730 research outputs found

    An active-architecture approach to COTS integration

    Get PDF
    Commercial off-the-shelf (COTS) software products are increasingly used as standard components within integrated information systems. This creates challenges since both their developers and source code are not usually available, and the ongoing development of COTS cannot be predicted. The ArchWare Framework approach recognises COTS products as part of the ambient environment of an information system and therefore an important part of development is incorporating COTS as effective system components. This integration of COTS components, and the composition of components, is captured by an active architecture model which changes as the system evolves. Indeed the architecture modelling language used enables it to express the monitoring and evolution of a system. This active architecture model is structured using control system principles. By modelling both integration and evolution it can guide the system’s response to both predicted and emergent changes that arise from the use of COTS products.Publisher PDFPeer reviewe

    Cautious Adaptation of Defiant Components

    Get PDF
    Systems-of-systems are formed by the composition of independently created software components. These components are designed to satisfy their individual requirements, rather than the global requirements of the systems-of-systems. We refer to components that cannot be adapted to meet both individual and global requirements as defiant components. In this paper, we propose a cautious adaptation approach which supports changing the behaviour of such defiant components under exceptional conditions to satisfy global requirements, while continuing to guarantee the satisfaction of the components’ individual requirements. The approach represents both normal and exceptional conditions as scenarios; models the behaviour of exceptional conditions as wrappers implemented using an aspect-oriented technique; and deals with both single and multiple instances of defiant components with different precedence order at runtime. We evaluated an implementation of the approach using drones and boats for an organ delivery application conceived by our industrial partners, in which we assess how the proposed approach helps achieve the system-of-systems’ global requirements while accommodating increased complexity of hybrid aspects such as multiplicity, precedence ordering, openness, and heterogeneity

    Proposing a secure component-based-application logic and system’s integration testing approach

    Get PDF
    Software engineering moved from traditional methods of software enterprise applications to com-ponent based development for distributed system’s applications. This new era has grown up forlast few years, with component-based methods, for design and rapid development of systems, butfact is that , deployment of all secure software features of technology into practical e-commercedistributed systems are higher rated target for intruders. Although most of research has been con-ducted on web application services that use a large share of the present software, but on the otherside Component Based Software in the middle tier ,which rapidly develops application logic, alsoopen security breaching opportunities .This research paper focus on a burning issue for researchersand scientists ,a weakest link in component based distributed system, logical attacks, that cannotbe detected with any intrusion detection system within the middle tier e-commerce distributed ap-plications. We proposed An Approach of Secure Designing application logic for distributed system,while dealing with logically vulnerability issue

    Agent Based Test and Repair of Distributed Systems

    Get PDF
    This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities. Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. An experimental solution is presented, and future developments of the proposed approach are explore

    Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    Get PDF
    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document

    Engineering Automation for Reliable Software Interim Progress Report (10/01/2000 - 09/30/2001)

    Get PDF
    Prepared for: U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211The objective of our effort is to develop a scientific basis for producing reliable software that is also flexible and cost effective for the DoD distributed software domain. This objective addresses the long term goals of increasing the quality of service provided by complex systems while reducing development risks, costs, and time. Our work focuses on "wrap and glue" technology based on a domain specific distributed prototype model. The key to making the proposed approach reliable, flexible, and cost-effective is the automatic generation of glue and wrappers based on a designer's specification. The "wrap and glue" approach allows system designers to concentrate on the difficult interoperability problems and defines solutions in terms of deeper and more difficult interoperability issues, while freeing designers from implementation details. Specific research areas for the proposed effort include technology enabling rapid prototyping, inference for design checking, automatic program generation, distributed real-time scheduling, wrapper and glue technology, and reliability assessment and improvement. The proposed technology will be integrated with past research results to enable a quantum leap forward in the state of the art for rapid prototyping.U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-22110473-MA-SPApproved for public release; distribution is unlimited
    • …
    corecore