ 46 Quantitative matrix
NetCTL http://www.cbs.dtu.dk/services/NetCTL 12 ANN-regression
nHLAPred http://www.imtech.res.in/raghava/nhlapred/ 67 Artificial Neural Networks
KISS http://cbio.ensmp.fr/kiss/ 64 SVM based method
SVRMHC http://svrmhc.biolead.org/ 36 6 SVM-basedmethod
IMTECH http://www.imtech.res.in/raghava/mhc 3 Quantitative matrix
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Table 2

Predictive server for TAP binding epitopes and CTL.
Server name Link Description Predictive method
EpiJen http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm Predictive server for TAP binding epitopes Multi-step algorithm
TAP Pred http://www.imtech.res.in/raghava/tappred/ Predictive server for TAP binding epitopes SVM method
WAPP http://abi.inf.uni-tuebingen.de/Services/WAPP/information Predictive server for TAP binding epitopes SVM method
CTLPred http://www.imtech.res.in/raghava/ctlpred/ Predictive server for CTL SVM and ANN method
NetCTLPan http://www.cbs.dtu.dk/services/NetCTLpan/ Predictive server for CTL Multi-step algorithm

based on cascade SVM, using sequence and properties of the amino
acids [44,45]. EpiJen server offers not only a TAP binding prediction
but also a proteasome cut off. EpiJen uses an additive method
which assumes that each substituent makes an additive and inde-
pendent contribution to the biological activity. Their additive
method considers the interactions between specific amino acids
and the binding site [46].

The Whole Antigen Processing Pathway (WAPP) server includes
tools for predicting proteosomal cleavage, TAP transport, and
MHC-peptide binding. This server offers an integrated prediction
for these three aspects. Prediction of proteasomal cleavage is based
on experiments performed on the Enolase and Prion proteins.
Sequences around experimental cleavage sites are used to con-
struct a weight matrix, while a regression form of SVMs is used
for prediction of TAP affinity [47]. Predictions of the MHC class |
pathway can be improved by predictions of proteasomal cleavage,
TAP transport efficiency, and MHC class I binding affinity [48,49].

Nevertheless while good performance has been achieved for
MHC class I predictions, there is still limited success in predicting
MHC-II-binding epitopes [50,51]. The low prediction accuracy of
MHC-II binding epitopes is due to several factors including the
insufficient or low-quality training data, difficulty on identifying
9-mer binding cores within longer peptides used for training and
lack of consideration of the influence of flanking residues, and
the relative permissiveness of the binding groove of MHC-II mole-
cules which limits the binding stringency [29,50].

ProPred1 is a server that predicts MHC Class-II binding regions
in an antigen sequence using quantitative matrices. The server will
assist in locating promiscuous binding regions that are useful in
selecting vaccine candidates covering 51 alleles [52]. The SVMHC
server enables prediction of both MHC class I and MHC class II
binding peptides, however the most widely coverage is for
MHCH-II (51 alleles). The graphical output displayed in this software
also allows for simple identification of promiscuous epitopes.
SVMHC uses the matrices developed by the TEPITOPE software [47].

The MHC2Pred is a SVM based method for prediction of
promiscuous MHC class II binder. The average accuracy of SVM
based method for 42 alleles is ~80%. The performance of the
method was poorer for few alleles due to a smaller size of dataset.

This server will be useful in cellular immunology, vaccine design,
immunodiagnostics, immunotherapeutics, and molecular under-
standing of autoimmune susceptibility [52]. These last three servers
along with RANKPEP described above, are the most complete serv-
ers with the broadest allelic coverage to predict epitopes binding to
MHC-II and it also has a friendly interface. Other resources to pre-
dict MHC Class-II binding epitopes are described in Table 1.

There is another direct method for prediction of CTL epitopes,
which are crucial in subunit vaccine design; examples of these
servers are CTLPred and NetCTLPan. CTLPred uses the T cell epitope
patterns instead of MHC binders. The method is based on tech-
niques such as ANNs and SVM. The methods also allow the consen-
sus and combined prediction based on these two approaches [53].

NetCTLpan server predicts CTL epitopes in protein sequences
and use artificial neural networks. The method has been updated
to include the newest MHC allele releases from the IMGT/HLA
and IPD-MHC databases (for non-human primates and pig). Predic-
tions in this software can be made for 8-11mer peptides, since
most HLA molecules have a strong preference for binding 9mers
[Table 2 and 48].

The epitope discovery tools described above can be readily
applied to most pathogens, although certain approaches are more
suitable than others depending on their characteristics and limita-
tions. However, one should keep in mind that this prediction is an
indicator of potential function but is not a criterion for function
assignment. Consequently these kind of in silico analyses should
be combined with other pieces of evidence, including experimental
data, to assign function.

4. Bioinformatics tools for predicting potential B cell binding-
epitopes

B cell epitopes are recognized by B cell receptors or antibodies
in their native structure. Continuous B cell epitope prediction is
very similar to T cell epitope prediction, which has mainly been
based on the amino acid properties such as hydrophilicity, charge,
exposed surface area and secondary structure. Discontinuous B cell
epitope prediction requires 3D structure of the antigen [54-56].

Table 3
Comprehensive list of B cell epitope prediction servers.
Server name Link Type
Bcepred http://www.imtech.res.in/raghava/bcepred/ Prediction of continuous B-cell epitopes
BepiPred http://www.cbs.dtu.dk/services/BepiPred/ Prediction of continuous B-cell epitopes
ABCPred http://www.imtech.res.in/raghava/abcpred/ Prediction of continuous B-cell epitopes
BEST http://biomine.ece.ualberta.ca/BEST/ Prediction of continuous B-cell epitopes
EPCES http://sysbio.unl.edu/services/EPCES/ Prediction of discontinuous B-cell epitopes
Discotope http://www.cbs.dtu.dk/services/DiscoTope/ Prediction of discontinuous B-cell epitopes
BEPro (PEPITO) http://pepito.proteomics.ics.uci.edu/ Prediction of discontinuous B-cell epitopes
SEPPA http://lifecenter.sgst.cn/seppa/index.php Prediction of discontinuous B-cell epitopes
EpiSearch http://curie.utmb.edu/episearch.html Prediction of discontinuous B-cell epitopes
MimoPro http://informatics.nenu.edu.cn/MimoPro Prediction of discontinuous B-cell epitopes
MIMOX http://immunet.cn/mimox/ Prediction of discontinuous B-cell epitopes
Pep-3D-Search http://kyc.nenu.edu.cn/Pep3DSearch Prediction of discontinuous B-cell epitopes
Epitopia http://epitopia.tau.ac.il/ Prediction of continuous and discontinuous B-cell epitopes
PepSurf http://pepitope.tau.ac.il Prediction of continuous and discontinuous B-cell epitopes
ElliPro http://tools.immuneepitope.org/tools/ElliPro/iedb_input Prediction of continuous and discontinuous B-cell epitopes

SVM: support vector machine. ANN: artificial neural networks. PSSM: position-specific scoring matrix.


http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm
http://www.imtech.res.in/raghava/tappred/
http://www.abi.inf.uni-tuebingen.de/Services/WAPP/information
http://www.imtech.res.in/raghava/ctlpred/
http://www.cbs.dtu.dk/services/NetCTLpan/
http://www.imtech.res.in/raghava/bcepred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.imtech.res.in/raghava/abcpred/
http://www.biomine.ece.ualberta.ca/BEST/
http://www.sysbio.unl.edu/services/EPCES/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.pepito.proteomics.ics.uci.edu/
http://www.lifecenter.sgst.cn/seppa/index.php
http://www.curie.utmb.edu/episearch.html
http://www.informatics.nenu.edu.cn/MimoPro
http://www.immunet.cn/mimox/
http://www.kyc.nenu.edu.cn/Pep3DSearch
http://www.epitopia.tau.ac.il/
http://www.pepitope.tau.ac.il
http://www.tools.immuneepitope.org/tools/ElliPro/iedb_input

R.E. Soria-Guerra et al./Journal of Biomedical Informatics 53 (2015) 405-414 409

To date, some specific resources to predict continuous or discontin-
uous B-cell epitopes are available on the Web (Table 3).

To predict linear B-cell epitopes, the Bcepred tool is based on
physicochemical properties such as hydrophilicity, flexibility,
polarity, and exposed surface on a non-redundant dataset. The
dataset consists of 1029 B-cell epitopes obtained from Bcipep data-
base and an equal number of non-epitopes obtained randomly
from Swiss-Prot database. The prediction accuracy for models
based on these properties varies from 52.92% to 57.53% [57]. The
ABCpred server, which is based on neural networks, has an esti-
mated accuracy of 65.93% [54]. Another server called BepiPred pre-
dicts the location of linear B-cell epitopes using a combination of a
hidden Markov model and a propensity scale method [58]. The
servers mentioned above are easy to use and properly organized.

Among the tools used to predict discontinuous B cell epitopes
we can mention DiscoTope, which uses the three dimensional
structure of proteins to determinate the surface accessibility and
a novel epitope propensity amino acid score. The final scores are
calculated by combining the propensity scores of residues in spa-
tial proximity and the contact numbers. This server also predicts
epitopes in complexes of multiple chains [59]. This tool along with
BEpro (formerly known as PEPITO) and SEPPA (Spatial Epitope Pre-
diction of Protein Antigens) requires a 3-D structure as input, spe-
cifically, in PDB format [60]. Using SEPPA, each residue in the query
protein will be given a score according to information from its
neighborhood residues. The higher score corresponds to the higher
probability of the residue to be involved in an epitope [61].

One of the most complete tools in this field is ElliPro. This server
predicts linear and discontinuous epitopes based on a protein anti-
gen’s 3-D structure. ElliPro associates each predicted epitope with
a score, defined as a PI (Protrusion Index) value. Compared with
databases mentioned earlier, in ElliPro the input is a protein
sequence. A 3-D structure will be predicted for the input protein
sequence by homology modeling based on user-selected structural
template. Afterwards, linear and discontinuous epitopes will be
computed based on the predicted protein structure. Some other
bioinformatics tools to predict continuous and discontinuous B cell
epitopes are included in Table 3.

All of these integrative tools represent an opportunity for the
development of new vaccines in special those that aim at the elic-
itation of humoral responses.

5. Bioinformatics strategies for emergent peptide-based
vaccines against hypervariable viruses

Historically, most of the known successful vaccines have been
developed empirically. However the emergence of highly sophisti-
cated viruses, such as HIV and influenza characterized by having a
high degree of genetic and antigenic diversity, has impeded the
development of effective, broad-coverage vaccines using tradi-
tional methods. The rapid emergence of these viral pathogens
underscores the need for improved and accelerated processes to
develop and produce vaccines, a need that can be addressed by
the methods described above allowing a rapid, in silico-based
approach to formulate vaccine candidates.

This section briefly discusses some approaches developed for
the case of the human immunodeficiency (HIV) and influenza
viruses as examples on how successful candidate vaccine design
can be achieved in the case of hypervariable viruses using bioinfor-
matic tools.

5.1. HIV

Considering its pandemic importance worldwide, successful
anti-HIV vaccine is an immediate need. This development

constitutes a major challenge for researchers as HIV defeats
immune system intended to neutralize it. In addition, genetic
material can remain in dormant form and thus escapes the
immune system [62]. Although antiretroviral drugs can control
HIV/AIDS progression in many patients, they only succeed in
reducing viral loads without completely eliminating the virus
[63]. Therefore, the development of an effective HIV-1 vaccine rep-
resents the optimal solution for the control of the pandemic HIV.

One advanced proof of concept has been accomplished by the
group of Diaz-Mitoma and coworkers [64] whom developed the
Variosite-based HIV-1 vaccine. This candidate vaccine comprised
a pool of 176 peptides representing five hypervariable epitopes
of gp120 envelope and two variable epitopes of gag. The potency
and coverage of this polyvalent vaccine was tested against a panel
of heterologous HIV-1 subtypes in a non-human primate model.
Specific CD8+ T-cell immune responses against HIV-1 subtypes
A-F were detected, which is remarkable as HIV-1 sequences within
a subtype differ by up to 20%, and between subtypes by up to 35%.
Binding antibody titer and neutralizing activity were also charac-
terized in the immunized animals, observing a substantial level
of IgG antibody titer to variant gp120 proteins in all animals. In
addition three out of six immunized macaques developed neutral-
ization activity against two primary HIV-1 [64].

On the other hand, Huang et al. [65] reported one method for
the prediction of conformational B-cell epitopes. In order to define
whether or not certain regions in specific peptides may constitute
B-cell epitopes, phage-displayed random peptide libraries were
applied as a powerful tool in identifying mimotopes; which are
selected by binding to a given monoclonal antibody (mAb) in a
similar pattern to the native epitope. These mimotopes can be con-
sidered as functional epitope mimics. This kind of methods can
predict not only linear but also conformational epitopes and thus
this approach represent an important strategy in the field. This
method is designated as Pep-3D-Search, it relies on the 3-D struc-
ture of a specific antigen and a set of mimotopes (or a motif
sequence derived from the set of mimotopes), and can be used in
two modalities: mimotope or motif. In order to evaluate the capac-
ity to predict epitopes from a set of mimotopes, 10 epitopes
defined by crystallography were compared with the predicted
results from a Pep-3D-Search. Compared with other available pre-
diction algorithms Pep-3D-Search showed comparable Matthews
correlation coefficient (MCC), specificity and precision, and could
provide novel, rational results. On the other hand, authors verified
the capability of Pep-3D-Search to align a motif sequence to a 3-D
structure in order to predict epitopes. Six test cases were analyzed
including three HIV proteins, demonstrating a superior perfor-
mance to other similar programs. In addition, the program is capa-
ble of quickly localize the epitope regions mimicked by longer
isotopes. Although this promising tool provides a powerful
approach to localize the surface region mimicked by the mimo-
topes, it is necessary to evaluate the immunoprotective capacity
of these identified epitopes.

In the context of atomic-level structure of the antibody-antigen
complex, structure determination in many cases may be impracti-
cal. Recently Georgiev and colleagues [66] describe an efficient
computational method to predict antibody-specific HIV-1 envelope
(Env) epitopes at the residue level. This method consists on assess-
ing neutralization potency data over a set of diverse viral strains
representing the antigen; enhanced accuracy could be achieved
by incorporating information from the unbound structure of the
antigen. In particular, 19 HIV-1 Env antibodies were evaluated in
neutralization panels comprising 181 diverse viral strains and
available antibody-antigen complex structures were considered
in the analyses. The prediction efficiency was 8-fold higher than
a random prediction. In addition when used to prospectively pre-
dict epitope residues for two HIV-1 antibodies, 8ANC131 and
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8ANC195, this tool allowed for successful prediction that was val-
idated experimentally. This procedure is inherently applicable to
antigens that exhibit sequence diversity, displaying an accuracy
that correlates inversely with epitope sequence conservation.
These insights show how data derived from a neutralization panel
and unbound antigen structure can be utilized for residue-level
prediction of antibody epitopes, representing an important
approach to generate efficacious vaccines against hypervariable
pathogens [66].

Table 4 concentrates a representative view of those efforts
based on reverse vaccinology approaches and reflects the feasibil-
ity to overcome the aforementioned obstacles under this focus.
Therefore bioinformatic tools offer a powerful resource that lead
to prediction of vaccine targets. Additional cases are provided in
Table 4.

5.2. Influenza

Influenza is a highly contagious, airborne respiratory tract
infection associated with a significant disease burden. New influ-
enza subtypes periodically emerge to which no immunity exists
in the human population and thus these may cause global pandem-
ics. Outbreaks of new influenza subtypes exemplify how this path-
ogen can evolve pandemic [67]. The search for an effective
universal broad-coverage influenza vaccine is one discouraging
task because of the rapidly mutation rate, the variable and diver-
gent characteristics of the virus, along with extremely long proto-
cols for vaccine development [68].

Some studies have demonstrated that using immuno-bioinfor-
matics predictor allows for a faster and global screening of epi-
topes to design candidate vaccines (see Table 5). In 2007, Wang
et al. [69] identified ten novel influenza epitopes and confirmed
three previously known restricted to cytotoxic T cell (CTL) by the
use of the SYFPEITHI software. These epitopes are conserved in

different isolates of the highly pathogenic H5N1 influenza virus
and all of these are also present in the emerging bird flu isolates.
The immunogenicity of the predicted peptides was evaluated by
ELISPOT assay. These epitopes could be used to detect influenza
specific CTL responses in patients. In addition their results would
have important implications for the rational design of vaccines,
using individual epitopes or epitopes fused as polytopes, applicable
to all ethnic groups.

In a similar approach, Cheung et al. [70] targeted the influenza A
virus (H5N1 strain) using the SYFPEITHI software achieving the
identification of nine potential immunogenic peptides. In vitro
assays were conducted to determine the immunogenic potential
of these peptides. Their findings highlight a promising potential
for epitopes AMDSNTLEL and QGRGVFEL. This novel cytotoxic
T-cell epitopes constitute relevant information for the development
of a human H5N1 vaccine.

On the other hand, using EpiMatrix (a T-cell epitope prediction
and comparison tool), De Groot et al. [30] compared the sequences
of the three hemagglutinin (HA) and neuraminidase (NA) proteins
of influenza A virus. In silico analysis revealed sixteen promiscuous
helper T-cell epitopes contained in the HA sequence, nine of which
were 100% conserved in the 2008-2009 influenza vaccine strain. In
a subsequent study conducted by the same group, a biological
study was performed with the selected epitopes using peripheral
blood mononuclear cell from human donors. IFN-y ELISPOT and
CD4+ T cell stimulation assays allowed to evaluate primary and
post-boost T cell responses, observing a correlation between the
in silico predictions with the observed responses with an 80-90%
accurate prediction for CD4+ T cell epitopes. These findings reflect
the robustness of this computational tool [71], with implications
on the formulation of new vaccines against hypervariable patho-
gens. Table 5 shows other bioinformatic-based approaches applied
in the development of new influenza vaccines, which taken
together demonstrate that potential epitopes can be identified

Table 4
Potential candidate peptide-based vaccines against HIV designed with the aid of bioinformatic tools.
Database/resource HIV proteins analized Prediction output Outcome Immunological assay validation Refs.
Propred1, [EDB Gag, Nef, gp120, gp41, p31-integrase, Prediction of potential MHC Fourteen peptides were None [107]
consensus method, p51RT, protease, rev, tat, vif, vpr, and binding (HLA-Bx27:05)HIV identified to interact strongly
MODPROPEP vpu epitopes with HLA-B%27:05
SYFPEITHI, BIMAS, Gag, pol Prediction of the cryptic HIV  Six affinity cryptic HIV epitopes ELISA, splenocyte proliferation [108]
Immunepitope epitopes of gag and pol presented by HLA-Ax0201 assays, cytotoxic assays
BIMAS Env, gag, nef, pol, rev, tat, vif, vpr, vpu Prediction of MHC epitope Select 30 epitope with 92% of  None [109]
binders coverage of all alleles
Conservatrix, Env, gag, pol,rev, tat, vif, vpr, vpu Prediction of epitopes Fifteen epitopes stimulated ELISpot assays [110]
EpiMatrix conserved across HIV-1 clades gamma-interferon release
Epi-Assembler, Env, gag, pol, vpr, vif, tat, vpu, nef Prediction of highly The 50% of the HIV epitopes Murine immunization studies  [111]
VaccineCAD, immunogenic conserved tested induces specific immune and ELISpot assays
EpiMatrix EpiVax HLA-class II restricted tesponses in mice
epitopes
EpiMatrix Env, gag, pol, vpr, vif, tat, vpu, nef Prediction of broadly The 45% of epitopes tested ELISpot assays [112]
conserved T cell epitopes stimulated gamma-interferon
release
Conservatrix, Env, pol, gag, vif, nef, tat, vpr Prediction of CTL epitopes Twenty-seven HLA-A3 epitopes ELISA and ELISpot assays [113]

Epimatrix,
Variosite gp120 and gp41 Prediction of B cell
neutralizing epitopes
Pep-3D gp120, p24 and nef Prediction of B cell

neutralizing epitopes and

mimotope design

Unnamed method Envelope (Env) epitopes Prediction of B cell

neutralizing epitopes

are conserved across time, clades
and geography

Six macaques developed
neutralization activity against
two primary HIV-1

Proliferation assays, ELISPOT [64]
assays, intracellular cytokine
staining, ELISA, neutralization

assays
Quickly localize the epitope No specified [65]
regions mimicked by longer

isotopes

Neutralization-based method in ELISA [66]

combination with structural
information allow an accurate
prediction of B cell epitopes
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Table 5
Potential candidate peptide-based vaccines against influenza designed with the aid of bioinformatic tools.
Database/resource Prediction output Outcome Immunological assay validation Refs.
SYFPEITHI Prediction of new immunogenic Eighty-nine peptides were confirmed as HLA class I binding assay, IFN-y [69]
HLA class I restricted cytotoxic T HLA-I binders, and 13 were confirmed as ELISPOT assay,
cell epitopes CTL targets
NetCTL Prediction of HLA-restricted Fifty five conserved sequences were HLA binding assay, T-cell assay, [114]
binding epitopes predicted to have immune relevance as ELISPOT assay
T-cell epitopes
EpiMatrix Prediction of CD4(+) T-cell Sixteen T-cell epitopes were 100% CD4+ T cell culture assay, I[FN-y [30,68]
epitopes conserved in the 2008-2009 influenza ELISPOT assay, CD4+ T cell
strain. The pre-existing CD4(+) T cells can stimulation assay, intracellular
elicit cross-reactive effector responses cytokine staining
against influenza
SYFPEITHI Prediction of HLA binding Two novel HLA-Ax0201 restricted T2-cell binding assay, [70]
peptides epitopes citotoxiticy assay, ELISpot assay
NetCTL Prediction HLA-I restricted One hundred and thirty one peptides have IFN-y ELISPOT assay, [71]

BIMAS, SYFPEITHI, NetCTL,

cytotoxic T cell epitopes

Prediction of immunogenic
HLA-A24 restricted CTL epitopes

affinities for the HLA-I supertypes and
only 21 were found to induce T cell
responses

Of 35 CTL predicted peptides, six peptides
exhibited remarkable cytotoxic activity

biochemical assay

Mice were subcutaneously
vaccinated with the selected

[115]

in vivo

epitopes and they survived
lethal influenza virus challenge

rapidly by an in silico genome analysis; followed by confirmation
conducting experimental evaluations.

6. Perspectives

Bioinformatics tools have enabled the capability of selecting
potential epitopes without running the risks involved in cultivating
the pathogen of interest. This kind of methodology represents a
huge advantage over conventional vaccinology techniques, includ-
ing faster outputs and lower costs. The application of ‘omics’ tech-
nologies to this field has also revolutionized the way in which
potential vaccine candidates can be identified. Proteomics and
transcriptomics have been used as complementary approaches to
genomics and are often more useful in identifying surface proteins
during host-pathogen interaction.

Despite that numerous epitope prediction methods are avail-
able, developing a systematic assessment of different methods on
standard benchmark datasets is still a need. Launching a Critical
Assesment of Techniques for Epitope Prediction will indeed benefit
the field. It has been proposed that computational methods will be
used to performed blinded de novo epitope prediction from query
proteins previously screened experimentally [72,73]. Comparison
of different methods is yet a complex task due to many aspects
including the following: (i) inadequate documentation of datasets
and prediction methods, (ii) unavailability of the benchmark data-
set used to evaluate the methods, (iii) unavailability of the code
that implements the method, (iv) the lack of a unified output for-
mat, which complicates the process of combining the results of
several servers in order to obtain consensus predictions [74,75].
Therefore it is necessary to develop standardized data representa-
tions; this will enable the evaluation of different prediction meth-
ods on a standardized benchmark datasets in order to compare the
methods and develop meta-servers combining the predictions of
multiple prediction tools [55].

For example, Epitopes Toolkit (EpiT) is a platform design to
develop epitope prediction methods. This allows other researchers
to use the developed predictor on their own machines, rebuild the
predictor on other datasets, or combine predictor with other
predictors in order to obtain a customized hybrid or consensus
predictor. EpiT comprises two components: (a) model builder, an
application for building and evaluating epitope predictors and

serializing these models in a binary format; (b) predictor, an appli-
cation for applying a model to test data. Although EpiT was
designed for developing epitope prediction tools, some of EpiT
components can be used in different sequence classification tasks.
Moreover, some data pre-processors in EpiT can be applied to a
subcellular localization, and other protein sequence classifications
[74-76]. This platform is implemented in Java and can be freely
downloaded from the project web site at http://ailab.cs.
iastate.edu/epit. The web site also offers a rich resource for the
developers of epitope prediction tools and for EpiT users. The useful
resources include: Epit documentation, an expanding Repository of
Epitope Predictors and a Repositore of Epitope Datasets [74].

Other limitation is related to training an epitope predictor using
a dataset, in which some epitope residues are incorrectly labeled as
non-epitope residues and thus performance of the predictors on
such dataset tend to exaggerate the number of false positives.
Many authors [77-80] have attempted to improve this limitation
by using non-epitope residues extracted form random sample of
the protein sequences in SwissProt [81].

In addition, the comparative analyses are indispensable in order
to improve the limitations of different epitope prediction methods,
speeding up the development of enhanced methods. The critical
assessment for epitope prediction methods has been demonstrated
to be appropriate in other areas [82]. The use of large, non-redun-
dant, and experimentally well-characterized datasets can help to
increase the accuracy of the cross-validation-based estimates of
the performance of epitope predictors.

All the bioinformatics tools described above provide a compre-
hensive list of epitopes to design a candidate vaccine. How to
decide which of this large number of epitopes candidates are
selected for clinical trials still remains a challenge. Although geno-
mic based-approaches have tremendously accelerated the identifi-
cation of vaccine targets, vaccinologists still have to go through the
tedious and slow process of validation.

Thus the novel candidate epitope-based vaccines identified
using these tools have to be subjected to the existing standard con-
firmatory in vivo studies (e.g. animal protection experiments) as
one would do for vaccine antigens identified using conventional
methods.

Different databases are available for predicting T- and B-cell
epitopes. However, among the tools for predicting B cell epitopes,
further developments are still needed since an ideal tool should
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take in account the composition biases in datasets [83,84]. A real-
istic prediction of antigenic epitopes that are preferentially recog-
nized critically depends of the protein composition. The majority of
available epitope prediction methods are based upon the amino
acid properties including hydrophilicity [85,86], solvent accessibil-
ity [84], secondary structure [87], flexibility [88] and antigenicity
[83]. In 2005, Blythe and Flower demonstrated that, using single-
scale amino acid propensity profiles is not enough to predict epi-
tope location reliably, whereas in 2007, Greenbaum et al. showed
that, using a combination of more than one amino acid propensity
scale and a machine learning algorithms could improve prediction
accuracy. The implication of such for studies obviously has immu-
nological implications in epitope prediction [55,89].

Underperformance of in silico epitope prediction can be identi-
fied in a number of reports. As an example, Blythe and Flower
examined the correlation between the predictor B-cell epitopes
and the epitope location from 50 proteins for polyclonal responses.
They found that the single-scale amino acid propensity profiles
cannot be used to predict epitope location reliably as no correla-
tion exists between sequence profile generated and the location
of known linear epitopes. The appropriate combination of several
algorithms, and critical evaluation of the information generated,
are essential for the successful selection of antigenic epitopes.
Therefore vaccinologists should be aware on the fact that outputs
are highly dependent on the criteria used for tool selection. This
fact highlights the complexicity of the task and motivates the
development of more sophisticated and specific tools to improve
performance [55].

In a report from Wang et al. MHC-II prediction tools did not per-
form as well as noted for class I predictions, which can be due to
the fact that MHC class Il requires a highly specific match. The pre-
diction ability was initially assessed using 9-mer peptide cores
revealed in crystal structures. From the eight algorithms assessed,
a poor performance was observed except for PROPRED and SYFPEI-
THI, which reflect the difficulty to identify the correct binding core.
In order to improve these limitations, a consensus prediction tool
was develop by combining these two class II binding prediction
methods, observing an improved performance when compared to
individual outputs as 10 of the 14 candidates bound MHCII [90].

One interesting example has been published by Resende et al.
who reported the evaluation of the performance of five algorithms
for epitope prediction (NetCTL, NetMHC, BepiPred and AAP12) and
three algorithms for subcellular localization prediction having as
target trypanosomatid genomes. The comparison between algo-
rithms was made in the basis of AUC (area under a ROC curve) val-
ues, which represent the probability that a randomly selected
positive epitope will score higher than a randomly selected nega-
tive epitope. AUC data indicated that only a little difference among
the NetCTL and Net MHC (0.66 and 0.60 respectively) perfor-
mances exists. Considering that MHC-I prediction methods have
achieved AUC values in the range 0.95-0.99, NetCTL and Net
MHC were determined as low performance approaches. On the
other hand, the evaluation of AUC values for B-cell epitopes algo-
rithms (BepiPred and AAP12) revealed inferior performances than
those observed for previous algorithms [91,92].

Therefore one can state that distinct prediction models vary in
performance and thus a set of tools should be assessed for a spe-
cific target organism. It is then expected that this combinatorial
prediction approach will provide solid advancements in the vac-
cine development field.

Once the selection of the target epitopes has been accom-
plished, designing vaccine formulation may be based in synthetic
peptide mixtures that may include adjuvant sequences such as
Th epitopes to enhance immunogenicity [for review see 93]. How-
ever synthetic peptides are costly for clinical applications. An
attractive alternative consists on designing recombinant proteins

bearing the set of target epitopes [94]. Additional sequences that
play an important role in the chimeric protein are linkers, acting
as spacers that facilitate folding to achieve a proper epitope dis-
play, and adjuvant sequences. Excellent reviews on vaccine chime-
ric protein designs were published by Thomas and Luxon [95] and
Cozzi et al. [96].

Our group have produced and evaluated multiepitopic proteins
as vaccines candidates against infectious diseases. Immunogenicity
of these candidates in a mouse model has showed to be promising
as humoral responses against the distinct targets were induced
[97-99]. These designs comprised epitopes that were mainly
described by traditional immunogenicity trials such as epitope
mapping and serologic and functional assays. It is envisioned that
the bioinformatic tools summarized in this review may lead to
innovative chimeric designs against these pathogens.

Specific cases where these technologies would also provide cru-
cial strides within the biomedical field include HIV/AIDS and influ-
enza. Despite the global HIV/AIDS epidemics, the search for one
effective vaccine was elusive after decades of focused research.
However new hopes were generated from the RV144 Thai trial,
where a modest protective potential was identified [100]. Epitopes
associated with the observed immunoprotection are being identi-
fied and it is expected that further vaccine developments based
in those epitopes would provide new promising candidates [101].
The development of vaccines consisting of protective selected epi-
topes is the ideal approach and thus represents a field of opportu-
nity for the fight against HIV/AIDS.

In the case of influenza although protective vaccines are avail-
able, these cover certain variants with the risk of failing on protect-
ing against new variants and thus new vaccines should be
periodically generated to fight emerging variants. A universal vac-
cine is the ideal approach to provide broad-spectrum immunity
against multiple strains. Among the candidates investigated thus
far, the highly conserved ectodomain of the M2 protein of influ-
enza A viruses and a stalk domain can be mentioned [102]. T cell
epitope-based vaccines using nucleoprotein and M1 protein have
also been tested. Multiepitopic designs comprising these promis-
ing epitopes augur new potential influenza vaccine as model for
a universal intervention against this relevant hypervariable patho-
gen [103,104].

In conclusion, the extensive research accomplished on develop-
ing tools useful on vaccine rational design are considerable but fur-
ther improvements on in silico analysis along with experimental
evaluations will be critical to advance in the vaccine development
field to eventually introduce to the market new vaccines derived
from these technologies, especially for highly variable viral patho-
gens [105,106].

Acknowledgments

Current investigations from the group are supported by CONA-
CYT Grants 151480 to RESG, PROMEP-2010 to Bioprocess CA. Omar
Gonzalez corrected the English version of the manuscript.

References

[1] WHO, UNICEF, World Bank. State of the world’s vaccines and immunization,
3rd ed. Geneva, World Health Organization; 2009.

[2] Arinaminpathy N, Ratmann O, Koelle K, Epstein SL, Price GE, Viboud C, et al.
Impact of cross-protective vaccines on epidemiological and evolutionary
dynamics of influenza. PNAS 2012;109:3173-7.

[3] Jarzab A, Skowicki M, Witkowska D. Subunit vaccines- antigens, carriers,
conjugation methods and the role of adjuvants. Postepy Hig Med Dosw
2013;67:1128-43.

[4] Bogdanos DP, Choudhuri K, Vergani D. Molecular mimicry and autoimmune
liver disease: virtuous intentions, malign consequences. Liver 2001;21:
225-32.

[5] Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD. A virus-induced
molecular mimicry model of multiple sclerosis. J Clin Invest 2001;108:311-8.


http://refhub.elsevier.com/S1532-0464(14)00233-0/h0010
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0010
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0010
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0015
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0015
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0015
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0020
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0020
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0020
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0025
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0025

R.E. Soria-Guerra et al./Journal of Biomedical Informatics 53 (2015) 405-414 413

[6] Lesk AM. Introduction to bioinformatics. New York, NY: Oxford University
Press; 2002. EEUU, 255.

[7] Brusic V, Flower D. Bioinformatics tools for identifying T-cell epitopes. Drug
Disc Today: Biosilico 2004;2:8-23.

[8] Jackwood MW, Hickle L, Kapil S, Silva R. Vaccine development using
recombinant DNA technology. Council Agric Sci Technol 2008;38:1-11.

[9] Streatfield S]. Plant based vaccines for animal health. Rev Sci Techol
2005;24:189-99.

[10] Verma AK, Kumar A, Dhama K, Deb R, Rahal A, Mahima, et al. Leptospirosis-
persistence of a dilemma: an overview with particular emphasis on trends
and recent advances in vaccines and vaccination strategies. Pak ] Biol Sci
2012;15:954-63.

[11] Ellis RW. New Technologies for making vaccines. Vaccine 1999;17:1596-604.

[12] Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics
for development of vaccine. ] Proteomic 2011;74:2596-616.

[13] Klade CS. Proteomics approaches towards antigen discovery and vaccine
development. Curr Opin Mol Ther 2002;4:216-23.

[14] Falisse-Poirrier N, Ruelle V, EIMoualij B, Zorzi D, Pierard O, Heinen E, et al.
Advances in immunoproteomics for serological characterization of microbial
antigens. ] Microbiol Methods 2006;67:593-6.

[15] Brusic V. Immunoinformatics: tools for large-scale immunology. Genome
Inform 2003;14:711-2.

[16] Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput
Biol 2006;2:e71.

[17] Tong JC, Ren EC. Immunoinformatics: current trends and future directions.
Drug Discov Today 2009;14:684-9.

[18] Tomar N, De RK. Immunoinformatics: an integrated scenario. Immunology
2010;131:153-68.

[19] Babai I, Samira S, Barenholz Y, Zakay-Rones Z, Kedar E. A novel influenza
subunit vaccine composed of liposome-encapsulated haemagglutinin/
neuraminidase and IL-2 or GM-CSF. [: Vaccine characterization and efficacy
studies in mice. Vaccine 1999;17:1223-38.

[20] Nemchinov LG, Liang TJ, Rifaat MM, Mazyad HM, Hadidi A, Keith JM.
Development of a plant-derived subunit vaccine candidate against hepatitis C
virus. Arch Virol 2000;145:2557-73.

[21] Sun DX, Seyer JM, Kovari I, Sumrada RA, Taylor RK. Localization of protective
epitopes within the pilin subunit of the Vibrio cholerae toxin-coregulated
pilus. Infect Immunol 1991;59:114-8.

[22] Almeida RR, Rosa DS, Ribeiro SP, Santana VC, Kallas EG, Sidney ], et al. Broad
and cross-clade CD4+ T-cell responses elicited by a DNA vaccine encoding
highly conserved and promiscuous HIV-1 M-group consensus peptides. PLoS
ONE 2012;7:e45267.

[23] Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design
employing immunoinformatics against B-cell lymphoma: a biotech’s
challenge. Biotechnol Adv 2012;30:372-83.

[24] Gershoni JM, Roitburd A, Siman DD, Tarnovitsk N, Weiss Y. Epitope mapping
the first step in developing epitope-based vaccines. Biodrugs 2007;21:
145-56.

[25] Foged C, Hansen ], Agger EM. License to kill: formulation requirements for
optimal priming of CD8(+) CTL responses with particulate vaccine delivery
systems. Eur ] Pharm Sci 2012;45:482-91.

[26] Ling A, Whitton JL. A multivalent minigene vaccine, containing B cell, CTL, and
Th epitopes from several microbes, induces appropriate responses in vivo and
confers protection against more than one pathogen. ] Virol 1997;71:
2292-302.

[27] Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC.
Dissecting the role of peptides in the immune response: theory, practice
and the application to vaccine design. ] Pept Sci 2003;9:255-81.

[28] Van Regenmortel MH. What is a B-cell epitope? Methods Mol Biol 2009;
524:3-20.

[29] He Y, Rappuoli R, De Groot AS, Chen R. Emerging vaccine informatics.
] Biomed Biotechnol 2010;2010:1-26.

[30] De Groot AS, McMurry ], Moise L, Martin B. Epitope-based Immunome-
derived vaccines: a strategy for improved design and safety. Clinical Appl
Immun 2009;2:39-69.

[31] DelLisi C, Berzofsky JA. T-cell antigenic sites tend to be amphipathic
structures. PNAS 1985;82:7048-52.

[32] Zinkernagel RM, Doherty PC. The discovery of MHC restriction. Immunol
Today 1997;18:14-7.

[33] Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific
motifs revealed by sequencing of self-peptides eluted from MHC molecules.
Nature 1991;351:290-6.

[34] Rétzschke O, Falk K, Stevanovic S, Jung G, Walden P, Rammensee HG. Exact
prediction of a natural T cell epitope. Eur ] Immunol 1991;21:2891-4.

[35] McMurry ], Sbai H, Gennaro ML, Carter EJ, Martin W, De Groot AS. Analyzing
Mycobacterium tuberculosis proteomes for candidate vaccine epitopes.
Tuberculosis 2005;85:95-105.

[36] De Groot AS, Moise L. New tools, new approaches and new ideas for vaccine
development. Expert Rev Vaccine 2007;6:125-7.

[37] Hoof 1, Peters B, Sidney ], Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a
method for MHC class I binding prediction beyond humans. Inmunogenetics
2009;61:1-13.

[38] Lundegaard C, Lund O, Nielsen M. Accurate approximation method for
prediction of class I MHC affinities for peptides of length 8, 10 and 11 using
prediction tools trained on 9mers. Bioinformatics 2008;24:1397-8.

[39] Reche PA, Reinherz EL. Prediction of peptide-MHC binding using profiles.
Methods Mol Biol 2007;409:185-200.

[40] Bhasin M, Raghava GP. A hybrid approach for predicting promiscuous MHC
class I restricted T cell epitopes. ] Biosci 2007;32:31-42.

[41] Peters B, Bulik S, Tampe R, Van Endert PM, Holzhiitter HG. Identifying MHC
class I epitopes by predicting the TAP transport efficiency of epitope
precursors. ] Immunol 2003;171:1741-9.

[42] Lankat-Buttgereit B, Tampe R. The transporter associated with antigen
processing TAP: structure and function. FEBS Lett 1999;464:108-12.

[43] Hill A, Ploegh H. Getting the inside out: the transporter associated with
antigen processing (TAP) and the presentation of viral antigen. PNAS
1995;92:341-3.

[44] Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, et al. An
integrative approach to CTL epitope prediction: a combined algorithm
integrating MHC class I binding, TAP transport efficiency, and proteasomal
cleavage predictions. Eur ] Immunol 2005;35:2295-303.

[45] Bhasin M, Raghava GPS. Prediction of CTL epitopes using QM, SVM and ANN
techniques. Vaccine 2004;22:3195-201.

[46] Doytchinova IA, Guan P, Flower DR. EpiJen: a server for multi-step T cell
epitope prediction. BMC Bioinformatics 2006;7:131.

[47] Donnes P, Elofsson A. Prediction of MHC class I binding peptides, using
SVMHC. BMC Bioinformatics 2001;3:25.

[48] Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC
class I pathway epitope predictions. Immunogenetics 2010;62:357-68.

[49] Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale
validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC
Bioinformatics 2007;8:e424.

[50] Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC-II
peptide binding prediction servers: applications for vaccine research. BMC
Bioinformatics 2008;9:522.

[51] Gowthaman U, Agrewala JN. In silico tools for predicting peptides binding to
HLA-class II molecules: more confusion than conclusion. ] Proteome Res
2008;7:154-63.

[52] Singh H, Raghava GPS. ProPred: Prediction of HLA-DR binding sites.
Bioinformatics 2001;17:1236-7.

[53] Bhasin M, Raghava GPS. Analysis and prediction of affinity of TAP binding
peptides using cascade SVM. Protein Sci 2004;13:596-607.

[54] Sun P, Ju H, Liu Z, Ning Q, Zhang J, Zhao X, et al. Bioinformatics resources and
tools for conformational B-cell epitope prediction. Comput Math Methods
Med 2013;2013:943636.

[55] Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, et al.
Towards a consensus on datasets and evaluation metrics for developing B-cell
epitope prediction tools. ] Mol Recognit 2007;20:75-82.

[56] Yao B, Zheng D, Liang S, Zhang C. Conformational B-cell epitope prediction on
antigen protein structures: a review of current algorithms and comparison
with common binding site prediction methods. PLoS ONE 2013;19(8):
e62249.

[57] Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen
using recurrent neural network. Proteins 2006;65:40-8.

[58] Pontoppidan-Larsen JE, Lund O, Nielsen M. Improved method for predicting
linear B-cell epitopes. Immun Res 2006;2:2.

[59] Kringelum ]V, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope
predictions: impacts of method development and improved benchmarking.
Plos Comput Biol 2012;8:12.

[60] Sweredoski M], Baldi P. PEPITO: improved discontinuous B-cell epitope
prediction using multiple distance thresholds and half-sphere exposure.
Bioinformatics 2008;24:1459-60.

[61] Sun J, Wu D, Xu T, Wang X, Xu X, Tao L, et al. SEPPA: a computational server
for spatial epitope prediction of protein antigens. Nucl Acids Res 2009;37:
W612-6.

[62] Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine B, et al.
HIV reservoir size and persistence are driven by T cell survival and
homeostatic proliferation. Nat Med 2009;15:893-900.

[63] Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, Zhang H, et al.
Dose-response curve slope sets class-specific limits on inhibitory potential of
anti-HIV drugs. Nat Med 2008;14:762-6.

[64] Azizi A, Anderson DE, Torres JV, Ogrel A, Ghorbani M, Soare C. Induction of
broad cross-subtype-specific HIV-1 immune responses by a novel multivalent
HIV-1 peptide vaccine in cynomolgus macaques. J Immunol 2008;180:
2174-86.

[65] Huang YX, Bao YL, Guo SY, Wang Y, Zhou CG, Li YX. Pep-3D-Search: a method
for B-cell epitope prediction based on mimotope analysis. BMC
Bioinformatics 2008;9:538.

[66] Chuang GY, Acharya P, Schmidt SD, Yang Y, Louder MK, Zhou T, et al. Residue-
level prediction of HIV-1 antibody epitopes based on neutralization of diverse
viral strains. ] Virol 2013;87:10047-58.

[67] Chan PK. Outbreak of avian influenza A (H5N1) virus infection in Hong Kong
in 1997. Clin Infect Dis 2002;34:558-64.

[68] Schanen BC, De Groot AS, Moise L, Ardito M, Mcclaine E, Martin W, et al.
Coupling sensitive in vitro and in silico techniques to assess cross-reactive
CD4+ T cells against the swine-origin HIN1 influenza virus. Vaccine
2011;29:3299-309.

[69] Wang M, Lamberth K, Harndahl M, Reder G, Stryhn A, Larsen MV, et al. CTL
epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-,
and HLA-wide screening. Vaccine 2007;25:2823-31.


http://refhub.elsevier.com/S1532-0464(14)00233-0/h0030
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0030
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0035
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0035
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0040
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0040
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0045
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0045
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0050
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0050
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0050
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0050
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0055
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0060
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0060
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0065
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0065
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0070
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0070
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0070
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0075
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0075
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0080
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0080
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0085
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0085
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0090
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0090
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0095
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0095
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0095
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0095
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0100
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0100
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0100
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0105
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0105
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0105
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0110
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0110
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0110
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0110
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0115
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0115
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0115
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0120
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0120
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0120
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0125
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0125
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0125
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0130
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0130
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0130
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0130
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0135
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0135
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0135
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0140
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0140
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0145
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0145
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0150
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0150
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0150
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0155
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0155
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0160
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0160
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0165
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0165
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0165
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0170
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0170
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0175
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0175
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0175
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0180
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0180
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0185
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0185
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0185
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0190
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0190
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0190
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0195
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0195
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0200
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0200
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0205
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0205
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0205
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0210
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0210
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0215
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0215
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0215
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0220
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0220
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0220
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0220
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0225
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0225
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0230
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0230
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0235
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0235
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0240
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0240
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0245
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0245
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0245
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0250
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0250
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0250
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0255
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0255
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0255
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0260
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0260
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0265
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0265
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0270
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0270
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0270
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0275
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0275
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0275
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0280
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0280
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0280
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0280
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0285
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0285
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0290
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0290
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0295
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0295
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0295
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0300
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0300
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0300
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0305
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0305
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0305
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0310
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0310
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0310
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0315
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0315
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0315
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0320
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0320
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0320
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0320
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0325
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0325
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0325
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0330
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0330
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0330
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0335
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0335
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0340
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0340
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0340
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0340
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0345
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0345
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0345

414 R.E. Soria-Guerra et al./Journal of Biomedical Informatics 53 (2015) 405-414

[70] Cheung YK, Cheng SC, Ke Y, Xie Y. Two novel HLA-Ax0201 T-cell epitopes in
avian H5N1 viral nucleoprotein induced specific immune responses in HHD
mice. VetRes 2010;41:24.

[71] Wang M, Larsen MV, Nielsen M, Harndahl M, Justesen S, Dziegiel MH, et al.
HLA Class I binding 9mer peptides from influenza A virus induce CD4+ T cell
responses. PLoS ONE 2010;5:e10533.

[72] Lafuente EM1, Reche PA. Prediction of MHC-peptide binding: a systematic
and comprehensive overview. Curr Pharm Des 2009;15(28):3209-20.

[73] Ostell JM, Wheelan SJ, Kans JA. The NCBI data model. In: Baxevanis AD,
Ouellette BFF, editors. Bioinformatics: A Practical Guide to the Analysis of
Genes and Proteins. New York: John Wiley & Sons Publishing; 2001. p. 19-44.

[74] El-Manzalawy Y, Honavar V. A framework for developing epitope prediction
tools. In: Proceedings of the first ACM international conference on
bioinformatics and computational biology, ACM; 2010a. p. 660-2.

[75] EL-Manzalawy Y, Honavar V. Recent advances in B-cell epitope prediction
methods. Immun Res 2010;6:1-9.

[76] EL-Manzalawy Y, Honavar V. Building classifier ensembles for B-cell epitopes
prediction. In: De Rajat K, Tomar N, editors. Inmunoinformatics, methods in
molecular biology. New York: Springer; 2014. p. 285-94.

[77] Chen ], Liu H, Yang ], Chou K. Prediction of linear B-cell epitopes using amino
acid pair antigenicity scale. Amino Acids 2007;33:423-8.

[78] EL-Manzalawy Y, Dobbs D, Honavar V. Predicting flexible length linear Bcell
epitopes. In: 7th International conference on computational systems
bioinformatics; 2008. p. 121-31.

[79] Saha S, Raghava G. Prediction of continuous B-cell epitopes in an antigen
using recurrent neural network. Proteins 2006;65:40-8.

[80] Séllner J, Mayer B. Machine learning approaches for prediction of linear B-cell
epitopes on proteins. ] Mol Recognit 2006;19:200-8.

[81] Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000. Nucl Acids Res 2000;28:45-8.

[82] Moult . A decade of CASP: progress, bottlenecks and prognosis in protein
structure prediction. Curr Opin Struct Biol 2005;15(3):285-9.

[83] Emini EA, Hughes ]V, Perlow DS, Boger ]. Induction of hepatitis A virus-
neutralizing antibody by a virus-specific synthetic peptide. ] Virol 1985;55:
836-9.

[84] Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of
antigenic determinants on protein antigens. FEBS Lett 1990;276:172-4.

[85] Parker JM, Guo D, Hodges RS. New hydrophilicity scale derived from high-
performance liquid chromatography peptide retention data: correlation of
predicted surface residues with antigenicity and X-ray-derived accessible
sites. Biochemistry 1986;25:5425-32.

[86] Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino
acid sequences. Proc Natl Acad Sci USA 1981;78:3824-8.

[87] Pellequer JL, Westhof E, Van Regenmortel MH. Correlation between the
location of antigenic sites and the prediction of turns in proteins. Immunol
Lett 1993;36:83-99.

[88] Karplus PA, Schulz GE. Prediction of chain flexibility in proteins a -tool for the
selection of peptide antigens. Naturwissenschaften 1985;72:212-3.

[89] Blythe M], Flower DR. Benchmarking B cell epitope prediction:
underperformance of existing methods. Protein Sci 2005;14:246-8.

[90] Wang P, Sidney ], Dow C, Mothé B, Sette A, Peters B. A systematic assessment
of MHC class II peptide binding predictions and evaluation of a consensus
approach. PLoS Comput Biol 2008;4(4):e1000048.

[91] Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell
epitopes. Immun Res 2006;2:2.

[92] Resende DM1, Rezende AM, Oliveira NJ, Batista IC, Corréa-Oliveira R, Reis AB,
et al. An assessment on epitope prediction methods for protozoa genomes.
BMC Bioinformatics 2012;13:309.

[93] Rosendahl Huber S, van Beek ], de Jonge ], Luytjes W, van Baarle D. T cell
responses to viral infections-opportunities for peptide vaccination. Front
Immunol 2014;5:171.

[94] Zeinalzadeh N, Salmanian AH, Ahangari G, Sadeghi M, Amani |, Bathaie SZ,
et al. Design and characterization of a chimeric multiepitope construct

containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit
B of enterotoxigenic Escherichia coli: a bioinformatic approach. Biotechnol
Appl Biochem 2013. http://dx.doi.org/10.1002/bab.1196.

[95] Thomas S, Luxon BA. Vaccines based on structure-based design provide
protection against infectious diseases. Expert Rev Vaccines 2013;12:1301-11.

[96] Cozzi R, Scarselli M, Ferlenghi 1. Structural vaccinology: a three-dimensional
view for vaccine development. Curr Top Med Chem 2013;13:2629-37.

[97] Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, Lépez-Revilla R,
Alpuche-Solis AG. Oral immunogenicity of tomato-derived sDPT polypeptide
containing Corynebacterium diphtheriae, Bordetella pertussis and
Clostridium tetani exotoxin epitopes. Plant Cell Rep 2011;30:417-24.

[98] Govea-Alonso DO, Rubio-Infante N, Garcia-Hernandez AL, Varona-Santos JT,
Korban SS, Moreno-Fierros L, et al. Inmunogenic properties of a lettuce-
derived C4(V3)6 multiepitopic HIV protein. Planta 2013;238:785-92.

[99] Rosales-Mendoza S, Rubio-Infante N, Elizabeth Monreal-Escalante, Govea-
Alonso DO, Garcia-Hernandez AL, Salazar-Gonzalez JA, et al. Chloroplast
expression of an HIV envelop-derived multiepitope protein: towards a
multivalent plant-based vaccine. PCTOC 2014;116:111-23.

[100] Excler JL, Tomaras GD, Russell ND. Novel directions in HIV-1 vaccines
revealed from clinical trials. Curr Opin HIV AIDS 2013;8:421-31.

[101] Rao M, Peachman KK, Kim ], Gao G, Alving CR, Michael NL, et al. HIV-1
variable loop 2 and its importance in HIV-1 infection and vaccine
development. Curr HIV Res 2013;11:427-38.

[102] Shaw A. New technologies for new influenza vaccines. Vaccine 2012;30:
4927-33.

[103] Pica N, Palese P. Toward a universal influenza virus vaccine: prospects and
challenges. Annu Rev Med 2013;64:189-202.

[104] Goodman AG, Heinen PP, Guerra S, Vijayan A, Sorzano CO, Gomez CE, et al. A
human multi-epitope recombinant vaccinia virus as a universal T cell vaccine
candidate against influenza virus. PLoS ONE 2011;6:e25938.

[105] Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA. Systems biology
approaches to new vaccine development. Curr Opin Immunol 2011;23:
436-43.

[106] Andersen-Nissen E, Heit A, McElrath MJ. Profiling immunity to HIV vaccines
with systems biology. Curr Opin HIV AIDS 2012;7:32-7.

[107] Sundaramurthi JC, Ramanathan VD, Hanna LE. HLA-Bx27:05-specific
cytotoxic T lymphocyte epitopes in Indian HIV type 1C. AIDS Res Hum
Retroviruses 2013;29:47-53.

[108] LiY, Huang Y, Liang ], Xu Z, Shen Y, Zhang N, et al. Immune responses induced
in HHD mice by multiepitope HIV vaccine based on cryptic epitope
modification. Mol Biol Rep 2013;40:2781-7.

[109] Toussaint NC, Maman Y, Kohlbacher O, Louzoun Y. Universal peptide vaccines
- optimal peptide vaccine design based on viral sequence conservation.
Vaccine 2011;29:8745-53.

[110] De Groot AS, Bosma A, Chinai C, Frost ], Jesdale BM, Gonzalez MA, et al. From
genome to vaccine: in silico predictions, ex vivo verification. Vaccine
2001;19:4385-95.

[111] De Groot AS, Marcon L, Bishop EA, Rivera D, Kutzler M, Weiner DB, et al. HIV
vaccine development by computer assisted design: the GAIA vaccine. Vaccine
2005;23:2136-48.

[112] De Groot AS, Jesdale B, Martin W, Saint Aubin C, Sbai H, Bosma A, et al.
Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics
approach. Vaccine 2003;21:4486-504.

[113] De Groot AS, Levitz L, Ardito MT, Skowron G, Mayer KH, Buus S, et al. Further
progress on defining highly conserved immunogenic epitopes for a global
HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes. Hum Vaccin
Immunother 2012;8:987-1000.

[114] Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, et al.
Evolutionarily conserved protein sequences of influenza a viruses, avian and
human, as vaccine targets. PLoS ONE 2007;2:e1190.

[115] Ichihashi T, Yoshida R, Sugimoto C, Takada A, Kajino K. Cross-protective
peptide vaccine against influenza A viruses developed in HLA-A%2402 human
immunity model. PLoS ONE 2011;6:e24626.


http://refhub.elsevier.com/S1532-0464(14)00233-0/h0350
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0350
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0350
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0350
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0355
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0355
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0355
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0360
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0360
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0365
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0365
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0365
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0375
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0375
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0380
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0380
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0380
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0385
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0385
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0395
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0395
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0400
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0400
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0405
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0405
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0410
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0410
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0415
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0415
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0415
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0420
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0420
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0425
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0425
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0425
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0425
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0430
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0430
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0435
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0435
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0435
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0440
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0440
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0445
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0445
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0450
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0450
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0450
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0455
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0455
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0460
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0460
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0460
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0465
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0465
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0465
http://dx.doi.org/10.1002/bab.1196
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0475
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0475
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0480
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0480
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0485
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0485
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0485
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0485
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0490
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0490
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0490
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0495
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0495
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0495
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0495
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0500
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0500
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0505
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0505
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0505
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0510
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0510
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0515
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0515
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0520
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0520
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0520
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0525
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0525
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0525
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0530
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0530
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0535
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0535
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0535
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0535
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0540
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0540
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0540
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0545
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0545
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0545
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0550
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0550
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0550
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0555
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0555
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0555
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0560
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0560
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0560
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0565
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0565
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0565
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0565
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0570
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0570
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0570
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0575
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0575
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0575
http://refhub.elsevier.com/S1532-0464(14)00233-0/h0575

	An overview of bioinformatics tools for epitope prediction: Implications on vaccine development
	1 Introduction
	2 Epitope-based vaccines
	3 Bioinformatics tools to predic potential T cell binding-epitopes
	4 Bioinformatics tools for predicting potential B cell binding-epitopes
	5 Bioinformatics strategies for emergent peptide-based vaccines against hypervariable viruses
	5.1 HIV
	5.2 Influenza

	6 Perspectives
	Acknowledgments
	References


