
A Service of:
National Aeronautics and

Space Administration

https://ntrs.nasa.gov/search.jsp?R=19990025789 2020-06-15T22:25:24+00:00Z

Proceedings of the Twenty-Second Annual
Software Engineering Workshop

December 3-4. 1997

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

SEW22 Proceedings

The Software Engineering Laboratory(SEL) is an organization sponsored by the National
Aeronautics and Space AdministratiodGoddard Space Flight Center (NASNGSFC) and Created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software. The SEL was created in 1976 and has three primary
organizational members:

NASNGSFC, Flight Dynamics Systems Branch

The University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Development and Software
Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

or by writing to:

Systems Integration and Engineering Branch
Code 581
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

SEW22 Proceedings

SEW22 Proceedings

The views and findings expressed
herein are those of the author: and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for complience
with any relevant copyright, patent,
or other proprietary restrictions.

CONTENTS

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Page

' I Session 1: The Software Engineering Laboratory - Discussant: J. Jeletic,
NASA/ Goddard

, - 3 The SEL Adapts to Meet Changing Times - R. Pajerski, NASA/Goddard, and
V. Basili, University of Maryland

21 The Package-Based Development Process in the Flight Dynamics Division - A. Parra,
Computer Sciences Corporation, C. Seaman and V. Basili, University of Maryland, S.
Kraft, NASAIGoddard, S. Condon and S. Burke, Computer Sciences Corporation,
D. Yakimovich, University of Maryland

,' --57 The Web Measurement Environment (WebME): A Tool for Combining and Modeling
Distributed Data - R. Tesoriero and M, Zelkowitz, University of Maryland

79 Session 2: COTS - Discussant: Steve Kraft, NASA/Goddard

8 1 Calibration of a COTS Integration Cost Model Using Local Project Data - D. Boland
R. Coon, K. Byers, and D. Levitt, Computer Sciences Corporation

L , 99 An Architectural Approach to Building Systems$om COTS Sofiware Components -
M . Vigder and J. Dean, National Research Council

< . 133 A Sofiware Development Process for COTS-based Information System
Injkastructure - G. Fox and S. Marcom, TRW, and K. Lanter, EDS

(I' ' 155 Session 3: Process - Discussant: V. Basili, University of Maryland

157 Experiences With CMM and IS0 9001 Benchmarks - J . Haskell, F. McGarry and y- /
W. Decker, Computer Sciences Corporation

177 Using PSP and TSP Data to Manage Sojhvare Quality - W. Humphrey, SEI Carnegie
Mellon University

., 193 Measuring lmpacts of SoJtware Process Maturity in a Production Environment -
F. McGany, S. Burke, W. Decker, and, J. Haskell, Computer Sciences Corporation

' - 22 1 A Time-Based Management Approach to Software Process Improvemen - C. Beard,
P. Paesano and C. Savage, Westinghouse Electric Corporation

SEW22 Proceedings v

CONTENTS (cont'd)

Page

/ /- 249 Calibration Results of COCOMO 11.1997 - S. Devnani-Chulani, B. Boehm, and
B. Clark, University of Southern California

Assessing the Accuracy of the COCOMO 11.1997 Estimating Model - D. Reifer, Reifer
Consultants, Inc.

Component-Based Sofiare Development: Parameters Influencing Cost Estimation -
R. Smith, A. Parrish, and J. Hale, University of Alabama

Session 5: Verification - Discussant: C. Seaman, University of Maryland

A Verifier for Object-Oriented Designs - K. Perikasarny and W. Baluta, University of
Manitoba

Demonstration of a Safety Analysis on a Complex System - N. Leveson, University of
Washington

Automatic Generation of Test Coverage Analyze - S. Aggarwal and U. Bhattacharyya,
Indian Institute of Technology, Kanpur

Session 6: Sustaining Engineering - Discussant: S. Condon, Computer Sciences
Corporation

Measuring and Evaluating the Stability of Mainteqance Processes - N. Schneidewind,
Naval Postgraduate School

Verification and Validation in a Rapid Somare Development Process - J . Callahan
and S. Easterbrook, NASA Software IV&V Facility

429 Using Semantic Distance to Make Adapation Decisions - A. Mili, West Virginia
University and Institute for Software Research, L. Jilani, Regional Institute for
Research in Computing and Telecommunications s

' - 459 Session 7: Object Orientation - Discussant: S. Green, NASNGoddard

. -, 46 1 Object-Oriented Modeling Focused on a Linguistic Approach - N . Juristo and
A. Moreno, Universidad Politecnica de Madrid

r i 475 Case Study of an Object-Oriented S ' e m : EOSDIS - J . Behnke and S. Sekira,
NAS AfGoddard

. ,, , . 495 Application of Use Case Approach to a Small Project - H. Kopp and L. Ciccone, .

Westinghouse Electric Corporation

5 15 Appendix A - Workshop Attendees

521 Appendix B - Standard Bibliography of SEL Literature

SEW22 Proceedings vi

Session 1 : The Software Engineering Laboratory

The SEL Adaprs to Meet Changing Times
R. Pajerski. NASAIGoddard, and V. Basili, University of Maryland

The Packrrge-Based Development Process in the FDD
A. Parra. Computer Sciences Corporation, C. Seaman and V. Basili, University of Maryland.

S. Kraft. NASA/Goddard, S. Condon, and S. Burke, Computer Sciences Corporation.
D. Yakimovich, University of Maryland

The Web Meusurement Environment (WehME):
A Tool for Combining and Modeling Distributed Data
R. Tesoriero and M. Zelkowitz, University of Maryland

SEW22 Proceedings

The SEL Adapts to Meet Changing Times
3 LO 77q

Rose S. Pajerski Victor R. Basili
NASA. Goddard Space Flight Center Computer Science Department/

Institute for Advanced Computer Studies
Flight Dynamics Division University of Maryland
Greenbelt, MD 2077 1 College Park, MD 20742
(301) 286-3010 (301) 405-2668
rose.pajerski @gsfc.nasa.gov basili@cs.umd.edu

Background

Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and
improving the way in which one NASA organization, the Flight Dynamics Division (FDD) at Goddard
Space Flight Center, develops, maintains, and manages complex flight dynamics systems. It has done this
by developing and refining a continual process improvement approach that allows an organization such as
the FDD to fine-tune its process for its particular domain. Experimental software engineering and
measurement play a significant role in this approach.

The SEL is a partnership of NASA Goddard, its major software contractor, Computer Sciences Corporation
(CSC), and the University of Maryland's (UM) Department of Computer Science. The FDD primarily
builds software systems that provide ground-based flight dynamics support for scientific satellites. They fall
into two sets: ground systems and simulators. Ground systems are midsize systems that average around 250
thousand source lines of code (KSLOC). Ground system development projects typically last 1 - 2 years.
Recent systems have been rehosted to workstations from IBM mainframes, and also contain significant new
subsystems written in C and C++. The simulators are smaller systems averaging around 60 KSLOC that
provide the test data for the ground systems. Simulator development lasts up to 1 year. Most of the
simulators have been built in Ada on workstations. The project characteristics of these systems are shown in
Table 1. The SEL is responsible for the management and continual improvement of the software
engineering processes used on these FDD projects.

SEW22 Proceedings

Table 1. Characteristics of SEL Projects

3

During the past 20+ years, the SEL's overall goal has remained tie same: to improve the FDDs software
products and processes in a measured manner. This requires that cach development and maintenance effort
be viewed, in part, as a SEL experiment, which examines a specific technology or builds a model of interest
for use on subsequent efforts. The SEL has undertaken m y technology studies while developing
operational sum>ort systems for numerous NASA spacecraft missicns.

The SEL process improvement approach shown in Figure 1 is based on the Quality Improvement Paradigm
[Reference I] in which process changes and new technologies are 1) selected based on a solid
undersranding of organization characteristics, needs, and business goals; 2) piloted and assessed using the
scientific method to identify those that add value; and 3) packaged for broader use throughout the
organization. Using this approach, the SEL has successfully established and mahued its process
improvement program throughout the organization.

The SEL's basic approach toward software process improvement is to first understand and characterize the
process and product as they exist to establish a local baseline Only then can new technologies be
introduced and assessed (phase two) with regard to both process changes and product impacts. There are
typically several studies ongoing at any one time, which take 1-3 years to complete. The third phase
synthesizes the results of the fint two phases into various packages such as process tailoring guidance,
training materials, and tools and guidebooks. These results are then fed back into the cycle for subsequent
projects to use and benefit from.

UNDERSTANDING (

I Determine improvements and set go&
I Measure changed process and product

Analyze impact of process change on product
I I Know your software business I

What are my software characteristics?
What process do we use?

* What are our goals?

Figure 1. SEL Process Improvement Paradigm

The SEL organization consists of three functional areas: software drvelopers, software engineering process
analysts, and &&a base support (Figure 2). The largest part of the SIEE is the 150 to 201) software personnel
who an responsible for the development and maintenance of over 4 million source lines of code (SLOC)
that provide orbit and attitude ground support for all Goddard missions. Since the SEL was founded.

SEW22 Proceedings 4 $EL-97-W

software projct personnel have provided software measurement data on over 130 projects. This data has
been collected by data base support personnel and stored in the SEL data base for use by software project
personnel and process analysts. The process analysts are responsible for defining the experiments and
studies, analyzing the data, and producing reports. These reports affect such things as project standards,
development procedures, and how projects are managed. The data base support staff is responsible for
entering measurement data into the SEL data base, quality assuring the data, and maintaining the data base
and its reports.

PROCESS ANALYSTS

Function: Develop 1 Refined 1
Process

Perform analysis
Refine process

\ DATA BASE SUPPORT / /
r 1

Staff level: 2 - 3 I SEL : Data Base 130 Projects
Function: Process, QA, .

& archive data GEL Reports

NASA 8 CSC tibibrary
I

*Project Docs

Figure 2. SEL Organizational Structure

Drivers for Change

The SEL has faced a number of changes over the past few years brought about by both environmental and
technical factors. These factors include the phase-out of the mainframe systems and subsequent transition
to workstations, growth of object-orientated languages (Ada, and Cu), and the increasing usage of
Commercial-off-the shelf (COTS) scientific application products. However, the latest challenge goes
deeper, to a more fundamental, organizational level.

The drivers for this start at the NASA-wide level and extend throughout both Goddard and the local
division organizations. The 1997 NASA Strategic Plan has several elements that impact Goddard
structures:

The Enterprise Organizations, such as Mission to Planet Earth and Human Exploration of Space, wiII
become a source of direct funding for SEL studies. This implies a more involved customer who will
expect the SEL to be able to show some cost benefit fairly quickly.
Mission managers will need performance data for both in-house as well as acquired software efforts to
show schedule and budget conformance.

0 The NASA Software Strategic Plan defines specific goals for software management, assurance, and
improvement organizations to attain that may impact SEL activities.

Other drivers arise from the Goddard Strategic Plan and Goddard's new organizational structure. While
teams have always provided support for missions, the roles and responsibilities of teams have been
expanded. A mission team will now support a specific project throughout all mission phases, thereby
involving development organizations earlier in the project. The scope of the development organization has
also been broadened to include end-to-end information systems (ground and onboard). The new

SEW22 Proceedings 5 SEL-97-003

functionally based Information Systems Center (ISC) shown in Fi-pre 3 will be the focal point for software
expertise and a systems support infrasaucture throughout Goddarc:.

Science data visualization and analysis

Figure 3. ISC Functions

Given these new strategic and organizational mandates, the SEL has an opportunity to leverage its
capabilities to help meet the ISC's expanded responsibilities in several areas:

Build an improvement organization within the ISC that will increase the competency of its software
professionals, thereby increasing the quality of Goddard software systems

0 Model and characterize software systems in use on the ground and onboard spacecraft
* Transfer and help tailor proven development and rnaintenar~ce technologies to new domains, internal

and external to GSFC.

Organizational Adaptation
Under the proposed expanded SEL structure, the development organization would expand to include the
entire project team while the software engineering process analysts and data base support functions would
remain the same (Figure x). However, the scope of work of the pmcess analysts would encompass the end-
to-end systems development process, fkom requirement definition through maintenance and operations. The
conesponding metrics used would also change to reflect the addiaonal phases of the system lifecycle under
analysis. At a minimum, measures relevant to the requirement definition and operations/delivery processes
would need to be included.

SEW22 Proceedings

integrate/maintain
Software systems / Refined /

Process

Pro j~echnology Teams Process Analysts

Perform analysis
Refine process

Measur s
Function: Develop/

-----4.

Staff level: 2 - 3 I SEL Measures : Data Base
Function: Process, QA, I

8 Reuse info
S/w eng reports

& archive data 1 Rewrts Project records

Staff level: Core 10 -12
Function: Design studies

NASA & CSC

Figure 4. SEL Structure under the ISC

Another organizational issue that will need to be considered is the approach taken in planning SEL work.
Over the past several years, the SEL has been managed by a group of 4-6 senior managers who would meet
2-3 times a year to set local improvement goals. Based on these goals, members of the group would
propose applied research and study areas for the next 1-2 years. Resource requirements would be discussed
and teams formed from the three partner organizations.

With the expansion of the SEL's role in the ISC, planning input for the SEL's activities would be solicited
from a broader user community across Goddard including project offices. In their yearly planning, SEL
managers would respond to an analysis of these project needs in setting improvement goals, selecting study
areas and associated metrics, and feeding back results to all involved. The scope of SEL leadership might
also grow to encompass other academic and industry partners; however, this aspect needs further study.

Experimental Adaptation

The SEL has conducted hundreds of process technology studies of different size and duration. Some have
been multi-year, multi-application studies (e.g.. Cleanroom, Ada) while others have been much smaller and
quicker (e.g., testing approach). [References 2,3,4] Over time, this has resulted in refinements to the
experimental approach itself in two areas: study selection and approach, and types of analysis performed.

The trend has been to perform smaller studies that build upon one another over time. This has two benefits:
quicker feedback to the development groups of useful results, and quicker realization of benefits that then
accumulate over time. The independent test team study and the ongoing COTS process study arc two
examples of this. Figure 5 shows the current approach that emphasizes early deployment of new elements
of the process to the development groups as the study proceeds. The impact of these changes on the overall
process and product can then be demonstrated and incorporated into the organizational baseline, thereby
increasing ISC's competitive position.

SEW22 Proceedings

Reuse &
Add00

Unit Testing
& Cleanroom

I
Baselie f 1

Independent measurement
Test Teams I

Figure 5. Improvement Cycle Timelines

This emphasis on accelerating analysis has also modified the types of analysis performed. The use of
qualitative techniques, such as focused interviews, has increased. The development teams are interviewed
at the experiment's start to ensure that their goals and perspectives are factored into the experiment. This
domain "discovery " step enhances the SEL process analysts' understanding and facilitates communication
throughout the study. Another helpful communication rnechanish is the use of online feedback reports to
replace face-to-face meetings. As more groups become involvec in SEL studies, their use is expected to
increase - to become an important technology transfer mechanism also.

Technology Transfer Adaptation

SEL experience with transferring our process technologies and experimental results to the "outside" was
predicated on whether the receiving organization was internal tc Goddard or external. Internal transfers
were supported with a very hands-on approach that included training, tailoring, and impact analysis.
However, for external transfers, the users were provided with d2tailed guides along with some tailoring
information but were essentially responsible for implementation and change analysis.

As our understanding of the considerable resources required to be successful at technology transfer has
increased, the SEL approach to technology transfer has become more sophisticated. We are developing
domain-based techniques to replace the previous "one size fits all" approach. The resulting mechanism
considers a range of factors in order to predict the success ot a transfer based on key similarities in
organization and environment between the organizations involved. The filter can also be used to more
easily tailor a particular technology.

Next Steps

Based on the above discussion, there are several steps for the SEL and the ISC to pursue in concert:

1. Profile the ISC organization and establish a new baseline of rroducts developed and processes used in
systems development, integration, and maintenance. An understanding of the new operation of the
organization is crucial to establish priorities and successfully plan SEL support for them.

2. Select a few projects for focused SEL support - projects tha differ in scope (development vs. COTS
integration) and organization (in-house vs. contract). 'i3is would involve establishing basic
measurement mechanisms as well as feedback and reporting procedures for a subset of new or ongoing
projects.

SEW22 Proceedings

3 Evolve the direction of the SEL to include Enterprise representation and new models for leadership. A
key ingredient to the SEL's past success has been the close cooperation between development and
process analysis groups - and it will be a challenge to replicate this with other groups, perhaps across
different companies.

Expanding the scope and support activities of the SEL will not be easy; however, it will position the ISC to
be able to improve Goddard's future systems development efforts.

References

[I] Basili, V., "Quantitative Evaluation of a Software Engineering Methodology," Proceedings of the Fit
Pan Pacific Computer Conference, Melborne, Australia, September 1985.
[2] Basili, V. and S. Green, "Software Process Evolution at the SEL," IEEE Sofrware, July 1994, pp. 58-66.
[3] Waligora, S., M. Stark, and J. Bailey, "The Impact of Ada and Object-Oriented Design in NASA
Goddard's Flight Dynamics Division, " Proceedings of the 13th Annual Washington Ada Symposium
(WA&S%), July 1996.

[4] Waligora, S. and R. Coon, "Improving the Software Testing Process in NASA's Software Engineering
Laboratory," Proceedings ofthe Twentieth Annual S o w a r e Engineering Workhop, Goddard Space Flight
Center, December 1995.

SEW22 Proceedings

Rose Pajerski, NASA GSFC
Victor Basili, University of Maryland

Presentation Outline

m Drivers for Change

Organizational Adaptation

Experimentation Adaptation

Technology Transfer Adaptation

m Next Steps

SEW22 Proceedings

Drivers
r t

NASA Strategic Plan
* Enterprises as involved customerlfunding source
4 Performance measurement (Inhouse/Acquired)

Software Strategic Plan (Manage/Assure/lmprove)

Strategic Goals of Project Goddard
+ Expanded team structure across all mission phases
+ Focus on end-to-end information systems
+ IS0 9001 certification

New Organizational Structure Proposed
* Software responsibility 8 expertise in single organization
+ Significant infrastructure assets

Leveraging SEL Experience
r 1

Building an improvement organization
+ Understandlcharacterize new domain elements
+ Use SEL infrastructure (approachlrneasurement)

m Studying end-toend software systems
+ Model effort/ schedule/ errors
+ Develop reuse assets (process & product)

a Transferring technology based on domain characteristics
4 Internal and external transfers
+ Tailor development, integration & lnaintenance practices

SEW22 Proceedings 12 SEL-97-003

Organizational Adaptation
I 1

Drivers for Change
Organizational Adaptation
+ SEL Structure
+ Work Planning Approach
+ SEL Infrastructure

Experimentation Adaptation
Technology Transfer Adaptation
Next Steps

SEL Structure (Near-term Concept)

NASA & CSC+ ? 1

Projectrrechnology Teams Process Analysts

Database Support
I

Staff level: 2-3 I SEL
I Measures

Function: Process, QA, I Data Base Reuse info
I

& archive data , ~~~~t Slw eng reports
I

NASA & CSC Library Project records
I

Staff level: Core 10-12
+ additional from project
Function: Design studies

Perform analysis
Refine process

Staff level: 1000+
Function: Develop!
integratelmaintain
software systems

SEW22 Proceedings 13 SEL-97-003

Measures
)

1
Refined
Process

Work P1 ing Approach - Current

local improvement focus
with some NASA-wide efforts

SEL Partners

industnr
consistent metrics and turns research into

management commitment practice (case studies)

a Board of Directors: 4-6 senior leads
Annual proposals: based on local improvement goals

Work Planning Approach - Future Concept

academic partners

Proposals linked to organizational &

SEW22 Proceedings

SEL Infrastructure - Current

Experience repository
+ Increased measurement database capabilities

(e.g., COTS process & product data)
+ Onlineweb-based data collection tools

Project Support
* Earlier team participation (requirements generation)
+ Feedback reporting

SEL Infrastructure - Future Concept

acquisition-related data

Online report distribution

SEW22 Proceedings

Experimental Adaptations - In Progress
1 1

Study approach and selection
+ Smaller, overlapping studies
+ Team & individual processes considered
+ Firmer link between experimental goals & measures

B Analysis of results
+ Faster model building
+ Feedback to current teams
+ Frequent baselines for managers

Accelerating Analysis
r 1

Use of qualitative techniques
+ Focused interviews
+ Quick-look analysis

+ Interviews
+ High-level profile data

Interim analysis reports
+ Online feedback replacing meetings
+ Reports build on previous

SEW22 Proceedings 16

Overlapping Studies
I t

Length of studies shortens - Baseline period decreasing
1

Reuse &
Ada100

I I I
Unit Testing I I 1 1
& Cleanroom 1

I I I I I
independent
Test Teams

COTS Baseline
Process

/- I
measurement I

1990 1993 1996 Experimentation

C] Deployment

Technology Transfer Approach (through 1996)
I i

Depended on answers to a few simple questions
+ Scope?

+ Internal - more "hands on"
+ External - written guidance

+ Sponsor?

Transferred products
+ Guidebooks, training
+ Tools

SEW22 Proceedings

Technology Transfer Approach Evolving

a Domain-based "filter"
+ Consider a range of factors

+ Organization, environment
+ More questions at the start

Predict success of transfer
+ Pilot in place at JSC

a Integrate with other NASNindustry efforts
+ Filter best practices quickly
o Use existing processlproduct improvement groups

Next Steps for the SEL
I I

1. Baselinelprofile expanded clrganization
+ Processes used
+ Products generated
o Report to organization

2. Select projects for focused support
+ Development/integrationimainrenance
+ Process technologies (ongoing work)

3. Evolve SEL direction
* Enterprise representation
+ Investigate other partnerships

SEW22 Proceedings 18

The SEL Within Project Goddard
I 1

and the 'beat' goes on . . .

Online feedback
Interim reports

Systems - COTSlreuse
People - team 8 individual

Characterize/sunrey expanded organization

I Develop management models

SEW22 Proceedings

Package

Assess

Understand

The Package-Based Development Process
in the Flight Dynamics Division

Ama lia Parra, Computer Sciences Corporation
Carolyn Seaman, University of Maryland

Victor Basili, University of Maryland
Stephen Kraf, NASNGoddard Space Flight Center

Steven Condon, Computer Sciences Corporation
Steven Burke, Computer Sciences Corporation
Daniil Yakimovich, University of Maryland

Abstract
The SEL has been operating for more than two decades in the FDD and has adapted to the
constant movement of the software development environment. The SEL's Improvement
Paradigm shows that process improvement is an iterative process. Undersianding,
Assessing and Packaging are the three steps that are followed in this cyclical paradigm.
As the improvement process cycles back to the first step, after having packaged some
experience, the level of understanding will be greater. In the past, products resulting
from the packaging step have been large process documents, guidebooks, and training
programs. As the technical world moves toward more modularized software, we have
made a move toward more modularized software development process documentation, as
such the products of the packaging step are becoming smaller and more frequent. In this
manner, the QIP takes on a more spiral approach rather than a waterfall.

This paper describes the state of the FDD in the area of software development processes,
as revealed through the understanding and assessing activities conducted by the COTS
study team. The insights presented include: (1) a characterization of a typical FDD
COTS intensive software development life-cycle process, (2) lessons learned through the
COTS study interviews, and (3) a description of changes in the SEL due to the changing
and accelerating nature of software development in the FDD.

1 Background
The Flight Dynamics Division at NASA/Goddard Space Flight Center has had a history
of effective reuse of software to levels as high as 90%. The increase has been affected by
the use of Ada and object-oriented technologies. This experience led to the creation and
use of an architectured component library for a certain class of systems so that these
systems could be "configured" rather than developed [Condon et al., 19961. It has also
motivated the outsourcing of software development for more "standard" systems, which
in turn has led to a move from internal reuse to the use of external software packages.
The introduction of package-based software development-rapid configuration of
software systems based on Commercial-Off-The-Shelf (COTS) packages, Government-
Off-The-Shelf (GOTS) packages, and some custom-built reusable packages-has
motivated the Software Engineering Laboratory (SEL) to provide guidance in this new era

SEW22 Proceedings

by updating the SEL Recommended Approach to Softw$zre Development [SEL, 19921.
Before updating this important SEL guidebook, howevzr, it was first necessary to
understand and improve this new package-based process within the flight dynamics
domain.

The traditional SEL approach to software improvemen:; involves three steps. These are
described in more detail in Section 2, but briefly they are as follows: (1) understand the
current situation in the local environment (for us, the F ~ D) and develop appropriate goals
for improving specific items; (2) assess how to achieve these goals by defining process
changes, testing them on one or more projects, and analyzing the results of this
experiment; (3) package the lessons learned from step 2 and integrate these into the local
software development process. In any given SEL experiment, this Zstep improvement
process is generally a cyclic one, involving several iterations. In addition the steps can
overlap somewhat.

The first phase of the SEL COTS study was conducted during the last few months
of 1995. Because the FDD had limited experience developing COTS-based
systems at that time, the SEL looked at experiences of outside organizations in
order to understand the challenges associated with this type of development and to
gather best practices used on COTS-based projects. Using a solid understanding of
the FDD project domain, history and environment, the SEL synthesized this
information into a strawman process to be used to produce COTS-based systems in
the FDD. This initial strawman process was then reviewed for feasibility by key
FDD software engineers (both civil servant and contractor) who have had some
experience with COTS. The resulting strawman process, presented in the
Packaged-Based System Development Process waligora, 19963, is available on
the SEL's Web page, http://fdd.gsfc.nasa.gov/seIres.htrnl.

As more FDD projects began using COTS to construct their software systems, the
next phase of the SEL COTS study began. The goals of this phase, which is the
subject of the rest of this paper, include gathering a current understanding of
COTS-based project, suggesting areas of improvement for further study, and
providing guidance to current and future COTS-based projects.

In section 2, we present some of the terminology used in the rest of the paper.
Section 3 describes the approach we used in the study, and section 4 describes the
COTS-based software development process that emerged from the data we
collected, as well as some insights into that process. Section 5 describes some of
the steps that the SEL has taken to keep up with the pace of change, in particular in
packaging the results of the COTS study in a timely anc. relevant manner. Section
6 describes some of the future plans for this line of investigation.

SEW22 Proceedings

2 Terminology
The words "Commercial-Off-The-Shelf" are very generic; they can be used to in
reference to many different types and levels of software, e.g. software that fills a specific
functionality or a tool used to generate code. In this paper the term COTS implies a
COTS product that has specific functionality as part of a system -not merely a tool, but
a piece of 'pre-built' software that is integrated into the system and
must be delivered with the system to provide operational functionality or sustain
maintenance efforts.

The term COTSproject refers to a project that integrates COTS packages and other
software to develop a system. This is not to be confused with the development of COTS
packages that occurs at the 'vendor' corporation.

Additionally, the term GOTS is equivalent to COTS in this study because the process
followed is for the most part identical to developing a system with COTS.

3 Experimental Approach
The Improvement Paradigm, shown in Figure 1, is a SEL tool for process improvement
and is commonly used to plan SEL studies. The SEL COTS study team used this concept
to guide its work. The paradigm is a three step, iterative process. The basic step is
understanding, which identifies the current status of some aspect of software development
in the SEL. The next step is assessing, which determines potential improvements. The
main activities of the COTS study team are primarily focused on this assessing step.
Packaging is the top step, in which improvements are documented and integrated into the
environment to form the basis for the next level of understanding.

Update standards
Refine training
Tailor process

- - - - - - - - m e - - - - - -

/ Defernine effedfve improvements I
Will fonnal inspections minimhe rework?

* Will 001 lead to higher reuse?
UNDERSTANDING WII a different testing technique reduce costs? . 1

J a s What are our software characteristics?

a
TIME

Figure 1. The Improvement Paradigm

SEW22 Proceedings

The initial understanding step for the COTS study was a series of interviews with
representatives from 12 COTS projects. Based on the interview data, we then described
the COTS-based development in the FDD, presented ir; section 4.1. Also based on
interview data, we redesigned the way development effm data is collected in the FDD.
These two activities made up our assessing step. These results were packaged, in the
packaging step, through updated data collection forms r described in section 5.2) and
study briefs (described in section 5.3). The next level of understanding, then, is provided
by the baseline process description and data from the new effort forms.

4 COTS-based Software Development Process
As a first step in understanding where COTS-based development in the FDD stood, the
study team analyzed the current data collection. Historically the SEL collects effort data.
For typical pre-COTS era projects the SEL has a baseline of effort divided into four
simple categories of activities. The SEL anticipated need for data specific to COTS
projects, made an attempt to gather data on this effort, but the level of detail was too
general to allow understanding of the COTS-related effort. One indication that the SEL
was not capturing useful data is the large amount of effort that fell into the "other"
category.

Clearly, the quantitative information available was not qufficient for us to identify and
understand the new issues that were arising in relation to the use of COTS packages in
FDD projects. In order to gather more and richer information on this topic, the study
team designed and conducted structured interviews, usihg three levels of interview guides
at increasing levels of detail, with representatives from 12 projects. Topics covered
included the process steps canied out, what problems were encountered with the use of
COTS in development, and how the incorporation of COTS has changed the software
development process.

4.1 Process Description
Our interviews uncovered the new process flow, shown in Figure 2. The study team
discovered more complexity in the current practice than expected in theory. For example,
we had expected vendor interaction to be simple, and tc. end with the purchase of a
product. In reality, the interaction continues throughout the life cycle and the flow of
information is not merely one way. Surprisingly, we fomd a strong dependence on bi-
directional information flow. Also shown is a more coristant involvement with separate
organizations, such as other projects that also use COT!;, independent evaluation teams,
and other customers of the vendor. Portions of the COTS-based systems include
traditional developed software. So an issue to consider is how to fit together our
traditional process, as documented in the SEL Recommend Approach to Software
Development, and our new way of doing business by integrating COTS packages to build
a system.

The software development teams interviewed included ~ o t h FDD and CSC personnel.
Although not every team followed all of the steps outlined below, a composite process
flow emerged from the interview data. Note: None of the project teams interviewed had

SEW22 Proceedings

begun sustaining engineering. This step will be evaluated in future studies. The steps in
the overall process, as shown in Figure 2, are as follows:

Requirements Analysis
Package Identification, Evaluation and Selection
Non-COTS Development
Glueware Requirements and Development
System Integration and Test
Target System InstaIlation and Acceptance Test
Discrepancy Resolution
Sustaining Engineering

Figure 2. Process Flow for COTS Projects

The earliest steps in COTS-based development are similar to traditional development -
requirements gathering. In the requirements phase a strong emphasis is on gathering
external information. Much of this information comes from separate organizations,
particularly the product vendor, in the form of documented functionalities. Some project
requirements are predefined, with minimal requirements analysis needed. Early reviews
of the requirements are crucial even with a less formal process.

Following requirements analysis are the new and concurrent steps of package
identification, evaluation, and selection. These are new activities, requiring new technical
skills and new administrative duties, especially in the area of procurement.

Package identification consists of Web searches, product literature surveys and reviews,
other system component reuse, and recommendations from external sources. Product

SEW22 Proceedings 25 SEL-97-003

information is kept in a central justification notebook, or an evaluation notebook. Not
only are product evaluation notes kept, but subjective comments concerning the vendor
quality and responsiveness are kept, too.

As packages are identified, the evaluation and selection processes begin. Package
evaluation steps mentioned in the interviews consisted of prototyping, vendor
demonstrations, and in-depth review of literature such as manuals and user guides.
Glueware and interfaces as dictated by the system architecture, operating system and
hardware are identified. Vendor training, sites, and availability, are considered.
Procurement issues surface such as development fees for added requirements, licensing
and maintenance fees and sustaining engineering suppat.

The selection step sometimes uses a weighted average. To do this, vendor capabilities
are listed and mapped to the system requirements. With team agreement, weights of
importance are assigned to each requirement. Then each team member votes. Team
members are polled and the votes tallied. Discussion ensues and a choice is made. In
cases where the vendor will code additional functionality, the vendor is notified of the
decision. In the case of one team, when the vendor was told they were selected, the
vendor announced a hidden cost. Negotiations ended altogether, and the second choice
vendor and package were used.

In both of these first two process stages, we found that some projects relied on the COTS
Evaluation Team, which is chartered by the parent orgarization to survey the marketplace
and evaluate vendor packages that fall within the domain expertise of the mission team's
organization. The evaluation team then reports its findings and offers this knowledge to
the project teams. The project team is ultimately responsible for deciding what package
to select and integrate. The evaluation team can be important when delivery time is
driving the project - time the development team doesn't have for product evaluations.

Most projects studied have an element of traditional development that does not depend on
COTS or other packages. This development begins in parallel with the early COTS-
related steps, as a traditional development project. Non-COTS cost and schedule are
monitored. There is a bi-directional information flow between the COTS-based process
flow and the non-COTS development that comes into play in the design review. Only
some teams held a formal System Design Review (SDR), but all teams mentioned some
mechanism to apprise the customer of the design.

After the design review, whether it is formal or infoxma, traditional non-COTS
development continues in parallel with the coding of the glueware and the interfaces.
Close contact with the vendor technical staff, or a competent Help Desk is essential
during this development.

The integration step varies a great deal from project to ~roject, depending on which and
how many COTS products are being used. At system integration and testing the COTS
packages are treated as black-boxes. The teams comme3ted that testing focused on the

SEW22 Proceedings 26 §EL-97-003

interface glueware and the input file format. Again, the importance of the vendor
technical staff or Help Desk availability was emphasized. Testing is conducted on each
software component as the components are integrated, piece-by-piece.

Unlike the traditional life-cycle, no formal acceptance testing or operational readiness
reviews were mentioned by the teams. The development team installs the software on the
target system. Once installed, navigational training to familiarize the customer with the
system is conducted. During this phase, a member of the development team is the single
point-of-contact or intermediary between the customer and the vendor. This person is
responsible for reporting discrepancies, and handling software "patches" or corrections.
Interviewees mentioned that software patches were placed on vendor Web sites that were
downloaded to the target system.

The end of the configuration process is marked by the sustaining engineering effort. To
date no team that the study team interviewed had reached the sustaining engineering
stage.

4.2 Lessons Learned & Experience Gained
The developers interviewed were also asked to describe the major differences between
COTS-based development and traditional development, and the advantages and
drawbacks. Some mentioned the obvious difference, i.e. that there is now a whole lot of
software that doesn't need to be implemented. It's no longer the task of building a big
system, but of using already-built pieces. But there were other less obvious differences.
Some of those differences mentioned were:

different design phases
looser process requirements
new or greatly increased need for vendor interaction

* procurement skills now needed
e new or greatly increased need for product evaluations
e no unit test or inspections of packaged software

Advantages of COTS-based development that were mentioned included':

more flexible requirements
e less process overhead

less code to write
less debugging

e shorter cycle time
better adherence to schedule.
serendipitously useful functionality in COTS packages

*
Note: "Shorter cycle time" and "less process overhead may be due to the pressure to do things faster as

much as due to the adoption of COTS.

SEW22 Proceedings

Many of the disadvantages mentioned had to do with dzaling with the vendor, including
the risks of less than full knowledge beforehand, dependence on the vendor, and vendor
negotiations. Another disadvantage, which some people listed as an advantage, is the
relative looseness of the process in package-based projects. Some people thought that
more rigor was needed.

5 Packaging the Approach

FDD projects have moved rapidly from a reuse-based development process to a COTS-
based system development process. The SEL needed to react quickly with new
mechanisms to adapt to these and other changes in the environment. The changes that the
SEL has undergone are important to study because the nature of software development is
changing and will require further changes in the research methods of the SEL and other
organizations. As we encounter new problems, we need new ways to address these issues.

We will address the natural adaptation of the SEL that is taking place; the learning,
refitting and adjusting of the SEL learning procedures in order to keep pace with the new
organization and environment. Three major innovations in standard procedures will be
discussed :

1) The use of qualitative analysis, mostly in the form of structured interviews and
analysis of data gathered from those interviews.

2) Changes to the database in terms of what is 5eing collected and analyzed in
order to keep track of the changing business in FDD.

3) The generation of Study Briefs, which are short, quickly disseminated
cornmunications on a variety of topics-lessons learned, early analysis results,
definitions of new terms, etc.-to keep information flowing between the EF
and the project organization in a timely manner.

The use of qualitative analysis was necessitated by the COTS study. The study team
found that with this change in technology, the quantitative data that the SEL collects does
not tell the entire story of what is occurring on projects. During the course of these
interviews the SEL team members interacted with the technical personnel. These
interactions led the SEL to realize the need for more effective, frequent communication:
(I) communication from the SEL to the project organization about what the SEL was
learning, and (2) feedback from the project organizatior, to the SEL to corroborate and
refine the SEL's evolving models. This realization became the catalyst for the SEL Study
Briefs. Interviews specific to the COTS study also showed that the data collected for
COTS was insufficient. This sparked the modification yo the Weekly Effort Form to
include COTS specific details. The transition to this new form has been simple due to the
new re-engineered SEL database, that has been revolutionized using COTS products and
transitioned to a workstation platform. This allows us to use the database as a repository
for information on the COTS products used as well as the effort involved in putting
together a COTS based system.

SEW22 Proceedings

5.1 interviews and Qualitative Data
Empirical studies in software engineering, like the ones that the SEL has engaged in for
two decades, have traditionally relied on standard quantitative methods in order to
characterize some aspect of a software development process. In some cases, several
quantitative studies of various sizes and scopes have been conducted to address one
general issue, e.g. Cleanroom software development [Selby et al., 19873. Approaching a
problem from several angles in this way yields a more complete description of a
particular process or of the effect of a particular technology. This approach has helped
the SEL and other organizations learn a great deal about their software business. In
recent years, however, software projects in the SEL environment have become both more
complex and faster-paced, as is true in much of the software industry. This has motivated
the SEL to find ways to provide richer answers to more complex problems in less time.

One approach to achieving this is to use different research methods than the SEL is
accustomed to using, in particular qualitative methods. Qualitative data is information in
the form of words and pictures, as opposed to quantitative data, which is in the form of
numbers. Qualitative analysis is simply the examination and analysis of qualitative data
in order to form conclusions and hypotheses. Qualitative data is by defmition richer and
carries more information than quantitative data. On the other hand, it is more complex
and harder to analyze. Qualitative analysis methods have been designed to deal with this
complexity [Glaser and Strauss, 19671. Combinations of qualitative and quantitative
methods are especially useful because the two types of methods tend to deal with the
complexity of the subject in complementary ways.

The COTS study is one of the fxst SEL studies to use qualitative data to a large extent.
The qualitative data used in this study comes from extensive interviews with software
developers and managers. Using this data has allowed an in-depth examination of COTS-
based development that incorporates a variety of perspectives in one study. For example,
data was collected on the problems encountered during COTS-based development, the
different steps involved, the parts of the process which are effort-intensive, and the roles
that must be filled to carry out this type of development. Much of this information wouId
be very difficult to collect quantitatively, and would have required multiple studies, each
measuring various attributes in different ways.

The drawbacks to doing qualitative study is that it doesn't provide "hard" results in terms
of easy-to-use mathematical models (e.g. regression models) or easy-to-summarize
relationships between variables (e.g. correlations). Instead, qualitative results are more
complex, L'messier", to reflect the complexity of the problem being described.

Qualitative data, mostly from interviews, is also being used to some extent on other
ongoing SEL studies. In combination with other quantitative methods, we believe the use
of qualitative analysis in current and future studies will help the SEL provide the
development community with more useful, in-depth, and realistic explanations of
software development phenomena.

SEW22 Proceedings

5.2 New Data Forms - Quantitative Data
In response to a need for more COTS related data, the SEL realized an opportunity to
update the types of data that are maintained in the SEL database. This was accomplished
by the modification of an existing form, the Weekly Effort Form, and the addition of a
new form, the COTS & Tools Information Form.

5.2.1 Weekly Effort Form
As the interview data was leading us to define the COTS-based development process, the
study team saw that there were new activities that projects were conducting. These
include:

COTS/GOTS Evaluation
COTS/GOTS evaluation activities included identifying packages, collecting information,
attending demos, evaluating and selecting COTS/GOTS packages.

COTS/GOTS Integration
This included integrating COTS/GOTS, possibly with other software components, to
produce individual applications or subsystems. This also included the writing and
debugging of glueware.

COTS Package Familiarizatrzatron
Package familiarization is spending time to learn to use a COTS package, not including
formal training, which would be included under other effort categories, nor package
familiarization for the purposes of evaluation.

Configuration Management
Configuration management had not previously been a separate category.

Procurement
This included procuring and purchasing packages, interacting with the vendor regarding
licensing and maintenance agreements, etc.

These new activities were merged into the Weekly Effor: Form (WEF), the existing SEL
form for collecting effort data from the technical persomel. This merger created a WEF
modified for COTS that was then used on a trial basis by two projects. (See Appendix A
for the original WEF and Appendix B for the experimental COTS WEF.) After
experimental use of this COTS WEF, and a few resulting updates, the SEL decided to
implement the updated WEF across the organization. This was accomplished through
full consultation with FDD technical personnel. The resl ~lting WEF was put into place
November 1997 across the organization (see Appendix C).

The graph shown in Figure 3 indicates the type of data collected by the experimental
COTS WEF, the WEF which was introduced in October 1995 (and which had only a
single COTS activity category), and the even earlier SEL weekly effort form which was in
use prior to October 1995. The leftmost bar shows the bpical distribution of effort on

SEW22 Proceedings 30 SEL-97-003

completed FDD projects prior to October 1995. The major activities are design, code,
rest, and administrative; none deal with COTS.

Administrative
(nonCOTS)
Administrative
(COTS)

Technical Other
(non-COTS)
Technical Other
COTS)

Test

Code (non-COTS)

Code (COTS)

Oesign (non-COTS)

Design (COTS)

Predesign

Baseline COTS Project COTS Project
old FOGS new Forms

Figure 3. COTS Data From Projects

The middle bar shows the effort distribution for a nearly complete FDD project that was
developing during the era of the WEF that was introduced in October 1995 and which
involved some COTS integration. This WEF introduced a predesign category. It also
introduced a single COTS activity and a so-called technical other category. Note that this
bar shows a great increase in the proportion of project effort spent in the administrative
activity. Various hypotheses were examined to explain this change, but none proved
conclusive.

The rightmost bar shows the distribution of effort for a FDD project that involved a fair
amount of COTS integration but which was only partially complete. This project began
using the experimental COTS WEF soon after the project began. Only about twelve
weeks of this project's effort data were available for analysis for this paper. The data in
this bar is thus insufficient to draw any conclusions on the distribution of effort on a
typical FDD project, yet alone a project in another environment. Data on several
complete projects would be required before the typical FDD effort distribution on a
COTS project could be determined.

Future studies are underway to determine this and to address more specific issues. These
are described in Section 6.

SEW22 Proceedings

5.2.2 COTS & Tools Information Form
In order to collect context data about the COTS packages used on projects, the SEL
developed the COTS & Tools Information Form (CTIF?, shown in Appendix D. The
need for the CTF became evident during the interview process. We were collecting
qualitative data, such as which COTS packages are used, what support is provided by the
vendor, and whether it is embedded into the system or merely a tool. Rather than
maintaining all this information in the interview notes, we developed the CTIF to collect
data that would be stored, and readily accessible, in the SEL database. Using the CTIF to
collect this context data allows us to characterize the COTS products in order to better
compare projects that are related either in the type of COTS products used, or in
functionality provided by COTS.

5.3 Study Briefs
The SEL realized a need for compact products. SEL Study Briefs are an example of this
as they concisely document and distribute information that might fall through the cracks.
A Study Brief is less than a process document, yet much more than informal
communications. The modularity of the Study Briefs qows the user community to
incorporate "one page worth of process" into their busy schedules. Study Briefs also
serve as a tool for communication with the inclusion of the technical community in the
feedback loop section. A sample Study Brief is shown in Appendix E.

The format of a SEL Study Brief is shown Table 1.

Responsible Author person responsible for receiving feedback, and possibly
modifying the Study Brief (in most cases same as Original

Table 1. SEL Study Brief Format

SEW22 Proceedings

6 Future Directions
After analysis of the current process and review of the issues that are most relevant to this new
COTS-based development environment, several topics for further study have been identified:

1) The long-range effects of COTS use, in particular the maintenance of systems
which incorporate COTS packages,

2) Modeling and estimating effort, cost, and schedule of COTS projects based on data
collected with the new forms,

3) Risks of COTS use, to be studied with a series of SEL case studies, possibly
including the re-engineered SEL database development, and

4) Methods for measuring the "distance" between a set of requirements for a new
system and the available COTS packages which could be used to satisfj those
requirements.

The selection and implementation of COTS is easier to understand than is the maintaintenance
of a COTS-based system. Such a system will require modifications and enhancements during
its lifetime, and many of these modifications may be prompted by vendor updates to the
COTS packages. Maintenance includes less obvious costs; maintenance agreements and
licensing are more tangible than the effort that will be required to identify the parts of the code
that are affected by a small change elsewhere so that the modification to one area does not
cripple the system. The projects interviewed for the COTS study had not moved into a
maintenance phase. The SEL sees this as an area for further research.

The SEL has a long-standing tradition in the FDD for providing models for the estimation of
effort, cost and schedule. The interviews uncovered a need for new models to support COTS
projects. The SEL has begun efforts to baseline the current situation across the organization.
The next steps toward developing models include collecting a reasonable amount of data from
which to draw quantifiable conclusions.

The interviews identified risk as an important topic. The SEL determined that gathering case
studies of various COTS-based systems with emphasis on the risks expected, as weIl as the
risks involved, would provide valuable information. It appears likely that many of the risks
of introducing COTS systems are domain-independent. Because of this the SEL's recently re-
engineered software metrics collection and reporting system would be a good non-FDD
system to examine as a case study of COTS risks. In this re-engineering process, the SEL
upgraded the SEL's COTS relational database management system and added an additional
COTS product to automate the submission of data to the SEL by users.

In related research, we seek to develop a mechanism to measure the "distance" between the
need for functionalities (the requirements) and the specification of available COTS. Such
"functional distance" measures should help us to predict the amount of glueware necessary to
integrate COTS with the rest of the system. The costs of glueware is one key factor in the
total cost of using COTS software.

SEW22 Proceedings

Appendix A - Old WEF (Introduced October 1995)

WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

implementations andfor comparing their impact on

SEW22 Proceedings 34 SEL-97-003

Appendix B - Experimental COTS WEF

Experimental "COTS modified WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

SEW22 Proceedings

Appendix C - New WEF (Introduc~ld November 1997)

WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week;.

Name:

Project:

Dse:

En e red by:

Chrcked by:

Date (Friday): I

packages, cdlecZing infomation, attending demos, evaluating and

I I I ' Modification I component design (indudes PDL, design diagrams. meeting materials) 1 I I I
G Design Review1 1 Hours spent reading or reviewing design (indudes design rneetiw and I I
N I lnspsction I consuttathm, fomd and intormid r e v h i , walkthrwgtk. and i+.) I I I
:: - - (COTS/GOTS Integration / Hours spent integrating COTSIGOTS (may be with other software I I I

SEW22 Proceedings

Appendix D - CTIF

COTS & TOOLS INFORMATION FORM (CTIF)
Use this form to obtain context and evaluation data, verify at project completion.

For each COTS product or Tool, use a separate CTIF.

1. Reasons for using tool or COTS: Check all that apply.

0 requirements definition requirements analysis requirements trackingltraceability design

0 simulationlmodeling code generation static analysis compilation

Cj configuration management C] integration

reverse engineering change management 0 project tracking a documentation

information management reuse management measurement C] risk analysis communication

project planninglestimation [7 application functionality

2. Support provided for tool or COTS: Check all that apply.

demos informal or partial documentation full documentation 0 courses help desk

3. Activities supported by tool or COTS: Check all that apply.

C] requirements definition 0 requirements analysis design

C] documentation

4. Usage frequency of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no usage b. used once or twice c. monthly d. weekly e. daily

5. Functionali of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no data availabie b. abandoned, due to lack of functionality c. major expected functions missing

d. some expected functions missing e. most expected functions present 1. all expected functions present

6. Usefulness of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no data available b. abandoned, due to problems c. many problems encountered

d. some problems encountered e. few problems encountered f. no problems encountered

7. Impact of tool or COTS on project's success: (Select one from choices below, enter letter of selected item here.)

a. impossible to estimate b. major negative impact c. some negative impact overall

d. positive & negative impacts balance out e. some positive impact f. major positive impact

SEW22 Proceedings

Appendix E - Sample SEL Study Brief

Study Brief Number: 7

ISSUE: COTS Evaluation Team

PURPOSE: Document the SEL's understanding of the COTS Evaluation Team, for the purpose of
disseminating information to the FDF community and clarification for the SEL, in regards to the COTS
Study.

CURRENT UNDERSTANDING:

Team was formed in 1995 to address a move towards COTS solutions in mD. Originally, part of Code
55 1, Flight Mechanics. Currently. part of the Code 550 Flight Dynamics Technical Support Office (TSO).

Who i s the Evaluation Team?
* Composed of problem domain experts and mission team members, Led by Sue Hoge, GSFC

analyst
o Matrixed on a as needed basis, not dedicated full-time to evaluations

WIurt are they doing?
o Evaluate COTS for Flight Dynamics Mission Planning & Orbit Determination

Provide evaluation services to mission teams, as requested -
Provide independent software evaluations
Monitor new COTS products, as availablelmaintain data on products that meet specific
domain needs
Publish Evaluation Reports

o Update the Guidelines for Evaluating COTS at the E DF document, as needed

What process is followed?
Basic process is outlined in the Guidelines for Evaluating COTS at the FDF document

Establish the Objectives of an Evaluation
* Establish the Evaluation Type

Determine the Evaluation Method
BasicIStandard Evaluation Methods
Variations on the Standard Evaluation Met lads

Establish Evaluation Criteria
0 Perform Evaluation

Document Results
Benchrnarks/Regression TestingfFollow up Evaluatims

WhPl b e they evaiuated?
STK (AGI)
PODS (AGI)
GEODYN(Code 900, GOTS)
OASYS(IS1)
PROBE(BBN)
PA'ITERN (BBN)
GREAS (AGI)

SEW22 Proceedings

Wluztprobiems have been encountered?
Public awareness of Evaluation Team and services is low

What else we learned about the Evaluation Team?
They are building an "experience base" of COTS evaluations (for multiple products, multiple missions).

Guidelines document:
Domain specific, and not intended to be a general methodology for any COTS s/w evaluation
Working document with lessons learned mixed in with process
Written from a hands-on perspective

What do we suggest?
The COTS Product Evaluation Questions from SEL Packaged-Based System Development document (page
22, table 3) are valid in the COTS Evaluation Team environment. Recommend that the SEL distribute the
modified COTS Product Evaluation Questions (addition of two questions suggested by Sue Hoge) as a
"One Pager" to technical personnel. Recommend that the Evaluation team use modified COTS Product
Evaluation Questions as part of their process, since these are issues that Sue Hoge typically addresses with
Evaluation Team.

FEEDBACK. (none available at this time, email comments to responsible author)

ORIGINAL AUTHORS: Amy Parra and Steve Kraft
RESPONSIBLE AUTHOR: Amy Parra
CONTRIBUTORS: Sue Hoge

RErnRENCES/RELEVANT LINKS:
Guidelines for Evaluating COTS at the FDF document
STK Evaluation and Test Results
STK PODS Evaluation Final Report

* OASYS Evaluation Report
e Interview notes (from two COTS Study interviews with Sue Hoge)

HISTORY: Study Brief published 1 111 1/97.

SEW22 Proceedings

Appendix F - Interview Guides

Interview Guide la: Initial Praiect Interviews
Who: project leads
Subjects covered: background and current status of project, GSS
vs. MATLAB decisions, initial COTS information
Duration: 30-45 minutes

Note: This interview should also include introducing ourselves
and our study to the project leads.
Interviewee:

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

1. What idare your ROLE(s) on this project (get both
official titles, e.g. user, domain expert, as well as a
decription, e.g. technical vs. administrative, level of
involvement, etc.)?

2, What is the current status of FDSS development for this
project? What are the different applications being developed?
Which have begun, are in progress, or are completed? [gradually
narrow down to attitude applications]

3. For each application, how is it being developed? Using
GSS and UIX? Using some COTS product like MATLAB or STK? Did any
modifications need to be made to the COTS or GOTS products?
Describe the modifications and how they were made.

4. What deployment/development/integration process did you
use to produce these applications? Where did this process come
from? What process documentation or guidance did you use, if
any?

5. Are you aware of the SEL PACKAGED-BASED SYSTEM
DEVELOPMENT PROCESS DOCUMENT?

6. Did you follow the SEL PACKAGED-BASED SYSTEM DEVELOPMENT
PROCESS DOCUMENT?

7. Is there anything that we can do to make this a more
useful, easier-to-follow process?

SEW22 Proceedings

8. How were the decisions to use these COTS and GOTS
products made? What were the steps in the decision process?
What were the criteria?

9. Were lessons learned recorded? Where?

10. What types of problems did you run into wi:h the COTS and
GOTS products you chose?

1 1. What do you think are the biggest risks associated with
these decisions? [try to get a mapping between the criteria
mentioned in #3, and the risks mentioned here] For example:

unacceptable performance of the application,
reliability of COTS products,
delays waiting for something from another group,

- delivered application is unmaintainable,
required skills not available
key personnel leaving or being pulled off project at

crucial points
cultural clashes between personnel from different areas - turnaround time for error fixes or added functionality

12. Any creative ways to protect against these risks?

13. What data did you collect during the project regarding
COTS?

* schedule
* cost
* errors
* standard SEL data

14. What metrics do you see as valuable in managing
COTS-based projects?

15. Was there a purchasing leader for this project, who?
(discuss purchasing decisions, procurement)

16. What other projects do you know are using or planning to
use COTS, GOTS, or other package-based products?

17. Can I be put on your project mailing list andlor could I
have access to your project Web page? What else would help me
keep track of how the project is going? Where can I look at
project documentation?

18. Who are the other core team members and what are their
roles?

SEW22 Proceedings

Interview Guide 2: COTS Follow-up Interviews
Who: COTS-based project leads
Subjects covered: Follow Up COTS information
Duration: 30-45 minutes

Note: This interview should also include re-introducing ourselves
and our study to the project leads.

Interviewee:

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Date of initial interview:

1. What did you do for the following: (try to capture the major tctivities, process, products, reviews)

a. Requirements Analysis
b. Package Identification
c. Architecture Definition
d. Package Selection
e. System Integration
f. Test
g. Maintenance

2. What are the biggest differences between traditional developr-lent and Package-Based Development?

3. What are the advantages of Package-Based Development in c.~mparison with traditional development?

4. What are the disadvantages of Package-Based Development in comparison with traditional
development?

5 Are you familiar with the SEL Package-Based System Develc pment Process document, Feb. 1996?

6. For an upcoming COTS-based project would you use the SEL Package-Based System Development
Process?

a. If yes, why
b. If no, why not

7 What parts of the process and/or the document would you imp -ove and how?

SEW22 Proceedings

Who: COTS-based project leads
Subjects covered: Follow Up COTS information
Duration: 15 minutes

Note: This interview should also include re-introducing ourselves and our study to the project leads.
Mention that this final interview is to verify the data we have collected, and clarify any areas on which we
needed more information. For this interview, meet with the project lead and any other team members that
you think would be appropriate to include, to verify all the data collected on that project.

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Date of initial interview:

Date of follow- up interview:

Before the interview:
List the C W s that are on the Kano Drive for that project
Verify the matrix and supply any reasons why process steps were or were not followed

Bring to the interview:
Matrix for that project
Process Characterization

Actual Interview Questions:

1. Have you completed CTDFs for each COTS or Tool that you are currently using? (definitely for all
SEL projects, ask non-SEL project to also comply)

If not, fill in hard copies of CTDFs during the interview with the project lead.

2. This is the process characterization that we have developed after interviewing projects. How
representative is it of your project? (take notes as to areas that they believe they differ from the process
characterization)

3 These are the specific process steps that we noted during interviews. (Show matrix of Steps vs.
Interviews for that project) Allow me to review the data that we have from you as to whether or not you
followed a certain process step. Fill in YES for project completed this step, fill in NO for project did not do
this step. Give a simple reason for why !he project completed or did not complete a step.

SEW22 Proceedings

References

Condon, S., C. Seaman, V. Basili, S. Kraft, J. Kontio, ;md Y. Kim. "Evolving the Reuse
Process at the Flight Dynamics Division (FDD) Gcddard Space Flight Center."
Proceedings of the SofhYare Engineering Workshop, N AS AiGoddard Space Flight
Center, pp. 27-42, December 1996.

Glaser, B.G. and A.L. Strauss. The Discovery of Grounded 7'heor-y: Strategies for
Qualitative Research. Aldine Publishing Cornpan), 1967.

SEL Recommended Approach to Software Development, Revision 3. Software
Engineering Laboratory Series, SEL-8 1-305, June 3 992

Selby, Richard, Victor R. Basili, and Terry Baker. "Cleanroom Software Development:
An Empirical Evaluation." IEEE Transactions on SofhYare E~gineering, pp. 1027-
1037, September 1987.

Waligora, S. Packaged-Based System Development Process. Software Engineering
Laboratory, February 1996.

SEW22 Proceedings

The Package-Based
Development Process in the
Flight Dynamics Division

CSC University of MD GSFC

Background

FDD projects move to package-based

R Formation of COTS Study - Fall 1996
Improvement Paradigm

SEW22 Proceedings

Improvement Paradigm

Make improvements

Know your software business

'
UNDERSTANDING

SEL COTS Study

Determine
eneetive improvements

Improvement Paradigm

I

PACKAGING

ASSESSlNG -

Characterize Expected COTS process 1
& Existing Project Data

SEW22 Proceedings

Expected COTS Process

Maintenance

Existing Project Data

Administrative

Technical Other
(non-COTS)

Technical Other
(C O W

Test

Code

Design

Predesign

nonCOTS COTS Project
Baseline old Forms

Data Insufficient for COTS Projects

SEW22 Proceedings 47

SEL COTS Study
Improvement Paradigm

ASSESSlNG

Interviews -
"Documented" Process

UNDERSTANDING

COTS Process
Comparison

current FDD practice 0

SEW22 Proceedings 48 SEL-97-003

COTS Process
Current FDD Practice

Legend Process Flow Process Review

Information Flow External
(bi-directional) o r Z E n a l) Organization I

COTS Process
Current FDD Practice

'lnteg rate

Maintain
\

Instat1 8
& Test

Gather External Information

SEW22 Proceedings 49 SEL-99-003

COTS Process
Current FDD Practice

Maintain
\

1ncts11 8
& Test

New Skills Needed: Evaluation & Procurement

COTS Process
Current FDD Practice

. - *

Product Users- - - " - -*.::Jt% - I r" ' \ / / \ \ \
C

\ .
Analyze \ \
Req's \ Maintain

Integrate

Merge COTS and Non-COTS Parts of the System

SEW22 Proceedings 50 SEL-87-003

COTS Process
Current FDD Practice

Product Users-- - -
/ \

Analyze Select
Req's

\ % Pacbg '"""@ / 5
\ Review #

Requirement 8 . Design //
Arch. 7

'U

R @ v ~ w / / & Test

Integration Process Varies (COTS dependent)
& Still Interacting with Vendor

SEL COTS Study
Improvement Paradigm

Process Definition -
New Activities

UNDERSTANDING

D

SEW22 Proceedings 5 1 SEb:97-003

COTSIGOTS Activities

Evaluation of COTS Packages

Integration of COTS Packages with Traditional SNV

COTS Package Familiarization

Configuration Management

Procurement

SEL COTS Study
Improvement Paradigm

PACKAGING

New COTS Activities -
New Project Data

ASSESSlNG

SEW22 Proceedings

COTS Data from Projects

Administrative
(non-COTS)
Administrative
(COTS)
Technical Other
(non-COTS)

Technical Other
(COTS)

Test

Code (non-COTS)

Code (COTS)

Design (non-COTS)

Design (COTS)

Predesign
-- -

Baseline COTS Project COTS Project
old Forms new Forms

New Data Meets Needs of COTS Project

SEL COTS Study
Improvement Paradigm

ASSESSING -

SEW22 Proceedings 53 SEL-97-003

SEL COTS Study
Steps to the Future

Characterize Actual COTS Process
& COTS Project Data 1

Study Briefs

SEW22 Proceedings

SEL COTS Study
Steps to the Future

Build Models
Analyze Process (to improve it)

UNDERSTANDING

Characterize Actual COTS Process
& COTS Project Data

SEL COTS Study
Steps to the Future

& FDD Product
ASSESSING / /. Build L d e l s

SEW22 Proceedings

t
UNMANDING

Analyze Process (to improve it)

Characterize Actual COTS Process
& COTS Project Data

The Web Measurement Environment(WebME): A Tool for
Combining and Modeling Distributed Data

Roseanne Tesoriero and Marvin Zelkowitz
Department of Computer Science and '. . /I

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland USA
{ roseanne, mvz) @cs .umd .edu - T60741

ABSTRACT played. How does one view such collected data in order
Many organizations have incorporated data collection to present information that would be most effective to
into their software processes for the purpose of pro- the project manager in order to aid in real-time decision
cess improvement. However, in order to improve, inter- making? Can we compare a new project to previously
preting the data is just as important as the collection completed projects in order to determine trends and
of data. With the increased presence of the Internet deviations from expected behavior? What do we even
and the ubiquity of the World Wide Web, the potential mean by expected behavior?
for software processes being distributed among several
physically separated locations has also grown. Because
project data may be stored in multiple locations and in
differing formats, obtaining and interpreting data from
this type of environment becomes even more compli-
cated. The Web Measurement Environment (WebME),
a Web-based data visualization tool, is being developed
to facilitate the understanding of collected data in a dis-
tributed environment. The WebME system will permit
the analysis of development data in distributed, hetero-
geneous environments. This paper provides an overview
of the system and its capabilities.

KEYWORDS
Measurement, Software development, Meta-analysis,
Empirical modeling

1 INTRODUCTION

Measurement has been emphasized as an effective
method for gaining control and insight into software ac-
tivities. Because of this, many organizations have in-
corporated data collection into their software processes.
However, just as important as the collection of data is
the presentation, understanding, and resulting actions
that accompany the data collection process. Data col-
lection must be an active component in the development
cycle of a project and not simply a passive task that re-
sults in large, mostly unused, data files.

Collection of data is inherent in the NASA Goddard
Software Engineering Laboratory (SEL) [2] as part of
the Quality Improvement Paradigm (QIP) [3] and as
part of the Software Engineering Institute's Capability
Maturity Model (CMM) [13]. However, neither activ-
ity gives much detail on how this data should be dis-

The NASA SEL had developed a tool, the Software
Management Environment (SME) [6, 81, that did pro-
vide a quasi-real-time feedback on project data. The
SEL has been collecting data for over 20 years on NASA
flight dynamics software. Data would be entered in a
data base within two or three weeks of it being col-
lected, and then a program could be run to summarize
that data for SME. Management could then use SME to
display growth rates of certain project attributes (e.g.,
lines of code, staff hours, errors found) and compare
them to previous projects with similar characteristics.
This would provide two major functions: (1) Baselin-
ing capabilities so management could understand the
developing characteristics of a given project, and (2)
Predictive capabilities by enabling management to com-
pare this project with previously completed projects and
with idealized models of growth built into the SME sys-
tem. Knowledge of software development is built into
the models of SME to allow for easier analysis of col-
lected data in the software development domain.

With the increased presence of the Internet and the
World Wide Web, the nature of software development
has changed. The Internet and the Web are seen now as
valuable tools to be used for cooperative development
in distributed environments. Recent work in the CSCW
area has addressed these new requirements. Several
tools have been built to automate selected distributed
software processes with Web technology (e.g., software
inspections [14, 12, 171, problem tracking [19, 51). Most
of this work has been focused on automating the defini-
tion and enactment of a process model. Although data
measurements usually are collected automatically with
the CSCW tools, the analysis of the collected data is

SE W22 Proceedings

still a mostly manual process. While the SME system
was not designed to be used in a distributed, cooperative
environment, we felt it provided a good basis for a more
effective tool. The remainder of this paper discusses
our system, called the Web Measurement Environment
(WebME), which provides the same basic functions as
SME, but, allowing for changing data in a distributed,
cooperative environment.

2 SYSTEM ARCHITECTURE

The WebME system has a World Wide Web interface
w'hich provides a wide variety of users with access to
the system and the data. For our instantiation of the
WebME system, there are no restrictions to access to
the system or data. However, a similar system architec-
ture could be used within the boundaries of a corporate
intranet with appropriate security measures in place.

____.-----_-_______~-~~-----.-~---*~--------------

: End-User
Applications

._._ ...--.-.- - .--________----
* - - - _ _

I -

f Information
:, Repositories

-..

Figure 1: WebME System Architecture.

The WebME system is based on a mediator architec-
ture [la]. A mediated architecture horizontally parti-
tions the architecture into three layers: end-user ap-
plications, mediating information servers, and informa-
tion resources. In the WebME context, the distributed
database. with the software engineering data are the
information resources. The daia wrappers describe the
interface between the information repositories and the
mediating information server (i.e., webme). The Web
browsers and the associated HTML forms represent the
end-user application layer. The webme mediator is re-

sponsible fcr gathering and processing the data required
to fulfill end-user requests and returning answers to the
end-user.

In order to describe the system architecture, a schema of
the required interfaces must be defined. Using a special-
ize language is a common technique used to describe a
system arcBitecture[7,15,11]. For WebME, we have de-
fined a scripting language to describe the schema of the
system architecture and the data definitions. In order
to create the definitions for the interfaces and measure-
ment types, an expert familiar with the development
environment and databases will configure the system
by creating a WebME script file using the scripting Ian-
gage.' The script will be processed into measurement
class and interface definitions that will be accessible by
the WebME mediator as shown in Figure 2.

Figure 2: WebME data and interface definition process.

When an ad-user makes a request, the class and in-
terface definitions are used by the WebME mediator to
gather and process the necessary data. This process is
illustrated :n Figure 3.

Figure 3: Using class and interface definitions.

3 COMBINING DATA

There are s3veral cases where the need to combine data
from varior. s locations is necessary. For example, with
a col1abora:ive software development process, in order
to assess and monitor the progress of the entire project,
data collecred from each location must be combined.
Another wzy in which data might be combined is in the
graphical display. When similar data is collected from
two differert environments, it might be useful to be able

'Creating the script file will be described in more detail in
Section 5.

SEW22 Proceedings

to display the data on the same graph for comparison
purposes.

The WebME system will use a data definition language
as part of the scripting language to facilitate the com-
bination of data in these ways. WebME will allow the
user to define classes of measurement types, where a
class will represent a given development environment,
such as the NASA SEL. The measurement types (o r at-
tributes) represent the data collected in the development
environment.

3.1 Class Definitions

Each class consists of entities that possess dimensional-
ity attributes (using the notation of Kitchenham et a1
[9]). Attributes may be direct or indirect. In our con-
text, a direct attribute is one in which the measured
value for the attribute can be extracted directly from
an external database. An indirect attribute derives its
value from a transformation applied to other attributes
(e.g., an equation).

The structural model of measurement described in [9]
identifies units and values as properties of attributes.
We have added an interval (e.g., weekly, monthly) as
an additional property of the unit. A measurement
instrument uses the units and the interval to supply
the correct value for the attribute. The attribute def-
inition represents the format of the data stored in the
repository and is used to extract data from the external
database in WebME's mediator architecture.

All data that will be displayed in the WebME system
will be sequenced data with ratio scale type. For direct
measures, the measurement instrument is an executable
that will extract measured values at the desired interval
from a database. For indirect measures, the measure-
ment instrument is an equation. The allowable opera-
tions in the equations are the arithmetic operations (ad-
dition, subtraction, multiplication and division). The
units and internal properties of indirect attributes will
be inferred dimensionally from the attributes used in
the equation. These indirect attribute definitioxs will
be validated to detect invalid operations (e.g., lines of
code + hours of effort is dimensionally incorrect).

In WebME, attributes are grouped into classes. Enti-
ties (e.g., software projects) are assigned to a class of
attributes. Any two entities possessing the same at-
tribute can be displayed on the same graph as long as
their units are equivalent (see Section 3.2). This allows
for different, but related data that are collected and
stored separately to be viewed consistently. In addition,
any attributes that are compatible (i.e., have equivalent
units) may be plotted on the same graph.

3.2 Attribute Compatibility

The units and interval properties of the attribute defini-
tion will be used to determine compatibility for viewing
and to validate the equations of indirect attributes. Two
attributes are compatible if the units and interval prop-
erties are name equivalent. Compatible attributes may
be displayed on the same graph.

The compatibility of attributes used in the equations of
indirect attributes must be validated. The allowed op-
erators are +, -, * and /. For addition and subtraction,
the units and interval properties of the operands must
be name equivalent. For multiplication and division,
this restriction is relaxed in that the units properties
may be different, but the interval properties must be
name equivalent.

4 MODEL BUILDING

The consistent combination of data is one part of the
problem that the WebME system attempts to address.
Building meaningful models from the combined data for
the purposes of process control and improvement is an-
other.

The modeling technique used in the SME system is used
to build baseline and predictive models of growth data.
In 1993, a clustering algorithm using Euclidean distance
was investigated (101 as an alternative to the existing
SME growth models. The current growth modeling al-
gorithms appear to be a good starting point for growth
data, however, we also wanted to build baseline models
for the non-cumulative raw data. This type of data is
highly variable and it is often difficult to uncover trends
or patterns.

Figure 4: Scatter plot data of reported errors by week

Figure 4 represents the weekly number of error reports

hKnru6z.d R.w.d E W E R) lor MBEAGSS
5

SEW22 Proceedings

4.5

* Nwnub1.d UER 0
1

-
0
0

filed for a single NASA p r ~ j e c t . ~ It is hard to see any
trend or underlying model in the data. Is there any
underlying process that determines how many errors are
found each week? Can we make any reasonable models
of this process?

4.1 Financial models

One way to partition the data is based on using trend
changes as a signal for process changes. In the financial
markets, the price of a stock or commodity is highly
variable. An investor's objective is to buy at a minimum
price and sell at a maximum price. However, because
prices fluctuate frequently, an investor would not want
to trade at every trend change in the market.

The problem of trend detection for financial data turns
out to be similar to our problem. We have highly vari-
able data and we want to detect major trend changes
while ignoring minor fluctuations. Techniques used to
detect trend changes with financial data should be ap-
plicable to our domain.

In particular, financial markets look at long term versus
short term trends. Moving averages have long been used
in this domain, where an N-day moving average is the
average value of some feature over the past N days. If
the long term average (i.e., using a large value of N) is
greater than the short term average (i.e., using a small
value of N), then a stock has a decreasing trend in value;
otherwise it is increasing. Such trends eliminate the
daily fluctuations inherent in this form of data. If the
trend moves from negative to positive, then its price has
presumably reached its minimum and should be bought.
If the trend moves from positive to negative, then it
has peaked and should be sold since waiting will only
decrease its price.

The Moving Average Coavergence/Divergence (MACD)
trading system [I] [16] determines when the long term
changes in a stock's value differs from the short term
changes, which signals a decision to buy or sel! the stock.
When the trend crosses the signal tine (i.e., the moving
average of the long term average less the short term
average) in a positive direction, the price is about to
rise and a stock should be bought; if it crosses the signal
line in the negative direction, a sell is indicated.

4.2 Modeling Algorithm

Based on the MACD examples, we have developed an
algorithm for analyzing each data attribute. Given the

All data presented here is normalizedfram 0% to 100%. That
allows us to compare multiple projects on the same graph. The
time duration for the projects considered hen range from 100 to
120 weeks - about 2 years.

raw scatter plot data for some attribute (such as given in
Figure 41, v.e want to reduce it to several linear segments
that best rc:present the governing processes during the
period represented by each segment. We will call this
the characteristic curue and our initial goal is to find
the end points for each such linear segment, which we
call the pivot points to this curve. Once we do that, we
can apply more traditional curve fitting techniques to
each segment in order to develop underlying models of
each process.

The three steps we have developed are:

1. Use smoothing techniques to provide a rough enve-
lope that represents the approximate behavior of the
data. This process is not suacient by itself. For exam-
ple, the data of Figure 4 results in a smoothed curve
(Figure 5) which still has 12 local maxima when using
an 8 point moving average.

2. Determine which of the extreme points represent a
significant pent for these processes. Other local max-
ima (or midma) are assumed to be minor perturbations
in the dataland are to be ignored. We call these signif-
icant trend khanges pivot points.

3. Connect the set of pivot points into a segmented line.
This represents the characteristic curve for the original
raw data.

We outline the algorithm in the following sections:

Data Smoothing. In order to remove day to day
variability in the value of a stock, N-day moving aver-
ages are used. Often a short range moving average (e.g.,
30 days) is compared with a longer range moving aver-
age (e.g., 150 days) in order to compare local changes
to a stock's price compared with the longer range trend.
The crossover points between the short and long term
moving aver ages signal trend reversals.

This simple moving average, however, has a weakness.
If a critical point is reached (e.g., the value reaches a
maximum), the damping effects of the earlier points
in the average delay the signaling of this phenomenon.
That is, the moving average will continue to rise for sev-
eral days after the peak is reached since all points are
weighted ecually in computing the average. In order
to enhance ;he perception of such directional changes,
the exponential moving average (EMA) is used for the
MACD tracing system described earlier. Rather than
being the simple average of the last N points, the expo-
nential moving average is given by the equation:

SEW22 Proceedings

Figure 5: Smoothed data using moving averages

where:
EM Ai is the exponential moving average at time i
vj is the new data value at time i
and is the smoothing constant where N is the

number of points in the average.

For N = 9, & has a value of .2 meaning each new
point has about twice the "impact" (20% instead of
11%) that a simple moving average would have. Each
successively older point has less of an effect on the to-
tal average, and the result is a moving average more
sensitive to leading edge changes.

The higher curve in Figure 5 shows the effects of the
EMA on the error data of Figure 4. &om this EMA
of the scatter plot data, we want to extract only those
maxima and minima that represent significant changes
in the underlying process.

Find significant trend changes. If we could simply
take the derivative of this curve, we could solve for the
derivative being zero in order to find the local maxima
and minima. However, the actual (smoothed) data does
not permit such computations. We can use the EMA to
help again for this process. Between any two points we
can compute the instantaneous derivative = %. If
we compute this for each time period t , and take the
EMA for these delta values, we get what is called in the
financial community the signal line (Figure 5). Where
the signal line crosses the X-axis represents a zero EMA,
or in other words, the average hi in the interval is 0,
which represents an extreme value for the curve.3 In

3h the original MACD development, the signal line was the
EMA of the difference between the long tern and short term
EMA. Here we are only concerned with the slope of the 6, curve.

our example, .his signal line crosses the X-axis 7 times.
Each of these represents a critical point in the original
data.

What does this signal line represent? I t is the average
slope of the instantaneous derivatives for the past N
points. If the signal line is 0, it means that the average
delta between successive points is 0 and we have a local
maximum or minimum. We simply have to go back over
the last N points to determine which value of time t i

represents that extreme value. We call such values pivot
points.

Computation of Characteristic Curve. Once we
have identified the pivot points, we connect each seg-
ment with a straight line (Figure 6). This segmented
line describes the general shape of the curve we are in-
terested in. We have been able to eliminate minor hills
and valleys from the curve and have left only the major
features of the original data.

Figure 6 shows the characteristic curve computed by our
algorithm along with the original data.

Figure 6: Raw data with its characteristic curve

One interest to us was the first dip noticed between
60% and 80% of project completion in the error data of
Figure 6. Looking through old records (from 1988) we
discovered that the minima point at 70% occurred just
before the start of acceptance testing for the project,
even though resource usage (i.e., hours worked) shows
no such disruption in the process. This was also the
time when the contracting organization that built the
software moved into a new building. The identification
of a milestone via the collected data seemed interesting,
but the confounding influence of the building move con-
cerned us. After looking at the characteristic curves of

SEW22 Proceedings

reported errors from other projects in this domain, we
discovered similar behavior before acceptance testing.

While it appears that we can identify the start of ac-
ceptance testing (at least in this NASA environment) by
the shape of the characteristic curve, we need to investi-
gate further, the meaning of the characteristic curve. In
addition, we are also working on the ability to catalog
a project by the shape of the characteristic curve.

5 USING THE WEBME SYSTEM

In this section, we present examples of how the WebME
scripting language is used. We only present the parts of
the scripting language that are necessary here to illus-
trate our examples. The words in boldface fonts are
keywords in the WebME scripting language. The words
in the normal font are the parameters that are specific
to the architecture being described.

5.1 Interface definitions

The interface definitions are used to describe the schema
of the system architecture and the interfaces available
in the architecture. Definitions of hosts (i.e., the physi-
cal location of an information repository) and wrappers
(i.e., the interfaces available at the information reposi-
tory) are created through the scripting language.

To define a host in WebME, the host name and port
number are defined using the WebME scripting lan-
guage. For example, if a data wrapper is listening to port
number 8001 on a host named aaron.cs.umd.edu for
WebME requests, the following statement would appear
in the WebME script file:

create host aaron.cs.umd.edu port =8001;

To define a wrapper in the WebME scripting language,
the host and path to the data wrapper must be identi-
fied. For example, if an executable called getsise which
is used to extract size data from the host aaron is lo-
cated in the /aaron/ webme/bin directory, the follow-
ing statement would be used:

create instrument getsize host=aaron.cs.umd.edu,
path=/aaron/webme/bin/getsize;

5.2 Combining d a t a from multiple locations

To illustrate how the scripting language is used for the
combination of data, consider the case of a fictitious
collaborative software development process. Assume
the development environment, called the Widget De-
velopment Division (WDD), has two locations where
measurements of the development process for a project
called Smart Widget are being collected and stored. For
this example, the only attribute being collected is size

measured in lines of code (LOC) developed each week.

If the hosts to be included in the system
are coflet.zuidgels. corn located in Seattle and
tea. widgets. corn. uk located in London, the hosts
would be defined with the following statements:

create host coffee.widgets.com port=7000;
create h a t tea.widgets.corn.uk port=8000;

To define the interfaces (UKsize and USsize) available
at each loeation, the wrappers would be defined with
the following statements:

create ins t rument USsize
host=coffee.widgets.com, path=/usr/bin/getattr;

create ins t rument UKsize
host=tea.widgets.corn.uk, path=/usr/bin/getdata;

In addition, a class representing the WDB development
environment and the attributes for size must be defined.
create class WDD;

/* size in lines of code for Seattle */
create attribute direct WDD.USsize
with uni ts LOC, interval week,
instrument Ussize;

/* size in lines of code for London */
create atgribute direct WDD.UKsize
with uni ts LOC, interval week,
instrument UKsize;

/* total size in lines of code (indirect at-
tribute) */
create a t t r i b u t e indirect WDD.TotalSize
using USsize + UKsize;

Finally, the project Smari Widget would have to be as
signed to t i e WDD class.

assign Smartwidget to WDD;

Now, the size of the project can be monitored at the in-
dividual site level (with the USsize or UKsize attributes)
or at the eltire project level (by viewing the Totalsize
attribute).

5.3 Viewing compatible data

To demonstrate how the scripting language and the sys-
tem can be used to display similar attributes on the
same graph, suppose the attributes of reported errors
(Reported), closed errors (i.e., errors that have been
resolved) (1;losed) and net errors (i.e., change in num-
ber of errois discovered in the current week) have been
added to the WDD class with the following statements:

SEW22 Proceedings

create a t t r ibu te direct WDD.Reported
with units errors, interval week,
instrument getreported;

create a t t r ibu te direct WDD.Closed
with units errors, interval week,
instrument getclosed;

create a t t r ibu te indirect WDD.Net using
Reported - Closed;

Note that the units and interval for net errors (i.e.,
wDD.Net,) would be inferred from the attributes in the
equation. In this case, the units and interval would be
errors and week, respectively.

Using the rules of compatibility described in Sec-
tion 3.2, the attributes WDD.Reported, WDD.Closed
and WDD.Net, could be displayed on the same
graph in WebME as shown in Figure 7. However,
WDD.Reported and WDD-size (as defined earlier) could
not be displayed on the same graph because the units
are not name equivalent.

Gmunh in ERR for Smatw'dge! as of @I&%
9Mlr I I I I I

0 20 40 60 80 100 120
week

Figure 7: Compatible attributes.

Figure 7 is a graph showing the three compatible at-
tributes using common axes. Although total errors and
closed errors apparently track each other in a similar
manner, the indirect attribute of open errors shows a
clear bulge around week 65, which should cause man-
agement to further investigate its possible cause.

6 CURRENT STATUS AND CONCLUSIONS

The use of collected data on past projects as predictors
of future project behavior is a growing phenomenon in
software development. However, development environ-
ments vary widely. It is important that the baseline pre-
dictor projects have characteristics that are amenable to
the new project being compared. Processes like the Ez-

perience factory 141 have been proposed as a means to
organize such developmental practices. However, means
must be found for passing information among such envi-
ronments or for comparing results obtained in two differ-
ent environments. A tool like WebME gives the analyst
a mechanism for defining common characteristics across
such domains.

At this time, the system architecture for WebME is op-
erational allowing for access to WebME from anywhere
on the WWW. The scripting language for defining inter-
faces and data types is being implemented. Additional
data bases are under study in order to determine the ef-
fectiveness of our system in building indirect attributes
across a wide range of application domains.

We still need additional experience with the proposed
modeling technique before we can incorporate it into the
WebME system. However, even without such additions,
we have designed a system that aids software develop
ers in accessing development data in various settings and
obtaining visual feedback on the relative merits of a sin-
gle project compared to a repository of related projects.

ACKNOWLEDGEMENTS
This research was supported in part by NASA grant
NCC5170 to the University of Maryland. Jon Valett,
formerly of NASA Goddard and now of Q-Labs, built
the initial version of SME. N. Rorry Li, now of Ora-
cle Corp., did the initial rehosting of SME to the SUN
UNIX platform and added the clustering data model in
1993.

REFERENCES

[I] G. Appel and W. F. Hitschler. Stock market trad-
ing systems. Dow Jones-Irwin, Homewood, Illinois,
1980.

[2] V. BasiIi, M. Zelkowitz, F. McGarry, J . Page,
S. Waligora, and R. Pajerski. SEL1s software
process-improvement program. IEEE Software,
12(6):83-87, 1995.

[3] Victor R. Basili and H. Dieter Rombach. The
TAME project: Towards improvement-oriented
software environments. IEEE Transactions on
Software Engineering, 14(6), June 1988.

[4] V.R. Basili, G. Caldiera, F. McGarry, R. Pajerski,
G. Page, and S. Waligora. The software engineer-
ing laboratory-an operational software experience
factory. In Proc. of the 14th International Confer-
ence on Software Engineering, pages 370-381, Mel-
bourne, Australia, May 1992.

SEW22 Proceedings

[5] ClearDDTS.
URL: http://www.pureatria.com/ddts/ddtsmain,
Visited November 1997.

[6] W. Decker and J . Valett. Software management en-
vironment (SME) concepts and architecture. Tech-
nical Report SEL-89-003, SEL, January 1989.

[7] Object Management Group. The common ob-
ject request broker: Architecture and specification.
Technical Report 93-12-43, Object Management
Group, December 1993.

(81 R. Hendrick, D. Kistler, and J. Valett. Software
management environment (SME) components and
algorithms. Technical Report SEL-94001, SEL,
February 1994.

[9] Barbara Kitchenham, Shari L. Pfleeger, and Nor-
man Fenton. Towards a framework for software
measurement validation. IEEE Trans. on Software
Engineering, 21 (12):929-944, Dec 1995.

[lo] N. R. Li and M. V. Zelkowitz. An information
model for use in software management estimation
and prediction. In Second International Confer-
ence on Information and Knowledge Management,
pages 48 1-489, Washington DC, November 1993.
ACM.

[l l] J . Magee, N. Dulay, and J.Kramer. A construc-
tive development enviroment for parallel and dis-
tributed programs. In Proceedings of the 2nd In-
ternational Conference on Configurable Distributed
Systems. IEEE, 1994.

[12] V. Mashayekhi, B. Glamm, and J . Riedl.
A1SA:asynchronous inspector of software artifacts.
Technical Report TR-96-022, University of Min-
nesota. Mar 1996.

[13] M.C. Paulk, B. Curtis, M. B. Chrissis, and C. V.
Weber. The capability maturity model for software,
version 1.1. Technical Report CMU/SEI-93-TR-24,
CMU/SEI, 1993.

41 J. M. Perpich, D. E. Perry, A. A. Porter, L. G.
Votta, and M.W. Wade. Anywhere, anytime code
inspections:using the web to remove inspection bot-
tlenecks in large-scale software development. In
Proc. of the lgth International Conference on Soft-
ware Engineering, pages 14-21, May 1997.

[16] E. Seqkota. MACD: Sweet anticipation? Futures,
20(4) 36+, Mar 1991.

[17] D. Tjahjono. Explonng ihe eflecltveness of formal
technical review factors wiih CSRS, a collaborative
software revrew system. PhD thesis, Department of
Information and Computer Sciences, University of
Hawaii, 1996.

[18] Gio Wiederhold. Mediators in the architecture
of future information systems. IEEE Computer,
25(3) 38-48, March 1992.

[19] Web-integrated Software Environment Home Page
[I]. URL:
http: j/research.ivv.nasa.gov/projects/WISE/wise.html,
Visited November 1997.

[15] J . Purtilo. The polylith software bus. Transac-
tions on Programming Languages, 16(1):151-174,
Jan 1994. Also available as UMIACS-TR-90-65.

SEW22 Proceedings

The Web Measurement Environment(WebME): A
Tool for Combining and Modeling Distributed Data

Roseanne Tesoriero and Marvin Zelkowitz
Department of Computer Science

University of Maryland, College Park
{roseanne, mvz } @cs.umd.edu

December 3, 1997

Outline

* Motivation
Combining Data Sets
Analyzing Data

* Status & Future Work

SEW22 Proceedings

Software Management Environment (S

Provide management with feedback for ongoing
proJecQ

Plot co%%ecad data over me (e.g., LOC, enors)
B ~ l d basegne models for each amibute
Compae new projeas agdnst estabEshed model
Do 6bwwh-if' scenarios (e.g., change schedule, effort)

SEW22 Proceedings

SME Prototype

Prototype built in mid-80's
* Concepts not fully implemented

Designed for SEL use at GSFC
- DOS PC interface
- Predefined data types
- Predefined models

The world has changed since the mid-80s!

Increased opportunity for collaborative software
development

increased presence of the Internet and WWW

Focus has been on process definition and enactment
Computer Supported Cooperative Work (CSCW) tools

Can we incorporate data analysis for project
management into CSCW tools?

SEW22 Proceedings

WebME Overview

Goal: expand and modernize concepts prototyped
in SME
- multiple data sets
- deeper analysis of data

Enabling technologies
- mediated architecture to utilize the Internet and WWW
- schema scripting language to combine distributed data
- new techniques (e.g., from financial domain) to analyze

data

WebME Architecture

End-User

........................... ",

.....

SEW22 Proceedings

Outline

Motivation
* Combining Data Sets

Analyzing Data
Status & Future Work

Scripting Language

WebME scripting language is used to define the
architecture and the data of the system.

*Location: physical location of hosts with
information repositories (hosts)

.Access: interfaces available at each repository
(wrappers)

*Format: properties of the data in the repository
(attributes)

SEW22 Proceedings

Specifying Attributes

Direct Attributes:
- values extracted directly from information repository using

.wrapper (e-g., L W
- properties (units, interval)

* Derived Attributes:
- arithmetic combination of direct attributes
- Technical hours + Mgmt hours = Total Effort

* Combining data (meta-analysis)
- use wrappers to get a common representation (direct)
- apply transformations to attributes (derived)

Example: Widget Development Division

Project = Smartwidget (being developed in Seattle
and London)

Attribute = size (measured in weekly lines of code)
)cII\

Defining Location & Access

* Hosts (Seattle and London)
create host coffee.widgets.com port=2000;
create host tea.widgets.co.uk portd000;

* Wrappers (Uslines, UKlines)
create instnunent USlines ho~~sffee.widgets.com,
path=/usr/binlgetattr;
create instrument UKlines host=tea.widgets.co.uk, path4
usrJbinfgetdata;

Specifying Size Attributes

Direct Attributes:
P size in lines of code for Seattle *I
mate attribute direct WDD.USsize with units=LOCI interval=Wec)r,
insaumtnkuslines;

P size in lines of code for London *I
create attribute direct WDD.UKsize with units=LOC, intaval=Week,
instrument=UKlines;

Derived Attribute:
/* total size in lines of code */
creBte attribute indirect WDD.TotalSize using USsize + UKs&

SEW22 Proceedings

Combining Data Using Transformations

Error Data: Reported, Closed, Remaining

Direct Attributes:
I* weekly reported errors *I
create attribute direct WDD.Reported with un&=Errors, interval=

Week, instrument=getreported;
I* weekly closed errors *I
create attribute direct WDI).Clo& with unitstEnors, interval=

Week, instrument=getclosed;

Derived Attribute:
I* weekly net errors */
create attribute indirect WTID.Net using Reported - Closed;

Displaying Data

Growth in Errors for SmartWjdget as of 09-16-96
900
800
700

" 600
$ 5 0 0

400
300
200
100
0

Week

SEW22 Proceedings

Outline

Motivation
* Combining Data Sets

Analyzing Data
Status & Future Work

WebME Analysis

Scatter plots of software engineering data are
often noisy

Reuorted Errors for COBEAGSS

% of Total Weeks

SEW22 Proceedings

WebME Analysis

Objectives:
- make sense of scatter plot data
- automate the analysis as much as p~ssible
- provide deeper analysis than available with current

tools

Software engineering data has characteristics of
financial data
- stock prices are highly variable
- stock prices follow longer trends

Can stock market analysis techniques (e.g., moving
averages) be used with software engineering data?

Analysis Technique

1 Smooth the data
(using moving averages)

2 Find significant trend changes
(called pivot points)

3 Connect pivot points with line segments
(called characteristic curve)

4 Build a baseline model from the c:hmacteristic
curves

SEW22 Proceedings

Smooth the Data

Reported Errors for COBEAGSS
5, * i

t Normalized RER
0 8 week EMA

3.5

% of Total Weeks

Find Pivot Points

Reported Errors for COBEAGSS

% of Total Weeks

54 0 '

SEW22 Proceedings

4
Normalized RER

- 8 Week -

Characteristic Curve
Reported Errors for COBEAGSS

C%aracteristic Curve

% of Total Weeks

Build a Baseline

3.5,
Reported Error Characteristic Curves

COBEAGSS

% of Total Weeks

SEW22 Proceedings

Capturing Visual Impression

Current Status & Future Work

* Status
- prototype implemented

uses mediated architecture
accesses SEL data (SME data)

- adapted financial techniques to software engineering
data

Future Work
- implement remainder of scripting language
- investigate techniques for building baselines
- apply analysis technique to other databases

SEW22 Proceedings

Calibration of a COTS Integration Cost Model Using Local Project Data

k'
Dillard Boland, Richard Coon, Kathryn Byers, and David Levitt

3 6 0 8 %
Computer Science Corporation

I0 1 10 Aerospace Road
Lanham-Seabrook, Maryland 20706

Abdrad The software measures and estimation techniques appropriate to a COTS integration project
differ from those commonly used for custom software development. Labor and schedule estimation
tools that model COTS integration are available. Like all estimation tools, they must be calibrated
with the organization's local project data. This paper describes the calibration of a commercial model
using data collected by the Flight Dynamics Division (FDD) of the NASA Goddard Spaceflight
Center (GSFC). The model calibrated is SLIM Release 4.0 from Quantitative Software Management
(QSM). By adopting the SLIM reuse model and by treating configuration parameters as lines of code,
we were able to establish a consistent calibration for COTS integration projects. The paper
summarizes the metrics, the calibration process and results, and the validation of the calibration.

The COTS Integration Estimation Problem The integration of application systems fiom
commercial off-the-shelf (COTS) products is supposed to bring the economic efficiency of
component reuse on an industry-wide scale. The catch is that "some assembly is required." How
much assembly will be required? How much will it cost? How does a local development
organization go about answering these questions?

On one level, the answer is the same as it is for custom development: model the process, collect
historical data from the local organization, and calibrate the model. But there are aspects of COTS
integration that cloud the issue. The activities differ from those of custom development - will the
models and metrics used for custom development work? Will the model be adaptable to the life
cycle that characterizes COTS integration? Perhaps most importantly, what metrics best capture
the size of a COTS integration project? Is a line of code metric meaninel for COTS integration?
Would a hction-based metric be superior? Which is more useful in the estimation process?

Our Study. Our local development organization within the Flight Dynamics Division (FDD) of the
NASA Galdard Spaceflight Center (GSFC) faced these questions as we transitioned from a
mainframe facility dominated by custom code to an open systems environment in which COTS
integration is more common. We had years of data from projects in our former environment, and a
proven process for cost estimation, but we had very little that helped with effort estimation for
COTS integration. When an internal Computer Sciences Corporation working group recommended
the SLIM Release 4 model from Quantitative Software Management (QSM), Inc., for estimating
COTS integration effort, we decided to study the model using data fiom our current projects.

The goals of our study were to establish

a) The usefblness of the SLIM model for estimating COTS integration effort in our environment
b) An appropriate size metric for COTS integration based on either limes of code or function

points
c) A calibration and estimation process we could extended to future COTS integration projects

Because our focus was on using the recommended model, we did not evaluate the SLIM model
against any other models or products.

SEW22 Proceedings 8 1 SEL-97-003

The StfMiUodd. We will discuss only the elements of the model necessary for understanding our
calibration. The SLIM model is described in Measures for Excellence by Putnam and Myers
(Reference 1). The SLIM software equation described in that reference can be represented as:

Product = P x (effort/B)1'3 x (Tirrie)4/3

where

Product = size in lines of code
P = process productivity parameter
B = scale Eactor, a function of system size

Since the equation is non-linear, the productivity P is not a si~nple parameter such as lines of code
per hour. For convenience the model introduces a productivitg* index PI, a dimensionless number
that maps to productivity. SLIM provides a large industry data base of observed PIS by application
domain. For scientific systems, the average PI is about 13. The local organization's PI is one of the
critical parameters determined by calibration.

The SLIM model requires that product be measured in equivalent source lines of code (ESLOC),
defined as new or modified logical source lines. These are essentially non-comment, non-blank
lines. Our local standard is the delivered source instruction PSI), which is equivalent to the SLIM
definition of ESLOC. In this paper, we identify our line counts as DSI. Other measures, including
function points, require a "gearing fkctor" for SLIM to convert them to lines of code.

The user adjusts the PI through two types of model parameters: environmental parameters and
reuse parameters. Environmental parameters include staff experience, available tools, and
development process. The reuse parameters address the effect of integrating unmodified
components into the system. This study concerns the reuse mcdel exclusively. We leave all the
environmental Eactors set to "unknown" so they have no effect.

Since the definition of product counts only new and modified lines, the integration of unmodified
components represents additional effort but no additional procuct. This is the key to understanding
the SLIM reuse model, and it leads to the apparently counterintuitive result that increasing the
amount of reused s o h e in the system lowers the productin ty. The model adjusts the PI
downward based on the user's estimated percentage of reused software. For COTS products a code
count is generally not known, so the user has to evaluate the reuse level by considering the
fhctionality of the COTS products relative to the overall system.

The model further adjusts the PI by allowing the user to rate szveral other reuse parameters on a
scale of 0 to 10 (or leave them set to "'unknown"). The percemage of reuse modulates the effect of
these settings. At the maximum reuse level and at the extreme range of all settings, we found the
model lowers the PI by about 30%. The impact on schedule a d effort can be considerably greater
since the model is nonlinear. The reuse parameters are: researtih time to select product, complexity
of integration with new code, analysis effort to assess impact on existing code, experience with the
specific product, usefulness of documentation, relative number of functional interfaces,
effectiveness of external customer support, relative percentage of functional interfsces used, level

SEW22 Proceedings

of additional documentation needed, complexity of using hctional intetfhx, and level of
additional regression testing needed.

Projects Studied. Two recent projects in the FDD were targets of opportunity for our
investigation. Both were part of a larger migration of the FDD systems from IBM madkames to a
UNIX workstation environment. These projects were the Data Collection / Data Retrieval (DCDR)
system, which processes spatxcraft tracking data, and the Telemetry Processing (TP) system,
which prepares spacecraft attitude telemetry data for other applications to use.

These systems replaced custom FORTRAN and IBM assembly language programs with COTS
products and "glueware". Development consisted of configuring the COTS products for mission
support and integrating them with each other and the surrounding applications. The products used
were Omega, a configurable telemetry processing engine Erom Veda Systems, Jnc., the Oracle 7.3
family of products, and Matlab fkom the Mathworks, Lac., a proprietary mathematical
programming language and library with built-in user interface generation capabilities. Omega
required modifications by the vendor, but these were incorporated into the standard product line
and are not reflected in either the labor data or technical measures included in this paper.

The architectural pattern used for the two systems is essentially the same, and is shown
schematically in Figure 1. In both cases a custom-built data capture application (a '"front end")
provides data to Omega through socket connections. An extensive set of Omega configuration
parameters, set up as part of the integration process, controls the restructuring of the data into the
forms needed for input to applications. "User-supplied functions" written by developers and called
by Omega supply some of the data processing capability. Omega sends processed tracking data by
socket connections to glueware that loads Oracle tables corresponding to tracking data types.
Applications either retrieve the data directly from the tables via SQL calls, or by invoking a
"legacy data presenter" program to get the data in a legacy format. The processing for telemetry
data is simpler since it does not involve the Oracle data base. A custom-built data interEace utility
@IU) accepts data fiom Omega, completes the processing, and supplies the data to the client
applications in data files. In addition to the components shown in Figure 1, scripts and graphical
user interface screens help integrate the system and provide a means for user monitoring and
control.

loaders m
utility

Figure 1. Architectural Pattern for DCDR and TP COTS Integration Projects
(shaded boxes represent COTS products)

SEW22 Proceedings

The DCDR and TP systems were built simultaneously within the two-year transition from the
FDD's mainfkmes to the new client-server system. The overall transition project was managed as
a rapid rehost rather than as new development, and neither of these projects followed a watefi1
life cycle. Instead, they relied on initial prototyping and successive refinement as each tracking data
type or telemetry fonnat was set up for processing. The time from the start of prototyping to full
operational deployment was 22 months for DCDR and 16 months for TP.

Metria Table 1 presents the metrics for the DCDR and TP projects. Since our goals included the
investigation of both lines of code and function points as metrics, we collected both. We made an
adjustment to our standard DSI definition, however, by including configuration parameters in the
count. Our reason fi,r doing this was that the configuration parmeters are in effect a language for
programming Omega to unpack and convert the telemetry and tracking data. We regarded them as
equivalent to limes of code, and we extended this concept to the configurable custom-built program
DIU. Our DSI count includes lines of C, Pro-C, PUSQL, scripts, Matlab, and Omega and DIU
configuration parameters.

DCDR TP
Size in Delivered Source
Instructions PSI)

C and ProC 16600 22136
PUSQL 17206

scripts 7908
Matlab 2221

configuration parameters 4901 8010

Total DSI 4661 5 32367 I
S i in Unadjusted
finetion Points'(UF7

Total UFP 11 10 391

Main Build 18107.6

Our interest in using function points was
primarily in learning whether the metric
improved our ability to estimate the
product size for a COTS integration
project In the past our organization had
not used function points because they were
perceived as ignoring the algorithmic
complexity of scientific systems, so the
fiurctiotl point counting process was new to
us. We felt that an unadjusted hct ion
point (ZJFP) count would be sufficient for
this first experiment with the metric. We
followed the IFPUG counting rules as
documented in the IFPUG Counting
Practices Manual, Release 4 (Reference 2),
and in Garmus and Herron (Reference 3).

8779.7 I Because of the nature of the mainframe-to-

Total Hours 2 1 143.5 10930.2 1 work& tion rehost, we had no detailed
specifications on which to base the UFP

I Computed Productivity count. 'Ve asked the developers to perform
DSI/Hour 2.1 3.0 the couat based on their knowledge of the

UFPfStaffmonth 8.2 5.6 system. We provided guidance to-ensure
Table 1. DCDR and TP Project Metncs they were interpreting the counting rules

consistently and from a user's perspective.
We noticed that the metric hid some of the complexity that we intuitively felt drove the integration
effort. For instance, because of the very large number of paramers typical of tracking data and
telemetry formats, the number of data element types PETS), a tnction point constituent, was
often in the hundreds. Because the counting rules place logical files with more than 50 DETs into
the same complexity bin, a telemetry stream with 5 1 parameters received the same weighting as did
a stream with 250 parameters. This raised a concern for us, since we suspected the effort to
configure the product was dependent on the total number of par.uneters to be set up.

SEW22 Proceedings 84 SEL-97-003

Labor hours were collected by the Software Engineering Laboratory (SEL) data wllection process.
The numbers include all technical and first level manageriavadministrative support effort for
design, implementation, and testing up to the point of initial operational use. They do not include
effort for COTS evaluation and selection, testing performed by operations personnel, or any
contribution from the system engineering and project management overhead associated with the
larger FDD mainframe-to-workstation transition project.

Since these projects did not follow a waterfall life cycle, we had to determine how to map the effort
the life cycle phases with which the model works. The SLIM model requires that one identify
relatively broad components of the effort. We worked with only the SLXM "fimctional design" and
"main build" phases. We found we could isolate the hours associated with these by associating the
functional design component with the period of the initial prototyping, and the main build
component with the remainder of the schedule up to the start of full operational use.

The computed productivities are the size measure divided by the hours expended. These
productivities are in line with, or are lower than, those obtained on our recent custom development
projects. This is in agreement with SLIM'S lowering of productivity for (uncounted) reuse. We
have shown the productivities derived from the function point measures in Table 1, though we have
no local historical baseline for comparison. We can only note that our UFP productivities appear to
fall within normal industry ranges. We counted only fkction points associated with the COTS
capabilities we used, not with all the capabilities the products could provide.

Calibration Process. The key to calibration is choosing those reuse model settings that seem
intuitive or natural for the project, and determining by how much they lower the PI. Then one finds
an "adjusted PI by applying this delta to offset the reduction in productivity. Upon "playback" of
the historical projects sizing data, with the adjusted PI and the reuse model settings input to the
model, the model will reproduce effort and schedule observed. We refer to the adjusted PI and the
reuse model settings as the calibration set.

With the calibration set one can estimate a new integration project by adjusting the reuse settings.
The adjustments are made by comparing the expected project characteristics to those of the
projects on which the calibration is based. There is some degree of arbitrariness to any calibration,
since different combinations of model parameters can lead to the same numerical results. Therefore
it is important that intended use guide the calibration. Our goal was to be able to estimate a wide
range of new projects. An ideal calibration set would keep most of the model's parameters near
their midrange, under the assumption that the calibration projects were average.

We used the DSI metric for calibration. To find a gearing factor for the UFP metric, we took the
ratio of DSI to UFP for each project. The calibration set determined using the DSI count can then
be applied to the UFP count as well. Since from the perspective of the SLIM model DSI is the
more fundamental measure, this approach is consistent with the model. The UFP gearing factor is
part of the calibration set. Our expectation was that, having established the gearing &tor, we
would be able to estimate new work directly in terms of function points for input to the model.

Calibration Results. Table 2 shows the calibration results. The most fbndamental model
parameter is the percentage reuse, which we decided to set to 7 (i.e., 70%) for both projects. This
value is intuitive. The COTS components drove the development activities for these projects, so a
reuse level greater than 50% is appropriate. At the same time, there was much custom development

SEW22 Proceedings 85 SEL-97-003

work in the system, so setting the reuse level near 100% seems incorrect. In this fishion we chose
the range of 70% to 80%. Selecting 70% gave the best result. It let us keep most of the other model
parameters set to their average value, in accordance with our plan of selecting calibration values
near the midrange, and places our adjusted PI close to the SLIM industry average.

ReuseSettings (scale of 2 to 10)
percent reuse 7 (70%)
experience with products 2 (low)
complexity of integration 4 - 5
time required to select products unknown
all other settings average 5

Roductiviry l i rda
calibration SLIM database

value (scienh3c
system)

DCDR & TP 12.9 13 +/- 3

Geming Fadors
calibration SLIM

value recommendations
DCDR 42 DSI/UFP database: 40
]TP 83 DSI/UFP default 3GL: 80 1

Table 2. Calibration Results

Besides percentage reuse (a mandatory
parameter), we chose to set only a few
reusc model parameters different from
their average values. Our guiding
philosophy was to set only those
parameters that we had a strong reason
for setting. These included the
development team's experience with the
COTS products (low, since these were
our first projects using these particular
products) and the complexity of
integration. We set the complexity a little
lower for TP than for DCDR (4 versus 5)
since the TP had no data base interface.
We set the time required to select
products to "unknown" since we had no
relevant data, though the effect on the
model is indistinguishable from setting it
to "average".

Thess settings lower the PI by a total of
1.2 to 1.3 points. Our observed PI was 1 1.6 for DCDR and 1 1.7 for TP, leading us to choose an
adjusted calibration PI of 12.9. With this and the reuse model settings we selected as input, the
SLIM model will generate the observed PIS. The resulting calibration places our systems squarely
in the midrange of SLIM'S industry data base for scientific systems (PI = 13 plus or minus 3,
according to Putnarn and Myers).

The derived gearing factors are quite different for the two projk:cts. We attribute that mainly to
DCDR having a great deal of data base use, and TP none. In f ict, referring to the table provided
with the SLIM documentation, our DCDR gearing factor is ve y close to the default for database
languages (40 logical source lines per hc t ion point), and our TP gearing factor is close to the
default for general 3GL languages (80 logical source lines per hc t ion point).

Validation of the Calibration Set. To validate the results of the calibration, we investigated
enhancements to the TP and DCDR that each added a thread of new data processing. These
enhancements were essentially another round of development iteration for each project, performed
after the systems had entered operational support. For each eni ancement we made two independent
size estimates, one in UFP and one in DSI (i.e., we did not use the gearing factors to predict one or
the other metric). Then we adjusted the reuse factors as shown in Table 3 to reflect the level of
experience of the developers and the relative complexity of the new work compared to the baseline
efforts.

SEW22 Proceedings

Adiustments to DCDR reuse settin~s Adiustments to TP reuse settings 1
experience with product = 5 experience witb product = 10

relative number of interfaces used = I

Table 3. Adjustments to Reuse Settings Used During Validation

For DCDR we estimated the change required to add a new tracking data type as 100 UFPs. We
readily obtained the UFP count by going through the total hc t ion point list and identifying those
elements needed to support a new data type. We treated a modified UFP as equivalent to a new
UFP for this analysis. We independently estimated the volume of work as 3500 DSI through
analogy with the similar data types already implemented. Table 4 shows the estimates obtained
with SLIM using the adjusted reuse model settings. Constraining the model to a realistic peak
staffing of 3 yielded estimates that turned out to be just slightly higher than the 3.5 months and 7
staff months subsequently observed. In contrast, the effort extrapolated from the development
productivity without using the model is considerably greater than the actual effort. The reuse model
appears to adequately account for changes in productivity due to increased familiarity with the

r 1

size effort predicted SLIM SLIM
estimate W/O model predicted predicted

schedule effort
DCDR 100 UFP 12.2 sm 4.05 months 8.68 sm
(estimate 1)
DCDR 3500 DSI 10.2 sm 3.63 months 7.78 sm
(estimate 2)
Actual +projected schedule = 3.5 months, c f f o = 7 staffmonths (sm)

TP
(estimate 1)
TP
(estimate 2)

14 UFP 2.5 sm 2.32 months 1.48 sm

300 DSI 0.64 sm nla nfa
.--

[~ d u a l schedule = a fnr days, eflori < 0.2 staffmonths (sm) 1
Table 4. Validation Results

COTS software; in fact a somewhat higher experience setting than the value used (5) would
probably have been appropriate in this case.

When we performed a similar validation exercise for the TP, the results were inconclusive. Using
the same approach as described for the DCDR estimate, we identified the unpacking of a simple
telemetry type to be 14 UFP. The resulting SLIM prediction is much larger than the observed, but
the reason is that the size estimate turned out to be too large. The change affected only the
configuration parameters, so using a DSI estimate of 300 (the average number of configuration
parameters per telemetry type) gives a better guess as to the size. This is too small a size for the
SLIM model to handle, but a simple extrapolation using the development productivity yields 0.64
staffmonths. In hct, the actual DSI count was only 102, accounting for the even smaller effort (no
more than 0.2 staff months) observed.

SEW22 Proceedings

While it would be desirable to have more than a single validatis~n instance, the DCDR enhancement
results are encouraging. They show that the productivity adjuments stemming from the reuse
settings are appropriate and that the model's behavior is consistent with our experience. The

estimate is also consistent with industry
Main Build Effort norms. Figure 2 shows a report adapted ' Oo0

fmm the SLIM display of the DCDR
enhancement estimate for main build effort.
The two calibration projects, TP and
DCDR, are on the trend line for scientific

V, systems in the SLIM data base. The
prediction is within one standard deviation
of the model's data average for scientific
systems The calibrated model appears to be
valid in our environment, given a reliable
size estimate.

DSI (thousands) Amving at a size estimate for COTS
Figure 2. SLIM projection for DCDR integration work is difficult, as illustrated by

enhancement (center line is SLIM the TP enhancement exercise. In that case,
average for scientific systems) the UFP metric, while reflecting the

capabilities affected by the new data type, led to too large a size estimate. The gearing factor
determined during development may be too large when applied to enhancement, or equating a
modified function point element to a new one may not be valid. The TP enhancement may be
characteristic of a maintenance change, while the DCDR enhancement, which did not have these
problems, might be characterized as new development.

Conclusions Our conclusions are structured around the goals of our study:

Goal: Establish the usefilness of the SLAV model for estimating COTS integration effort

Our result. show that the SLIM reuse model can handle the COTS integration estimation problem
in our environment. Had SLIM Release 4.0 been available to us when we began the TP and DCDR
efforts, we could have obtained realistic schedule and effort estimates just by assuming the industry
default productivity for scientific systems, and making some reasonable guesses as to the reuse
model settings. We would of course have required good size es t iates as input.

The SLIM model's use of only the new and modified lines of cde , with productivity adjustments
to reflect reuse, provides a straightforward way of handling the inclusion of COTS products in a
system. Though it may be unsatisfying to leave as critical a modeling parameter as the percentage
of reuse to guesswork, we do not see a reasonable alternative. The process worked for us. Also,
even though our projects did not follow a standard waterfall life cycle, we were able to sort out the
hnctional design and main build phases well enough to use tht phase modeling in SLIM.

Goal: Establish an appropriate size metric for COTS integra ion

We were able to use both lines of code and function points to estimate the volume of COTS
integration work. We had somewhat more success with the DSI metric than with the UFP metric.
However, we found we had to make the definition of DSI flexi5le enough to count the things the

SEW22 Proceedings 88 SEL-93-003

developers were really manipulating during the integration process. Including configuration
parameters in the DSI count achieved this for the systems we investigated.

How important are the configuration parameters? Referring back to Table 1, they account for
about 10% of the DCDR lines and almost 25% of the TP lines. Without counting them, the project
PIS are so different that we couid not find a single, intuitive calibration set for both projects. We
could calibrate them independently, each with its own characteristic PI, and this would be
acceptable if our goal were project-specific cost models for the maintenance phase. Our goal is a
more general model for &re project estimates. Counting all the eIements manipulated during
integration makes the metric more consistent. Therefore we defined DSI to include configuration
parameters as lines of code. They are lines of code in that they contain the programming of Omega
for a specific environment and problem.

It is worth noting that the UFP count includes configuration parameters, since they appear as either
external input or as data stored on internal logical files. Although the SLIM documentation
recommends that only function points associated with new or modified lines of code be counted,
such a breakout would have excluded the count of Omega configuration parameters. We found that
a count of all function points associated with the COTS capabilities used in the applications was
preferable. While our experience was that the fknction point counting process was labor-intensive
and required quite a bit of interpretation, and that some precision was lost because of the binning
of elements in the UFP count, the counting rules do provide a structured approach to the estimation
process, which is valuable in and of itself.

Goal: Establish a calibration and estimation process for COTS integration prqects

The calibration we performed can be extended to more COTS integration projects. In future
projects for which we collect data, we will be able to collect data more in keeping with the needs of
the SLIM model (for instance, planning to track effort as a function of hctional design and main
build), but even without this level of sophistication, calibration is possible. We also suggest
following a guideline of keeping the number of calibration parameters small: focus only on the
most critical of the reuse model parameters.

As we have seen, the calibrated model worked well when estimating an enhancement to the existing
DCDR system. Having a model for gauging the cost of maintenance work is important, but we are
aiming at more. Will our calibrated model be of any help if the products for our next system are of
a different type than Omega and Oracle? As we include more projects in the calibration, the
chances should improve. The estimation process will be to identifj, i n s o h as possible all the
glueware and configuration parameters for the new system, and guess as to the relative percentage
COTS in the system (or equivalently the relative importance of custom application components).
These are the input to the calibrated model.

The early estimation problem is the most serious obstacle in COTS integration effort estimation.
To see why, consider our situation at the outset of the TP and DCDR projects. It is unlikely that
we could have made a good DSI or UFP count at that time, having never used these products
before. How to anticipate the DSI contribution from Omega parameters? The amount of C
language glueware needed? Could a reliable UFP count be based on the systems being replaced?
Theoretically the UFP count is independent of implementation, but some of the major elements of
our count were associated with the configuration parameters, which had no analog in the old
system. Without a similar system for analogy, our only recourse would have been extrapolations

SEW22 Proceedings 89 SEL-97-003

based on an early product evaluation and integration prototypurg - which we were not fortunate
enough to have before schedule commitments were be made.

Our overall conclusion is that COTS integration is not a fundamentally m type of development,
but rather a style of development with a diflkrent emphasis h custom development. By
correspondingly shifting the emphasis of the models and metrics of custom development, we can
adapt and extend these methods to the COTS integration proqem. We have seen how a standard
custom development model can handle COTS integration by treating the products as reused
components, and how the integration effort can be more &Ily captured by treating configuration
parameters as lines of code. What we need is a structure for learning how to estimate the work
volume early in a COTS integration project.

Acknowledgments. We wish to acknowledge the DCDR and TP developers Alan Stewart, Dennis
Bambie, and Alexander Calder, all of CSC, whose assistance with the collection and
interpretation of development statistics was critical to this study. We also thank Steve Condon of
CSC for his provision and verification of the SEL labor records, and Lany Putnam, Jr., of QSM,
for his helpful advice regarding the calibration of SLIM. Finally, we express our appreciation to
Dave Weidow of GSFC for sponsoring this work.

1. Putnam, Lawrence H., and Wayne Myers. Measures for Excellence: Reliable Software On
Time. Withii Budget. Yourdon Press, 1992.

2. International Function Point User's Group, Counting Practices Manual, Release 4, 1994.
3. Garmus, David, and David Herron. Measuring the S o M e Process: A Practical Guide to

Functional Measures. Yourdon Press, 1996.

SEW22 Proceedings

Calibrating a COTS Integration
Model With Local Project Data

Dillard Boland, Richard Coon, Kathryn Byers,
and David Levitt

Computer Sciences Corporation
Lan hamSeabrook, Maryland

22nd Annual Software Engineering Workshop
December 3,1997

C X Computer Scknccr Corpontbn
System Scicnccs hvinon

Problem: How to estimate effort
required for COTS integration?

Calibrate a cost estimation model using local
project data - but
- How to model?
- What to measure?
- How to calibrate and validate?

* Our goals
- See if a commercial model (QSM's SLIM ele ease 4) can

model COTS integration in our environment
- Define appropriate COTS integration metrics
- Establish a calibration process to use in the future

Computer Sckncw Corporation
System Scrences Drns~on

91

How to model?
SLlM Release 4 from Quantitative Software
Management (QSM)

Product = P x (e f f~ r t lB) l~~ x (Time)413

Product = size in equivalent source lines of code (ESLOC)
P = process productivity parameter (presented to the user

as a productivity index PI)
B = factor that varies with system size

Use Delivered Source Instructions (DSI) to
measure ESLOC
Provide "gearing factor" to convert function
points to lines of code

How SLlM 4.0 models reuse

SLlM input is new or modified code only
Reused software = additional functionality not
measured by line count
COTS = unmodified reused software
SLlM lowers PI to account for COTS
integration effort
PI adjustment based on estimated percent
reuse and ratings for 11 other parameters
- complexity of integration, experience with product,

number of functional interfaces, ...

Cornpuler Srkmm Corpoinlbn

92

What to measure?
Project: "targets of opportunity" at GSFC
Flight Dynamics Division
- Project I : Data Collection I Data Retrieval (DCDR)
- Project 2: Telemetry Processor (TP)

COTS produck:
- Omega Telemetry Processing Engine from Veda Systems
- Oracle RDBMS
- Matlab from The Mathworks

* Metrics: try DSI and function points
- Define DSI to include COTS configuration parameters
- Count Unadjusted Function Points (UFP), IFPUG 1994

Labor hours via SEL data collection

c!x Corapulcr Sckacea Corpomtbn
Syskem Scimcm Division

Project 1 : Data CollectionlData Retrieval
(DCDR)

Application
Boundary

Computer Sckaccs Corporation
System Sctences Division

93

Client
Applications

Project 2: Telemetry Processor

MATLAB language

Boundary
CSC Coaprrer Sc*.ce# Corporation

Systcm Sclmus Illvlam

Sizing Data
50000

40000

30000
DSI

20000

10000

0
DCDR TP

I ~ C I P ~ O C l P L l S Q L l s c r i p t s =Matlab E parameters 1

Computer Sclcucea Corporath
System Sclcnces D~vtsron

Effort Data

25000

20000

15000
hours

10000

5000

0
DCDR TP

l l ~ u n c t i o n a l Design (FD) .Main Build (MB) I
computed DCDR TP
productivities: 2.1 dsilhr 3.0 dsilhr

8.2 ufplsrn 5.6 ufplsm

CSC Computer Sckmcu Corpolrtbn Syslcrn Sc~emm U~vision

How to calibrate?
/ project \

history find "? SLIM history mode
/ data / effOfl \\,

actual PI ,
/

1
gearing
factor

I

actual PI

i I - - - size --(playback) SLIM estimation mode,
constraints reuse set to "unknown"

/

playback settings

4 - - - -. . - - - .
i; SLIM estimation -intUfiive model \ reuse mings, , calibration , '

reuse --- mode settings ' reuse ,
adjusted PI -? set

\
,

. ---

Note: All non-muse model parameters set to "unknown"

Computer Sciences Corporation

9 5

Calibration Example

I I .6 PI determined from
development history

Delta to PI introduced by
reuse settings

Adjusted PI to use along
with reuse settings as
calibrati~n set

Our SLIM calibration set

percent reuse 7 (7 0 %)
e x p e r i e n c e with products 2 (l o w)
corn p l ex i ty o f integration 4 - 5
tirn e required to s e l e c t products unknown
all o ther se t t ings 5 (average)

calrbratron S L I M d a t a b a s e
va lue (screntrfic s y s t e m s)

D C D R & T P 1 2 . 9 13 +/ - 3

c a l i b r a t i o n S L I M
v a l u e r e c o m m e n d a t ~ o n s

D C D R 4 2 dsi /ufp database: 4 0
TP 8 3 dsi /ufp default 3 G L : 8 0

How to validate?
Use calibrated model with reuse adjustments to estimate TP
and DCDR enhancements:

: effort SLIM stilw
, - , , ~cstihQte prcdfc$ed ,predicted predicted

W/O model 8chedule effort
DCDR 100 ufp 12.2 sm 4.05 mn 8 . 6 8 sm
(est imate 1)
DCDR 3500 dsi 10.2 sm 3.63 m n 7 . 7 8 sm
(est imate 2)
Aefrrd + plyb&~t&~c ~cthedvtc F 3.5 ma, esfirt = 8.5 gm

T P 14 ufp 2.5 sm 2.32 m n 1 .48 srn
(est imate 1)
T P 300 dsi 0.64 sm n /a n /a
(est imate 2)
Actual:'bd'hedute *. u f e w days, kffort < 0.2 sm

ufp = unadjusted function points, dsi = delivered source instructions
mn = months, sm = staff months

Computer Sckncn Corpor8tbn
System Sciences Division

SLIM DCDR enhancement estimation graphs

MB Time

nfw

ESLOC (thousands)

MB Effort
1000

I 1

ESLOC (thousands)

Uinf Cst
Pk Staff 3.00 People

Size

rm Current Solution TP-DCDR History QSM Sc~entific Database - Avg - 1 SD

Computer Scienm Corporation

97

Conclusions
MODEL

SLlM Release 4 reliably models COTS
integration effort and schedule

METRICS
DSI metric can be expanded to include COTS
configuration parameters
UFP metric can be used for COTS integration
estimation, but needs more study

CALIBRATION PROCESS
SLlM calibration gave consislent results;
should be easy to expand to more projects

Computer Sciences Corpontbn
Syslan ScKnets Oiv~ston

SEW22 Proceedings

3(0083(/
An Architectural Approach to Building Systems from COTS

Software ~omponents*
Dr. Mark R. Vigder

John Dean
National Research Council

{markvigder I johndean) @mc.ca

Abstract
As software systems become increasingly
complex to build developers are turning
more and more to integrating pre-built
components Born third party developers into
their systems. This use of Commercial Off-
The-Shelf (COTS) software components in
system construction pmsnts new challenges
to system architects and designers. This
paper is an experience report that describes
issues raised when integrating COlS
components, outlines strategies for
integration, and presents some informal
rules we have developed that ease the
development and maintenance of such
systems.

1. Introduction
Modern software systems are becoming
increasingly expensive to build and maintain
and users are becoming more sophisticated
in terms of the capability they expect. To
build such systems, developers must use a
large number of standards, protocols,
technologies, and tool kits, each one of
which is complex and involves a steep
learning curve. Development organizatjom
have met this challenge by using off-the-

shelf software components that have been
developed outside theii organization and
which provide much of the functionality and
capability required, rather than building
their own components.

Components that are bought from a third-
party vendor and integrated into a system
are &fined as CommercMl m-The-Shelf
(COTS) software components. Building a
system drom a set of COTS components
introduces a different set of problems than
building a system from scratch or building a
system by re-using components that have
been previously const~~cted internally in the
development organization [5,12]. Many of
these problems are intraduced because of
the nature of COTS components: they are
truly black-box and the developers have no
method of looking inside the box;
developers have little or no influence over
the maintenance and evolution of the
components; and the behaviour of the
component may be inadequately specified to
understand its behaviour in a multi-
component system. Often the COTS
component is meant to rn as a standalone
application and has no mechanism for
interacting with other programs.

* M C Report Number 40221

SEW22 Proceedings

In order to address these problems we have
been experimenting with building systems
by integrating COTS components. Among
the objectives of these experiments is to
look at: technologies that support
component integration such as CORBA or
ActiveX; languages that are useful for
gluing components together [2,8,14,15,17];
and system architectwes for using COTS
wmponents [3,6,10,11]. We are looking at
these problems from the perspective of the
integrator using COTS components rather
then from the perspective of the builder of
the COTS components. This paper is an
experience report that describes issues raised
when integrating COTS components,
outlines a software architectwe for
integration, an8 presents some informal
mles we have developed that ease the
development and maintemce of such
systems.

2. Building Systems from COTS
Software
COTS software is a software component
that a developer quires from a third-party
and integrates into their system. The COTS
component supplier has the component
ready-built and is supplying and supporting
the identical component for numerous
customen.

Developers have been using COTS
components for many years [4,6,7,9 ...I.
Traditional COTS components include
opaating systems, databases, and
procedural libraries. Newer examples of
COTS components include: complete stand-
alone software systems that are being
extended or integrated with other
applications; components built using the
emerging component standards such as
ActiveX, JavaBeans, or CORBA; and
application 16rameworks that a developer can
tailor using inheritance or plug-ins.

The characteristics of COTS software that
makes the software development process
different from using custom-built
compwnts are:

0 Developers do not have access to source
code. Because they do not have access
to source code developers cannot
morfify the code to change the
finctionality of the component @erhaps
a good thing!). It also means that
e y s i s , instnunentation, and testing of
the component must be done in a totally
black box manner.

The component user has little or no
control over the evolution of fhe system.
The system developer who is integrating
COTS components is simply one of
many customers to the COTS vendor.
The developer does not control, and
may have minimal influeace, over how
the component evolves. The
functionality added to each update of
the component may not be as required
by fhe developer, it may not be ported to
the platforms the developer requires, it
may interfere with the operation of
some required functionality, or it may
interact in some unexpected way with
other components.

Complete and conect behavioural
specifications are not available. The
specifications provided for COTS
components are not always conect nor
complete. Even if the COTS vendor
pmsides a functional desuiption, this
does not always satisfy the needs of the
integrator who may need to know more
det.tdled behaviourat specifications arsd
resource requirements of the COTS
component. Integrators may use COTS
components in ways not foreseen by the
COTS vendor.

Set. of COTS components may be
mis.natcheci. The mismatch between
coaponents can arise for many reasons

SEW22 Proceedings

[6] such as the data model, functional
mismatch, resource dash, or process
model used. Sometimes the mismatches
are not found until quite late in the
development process.

e Many COTS components are designed
as standalone applications and may not
easily interact with other COTS or
developmental software.

A COTS based development is
fundamentally a problem of integrating
black-box components rather than building
components. This integration process is not
easy [6,12]. It is emrr prone, requires
significant amount of coding, and is difficult
to test and debug. In addition, many COTS
components have a high level of volatility.
Commercial components are often subject to
frequent upgrades. These upgrades may not
have the added functionalitylbug fixes
desii by the integrator. Critical
functionality which existed in a previous
version may have been removed in a
subsequent upgrade. In some cases the
integrator may wish to substitute similar
components b m different vendm in new
releases of the system.

In order to be able to deal with the
consmction problems there are a number of
properties that are desirable for an
architecture that integrates COTS
components.

e Plug-and-play of components. The
architecture of the system must allow
the substitution of components.
Component substitution can involve
substituting one version of a component
for a different version, or substituting a
component with similar functionality
from a different vendor.

e Decoupling between components. There
must be minimal coupling between
components. Coupling can involve both
functional coupling, such as proaxbe

calls, as well as other dependencies such
as resource contention or architectmal
assumptions. The architecture must
allow for the isolation of components.

Hiding unwanted functionality. In order
to differentiate their product from
competitors, COTS vendors often
overload their systems with a large
amount of functionality. Far from being
an advaatage in the COTS based
system, the system architect may wish
to remove this Tunctionality. Since this
cannot be done with a COTS
component, the architecture must
provide designers with a mechanism for
masking the unwanted functionality so
that it is inaccessible to the end-users
and/or the system programmers.

Debugging and testing. Since COTS
components are black-box it is
impossible to access their internals for
the purposes of testing or debugging.
An architecture and design cannot
eliminate this problem, but it can
include the capability of monitoring and
verifying component behaviour during
runtime, and preventing faults in a
component from propagating through
the system.

3. Example of COTS Integration
In order to better understand the issues
relating to building system from COTS
components we have conducted a number of
experiments in building such systems. The
most significant one that we have
undertaken, and the one used in this paper to
illustrate the architectural issues, is a
distributed imagery management system.
The capabilities of the system include the
following:

The system is capable of storing and
retrieving various types of media
@hotographs, video, sound, etc.) Some

SEW22 Proceedings

of these artifacts will be stored in digital
format while others will be stored as
physical artifacts in a library.

Artifacts will be stored at sites that are
physically distributed. Some of the
artifacts are replicated at different sites.

* A catalogue will be available on-line of
all the artifacts. Each distributed site
will have its own catalogue of locally
held artifacts.

Users will be able to electronically order
physical copies of the artifacts, to
download artifacts that are digitally
available, and to replicate catalogue
records when artifacts are downloaded
or ordered.

Special hardwardsoftware (scanners,
digital cameras, etc.) will be provided at
workstations to generate digital artifacts
and to store and catalogue them for later
retrieval. Other workstations will be
used for product preparation. These
workstations will access on-line artifacts
and process them to create products

such as pamphlets, brochures,
multimedia displays, etc.

The physical layout is shown in Figure 1.
The system is oonsmcted using a client
server model. Server sites contain the
cataloguing information and the artifacts in
digital fm. Clients communicate with the
server in order to store, catalogue, search
and retrieve artifacts. Servers communiw
with each other to replicate artifacts and
database records. All communication in the
system is through standard internet
protocols. Clients access the server through
web interfkes.

3.1 C b t a b p e Server Architeelure
The catalogue server stores all the
cataloguing information for locally held
artifacts. The architecture of the servers are
shown in Figure 2. Requests are received
firom the clients by the web server and
passed on to the glue components. The glue
invokes local components to perform
functions such as image conversion and
database sforage.

SEW22 Proceedings

Client p G - - f i ~

Figure 1.
Client-server model.

The various servers of the system have
similar functionality but very different
performance and resourc3e requirements. One
server is the main repository and contains
replicas of mast of the artifacts. This server
is available to the entire user community.
Other servers will be running on local
desktop machines and be used by only two
or three people within the department. The
server architecture, and as many
components as possible, should be portable
across this wide range of platforms.

The COTS components that have been used
to build the servers include the following:

Darabases. The database must be ODBC
(or eventually JDBC) compliant. This
allows us to use deshop databases such

as M i m f t Access in the local server
setups while substituting enteqxise
databases such as Oracle or Sybase in
the main repository. We then can use
identical code on both servers for
database access.

ActiveX components. We use ActiveX
components to perfonn some well
defined operations such as protocol
implementation and simple image
manipulation. Using ActiveX restricts
us to the Win32 platfinm. However, by
ap~ lF ' i * l~ Wrapping these
components we hope to be able to
configure the system for different
platforms by substituting the appropriate
platform specific components. This will

SEW22 Proceedings

Figare 2.
Server side architecture.

require little or no changes to the other component, Glue is the middleware that
software components of the system. manages the integration of the components.

Object libraries. We use object libraries
to build much of the middleware,
particularly the CGI scripts. Most of the
middleware is written in Perl so the
object libraries are not strictly COTS as
we do have access to the source and
they are distributed under the Gnu
license. However we have treated these
in a manner similar to COTS
components.

0 Web servers. We have restricted
ourselves to standard H?TP and CGI in
order to be compatible with any of the
web servers currently on the market.

Two principles we have tried to follow in
the design of the system, and which will be
discussed further in Section 4, are the use of
wrappers and glue. Wrappers are code that
we design and implement and provide the
only allowed access method to the wrapped

The wrappers surrounding components and
the glue integrating components are shown
in the server architecture of Figure 2.

Access to the COTS components is
accomplished through open and standard
interfaces where such standards exist. This
includes :-3audard Web protools, such as
HTlF and CGI, and standard APIs such as
ODBC. Whae such a standard does not
e x i l as in the case of many of the ActiveX
components, a wrapper is built around the
component with an interface that we can
control.

The wrapm and glue on the servers have
been written primarily in Perl, with some
use of Visual Basic. By using Perl (and
using it carefully) much of the middleware
glue can he ported to new platforms simply
by copying the scripts and configuring the
server a . ropriatel y.

SEW22 Proceedings

3.2 Client Architecture
A basic client consists of a standard web
browser. Through the use of HTML forms
this allows for searching and retrieving
infannation from the database, submitting
work orders, etc. For this type of client the
only commercial component required is the
web browser and the underlying
infkstructure (operating system).

Further COTS component integration will
be required for clients that have specialized
hardware and/or software. This inc1udes
clients that create and catalogue artifacts or
production workstations where a set of
artifacts is processed into a final product.
For example, a production workstation will
require a software application to process
images and generate reports and brochures.
Numerous applications exist for this purpose
and one (or more) can be used on the
workstation. We do not restrict which
application a client should use.

Users should be able to interact with the
servers and with the local software packages
in an integrated and seamless manner. For
example, once a set of items has been
located by a catalogue search the user
should be able to download these artifacts
directly into a project in the product
prepatation application.

An example architecture for a client is
shown in Figure 3. There are two major
commercial components to thf! system: a
web browser; and an application for
developing the product. The user, through
the browser interface, searches for the
desired artifacts which may be stored locally
or remotely. Once they are found, the
artifacts are downloaded into the product
prepamtion application. 'Ihe user then
intem3.s with this application's interface to
generate the quired product.

Integration code is responsible for receiving
the artifacts Erom the server, opening a
project in the preparation application, and
adding the downloaded artifacts to this
project. A wrapper is placed around the

A

Internet

Legend: 0 Component

O w w v e r

Figure 3.
Client side architecture.

SEW22 Proceedings

preparation application so that it has a
standard and known interface. By writing
wrappers for applications Ennn different
vendors the system can be configured with
different processing applications based on
the preferences of the user. Subsequent
substitution of any component involves
modification to the wrappers only and not to
the COTS component nor to the glue.

4. Strategies for Integration
The purposes of a software architecture are
to define the major components of a system,
how the components interface with each
other, and the interactions between
components to provide the system services.
In a COTS based development approach
many of the components will be commercial
components. This puts some immediate
constraints on the architecture:

The architecture must adapt to the
connectors available in the components
being used. For older and legacy
components this could involve such
primitive techniques as screen-scraping
and terminal emulation; more modern
components may export interfaces
available through ActiveX, JavaBeans,
or CORBA.

* The architecture must adapt to the
functionality available in the
components. s includes adding
functionality that is desired but not
included in the component, as well as
hiding functionality that is included but
the designer wishes to mask out.

The architecture must adapt to the
possible different data models and data
formats used by the diverse
components. This involves a process of
data mapping or translation to ensure
appropriate communication channels
between COTS components

Compo~ents as received from the
componl:nt supplier do not, in general,
conform to the architecNral requirements of
the integrator. The functionality available in
the component does not ccimqmnd to the
functionality the integrator wishes to see in
the component; and the interface to the
component is non-standard or does not
conftxm to what the integrator wishes. In
order to minimize the architectural
mismatch found in the component the
integratw must adapt the component to the
desired architectwe while simultaneously
adapting the archi- to the COTS
components available.

While the majority of the systems
components will be COTS-based, there will
inevitably be a need to design custom
components that interact with the COTS.
These components provide added
functionality for which a suitable
commercial application cannot be found
The design of these components can follow
traditiondl design concepts but, in order to
ensure a consistent archi- approach,
these a a o m applications should be built so
that the j can be integrated into the system in
a m a . consistent with the integration of
the COTS components. This includes the
use of wrappers and glue, and consistency
with the architectural style of the COTS
components.

In order to design a system primarily for
integrati-XI, we have identified a number of
software integration components. These
integrati.)n components serve different
purposes and each has a different
relationship to the components being
integrated. The integration components that
we use are: wrappess; glue; and tailoring.
These m described in the following
sections.

SEW22 Proceedings

4.1 Wrappers
A wrapper is piece of code that the
integrator builds to isolate the underlying
COTS component from other components of
the system. There are a number of reasons
why a system architecture should include
wrappers around components:

Conform to standards, e.g., CORBA
wrappers around legacy systems
[1,7,9,161.

Reduce the impact to the system of
changes to the wrapped component.

e Provide a standard interface to a range
of components. For mature domains a
wrapper may be provided by the
component supplier, e.g., ODBC.
Standard interfaas are a prerequisite for
substituting COTS components fkom
different vendors.

Add (or hi&) functionality of a
component.

0 Give system integrator control over the
"look and feeln of the component. Even
though the integrator has no control
over the component, the integrator does
have access to the source and control
over the wrapper.

Provide a single point of access to the
component.

One example of wrappers in the distributed
imaging system is the ODBC interface to
the Microsoft Access database. ODBC
provides an industry standard API for
accessing relational databases. By restricting
access to the database to be ODBC
compliant we can configure a system with a
different database pmduct by maintaining a
similar data schema

Another example of a wrapper is the script
around the product development application.
This wrapper provides a standard for
moving data into the application. Unlike

ODBC, which is an industry standard this
interface will be controlled by the designer.
It will allow systems to be configured with
different product development applications
and for new applications to be plugged in as
they become available.

4.2 Glue
The glue code pvides the functionality to
combine the different components. Purposes
of the glue include:

Control flow. Invokes functionality of
the underlying components as require&

Component bridge. Glue code can
resolve any interface incompatibilities
between components, for example by
performing any necessary data
conversions.

Exception handling. By trapping
exceptions the glue code can provide a
consistent exception handling
mechanism.

Within the distributed imagery management
system, the server side glue code has been
developed in Perl; on the client it is being
developed in Visual Basic. In both cases
they serve primarily as middleware
combining components to add system
functionality. For example, on the server
there is a script that receives an image and
cataloguing information Erom a client,
invokes a component that converts the
image format and creates an image
thumbnail, stares the thumbnail and image,
and updates the database. In the current
configuration the natahase is M i m f i
Access made available through ODBC; the
image manipulation somare is an ActiveX
component with a Visual Basic wrapper to
provide a standard interface; and operating
system calls are used for file access and
manipulation. The glue code has been
developed in Perl and, with the exception
of the ODBC which is specific to Win32, is

SEW22 Proceedings

platfonn independent. Use of JDBC is
planned in order to make the code truly
platfonn independent.

An example of a glue component on the
client side is the middleware between the
local browser, remote database, and local
product preparation application. This
component performs the following actions:
inputs the found set and downloads the
images in the set; opens a new project in the
product p r e p d o n application; moves the
images into this project; opens the GUI to
the product prepamion application on the
users desktop. This glue is being written as
a Visual Basic component.

4.3 Component tailoring
Component tailoring refers to the ability for
system integrators to enhance the
functionality of a component in ways that
are supported by the component vendor. The
tailoring is done by adding some element to
the component to provide it with
functionality not provided by the vendor.
Tailoring does not involve modifying source
code of the component.

Examples of tailoring include "scripting",
where an application can be enhanced by
executing a script upon the ommence of
some event. Early versions d saipting
include simple macro languages. The
scripting -lity in many newer
applications has become more sophisticated
with full-fledged programming languages
and interpreters, such as VBA, tcl and Perl,
being accessible within applications.

Another example of a tailoring capability is
the use of plug-ins. A plug-in is a
component that registers with the enclosing
application. The enclosing application
makes a call-back to the plug-in when its
functionality is required. By publishing the
registration and call-back techniques, COTS
vendors provide COTS users with a method

OF enhancing the component functionality
without access to the source code.

When tailoring components in this way,
designers must remember that the tailoring
aspects are components in the& own right.
The designer must treat them as separate
configuration items, make sure they are
installed with the cmesponding container
component, and make sure that they are
caRied along during the upgrades.

Although we do not currently use tailoring
in the distributed imaging system, one
potential use is with plug-ins for the web
browser. Browsers can display only a
limited number of image types (typically
GIF and PEG) and do not provide editing
capability for these images. By using plug-
ins for Netscape or Mimsoft browsers we
can enhance their functionality to display
more types of image formats and allow
users to markup and annotate the images
from within the browsers.

5. Rules for integration
Having .3eveloped a number of systems that
use off-the-shelf components we have begun
to develop a set of rules-of-thumb for easing
the task of COTS component integration.
Thn,ugh experience we have Found that
complying with these rules simplifies the
task of development and evolution of
systems. These rules are outlined and
discussed in the following sections.

5.1 Wrap all components
Rule number one states that all off-the-shelf
components should have wrappers placed
around them. Many of the following rules
depend on such wrappers being in place.

The justification for wrapping all
components is that the wrapper provides the
only mechanism by which the integrator can
control the interface and interactions of the
component, and isolate other components of

SEW22 Proceedings

the system from changes to the underlying
off-the-shelf component.

In addition, any custom software which is
used to provide significant functionality in
the system should be treated in a manner
similar to a COTS component and
integrated into the system using a wrapper. -

This will allow us to more easily substitute
a COTS component for the custom
component should future commercial
developments provide the required
functionality.

There are numerous examples in our work
of where we have wrapped components.
One example, on the server side of the
image processing system, is the image
manipulation component. This component is
used for simple image manipulation
functions, primarily format and size
conversions. When looking for COTS
components to provide this functionality we
noted the following points:

There are a wide range of possible
solutions, each with its own interface.
Even those within a single technology
standard (e.g,, ActiveX) had widely
divergent interfaces.

* The functionality available in most
potential COTS components far
exceeded the functionality we required
from the component. Masking out the
unneeded functionality is therefore a
significant concern.

By wrapping the component in a Per1
module and exporting the qmpriate
objects we exported only the functionality
of the component that we wished other
programmers to use. It also allowed us to
control and standardize the interface so that
a substitution could be performed on the
underlying component with no impact on
other components of the system.

A different example of wrapping can be
found in the client side of the imaging

system. Certain clients contain specialized
applications for product preparation and
manipulating images. Users at these client
stations should be able to End and download
images from the database(s) directly into a
project accessible by this application. We do
not wish to state a priori what this image
manipulation application is, and indeed
want to support many such programs and
leave it to the user to dewmine hislher
favorite. Since there is no standard interface
to these applications we needed to define
and control the interface. The interface we
have defined is primarily used to open a
project and move the images 6rom the
network into the project. Gnce the project is
established the image manipulation
application is invoked and the user deals
with the (familiar) interface of the
application. In this case the wrapper is
responsible only for the invocation of the
COTS application and the establishment of
the project files.

5.2 Make gZue independent of underlying
components
The glue provides functionality such as data
and control flow, exception handling, and
data conversion. Glue should be
independent of the underlying components
and should not change as different
underlying components are substituted.
Component changes should be hidden by
the component wrapper and tailoring. Glue
code only interacts with COTS components
indirectly through the wrapper.

The functionality provided by the glue code
should not depend on the specific off-the-
shelf component that is being accessed.
Services such as exception handling and
control flow should evolve independently of
the underlying components being glued
together. As the components evolve and are
modified, the glue need not be changed. By
providing insulating wrappers around the

SEW22 Proceedings

components the glue can use standard
methods for accessing the components.

In the image system, there are a number of
examples of glue that is independent of the
components. In the server system, the glue
middleware is responsible for receiving
images over the internet, using the image
processing component, and inserting the
image and cataloguing information into the
database. By having standard interfaces to
the imaging component and the database
different components with similar
functionality can be substituted by
conforming to the standard interpace without
modifying the glue.

A similar example can be found on the
client side for the glue that downloads
images fkom the internet and places them in
a project in the production application A
wrapper providing a standard interface to
the production application allows for this
glue to remain the same when a new
production application is substituted.

5.3 Venifl component version
comp&ibil@.
Components, particularly COTS
components, evolve rapidly with fkquent
releases of new versions. Systems often
have dependencies as to which versions of
components will operate together. If a
particular component is upgraded to a new
version, this frequently meam that wrappers
and other components must be upgraded as
well.

Designers and implementors should verify,
whenever possible, that the current
contiguration of components is version
compatible. Ideally this version checking is
automated. Ihe verification can be done
either at build time, if all components are
bound together at build, at installation time,
or at run time if late binding is used between
components.

Both Per1 and Visual Basic using ActiveX
components have some support for version
verification. With Perl, this is done by the
component developer including a version
number with each released module. The
component user specifies a required version
number; when linking to the module. A run
time check is performed to verifj that the
module being linked has a version number
equal to or higher than the I;equired version.

ActiveX components have both a
component version and an interface vision
for each component. The component version
is allocated by the component developer. It
is used by the installation utility to
determine whether a cumntly installed
version of a component should be replaced
with a newer version.

The interface version of a component is
generated automatically when the
component developer compiles the
component. It recards the compatibility
between the interfaces of different versions
of a component. If a component developer is
creating a new version of a component with
an interface incompatible with the previous
version, a warning is given. At run time,
when a Visual Basic program links to the
ActiveX component, a check is
automatically performed to verify that the
interface exported by the component is the
one expaed by the Visual Basic program.
The integration programmer can trap this
exception if incompatible versions are
installed.

5.4 Add asserfions to the wrappers/glue
We are finding it useN in many cases to
provide a high level of checking within the
wrappers and glue in order to verify run-
time assertions. The assertions can be as
simple as verifying parameter types or
values, or mare complex, asserting relations
between data values or required temporal
orderirgs of events. Since the components

SEW22 Proceedings

are black-box, the glue and wrappers are the
primary means by which developers can
perfom this type of run-time checking. By
placing assertions between the components
and raising an exception if they are violated,
faults can be quickly detected and isolated
within the system.

A simple example in the client software is
the use of an assertion in the paduct
preparation application wrapper that verifies
the data type of the image being passed can
be imported by the application. If a server
provides image data in a format not
recognized by the application (and we do
not know a priori all the image formats the
servers will provide nor all the product
preparation applications that clients will
use) an exception can be raised immediately
and the user notified of the problem.

5.5 Do not have components talk directly
to each other
Off-the-shelf components should always
have some wrappers and glue between them
and not interact directly with each other.
This allows some tolerances in how
precisely the components must fit together
and minimizes the coupling between
components. As a components evolves, the
wrappers and glue around the component
can be updated but there is minimal impact
on other components of the system.

A second reason for placing integration
components between all COTS components
is that this integration code is the only
source code to which the developer has
access. If there is any requirement for
developers to add to the system extra
capabilities for testing, debugging, fault
isolation, or instrumentation, it must be
done inside the glue and the wrappers[l3].
Even in the case where a particular COTS
component could interact directly with
others in the current system, future versions

. may exhibit different characteristics.

5.6 Be compdible with opn sfandrvds
Selecting COTS components that depend on
proprietary standards can cause problems
with portability of the systems and with
oonfigunng a system with components from
different vendors. With closed standards
developers become locked into a specific
vendors product and cannot move to another
vendors pfoduct even if there are other
products with similar functionality. As the
different software domains mature, more
and more standards are being evolved in the
different application domains, and market
pressure often forces vendors to comply
with these standards. Pulling in the opposite
direction, vendors develop pqxietary and
closed stan- with added functionality to
give them a competitive advantage and lock
in customers to their product.

Within the imaging system we have ttied to
conform to open standards wherever
possible and avoid closed proprietary
standards. This assists in providing plug-
and-play of components from different
sources, and in cootiguring the system for
different requirements. For example, we
adhere to the standards specified in HTIF,
HTML and CGI. This allows us to easily
configure the system for any Web browser
and !server.

5.7 Avoid eariy commhent to an
architecture
If system integrators wish to take advantage
of available COTS components, many of the
architectutal and design decisions must be
taken ooncurrently with the component
selection process. By committing to a
specific architecture and specific
technologies too early in the process the
system developers may make the integration
of components difficult or preclude the use
of COTS components entirely.

SEW22 Proceedings

6. Conclusions
COTS software components have been used
by software developers for many years, but
with the increased complexity of software
systems and the new and emerging
technologies this trend is inaeasfng
dramatically. Although COTS software
integration is being done, the approach has
tended to be ad hoc resulting in systems that
are e m r prone and difficult to maintain. By
carefully defining the a~Wtecture and
design of the system many of the problems
and issues raised by the use of COTS
software components <#n be addressed
within a more f m a I and defined process
resulting in mare reliable software that can
evolve over time. This paper has presented
the elements of an architecture for
integration and defined some informal rules
that facilitate this integration.

Acknowledgments
This research was supported by the Chief,
Research and Development (CRAD) of the
Depmen t of National Defence.

About the Authors
Dr. Mark Vigder is a Research Officer with
the National Resesrrch Council. He has a
Ph.D. in Computer and System Engineering
Srom Carleton University, Ottawa, and has
twenty years experience with software
engineering as a practitioner, researcher, and
educator.

John C. Dean, CD is a Research Officer
with the National Research Council. He has
a Master of Mathematics Degree (Computer
Science) from the University of Waterloo,
and has extensive experience in software
engineering, project management and
education.

References
[I] R.C. Aronica and D.E. Rimel Jr.

Wrapper Your Legacy Systems.

Da-on, 42(12):83-88, June
1996.

T. Bao and E. Hmwitz. Integrating
'Through User In- A Flexible
Integration Framework for Third-
Party Software. In Proceedings: The
Twentieth Annual International
Computer Sofik)are And Applications
Conference, pages 336-342, IEEE
Computer Society, Aug. 1996.

[3] RW. Brown and KC. Wallnau.
Engineering Of Component-Based
Systems. In Proceedings of the 1996
2nd IEEE Zatemational Confmence
on Engineering of Complex
Computer Systems, pages 414-422,
1996.

[4] O.A. Bukhres and J. Chen and W.
Ifu and A.K. Elmagarmid. InterBase:
An Execution Environment for
Herrogeneous Sofnvare System.
IEE Computer. 26(8)57-69, Aug.
1993.

[S] J.C. Dean and M.R. Vigder. System
Implementation Using Off-the-shelf
Software. In Proceedings of the 9th
Aranual Sofrware Technology
Conference. Department of Defense,
1997.

[6] D. Garlan and A. Robert and 1.
Ocketbloom. Architectural Mismatch
or Why it's hard to build systems out
of existing parts. In 17th
is tew'onal Conference on
hfrware Engineering, pages 179-
185,1995.

[7] D.L. Moniz. Integrating Legacy
I)atabases Into a Common
~ ~ c t u r e Using CORBA. In
Proceedings of the 9th Annual
%mare Technology Conference.
I kpartment of De-, 1997.

SEW22 Proceedings

[8] J.K Ousterhout. Scripting: Higher
Level Programming for the 21st
Century. Unpublished manuscript,
available at
http~/www.sunlabs. wmlpeople4john.
ousterfioutlscripting.hunl.

[9] C.M. Pancerella and R.A. Whiteside.
Using CORBA to integrate
manufacturing cells to a virtual
enterprise. In Proceedings of the
SPIE Volume 2913, pages 148-173,
The International Society for Optical
Engineering, 1997.

[lo] M.Shaw and D.Garlan. Sofnvare
Architecture: Perspectives on an
Emerging Discipline, Prentice Hall
Publishing, 1995.

[l l] KJ. Sullivan and J.C. Knight.
Experience Assessing an
Architectural Approach to Large-
Scale Systematic Reuse. In 18th
International Conference on
So$ware Engineering, pages 220-
229, Berlin, 1996.

[12] M.R. Vig&r and W.M. Gentleman
and J.C. Dean. COTS Sofhyare
Integration: State of the An.
National Research Council of
Canada, Institute for Information
Technology technical report
NRC39198, January, 1996.

[13] J. Voas and G. McGraw and A.
Gosh, Gluing Together Software
Components: How Good is Your
Glue. In 14th Annual Pacific
Northwest Software Quality
Conference, pages 338-349, Oct,
1996.

[14] L. Wall and T. Christianson and R.L.
Schwartz. Programming Per1 2nd ed.
OReilly & Associates, Inc. 1996.

[IS] Microso)? Visual Basic
Programmer's Guide. Microsoft
Corporation, 1995.

[16] Common Object Request Broker:
Architecture and Specification.
Object Management Group.

1171 USENIX Very High Level Languages
Symposium Proceedings. USENlX
Association, Berkely, California,
1994.

SEW22 Proceedings

Building Long-Lived Systems

from COTS Software Components

Dr. Mark Vigder
John C. Dean, CD
institute for Information Technology
National Research Council
Ottawa, Canada
{mark.vigderljohn.dean) Qnrc.ca

Software Engineering Group

Staff
Nine researchers and two support staff

Facilities
Access to most of the modern development
environments

* Computer Zoo
-various hardware platforms

SEW22 Proceedings

Group Interests

* Software reuse
* Configuration management
* Commercial off-the-shelf (COTS) Software
* Real-time and embedded systems
* Formal methods in software engineering
* Software architecture

Human Computer Interaction in software engineering
* Consortium for Software Engineering Research (CSER)

COTS Project

Explore issues associated with using COTS
software components to build long-lived systems

* Taken from the perspective of a system integrator
- integrates COTS components
-does not develop commercial components

Goals
a provide guidance for procurement, development

and administration

SEW22 Proceedings

What is a COTS component?

A software component that has been bought from a
third-party and that the developer uses on an as-is
basis.

User of the COTS component does not modify the
source in any way.

* COTS developer is responsible for maintenance
and evolution of the COTS component.
Identical copies of the COTS component have
been sold and are being used by different
developers.

Examples of COTS components

Subroutine, Abstract Data Type, or Class
* Library

Generic service, eg. database or GIs
Complete application
Application generator
Framework accepting plug-ins and specialization

SEW22 Proceedings

Viewpoints to consider

users
-work with complementary CQTS products from

various suppliers
system integrator
-builds custom system from COTS components

COTS product developers
-incorporate other COTS components to create

a new COTS product

Attractions of COTS are compelling

Better time-to-delivery
Lower amortized development cast
Lower amortized support cost
Better quality through maturity
Better concept of produd
Access to scarce expertise
Reduced user training

SEW22 Proceedings

COTS has risks

Fitting the application to COTS may be
challenging

* Detailed specifications often unavailable
Issues of concern may be unknown
Needed functionality may be missing

* Undesirable functionality may need to be masked
Unanticipated limitations and faults may turn up
Maintenance and evolution is not yours to control

Impact of using COTS

On the process
On architecture and design
On maintenance

SEW22 Proceedings

Constraints on Process

* Requirements gathering and component selection
are concurrent activities
Component selection impacts architecture of
system.

Revised development process

* Different requirements analysis ~ n d specification
New step of component selection (involves
customer)

* New step of component testing and modelling
* Changed high level design; less detail design
* Less coding and unit testing
* Changed integration testing
* Delivery

Changed post-delivery support

SEW22 Proceedings

Selection among COTS Alternatives

Resource intensive yet still uncertain
0 Choice involves more than just technical issues

Typically difficult to find sufficient information
* Restricted access to proprietary information
* List of pre-qualified components doesn't work

Would access to real source code help?

Component Assessment

Assess component characteristics:
implements protocol X, vendor support ...

Assess within context of the application:
Criteria (functional, performance, architecture,
lifecycle, look-and-feel ...)

Techniques for assessment:
generic testing, user community, vendor
literature ...

Risk assessment and mitigation:
Vendor drops product, does not meet
requirements, bugs in product, ...

SEW22 Proceedings

Evaluating and Modeling Components

Evaluation in the context of intended usage
Quantitative assessments of performance

* Quantitative assessment of resource consumption
Quantitative assessment of usabiiity
Quantitative assessment of reliability

Evaluating and Modeling Components

Evaluation in the context of intended usage
0 narrowly focused

- specific capabilities
- detailed tests

* limit candidates
- reduces evaluation time

not competitive

SEW22 Proceedings

Impact of using COTS

On the process
On architecture and design
On maintenance

Constraints on system architecture

Highly distributed.
Black-box, shared, components with "glue" to hold
them together.

* "Plug-and-play" architecture.
Tailoring of pre-built components.
Multiple specialized components
Dynamically reconfigurable
Services added and modified

SEW22 Proceedings

Technology available

Open standards (HTTP, LDAP, MIME, SNMP,
OIJDBC, Java(?) ...)
Distributed objects (DCOM, CORBA, RMI)
Scripting (languages, interfaces ...)
Component technology (Java Beans, ActiveX, ...)
Frameworks with plug-ins and inheritance
Design patterns (facades, adapters, mediators)

Change in DesignlImplementation

a Not a top down process
Wrapper based architecture maps representations
Glue coordinates control flow, concurrency, errors

0 Tailoring of COTS components
Masking unwanted functionality
Missing components
Always plan for component change

SEW22 Proceedings

Checklist of items to validate

* correct use of design patterns
-all components are protected by an adapter

(wrapper)
- components grouped into subsystem are

protected by a facade
- no direct component interaction; done through

a mediator

Checklist of items to validate. ..

* instrumentation code
- identify static constraints and configurations
- determine dynamic behaviour

SEW22 Proceedings

Random
Component Architecture

Organized
Component Architecture

Sf W22 Proceedings

Instrumentation

Impact of using COTS

SEW22 Proceedings

On the process
* On architecture and design
a On maintenance

Change to ongoing maintenance

Component replacement.
New versions of a component

a Similar component from different vendor
Verifying compatibility of components

Component management
Tracking COTS components

* What's installed where?
* run-time monitoring for fault isolationlidentification;

requires instrumentation and management hooks
built into glue code

The IDTMS Prototme

Image Document Transfer and Management System

Work with Canadian Forces Photo Unit
Web-based client-server system
used to demonstrate concepts

SEW22 Proceedings

Distributed architecture

Server Architecture

f-
internet

-

Legend:

Wrapper
Component

0 Glue
(. ActiveX Component

SEW22 Proceedings

Client Architecture

User

0 wrapper
0 -ponent
0 Glue

Challenges

SEW22 Proceedings

Scaleable architecture
Replaceable components
Component management
Re-use existing infrastructure
Component integration
Incremental development and deployment

Conclusions

Changes in requirements gathering
less detailed

* Assessment of available COTS components
selection from alternatives

* concurrent with component selection
Change in high level design

evaluating and modeling components
architecture affected by
-framework and platform choice
- component choice

Conclusions

Change in detailed design
isolate and glue components.

Changes to coding and unit test
integration, customization.

Changes in field support
less control over component upgrades, technical
support.
depend on vendor for component maintenance
application and component management must be
designed into system

SEW22 Proceedings

A Software Development Process
for COTS-based Information System Infrastructure

Greg Fox, Technical Fellow, TRW Systems Integration Group
Karen Lantner, Systems Engineering Manager, EDS

Steven Marcom, Senior Systems Analyst, TRW Government Information Systems

Abstract

Modem sofnare Qvehpers are guided by a variety of
formal and injbrrmrl processes that organize and control
developmcnr activities across large groups of &elopers
or multiple organizations and supply ditcipline and
order hcking in many early development darts. The
available inventory of documented process methodr is
limited: Most process methods assume the system being
built will be coded largely from scratch. The processes
do not address many of the challenges associated with
building systems that contain large amounts of comer-
cia1 off-the-shelf (COTS) sofrware. The Infrastructure
Incremental Development Approach ([IDA) is a combin-
ation of the classical development model and the spiral
procrss d l to accommodate the needs of COTS-based
technical infrastructure development.

1. Background

The level of abstraction at which the softwan devel-
opa works has changed markedly throughout the last 40
yeas. Early programmm used oms and zeros to control
the electronic switches within computers. That tech-
nology was followed by proccdud languages that, from
the programmer's view, removed much of the physical
housekeeping associated with the specific design of the
computer. In recent yearstarS an even higher level of
abstraction has appeared: the integration of prepackaged
commercial off-the-shelf (COTS) software into system
designs. In addition. the domain of software development
has btcome segmented into different layers. For exam-
ple, application-level s o h = development can be dis-
tinguished from infrastructure-level software develop
ment

1.1. The Emerging Divfde in System
Functionality

The value of layering in software architecture and
implementation is an established concept. Key to the

layering model is the idea that through use of defined
interfaces between layers, the impact of changes in any
given layer can be largely isolated from the other layers.

The concept of a services layer and of specialized
software in the system acting as service providers has
continued to grow From thc simple beginnings in the
operating system to become a fundamental architectural
concept in modern system design. As reuse and port-
ability of software applications across different vendor
hardware platforms become an increasingly important
goal, a more sophisticated model of service layers and
service providers has emerged. The open systems move-
ment cites application portability across computing plat-
forms as a major economic driver. [l] [2]

The National Institute of Standards and Technology
OIJIST) Application Portability Profile (APP) [3] provid-
es one convenient model for defining the system layers
and services that support portability. This model, along
with standards, can be used to achieve application port-
ability by guiding desipncrs who ulan to code new infor- -
mation systems in thein entirety and by guiding selection
of available software computing components from those
available in the marketplace.

Modern infonnation system design models separate
the business-specific application software layer in a
system from the technology-based infrastructure soft-
ware layer. An illustration of this approach is the infor-
mation e n w r i n g method of separating business
system architecture from technical architecture, which
contains the computing infraseucnue. [4] This separation
into software layers, which is less formally addressed in
orher design methodologies, recognizes that change and
evolution in information systems are driven by two inde-
pendent forces: change in business requirements and
change in technology. Decoupling the impact of business
rule change from change in technology demases the
total amount of system rework necessary to support
system evolvability over h e . This decoupfing is effect-
ively implemented by modeling the infrastructure soft-
ware using the concept of services layers and service
providers.

0-8186-7940-9197 $10.00 Q 1997 IEEE

SEW22 Proceedings

13. Views of Infrastructure

There are two ways of looking at the infrastructure.
One view is the services view of infrastructwe as seen by
business application developers. It includes Human
Computer Interface. Systems Management. Security,
Workflow Management, Telecommunications. Data
Inte~hange. Transaction Recessing. Data Management,
and Operating Systems. This grouping of infrastructure
services was derived from the NIST APP. Infrastructure
services arc delivered to the applications througli an
application programming interface (API).

The second view is the structural view, which
include.. the kinds of components infrastmcturc develop
ers use to construct their view of the infrastructure: a set
of connected software, network, and hardware wmpon-
ents. These include developed software components,
COTS software components, communications circuits,
local area networks, special purpose servers, general pur-
pose servers. workstations, and laptops.

An additional set of functionality tnated as part of the
infrastructure during the development process are the
technical applications needed to operate the system.
These applications neither implement business function-
ality nor provide services to the business application.
They are, for example, the tools for system security
administration, database administration, system config-
uration control, and software distribution and, in general.
the toolset for enterprise-level systems management.
Other infmmmm services are also used internal to the
infrastmcturc but are not visible to business applications
or end users. For example, a remote data access protocol
is a level of service provided between infrastructure com-
ponents that is used to construct a mechanism for access-
ing data: It is not d i i y visible to business applications
or end users.

The infrastructure services provide functionality that
the application developer can access external to the
application and. thucfore, does not develop as part of the
application. Economy of scale is achievcd through the
common use of technical services by appl&ion
development projects across the enterprise. Pmgmnmrs
can access infrasmcture services without reg& to how
the underlying infrastructure services have been imple-
mented using a properly designed API. By allowing
application and infnrstructurc development to be separate
and independent, infrastructure enhancements (e.g..
increased performance, additional services, and new
computing platforms) can be made with minimal effects
on application development.

13. The CGTS Challenge for Infrastructure

Although distributed systems (popularly described as
clientfserver or networked systems) dominate today's
computer system design, they still have the character of
adolescence. We are in the middle of a dramatic. and
somewhat uncontroIlcd, expansion and evolution of
standards for COTS software products for distributed
systcms. COTS products provide portions of the needed
supporting technical functionality to turn collections of
computing platforms into unified, distributed computing
environments. The available COTS software products
offer varying degrees of standards compliance, inter-
operability, heterogeneous computing platform support,
security functionality, performance efficiency. and dis-
tributed envin>nment transparency for applications using
their services.

Two separate panels at the 1995 SEIlMCC Sym-
posium on the Use of COTS in Systems Integration
concluded tha? ". . . there is a need for process definitions
for COTS usage" [5] and "... new life cycle models for
COTS integration projects are nccdcd." [6] Cumntly,
documented software development life cycle processes
provide little practical to developm to achieve
the advantagis of COTS software or to assist in the
selection of specific products from the myriad available.
COTS product selection and integration arc complicated
by an intrinslc set of special characteristics: incompat-
ibility, inflex.bility, complexity, and transience.

1.4. Development Lie Cycle Process Impact

The special characteristics of COTS software inte-
gration change the emphasis in the classic waterfall life
cycle stages of planning, definition, analysis, design,
construction, integration/tcst, implementation Ideploy-
ment, and maintenance. COTS-based development
differs from kiness-applidon-oriented development
in that the OITS selection process must occur early in
the life cycle COTS evaluation and selection become a
critical part tlf the early analysis process rather than a
peripheral activity within the later design process. The
challenges ktf COTS incompatibility, inflexibility,
complexity, and transience must be a d d r e d in the
selection process because the infrastructure will
ulhately coasist of a suite of COTS products that must
operate in harmony.

In additiol, since COTS software does not require
coding but d, KS require integration with other compon-
ents, it start; the life cycle as a partially developed

SEW22 Proceedings

component. The design, construction, and intcgrationftest
development stages must be recast to accommodate early
COTS software integration and testing as well as to
develop glue code: interface software, configuration
files, scripts, utilities, and data files required to make the
COTS software deliver its intended functionality. The
proper development and testing of the glue code to make
a COTS package work may not be a mvial undertaking.
For more complex COTS software, the development of
glue code might need to be treated in the same manner as
the &velopment of a traditional custom-coded software
module.

When a COTS product enten the development
process, the first task is to test and integrate it into the
system. This activity starts early in the development
process. Waiting until late in the development procw to
test and integrate COTS products, particularly complex
ones, will not give adequate time to master all their
intricacies and complexities. COTS product testing and
integration activities must be interwoven into more of the
development process stages.

15. COTS IncompatibSlity

Many vendors do not develop their products along the
lines of the layering models discussed earlier. At this
time. no single commvcially available software product
or product family can provide all the infrastructure
services needed for an enterprise-level information
systcm of substantial size or complexity. The problem to
be solved in system design and development is to select
a compatible set of software products that can be
integrated together and augmented by glue code to
produce a complete set of services.

In an ideal world, a set of products that provide all the
needed infrastructure services would simply "snap
together" l i i the pieces in the puzzle shown in Figure 1.
In the real world, this is not the case: When put together.
the COTS pieces have gaps and overlaps. At any point in
time, the set of services that a system designer can speci-
fy as useful exceeds what is available in mature products
in the marketplace. The resulting gaps can be overcame
in two ways. One is by traditional design and develop-
ment of custom infrastmctm software added around the
commuciaUy available products selected (eithcr adding
layers between the COTS-based infrastructure and the
applications or adding custom service-provider software
that is conceptually parallel to the COTS software).
Another way is by leaving it to the application designers
to deal with at the application level.

Overlaps betwten products can cause a m t e r system
design problem than gaps. Commercial software suppli-
ers are driven much more by a desire to capture larger

segments of the marketplace than they are by adherence
to recommended system implementation layering mod-
els. For example, boundaries between database access,
transaction processing, and workflow management soft-
ware products begin to overlap and blur as each vendor
community expands its product's features in pursuit of
increased market share. This expansion in features is
driven by requests for increased functionaiity by the
installed base, not by thc boundaries defined in layering
models. ' be net result is that certain products and
product sets do not work in a synergistic fashion with
other products; yet none of the products on its own is
complete enough to provide all of the necessary func-
tionality. Selection of a specific product that provides a
certain set of services often pnclu&s selection of
another functionally complementary product.

1.6. COTS IMdbility

Ihe inflexibility characteristic of COTS softwak can
cause both design and integration difficulties. Unlike
custom-developed software, when a piece of commercial
software exhibits a behavior not expected by the system
designer, the developer cannot simply change the
behavior of that sofhv~~t but must either replace the soft-
wan, work around the unexpected behavior, or change
requirements. Undmtanding the behavior of an unmod-
ifiable software component is a different process than
specifying the behavior of a component to be construct-
ed. Most documented software development method-
ologies take the latter approach and do not address the
former.

1.7. COTS Cmplexity

The complexity characteristic of many of today's
advanced COTS software products causes distortions in

SEW22 Proceedings

ÿ he traditional development process time line. The flex-
ibility and tailorability of product families like trans-
action monitors, worldlow managers, and system
management frameworks mean a significant education
investment. 'Ihc investment must be made up froat
befon the product can be fully evaluatcd for selection,
and in cases when the product proves unsuitable, the
investment might have a net tero =turn. Experience
shows that the sekction process for one major product
can require 3 4 months of calendar time, multiple engin-
eers and propmmn, and access to sophisticated suites
of hardware and software environments and will Likely
entail the purchase of vendor-provided training classes.

The more complex COTS software products an
tailorable and scalable to multiple hardware config-
urations, soham. environments, and workload environ-
ments. To achieve this flexibiity, they contain from doz-
ens to hundreds of adjustable parameters (or "knobs").
Each of these must be set for the specific system
configuration. If the system is being built for deployment
in multiple locations with different hardware config-
urations or workload environments, the COTS software
parameters might med to be tuned for each installation.
This can be a complex task requiring pmduct en-,
experience with the behavior of the integrated system,
and, potentially, support from analytic modeling efforts.
Software confguralion files for each location might n d
to be tailored using the information developed during
system integration. Not only does this require additional
development effort, but the scheduling process must
recognize that just because the system has been inte-
grated and tested in a test facility docs not mean that it
can be quickly made operational at a production location.
The tailoring and tuning process for each location's
configuration can require days, weeks, or months to
accomplish.

COTS software products are characterized by periodic
updates. Updates might add functionality but are often
incompatible with other system components. On the
other hand, remaining with older versions of COTS
producis might cause future interoperability problems
with upgdcs to other COTS software. COTS software
updates, patticularly opaating system updates, must
always be evaluated for insertion into the system since
critical vendor maintenance and support for older
versions often ceases. Management, cost, and technical
faaors in the transition to new COTS software vusions
can be formidable. particularly in a system with dozens
of interrelated products being upgraded by their vendors
on different calendar cycles.

SEW22 Proceedings

2. The Infrastructure Incremental
Development Approacb (IIDA)

The development of a COTS-bawd technical infra-
structure demands an approach that is fundamentally
different from traditional approaches used for bus-
iws-oimud aypkations: one that is heavily prototype-
oriented, emphmilzes testing, and evolves Ihrough
multiple iterations. The I D A is a tnilored life cycle that
preserves the benefits of existing sOucQned p m w w for
software development while adapting to the particular
hmcmistics of integrating COTS products. The IIDA
is a combination of the cla.mid waterfall development
model [7] and tb spiral development model 181, but the
emphasis is on establishing compatibility and complete-
ne& rather than on comp&ent-level specifications.

2.1. Overview of IIDA

The IIDA is an iterative and immental approach to
infrastructure development where each version of the
infrastructure is an increment that is integrated into the
existing infbtructute baseline. Withii each version,
development proceeds in time-sequenccd stages with
iterative feedWk to preceding stages. (See Figure 2.)

The target Mbstmctun is the long-term vision for
the idmmmm. P is defined and subsequently refined
d h g the Definition and Analysis Stage through a tog
down process of analysis of the enterprise requirements.
entaprise adopad standanjs, and the system architecture.
The Technical S rattgies component captures the high-
level description of the complete system vision and
defines how the infrastructure will opmk. [Q] The
Services Identification component is built up over time
and is influenced by technoIogy trends, product assess-
ments, and the anticipated needs of the business
applications.

Stages of the development cycle are augmented with
a series of stnrcturcd prototypes for COTS product
evaluation and i-~tegration. For each COTS family. the
prototypes evoh e from initial analysis prototypes for a
rnakdbuy dacisicn to. first, a series of design prototypes
for COTS product selection and &tailed afsessmcnt and,
finally, to a demonstration prototype that becomes part of
the &velopment test bed. bed. ?beg of the prototypes is
aligned with the development stages and the stages are
dependent on ffie products from their corresponding
prototypes. This close coupling of prototyping and
classic developit-eat stages characterizes the IIDA.

Each pass through the stages in Figure 2 yields an
incremental venion of the infrastructure that can be
integrated with applications and deployed. After the

P n r a s Fbw
S16

Dmk# De11)m
rrm*).,

Figure 2. Infmrtructurs Development Approach

implementation of each version, successive develop
mental cycles are initiated. The thus evolv-
es towards the target infrastructure by providing an incre-
ased level of services to business applications and
developers and by incorporating new underlying
technology and products.

lnfrasfrastructure components are integrated into the
existing infrastructure baseline. The components in this
integrated infrastructure baseline arc then ready to be
integrated and tested with business applications. Infta-
structure development ends with a technical platfonn
upon which business applications can run effectively
rather than with an operational product The scope of this
paper is infrastructure development: It does not include
the external integration, testing, or distribution of
business applications.

2.2. IIDA Stages

The following is a summary of the major activities of
each I D A stage:

0 Definition and Analysis Stage
r Enterprise requirements, enterprise standards,

system architecture, and technical strategies

Version-specific functional infnstmcture
requirements are established by considering
business application areas, architectural
imperatives, and technology availability.

Functional I k s i p Stage
Services included in the target and current
versions an identified and defined.
Prototypes are used to identify leading
candidate COTS components.

* Physical Design Stage
Interfaces between applications and infra-
saucturc are defined. (API is established.)
Internal design of services is defined both
functionally and technically.

* COTS and to-be-built components are
identified.

* Prototypes arc used to select and characterize
COTS components.
Preliminary bill of materials @OM) is created
for acquisition of equipment and COTS soft-
ware products.
Design is calibrated for scaling and perfor-
mance considerations to provide site designers
with site configuration guidelines.

are defined and refined.

SEW22 Proceedings

Structure of each to-be-built component and
its interfaces is defined.

0 Construction Stage
* To-&-built components are constructed.
r Glue code is developed and the unit is tested.
* COTS components, glue code, and built com-

ponents are integrated into the infrastructure
using the demonstration prototype as a test
bed.

0 Test Stage
* Infrastructure versions are tested prior to

sending them to be integrated and tested with
business applications.

23. IIDA Milestones and Deliverable
Documentation

The infrastructure development approach uses both
fonnal and informal reviews. himovers, and walk-
throughs to maintain the degree of formality necessary to
control and communicate the design. (See Figure 3.)
Formal reviews include:

Technical Review at the end of the Analysis Stage
Design Review during the Physical Design Stage
Test Review at the end of the Test Stage.

Formal reviews are attended by organizations external
to the infrastructure development group, as well as infra-
structure developers and managers. These reviews occur
once during the development cycle for each version of
the infrastructure.

Other reviews, turnovers, and wallahroughs are infor-
mal, rolling peer, or management reviews that typically
occur when pieces of the design, construction, or inte-
gration are ready to be walked through. Both infra-
structure developers and managers participate in the
following informal internal reviews:

Toplevel Design Walkthroughs during the
Definition and Analysis Stage
Design Turnovers (from design to development
organization) during the Physical Design Stage
Detailed Design Walkthroughs at the end of the
Physical Design Stage
Code Walkthroughs during the Construction Stage
Test Design Walkthroughs during the Construct-
ion Stage
Development Turnovers (from development to
test organization) at the end of the Construction
Stage.

The lower portion of Figure 3 shows the key
documents that are produced during the IDA process.
Target infrastructure documents, which include Enter-
prise Requirements. Technical Strategies. and Services

Identification arc created once at the beginning of
infrastructure development and updated as versions are
produced. Vnsion-specific infrastructure documents are
created for each inframuctun version. Not shown in the
tables are the informal documentation packages develop-
ed for the formal reviews and informal walkthroughs.

2.4. The Critical Role of Prototypes

At the hean of the IDA approach is a series of tail-
ored prototypes, shown as Analysis, Design, Detailed
Design, and Demonstration prototypes in Rgun 2, which
also illustraces their respective the phasing in the overall
process. This can be viewed as a tailoring of the spiral
development model as each successive set of prototypes
serves to narrow the solution space for the final
implementation.

25. Analysis Prototypes

Analysis prototypes are used to identify leading
candidate COTS software products in each COTS family.
A COTS f a a y is d e w as a group of COTS software
products that eerfonns similar functions and/or provides
related serviw to the application developers. Analysis
prototypes are designed to exercise a COTS product to
determine its general capabilities and to discover how
well it satisfies the needs of the cumnt version of the
infrastructw. Selection of the best product in each
family is perf~tnled later using the design prototypes. A
sample application can be written to serve as a test
vehicle for the family of products under evaluation
because infrastructure, by its very nature, provides
services ratha than active applications. The results of the
analysis prototypes feed the version-specific services
definition and the version-specific services interface
(API) efforts with information on available COTS
product behavior and performance. A suite of COTS
products will be recommended as a result of these
prototypes thaf when combined with customdeveloped
glue code and to-be-built software, cover all the
requirements of the combined service areas.

Analysis PI ototypcs arc also used to examine emerg-
ing technologi :s for possibk inclusion in future versions
of the infras-mcture. Technology insertion plays an
important role in i- evolution from version to
version.

Through the analysis prototypes, methods to imple-
ment target technical strategies into future infrastructure
versions can be postulated and developed. In this role,
the analysis prototype is supporting the evolution of the
definition of the long-term vision or target infrastructure.

SEW22 Proceedings

Figure 3. Infrariructum Milestones and Deliverable Documnb

2.6. Design Prototypes

The purpose of a design prototype is to select the best
COTS product to incorporate into the design from
several candidates in each area identified through the
earlier analysis prototypes. A design prototype exercises
a COTS product to determine its functional capabilities
and how well it perfoms in accordance with its
documentation. Specific benchmark can be run in
addition to functional tests. Sample applications will
usually be written as test vehicles for the products under
evaluation and to stimulate service performance under
conditions that would be found in the application
environment.

2.7. Detailed Design Prototypes

Detailed design prototypes are a special case of the
design prototypes. They serve as proof-of-concept proto-

types and are designed to exercise the selected COTS
products to demonstrate that detailed COTS product
capabilities are consistent with the design expectations.
Sample applications arc usually written to serve as a test
vehick for the products under evaluation. The results of
the detailed design prototypes f e d the services' detailed
internal design with information on COTS behavior and
performance and with specific language and syntax
requirements for invoking services.

At this level of detail, designers might find that a
COTS product docs not perform as documented or as
expected or that there are unexpecled side effects of a
product's behavior. This feedback is provided to the
functional design activity, which might need to modify
or redesign the solution with a substitute COTS product.
The evaluation documentation created during earlier
analysis and design prototypes is used to streamline
alternate COTS selection.

SEW22 Proceedings

2.8. Demonstration Prototype

n e Demonstmion prototype is used to unit test infra-
structure components and to serve as a platform for infra-
structure component-to-component integration. The
sample applications used for the design prototypes might
be reused if robust enough to exercise the elements tested
in the unit test.

Tbe results of the demonstration prototype feed back
into the unit test activity. Unlike the analysis and design
prototypes, which are investigative and throw-away in
nature, the demonstration prototype is cumulative and
evolves into a test-bed environment for the infrastructure.

3. Application of PIDA

The following text describes the experiences using the
IIDA methodology from 1994 to 1997 to develop the
initial versions of an infrastructure to support business
applications developers for a large enterprise-wide
heterogenous system. The types of COTS products that
were integrated included:

0 Operating systems provided by four different
vendors

0 End-user interface COTS software to provide a
common graphical user interface (GUI)
Middleware COTS products to provide a uniform
transaction pmcessing capability
Combinations of COTS software and glue code
for specialized senices such as security and
failover recovery

e Relational database management systems
COTS applications for systems mauagcment, e.g.,
software distribution and remote database
administration

3.1. Conventional and Unconventional Wisdom

Assumptions at the beginning of the development
cycle were that the use of infrastructure COTS products
would provide the following benefits:

Using COTS would reduce development
costs and overall schedule.
By corollary. the development cycle would be
accelerated.

0 Feasibility demonstrations could be put together
quickly.
End-product quality would be higha as measured
by a richer feature set and increased system
robusmess (assuming the selecwl COTS product
is mature). [lo]

0 COTS vendors would provide maintenance for
their COTS products.

The experience integrating infrastructure COTS
products and developed code refocused attention and
revealed an additional set of assumptions for fume
developments:

0 Accelerated development catapults you
immediately into an integration and test activity.
Hands-on evaluation nquins early simulated
applications in an integrated environment; these
simulaml applications and other test software
can r e p e n t significant developmeat costs.

e Maintqnance on identified problems is provided
by the COTS software vendor but problem invest-
igation and identification by the integrator arc the
most costly prrrts of COTS software maintenance.

0 Maintenance turnaround time by the vendors can
be a significant problem.

33. Life Cycle Implications

The development methodology must be specifically
tailored to ~3mmodate COTS product integration. This
entails a set of assumptions and constraints quite
different from custom-built development

The front-end proctsses in the definition and analysis
stage must support concurrent rquirements and COTS
product analysis. The analysis pmmypc in the functional
design stage must provide for iteration and a flexible
linkage between the COTS product evaluations and the
feedback Imp to requirements analysis.

During thc construction stage, the development
processes acquire a dual nature when COTS product
integration is introduced. One process path is valid for
COTS producl integration, and another process path is
valid for developing the glue code and custom-built
components. These two process paths arc equivalent but
consist of diff:rent activities and products. In addition.
all COTS p-oducts, glue code. and custom-built
components must be integrated together to complete
development.

During the construction stage, the development of
glue code char integrates COTS products and fills in
missing functionality is similar to the development of
traditional software, and the traditional process of
coding, unit te;ting, and integration is applicable.

For COTS d u c t s , the construction stage is when
COTS producs undergo detailed tuning and config-
uration and H hen the interfaces and threads between
components ajc exercised in a multi-COTS product
environment. COTS product tuning, configuration, and
integration hcve an analog to code and unit-test
activities. Unir test with COTS products is black-box
(versus white-box) testing. and the focus is on interfaces
and COTS product behavior. For example, unit testing of

SEW22 Proceedings

the transaction processing monitor consisted of
exercising all of the application programming interface
(API) calls supported by the product as configured within
the target environment

The aaditional software maintenance activities must
be expanded in scope and extended to provide continuing
COTS product support. This support s*uts early in the
life cycle. Application developers must have early
deliveries and training for partially completed
infrastructure functionality to keep their development life
cycle within reasonable time frames. They also require
on-site, hands-on direct support from infrastructure
developers and integrators 10 ensure acceptance and
proper use of the infrastructure products.

Configuration control must be organized and in place
early to accommodate multiple versions of the COTS
products and configuration files. Separate environments
for development and integration must be well-defined
and structured to accept the delivered COTS products.
Early support for multiple baselines must be in place as
the combinations of COTS products become complex.

Throughout the life cycle, feedback loops allow
ongoing reevaluation of the COTS products. Analysis
prototypes (functional design stage) determine feasibility
of a COTS-based solution and feedback to the require-
ment. definition (definition and analysis stage). Design
prototypes (physical design stage) provide hands-on
experience with potential COTS products and feedback
to the COTS product selection process (functional design
stage). Detailed design prototypes (physical design stage)
exercise functionality of selected COTS products, verify
adherence and consistency with design expectations,
reveal detailed behavior and performance characteristics.
and give insight into the invocation parameters. The
demonstration prototype (construction and test stages) is
used to unit-test the COTS products using black-box
testing to simulate application behavior or environment.
Each stage is a potential source of feedback to previous
stages.

33. Practical Considerations

The following practical considerations were
encountered during 2 years of experience using the
IDA:

The COTS product integrator does not develop
the COTS product but still must know it
internally. The integrator must understand the
complete set of capabilities provided by the COTS
product in order to select the appropriate subset of
capabilities based on application developer needs
for a given release of infrastructure. The
integrator must understand the limitations and

nuances of the COTS product in order to exercise
it. For example, does it run on all of the required
platforms? Does it operate the way it is intended?
Does it have a heritage from a different paradigm
(PC vs. UNM workstation)?
The system administrators and configuration man-
agement staff need to know how to configure the
COTS products. Few complex COTS products
work "out of the box." To support early
prototypes and evaluations, not only do the
designers and developers need to understand the
products, but the development system
administrators need to understand how to install
and manage the product configuration. In
addition, configuration management needs to
understand how to configure the product versions.
"CUB castles are often built on the sand of
configuration files." Configuration files and data
can be as complex as code. They must be
understood. For example, a transaction pra%ssing
monitor configuration file is inherently complex;
training is required to know how to use it.
Configuration files can be site-specific and
require a strategy for managing files for different
sites including site-specific parameters,
implementation requests, and file distribution.
When installing infrastmcturc components in new
sites, the following documents that are not pan of
normal life cycles an critical for the configuration
of COTS products:
- Release Notes (installation guidelines,

operational parameters. tuning guidelines.
a-) - Site Configuration Guidelines (guidelines to
help site designers choose appropriate
hardware and software suites, and rules for
scaling and resource allocation).

e Version compatibility between COTS products,
the operating system, and glue code is critical.
This &so applies to different sites including the
external integration and test function. Software
problems and nuances of use discovered during
integration are not necessarily embedded in
selected COTS products but often derive from
specific characteristics of operating system ver-
sions or communications protocols. If application
developers, infrastructure developers, and test
sites are allowed to independently manage their
computing platform configurations (including
operating system and data base management
system), trouble-shooting infrastructure anomalies
is extremely difficult.

SEW22 Proceedings

* Licensing Ads a dimension of complexity and
needs LO be worked early. Issues include the
number and types of licenses required for the
environment. Short-term COTS evaluation
lioeases need to be managed, and transition needs
to be planned from evaluation to product license.
Procurement of production licenses within
government agencies fan require a long lead time
and needs to start early with the bill of materials
(BOM).

The following considerations can be easily
overlooked during the planning cycle:

The development facility including hadware.
development tools, and configintion manage-
ment must be ready to go before the first COTS
poduct Miva for prototyping. Facility readiness
fuels the accelerated development that using
COTS products can provide but moves che
nqukmcnt for a fully implemented development
facility to early in the effort. Dttennining COTS
suitability requires a realistic target configuration
with a m n g system administration team in place
from the start.

* The BOM represents the w n m for COTS
products and vasions. It is nquind early for field
development sites and is essential for successful
deployment.
Technology infusion occurs by virtue of COTS
product upgrades whether it is planned or not.
Product upgrades can occur during any phase of
the life cycle. Allowing for technology infusion
can exploit new patenrial products w the market.

e The investment in training is a significant, but
often ovcriookad, cost of using COTS products.
Management needs to plan for the expertise of
individuals to be shared across organizations. In
particular. field sites need training; especially in
system administration.

4. Conclusion

Integration with COTS software products requires
adjustment and accommodations to the development
approach versus traditional software development.

Preparations must be made to start prototyping and
integration activities immediately to exploit COTS
product advantages and accelerate development.
Additional resources must be allocated for late in the
development cycle to provide maintenance and support
to the user community, i,e.. the application developers.

5. Acknowledgment

The authors would like to acknowledge the
contribution of Mr. David P. Maloney, a software
developme~t manager at TRW, to this article. Many of
the insights :n the application of I D A resulted from his
work.

Beno?. A., Section 1.2.2. "Qmness and Proprietary
Sundds." Clien&4Server A~hitecture, Mdjraw-Hill,
lnc., 1992.
Cuutri. 0. and Piaon, D.. Chapta 2. The Rise of
Opcn Systetns."Di&buted Computing Environments.
McOnw-Hill. Inc.. 1993.
National InrdFute of Slpadards. Application Portability
RoAte. The U.S. Gov~nmnt's Open Synem
Environment Roftlc OSUl Version 2.0, June 1993,
NlST Special Publication 500-210.
Manin. lams, Informmion Engineering, Rentice Hall,
1989.
Softwan Engineering Institute, "A CommemaV
Business Paspstive." Pme&gs of the SEmCC
S y n r p o ~ on thr? Use Of con in sysiunr huegnruion.
Spscia Report CMU/SEl-95-SRMn. p. 24. June 1995.
Software Engkering ins ti^. "Systems Architamre
and CQTS Inlegmion." Proce&gs of rhr SEUMCC
Symparirrm on the Use of COTS in Sys~mrc I n t e g ~ ,
Special Re- CMUISEI-95-SR-007. p. 26. June.
Royce, W.W., "Managing thc Development of huge
Software Systems: Concepts and Techniques."
Prucecdings ICSE9. XEEE Computer Society Rtss.
1987.
Boehn B.W., "A Spiral Model of Softwan
Develc ~ m t and Ethmmrnt.'' Computer, pp. 61-72,
May l"88.
Coopl. R . and Fox. G. 'TeduYcal Saatcgier to Guide
the Deign of Distributed Infotmation Systems," SIG
Technclogy Review, TRW Systrms Integration Group,
Vol. 4, No. 1. Winter 1996.
Langlw. RRJ., "COTS Integration Issues. Risks, and
Approaches," SIC Technology Review, TRW System
Integration Gmup. Vol. 2, No. 2, pp. 4-14. Winter
1994.

SEW22 Proceedings

A Software Development Process
for COTS-based Info

System Infrastructure
Greg Fox, TRW

Steven Marcom, TRW
Karen Lantner, EDS

NASModdard Space Flight Center
Twenty-Second Annual Software Engineering Workshop

Greenbelt, Maryland
December 3-4, 1997

A SystemEngineer Looks at the
Software Lifecycle

Control (Waterfall) versus Cycle-time (Spiral)
- How do we have efficient processes and still maintain

control?

- How do we control prototyping?

Applications versus Infrastructure
- Inherently different, so should we use the same process

model?

Code development versus COTS integration
- They aren't really the same, so should the same steps,

milestones, documents apply?

SEW22 Proceedings 143 SEt-97-003

Introduction

Target system is very large, multi-
component, multi-site and heterogeneous
Infrastructure supports business application
developers
Infrastructure is primarily COTS products
The methodology and experiences
developing the initial versions of the
Infrastructure are described

Services View of Infrastructure

Human Computer Data Interchange
Interface * Transaction
Systems Management Prc~cessing
Security Data Management
Workflow Operating Systems
Management [re: NIST APP]
Telecommunications

SEW22 Proceedings

COTS Challenge

What set of life cycle processes best support
the integration of COTS products?

1995 SEIJMCC Symposium on Use of COTS
in Systems Integration, ". . . new life cycle
models for COTS integration projects are
needed."

* What are the distinguishing attributes of
COTS products that influence the life cycle?

COTS Distinguishing Attributes

Completeness
Incompatibility
Inflexibility

Complexity
Transience

SEW22 Proceedings

Completeness

COTS products enter the life cycle early as
complete products
- When a COTS product arrives, the first task is

to test and integrate it into the system

- Design, construction and integration/test stages
of lifecycle must be recast to accommodate

Incompatibility

Gaps and overlaps of functionality
- Gaps can be overcome by custom coded

"wrapper" software

- Gaps can be left to the application designers to
fill in the holes

- Overlaps between products can result in a lack
of synergism, compatibility and interoperability

SEW22 Proceedings

Inflexibility

Requirements mismatch, COTS exhibits
unacceptable behavior
- Option 1: replace the COTS software

- Option 2: devise a workaround

- Option 3: change the requirements

Complexity

Long learning curves
- Flexibility and tailorability of some

infrastructure product families requires a
significant education investment

- Investment might have a net zero return if
product proves unsuitable

- Configuration of some COTS products can be
as complex as code development with similar
process needs

SEW22 Proceedings

Transience

Planned obsolescence
- Transition to new COTS versions can be costly

Management
Direct and licensing costs
Technical factors

- Interrelated products with different upgrade
cycles can cause unexpected down time

The following process model reflects the
complexity of these characteristics

Infrastructure Incremental
Development Approach (IIDA)

Ir-wnurr. I

SEW22 Proceedings

IIDA Milestones and Deliverables

Analysis Prototypes

* Identify COTS products in COTS family
* Support FDD, Design Doc and API Manual

* Benefits
- Determine gaps and overlaps among COTS

- Uncover major COTS requirements disconnects

- Understand functionality at a high level

- Assess product stability, plans for new versions

- Start Integration and Test early

SEW22 Proceedings

Design Prototypes

* Evaluate and select best COTS candidate
from Analysis prototype

* Support Design Doc, API Manual and BOM

* Benefits
- Further analyze requirements satisfaction

- Return to Analysis Stage, if reeded

- Identify workaround, if needed

- Invest detailed knowledge of COTS operation

Detailed Design Prototypes

* Exercise COTS to verify consistency with
design expectations, COTS documentation
Support detailed design and Site Config

* Benefits
- Identify low-level requirements mis-matches

- Feedback to Design / Analysis Stages to modify
or redesign with substitute COTS

- Design low-level workarour-ds

- Understand lowest level COTS complexity

SEW22 Proceedings 150 SEL-97-003

Demonstration Prototypes

Provide platform for CI unit test, integration

Support test planning and Release Notes
Benefits
- COTS may not perform as expected or as

documented

- Feedback to functional design activity to
modify or redesign with substitute COTS

- Workarounds tested within COTS testbed

COTS Integration Pitfalls

Integration and test begins with the arrival
of the first COTS product

Development/Test environment must be
ready to support COTS integration and test

Identification of COTS defects is costly

Vendor maintenance turnaround can be long

COTS integration and custom code
development must proceed concurrently

SEW22 Proceedings 151

IIDA Lessons Learned

* Prototype Engineers need early training

* System Administrators need early training

* CM must be organized early to support
multiple versions of COTS products

* COTS configuration file development can
be as complex as code development

* COTS licensing needs early planning

Summary

* Established process models for COTS
integration are not yet available
COTS integration is governed by particular
characteristics that must be addressed by the
development life cycle

* The IIDA is a successful approach to
COTS integration which minimizes pitfalls

SEW22 Proceedings

Author E-Mai Addresses

greg.fox@ tnv.corn
marcoms @gisdbbs.gisd.trw .corn
KLantner @ aol.com

SEW22 Proceedings

Page intentionally left blank

Page intentionally left blank

Experiences With CMM and IS0 9001 Benchmarks 360839

by
Joe Haskell, William Decker, and Frank McGarry

Computer Sciences Corporation (CSC)

Abstract
The use of industry benchmarks to measure process maturity and process compliance has
increased significantly in recent years. Two widely applied benchmarks are the Software
Engineering Institute's (SEI's) Capability Maturity Model (CMM) and a set of quality standards
developed by the International Standards Organization (ISO). Although there is disagreement
regarding the value and application of these benchmarks, many Government organizations use
them to identify and select qualified contractors. Thus, it is becoming increasingly important for
suppliers of products and services to become IS0 registered and CMM compliant to satisfy
criteria stipulated by potential customers.

CSC's SEAS Center attained IS0 9001 registration in May 1997. In November 1997, the SEAS
Center was rated at CMM Level 3 based on a Software Capability Evaluation (SCE), with several
Level 4-5 key process areas (KPAs) also satisfied. Information regarding the activities and effort
to attain IS0 registration and CMM Level 3 compliance was collected from SEAS Center
participants. Also collected was participants' opinions regarding the impact that pursuit of each
benchmark had on the organization. This information served as a basis for determining (1) the
SEAS Center resources required to attain IS0 registration and CMM Level 3 compliance and (2)
the impact that pursuit of each of these industry benchmarks had on improving the SEAS
Center's ability to deliver ~ ~ h - ~ u a l i t ~ products and services to its customers.

Thls paper documents the experiences of the SEAS Center in pursuing CMM compliance and
IS0 9001 registration. It is based entirely on information collected from SEAS Center personnel
who planned and participated in the successful IS0 9001 registration and SCE efforts. Other
organizations contemplating an SCE and/or IS0 registration should find the experiences of the
SEAS Center useful in planning their effort.

The use of industry benchmarks to measure process maturity and process compliance has
increased significantly in recent years. Two widely applied benchmarks are the SEI's CMM
(Reference 1) and a set of quality standards developed by the IS0 (Reference 2). Although there
is disagreement regarding the value and application of these benchmarks, many Government
organizations use them to identify and select qualified contractors. For example, NASA has
adopted IS0 9000 as an internal requirement (Reference 3), and many of NASA's future
contracts will likely require compliance with an applicable IS0 standard. Similarly, other
Government organizations require a specified CMM maturity level as a prerequisite for
submitting a proposal. Compliance with industry benchmarks is becoming increasingly important
to organizations seeking Government contracts.

SEW22 Proceedings

CSC's SEAS Center provides support to NASA's Godda~d Space Flight Center. As part of its
endeavor to continually improve its process capabilities and comply with anticipated NASA
requirements, the SEAS Center hired qualified external teams to evaluate its degree of
compliance with CIvIM and IS0 9001. In May 1997, the Center achieved IS0 registration, and a
November 1997 SCE rated the SEAS Center as compliant with CMM Level 3.

The cost and implementation time for achieving compliance with each of these industry
benchmarks are dependent on the organization's starting pint . A mature organization will focus
on adjusting existing processes rather than defining them. In contrast, a less-mature organization
will initially focus on defining, documenting, and deploying key processes. The cost and
implementation time needed to achieve compliance with a given CMM level or IS0 standard are
much less for an organization with a solid process foundati~n on which to build.

A profile of the SEAS Center is needed to place its experiences in context. The Center consists
of approximately 800 individuals providing products and services to NASA. Activities include
systems engineering, software development and maintenance, system integration, and system
operations. The work includes mission design, control center development, advanced systems
evaluation, data processing, and flight dynamics mission ~perations. Approximately 40 percent
of the work consists of software development and maintenmce. Fifteen to 20 projects were active
during the 1997 assessments. The size of these projects varied from 5 to 100 personnel.

The SEAS Center began software process self-assessments and SCEs in 1991. Between 1991 and
1996, organizational policies, process documentation, and support tools were enhanced based on
experience. As a result, by early 1996, mature processes had been documented and were
routinely used throughout the Center. These processes inch lded

0 A set of Program Office Directives defining minimum requirements for project
performance

An earned-value reporting system that had been in routine use for approximately
15 years.

e An 1 Zchapter, system development methodology

e A comprehensive set of standards and procedures

0 A set of handbooks and guidebooks

Various project-level documents to address project-specific issues

2. Application of Industry Benchmarks
The history of the SEAS Center benchmarking activities is shown in Figure 1. Note that the
efforts of the early 1990s were mostly based on the CMM, with the organization focused on
improving software processes. As time passed, non-software processes became increasingly
important, and the SEAS Center redirected its efforts to improving all processes. Compliance
with an IS0 standard was not established as an organizatiorlal goal until early 1996.

SEW22 Proceedings

m a m m
R S S S

+ SCE
I IS0 9001 registration audit (R), surveillance audits (S)

Software process self assessments and software process
audits 1 0 0 3 9 8 1 ~ ~ - ~ 1

Figure 1. SEAS Center Benchmarking History

Information regarding each SCE and IS0 9001 assessment is summarized in Table 1. The 199 1
SCE produced a CMM Level 1 rating for the SEAS Center, even though documented processes
were routinely used. By February 1996, all process and process compliance weaknesses from the
1991 SCE had been addressed. As a result, all but one of the Level 2-3 KPAs were satisfied as
determined by the February 1996 SCE. The SCE conducted in November 1997 found full
compliance with all Level 2-3 KPAs, as well as compliance with several Level 4-5 KPAs.

The IS0 registration assessment was conducted in May 1997. During the assessment, 14 minor
nonconformities were identified, each of which was promptly eliminated. As a result, the IS0
registrar recommended registration at the end of the assessment week. A subsequent surveillance
assessment was successfully conducted in November 1997.

Since 199 1, the SEAS Center has maintained detailed records regarding its benchmarking
experiences. In addition to the summary information in Table 1, detailed records of all
experiences were maintained. Based on these experiences, comprehensive lessons learned reports
were prepared for use by other organizations pursuing IS0 registration and Ch4M compliance.

3. Comparison of IS0 9001 and the CMM
Comparison of the CMM KPAs to the 20 elements of IS0 9001 has been performed by others
(References 4 and 5) and is not the subject of this paper. Rather, this section provides a
comparison of the IS0 and CMM assessment processes, cost of each effort, and their relative
value as perceived by the SEAS Center participants. It reflects the experiences of an organization
that has applied both benchmarks.

SEW22 Proceedings

Table 1. Summary of Benchmarking Activities
. .

I SCE I SCE I IS0

Preparation time 1 2 months 1 4 months 1 12 months
Organizational effort" 1 850 staff-hours 1 1800 staff-hours 1 3400 staff-hours
Use of external
consultants and
training

Preparation strategy

Minimal

Perform software
process assessments

None 200 hours
Consultant
Internal auditor
training
Preregistration
assessment

0 Perform gap . Develop
analysis implementation

0 Use lessons plan
learned from 1991 Use external
SCE experts
FOCUS on Train staff
deployment FOCUS on

I I I deployment
Result I Few KPAs satisfied 1 13 of 18 KPAs I IS0 reaistration

I 1 satisfied 1 achievid
I I I

" In addition t r rcc?!nn improvomon! act!':i!icc

SCE
--

2 months
800 staff-hours
None

0 Complete action
items

0 Provide
awareness
seminars
Use internal
assessments

CMM Level 3
achieved; Level 4-5
TBD 1/98

IS0
(1 1/97)

6 months
500 staff-hours
None

Continue process
improvement
initiatives
FOCUS on
management
review, internal
audits, and
corrective actions

IS0 registration
maintained

Organizations considering pursuing IS0 registration and/or CMM compliance are usually
interested in the answers to the following questions:

How are the two benchmarks similar and different?

o For each, what is the cost of the effort and the implementation time?

Is pursuit of IS0 registration and/or CMM compliance worth the effort?

These questions are addressed in Sections 3.1 through 3.5.

3.1 Assessment Similarities

Based on the experience of the SEAS Center, the two types of assessment have the following
similarities:

Selection of representative projects: For each, a recommendation was made by the
SEAS Center; the project selection was made by assessment team. For each type of
assessment, the Center identified projects that, as a group, were representative of the
work performed and covered the assessment criteria. The assessment team made the
final selection, taking into account SEAS Center input.

Number of projects that represented the SEAS Center: Four

Number of personnel interviewed during the assessments: 50 to 60

Assessment duration: 1 week

0 Degree of assessment focus on process definition, process compliance, and process
improvement: This was a key focus of both assessments.

3.2 Assessment Differences

Based on the experience of the SEAS Center, the two types of assessment have the following
differences:

Scope of the assessment: IS0 9001 covered all processes that affected product and
service quality. The SCE was concerned only with software processes.

e Documents reviewed by the evaluation team prior to the interviews: The IS0 team
reviewed only the SEAS Center's Quality Management System Manual prior to the
interviews. In contrast, the SCE team reviewed project profiles, completed CMM
questionnaires, and 17 documents that had been mapped to the CMM.

* Format of the interviews: The IS0 team interviewed members of each project, either
individually or as a group. In contrast, the SCE team interviewed functional area
representatives of all representative projects as a group (e.g., one software developer
from each project)

Size of the evaluation team: The IS0 team had two members; the SCE team had six.

SEW22 Proceedings

e Evidence requested during the interviews: The IS0 team examined approximately 70
work products during the interviews. The SCE tern examined approximately 100 work
products, performing the examination after the interview.

0 Documentation of assessment results: The IS0 team documented assessment results
in a short letter immediately following the assessment. The SCE team provided a
comprehensive report documenting strengths, weaknesses, and improvement initiatives;
the report was provided approximately 6 weeks foilowing the SCE.

3.3 Activities, Required Effort, and Time to Prepare

Based on SEAS Center experience, the required effort and time to prepare for a successful
evaluation depends on factors such as the following:

Organizational experience with industry benchmarks

Scope of evaluation (i.e., activities to be evaluated or KPAs to be examined)

Degree of senior management commitment to a successful effort

Maturity of organization's documented processes at the start of the effort

Degree to which organization's defined processes are routinely used

The primary SEAS Center activities for its SCEs are defined in Section 3.3.1. The primary
activities for IS0 9001 registration are defined in Section 3 3.2.

3.3.1 Software Capability Evaluation

As shown in Table 1, SEAS Center personnel spent 1800 .staff-hours on the SCE conducted in
February 1996. Most of this time was spent

Identifying gaps in the organization's documented processes, relative to CMM
Levels 2-3

Updating documentation to improve processes and fill the gaps

0 Deploying the revised processes (primarily training)

* Performing administrative work, such as completing the project profiles and CMM
questionnaires required by the SCE team

* Participating in SCE interviews

Only 800 staff-hours were required to prepare for the SCE conducted in November 1997. By that
time, SEAS Center personnel were confident that all CMM Level 3 processes were documented
and routinely used. Note that because this SCE built on the experiences from the 1996 SCE, it
required far less effort.

SEW22 Proceedings

3.3.2 IS0 Registration

As shown in Table 1, SEAS Center personnel spent 3400 staff-hours on the IS0 registration
effort conducted in May 1997. Most of.this time was spent

* Gaining an understanding of IS0 9001 and preparing an implementation plan

* Performing a gap analysis based on IS0 9001

* Updating documentation to improve processes and fill the gaps (included writing a
quality manual as required by ISO)

* Deploying the revised processes and support tools (e.g., Lotus Notes deployed to
support internal communications and document control)

Performing administrative tasks, such as selecting a IS0 registrar (third-party external
assessor)

* Participating in the IS0 interviews

The IS0 registration effort in May 1997 was successful. However, IS0 requires periodic
surveillance assessments to ensure process improvement is continuing. Only 500 staff-hours
were required to prepare for the surveillance assessment conducted in November 1997. By that
time, SEAS Center personnel were confident that all outstanding issues from the registration
assessment had been adequately addressed. The surveillance assessment took place without
noticeable impact on the organization.

3.4 Consultants and Trainers

Many consultants and trainers are available to assist an organization achieve IS0 registration
andlor CMM compliance. Regarding such services, the SEAS Center found the following:

* In 1997, typical cost of such services was $175 per hour, plus expenses.

* Companies and individuals providing such services seem well-qualified and competent.
(It is a very competitive industry.)

Such services can be worthwhile to establish credibility and minimize the possibility of
false starts.

3.4.1 Software Capability Evaluation

The SEAS Center did not use consultants to prepare for its SCE. However, several SEAS Center
personnel attended training in the CMM that was provided by its parent CSC organization.

3.4.2 ISO-Based Evaluation

The SEAS Center used consultants and trainers to prepare for IS0 registration. Specifically,
assistance was provided to the SEAS Center as follows:

* An individual from an external CSC division was assigned to the SEAS Center for
several weeks at the start of the effort. This individual provided advice to the SEAS

SEW22 Proceedings

Center IS0 Implementation Team regarding implementation strategy. This individual
also provided orientation and IS0 awareness training for SEAS Center personnel. (total
effort - 4 staff-weeks)

e An external trainer was hired to provide training of SEAS Center internal auditors. This
individual also provided advice regarding other ISO-related activities. (total effort -
2 staff-weeks)

s The two-member IS0 registration team conducted a preregistration assessment to
familiarize SEAS Center personnel with the assessment process and identify any major
weaknesses in the SEAS Center Quality Management System. (total effort - 1.5 staff-
weeks)

e The two-rnember IS0 registration team conducted the registration assessment. (total
effort - 2 staff-weeks)

3.5 Value Based on Surwey of Participants

The perceived value of the IS0 registration and SCE experiences was measured by surveys of
participants.

Immediately following IS0 awareness training (1 year prior to the registration assessment),
SEAS Center personnel were asked whether they felt the effort would improve the SEAS Center.
Ten specific issues were addressed (e.g., improved processes, more customer confidence, less
paperwork). Following the registration activity, the same personnel were asked whether they felt
the effort did improve the SEAS Center. As shown in Figurc 2, the IS0 experience significantly
exceeded expectations.

1 2 3 4 5 6 7 8 9 10
question num ber

1 - Improve processes 6- Improve teamwork
2- Increase customer confidence 7- Improve communication m Expected from I S 0 (5196)

3- Improve efficiency 8- Help identify problems earlier ~esults from ISO (5197)
4- Reduce papewfork 9- Help win contracts
5- Reduce defects 10-Improve understanding of processes

10039812W-002

SEW22 Proceedings

The same issues were addressed by participants in the November 1997 SCE. The IS0 experience
was rated higher than the SCE on 8 of the 10 questions. A comparison of the answers to four of
the questions is shown in Figure 3.

0% [I1 = SCE (1 1/97)

Increased Reduced Reduced Help Win r j = Is0 (5/97,

Customer Paperwork Defects Contracts
Confidence (Q2) (Q4) (Q5) (Q9)

10039812W-003

Figure 3. IS0 9001 Scored Higher than CMM on 8 Out of 10 Questions

Comments regarding these four answers follows:

a Increased Customer Confidence: IS0 = 82%, SCE = 42%. This likely reflects the fact
that the customer (NASA) has made IS0 compliance a priority, while placing little
value on CMM compliance.

Reduced Paperwork: IS0 = 28%, SCE = 27%. SEAS Center personnel found neither
benchmark had much impact on the magnitude of process-related documentation and
papenwork associated with process use.

Reduced Defects: IS0 = 67%, SCE = 5 1 %. The relative low scores for each benchmark
reflects minimal problems with product defects prior to benchmarking activities.
(NASA's stated priority for the SEAS Center is cost and cycle time reduction; the
quality of SEAS Center products has never been an issue.)

Help Win Contracts: SCE = 98%, IS0 = 84%. Government agencies other than NASA
are increasingly using the CMM to identify and select contractors, hence the relatively

SEW22 Proceedings 165 SEL-97-003

high score for SCE. Note that SEAS Center personnel strongly believe compliance with
both industry benchmarks is important in obtaining new work.

SEAS Center personnel who participated in both assessrrients were asked: "In your opinion,
which industry benchmark caused greater improvement." As shown in Figure 4, these individuals
found IS0 9001 to have a greater positive impact. However, it is important to note that the IS0
9001 effort had an impact on the whole organization (rather than just software developers), and
that the effort applied to IS0 registration was almost twice sts great as the effort applied to CMM
compliance.

Finally, as shown in Figure 5, both benchmarks were viewed favorably by participants who were
asked to rate the experience as (1) well worth the effort, (2) of marginal value, or (3) of little or
no value. For both benchmarks, approximately 80 percent of the participants rated the activity as
"well worth the effort." The percentage of favorable ratings by personnel not directly involved in
the benchmarking activities was somewhat less than for participants.

In your opinion, which industry
benchmark caused greater
improvement?

Questionnaire distributed to SCE
participants, program management,
and quality assurance (48 responses)

IZ] = About the same

= CMM (1800 + 800 staff-hours)

= I S 0 9001 (3400 + 500 staff-hours)
10039B12W-004

Figure 4. /SO 9007 had Greater Positive Impact than CMM, but also had Greater
Effort Applied

SEW22 Proceedings

= Little or no
value

= Marginal value
= Well worth the

effort

Not Interviewed Interviewed Not Interviewed Interviewed

Is0 9001 CMM 1 0 0 3 9 8 1 2 ~ 4 ~ ~

Figure 5. Both Benchmarks Were Viewed Favorably, Especially by Participsnts

4. Impacts on SEAS Center
Opportunities for organizational improvement as a result of a SCE or IS0 Registration depend on
the type of organization and its maturity. For the SEAS Center, many improvements resulted
from the SCE and IS0 registration activity. Some of these improvements are given below, with
the primary impetus shown in parenthesis.

Documented organization roles and responsibilities in the new Quality Management
System Manwl (ISO)

* Established a mechanism for document control (definition of current version, location,
owner, and change process) (SCE)

* Established distribution of controlled documents through the use of electronic libraries
(IS01

* Refocused senior management reviews to address progress in achieving organizational
goals related to products and processes (primarily SCE)

Critically evaluated policies and processes to ensure effectiveness and alignment with
organizational goals (prompted primarily by ISO)

* Revamped the training program to identify and address key organizational needs
(primarily SCE)

SEW22 Proceedings

5: Recommendations to Other Organlzat'ions
Based on the SEAS Center experience, the following recommendations should be considered by
organizations setting out in pursuit of IS0 registration andlor CMM compliance:

* Demonstrate commitment and participation of senior management; if the effort is not a
high priority of senior management, it will fail.

* Establish an internal group responsible for interpreting the benchmark and providing
guidance to the rest of the organization; do not rzquire everyone to be well versed in
CMM or the IS0 standard.

e Implement processes and procedures that will improve the organization, rather than just
comply with the industry benchmark.

Do not install processes developed externally; build on what exists and use experiences
of organizations doing similar types of work. (Installing new processes will not change
the organization's culture.)

* Focus on compliance with the goals of the benchmark, rather than details.

As a guideline, spend one third of the total effort developing and documenting new and
revised processes and two thirds deploying the processes.

Conduct internal audits to identify areas of noncompliance and track resulting action
items to closure.

6. References
1. Charles V. Beber, et al., CMU/SEI-93-TR-24, ESC-TR-93-177, Capability Maturity

Model for Software, Version 1.1, February 1993

2. American National Standard. Qualily Systems - Mndel for Quality Assurance in Design,
Development, Production, Installation, and Servicirrg, prepared by the American Society
of Quality Control Standards Committee for American National Standards Committee
2-1 on Quality Assurance, August 1,1994

3. NASA Management Instruction 1270.3 (136195) and Goddard Policy Directive 2600
(6/ 1 8/97)

4. M. Paulk, "How IS0 9001 Compares With the CMM," IEEE Software, January 1995,
pp. 74-82

5. F. Coalier, "How IS0 9001 Fits Into the Software World," IEEE Software, January 1995,
pp. 98-100

SEW22 Proceedings

Experiences with CMM and
IS0 9001 Benchmarks

December 3,1997

Joe Haskell
Frank McGarry

Bill Decker

Computer Sciences Corporation
SEAS Center

SEAS Center Profile

e SEAS Center has 800 personnel, primarily working on a
NASA contract
- 250 in software development and maintenance
- 550 in systems engineering, analysis, and operations

e 20 software projects
e 1 0-year legacy of process improvement focus

- First SCE in 1991
- IS0 9001 registration in 1997

SEW22 Proceedings

SEAS Center Process Improvement

o Following formal process improvement plan that specifies six
measurable goals
- One goal is IS0 9001 registration and compliance with CMM Level 3

as determined by an SCE
- Other goals concern client satlrstaction, technology infusion,

product quality, productivity, and predictability
o In May 1997, registered to IS0 9001 standard

In November 1997, assessed as CUM bevel 3 by SCE (Levels 4
and 5 will be evaluated in January 1998)

m Records of investment, changes, approach, and impacts were
recorded to benefit CSC organizations and share experiences
with professional community

SEAS Center Benchmarking History

0000 + & R S S S

+ SCE
IS0 9001 registration audit (R), surveillance audits (S)

+ Software process self assessments and software process
audits

SEW22 Proceedings

Summary of Benchmarking Activities

Prepamtion time
CkpMczat-I

audits. md I ccme*ive I

,Mort-
Usedsldunal
cauulmnU md
training

--- ---
(10)91) 1 0

2 months 14 mmms
850 Whoun 11800 stllfl-hwn

similarities Found in CMM and IS0
Registration

Mink&

Result

e Same number of projects sampled (4)
Same number of individuals interviewed (50 to 60)

0 Same duration of evaluation (1 week)
Same focus on process improvement
Same focus on "do what you say"

0
12 mMhs
34UO SafI-h~ws

I

SEW22 Proceedings

. PI-ralkxr

Nme

' In P W i to rartii improwment activities

F m W A S
satisfirc]

(ll/or to tM)
2 momhs
800 statfhoun

(t 1191)
6mOnms
500 ststf-hours

200 hwn
Consultant
Internalauditor
rnhi

13 of 18 UPAS
satisfied

None

IS0 regishation
achiMd

None

CMM L ~ v e l 3
a c h i i Levels 4
and 5 TBD 1198

adims
IS0 registfalion
maintained

Differences Found in CMM and IS0
Registration

Effort Distribution for CMRll and IS0
Registration was Similar

GWJ an- . KPkbyXPAIu1yS1s 10

FjUdoMUMtriCn~~ps . Up6SnSbPs.nd 15 1:
hndbooks lor Nworupsaed
-m -

SEW22 Proceedings

Benchmarks had Value to the SEAS Center

Increased focus on achieving organizational goals (began
operating as an enterprise)
Improved communication, teamwork, and understanding and
use of organizational processes

0 Provided hammer for accelerating improvement programs
0 Resulted in updating of policies and processes to address real

needs of organization
o Accelerated adoption of technology across organization (e.g.,

electronic document libraries)
Resulted in business advantage (increased cr@dibility in
proposals)
Fostered pride in achieving one of organizational goals

Benchmarks Were Not a Silver Bullet

. **, "- - .*. - -. ----

0 Cost
Temporarily diverts attention from project activities to
compliance with benchmark

0 No evidence of short term return on (process) investment
for organization
Tax on short-duration projects

SEW22 Proceedings

stued!3!ved (OSI F ue) 335 aJaM oq~ lauuos~ad latua3 SV~S 817 10 a~dwes.

22.- - .. -- - a*-
-. &

suoilsany) uallo In0
146!3 uo +WIN3 uerll JW~!H PaJoaS LO06 OSI

(LBIS) OSI LuoJl *mu II
(9615) OSI UIOII P.y.dT3

Both Benchmarks Were Viewed Favorably,
Especially by Participants*

~ i n b or no
due

=Marginal value

==E:mh *'
' ' ,w7 ' - 1s

- 1 *not- LdTn(..cd
< - " ' s . . *. . -

lsos0ol"- CMM' "

'Survey based on random survey of 134 for IS0 and 48 for SCE

IS0 9001 had Greater Impact than CMM, but
also had Greater Effort Applied

100
In your opinion, which industry

90 benchmark caused greater

80 improvement?

704 I Questionnaire distributed to
60- partici~ants, program management,

C and quality assurance (48 responses)

30- -? : - . m -
20- 0 = About the same

I r CMM (1 800 + 800 staff-hours)

I7 = ISO 9001 (3400 + 500 staff-hours)

SEW22 Proceedings

Application of Benchmarks Produced Some
Unexpected Results

Did not produce cynicism across organization (both CMM and
IS0 9001 readily accepted)

0 Achieved benchmark compliance without adopting micro
approach

a Amount of documentation unchanged (for IS0 9001 and CMM)
e Bureaucracy dscreased and projgct managers given increased

responsibility
L i l e evidence of change in project's way of doing business

a CMM and IS0 9001 are consistent and complementary

Suggestions Based on SlEAS Center
Experiences

1. Demonstrate commitment of senior management
2. Establish a group responsible for interpreting the benchmark

and providing guidance to rest of the organization; do not
require everyone to be well versed in CMM or IS0 standards

3. Implement process/procedures to improve your organization
rather than just to fit industry benchmark

4. Do not use another organization's processes; build on what
you have and use experiences of organizations doing similar
types of work (documents do not change culture)

5. Focus on compliance with goals of the benchmark rather than
details (e.g., CMM goals rather than activities)

6. Spend at least twice as much effort deploying than in
documenting processes

7. Conduct internal audits and track action items to closure

SEW22 Proceedings

Using PSP and TSP Data to Manage
Software ~uality'

Watts S. Humphrey
The Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA

waf$s@sei.crnu.edu

In this paper, I briefly describe the Personal
Software Process (P S P) ~ and Team Software
Process (TsP)'~. I then discuss the PSP/TSP
quality strategy and show PSP data that
demonstrate the logic for this strategy. Finally, I
show prehinary data on how this strategy
works in practice.

The Personal Software Process The PSP was
developed by the SEI to help small software
groups and organizatons imprwe their
performance. It provides a family of process
scripts, forms, and standards that guide engineers
through the steps of planning, tracking, and
doing software work. The PSP is introduced
with a textbook and come where engineers
complete 10 programming exercises and 5
analysis reports mumphrey]. The PSP is now
being taught in a growing number of universities
in the U.S., Europe, South America, and
Australia, and it is being introduced by several
software organizations.

The Team Software Process We developed the
TSP because we found that many engineers had
trouble applying the PSP to projects of more than
one or two engineers. The TSP walks the team
through 1aunch.mg and developing a product.
While it uses the four generic phases of
requirements, design, implementation, and test,
its emphasis is on multiple product versions and
interleaved activities. The TSP applies to teams
of 2 to 20 hardware and soAware engineers who
are PSP trained

The TSP is introduced with a 3day launch
workshop where the engineers establish their
goals, select their personal roles, and define their
processes. They also make a quality plan,

This work is supponed by the U.S. Department
of Defense.
SM Personal Software Process and PSP are
service marks of Carnegie Mellon University.
SM Team Software Process and TSP are d c e
marks of Camegie Mellon Univedty.

identify support needs, and produce a detailed
development plan. The TSP shows them how to
conduct a risk assessment, how to track and
assess their work, and how to report their status
to management A 2-day relaunch worksbop is
used before each subsequent phase to integrate
new team members, d j u s t role a s s i g n m e
and reassess plans. The launch and relaunch
workshops are not training courses; they are pat
of the project

Some PSP quality data The PSP data provide
some interesting information. We now have data
on 2386 programs written in PSB courses. In all,
the engineers took 15,534 hours to develop
programs of 308,023 LOC. They found 22,644
defects. As shown in Figure I, agineers find
9.48 d e f d o u r while compiling and in unit
test ?hey only find 2.21 defects/hour. During the
PSP design (DLDR) and code (CDR) rwiews,
the engineers find 2.97 defectsfhour and 6.52
defectsfhour respectively.

Engineers inject 1.76 d e f m per hour in detailed
design and 4.20 defects per hour in coding.
Thus, for every hour of design, an engineer
should plan on at least 0.59 hours of design
review to find all the design defects. Similarly,
for every hour of coding, the engineer would
need at least 0.64 hours of code review. Note
that when engineers only use compile and test to
remove defects, compile will generally find
about 60% or more of the coding defects, thus
reducing the minimum test time per hour of
coding to about 0.74 hours.

"

The defect removal phases also inject defects.
For example, in compile, engineers inject an
average of 0.60 defects per hour while in test
they inject an average of 0.38 defects per hour.

SEW22 Proceedings

F b u n 1. Ookctr Romovod psrHour

+

ratio is the number of defects
In design review

every 27.9 defects
review they inject a

defect for every 59.78 ddects removed. In
a dcfixt for every 15.84
in test they in^ a defect

for every 5.82 defects removed. Note that before
PSP training, these wtes are significantly higher
at one defect injected for every 9.54 defects
nmoved in compile and one defect injected for
e v q 4.43 defects removed in test.

test def- when ' more time in
desiga The to be at about 50% of
coding the. Similarly, when design time is over
50% of onding time and design redew time is
greater than 50Y0 of design time, there are m n
fewer uuit test Bcfkts. These values are shown
inthefrontbarsofthb:fi&ure. Asshownbythe
h n t bars in Figure 3, when code review times
are greater than 75% of coding time, compile
defects are also lower.

Figure 2. Unit Test Defects vs. Design
Practices

Unit Test DefactslKLOC Ranges

The PSP course data also show the value of The PSP/TSP quality strategy The PSP/TSP
using disciplined personal practices. When quality strategy is i l lwted by the case of a
engineers spend an adequate amount of design large IBM program shown in Figure 4 pplan].
time, they improve product quality. As shown The correlation between development and usage
by the middle bars in Figure 2, there are fewer defects is 0.964 for nleasc one. For release two,

SEW22 Proceedings 178 SEL-97-003

the correlation was also high at 0.878. The
number of defects found in development test
thus seems to be a good indicator of the number
of defects remaining after test. Therefore, to
reduce usage defects engineers should remove
defects before development test. This can only
be done by having the engineers use a
disciplined personal process. The PSP shows
engineers how to remove defects at the earliest
possible time, preferably before the first compile.

Industrial PSP data We are now getting early
data on industrial use of the PSP and TSP. One
set of data wmes from Advanced Information
Services (AIS) corporation in Peoria, IL. As
shown in Table 1, their group in India shipped
several wmponents before their 12 engineers
were PSP tmined After the 2-week PSP training
course, the next release was nearly on schedule
and had one acceptance test defect.

Figure 3. Compile DefectslKLOC vs. % Code
ReviewICode Time

~ 0 + - 7 5 %

5%+

Compile DefectsMLOC
Review %

-

Table 1. AIS Data - PSP Impact on
Acceptance Test Quality

I Without 1 KLOC I Months I Acceptance I

5 I . 4.5 1 8+ 1 25
With PSP I 22.9 1 I I i

Table 2 shows the impact of improved PSP
quality on system test time. Programs A1 and
A2 were system tested together for 1.5 months.

SEW22 Proceedings

Table 2. AIS System Test Time Reduction
with PSP

I ~ o t using I S i I Test Time I -

PSP I
Project A1 1 15,800 LOC 1 1.5 months
Project C 1 19 requirements 1 3 test cycles
ProjectD 130requirrments IZmanths

[Using the I I I

TSP quality data While several i n M
groups are using the TSP, the first completed
project is from a team at Embry Riddle
Aeronautical University (ERAU). Overall,
product quality was good with 99.4% of the
defects removed befon system test. The team's
defect removal p f i l e is &own in Figure 5.
Here, while the curve looks superficially good,
there were some problems. The clue is that the
number of design review defects (DLDR) is
lower than the number found in unit test 0.
This indicates design review problems with at
least some components. The TSP provides a
quick way to identify defect-prone modules, as
shown in Figure 6. This is the Defect Risk
Profile for a component that bad no defects
found in integration (IT) or system (ST) test.

tlgur* 5. O*I*ct.II(LOC by Phn*

a

20

U
5 15

i
i 'O

5

0
OLOR COR C r p UT R ST

C U W

review t$ne should be greater than 50% of
coding the. While the data indicate that code
review time should exceed 75% of coding time,
we have been using 50% as the criteria, but will
probably increase it. Also, compile defects
should be less than 10/KLOC and unit test
d e f m shouid be under 5MLOC. When a factor
meets or exceeds these cri- that profile
dimension is at the edge of the bullseye. When
the criteria are not met, say 25% design review
time instead of 50°?, that dimension would be
half way to the center of the Useye. The
profile in Figure 7 is for Component 9, which
had one defect in integration test

Flgur* 8. Comvon*nc 7 Rlrk Factors

D.srplCod. W e

~ n r p n nek+rnme coda R.rirw rm*

Defect rid. profiles can be multiplied together to
give a system profile. Then, a single high-risk
component would result in a poor profile for the
entire system. With the PSP ard TW data
neededtomake these profiles, it is to find
the defect-prone modules, even in large systems

The defect risk profile sets limits based on PSP with hminds of modules and dozens of

data. Design time should be greater than 50% of
c0mponen;s". Note, however, that organizations

coding time, design review time should be should adjust these profile criteria based on their

greater than 50% of design time, and code own data

SEW22 Proceedings

Conclusioas The PSP and TSP pmvide
extensive data that can be used to manage
product quality. The TSP also shows engineers
how to gather and use these data. While there
are only limited industrial TSP data to date, early
indications are that, with the PSP and TSP,
engineers can produce very high quality
programs at reduced costs and on competitive
schedules.

References

[Ferguson] Pat Ferguson, Watts S. Humphrey,
Soheil Khajenoori, Susan Macke, and Annette
M a w "Introducing the Personal Software
Process: Three Industry Case Studies," IEEE
Computer, vol. 30, no. 5, pp 24-31, May 1997.

[Humphrey] W. S. Humphrey, A Discipline for
Sofi'ware Engineering. Reading, MA: Addison-
Wesley, 1995.

[Kaplan] Cmig Kaplan, Ralph Clark, and Victor
'Tang Skcrets of Sofhvare Qualify, 40
lnnovafjons from IBM. New York, N.Y.:
McGraw-Hill, Inc., 1994.

Watts S. Humphrey
Software Engineering Institute
Camegie Mellon University
Pittsburgh,PA 15213
Phone: 4 12-268-770 1
Fa: 4 12-268-5758
e-mail: watts@sei.cmu.edu

SEW22 Proceedings

Using PSP and TSP Data

Watts S. Humphrey

December 3,1997

Software Engineering institute
Carnegie Mellon University
Pittsburgh, PA 1521 3-3890

Sponsored by the U.S. Department of Defense
Q 1997 by Camegie Mellon University

Quality Engineering

To get better, faster, and cheaper products, we must
impact the engineers' behavior.

To do this, we developed the Personal Software
ProcesssM(PSP)Y

The PSP builds the engineers' skills.
defining and using personal processes
measuring and planning their work
applying quality methods

SEW22 Proceedings

The PSP Focus

The PSP focuses on building skills and disciplines.

It helps engineers
consistently meet commitments
understand their personal performance
set goals for continuing improvement

The results have been dramatic.

Effort Estimation Results
U b l t E S W r A c t w u y T r J

- Y I T b Y - - n ? M A . n m p

SEW22 Proceedings

Quality Results

- ~ o n w m Enginwring Institute I
Design Time Results

T L I . * a * d P a r (N n & C L r p l) L b r . I e

-ai - cde - Tr

SEW22 Proceedings

caw*-ucr*r
So(tmm Engmwlng instilute

Productivity Results

- YIUrnr - ? S ? M A n n l r

1 2 3 4 J 1 ? 1 ~ 1 >

R.cruN&

System test time before PSP training
Project A1 (15,800 LOC) 1 b months
Project C (1 9 requirements) 3 test cycles
Project D (30 requirements) 2 months
Project H (30 requirements) 2 mont3s

System test time after PSP training
Project A2 (1 1,700 LOC) 1.5 mor ~ths
Project B (24 requirements) 5 days
Project E (2300 LOC) ,
Project F (1 400 LOC)
Project G (6200 LOC)

a Project 1 (13,300 LOC)

SEW22 Proceedings

Smwrn Engimarfng Insl)LM

We also developed the Team Software ProcesssM
(TSPfM to show engineering teams how to use the
PSP methods on their projects.

The TSP provides a family of scripts, forms, and
measurements to guide engineers through

building effective teams
establishing team goals and plans

* planning, tracking, and reporting on their work
producing quality products

Team Software Process and TSP a n service marks of Camegie Mellon University.

a*--
SonMm Engineering lndmttr

Some Available Data

The TSP quality strategy is based on the following
facts.

Components with the most shipped defects
generally have the most defects in development test.

* Good development practices can sharply reduce the
number of compile and test defects.
Careful reviews and inspections can eliminate
almost all the defects that remain.
Then compiling and testing confirm process quality.

IBM data show a strong correlation between usage and
development defects.

I PSP data show the impact of sound practices.

SEW22 Proceedings 187

tmp--
SaR*nn Enghwing In-

ISM Release 1 (r = 0.96441

--ucrr*
S-n Englmrriag Institute

The PSP Data
We now have extensive data from the PSP courses.

2386 programs
308,023 LOC

* 15,534 development hours
* 22,644 defects

These data show the rates at which defects are
injected and removed.

They also show the impact of soufid engineering

SEW22 Proceedings

-
.ii&s- ---

~ a ~ v n r e ~ n g 1 ~ n g In-

Defect Injection and Removal Rates

I PSP Phase InjectedHour RemovedlHour Removedllnjected

DLD 1.76 0.10 0.05
DLDR 0.1 1 2.96 27.91
Code 4.20 0.51 0.10
Code Review 0.11 6.52 59.78
Compile 0.60 9.48 15.84

, Unit Test 0.38 2.21 5.82

This implies that one should spend at least 0.59 hours
in design review for each hour of design.

One should also spend at least 0.64 hours in code
review for each hour of coding.

Methods

Y k l d X Ranges

SEW22 Proceedings

c-mm-ul*r*r
Somnn Englnmlng InWMa

Can We Anticipate Quality Problems?

We next look at TSP data on an Embry Riddle
Aeronautical University product to see if we could
anticipate those with defects.

This product had 99.4% of its development defects
removed before system test.

Three components each had 1 defect in integration test
and one component had 1 defect in system test.

We will look at the quality profiles for the 11
components.

The quality profile is a way to judge the likelihood that
a product or component has remaining defects.

The profiles are set based on the PSP data.
design time > 50% of coding time
design review time > 5Q % of design time
code review time > 50% of coding time
compile defects < 10 defectsIKiOC
unit test defects < 5 defectdKLOC

These values are at 1 on the profile with poorer values
proportionately closer to the center.

SEW22 Proceedings 190 SEL-97-003

Component 3 Profile

1 DesigniCode Time I

Component 1 - 11 Profiles

pimp]
-"-

SEW22 Proceedings

The PSP develops engineering skills and disciplines.

The TSP shows integrated development teams how to
use quality processes to build superior products.

The PSPrrSP data can be used to
manage development projects

* improve the development process
illuminate important software engineering issues

SEW22 Proceedings

Measuring Impacts of Software Process Maturity in a Production
Environment

by
Frank McGany, Steve Burke, Bill Decker

Computer Sciences Corporation
fincgarry@csc. corn

(30 1-794-2450)

(Fax- 301 -794-8380)

Abstract

For over 20 years, the System Engineering and Analysis Support (SEAS) Center has been supporting
NASA in the deveIopment of Mission Operations and Data Systems software. During that time, there
have been numerous studies and activities designed to measure and analyze the quality of software
products as well as the technologies and processes used to produce those products. This paper
describes the approach, activities, data, and early results of studies attempting to more generally
determine the impact that software processes have on the end item software products. The paper
describes the approach to identifying project data for both the product and process and describes one
aspect of the series of studies being carried out; the results of analyzing the relationship between
project quality and the corresponding process ratings as defined by the Software Engineering Institute
(SEI) in their Capability Maturity Model (CMM).

The studies have taken place within CSCISEAS Center where software systems are developed and
maintained in support of NASA flight projects. The projects have ranged in size fiom 10 KDSI
(thousand delivered source instructions) to over 700 KDSI and the applications have specifically been
for mission support activities; which include systems for control center operations, data processing
activities, command and control and flight dynamics disciplines.

In order to carry out this analysis, over 90 software projects were analyzed where information was
available characterizing both the end software product as well as the methods and general processes
used to produce that product. Defect data, effort, cycle time, and size were some of the product
measures examined. CMM Key Process Area (KPA) ratings fiom Software Capabiity Evaluations
(SCEs) and Software Process Assessments (SPAS), In-Progress Process Audits (IPPAs), Flight
Dynamics Subjective Evaluation Forms (SEFs), and project history reports were some of the measures
and information examined representing the process of the software.

This particular study analyzed the potential impact that the CMM Maturity Level 2 and 3 KPAs had on
product defect rates, productivity, cycle time, and effort variance. Also analyzed was how these four
product measures changed over time. The study showed:

1. There was not a sigdicant correlation between quantified process maturity and the four product
measures (for those projects with detailed CMM scores)

SEW22 Proceedings 193 SEL-97-003

2. Software productivity and software defect rates improved mnsistently over the 14 year period;
independent of software process activities based on CMM iiprovements.

3. Software development cycle time and software effort estimation improved significantly for the
SEAS Center after the start of process improvement activities based on CMM (for 1 class of
systems).

1. Background and Introduction

Although it is assumed that there are processes which will improve quality and decrease cost for
particular applications, there is not common agreement as to which processes are effective and which
processes are the most important. This is true even within a single small specific domain. The CMM
(Reference 1) defines 18 general attributes of presumably good software development practices
whereby the more of these processes that are applied, the less risk there is in having a failed project.
There have been several studies carried out in an attempt to verify the assumption that organizations
which have improved their maturity of process have improved the quality of their software (References
2,4, 5). Unfortunately, there is not a large number of such studies and even the ones that exist often
rely on an extremely limited amount of empirical evidence which relate the process used to the product
generated. Because of the limited amount of available empirical data, subjective surveys are used to
gain insight into the effectiveness of improving process maturity (e.g. Reference 3).

1.1 Goals Of The Study Series

Although each project or organization may have their own spwic goal or measure of improvement, for
this study four general attributes of good software are defined:

1. Productivity (as defined by staff effort per unit of s o h e)

2. Quality (as defined by defect rates)

3. Cycle time (total time required &om project start to delivery) normalized by size

4. Effort variance (ability to estimate effort as close to actual effort as possible)

Some of the challenges that previous empirical studies have prerented include:
To what degree can software process be measured consistently ?
To what degree are successful processes from one production project applicable to another project?
If certain processes are successfid with a project, will they be su~cessful on another project?
Can the impacts of specific software processes be quantifiably measured? Which practices are most
beneficial in improving the sohare product?

The goal of the ongoing series of studies at CSC is to determine which process characteristics are
beneficial to which class of projects (and which are beneficial to all software projects) By identifjing
the most appropriate processes (as measured by its impact on the product), the organization will be able
to consistently produce more cost effective software and should be able to select those processes which
will are most appropriate for specific project goals.

The data used to carry out these studies include detailed project product data (cost, size, defects, cycle
time, etc.) and project process data (KPA ratings, Subjective Ekaluation Form data, internal audit
results using standard processes as benchmarks, and IS0 audit results).

SEW22 Proceedings

1.2 General Approach To Addressing Questions In This Study

The SEAS Center has produced a large number of software systems over the past 10 to 15 years and
most of these projects have captured detailed product data and many projects also recorded process
information from multiple sources.

This particular study uses the CMM data (inclurliig all KPAs for Levels 2 and 3) as the benchmark of
process quality. The data for this study was derived from measures which were determined by both
independent auditors (SCEs) as well as internal auditors (SPAS). SEAS projects were rigorously
audited against the CMM benchmark to derive specific process ratings for the KPAs for multiple
projects. Results of CMM audits include an assessment of the organization as a whole (as represented
by a sample set of projects) and an assessment of the individual projects which were used to represent
the organization. Each of the KPAs is rated as not satisfied, partially satisfied, or satisfied for the
organization as a whole and for each of the projects.

Over the period of time where the CMM process rating has been used on SEAS, a series of projects
underwent detailed auditing to assign ratings for all 13 WAS for all sampled pr~jects. This information
was used to attempt to make the determination of the relation between higher process maturity ratings
and the quality of sohare product. The analysis looked at 3 aspects of the projects including:

1. For projects with detailed CMM ratings, what is the relation between process maturity and product
quality? This analysis looked only at projects which received detailed CMM ratings and also had
accurate product data.

2. Independent of process ratings, what is the trend of key product measures over time for all projects
developed at the Center; including the 7 years prior to any activity with CMM assessments?

3. Is there any difference between improvement rates prior to CMM activities and after CMM
activities?

2. Data and Information

2. I Product Measures Collected By SEAS

Over 90 SEAS projects are used in these studies as a baseline and for analysis of trends. The sources
of the data were standard SEAS data collection forms including Project Closeout Forms (PCFs),
Quarterly Summary Forms (QSFs), defect reports, routine contract accounting data, and data obtained
directly fiom project managers.

Table 1 shows a sample of key metrics (estimated and actual effort in staffmonths, start date, end date,
project cycle time in weeks, total errors found in testing, and size in Weighted Delivered Source
Instructions PSI)) for projects involved in this study.

SEW22 Proceedings

The definitions of the key measures are given below:

Effort - Staff months spent fiom project start (start of software specs) to delivery to operations; all
roles (managers, developers, testers, QA, CM) and all phases (requirements, design, code, and test) are
included with a single significant exception: Approximately hal'of the projects included in this study
did not archive the system engineering and requirements definition effort because this work was done by
another organization. The effect of this difference is discussed ater.

Size - Measured in delivered source instructions PSI), that is, non-comment, non-blank source code
records.

Weighted size - Total new DSI plus 25 % of total reused DSI

Reuse - Reused code is code that is reused verbatim plus code r.eused with less than 25% of the code
changed.

Defects -Number of errors found by independent testers before delivery that require a change to the
executable code; defects do not include unit test or errors in documentation

2.2 Product Measures Used In This Study

This study examines the following four derived measure in debl:

Cycle time - Number of calendar weeks from project start to delivery normalized by size.

Productivity - Weighted DSI per staff month for a project

SEW22 Proceedings 196

Effort variance - Difference between actual total effort and estimatd total effort (absolute value)
divided by estimated total effort,

Defect Rate - The number of defects normalized by weighted KDSI.

2.3 Process Measures Collected By SEAS:

Process information for SEAS projects is available fiom multiple sources.
Results of CMM based SPAS and SCEs
Detailed internal audit results canied out by independent Quality Assurance Office (QAO) and
recording process data in the Process Assurance Cycle (PAC)
Subjective Evaluation Forms (available from many of the Flight Dynamics projects)
Post development reports which capture process information

* Software Engineering study reports (such as Software Engineering Laboratory reports)

2.4 CMM-Based Process Measures Used In This Study

SEAS has extensive experience with CMM based evaluations. Seven projects were rated against the
CMM benchmark during a SEAS-wide CMM SPA in April, 1991. Eleven different projects had
independent CMM based software process audits between 1992 and 1994. Four projects were rated
against the CMM benchmark in a SEAS-wide SCE in February, 1996. Four projects were rated against
a SEAS-wide SCE in November of 1997.

The SPAS and SCEs rated the projects on their compliance with CMM U A s . The number of activities
in a KPA that a project complied with was recorded along with the total number of activities in a KPA.
If all activities were complied with, that project was rated fblly satisfied in that KPA, if more than half of
the activities but less than all of them were complied with, the project was rated partially satisfied. If
less than half of the KPA activities were complied with, then a non-satisfied rating was given.

An overall measure of process maturity and conformance ('CMM score') was computed for each
project based on CMM SPA or SCE ratings. For each KPA assessed, a score of 3 was given if the
project fblly satisfied the KPA, 2 was given for partial satisfaction, and 1 was given otherwise. If a
project was assessed on 12 KPAs, the project could receive a maximum score of 36. The project's raw
point score is scaled against its potential maximum score to a range of 1 to 3. If a project scored 30
fiom an assessment of 12 KPAs, then its scaled CMM score is 30112 or 2.5. Although the CMM level
ratings are computed differently, the scale range of 1 to 3 was chosen to simulate the 3 CMM levels an
organization is typically rated against.

Some projects were only assessedlevaluated on a subset of CMM Level 2 and 3 KPAs. Some early
SPAs/SCEs were done using the older (first) version of the CMM - which had a different number of
WAS.

Table 2 shows sample projects with ratings for each project by KPA. The earlier CMM version used in
the 1991 S P b had different definitions for KPAs so that these earlier ratings had to be mapped into the
current KPA definitions. The review of this mapping is still ongoing.

SEW22 Proceedings

Table 2 - CMM SPA and SCE Scores

2.5 Data Validation and Elimination

PI2

P13

PI4

PI5

The software product measurements as well as the CMM benchmark data went through a data
validation process. Some product measurements were suspect as to their validity and therefore those
projects were eliminated from the study. Other projects had product measurements but no CMM
benchmark data. Figure 1 below shows that out of 95 SEAS projects examined, only 15 had both valid
product measurements and CMM benchmark data. Over 70 had valid measurements but no CMM data.
The six projects with CMM benchmark data but suspect product measures are not used in this study.

SEW22 Proceedings

NS

P S S

S S

S

PS

S

PS

PS

S

PS

PS

S

S

PS

NS

S

P S

NS

-
S

-

PS

PS

NS

NS

S

S

-
S

P S P S - - N S S

--

-
S

-

PS

S

PS

PS

S

S

PS

S

S

NS

1.70

2.76

2.35

2.16

I CM M scores AND validated I 15 projects

Figure 1. Data Validation and Elimination Was Applied Across 95 Projects.

2.6 Assumptions Used In the Study

This series of studies attempts to determine the correlation between process ratings as defined by the
§El or other process measuring scheme and the quality of the end product as measured by the product
measures defined earlier. There are numerous factors which impact the outcome of a project including:

Experience and capability of the personnel
e Problem domain complexity
s Requirements stability
e Environment (and its constraints)
s Available technology and its complexity

The authors realize the numerous factors that influence the quality and success of a s o h a r e project,
but several assumptions are being made for this one particular analysis of how process maturity may
impact process.

1. Personnel are random and their capabilities were not the dominant factor in differences.

2. Projects were grouped into 2 domains. This division was employed because projects in Domaim 2
effort data did not archive system engineering and requirements definition effort since this work was
performed by another organization.

3. It is assumed that the requirements stability was similar for all projects. An analysis of one do
requirements changes as documented in the project history reports show the number of changes
decreasing from the mid 1980s to the present, but there were still a few late requirements Ghanges
that caused major system changes in present projects. Therefore, the impact of requirement changes
is still relatively high as well as constant (i.e., constantly high).

4. SCWSPA teams produce consistent results with no si@cant bias.

5. The application domains and rrequirements had no significant increase in complwdty. A measure of
attitude control sub-system complexity for the satellites supported during the second half ofthe
1980's and the 1990's show& no siipifimt increase in complexity.

SEW22 Proceedings 199 SEL-97-003

3. Analysis

Two approaches were used to analyze the impact of process on products measures. The first performed
a direct correlation analysis of the product and process measures. The second approach looked at
changes in product measures over the time period immediately before and after the process
benchmarking activities began.

3. I Correlating CMM Score to Product Measures

This approach uses 15 projects for which the most complete process and product information is
available. In this approach, no attempt is made to use the information which rated the organization as a
whole, only the specific project data was used. Correlations (e2) for CMM score versus each of the
product measures were derived and are shown in Table 3. Figure 2 shows one example of the scatter
plots, CMM score versus defect rate.

Table 3 - Process vs. Product Measure Correlations

While the correlation analysis indicated the expected trends (e.g , higher CMM score associated lower
defect rate) none of the correlations are significant.

CMM Score

Figure 2. Defect Rate Versus CMM Scc-re for 15 Projects.

SEW22 Proceedings

3.2 Effect Of Process Benchmarking Over Time

The second approach grouped all 89 projects with valid product data into two application domains. A
yearly average of all projects active in that year was derived for the four measures of productivity,
defect rate, cycle time, and dfon variance. Each series of yearly averages reflects the product
performance of the organization as a whole over the dimension of time. The time ranged &om 1984 to
the present (1 997). CMM benchmarking improvement activities were not started until 1991.
Therefore, we have a good sample set of about six to seven years prior to the benchmarking activities
that can serve as a baseline.

3.2.1 Product Measure Trends Over Time

The trends for productivity and quality show a steady relatively linear improvement across the whole 13
to 14 year time span (the example in Figure 3 shows defect rate). The correlations are very good for
this set of data with values greater than 0.6 for productivity and defect rate for both domains (Table 4).

Year Project Active Domain 2

Figure 3. Yearly Average Defect Rate for Domains 1 and 2

Table 4 - Time Vs. Product Measures Correlations and Yearly Improvements

Effort Variance 1 0.74 1 5.9% I 0.60 1 -14.7%

SEW22 Proceedings 20 1 SEL-97-003

The trends for cycle time and effort variance had mixed results over the 111 time span and across
Domains. The cycle time trend had very weak correlations across the fill time span for both domains.
The effort variance trend had good correlations for both domains. However, Domain 2's trend showed
a retrogression in estimation ability. That is , the variation was increasing about 15% per year as shown
in Figure 4. It is currently not clear what the real cause of this retrogression is.

Domain 1 RA2 = 0.74

Domain 2 RA2 = .6 Year Project Active

Figure 4. Yearly Average Effort Variance for Both Domains.

3.2.2 Impact of Benchmarking Activities on Product Measures Over Time

The final analysis presented in this study analyzed two time periods. The 1984 to 1990 time period was
compared to the 1991 to 1997 time period. The CSCISEAS Center began CMM benchmarking
improvement activities in 1991 and has continued them up to the present. A noticeable change in the
slopes across the two time periods could be interpreted as a bcnefit resulting from benchmarking
improvement activities.

As shown in Figure 5 and Table 5 below, there is no significant change in slope across the two time
periods for productivity and defect rate.

SEW22 Proceedings

Year Project Active

Figure 5. Yearly Average Defect Rate in Two Time Periods.

Table 5. Slopes and e Periods.

For cycle time and effort variance, however, Domain 1 did show a positive turnaround (i.e.,
improvement) during the benchmarking improvement activity time period. Figure 6 shows a complete
change in the sign of the slope of the rate of change of cycle time for Domain 1. Domain 2 showed no
discernible change. Figure 7 shows a similar reversal for the Domain 2 effort variance product
measurement.

SEW22 Proceedings

A Prior to Benchmarking Benchmarking

5
9

4
C
Y 3
= 2
I
e 1

0 i
m 1 8

e Year Project Active

Figure 6, Changing Trend of Domain 1 Cycle Time.

A Prior to Benchmarking Benchmarking

Year Project Active

Figure 7. Changing Trend of Domain 1 Effort Variance.

4. Results and Implications

A conscious attempt was made to gather valid empirical data to determine the quantifiable impacts
process improvement benchmarking activities have on product measures. An analysis was performed
on a set of data with a sufficiently long prior set of baseline data in an attempt to filter out the impact
time by itself may have on product measures. Improvement in productivity and defect rate has been
consistent for the past 14 years (1984-1997). The benchmark ng activities during the second half of the
14 year period did not have a perceptible impact on these product measures. The summary results from
this single study are:

e Productivity increased at a consistent rate over the 14 years in which valid data was available. The
rate of increase was approximately 6% per year.

SEW22 Proceedings 204 SEL-97-003

c Defect rate decreased at a consistent rate of 5% per year for all 14. years.

Compared to the time prior to the start of activities, no significant change in improvement rates
were noticed after "process benchmarking" activities started.

Significant changes were noticed in one domain for cycle time and effort variance after
benchmarking activities started.

Benchmarking activities showed a negative relation with effort variance in one domain.

Combining large numbers of projects for study could be misleading unless specific domain
characteristics are known.

The observed minimal impact of process maturity on product measures could have alternative
explanations such as:

The measure of process maturity used by this study (a composite of numeric values for degree of
satisfaction of each KPA) was not valid or accurate.

The sample set of only 15 projects with both process and product measures was too small andlor
not representative of the organization.

CMM ratings may be more indicative of 'organization' maturity as opposed to 'project' maturity as
used in this study.

SCE teams have matured significantly over time and produce more accurate and consistent ratings
in 1997 than in 1991.

Changes in the complexity of projects directly affected the product measures.

The study period was too long since the CMM approach has changed between 199 1 and 1997.

* Technology changes have overwhelmed the impacts inherent in process changes.

This one study has only taken a single narrow view of analyzing the impacts of software process
characteristics on the end software product. There certainly is no evidence that increased maturity
ratings do not favorably impact the software product; but there is evidence that the analysis of software
process requires many additional empirical studies and a much more thorough analysis.

There are several additional implications that the SEAS Center is pursuing:

1. The maturity rating offered by the CMM's I8 Key Process Areas (KPAs) may be incomplete,
d i c u l t to quantie, or possibly misleading. Additional process measurement schemes must be
analyzed.

2. Without accurate product measures (such as productivity, defect rates, cycle times) being captured
along with process characteristics, it will be extremely difficult to verify the value and accuracy of
such process benchmarks as the CMM.

3. Without such studies as SEAS is pursuing, process benchmarks (such as the CMM) cannot be self
correcting or self improving. There must be such empirical analysis to justify enhancement or
change to evolving process benchmarks.

4. Measuring quality (or maturity) of software processes is extremely difficult; in fact, capturing
process characteristics quantifiably may be a much more immature science than is commonly
assumed.

SEW22 Proceedings

5. Future Work

The SEAS Center has accumulated a significant amount of sokare process data and associated
product data; and the Center is continuing to collect this information on new and active projects. The
long term plan is to effectively implement improvement activities through the selective adoption of the
most appropriate set of processes and technologies. Only by measuring and evaluating the effects that
various process characteristics have on the end product, can we better understand the most appropriate
changes to implement in the specific environment. Additionaliy, through the continual measurement and
evaluation of process characteristics some determination can be made as to which processes are more
generically applicable and which are domain specific; this insight will benefit a broader spectrum of
development within the software engineering community.

Several parallel studies are cwrently active within the SEAS Center and several additional ones are
planned:

Analyze additional process measures (other than CMM benchmarking data) to determine impacts on
product.

Analyze CMM benchmarking data to determine consistency of process rankings.

Investigate product measure impacts of individual process characteristics. (e.g., Do we get more
payback fiom training or configuration management?)

* Determine if IS0 9001 benchmarking activities are quantifiable and usable as process measures.

Refine monitoring of process and product data on all projects; refine mechanisms for ensuring
validity.

e Compare with larger domains to determine consistency of findings in other CSC domains.

References:
1. M. Paulk, et al., "Capability Maturity Model Version 1.1" , IEEE Software, July 1993.

2. J.G. Brodman and D. Johnson, " Return on Investment ftorz Software Process Improvement as
Measured by U. S. Industry," Crosstalk, Apr. 1996 (pp. 23-28 I.

3. J.D. Herbsleb and D.R. Goldenson, "A Systematic Survey of CMM Experience and Results,"
Proceedings ICSE 18, IEEE Computer Society Press, Los AkJnitos, Calif., 1996.

4. P. Lawlis, R. Flowe, and J. Thordahl, " A Correlation Study of the CMM and Software Development
Performance," Crosstalk, Sept., 1995.

5. M. Diaz, J. Sligo, " How Software Process Improvement Helped Motorolay', IEEE Software,
September 1997.

SEW22 Proceedings

Measuring Impacts of Software
Process Maturity in a Production

Environment

December 3,9997

Frank McGany
Steve Burke
Bill Decker

Computer Sciences Corporation
SEAS Center

Common Concepts of Software Process

m Process used to develop software will significantly influence
software product
- Inspections will result in lower defect rates
- Controlled standards will result in less rework

a There is a set of Good, Better, and Best Process characteristics
(at least a set of defined benchmarks representing mature processes)
- CMM (Levels 2 through 5)
- IS0 9000

If an organization identifies and adopts appropriate processes, it
becomes a more mature organization as measured by benchmarks
such as CMM.

m Likelihood that an organization will produce better, more reliable
software is higher as maturity of its process increases
- Increase productivity
- Decrease defect rates

SEW22 Proceedings

Goals of This Study

e Determine trends over time of key product measures
(Productivity, defect rate, cycle time, predictability variance)
- Will defect rates decrease over time even when my process maturity

does not change?
a Determine impacts that process changes (improvements as

measured by independent benchmarks) have on software
praduct
- Does the organization produce better software when it's maturity

increases?
e Identify which process characteristics are most important to

organization to drive product improvement
- Is training more important than CM?

Study Environment
(CSCISEAS Center)

a Approximately 1000 professionals supporting NASA
- 35 to 50 percent software development and maintenance

e Projects
- Size 5,000 SLOC to 1,000,000 SLOC (typically 100,000 SLOC)
- Effort 1 sy to 75 sy (typically 25 to 35 sy)
- Third-generation language (C, C++, Ada, F3RTRAN)

Application
- NASA mission support

n Command and control
B Data processing
n Flight dynamics
B Simulation and modeling

a Process (CSC view):
- Even before 1990, SEAS had a good sof tw~e process in place

B Detailed written standards (SSDM)
Cons~stent, controlled process existed

SEW22 Proceedings

Source of Data

a Data was accumulated from 1984 through 1997
a Approximately 90 projects have consistent, relatively complete data

(projects with questionable data were discarded)
a All data was collected during project performance (no data

produced after the fact)
- Product data included size(new, reused, COTS), dates, language, phases,

effort, defects, (as well as other product parameters not used for this study)
a Process information derived from detailed SCEs and SPAs

- SEAS underwent detailed independent SCEs in 1991, 1996,1997, (Jan. '98)
- SEAS underwent independent SPAs in 1991,1992 (4), 1993 (5), 1994(7)
- 15 of 90 projects were involved in detailed process analysis

(samplings from other projects periodically took place during the SCEs and
SPAs)

a All data is reviewed, QA'd, and verified as it is provided to the
independent measurement group
- Consistent set of definitions and counting processes provided to project

personnel (e.g ., line of code)

Definitions for Product Information*

Size - Amount of delivered source instructions (DSI). Categories are
new DSI and reused DSI (COTS is also tracked)
Weighted DSI - Total new DSI plus 25 % of total reused DSI
Effort - Staff months spent from project start (start of s/w specs) to
delivery to operations; all activities (managers, developers, testers, QA,
CM) and all phases (requirements, design, code, and test) included.
Defects - Number of errors found by independent testers before
delivery that require a change to the executable code; defects do not
include unit test or errors in documentation

0 Productivity - Weighted DSI per staff month for a project
Cycle time - Number of calendar weeks from project start to delivery

(normalized by size)
a Effort variance - difference between actual total effort and estimated

total effort (absolute value) divided by estimated total effort

"Definitions consistently applied to all projects

SEW22 Proceedings 209

Definitions for Process Information

e CMM score (for project) - Score that quaqtifies compliance of a
project to CMM level 2 and 3 key process areas (13 KPAs)
- Based on SPA and SCE results
- Projects assessedand evaluated as satisfied, partially satisfied, or not

satisfied for each KPA were given a point sc:ore of 1, 0.5, or 0
- Totals for all KPAs then scaled from 1 to 3

e Additional process measures were captured, (but are not
discussed in this report)
- Derived scores using a scale of approximately 35 characteristics, where

ratings were derived jointly between manager and process group
- Internal audit process scores - ratings determined periodically during

project development based on adherence to predefined set of process
characteristics (independent audit)

Data Selection and Eli.mination

I 5 of 95 projects had both CMM and product measures

CMM ecarea, but suspect 6 projesb
product measures

CMM scores AND validated "1 projecb

95 product measures

SEW22 Proceedings

Projects Active per Year

Both Domains Included

40
5 35
3 30
r5 25
s 20

15

0 -
1986 1987 1986 1989 1990 1931 1 m 1933 1994 1995 l9a 1997

Year

3 Views of Project Information

1. Determine correlations of CMM rating and 4
product measures*
- Productivrty
- Defect Rate
- Effort Variance (estimation quality)
- Development Cycle time

2. Determine trends of 4 product measures over
the entire 14 year period (indeperdent of process ratings)

3. Determine trends of 4 product measures before
benchmarking activities vs. trends after
benchmarking activities

" 15 projects had detailed KPA ratings and valid product data

SEW22 Proceedings 212

CMM Score Versus Productivity
(For 15 projects with detailed CMM scores over 7 years)

R' = 0.25 without two exceptions

a 200 -

100 - a A

0 ,
1 5 1 7 1.9 2 1 2.3 2.5 2.7 2.9 3.1

CMM Score

[NO strong correlation between Productivity and CMM .cord

e The two domains have very similar process score fits
No significance lost when combined as single domain (for process)

CMM Score Versus Defect Rate
(For 15 projects with detailed CMM scores over 7 years)

CMM Score

I/No strong correlation between defects and CMM Score 11

SEW22 Proceedings

CMM Score Versus Normalized Cycle Time
(For 15 projects with detailed CMM scores over 7 years)

CMM Score
- -- -- - -- 1 Fair correlation between cycle time and C M I score -1

CMM Score Versus Effort Variance
(For 15 projects with detailed CMM scores over 7 years)

2.1 2.4

CMM Score

2 Outliers removed

SEW22 Proceedings

Productivity Versus Time
(For all 90 projects over 14 years)

Average Productivity for all Projects Active in Year

Domain 2 RA2 = 0.87

800

0 'O0 .-
> 8 0 0
't 500
c)
3 'O0
- 3 0 0

2..
P loo

0

I

Domain I RA2 = 0.72 Year Project Active

Very good correlations between time and productivity
(significant to .003 level)

o Domain 1 improved 6.7 percent per year
o Domain 2 improved 5.8 percent per year

Defect Rate Versus Time
(For all 90 projects covering 14 years)

Average Defect Rate for all Projects Active in Year
Domain 1 RA2 = 0.95

e Domain 1 improved 5.3 percent per year
0 Domain 2 improved 5.6 percent per year

SEW22 Proceedings 21 5

Cycle Time Versus Time
(For all 90 projects covering 14 years)

Average Cycle Time for all Projects ~ c t i v e in Year

Domain I R~ = 0.31

I I I I I

1 984 1986 1 988 1990 1992 1994 1 996 1998

Domain 2 R' = 0.04 Year Project Active

Effort Variance Versus Time
(For all 90 projects covering 14 years)

Average Effort Variance- all Projects Active in Year
Domain 1 RA2 = 0.74

Domain 2 RA2 = .6 Year Project Active

e Domain 1 improved 5.9 percent per year
e Domain 2 regressed 14.7 percent per year

SEW22 Proceedings

Page intentionally left blank

Page intentionally left blank

(def template Class
(slot name

(type SYMBOL)
(default ?NONE))

(multislot attrs)
(mult islot ops)
(mult islot expattrs)
(multislot expops)
(mult islot candidate-key)
(slot is-abstract

(type SYMBOL)
(allowed-symbols yes no)
(default no))

(mult i slot subdiagrams))

(defrule class-err-duplicate-attribute
"The names of all a class' attributes must be distinct"
(declare (salience -10))
?attrl <- (Attribute (name ?a1) (cnae ?c))
?attr2 <- (Attribute (name ?a21 (cname ?c))
(test (and (eq ?a1 ?a2) (neq ?attrl ?attr2)))

=>
(printout t "OODV Error: The class " ?c

" has a duplicated attribute " ?a1 " ." crlf 1)

(defrule attributes-should-be-in-class-attrs
"Attribute should be in the class' attribute list"
(declare (salience 2))
?cls <- (Class (name ?c) (attrs $?blist))
(Attribute (name ?a) (cname ?c))
(test (not (member$?a $?alist)))

=>
(modify ?cls (attrs (insert$ $?alist 1 ?a)))
(printout t "OODV Update: Added attribute "

?C ". ?a
" to attribute list. "
crlf 1)

(defrule class-err-duplicate-attribute-2
"The names of all a class' attributes must be distinct"
(declare (salience -10))
(Class (name ?c)

(attrs $?sublist1 ?a1 $?sublist2 ?a2 $?sublist3))

SEW22 Proceedings

(test (eq ?ai ?a2))
=>

(printout t "OODV Error: The class "
? c
" has a duplicated attribute ?a1 " . " crlf))

SEW22 Proceedings

!A A Verifier for 0

SEW22 Proceedings 329 SE&97-M9

SEW22 Proceedings 330

Our Approach

Hybrid approach:
- we built a verifier which works offline
- independent of OOAlOOD tools
- plan to integrate with Rational Rose
- plan to extend verification of designs based

on UML notation

Verification and Validation

Validation
- through test cases

Verification
- checking correctness of development steps
- requires a formalism

formal semantics of the notations used for 00
design

SEW22 Proceedings

Formal Methods in ndustry

IEEE Workshops
IEEE Conference on Formal
Engineering Methods, Japan 1998
European Conferences and Workshops
NASA Langley Centre's Workshop on
Formal Methods

Current Status of Formal
Methods in Industry

Several formal methods
- 2, VDM, Larch, OBJ3, ...
Tool support
Literature support
Realization of the benefits in industrial
projects

Our Work . . .

OMT notation for 00 design
Z notation for formal semantics
implemented using CLIPS

Features Specified and
Verified

Class structure
Relationships
- aggregation
- association
- generalization
- roles

Event
- event class
- event generalization

State
- transitions

guarded, unguarded

- nested
- generalization
- actions, activities

SEW22 Proceedings

Static (Object

- unique names
- abstract class must have at least one

abstract operation
- consistency check for candidate keys
- cyclic inheritance not permitted
- multiple inheritance ambiguities checked
- recursive aggregation (referential)
- association (semantic dependency)

Dynamic Model

Sequencing of actions and activities
consistency checks on initial and final
states
consistency checks on transitions
- cycles
- automatic transitions
- transition inheritance . . .

SEW22 Proceedings

mplementation of the Verifier

* CLIPS to implement the formal
specifications
- axioms implemented as rules
- schernas implemented using templates
- design information is converted into

assertions (facts)
- verification performed by checking

consistency among rules and facts

About the Verifier

Online verification
- minimal; syntax and (somewhat) type

checking

Offline verification
- all other aspects

Functional Model not included
Proprietary input format designed by
Wasyl Baluta

SEW22 Proceedings

About the Verifier

Approx 40 pages of Z specification
300 rules for 100 explicit consistency
checks
Case Studies:
- Library Management System
- Examples in Rumbaugh's book (Object-

Oriented Modeling and Design, 1991)

Continuing Work

Update semantics to address UML
notation
Update implementation JESS (Java
implementation of CLIPS)
Integrate with Rational Rose

* Code generation (skeleton)
- may work in conjunction with code

generator in Rational Rose

SEW22 Proceedings 336

3cbt33~, 7
Demonstration of a Safety Analysis on a

Complex System*

N. Leveson, L. Alfaro, C. Alvarado, M. Brown,
E.B. Hunt, M. Jaffe, S. Joslyn, D. Pinnel,

J. Reese, J . Samarziya, S. Sandys, A. Shaw, 2. Zabinsky

University of Washington
Seattle, WA 98195

For the past 17 years, Professor Leveson and her graduate students have been
developing a theoretical foundation for safety in complex systems and building a
methodology upon that foundation. The methodology (as described in her book
Sajeware [2]) includes special management structures and procedures, system hazard
analyses, software hazard analysis, requirements modeling and analysis for complete-
ness and safety, special software design techniques including the design of human-
machine interaction, verification, operational feedback, and change analysis.

The Safeware methodology is based on system safety techniques that are extended
to deal with software and humad error. Automation is used to enhance our ability to
cope with complex systems. Identification, classification, and evaluation of hazards is
done using modeling and analysis. To be effective, the models and analysis tools must
consider the hardware, software, and human components in these systems. They also
need to include a variety of analysis techniques and orthogonal approaches: There
exists no single safety analysis or evaluation technique that can handle all aspects
of complex systems. Applying only one or two may make us feel satisfied, but will
produce limited results.

We report here on a demonstration, performed as part of a contract with NASA
Langley Research Center, of the Safeware methodology on the Center-TRACON Au-
tomation System (CTAS) portion of the air traffic control (ATC) system and pro-
cedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal
Radar Approach CONtrol). CTAS is an automated system to assist controllers in
handling arrival trafEc in the DFW area.

Safety is a system property, not a component property, so our safety analysis
considers the entire system and not simply the automated components. Because safety
analysis of a complex system is an interdisciplinary effort, our team included system
engineers, software engineers, human factors experts, and cognitive psychologists.

"This work was partially supported by grants from NASA Langley and NASA Ames.

SEW22 Proceedings 337 SEL-97-OQ3

SYSTEMS
ANALYSIS

SAFETY PROGRAM

. I . SHA and SSHA
I

Operations
Research Simufatlm and Animam N

Modding and F
Analysis

Othertypesof
SF- Analysrs

Human Fadm.E&ation Y s
Othe~mwnt:

T

e d a o n s E
An

Design and construct

I components rr*
Safety Verification

Verification Safety Testing
Software m

1 Operational Analysis
Change Anatysig

Operational Use Incident and accident adysk - . , 1 .

PerieScaW A

Figure 1:

Figure 1 shows our design of a system safety program. Such a process is highly
iterative and includes continual updating of what has been done previously as new
information is gained through the system development process. In order to make the
diagram less cluttered, the backward liiks are not shown, but note that the safety
information system assists in the iteration process. An effective safety information
has been found to rank second only to top management concern about safety in
discriminating between safe and unsafe companies matched on other variables [l].

The center column of Figure 1 shows the standard system engineering tasks while
the right column shows the specid safety tasks and how they interact. We also
performed some operations research modeling and analysis to demonstrate how infor-
mation might be obtained and used to assist in making tradeof& between alternative
system designs.

We can only only provide an overview of the safety assessment and approach in
this paper. Interested readers will find the final project report (containing many more
details) at URL: http://www.cs.washington.edu/projects/safety/www/dfw. The as-
sessment contained the following components:

Preliminary Hazard Identification and Standard Hazard Analyses. A safe
system is one that is free from accidents or unacceptable losses. Accidents result
from hazards, where a hazard is defined as a system state or set of conditions that
can lead to an accident (given certain other, probably uncontrollable or unpredictable
environmental conditions). In safety engineering, any safety assessment starts with
identifyirag and analyzing the system for hazards. Once the hazards are identified,
steps can be taken to eliminate them, reduce their likeliiood, or mitigate their effects.

In addition, some hazard causes can be identified and eliminated or controlled.
Although it is usually impossible to anticipate all potential causes of hazards, obtain-
ing more information about them usually allows greater protection to be provided
with fewer trade&, especially if the hazards are identified early in the design phase.
The hazards and the hazard causes can be used to write system safety requirements
and constraints.

We performed a standard PHA using the DFW TRACON as an example, and
wrote some preliminary safety requirements and constraints for CTAS and for air
traffic control in general. As part of the PHA, we produced parts of a fault tree for
TRACON operations that are related to the operation of CTAS. The information we
generated was used in the demonstration of our analysis techniques.

Modeling. In order to do more than an evaluation of only the high-level ATC con-
cept, a detailed specification or model of the behavior of the system components is
required. A high-level design may appear to be safe while the detailed design contains
hazardous component interactions. The hazards and design constraints identified in
the first step must be traced to the system components, and assurance must be pro-
vided that the hazards have been eliminated or mitigated and the design constraints
satisfied. Although theoretically this type of process codd be performed on the de-
tailed design of the system (including code if the component is a computer), the only

SEW22 Proceedings 339 SEL-97-003

prxtical a p p r o d is to p r o ~ d e hierwdied models and break the process up into
steps. We built a statebabsed, b l d b m model of the components of the DFW T M -
CON easing a %meage c d l d SpwTRM-U that is redable a d undemtmdable with
minimd trdeiang but Baas a f o m d foundation that a%lows mdysis. Fip9.e: 2 shows a
smd1 piece of the model.

Simdation md A~mation. Ow models are exmu table and we have Gsudizai.tican
tools to bu;dld mimations appropriate to the model's tlona& (in this case, air tr&c
control). Our IB toolkit is an iP4eedace md vhudization builder that dlows users to
build paphied uwr i&edaces a d mimations of Sg=TRM-W models quickly a d
ea9ily. Once the papbied d m i ~ of the mimation is comp$et&, id em be attached
to a SpecTW-rn model to control the model's execution, display the execution
outputs, or display iaterand states or actions of the modd d u ~ n g execution.

As an exmple, we have created an drnation that shows the behavior of aircr&
within the TMCON areas as the forwad model is stepped through its states for a,

given set of inputs. This animation shows the controlled airspace and the aircraft in
it, a timeline containing each aircraft's estimated time to landing, and an altitude
indicator for the aircraft. As the model execution proceeds, the designer can see the
aircraft moving along their projected flightpaths. During the simulated execution, the
designer may click on parts of the animated display to get selected aircraft information
such as speed, assigned runway, and assigned landing sequence number.

Controller Task Analysis. Humans form an important part of the ATC system,
and they cannot be ignored in any safety analysis. We model operator procedures
in the same language (SpecTRM-RL) as the other parts of the ATC system in order
to allow executing and analyzing the ATC model as a whole. However, we use our
visualization tools to display the information for human review in a more appropriate
format. Figure 3 shows part of the task performed during a handoff procedure.
This new language is used to display the nominal tasks that the controllers and pilots
perform. We appreciate that humans do not necessarily perform tasks in the expected
way. However, the first step in a safety analysis is to determine whether the nominal
or expected behavior is safe. The implications of human error or deviations from
nominal behavior is investigated in our other analyses. For the demonstration of the
methodology, we built animations of the controller task models, including one that
indicates through color coding the current cognitive and perceptual load on the pilot.

Completeness and Consistency Analysis. Accidents involving computers can
usually be traced to incompleteness or other errors in the software requirements spec-
ification, not coding errors [3, 21. Once a blackbox model of the required system
behavior has been built, the model can be evaluated as to whether it satisfies design
criteria that are known to minimize errors and accidents. We have developed such a
set of criteria to identify missing, incorrect, and ambiguous requirements related to
safety in process control systems. These criteria include much more than the mathe-
matical completeness that is checkable on most formal models, although we can check
this too.

State Machine Hazard Analysis. Hazard analysis techniques that use backward
search start with a hazardous state and determine the events that could lead to
this state. The analysis starts from hazards identified during the preliminary hazard
analysis and identifies their precursors. The information derived about both normal
and failure behavior can be used to redesign the system to prevent or minimize the
probability of the hazard. We have found that the backward reachability graph
explodes quickly for complex systems. Many of the branches are physically impossible
or are less interesting than others, so we currently implement the process by having
the analyst start the model in a hazardous state and work back one step at a time,
using our backward simulation capability. At each step, the analyst prunes the tree
of irrelevant branches and decides which branch to follow next.

SEW22 Proceedings

Deviation Analysis. Forward search techniques start with an initiating event and
trace it forward in time. Applying a Failure Modes and Effects Criticality Analysis
(FMECA), HAZOP, or any other forward analysis technique to software is compli-
cated by the large number of ways that computers can contribute to system hazards.
In addition, when a forward analysis traces a failure to a computer component, it may
be difficult to determine what affect the failure will have on the software behavior and
outputs, particularly before the software has been implemented. We solve this prob
lem using a new forward analysis technique for software called Software Deviation
Analysis (SDA) .

SDA is based on the underlying assumption that many accidents are the result of
deviations in system variables. A deviation is the difference between the actual and
correct values. SDA can determine whether a hazardous software behavior (usually
an output) can result from a class of input deviations, such as measured aircraft speed
too low (the measured or assumed speed is less than the actual speed). SDA is a way
to evaluate system components for robustness (in the security community this is often
called survivability) or how they will behave in an imperfect environment.

Human Error Analysis. Humans are and will continue to be for quite some time
an important part of any air traffic control system. Therefore, an effective safety
program cannot just look at the automated parts of the system but must consider
the impact of human error on the system and the effect of system design on human
error. Increased automation in complex systems has led to changes in the human
controller's role and to new types of technology-induced human error. We approach
this problem in two ways.

The first is a method we are developing for using our formal system models to
detect error-prone automation features early in the development process while signif-
icant changes can still be made. We have taken what has been learned by cognitive
psychologists from past accidents, incidents and simulator studies, and identified a
set of automation design flaws that are likely to induce errors in humans that interact
with the automation. The information produced from this mode conf.usion analysis
can be used to redesign the automation to take out the error-inducing features or to
design better human-machine interfaces, operator procedures, and training programs.

Our second approach to safety analysis of human error is a more traditional form
of human factors analysis. For this DFW CTAS study, we first looked at the types of
human errors in the current ATC system and then performed a comparative analysis
of the controller's job before and after CTAS. Potential safety issues were identified
involving decreased situation awareness, increased vigilance requirements, and skills
degradation. Normally this step would be followed by running experiments to deter-
mine the effect of the changes on human performance with respect to these identified
safety issues. However, the time limitations of this study did not allow us to perform
this final step. Instead, we described some relevant hypotheses and an experimental
paradigm for evaluating these hypotheses.

SEW22 Proceedings

Operations Research Modeling and Analyses. Safety is not the only goal of an
air traffic control system. The systems engineering process involves making tradeoffs
between various goals such as safety, throughput, and he1 efficiency. If a proposed
upgrade turns out to degrade safety significantly while providing only minimal benefit
in terms of throughput or fuel economy, then it may not be worthwhile to implement
it or an alternative design may provide a better res-llt. We used a discrete-event
simulation to compare the total delay and fuel burn for five different scheduling
algorithms that may be used to control aircraft from arrival at an enroute ATC
center to their arrival at a feeder gate into the TRACON.

The scheduling algorithms ranged from a basic algorithm that does not allow
any passing or altitude overtakes and simply delays aircraft, to a more sophisticated
scheduling algorithm that allows passing and introduces a freeze horizon. The schedul-
ing algorithms may be viewed as having different levels of safety. For example, two of
the five scheduling algorithms seek the path for each aircraft that minimizes fuel burn,
even though this path may result in two or more advisories from the controller. The
other three scheduling algorithms minimize the number of advisories issued to reduce
the number of communications between controller and pilot and thereby minimize an
important causal factor in accidents.

The models can provide information such as the amount of delay, or the amount
of fuel consumed for various air traffic profiles operating under different scheduling
algorithms. We showed how these models can be use.i for tradeoff studies, in order
to evaluate proposed scheduling algorithms in CTAS.

Intent Specifications. The types of formal modeling and hazard analysis described
so far provide a comprehensive assessment methodology. The most effective way
to create a safe system, however, is to build safety in from the beginning. The
preliminary hazard analysis should start a t the earliest concept formation stages
of system development and the information should be used to guide the emerging
design. Later, system and subsystem hazard analysis :nformation is used to evaluate
the designs and make tradeoff decisions.

Intent specificattons support both (1) general system development and evolution
and (2) system safety analysis. The design rationale and other information that
is normally lost during development are preserved in a single, logically structured
document whose design is based on fundamental principles of human problem solving.
Safety-related requirements and design constraints arc traced from the highest levels
down through system design, component design, ant1 into hardware schematics or
software code. An important feature of intent specifications is that they integrate
formal and informal specifications and enhance their interaction.

We did not have the information necessary to build a complete intent specifi-
cation for CTAS. Instead, we built a sample intent specification for TCAS, an air-
borne collision avoidance system with similar aircraft tracking functions. The sample
TCAS system specification (800 pages long) can be viewed at the following URL:
http://www.cs.washington.edu/research/projects/safety/~w/intent.ps

SEW22 Proceedings

Other Parts of a Complete Safety Program. We did not perform any safety
testing or evaluation of the actual code, but this would obviously be part of any
complete safety program. During operational use of the system, incident and ac-
cident data would be collected and analyzed along with analysis of any changes or
modifications. Change analysis uses the same procedures as those used during the
original development. Our modular models along with the tracing of safety-related
constraints to the design and code that is part of an intent specification should make
it easier to perform the change analysis. In addition, periodic audits should be made
to ensure that the assumptions underlying the safety analysis (which are recorded in
the intent specification) have not been violated by the natural changes that occur in
any system over time.

Summary

How best to assure safety in complex systems is an open question. We have de-
scribed one approach to achieving this goal that has been demonstrated on several
real systems, including proposed ATC automation upgrades. Safety, however, is not
something that is simply assessed after the fact but must be built into a system.
By identifying safety-related requirements and design constraints early in the devel-
opment process, special design and analysis techniques can be used throughout the
system life cycle to guide safe software development and evolution.

References
[I] Urban Kjellan. Deviations and the Feedback Control of Accidents. in J. Ras-

mussen, K. Duncan, and J. Leplat (eds.) New Technology and Human En-or, pp.
143-156, John Wiley & Sons, 1987.

[2] Nancy G. Leveson. Safeware: System Safety and Computers. Addison- Wesley
Publishing Co., 1995.

131 Robin R. Lutz. Analyzing Software Requirements Errors in Safety-Critical, Em-
bedded Systems. International Symposium on Reqzlarements Engineering, San
Diego, 1992.

SEW22 Proceedings

Demonstration of a Safety Analysis
on a Complex System

Nancy Leveson (CS) UW

Liliana Alfaro (IE) UW Denise Pinnell (CS) UW

Christine Alvarado (CS) Dartmouth Jon Reese (CS) UW

Molly Brown (CS) UW Jeffrey Samarziya (CS) UW

Earl Hunt (Psych) UW Sean Sandys (CS) UW

Matt Jaffe (CS) ERAU Alan Shaw (CS) UW

Susan Joslyn (Psych) UW Zelda Zabinsky (IE) UW

The Problem

Two competing trends in ATC:

- Want to increase throughput

- Want to decrease accident rate

Inevitable that will use more automation.

Will safety increase or decrease?

- Difficult to ensure software quality.

- Shared control causes the most problems.

- Error margins will decrease.

.Traditional approaches do not work well in complex systems.

SEW22 Proceedings

Our Approach

Safeware

- Theoretical foundation

- Complete methodology that spans life cycle

SpecTRM: Set of integrated tools to build complex
control systems.

Requires a multidisciplinary team.

Preliminary Hazard Analysis

* Hazard list

Fault Tree Analysis

* ATC Requirements and Design Constraints

SEW22 Proceedings

Modeling Language

Designed RSML for specifying TCAS II

- Combined specification and modeling language

- Both readable without much training and
formally analyzable.

Used this experience to design SpecTRM-RL

- Enhanced reviewability and readability

- Mode guidance in building models

- Eliminated error-orone features

Executable, black-box specifications

- System components specified only in terms of
outputs and the inputs that trigger them.

- Specify external behavior only - no internal design.

- System behavior is combined behavior of components.

Underlying formal model - RSM
(Requirements State Machine)

SEW22 Proceedings 349

Operator Task Models

To ensure safe and efficient operations, must look at
the interaction between the human controllers and
the computer.

0 Use same underlying formal modeling language.

0 Designed a visual representation more appropriate
for the task modeling.

Can be executed and analyzed along with other parts
of the DFW TRACON model.

Safety Analysis

Completeness and consistency analysis

. Simulation and animation

Operator task analysis

State machine hazard analysis

* Deviation Analysis

SEW22 Proceedings

Safety Analysis (con't.)

Mode Confusion Analysis

* Human Factors Evaluation

* Timing Analysis

OR modeling and analysis

Intent Specifications

* Bridge between disciplines

Support for human problem solving

@ Traceability

Support for safety analyses

0 Integration of formal and informal specifications

Assistance in software evolution

Hierarchical abstraction based on "why" (design rationale)
as well as what and how.

SEW22 Proceedings 35 1 SEL-97-003

Conclusions

a Demonstrated the components of a safety analysis

Safety needs to be built in and not assessed after-the-fact.

Feasible to do for a complex system.

Final report can be found at:

SEW22 Proceedings

Automatic Generation of Test Coverage Analyzers

Sanjeev Aggamd Utpal Bhattacharyya
Department of Computer Science and Engineering

Indian Institute of Technology
Kanpur 208016, INDIA
Email: ska@iitk.ernet.in

Abstract

Software Test Coverage Analyzers are very useful in software testing process.
The development of Test Coverage Analyzers is a labor-intensive and time con-
suming process. This paper describes a generative approach for development of
Test Coverage Analyzers, which can generate test coverage analyzer for a lan-
guage, given the grammar and probe specification. Application experiences have
shown that, a 150 lines (approximately) specification is enough for generating a
Test Caverage Analyzer; and the productivity gain is as much s 2535 times of
the hand coded development.

1 Introduction

Software testing [BeigO] consumes nearly half of the effort required to produce a
working software system. Due to this reason, software development is accompanied
by quality assurance activity, and Software Testing is a critical element of software
quality assurance. Software testing tools, that can reduce the testing time without
reducing the effectiveness of testing, are very much valuable in this context. One of
the very important tools used for testing, is Coverage Analyzer.

2 Test Coverage Analyzers

A Test Coverage Analyzer takes a source program as input, and inserts software
probes into the source code, at certain places, dictated by some coverage meas-
ures [Cor96]. Using these software probes, it monitors the test run of the program
and determines the coverage measures. The ideal places in a program for inserting
probes, are the places, where transfer of control takes place (e.g branch statement,
procedure call, logical conditions etc.), so that traversal of any basic path can be
captured. However, optimal probe insertion techniques available in the literature
[RKC75, Pro82, Aga941, may be used to avoid redundant probe insertion.

SEW22 Proceedings

The basic task of a Test Coverage Analyzer(TCA) is to identify these places. To
accomplish this task, it needs to parse the source program. Thus, the first requirement
is the grammar specification of the source language.

The various phases of a test coverage analyzer perfonn following activities (refer to
Figure 1 for the function4 diagram):

specifications
supporting

instrumented -ce 4-1 a Q
sovrce program compile

PrW- instrumenter

L coverage
executable

test cases statistics and 1 Code I history

Figure 1. Functional Diagram of rest Coverage Analyzer

e Identify productions in the grammar where probe actions are to be inserted.

Put probe actions in the selected productions

e Write supporting modules for the probes and data structures

Normally, these steps are carried out manually. However, our experience with design
of test coverage analyzers for Ada95 and C, shows that, this is the most crucial process
and consumes the maximum amount of time in the dcveloptlbent cycle. We assume
that the reader is familiar with the development of Test Covwage Analyzers (TCA)
hence we do not go into the details.

SEW22 Proceedings

2.1 Program Instrumenter

Figure 2 shows the fnnctiod architecture of Program Instrumenter module. The
basic components of this module are:

instrumented
source

ptogra*

Figure 2: F'unctional Architexture of Program Instrumenter

Source Program Parser , reads the sour- program and provides i n f o d o n re-
garding the beginning and ending of the blocks, and the location of the probes
to be inserted, to the Probe Locator.

Probe Locator constructs block table, and stores the position of the probes in a
table. Structure of the block table is shown below:

Structure of block table

SEW22 Proceedings

depth tabs end line number Type of block begin line number

Instrumenter inserts software probes in the source program, with the help of the
block table and the table storing the probe locations.

A source program is instrumented with three types of p-obes:

probes for monitoring the test run

a probes for coverage reporting, and

0 probes for maintaining the coverage history, if multi-session testing is supported.

3 Generating Test Coverage Analyzer

Our exwrience shows that instrumenting the grammar is the most crucial phase in
the development process, and is carried out manually. Thus, if this phase can be
automated, fast development of TCAs can be achieved. Also, the quality of the
software is better in case of generated softwares. These are the two factors that led
us to a generative approach for Test Coverage Analyzers. The basic philosophy of
our work is to ease the task of the developer, and to minimize programming from
the development process. The tool that generates a Test Coverage Analyzer has been
referred as Generic Test Coverage AnaIyzer(GTCA). Figure 3 shows the functional
diagram of GTCA.

3.1 Design

The design phases of GTCA are same as TCA except a new phase called Grammar in-
strumenter. This phase automates the task of instrumenting the grammar. It consists
of two components

Specification-parser takes input from a probe specification file. The probe spe-
cification file contains the production rules of the constructs for which coverage
statistics are to be generated, and the specification of the probes.

Driver instruments the grammar specification, depending upon the values in the
tables constructed by the Specification parser.

3.2 Architecture of the Specification Parser

The specification parser consists of two modules:

Probe Specification Reader reads the probe specification file, and extracts the
values of the different directives and production symbols. If the specification is
syntactically correct, it provides these information to Spec driver.

SEW22 Proceedings

Probe specifications

I

Instrumented grammar

+
supporting routines

Spec Parser p-41
Continue as in

Figure 1

Figure 3: Functional Architecture of Generic TCA

1
I -
I
I
I

Grarnrnar

for , -
I

source language I

Spec Driver constructs tables and probe databases from the probe specifications.
One of the tables is the Kproduction tablen, which stores the productions to be
instrumented. This table stores the rule number, left hand side, and right hand
side symbols of each of the production rule.

The probe specification may contain three types of probes, namely,

I I
I I
. - - - - - - - - - - - - - - - - - - - A

Driver

,

probes to be put into the instrumented grammar specification,

e probes to be put in the instrumented source program, and

directives to the driver to generate special probes

Spec driver differentiates between these probes through specific GTCA direct-
ives, and stores them in separate files. These files are later used by the driver
module of the 'Grammar Instrumenter' to instrument the grammar specification,
and for generating the supporting modules.

The functional architecture of Specification Parser is shown in Figure 4.

SEW22 Proceedings

prob
specs

production table I=
Figure 4. Functional Architecture of Spec Parser

3.3 Architecture of the Driver

The driver module of the grammar Instrumenter consists of four components:

Grarnmar specification reader: It reads the grammar specification file, and provides
each production rule to the rule comparator. The g r m specification file also
contains information like token declaration, variable declarations etc., apart from
the productions. This information is provided to the instrumenter, in order to
dump them as-it-is(or, with a little bit of custornization) in the instrumented
grammar specification file.

The production rules are supplied in the form ~f two components, viz., left
hand side (Ihs), and right hand side (rhs) of the rule, to the rule comparator.
The lhs is a character string and rhs is a linked list of symbols. If the rule
comparator cannot find any match, the production rule is dumped as-it-is in the
instrumented grammar file. This is done by the iastrumenter.

Rule comparator: It compares each production rule in the grammar specification
with the rules in the probe specification files. 'rhe productions in the probe
specification file have already been stored in tht production table. The rules
in the grammar specidication are processed one rule at a time. If a match is
found, rule comparator provides the rule number ~f the production to the probe

SEW22 Proceedings 358

generator. While comparing the rules, it discards the additional symbols, used
in the probe specification for indicating the places of the probes in a production
rule.

Probe generator: It generates the action part of the productions for which match
has been found in the probe specification file. It uses the values of the directives,
assigned by the user, for generating the action. If no GTCA directive is used
to specify the probes in the probe specification, they are treated as the probes
to be inserted into the instrumented source program. If the production in the
grammar specification file already contains some actions, that is merged with
the generated actions.

Instrumenter: It inserts the actions for the productions in the grammar file, for
which a match is found in the probe specification file, and generates the instru-
mented grammar specification file. For accomplishing this task, it reads probe
database, and uses the information provided by specification reader, rule com-
parator, and the probe generator. It also generates, the supporting routines,
including the makefile and complete source distribution for the generated Test
Coverage Analyzer.

The functional diagram of the Driver is shown in Figure 5.

production

instrumented grammar directives
specification and

supporting modules

Figure 5. Functional Architectureof Driver

SEW22 Proceedings

3.4 Output of GTCA

The output of GTCA comprises of the instrumented g-ammar file, and the complete
source distribution for the language for which the Tet t Coverage Analyzer is to be
developed. GTC A also generates the makefile for this c listribution.

4 Experiences

The effort involved in developing Test Coverage Analyzers was compared by hand
coding test coverage analyzer for C and Ada95 generating from GTCA. The quality
of hand coded TCA and generated TCA was same.

The experimental results show that, using GTCA, one can develop reliable Test Cov~
erage Analyzers at a rate much faster than(about 25 to 35 times) hand coded develop
ment. The probe specification contains minimal information, and are easy to specify.
The specification language (similar to context free grammars) is flexible enough to
incorporate generated and user defined probes effectively.

TCA I No. of I Development I No. of I Development I I (hand coded) I (lines I Period lines Period
code) (code)

1 Ada95 1 4251 i 60 dais i 165 I 2 davs
C

5 Summary

Development of a Test Coverage Analyzer is costly in terms of time and effort.
However, TCAs are very useful in a software testing. This paper describes a gen-
erative approach for Test Coverage Analyzers. The imldernentation results have been
found to be quite promising. The productivity gain is as much as 2535 times of the
hand coded development.

5400

References

[Aga94] Hiralal Agarwal. Dominators, superblocks a ld program coverage. In 21st
ACM SIGPLAN-SIGACT, Symposium on Principles of Prqgramming lan-
guages, pages 26-37, January 1994.

60 days

SEW22 Proceedings

for GTCA
175 2 days

[BejSO] Boris Beizer. Software Testing Techniques. Van Nostrand binhold, New
York, second edition, 1990.

[Cor96] Steve Cornett . Software test coverage analysis. Bullseye testing Technology,
1996. URL http://www.bullseye.com/coverage.html.

[Pro821 Robert L. Probert. Optimal insertion of software probes in well-delimited
programs. IEEE lfnnsactions on Software Engineering, SE8(1):34-42,
January 1982.

[RKC75] C. V. Ramamoorthy, K.H. Kim, and W. T. Chen. Optimal placement of
software monitors aiding systematic testing. IEEE Tmnsactiow an Software
Engineering, SE1(4):403-411, December 1975.

SEW22 Proceedings

Automatic Generation of T& Coverage Analyzers

Sanjeev Aggarwal
Utpd Bhaihdmya

Department of Computer Science and Engineering
Indian Institute of Technology

Kanpur, INDIA
Email: ska@iitk.ernet .in

Test Coverage Analyzers

Instrument the input program

a Monitor the test run and determine coverage

Insert probes where transfer of control takes place

a Needs to parse the program

SEW22 Proceedings

Figure 1. Functional Diagram of Test Coverage Analyzer I

f
Functional Diagram

specifications
specification supporting

routines

1

a Most crucial phase

a Should be automated for fast development and reliability

a GENERATE Test Coverage Analyzers

aource P r w -
program instrumenter

inatrunmted
* source program

I
executable

test cases

- Y

Generate Test Coverage Analyzers

a Specify places where probes need to be inserted

develop tools to process specification and insert probes
Probe specifications

Spec Parser

Grammar Instrumented grammar
for Driver t ___Ic

source language supporting routines

Specification Parser

SEW22 Proceedings

\

pro') -
specs

probe
specification

reader I

driver

-
3P==

__C values

1
of the

directives
I

production table

< Dmpwtmml d C- S- and Enpnnnc. IIT Knpu. INDIA 1

7

Architecture of the Driver

production

t+le

probe
d&e

4
Br=""= - specification z ruk

8pecs reader wpMtor

inatrumenter pmbe generator directives

directives

supporting module

TCA
(hand coded)

No. of
lines

(code)

Experience

Development No. of
-

Period lines

(code) specs
for GTCA -

I 6oday~ 175
1 60 days 1 165

Development
Period

2 days I

SEW22 Proceedings

Conclusions

e Test Coverage Analyzers are costly to develop

e Generative approach is very promising

Productivity gain is as much as 25 times

a Experiments have been done with C and Ada

SEW22 Proceedings

Page intentionally left blank

Page intentionally left blank

Measuring and Evaluating the Stabiity of Maintenance Processes

Norman F. Schneidewind -.-.I ,- ,,/ ;f' :;- /
Code SMJSs

Naval Postgraduate School
Monterey, CA 93943, U.S.A. -

Voice: (408) 656-2719 Y 60b'c/a
Fax : (408) 656-3407

Email: schneidewind@ps.navy.mil

Abstract

In adyzhg the stabiity of a maintenance process, it is important that it not be treated in isolation from
the reliability and risk of deploying the software that result h m applying the process. Furthennore, we need
to consider the &uency of the test effort that is a part of the process and a detennhate of reliabiity and
risk of deployment. Therefore, we were motivated to integrate these fiictors into a unified approach. Our
contribution to maintenance is the integration and measurement of these factors so that the influence of
maintenance actions and test effort on the reliability of the software and the risk of deploying it can be
assessed. We use a safety critical application of National visib'ity - the NASA Space Shuttle - as an
example application of the unified approach.

Our purpose is to define and demonstrate, with a safety critical application of National visibiity -- the
NASA Space Shuttle - the relationships among the following: 1) maintenance actions, 2) refiabiility, 3) test
effort, and 4) risk to the safety of mission and crew of deploying the software after maintenance actions.
These four factors are represented by the following types of metrics:

Maintenance actions: KLOC Change to the Code,

Reliability: Various reliability metrics (e.g., Total Failures, Remaining Fdures, Time to Next Failure),

Test effort: Total Test Time, and

Risk: Remaining Failures and Time to Next Failure risk metrics.

We want to gain insight about the interaction of the maintenance process with software attributes We
reliabiity and we apply these metrics for this purpose. When trends in these metrics over time are fkvorable
(e.g., monotonic increasing reliability, monotonic decreasing test effort), we say the maintenance process
is stable with respect to the software attribute (reliability, test effort). Conversely, when the trends are
unfavorable (e.g., monotonic decreasing reliability, monotonic increasing test effort), we say the process
is unstable. Thus we can fonnally define this concept as follows:

1. Definition of Maintenance Process Stability: If it is desirable that so- atm'bute A increase (decrease)
with time, then maintenance process M is stable with respect to A if A monotonically increases (decreases)
with time t where t is time of release or test time, depending on the nature of A.

SEW22 Proceedings 37 1

2. Definition of Maintenance Process Instability: If it is desirable that software attribute A increase
(decrease) with time, then maintenance process M is unstable with respect to A if A monotonically
decreases (increases) with time t where t is time of release or test time, depending on the nature of A

When neither 1 nor 2 holds, we say that it is inconclusive as to whether M is stable or unstable. As a
practid matter, if we are unable to conclude that a process is stable, we may at least be able to conclude
that it is not unstable.

The use of the Shuttle application is appropriate to illustrate our purpose because it is essentially a large
maintenance project that has been on-going f?om 1983 to the present time. Our contribution to maintenance
is the integration and measurement of these four factors so that the influence of maintenance actions and
test effort on the regab'tlity of the software and the risk of deploying it can be assessed. The use of the
Shuttle example is incidental to this purpose; it is a convenient case to use because of our experience with
this application and the availabiity of data. We define, measure, and demonstrate both long term metrics -
those computed across a chronological sequence of releases - arid short term metrics - those computed
within a single release. The following relationships, using predicted and actual metrics, are discussed and
illustrated:

'I .ATIQIYSBJPS AND M E W

The following relationships are analyzed and metrics are computed over a sequence of releases:

1. Mean T i e to failure (MTTF).

2. Total Failures normalized by KLOC CHANGE to the Code.

3. Total Maintenance Test T i e normalized by KLOC CHANGE to the Code.

4. Remaining Failures normalized by KLOC Change to the Code

5. Time to Next Failure.

6. Remaining Failures Risk Metric.

7. Time to Next Failure Risk Metric.

The following relationships are analyzed and metrics are computed within a given release:

1. Total Maintenance Test Time versus Number of Remaining Failures.

2. Failure Rate versus Total Test Time.

The above relationships can be quantified. However we must also consider whether the hnctionality
and complexity of the software has changed over time because these factors can have an effect on
maintenance performance. There was no quantitative information available concerning increased
functionality. We do know on a qualitative basis that hnctionality and complexity have been increasing over

SEW22 Proceedings 372 SEL-97-003

the life of the software. In a fbture research project we plan to use software complexity metrics in the
maintenance process stability evaluation.

First we give brief descriptions of related work. Then we define the data and the application
environment. This is followed by an analysis of relationships among maintenance, reliability, test effort, and
risk, both long term (i.e., across re1eases)and short term (i.e., within a release). Lastly, conclusions are
made concerning the feasibility of measuring and applying maintenance stability metrics.

A number of useful related maintenance measurement and process projects have been reported in the
literature. Briand, et id, developed a process to characterize soaware maintenance projects p 9 4] . They
present a qualitative and inductive methodology for performing objective project characterizations to
identify maintenance problems and needs. This methodology aids in determining causal links between
maintenance problems and flaws in the maintenance organization and process.

Gefen and Schneberger, developed the hypothesis that maintenance proceeds in three distinct serial
phases: corrective modification, similar to testing; improvement in finction within the original
specifications; and the addition of new applications that go beyond the original specifications [GEF96].
Their results from a single large information system, which they studied in great depth, suggested that
software maintenance is a multi-period process. In the Shuttle maintenance process, in contrast, all three
types of maintenance activities are performed concurrently and are accompanied by continuous testing.

Henry, et al, found a strong correlation between errors corrected per module and the impact of the
software upgrade m 9 4] . T h i s information can be used to rank modules by their upgrade impact during
code inspection in order to find and correct these errors before the software enters the expensive test phase.

Khoshgoftarr et al, used discriminant analysis in each iteration of their project to predict fault prone
modules in the next iteration m 9 6] . This approach provided an advance indication of reliability and the
risk of implementing the next iteration.

Pearse and Oman applied a maintenance metrics index to measure the maintainab'ity of C source code
before and after maintenance activities PEA951. This technique allowed the project engineers to track the
"health" of the code as it was being maintained.

Pigoski and Nelson collected and analyzed metrics on size, trouble reports, change proposals, staffing,
and trouble report and change proposal completion times PIG941. A major benefit of this project was the
use of trends to identifjl the relationship between the productivity of the maintenance organization and
stafEng levels.

Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard 1291,
Standard for Software Maintenance [SNE96]. This project is a good example of how a standard can
provide a basic framework for a process and can be tailored to the characteristics of the project
environment.

Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and schedule with
the objective of focusing management's attention on improvement areas and tracking improvements over
time [STA96]. This approach aided management in deciding whether to include changes in the current

SEW22 Proceedings 393 SEL-97-003

release, with possible schedule slippage, or include the changes in the next release.

Although there are similarities between these projects and our research, our work differs in that we
integrate: 1) maintenance actions, 2) reliability, 3) test effort, and 4) risk to the safety of mission and crew
of deploying the software after maintenance dons , for the purpose of analyzing and evaluating the stability
of the maintenance process.

D A T A A p m o N

We use software maintenance data &om the NASA Space Shuttle, as shown in Table 1, which has two
parts: 1 and 2. This table shows Operational Increments (Ois) of the Shuttle: OLA, ... ,OIQ, covering the
period 1983-1997. An 01 is defined as follows: a software system comprised of modules and configured
fiom a series of builds to meet Shuttle mission functional requirements [SCH97]. For each of the OIs, we
show the release date (the date of reIease by the contractor to NASA), post delivery total Glures, failure
severity, the maintenance change to the code in IUOC, and the time that was used to test the 01. Because
the night software is run continuously, around the clock, in simulation, test, or flight, total test time refers
to continuous execution time from the time of release. For those seven 01s where there was a sufficient
sample size (i.e., total failure count) - OLA, OD, OIC, OID, OIE, OU, a d 010 - to predict software
reliabiity, we show launch date, mission duration, and reliabiiity prediction date. Fortunately for the safety
of the crew and mission, there have been few post delivery failures. Unfortunately, ftom the standpoint of
prediction, there is a sparse set of observed failures 16om which to estimate reliability model parameters.
NevertheIess, predictions were made prior to launch date for 01s with as few as five failures spanning many
months of maintenance and testing. Lastly, three derived quantities are shown: MTTF and Total
Failures/KLOC, where there are at least five failures, and Total Test TimeKLOC.

It would be desirable for the maintenance effort to result i? increasing reliabiiity of software over a
sequence of releases. A graph of this relationship over calendar tine would show maintenance management
whether the long term maintenance effort has been successfb~ as it relates to reliability. In order to measure
whether this is the case, we use both predicted and actual val~es of metrics. Predictions are necessary
because we want to have an estimate of reliability in advance of deploying the software. If the predictions
are favorable, they provide confidence that it is safe (i.e., accqtable risk) to deploy the software. Ifthe
predictions are unfavorable, we may decide to delay deployment and perform additional inspection and
testing. Another reason for making predictions is to assess whether the maintenance process is effective in
improving reliabiity and to do it dciently early during maintenonce to improve the maintenance process.
Actual values show in retrospect whether maintenance actions were s u w f u l in increasing reliability. Also,
we do not want the test effort to be disproportionate to the amount of code that is changed and to the
reliability that is achieved as a result of maintenance actions.

Mean Time to Failure

In the long term, we want Mean T i e to Failure (MTTF) of an 01 to increase over a sequence of 01
releases, indicating increasing reliability. Ideally, it should increase monotonically. Practically, we would

SEW22 Proceedings 374 §EL-97-003

SEW22 Proceedings 375 SEL-97-003

Now:
a Lauincb Date and W a n M a n are shown only where a reliability preciction was made. Predictions were not made for

where the sample size (i.e., Total Failures) was less than five.
b. Failure Count refers to post delivery failures.
c Severity Codes:

1 : Severe Vehicle or Crew Performance Implications.
1 N: Potentially Severity 1 but precluded by established operational prccedures.
2 : Affects Ability to Complete Mission (Not a safety issue).
2N: Potentially Severity 2 but precluded by established operational procxiures.
3 : Workaround Available, Minimal Effect on Procedures.
4 : Insignificant (Paperwork, etc.).

d There were no pre-launch failm on OE. Therefore there was no data for estimating model pm~mctns. Prediction was n
after launch.
- - - -- --

SEW22 Proceedings

look for an increasing trend.

Mean T i e to Fai1ur~Tot.d Test Execution TimdTotal Number of Failures During Test (1)

Total Failures

S i , we want Total Failures(and faults), normalized by KLOC Change in Code, to decrease over
a sequence of 01 releases, indicating that reliab'ity is increasing with respect to code changes. I d d y , it
should decrease monotonidy. Practically, we would look for a decreasing trend.

Total FailuresKLOC=Total Number of Failures During Test/KLOC Change in Code on the 01 (2)

Equations (1) and (2) are plotted in Figure 1 and Figure 2, respectively, against Release Time of 01.
This is the number of months since the release of the OI, using "Q" as the release time of OIA. The 01s are
identified at the bottom of the plots. Both of these plots use actual values. Equation (1) is computed by
dividing Total Test T i e by Totd Failures in Table 1. Equation (2) is computed by dividing Total FaiIures
by KLOC Change in Table 1. Figures 1 and 2 do not provide consistent evidence that there is a long term
increase in reliabiity. These plots would be used by management to assess whether there is long term
stability in the maintenance process (i.e., whether reliability increases monotonically as changes are made
to the code).

Total Maintenance Test Time

In the long tenn, we want the Total Maintenance Test T i e , normalized by KLOC Change in Code,
to decrease over a sequence of 01 releases, indicating that test effort is decreasing with respect to code
changes. Ideally, it should decrease monotonically. Practically, we would look for a decreasing trend.

Total Maintenance Test TimeflKLOC=Total Test T ieKLOC Change in Code on the 01 (3)

Equation (3) is plotted in Figure 3 against Release T i e of 01. This plot uses actual values. Equation
(3) is computed by dividing Total Test T i e by KLOC Change in Code in Table 1. Figure 3 does not
provide consistent evidence that there is a long term decrease in test effort. This plot would be used by
management to assess whether testing is efficient with respect to the amount of code that has been changed.

Total Failures

Up to this point we have used only actual data fiomTable 1 in the analysis. At this point we modifj, the
analysis to use both predictions and actual data but only for seven 01s where we could make predictions.
We develop additional tables for this purpose. Using the Schneidewind Model and the SMERFS software
reliability tool PAR931, we present prediction equations and make predictions for OIA, OIB, OIC, OID,
OE, OU, and 010. We do not derive these equations because this has been done elsewhere CAIA93,
SCH93, SCH921.

We predict Total Failures in the range [I,-] (i.e., failures over the life of the software):

where the terms are defined as follows:

SEW22 Proceedings 377

Figure 1. Mean lime To Failure Across Releases

0 3.4 9.27 13.17 17.5 81 -6 14!%6
Months Since Release of First 01

SEW22 Proceedings

Figure 2 Failures per KLOC Across Releases
A

0 3.4 9.27 13.17 17.5 81.6 145.6
Months Since Release of First 01

SEW22 Proceedings

Figure 3. Test Time per KLOC Across Releases
700

0 600
m
C
a
C
0 500
0
0
J
g400
0
h
a

%00 z
F
t; 200
0
I- -
a z 100
I-

0 3.4 B27 13.17 f7.5 2757 45.17 61.43 6a.87 81.6 W.07 105.5 938.5 t30.43 145.8 154.53 M7.9
Month8 Slntr Rrkarr 91 F l n t 01

O I A B C D E F C H I J K L M N O P Q

SEW22 Proceedings

s: starting interval for using observed failure data in parameter estimation,
a: failure rate at the beginning of interval s,
p: negative of derivative of failure rate divided by failure rate (i.e., relative failure rate), and
x,:observed failure count in the range 11,s-I].

We never know the actual number of Total Failures because additional Wures could occur in the future,
particularly in a system like the Shuttle where current 01s reuse much of the code that was developed many
years ago in earlier 01s. Therefore, we use the approximition that Total Failures equals the number of
failures observed over a sufficiently long period of test time (i.e., years in the case of the Shuttle). This
approximation tends to underestimate Total Failures.

Predicted and actual Total Failures are shown in Table 2 and normalized by KLOC Change in Code in
Table 3. The actual values in Table 2 are repeated fiom Table 1 for the selected 01s. As in equation (2),
we want equation (4) and actual Total Failures, normalized by KL,OC Change in Code, to decrease over
a sequence of releases. The data in Table 3 are inconclusive about a long term increase in reliability.

Predicted values would be used as an alert to management that the number of failures anticipated over
the life of the software is either acceptable or unacceptable; if the latter, it may be necessary to improve
the maintained product or the maintenance process. Actual values would be used retrospectively to measure
the reliability of the software resulting fiom maintenance actions.

Remaining Failures

To obtain predicted remaining failures r(t) at time t, we use equation (5) [AIA93, KEL95, SCH931:

where qt is observed failure count in the range [s,t] and X, observed failure count in the range [l,t].

As in the case of Total Failures, we never know the actual number of Remaining Failures. Therefore
we use the approximation that at any time t, Remaining Failures is the difference between actual number
of Total Failures and ;I(;. This approximation tends to underestimate Remaining Failures.

Predicted and actual Remaining Failures are shown in Table 2 and normalized by KLOC Change in
Code in Table 3. Again, we want equation (5) and actual Remaining Failures, normalized by KLOC Change
in Code, to decrease over a sequence of releases. Predicted and actual values are plotted for seven 01s in
Figure 4. The two plots have similar shapes, but they are inconclusive about a long term increase in
reliability.

Predicted values would be used as an alert to management of the number of residual faults in the code
and the failures that may occur as a consequence. The risk to safety may or may be not be acceptable to
management. If the latter, it may be necessary to improve the maintained product or the maintenance
process. Actual values would be used retrospectively to measure the reliability of the software and the risk
of deploying it, resulting fiom maintenance actions.

Time to Next Failure

To predict the Time for the Next F, Failures to occur, when the current time is t, we use equation (6)

SEW22 Proceedings 38 1 SEL-97-003

Table 2: Reliability of Maintained Software: P d c t i o ~ s versus Actuals i

IN&: Interval length is 30 days. I

SEW22 Proceedings

Figure 4. Reliability of Maintained Software - Remaining Failures
Normalized by Change to Code

Predicted - - - - - Actual

Release Time of 01 - Months Since Release of First 01

SEW22 Proceedings

The terns in T,(t) have the following definitions:
t: Current interval;
X,,: Observed failure count in the range [s,t]; and
F,: Given number of failures to occur after interval t.

The usual application of equation (6) is to predict the Time to Next Failure (i.e., F,=l). This is the case
in this analysis. Predicted and actual T i e to Next Failure are shown in Table 2. We want equation (6) to
increase over a sequence of releases. Predicted and actual values are plotted for six 01s in Figure 5. The
two plots have similar shapes, but they are inconclusive concerning whether there is a long tenn increase
in reliability.

Predicted values would be used as an alert to management of how long the software could continue to
operate before the next failure occurs. The risk to safety may or may be not be acceptable to management.
If the latter, it may be necessary to improve the maintained praduct or the maintenance process. Actual
values would be used retrospectively to measure the reliability of the soha re and the risk of deploying it,
resulting from maintenance actions.

r Safety

Now we apply the Remaining Failures and T i e to Next Failure metrics to assess the risks to safety
resulting from maintenance actions [SCH97]. As pointed out in [FAI94], a risk becomes a problem when
the value of a quantitative metric crosses a predetermined threshold. Thus there are two parts of risk
management: setting thresholds beyond which some corrective action is required and determining ahead
of time what that corrective action will be. In the case of maintenance, we establish Remaining Failures and
Time to Next Failure thresholds. Ifthese are exceeded, our action would be to correct the product and the
maintenance process that produced the product.

If we define our safety goal as the reduction of failures that would cause loss of lie, loss of mission, or
abort of mission to an acceptable level of risk, then for softwart: to be ready to deploy, after having been
tested for total time t, we must satisfjr the following criteria:

1) predicted remaining failures r(tJ<r,,
where r,is a specified critical value, and

2) predicted time to next failure TF(tJ>t,,
where t, is mission duration.

For systems that are tested and operated continuously like the Shuttle, t, TF(t,), and t, are measured in
execution time. Note that, as with any methodology for assuring software safety, we cannot guarantee
safety. Rather, with these criteria, we seek to reduce the risk of deploying the software to an acceptable
level.

SEW22 Proceedings

Figure 6. Reliability of Maintained Software -Time to Next Failure

0
0 3.4 9.27 13.17 17.5 81.6

Release Time of 01 - Months Since Release of First 01

SEW22 Proceedings

Using the assumption that the faults that cause failures are removed (this is the case for the Shuttle),
criterion 1) specifies that the residual failures and faults must be reduced to a level where the risk of
operaeing the s o h e is acceptable. As a practical matter, we suggest rc=l . That is, the goal would be to
reduce the expected Remaining Failures to less than one before deploying the soRware. The reason for this
choice is that one or more Remaining Failures wodd constitute uwmptable risk for safety critical systems.
This is the threshold used by the Shuttle software managers. One way to specfi rc is by failure severity level
(e.g., severity level 1 for life threatening failures). Another way, which imposes a more demanding safety
requirement, is to spec@ that rc represents all severity levels. For example, r(t)<l would mean that r(t)
must be less than one failure, independent of severity level.

Ifwe predict r(tJkr, we would continue to test for a total time $">t; that is predicted to achieve r(tt')<rQ
using the assumption that we wiIl experience more fjlilures and correct more faults so that the Remaining
Failures will be reduced by the quantity r(0-r(4'). If the developer does not have the resources to satisfL
the criterion or is unable to satisfy the criterion through additional testing, the risk of deploying the software
prematurely should be assessed. We know from Dikstra's dictum that we cannot demonstrate the absence
of hits [DU70]; however we can reduce the risk of fdures occuning to an acceptable level, as represented
by rc-

to Next hi]- . .

Criterion 2) @es that the software must suvive for a time greater than the duration of the mission.
If we predict TAtJsf, we would continue to test for a total tiqe t'3t that is predicted to achieve
TF(Gm)>t, using the assumption that we will experience more fzlures and correct more faults so that the
Time to next Failure will be increased by the quantity Tdt,")-TF(Q. Again, if it is infeasible for the developer
to satisfjr the criterion for lack of resources or failure to achieve test objectives, the risk of deploying the
software prematurely should be assessed.

The amount of Total Test Time t, can be considered a measure of the degree to which software
reliability goals have been achieved. This is particularly the case for systems like the Shuttle where the
software is subjected to continuous and rigorous testing for several years in multiple hcilities, using a
variety of operational and training scenarios (e.g., by Lockheed-hiartin in Houston, by NASA in Houston
for astronaut training, and by NASA at Cape Canaveral). We can view t, as an input to a risk reduction
process, r(tJ and TF(t) as the outputs, and ,r an$t as "risk criteria levels" of safety that control the
process. While we recognize that Total Test T i e is not the only cclnsideration in developing test strategies
and that there are other important factors, like the consequences for reliability and cost, in selecting test
cases WY951, nevertheless, for the foregoing reasons, Total Yest Time has been found to be strongly
positively correlated with reliability growth for the Shuttle [SCH92].

Remaining Failures

We can formulate the mean value of the Risk Criterion Metric (RCM) for criterion 1) as folIows:

RCM r(+ (r(Q-rc)/rC=(r(tJ/rJ- 1 (9)

SEW22 Proceedings SEL-97-003

Positive, zero, and negative values of equation (9) correspond to r(Q>r, r(t)-7, and @.)$r,
respectively. These are the critical, neutral, and desired regions, respectively. Predicted and actual values
of equation (9) are shown in Table 4 for r,=l. We want equation (9) to decrease (become more negative)
over a sequence of releases. Predicted and actual values are plotted for seven 01s in Figure 6. The two plots
have similar shapes, but they are inconclusive concerning whether there is a long term decrease in risk.

Predicted values would be used as an alert to management of the risk of deploying the sohare due to
possible residual faults and failure occurrences. The risk to safety may or may be not be acceptable to
management. If the latter, it may be necessary to improve the maintained product or the maintenance
process. Actual values would be used retrospectively to measure the risk of deploying software, resulting
from maintenance actions.

Time to Next Failure

Similarly, we can formulate the mean value of the Risk Criterion Metric (RCM) for criterion 2) as
follows:

Positive, zero, and negative values of equation (10) correspond to TdtJCt,,,, TF(tJ%, and T F (h ,
respectively. These are the critical , neutral, and desired regions, respectively. Predicted and actual values
of equation (10) are shown in Table 4 for t, = mission duration of the 01. We want equation (10) to
decrease (become more negative) over a sequence of releases. The data in Table 4 are inconclusive
concerning whether there is a long term decrease in risk.

Predicted values would be used as an alert to management of the risk of deploying the software due to
possibility failures occurring during the mission. The risk to safety may or may be not be acceptable to
management. If the latter, it may be necessary to improve the maintained product or the maintenance
process. Actual values would be used retrospectively to measure the risk of deploying the sohare,
resulting fiom maintenance actions.

The type of results shown in Tables 1, ... ,4 and Figures 1, ... ,6 would be an alert to management to
investigate whether the inconsistency in results is caused by: 1) greater fhctionality and complexity in the
software over a sequence of releases, 2) a maintenance process that needs to be improved, or 3) a
combination of these causes. Although we cannot concIude that any of the above metrics demonstrate a
stable maintenance process for the Shuttle, we can conclude that the maintenance process is not unstable
(e.g., monotonically decreasing MnT;).

In addition to the long term maintenance stability criteria, described earlier, it would be desirable for
the maintenance effort to result in increasing reliability of the software within each 01's test history. Also,
we want the test effort to be efficient in finding residual faults, for a given 01.

SEW22 Proceedings

Risk Metric for
Ivllission Duration

OIJ 6.32 0.00 9 -7.57 -12.23

010 -1 .OO -1.00 18 NO NO
Failure Failure

Operational Increment Maintenance Test Time (30 Day Intervals) Required to Achieve

SEW22 Proceedings

Figure 6. Remaining Failures Risk Metric for 1 Remaining Failure

8 I

SEW22 Proceedings 389

In the analysis that follows we use predictions and actual (observed) data for one 01 - OID.
Total Maintenance Test Time

The predicted Total Maintenance Test T i e required to achieve a specified number of Remaining
Failures, r(tJ, at time G, is given by equation (1 1) [M 3 , SCH931:

tt=[log[~CP[r(tSl)ll/P +(s-1) (1 1)

Predicted and actual Total Maintenance Test Time are shown in Table 5 for six 01s. Equation (1 1) is
plotted for OID in Figure 7 against given number of Remaining Failures. The two plots have similar shapes
and show the typical asymptotic characteristic of reliability (i.e., Remaining Failures) versus Total Test
Time: the plots indicate the possibiity of big gains in reliability in the early part of testing; eventually the
gains become marginal as testing continues. Predicted values would be used by management to gauge how
much maintenance test effort would be required to achieve desired reliability goals and whether the
predicted amount of test time is technically and economically feasible. Actual values would be used
retrospectively to judge whether the maintenance test effort has been efficient in relation to the reliability
that has been achieved.

Failure Rate

In the short term, we want Failure Rate (IIMTTF) of an 01 to decrease over an 01's Total Test Time,
indicating increasing reliability. Ideally, it should decrease monotonically. Practically, we would look for
a decreasing trend, after an initial period of instability (i.e., increasing rate).

Failure Rate=Total Number of Failures During TestlTotal Test Execution Time (12)

Equation (12) is plotted for OID in Figure 8 against Total Test T i e since the release of OD. Equation
(12) is computed fiom a listing of complete failure history of OID This listing is not shown because of its
length. Figure 8 doies show that short term stability is achieved (i.e., failure rate asymptotically approaches
zero with inaeasing test time). These plots would be used by management to assess whether there is long
term stability in the maintenance process (i.e., whether reliability increases as changes are made to the
code).

The type of results shown in Table 5 and Figures 7 and 8 would indicate to management whether the
maintenance process is stable in the short term. Instability (i.e., monotonically increasing failure rate over
test time) would be an alert to management to investigate whether this is caused by: 1) greater functionality
and compldty of the 01 as it is being maintained, 2) a maintenance process that needs to be improved, or
3) a combination of these causes.

We conclude, based on both predictive and retrospective use of maintenance, reliability, test, and risk
metrics, that it is feasible to measure the stability of a maintenantie process and to integrate these factors

SEW22 Proceedings 390 SEL-97-003

1 Operational Increment OH)

*k
0 1 2 3 4 5 6

Number of Remaining Failures

Figure 7. Total Maintenance Test Time to Achieve Remaining Failures

SEW22 Proceedings

0 400 (00 12b 1600 2w 2400

Total Test Time -- Days Since Release of OID

Figure 8. Reliability of Maintained Software: Failure Rate of OID

SEW22 Proceedings

into a unilied approach for assessing the impact of the maintenance process on the reliability and risk of
deploying the soffware. Future research goals are to relate maintenance process to various s o b a r e
characteristic metrics and to use a larger sample of failure data by combining pre release and post release
failure data.

Acknowledgments

We acknowledge the support provided for this project by Dr. William Farr, Naval Surface Warfare
Center, Mr. Men Nikora of the Jet Propulsion Laboratory; the NASA W&V Center; U.S. Marine Corps
Tactical Systems Support Activity; and Mr. Ted Keller, Ms Julie Barnard, and Ms. Patti Thornton of
Lockheed-Martin.

References

[AIA93] Recommended Practice for Software Reliability, R-0 13- 1992, American National Standards
InstitutelAmerican Institute of Aeronautics and Astronautics, 370 L'Enfant Promenade, SW,
Washington, DC 20024, 1993.

PRI941 Lionel C. Briand, Victor R Basili, and Yong-Mi Kim, "Change Analysis Process to Characterize
Software Maintenance Projectsn, Proceedings of the International Conference on Software
Maintenance, Victoria, British Columbia, Canada, September 19-23, 1994, pp. 38-49.

[L)U70] E. W. Dijkstra, "Structured Programming", Software Engineering Techniques, eds. J. N. Buxton
and B. Randell, NATO Scientific Affairs Division, Brussels 39, BeIgium, April 1970, pp. 84-88.

[FA1941 Richard Fairley, "Risk Management for Software Projects", IEEE Software, Vol. 11, No. 3,
May 1994, pp. 57-67.

FAR931 William H, Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliability
Functions for Software (SMEWS) Users Guide, NAVSWC TR-84-373, Revision 3, Naval
Surface Weapons Center, Revised September 1993.

[GEF96] David Gefen and Scott L. Schneberger, The Non-Homogeneous Maintenance Periods: A Case
Study of Software Modifications", Proceedings of the International Conference on Software
Maintenance, Monterey, California, November 4-8, 1996, pp. 134-1 4 1.

m 9 4 3 Joel Henry, Sallie Henry, Dennis Kafura, and Lance Matheson, "Improving Software
Maintenance at Martin Mariettan, lEEE Software, Vol. 11, No.4, July 1994, pp. 67-75.

[KEL95] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton 'Predictions for Increasing
Confidence in the Reliability of the Space Shuttle Flight Software", Proceedings of the AIAA
Computing in Aerospace 10, San Antonio, TX, March 28, 1995, pp. 1-8.

[KH096] Taghi M. Khoshgoftarr, Edward B. Allen, Robert Halstead, and Gary P. Trio, "Detection of
Fault-Prone S o h a r e Modules During a Spiral L ie Cyclen, Proceedings of the International
Conference on Software Maintenance, Monterey, California, November 4-8, 1996, pp. 69-76.

SEW22 Proceedings 393 SEL-97-003

pEA95) Troy Pearse and Paul Oman, "Maintainabiity Measurements on Industrial Source Code
Maintenance Activities", Proceedings of the International Confixence on Software Maintenance,
Opio mice), France, October 17-20, 1995, pp. 295-303.

PIG941 Thomas M. Pigoski and Lauren E. Nelson, "Software Maintenance Metrics: A Case Study",
Proceedings of the International Conference on Software Maintenance, Victoria, British
Columbia, Canada, September 19-23, 1994, pp. 392401.

[SCH97] Norman F. Schneidewind. "Reliability Modeling for Safety Critical Software", IEEE
Transactions on Reliability, VoI. 46, No. 1, March 1997, pp.88-98.

[SCH93] Norman F. Schneidewind, "Software Reliabiity Model with Optimal Selection of Failure Data",
IEEE Transactions on Software Engineeing, Vol. 19, No. 1 1, November 1993, pp. 1095-1 104.

[SCH92] Norman F. Schneidewind and T. W. Keller, "Application of Reliability Models to the Space
Shuttle", IEEE Software, Vol. 9, No. 4, July 1992 pp. 28-33.

[SNE96] Harry Sneed, "Modelling the Maintenance Process at Zurich Life Insurance", Proceedings of
the International Conference on Software Maintenance, Monterey, California, November 4-8,
1996, pp. 217-226.

[STA96] George E. Stark, "Measurements for Managing Software Maintenance", Proceedings of the
International Conference on Software Maintenance, Monterey, California, November 4-8, 1996,
pp. 152-161.

[WEY95] Elaine J. Weyuker, "Using the Consequences of Failures for Testing and Reliability
Assessment", Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of
Soha re Engineering, Washington, D.C., October I 0- 13, 1995, pp. 8 1-9 1.

SEW22 Proceedings

Measuring and Evaluating the Stability of Maintenance
Processes

Dr. Norman F. Schneidewind
Code SM/Ss

Naval Postgraduate School
Monterey, CA 93943, U.S.A.

Voice: (408) 656-27 19
Fax : (408) 656-3407

Email: schneidewind@nps.navy.miI

SEW22 Proceedings

MAINTENANCE STABILITY COKCEPT

MAINTENANCE STABILITY ANALYSIS

DATA AND EXAMPLE APPLICATION

RELATIONSHIPS AMONG MAINTENANCE,
RELIABILITY, TEST EFFORT, AND RISK

CONCLUSIONS

SEW22 Proceedings

1 . Definition of Maintenance Process Stability: If it is desirable

that software attribute A increase (decrease) with time, then

maintenance process M is stable with respect to A if A

monotonically increases (decreases) with time t where t is time of

release or test time, depending on the nature of A.

2. Definition of Maintenance Process Instability: If it is desirable

that software attribute A increase (decrease) with time, then

maintenance process M is unstable with respect to A if A

monotonically decreases (increases) with time t where t is time of

release or test time, depending on the nature of A.

When neither 1 nor 2 holds, we say that it is inconclusive as to

whether M is stable or unstable. As a practical matter, if we are

unable to conclude that a process is stable, we may at least be able

to conclude that it is not unstable.

SEW22 Proceedings

The following relationships are analyzed and metrics are
computed over a sequence of releases:

1. Mean Time to Failure (MTTF).

2. Total Failures normalized by KLOC Change to the Code.

3. Total Maintenance Test Time normalized by KLOC Change
to the Code.

4. Remaining Failures normalized by KLOC Change to the
Code.

5. Time to Next Failure.

6. Remaining Failures Risk Metric.

7. Time to Next Failure Risk Metric.

SEW22 Proceedings

SEW22 Proceedings 399 SEL-97-003

Operational KLOC Total MTTF Total Total
Increment Change Test pays) Failures/ Test

Time KLOC Tim4

SEW22 Proceedings

Mean Time To Failure Across Releases

0 1 1 I I I I I

0 3.4 9.27 13.17 17.5 81.6 145.6
Months Since Release of First 01

01 A B C D E J 0

SEW22 Proceedings

Test Time per KLOC Across Releases

Months Since Release of First 01
O I A B C D E F G H I J K L M N O P Q

SEW22 Proceedings

Reliability of Maintained Software - Remaining Failures
Normalized by Change to Code

Predicted - - - - - Actual

SEW22 Proceedings

0
t 0.8
3 - -
a
IL

c" 0.6 .-
C -
f

PL 0.4

/
/

/
/

/
/

1

0 0
\

z \ ---. ---
0
0 3.4 9.27 13.17 17.5 81.6 145.6

Release Time of 01 -- Months Since Release of First 01
OI A B C 0 E J 0

Figure 5. Reliabliity of Maintained Software -Time to Next Failure

- - - m e Actual (Y2)
0

0 3.4 9.27 13.17 17.5 81.6
Release Time of 01 - Months Since Reiease of First 01

SEW22 Proceedings

Remaining Failures Risk Metric for 1 Remaining Failure

I

Predicted - - Actual

Release Time of 01 - Months Since Release of First 01

SEW22 Proceedings 406 SEL-97-883

The following relationships are analyzed and
metrics are computed within a given release:

1. Total Maintenance Test Time versus Number of
Kemaimng allures.

2. Failure Rate versus Total Test Time.

SEW22 Proceedings

0 100 w 12bO 1WIO 2WO 2400

Total Test Time -- Days Since Release of OID

Reliability of Malntalned Software: Failure Rate of OID

SEW22 Proceedings

We conclude, based on both predictive and retrospective use of

maintenance, reliability, test, and risk metrics that it is feasible to

measure the stability of a maintenance process and to integrate

these factors into a unified approach for assessing the impact of the

maintenance process on the reliability and risk of deploying the

software.

In this research we were limited to using a qualitative approach to

assessing the functionality and complexity of the changes to the

Shuttle code.

A future research goal is to use various software characteristic

metrics in conjunction with a larger sample of failure data that can

be obtained by combining pre release and post release failure data.

SEW22 Proceedings

Verification and Validation in a
Rapid Somare Development Process

John R. C- and Steve M. Easterbrook
NASA Software IV&V Facility
100 University Drive
Fairmont, WV 26554
304-367-8235
{caUabn, steve)@w.nasa.gov

Abstract
The high cost of software production is driving development o ~ o l l s to adopt more
automated design and analysis methods such as rapid protutyping, computer-aided sofhwe
engineering (CASE) took, and high-level code generators. Even developers of s&ty-critical
software systems have adopted many of these new methods while striving to achieve high levels of
quality and reliabdity. While these new methods may enhance productivity and quality in many
cases, we examine some of the risks involved in the use of new methods in siiby-critical contexts.
We examine a case study involving the use of a CASE tool that automatically generates code from
high-level system designs. We show that while high-level testing on the system structure,is highly
desirable, significant risks exist in the automatically generated code and in re-validating &leases of
the generated code after subsequent design changes. We identifil these risks and suggest process
improvements that retain the achmtages of rapid, automated development methods within the
quality and reliability contexts of safety-critical projects.

I. Introduction
Rapid software development, or rapid application development (RAD), is a broad term
characterized by the use of domain-qxdc computer-aided software engineering (CASE) tools in
an iterative process development lifecycle to achieve fimctional software within short production
schedules [I]. First, a basic design is sketched out as a collection of inter- cornponeas
using various structured methods . This step defines a basic a r a fbr a system of
~~ components. Next, the behaviors of some these componen& and their i n t d o n s
are &fined and i m p l d . These selected behaviors, often called feafures, are selected on the
basis of their priority and utility relative to system quirements. When the selected features have
been implemented, the system can be executed (either through simulation mechanisms or code
generators) and tested within the scope of the implemented behaviors. Finally, the process repeats
itself by enhancing the architecture and implementing the set of selected features.

Many RAD organizations rely an separate testing group to exercise each partially functional
release of the system. In general, these o ~ m arp: comprised of two separate but equal
subgroups: a "design" group that is responsible for construction of each release and a 'W group
that finds problems in each release and works with the design group to fix them. Many errors may
remain in each release and it is the task of tbe test group to find id fix these problems quickly.
The test group is responsible for working with the development organizaton to build revisions to
the release.

SEW22 Proceedings

~~ =ports, qa-
fucs, modelo, test results

I focus: I
documents, designs, models,

Figure 1: The dialectic between design aad mdysis groups

The design and test group jointly consider a nltasc to be stable if most of the serious problems
have been tixcd. The proctss should repcats itself only a stable release has been achieved.
The inability to achieve such stability is an indication of a serious problem (e.g., an incorrect
architecsun or a poorly designed and implumnted fhtum). F-re, the smooth execution of
this bipartite process (Figure 1) is essal;tial to the rapid developmeat of tdbuarc in such
o ~ c m s . The tbus of the dcsii group is typically on nominal behaviors of the system. A
nominal behavior is any fiaaue that &%its an error-he e x d o n of the systan. In ccmtrast, the
fbcus ofthe tcst group is on offhomhd behaviors of the system. Thcir analysis should include
aambtio11 of featwe intemtkms, fhlts, and unexpected inputs. As oqa&ations attempt to
achieve "rapidn devtl- (i.e., dedhes are compressed), this bipartite model becomes
important because the focus of the desigu group tends to become incnasingly myopic toward
nominal behaviors. The compl- role of the test group usually offkts this tendency and
provides a c o d v e force to the process.

This " b u i l d - a n d d " [2] or "synch-and-stabilize" [3] approach to development is practiced
currently in large sofhre deveIopment cumpanies because it can &liver functid but incomple&
software quickly. Many problems, holwevrx, can arise during the process. If thG tcst grwp does
not possess the mcessary analysis skills to perfbm their task, then their amtributim is diminished . . orevendmud. Onthe~~iftheroleoftbetestgroupismislmdcrstoodbythedcsign
group or management does not accept the firulinns of the test group, then the dialectic between the
two groups is pathological. It is mamgmeds respcwsib'i to keep the chaunels of
camnuaicatim open and limited to camtmctive criticism.

This paper examines a specific case study in which a very large sofkware development organhtion
must interact with an in&mxht verification and validation coPrtractor to achieve
inmmed, stable releases of software subsystems for the t h e c m a l Space Station (ISS)
project. The cbdopmcnt contractor plays the role of the design group. They are rcspcmsble for
the production of stable software releases for ISS subsystems. The IV&V corrtractor plays the role
of test group but applies many types of analysis to the system design and implementation in order
to "testn each release.

2. Verification and Validation
IV&V is a system engineering discipline that applies many rmhnical analysis and testing methods
to various development artifacts and processes during all phases of the so&ware development
lifiiscycle [4]. Verification is any analysis activity that tries to demonstrate that the product of a
phase during development is consistent and complete with respect to the specification M r e that
development phase. Validation is any analysis activity that tries to demonstrate that the product of

SEW22 Proceedings 41 2 SEL-97-003

any development phase is consistent with domain and application requirements. Both of these
activities are important during software development since each phase introduces t r a n d o d m
that may be incorrect with respect to the specScations or the intended utility of the overall system.

A V&V organization can be in-dent with respect to its technical, financxil, and managerial
relationships with the design group. A technically hiependent V&V group uses difErent tools and
techniques than the design group to analyze project artifacts throughout development. A
ihancially in- V&V group may be funded an external quality assurance group or
oversight body. A managerially independent V&V group usually reports to the customer or the
person above the supenisor of the design group. In general, since independence mostly involves the
organizational aspects of analysis, we will frequently use the term "V&V instead of "IV&V' to
describe the analysis activity itself.

V&V analysts also play an important role during mahmnce because a sigdicant portion of
maintenance bsks involve functional enhancements to the behavior, design, and i m p l d o n of
a system 151. V&V's primary task is to manage project risk by iden- and monitoring errors
throughout the development and maintenance p m s . Since it is impossible to identify and resolve
all errors early in a project's lifecycle, it is the V&V contractor's task to identie errors as early as
possible and track the progress towards their resolution. For example, a minor design error may be
ignored early in the process if the developer believes that a yet-to-bedesigned feature will solve the
problem.

During development and mahtermce, N&V maintains a list of reports on problems found during
the development process [6,7l. It tries to verify solutions to these problems and produces mports
on new problems when necessary. Such reports come in a wide variety of formats an include items
such as change requests (CRs), discrepancy reports (Dm), problem reports (PRs), issue reports
(IRs), and issue tracking requests (ITRs). Most of these reports are authored by an IV&V
cantractor during development but can originate in the design group as well. Each report has a
disposition that changes as a problem is addressed throughout development. V&V will track
problem reports and ensure that each report is eventually addressed at an appropriate point during
development. If the problem is not adequately addressed, then V&V can report this up fhe
management hierarchy. In most cases, however, this route is avoided. Most problem reports
remain as part of the normal dialogue in confidence between the design and V&V groups.

3. Case Study
Exploration of space requires the use of sophisticated software with high levels of quahty and
reliability. On the Intentatid Space Station (ISS) project, one contractor decided to use the
MatrixX1 tool to reduce development costs and improve design q*. The tool was used to
develop and perfonn white-box testing (unit and integrated component level verification) of
human-rated critical fight s o h e . The tool is extremely useful in designing and generating code
for complex systems. Our task was to identi@ process issues related to the tool's use in the ISS
eff'irt and suggest paths for achieving the highest possible quality and reliability via testing during
the development process.

Figure 2 is a high-level conceptual model of the production process for each sofhvare release. The
ISS software design is comprised of several computer software configuration items (CSCIs) onto

' MatrixX is a trademark ofbtegmted Systems Inc.

SEW22 Proceedings 4'1 3

GSCI design Generated code Flight toftware ISS computer

Code generator Compikr Loader

Figure 2: Release production process

which are loaded one or m m computer software componeots (CSCs). Each computer software
component is designed as a hierarchically nested set of computer software units (CSUs) that can be
tested in isolation through simulation in the design tool. Smce code (in Ada) can be generased
autuinatically for an d r c CSCI using a code generaton tool. The generated code is then
compiled to the platfbrrn using a umventional compiler to produce the executable flight software
and loaded onto a flight computer.

The contractor employs the design tool in a rapid soffware development process that calls for
iterative design and testing of the high-level design and releases of the automatically generated code
for each CSCI. Testisg was planned for only the high-level CSCI design through simulation (a
capabii of the design tool) and the code generated for the entire system, but not of the
automafidy generated code at unit level. This was felt to be too expensive and redundant.
Critical CSUs would also be tested at the unit level through simulation in the design tool. While
the ability to simulate the design at the CSCI and CSU levels is extremely usefbl and can lead to
the disc~very of early design flaws, some errors can only be detected through analysis of the
generated code:

The code generator is not a d c d , verif~ed tool. As with any new tool, documented flaws
have beea shown to exist in the code generator. These +laws lead to errors in the translation
process and could introduce problems in the source me that do not exist in the high level
design. While visual code audits of the generated code may be usefid, they are e7spensive and
poor substitutes fbr unittesting.
Important objectives of unit testing are to ensure that adequte test coverage is achieved and
that extreme and siugular values for variables are tested. Unit testing of the high level design
cannot achieve this in generated code that may introduce auxiliary and temporary tasks,
procedures,, and variables.
For any number of reasons (data storage, real-time processing, etc.), the design environment
may not behave as the actual environment will under identical test inputs. It cannot be
assumed that they will behave similarly in all situations.

The developer argued that while these coma were valid, t h q did not represeat significant risk to
the project whm balanced against the productivity and desip quality gains. The V&V amtmtor,
however, argued that these were sigiuficant risks that must be addressed in the short and long term.
It was our task, as a research team, to help iden* the issues while seelcing to preserve use ofthe

SEW22 Proceedings 414 SEL-97-003

code generator without undue impact on project costs, schedule, and functionality.

3.1 Problems
The use of code generators to produce flight software creates several testing and maintenance
problems. The problem originally focused on unit Pesting aspects of the generated code, but
quickly expanded to other areas of concern:

The sequencing characte&ics of the code generator creates problems related to long-term
maintenance of the s o h . When changes to the software design are necessary, they will be
done in the high level specifidon. Since the code generator uses data flow analysis to
produce a single, interleaved module for an entire system, small design changes are highly
likely to produce sigmficant changes in the entire body of generated code. As a result, a
sigdcant of amount of regression testing of the generated system will be required for even
small changes. The cost of this additional testing threatens to erode cost savings realized by
use of the tool in the first place.

* The code generator makes any errors found during testiag and mission operations difficult to
isolate and debug. Errors caused by probiems other than design flaws cannot be debugged in
the high level design. Problems other than design flaws may require changes to the generated
code itself (e.g., such cases did occur in practice on this project). Such changes create a
divergence from the design and enonnous configwition control problems in the short and long
term.
The a~1tomatically generated code does not comply with Ada coding seandards. While the tool
vendor never intended for generated code to be read or altered, such changes are occasionally
necessary to access finctions not available in the high-level design environment.
Furthennore, readability of the generated code is desirable because the system much often be
debugged at this level. Thus, some form of structuring and colng standards are necessary to
ensure readabihy, mau&mab

. .
ility, reliability, reusability, and portability. It is highly unlikely

that over the entire lifecycle of the system, the code will remain umcamined. Based on the size
of the overall project and experience with other large flight s o h projects, it will became
necessaryat somepointtoexaminethegenerated&.

0 The code generator a m e d y produces inefficient code in terms of size and memory usage.
While the manufhchuer is improving the technology of the tool (a problem itsclf - see below),
it was estimaSed that the ISS GN&C will generate 12,382 SLOCs rqukhg 386K fbr storage.
The current design produces over 120,000 SLOCs and would have required secondary storage
in additiun to the origmd 1MB EEPROM fbr each MDM. Before a recent redesign initisrted
by the identification of this problem, this code bloat may have dictated a significant hardware
change that would have si@cantly increased system fault risks (i.e., seek delays and
potentiaI failures of the secowfary storage unit).
There existed no satisfbcbry ca@mtion collltrol plan for long-term evolution of the design
specifidon, gezlMated code, testing, and aew releases of the wdc generator tools. Plans and
processes need to be developed with regard to upgradin% to new tool releases, how this aff;iscts
code generation, unit and system level testing.

These problems are likely to occur with the use of any high level design a d code generation tools
including modern programming language compilers, linkers, and loaders. It was our task to help
identify these issues and dewelop approaches to mitigate risk while Ieveraging the advantages of the
tools.

SEW22 Proceedings

Based on these findings, the development and V&V contr;Lctors worked together to develop a
comprehensive plan that leverages the productivity gains of %e tool while integmthg wty and
reliability goals. Some of the adopted plans include:

* Heavy use of g c n d code modukhtion. The code generator contains features for
isokbg the generation of code fbr specific design units into modules. This feslture introduces
code bloat, but s i g d d y reduces coupling in the generated code.

* Unit testing of generated code. It was decided that the mdularization featwes made it possible
to efktively unit test the generated code. includes assessment of code coverage
adaquacy based on patMogic coverage, data m i n i m d h u m values, and erroneom data
inputs.
A-on of test cases. One additional benefit of d moduhkaion was that tests on
thc design specification could now bc used to generate system-level test cases.
Adoption of a cdi#on costrol, test, upgrade and integraton p b . This plan includes a
modestupgradepath~inedwithregressiontestsfbrmodules~artexpcctedtobe
affected by changes to the code geeerator and design changes. The reduction in coupling
means that newly irztegrated design modules no longer have ripple effect on the rest of the
generated code and can be tested in isolation from the rest of the system specification.

Our mammemMons focused on the use of design modularhtion fixtures to achieve and
mainbin fidelity between the design and generated code. Although not easy to use and not
enforced at tht design level, the moddabtion c0~lvention.s have been extremely u s d in
f h i i the iterative design and analysis process. Indeed, the tool manufkcturer is planning to
incopperate eafocement of moddarkdon in subsequent releases of the tool.

4. Summary
Automated tools will continue to be used with increasing frequency in software development
projects for many good reasons including cost, qality, and productivity. Indeed, our analysis
supports the continued use of CASE tools, but we must be continuously aware of the risks
associated with new technologies that are coevolving with our projects. We found that it is
pwi'ble to in5egrate safety-critical goals of quality and reliabdity during the development process
if existiog orprktions include complementary advocates fbr nominal behaviors (the designers
who want to see the software achieve specified functionality) and advocates for off-nominal
behaviors (the V&V team who want to ensure that rare case; have been a s c o d fbr as best as
possible). If both teams work together within an iterative pr xess that f8cilitates both design and
analysis, then c o n d t goals can be achieved.

Many of our suggested improvements were based on the need to reduce process risks as well as
reducing the risk of errors in the product. The benefits of V&V analysis can only be leveraged if
the turn-arod time for analysis can be stmmlhed. The modularization and dgura t ion
control plans greatly enable V&V to provide timely and usei ul analysis to the design group. Our
feco-dations helped reduce the tremendous amount of reaork that would have been necessary
to maintain a productive dialogue between the two groups.

FinaUy, it is V&Vs continual task to monitor the coevolutian of CASE tools used on the project
by analyzing the &rences in generated code between tool versions. Analysis of these differences
will provide useid information fbr tailoring the verification process to accommodate known

SEW22 Proceedings 41 6 SEb-97-003

cii&mws between the design and deployment environments. Dependiqg on changes to the tool,
extensive regression tests may be llecessary fbr s a p x project releases because of the impact on the
generated code regardless of rmdthkhon boundaries.

5. Acknowledgements
We would like to thank Tom Marhsall, Jim Dabney, and Dan McCaugherty of IaSermetrics, Inc.
fix their Mp in collecting a d summariting this data. We are most gmteiid fbr their time, bard
work, and dedication to quality @rmance of V&V tasks. This report has been prepared under
NASA cbpemtive Agreement NAG2-797 thrbugh fUndialZ f b m NASA's Ofiice of Safkty and
Mission Asswance and the NMA/Ames Research Center.

6. References
1. McCmne11, S., Rapid Development: Taming Wild Sofhuare Schedules. 1996, Redmond,

WA: Microsoft Press.
2. MeConne11, Daily Smoke and Build Test. IEEE Soffware, 1996.13(4): p. 144.
3. Cusumano, M. and R Selby, Microsoft Secrets. 1995: The Free Press. 5 12.
4. Lewis, R., Independent Ven'Jication and Validation: A Life Cycle Engineering Process

for Quality SopVure. 1992, New Yo*: John Wiley & Sons. 356.
5. Garlan, D., G.E. Kaiser, and D. Notian, Using Tool Abstraction to Compose Systems. j-

COMPUTER, 1992.25(6): p. 30-38.
6. Callahan, J. and G. Sabulish. A Process lmprmment Model for Sopvare Venpcation

and Validation. in The 19th S;$iware Engineering Workshop. 1994. NASA Goddard
Space Flight Center, Greenbelt, Md.

7. Callahan, J., T. Zhou, and R Wood. &@are Risk Management through Independent
VeniJiction and Validation. in 4th intemationul Conference on Sopvare Qualily QCSQ
94). 1994. McLean, Va.

SEW22 Proceedings

Verification and Validation in a Rapid Sofhvare
Development Process

John R. Calfahan

http://esearch.ivv.nasa.gov/

NASA Independent Software V&V Facility Software Research Lab

West Virginia University

Department of Computer Science & Electrical Engineering

Overview
Rapid Software Development

* Independent Verification and Validation
A Bipartite Model of Software Development
Case Study
- Problems
- Solutions

* Conclusions

SEW22 Proceedings

Rapid Software Development
Also called Rapid Application ~ e v e l i ~ m e n t (RAD)
A process characterized by:
- the use of automated design tools r1e.g. CASE)
- a short production schedule of suczessive releases with

limited features and enhancements
- an iterative, evolutionary lifecycle in which the

requirements, design and implementation may change

[McConnell96]

Build 'n Smoke OR Sync 'n Stabilize
Many RSD/RAD organizations are cc&mposed of two
distinct and complementary subgroups:
- DESIGN ("the builders")

responsible for system requirements, clesign, implementation
and testing of nominal functionality

- ANALYSIS ("the breakers")
* responsible for analysis of requiremelits, design,

implementation and testing of nomin; 11 and ofl-nominal
behaviors
plays a constructively critical role in clevelopment (not
adversarial)

a

[Microsoft Secrets, CusSel95]

SEW22 Proceedings

Independent V& V (called IV&
A systems engineering discipline that applies various
forms of analysis at all phases of development

* Verification
- Ensure that the output of each phase is consistent with the input

specifications
- ARE WE BUILDING THE PRODUCT RIGHT?

Validation
- Ensure that the output of a phase is consistent with the

requirements and domain constraints
- ARE WE BUILDING THE RIGHT PRODUCT?

* Independence: managerial, financial, technical
[NRC Report, Leveson 931

V& V in Rapid Development
* Problems in large, complex multi-vendor projects

- Requirements not fully understood
- Design in flux due to technological advances
- New automated tools and processes in use
- High turnover and staffing problems
- Limited customer visibility

* The focus of the DESIGN group becomes myopic w.r.t.
nominal behaviors of the system under construction as
schedules compress

* An independent advocate/analyst of off-nominal behaviors
(e.g., faults, unexpected conditions) is needed to
complement this bias

SEW22 Proceedings

A Bipartite Model of Software Development

Issue reports, tests, test
results, solutions,

guidance, lessons learned

Issue Reporting
An issue report contains details of an inconsistency
identified during the development process
An issue report contains information such as:
- a description of the problem
- phase in which the problem was found
- the criticality of the problem
- proposed solutions and options

Issues are best reported directly to tht: design group (NOT
through management unless necessarf)
Issue databases must be managed, tracked, and statistically
analyzed for trends

[Easterbrook & Callahan 961

SEW22 Proceedings

Case Study
* An issue report involving the use of the MatrixX* CASE

tool on the International Space Station (ISS) flight
software development project
Issue: unit testing on generated flight software (FSW)
code (in Ada)
Issue was contested by design group who claimed that unit
testing within the design tool (through simulation) was
adequate
The high criticality of the issue and conflict of opinion
prompted management involvement

* Research team asked to examine the issue in detail

SEW22 Proceedings

Overview of Autocode Process
* MatrixX provides an environment for designing systems

(CSCIs) composed of connected blocks of subsystems
An autocoder is used to generate code for a complete CSCI
A conventional compiler is used to produce flight code
fi-om the generated Ada source

Problems
* Testability and maintainability of FSW

Increased L'Kcul ' debugging pro6f':ms
* Code generator problems and inefficiencies
* Lack of configuration control plan for future tool

improvements

SEW22 Proceedings

Sub-issue #I
* Unit testing of FSW components is necessary to reduce the

amount of system-level testing needed to maintain release
schedule

* The autocoder uses control and data flow analysis of the
block design to generate interleaved code

Subsystem boundaries disappear in the generated code due
to extensive interleaving
Extensive regression testing of generated FSW will be
necessary because small changes to the design are highly
likely to propagate throughout the generated code

Sub-issue #2
Errors found during testing and mission operations are
difficult to isolate and debug

* The interleaved nature of the generated code makes it
difficult to trace problem in deployed code to the high-
level design
Such problems have prompted the need for direct changes
to the generated code

* This creates enormous configuration control problems for
development

SEW22 Proceedings

Sub-issue #3
The generated code does not comply with Ada coding
standards

* While the generated code was never meant to be read or
understood
BUT, it is highly likely that at some point during the
project's duration, someone will need to examine the
generate source code

* Documented problems exist in the code generator due to
the immaturity of the technology

Solutions
* Use modularization mechanisms in MatiixX to control

generation of code and preserve unit boundaries
* This leads to some inefficiencies in code size and CPU

usage
* Limits on feature development in re1t:ases help offset code

bloat and processor overhead caused by modularization
Working with tool vendor to improvt: code generation and
test support mechanisms

* These solutions reduce turn-around time for V&V analysis
by reducing system-level tests on generated FSW code and
enabling unit testing

SEW22 Proceedings

Highly advocate the continued use of MatrixX
* High-level design and simulation are beneficial to

productivity and quality
V&V is an essential part of rapid development itself
V&V is not just an add-on "insurance"

Rapid development processes need some form of iterative
analysis to guide system design evolution
More empirical studies of the dialectic between design and
analysis are needed

* Collection of issues made easier through automated tools
and email

For more info ...

SEW22 Proceedings

3 co.j:-;.c
Using Semantic Distance to Make Adaptation Deciaons: '

Extended Abstract

Lamia Labed Jilani Ali Mili
Regional Institute for Resea;ch in West Virginia University and

Computing and ~elecommu&cat ions Institute for Softwaxe Research
Cite Montplaisir, 1000 Technology Drive

Belvedere 1002 Tunisia Fairmont, WV, 26554, USA
Email: 1amia.labedQirsit .&. tn Email: ztmili@cs.wvu.edu

Fax: (216) 1 787 827 URL: http://www.isr .wvu.edu/

September 7, 1997

1 Adaptation Decisions

In this extended abstract, we report on an experiment that we are conducting to derive
a model that supports d-on making in program adaptation. We refer to two specific
decisions, which are closely related yet distinct:

Given a software specification K and a software component C that dmst satisfies
K (in a sense to be defined), is it best (most economical) to adapt C to satisfy K
or to build a solution to K from scratch?

Given a software specification K and two software components C and C' that almost
satisfy K, which of C and C is a better adaptation candidate (costs less to adapt)?

In principle at least, the first question is a special case of the second, since it amounts to
comparing the available component C against the trivial (empty) program. Hence we will
focus our attention on the second question, and discuss later to what extent our findings
apply to the first question.

2 Syntactic and Semantic Distances

Given two specifications (or programs) R and R', it is possible to distinguish between two
types of measures of distance: syntactic (or: structural) ditance, which reflects to what
extent R and I? look dike; and semantic (or: functional) ditance, which reflects to what
extent R and P act alike.

For the sake of adaptation effort, it is best to use syntactic distance than to use
semantic distance: when two specifications (or programs) look alike, then it is easy to

SEW22 Proceedings

adapt one to obtain the other. The trouble with s p a t i c distance, however, is that i t
is difficult to estimate ahead of time when all we are given are a specification R and an
adaptation candidate C: In order to estimate the distance between K and C, we must be
able to determine whether C looks like a possible solution to K -not an easy task unless
we derive a solution to K, which defeats the purpose of the exercise.

Hence we fall back on using measures of semantic (functional) distance. This approach
is based on the premise that if the function of a program and that of a specification are
similar, then it is easy to adapt the program to satisfy :he specification. While one would
hope this holds in general, there are counter examples where it does not: an insertion sort
and a quicksort perform the same function but do no; look alike; on the other hand, a
program that performs the sum of an array and a program that performs the product of
an array look alike but do not act alike (hardly ever produce the same result for a given
array). Such pathological examples notwithstanding, one would hope that in general,
functional distance is a reasonable indication of structxral distance (hence of adaptation
effort).

3 Measures of Functional Distance

We have defined six measures of functional distance between relational specifications;
these measures are based on mathematical formulas and can be evaluated and compared by
means of theorem provers. The measures diier by the aspects of similarity or dissimilarity
that they reflect between the given specifications, and are briefly presented below:

IknctwnaE Consensus. This measure reflects the amount of information that its
arguments have in common; it is useful for the sake of adaptation because the more
information a program and a specification have in common, the more features of the
specification are atready covered by the program.

e Refinement D i f l m c e . This measure reflects the amount of functional requirements
of the specification that are not covered by the program; it is useful because the
smaller this amount, the less one needs to add to the program to satisfy the specifi-
cation.

e I;fmctional Ezcess. This measure reflects the amount of functional features of the
program that are irrelevant to the requirements of the specification; it is useful
because the less such features the program has, the less distractions the programmer
will face when adapting the program to satisfy the specification.

e Refinement Distance. This measure adds up (in a lattice-theoretic sense) refinement
difference and functional excess, and can be justified by means of the justifications
given above.

Functional Tangent. This measure is a vector whose first entry (called its numerator)
is functional excess and whose second entry (called its denominator) is functional
.consensus; it is useful because it attempts to maximize functional features of the

SEW22 Proceedings

specification that are already covered by the program, while minimizing functional
features of the program that irrelevant to the specification.

0 Refinement Ratio. This measure is also a vector whose numerator is refinement
diistance and whose denominator is functional consensus; it is useful because it max-
imizes common information while minimizing discriminating information.

These measures of distance take their value, not in the set of non-negative real numbers
(as traditional measures of distance), but rather in the set of relational specifications.
The set of relational specifications is partially ordered (by the refinement ordering), hence
giving us means to compare distances -if only partially.

4 Correlating Syntactic and Semantic Distances

In order t o investigate possible correlations between syntatic and semantic distance, we
have run the following experiment.

0 We consider a software library that consists of twelve software components, Cl ..CI2,
and a set of fourteen queries, Kl ..KI4.

For each measure of functional distance (there are six of those), and for each query
Ki, 1 5 i 5 14, we compute all twelve measures of distance d(K;, Cj), 1 5 j 5 12,
and we compare distances between the components and Ki . For each measure of
distance and each d u e of Ki, we draw a graph that shows how the components
compare with respect to their proximity t o K;.

e For each query Ki and each component Cj, 1 5 j 5 12, we determine analytically
how much each of the building blocks of Cj needs t o be modified t o accornodate
specification Ki. From this analysis, we derive, for each specification Ki, a graph
that shows how components Cj compare with respect to the effort required t o adapt
them to satisfy Ki.

0 By assessing, for each Ki, t o what extent the graph derived for adaptation effort is
similar t o the graphs derived for each of the six measures of distance we can deter-
mine how well each measure of functional distance would help t o predict adaptation
effort.

By averaging the above results over all the Ki, we get a ranking of measures of
distance.

This experiment requires proving hundreds of theorems, stemming from evaluating the
measures of diistance and comparing them. We have depended on a theorem prover for
these, but did have to do many by hand as well. We compared graphs that stem from the
measures of functional distance to the graphs that stem from adaptation effort using two
criteria: first to what extent the graphs derived from each measure of distance produce the
same optimal elements as those shown by the graph of adaptation effort; and second t o
what extent the graphs derived from each measure of distance look like the graph derived

SEW22 Proceedings

from adaptation efforts. The results show a consistent pattern whereby some measures
of distance perform consistently better than others; also some measures achieve a high
degree of precision (0.63) and recall (0.19) in retrieving the components that prove to be
optimal by the criterion of adaptation effort.

5 Extensions

We envisage to repeat the experiment with other software libraries, hence, obviously, other
sets of queries as well, and see if the ranking of measures of distance is preserved. Also, we
wish to consider the question of whether the selected aeasure of functional distance can
be used to make a reuse vs developfrom-scratch decision, by merely comparing d(K, C)
and d(K, 0) for the selected measure of distance d -it sounds too good to be true!

Using Semantic Distance to Make Adaptation
Decisions

L. Labed Jilani, IRSIT, Thnisia
A. Mili, The Institute for Software Research, USA

November 12, 1997

22nd Annual Software Engineering Workshop
Greenbelt, MD December 3-4, 1997

1 Adaptation Decisions

Two Adaptation Decisions:

* Adapt or develop from scratch? By inspection of K and

If we choose to adapt, how do we select optimal adapta-
tion candidate? By inspection of K, C and C'.

Existing Models

COCOMO '81, EDSI metric and equations.

COCOMO 2.0 reuse model, ESLOC metric and equa-
t ions.

SEW22 Proceedings

Economic Models

Produce decisions, but also quantifications (budgeting ,
planning, et c) .

* Rely on a great deal of expertise, experience, reasoning
by analogy, design decisions.

Proposed Alternative: Measures of Distance.

Produce decisions, but no quantifications.

* Based on plain inspection of K and C.

SEW22 Proceedings

Principle: Measuring distance between specifications.

e Adaptation decision: comparing 6(K, C) to S(K,).

a Choosing adaptation candidate: comparing 6(K, C) and
b(K, C').

Two types of distances:

Structural Distance: How much query and candi-
date look alike. Syntax.

Functional Distance: How much query and candi-
date act alike. Semantics.

Potentially Orthogonal.

e Sum and Product of an Array.

Quicksort and Insertionsort.

Minimizing Adaptation Effort: Structural Distance. Dilernna:

e Structural distance cannot be estimated by inspection of
the query and candidate.

a Functional distance is orthogonal to adapt at ion effort
--or is it?

We hope not. Hence:

e Define measures of functional distance (that can be de-
rived and compared by inspection).

a Correlate them statistically with actual adaptation ef-
fort.

Select a measure as a good predictor of adaptation effort.

SEW22 Proceedings

Premises:

Measures of Distance are not numeric --do they have to
be?

* They take values in a partially ordered set.

They have well-defined mathematical formulas.

Deriving and comparing functional distances amounts to
proving theorems of first order logic.

SEW22 Proceedings

2 Background: Lattice of Specifications

2.1 Refinement Ordering

Refinement Ordering:

RJR' - H R'L c - RL A RILn R c - R1.

Interpret at ion:

R subsumes R'.

Ordering properties: partial ordering.

2.2 Refinement Lattice

Any two relations R and R' have a meet (greatest lower
bound), defined by

R n R' = RL n R'L n (R u R1).

Any two relations that satisfy RL n R'L = (R n R1)L have
a join (least upper bound), defined by

R u R ' = R n m u R 1 n m u R n R ' .

3 Measures of Functional Distance

We are given a library of software assets, say L, and a query
K. Trying to characterize assets C that are optimal (with
respect to some measure of distance) for query K.

SEW22 Proceedings

3.1 Functional Consensus

Definition.

Interpret at ion.

The functional consensus of K and C is the require-
ments information that is common to K and C.

Usage.

Retrieve all the components C of the library that
maximize the measure of functional consensus with
K, f c(K, C)*

Rationale.

Maximize the requirements of K that are covered by

3.2 Refinement Difference

Definition.

If ACB, - then the refinement difference between A
and B is the smallest X such that

We find

Interpret at ion.

The refinement difference between A and B is the
smallest amount of functional information that needs
to be added to A to achieve or exceed B.

SEW22 Proceedings

Usage.

Given query K, retrieve components C that mini-
mize the quantity

d (K , C) = K 0 (K n C).

Rationale.

Minimize the requirements of K that left unfulfilled
by C , as these measure how much must be added to
C to make it satisfy (equal or exceed) K.

SEW22 Proceedings

3.3 Functional Excess

Definition.
fe(K,C) = C (K n C).

Interpret at ion.

The functional excess of K and C represents the
functional features of C that are irrelevant to K .

Usage.

Retrieve all the assets C of L that minimize the func-
tional excess of K and C.

Rat ionale.

Minimize irrelevant features of C, that may get in
the way of the adaptation effort (ref: program un-
derst anding).

SEW22 Proceedings

3.4 Refinement Distance

Definition.

Interpret at ion.

Discrinimating information between K and C.

Usage.

Retrieve all the components C of the library that
minimize the refinement distance between K and C.

Rationale.

Minimize required functional features of K and dis-
tracting functional features of C.

SEW22 Proceedings

Mathematical properties:

rd(A, B)IB. -

* f d (A , B) = O @ A = B .

rd(A, B) = rd(B,.A).

0 rd(A, B) u rd(B, C)IJrd(A, C) .

SEW22 Proceedings

3.5 Refinement Ratio

Definition.

Interpret ation.

terns from those of refinement distance and func-
tional consensus.

Usage.

Retrieve all the components C of the library that
minimize the numerator and maximize the denomi-
nator.

Rat ionale.

Stems from those of the numerator and the denomi-
nator.

SEW22 Proceedings

3.6 h n c t ional Tangent

Definition.

Interpret at ion.

Stems from those of refinement distance and func-
t ional consensus.

Usage.

Retrieve all the components C of the library that
minimize the numerator and maximize the denomi-
nator.

Rationale.

Stems from those of the numerator and the denomi-
nat or.

SEW22 Proceedings

4 Experiment at ion: Establishing Correlations

Library of 12 components. Sample of 14 queries. Six mea-
sures of distance. Estimation of Adapt ation Effort.

4.1 hnctional Distance

For each measure of distance, for each query K, observe
how components are ranked with respect to their proximity
to K .

Samples.. .

4.2 Adaptation Effort

Defines Partial ordering; represented by a graph. Sam-
ples..

SEW22 Proceedings

5 Results of the Experiment

Averaging behaviour of measures of distance over the set of
14 queries, with respect to the following criteria:

* Precision, judged against development effort.

e Recall, judged against development effort .

Graph similarity, measured by ratio of common arcs.

5.1 Precision and Recall

Samples.. .

SW22 Proceedings

Summary:
!

Measure of Precision I Recall

Ref. Diff.
Ref. Dist. 0.3858 (0.2879) 0.4923 (0.3568)
Ref. Ratio
h. Excess 0.4219 (0.2654) 0.7067 (0.3573)
fin. Tang. 0.5658 (0.3561) 0.7917 (0.3965)

5.2 Measures of Similarity

Samples..

SEW22 Proceedings

, K2
K3

, K4
K5
K6
K7

. K8
Kll

, K12

. K13

K14

0.410
0.333
0.326
0.438
0.431
0.438
0.278
0.368
0.563
0.389
0.410

Average

Averages of Similarity Measures.

5.3 Overall Ranking

Summary:

a Refinement difference and functional consensus rank first.

Functional tangent is a close second.

Functional Excess ranks third on all counts.

Refinement Distance and Refinement Ratio rank fourth
on all counts.

Observations:

Functional Consensus is the best, and the easiest to com-
pute.

a Refinement Ratio ranks worst, and hardest to compute.

e Refinement Distance, which is mathematically most el-
egant, ties for last with refinement ratio.

e Poor performance of functional excess is disappointing,
given the propaganda about understanding costs.

6 Conclusion

Objective:

Define measures of functional distance to predict adap-
tation effort.

0 Correlate them to actual adaptation effort to assess their
prediction capability.

Observations:

o Some measures perform consistently better than others.

e Simplest and easiest measures are best; mathematically
elegant measures are worst.

Measures that perform best in ppredicting adaptation
effort and comparing candidates cannot possibly be used
for making adaptati~nlnew development decisions.

Only an experiment; requires more validation.

SEW22 Proceedings

Prospects :

e More experiments; very time consuming, as requires ex-
tensive theorem proving.

e Does the same measure apply to both adaptation deci-
sions or do we need a separate measure for each?

Do we need separate experiments?

Page intentionally left blank

Page intentionally left blank

OBSECT ORIENTED MODELING FOCUSED ON A LINGUI§TIC APPROACH

N. Juristo, A.M. Moreno
Facultad de Infbrm&ica - Universidad Polithica de Madrid

Campus & MonteganceQ s/n, 28660
Boadilla del Monte, Madrid ,

, - . - ..
S P r n

natalie.upm.es, .upm.es

One of the main lintitations attributed to Object Orientation by sopUme engineers is the

immaturity of the Object-Oriented analysis process. l%is article a i m to propose an
0

approach to formalize this process. l3is method is based on the use of linguistic

information from informal specificutions. lRis information is composed of words which, in

rum, ¬e elements of an 00 modeling, such as classes, properties,' etc. Thtse wrds

b e a particular memarung, Md their use in the modcling is usuaily related with that

meaning. So, the objective is to analyze this i@onmuionfrom the semantic and syntanic

viswpoint and extract, by means of a fonnal procedure, the components of an 00 system

This puper presents briefly the proposed approach and is focused on the results of its

application by a set of students of our university.

1. INTRODUCTION

The process of analyzing requirements is of essential importance in software development.
The success or failure of a sokware system can be said to largely depend on the quality of
this activity. A formal and disciplined process is therefore necessary for requirements
analysis. However the situation is far away of this aim (FauIk.1997). We can find
disagreement on terminology, on the approach and on the activities in the different
methods; and, in the other hand, current methods do not usually provide fonnal, justified,
complete and correct guidelines for identifying components of a problem that need to be
represented in conceptual models.

The immaturity of the requirements process is particularly apparent with conceptual
modeling, because, it is in its infancy. This insufficiency, and the need to remedy it has
already been stressed by several authors such us (Iivaxi, 1995; Basili, 1996; Wang, 1997;
Northop, 1997). They all emphasize the fact that there are no rigorous criteria for
identifying components of 00 conceptual models. They also claim that 00 analysis
cannot be effectively performed and its immaturity is slowing down the adoption of 00.

SEW22 Proceedings

We have developed an approach that seeks to form* the analysis process so as to
create conceptual models in a rigorous and precise mmer. We have focused on 00
modeling, because this is one of the least mature areas.

The proposed approach is based on examining information most likely to be available at
the start of development, ie., sentences in natural language that describe cbarac&ristics of
the problem to be solved. This description is compo,d of words and these words can
serve as elements of a conceptual modeL We will foc-as on formal definition of relations
between words or linguistic structures and elements of modeling or conceptual structures.

Our approach consists of two different activities: conceptual modeling formalization and
00 model creation. h this paper we present briefly, thz bases of the formalization and the
steps to be followed during the 00 model construction, going on to describe the main
results obtained after the application of this approach.

2. FORMALIZATION

The formalization provides defined rules to identify key elements of conceptual models by
defining relations between a subset of structures from linguistic world and a subset of
structures from conceptual world. Linguistic world is potenmy unlimited, which led us to
work with a subset, called utility language. Linguistic structures that compose this subset
are referred to as linguistic patterns. Regarding to conceptual world, it is fonned by any
conceptual models that represent a problem and its solution. In this case, we are going to
work with two 00 conceptual models, the Object Model (OM), which will represent that
static structure of the problem, and the Behavior Model (BM), which will represent its
dynamic aspect. Conceptual structures of these models constitute what are called
conceptual patterns.

Figure 1 shows the reasoning followed for the de6ition of a formal correspondence
between linguistic (L) and conceptual (C) patterns. It is based on the equivalence between
their mathematical representafions. In particular, between the equivalence of the logical
representation of linguistic patterns (PL) and the set theory representation of conceptual
patterns (ST). More details about this formalization can be found in (Moreno, 97b).

Linguistic
World

a?

L 1

Figure 1. Relation between the Linguistic ar.d the Conceptual Worlds

SEW22 Proceedings

The result of the formalization is the correspondence shown in Table 1, where (1) names
of classes are equivalent to the nucleus of the noun structure of noun groups or
complements, and (2) naxnes of relations are equivalent to the verb in third person
singular; and (3) subordiitel, ..., subordi i t~ represent any simple clause in a
subordinated clause.

Table 1. Correspondence between Linguistic and Concephlal Patterns

SEW22 Proceedings

3 . 0 0 MODEL CREATION

00 model creation employs the results of the formahtion and guides analysts in building
conceprual models. This activity is achieved by means of the steps shown in Figure 2,
which are &tailed in (Moreno, 97a). The first five steps prepare the problem description
for application of the formalization output, which will be used during steps 6 and 7. The
other tasks in these steps as well as steps 8 and 9 combine conceptual patterns to form the
OM and the BM.

Figure 2. OOA Method Steps

Our approach seeks to give precedence to one of the empirically existent conceptual
representations that can model a given problem. The goal is to ensure that the conceptual
models adequately represent the studied problem and its solution. The fitness of these
models will be formally j u s W by employing the results supplied by the formalization
during the construction process, that is, during the 00 method application

4. RESULTS OF THE APPROACH APPLICATION

With a view to r e h g our approach, we have worked with a group'of final-year degree
students at the School of Computer Science in the Politechnical University of Madrid.
Some of them were taught the proposed approach and others the standard OMT
(Rumbaugh, 1991) approach. In this manner, we sought to achieve a second objective:
compare how good the two methods were with respect to obtaining conceptual models by
people with no experience in 00.

SEW22 Proceedings

In order to get representative results, that is, reliability of 95% and standard deviation no
higher than 2.28, it can be considered that a sample of size 25 from an homogeneous
poblation of about 100 students would be adequate. Also note that both approaches were
taught strictly foIlowing the d e s provided by their authors.

D e w results of this application are documented in (Moreno, 97). The most interesting
conclusions are discussed below.

* Analysts working with our approach were thought about the problem more, instead of
directly setting out creating models, a common mistake made by inexpat analysts.
This i m p k better study and understanding of the problem under analysis, a task that
is essential in performing a good analysis.

Analysts working with our approach expended more time before conceptual modeling.
This time was used in creating the u& language, that is th representation of the
problem following the linguistic patterns. Analysts working with OMT expended
significant time discussing which elements should form part of conceptual models,
which led to incorrect models in some cases. This can be attributed to the absence of
rigorous criteria for identifymg elements of conceptual models. Using our approach,
65% of the time was spent transforming to the utility languages, while 35% was spent
constmcting conceptual models. Using OMT, 85% was spent constructing conceprual
models, and 15% was spent understanding the problem before focusing on conceptual
models.

* Our approach avoid some kinds of incorrect modeling constructions, due to the
encapsulation of 00 concepts, which may not be familiar with, nor completely
understood by inexpert analysts, under the concepts of the language, which are known
and generally used by analysts. In that sense analysts working on OMT have developed
incorrect conceptual structures due to the misunderstanding of some 00 concepts. For
example, as can be seen in Figure 3, which represents the static part of a video club
system in OMT, one of the most common errors is the incorrect use of the inheritance
concept, where a copy of a movie is drawn as subclass of movie. This mistake did not
occur using our approach, as m order to get that conceptual pattern, there should be a
linguistic pattern saying for example "a copy of a movie is a kind of movie" which is
not c o m t from a semantic point of view.

ACTOR MOVIE I

Figure 3. OMT Object Model

The application of our approach makes the validation process easier for users. The
reason is that part of the validation can be done before building tbe conceptual models,
during the Validation Utility Language process, wen in Figwe 2. This utility language
is, as it has been said, natural language which the user is f ' with. In the other
hand, validation of conceptual models can be more difkult for users as us*, they
will not be familiat with spec& notations ohat depend on software development
methods and technical aspects. The proper conceptual models wiil be achieved by
means of the correct application of the correspondence between linguistic and
conceptual panerns, shown in Table 1.

= Collceptual modeling using our approach is more repeatable. For example in case of
dynamic representation of the system, all conceptual models are very similar to the one
of Figure 4. On the other conceptual models got in OM" are very ditkent, above all
in the description of th dynamic part o i the system using state transition diagraxns.
This is due to the application of the correspndence between linguistic and conceptual
patterns. We consider this chammmhc

. .
very important, as it is one of the prerequisites

for measuring the process, and use these measures to improve it

Figure 4. Behavior Model with the proposed approach

5. CONCLUSIONS

Our work can provide a formal approach in order to get conceptual. models that represent
the problem and its solution. The use of a linguistic approach has led us in the obtention of
adequate conceptual models, from all models that could empirically represent a given
problem. The choice of these models is based on the use of the mathematical world as
catalyst for converting linguistic world into conceptual world.

SEW22 Proceedings

One of the most interesting results of this approximation is that its application is easier
than the application of any other current method. The teason is the use of linguistic
knowledge to get conceptual representations. This can be really useful for non expert
analysts who are not completely familiar with 00 concepts. They would have to apply the
steps seen in section 3 to get the conceptual models, it woukin't be necessary to know the
details of the formalization, only the results, that is, the correspondence between linguistic
and conceptual patterns.

The same correspondence can be applied in order to obtain natural language from the
conceptual models. That is what is known as paraphrasing, and is used to make easier the
validation process. From conceptual models the analyst can get the description in natural
language of these models, and the user can validate this description instead of validating
conceptual models.

F i y we can say that our approach wouid be easily automatizable.. In fact we are
planning to develop a tool to automate the OOA model construction, that is, a tool to
guide analysts m construction of conceptual models of a problem. This involves inputting
the results of the formalization into the tooL It would really be useful during Steps 6, 7, 8
and 9 of the method, which is when the results of fomahtion are applied and when
conceptual models of the problem are built. It should also provide support for the earlier
steps of the method, that is, Steps 1 to 5. These steps require significant intervention on
the part of analysts, for which the method provides the necessary criteria. However, they
are not automatic processes.

6. BIBLIOGRAPHY

Basili, V.R., Briand, L.C., Malo W.L., How Reuse Influences Productivity in Object
Oriented Systems. Communications of the ACM, 39 (lo), 104-1 16 (1996).

Faulk, S.R., Software Requirements: A Tutorial. In Software Engineering, 82- 101, IEEE
Computer Society Press, Los Alarnitos (1997).

Iivari, J., Object-Orientation as Structural, Fmctional and Behavioral Modeling: A
Comparison of Six Methods for Object-Oriented Analysis. Information and Softwee
Technology, 38,155-163 (1996).

Moreno, A.M. A Conceptual Modeling Formal Method for Software Systems. PN)
Thesis, Universidad Polittknica de Madrid, Madrid (1997).

Moreno, A.M. Object Oriented Analysis from Textual Specifications. Proceedings of the
9th International Conference on Software Engineering and Knowledge Engineering,
Madrid, June 17-20 (1997).

Moreno, AM.; van de Riet, R.P. Justification of the Equivalence between Linguistic and
Conceptual Pattern for the Object Model. Proceedings of the
International Workshop on Applications of Natud Language to Information
Systems, Vancouver, June 27-29, (1997).

SEW22 Proceedings

Northrop, M., Object-On'ntcd Devcbpment. In Software Engineering, 148-159. XEEE
Computer Society Press, Los Ahitos (1997).

Rumbaugh, 3.. et aL, Object-Oriented Modeling Technique. Prentice-Hall, New Jersey,
1991.

Wang, S., A Sjntksis of Nwral Lmtguage, Semantic Network und Objectsfor Business
Process Modcling. Camdian Jd of Administrative Sci-, 14(1), 79-92 (March
1997).

N. Juristo, A.M. Moreno 22nd SEW 99

OB JECT-ORIENTED MODELING FOCUSED ON A

LINGUISTIC APPROACH

N. Juristo, A. Me Moreno

Facultad de Infomsitica - Universidad Politknica de Madrid

SPAIN

FIM - UPM 1

N. Juris(o, A.M. Moreno 22nd SEW 97

PROBLEM ANALYSIS

"Current methods do not provide formal, justified, complete

and correct rules for indentifying components of a problem

to be represented in conceptual models"

SPECIAL GAP:

OBJECT ORIENTED ANALYSIS

FIM - UPM

SEW22 Proceedings

N. Jcubtq A.M. Monw t ~ ~ a d s ~ ~ n

OBJECT ORIENTED ANALYSIS

LINGUISTIC WORLD CONCEPTUAL WORLD

Persons are rational beings

: and animals
. t

Conceptual Modeling Formalization

OOModel Creation

--

FIM - UPM

N. Jaristo, A.M. Monao ~ S B W 9 7

CONCEPTUAL MODELING FORMALIZATION (Vi)

Linguistic I world I

IPIM - UPM 4

K J W & O , A . M . M ~ ~ ~ ~ ad SEW n

CONCEPTUAL MODELING FORMALIZATION (i)

N. Jurbto, A.M. Momno 22nd SEW 97

CONCEPTUAL MODELING FORMALIZATION (iW~ii)

r
COMPLEMENT
ENUMERATION BINARY ASSOCIATION

....... Nominal Group
[[, Nominal Grouphn :*

and1 or Nominal Group]

general-verb

Complement
[[,~omplementk~' ' ' ' '

and 1 or Complement..

FIM - UPM 6

SNV22 Proceedings

N. Juristo, A.M. Moreno 22nd SEW 97

OBJECT ORIENTED MODEL CREATION

C
sw 9: Dbjcn odd & BCIJ~V~W vmrma, ...

FIM - UPM 7

N. Jaristo, A.M. Moreno 22nd SEW 97

RESULTS OF THE APPROACH APPLICATION (ifiv)

OUR APPROACH 5 , c $
C r

OMT
4 5 ?

5 . Analysts think about the r: I s i . Analysts directly construct $
i I f i
5 i problem ;r I conceptual models I

!! ! i ;; I ' s i . .

i Conceptual model ;r $!
0 Conceptual model i~ ;; I C I

i 2 G ;I
F construction time: 35% il ;
? i! 5 construction time: 85% j
' 2 i 2

00 concepts encapsulated f $. pure 00 concepb 2
2

i $ 5 i
i 2 i ;I
; in linguistic structures 9 , $
5 I' 9 ~LtL.l~*t .~..,..I......l*...................... ;I~.....*...............~.~-.

FIM - UPM

SEW22 Proceedings

N. Jurlsto, A.M. Memn, 22ndsEW97

RESULTS OF THE APPROACH APPLICATION (Mv)

ACTOR 0

FIM - UPM 9

N. Jertsto, A.M. Momno 22nd SEW 97

RESULTS OF THX APPROACH APPLICATION (W v)

~ ~ m ~ m ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ e ~ o t o ~ ~ t ~ ~ o ~ o ~ ~ t o ~ m ~ ~ ~ ~ ~ ~ ~ m ~ ~ ~ ~ a ~ ~ m t ~ ~ ~ ~ ~ 8 ~ ~ e ~ e ~ e ~ o , m , o ~ e ~ m ~ ~ ~ m ~ ~ .

i J 5
OMT

I
4 OUR APPROACH $ $ 1
i 1
i 1 2 3

i * Validation of natural 1 I !a VaIidation d conceptual 3
i !! 5 <

5 language
;
i
I Conceptual modeling
?

r f
2 models i
4 $ I
I 2 2

1
i. Very differents conceptual $

i! ? 3
C I f ; models I

repeatable 5 2 i t
4 ; F 5 Sr

..*. '*Ll.*L**vL* *.,&.,* ***&.,&* *.,&., **&..*I i.T*.~TL*.lL***.~L.&.L**~..L*..L.~.LTLv* T... *&.a.

FIM - UPM 18

SEW22 Proceedings 473 SEL-97-003

N. Juristo, AM. Moreno 2Znd SEW 97

RESULTS OF THE APPROACH APPLICATION (iv/iv)

FIM - UPM 11

N. Juristo, A.M. Moreno 22ad SEW 97

CONCLUSIONS

* Formal and systematic analysis approach

Easy application by inexpert analysts

Paraphrasing for validation purpose

Automatization possibilities

FIM - UPM

SEW22 Proceedings

Case Study of an Object-Oriented System: EOSDIS
7 - ,

Jeanne Behnke and Susan Sekira

. " ,' ,/
Codes 505 and 514

3ij387b
Mission to Planet Earth W E) is a long-term NASA research mission to study the processes leading to
global climate change. The Earth Observing System (EOS) is a NASA campaign of satellite observatories
that are a major component of MTPE. The EOS Data and Information System (EOSDIS) is another
component of MTPE that will provide the Earth science community with easy, affordable, and reliable
access to Earth science data. EOSDIS is a distributed system, with major facilities at six Distributed Active
Archive Centers (DAACs) located throughout the United States. The EOSDIS software architecture is
being designed to receive, process, and archive several terabytes of science data on a daily basis. Thousands
of science users and perhaps several hundred thousands of non-science users are expected to access the
system. While there are many segments in EOSDIS (e.g., flight operations, network) this case study
discusses the development of the science &ta processing segment (SDPS). We briefly review the
architecture of the system, the goals of the SDPS, and the development progress to date. This study
highlights key software development challenges, experiences integrating COTS, and the difficulties of
managing a complex system development effort.

The EOSDIS data collection begins at the ground systems. From the ground systems, the data is forwarded
to the SDPS where the data is captured, processed, archived and distributed. The SDPS is being developed
as a fully distributed and heterogeneous system using object-oriented (00) development methodologies.
The SDPS, the focus of this paper, is decomposed into seven subsystems:

1. INGEST subsystem - receives data from external and internal sources and submits them for
archive

2. DATASERVER subsystem - archives and dismbutes data
3. PLANNING subsystem - develops plans for producing data products (level 0 to level 1)
4. DATA PROCESSING subsystem - manages, queues and executes processes for the generation

of data products
5. CLIENT subsystem - allows users to access the services and data available in the system
6. INTEFtOPERABLITY subsystem - provides the software infras~ructure for the

communications between clients and servers in the system
7. DATA MANAGEMENT subsystem - support. the location, search, and access of data and

services.

It is easier to appreciate the magnitude of the design problem, if you look at the scope of the data volumes
to be processed. EOSDIS, at all DAACs, will have to support at least 260 different data products and sets
of raw instrument data. These DAACs can expect at least 480 GB of raw instrument data and subsequent
processing will create approximately 1.6 TB of data, all to be stored daily. At one of the largest DAACs,
located at Goddard Space Flight Center, the permanent archive is expected to reach about 245 TB with more
than 15 million files. This DAAC will expect to ingest around 574 GB per day (a throughput rate of 6.64
MB/s into the archive) and disseminate more than 368 GBl&y (a throughput rate of 4.26 MBIs out of the
archive). In addition to providing a comprehensive data retrieval and processing system, the SDPS is being
tasked to provide a flexible, scaleable and reliable system. The architecture must be capable of supporting:

new data types with minimal software modifications
new data centers that will not require new code and software agreements

a standard interfaces (HDF-EOS) enabling coordinated data analysis
&ta access from a wide variety of users (e.g.. kindergarten teachers, as well as college
professors)

SEW22 Proceedings 47 5 SEL-97-003

technological advances and the infusion of new COTS products and techniques (e.g., data
mining)

9 inevitable change and new requirements

To meet the challenge of the SDPS, the EOSDIS Core System (ECS) was designed (see Figure 1). It is an
enonnous development effort comprising 75 COTS packages, about 1 million lines of code and the efforts
of approximately 220 developers. At this time, about 90% of the launch critical capabilities have been
completed and are in the process of being tested. On August 28,1997, a successful demonstration of this
segment of the ECS was held. The demonstration was organized into scenarios to give reviewers the best
overview of the developing system. Using an operational construct, the reviewers were shown how data
from the Landsat-7 and AM- 1 missions would be ingested, processed, archived and distributed. Although the
August milestone was successfully met, the overall system is still far from completion. Since the onset of
the development effor? two years ago, the EOSDIS project has had to re-examine its software processes and
make numerous changes along the way. This case study highlights the experiences and reasons for change.

Software Development Cballenges:

With a software development effort of this magnitude, it is often easy to lose perspective. To complete such
an endeavor from a developer standpoint, it is imperative that the requirements be fully understood, the
development effort be properly estimated, that contingencies and c h g i n g requirements are planned for, and
an attainable schedule is developed. To accomplish the task the EOSDIS contractor chose several
techniques to manage the effort. We focus on the design definition, the development methodology,
choosing object-oriented meaics, and successful software practices.

The project continues to refine its software engineering practices for the best way of capturing and
documenting the design. What originally seemed appropriate documentation at the detailed design stage is
no longer viewed as crucial information to maintenance or test personnel. At the outset, the ECS was
designed following the Object Modeling Technique (OMT) Methodology, which emphasizes a number of
techniques and notations for analysis and design. Using a tool called Software-Through-Pictures (StP), the
design documentation included event traces and state diagrams, which were then used by programmers for
initial software development. While these can assist in refining the object models, later on in the
development life cycle they tend to be less favored design vehicles. Customers and evaluators, in particular,
found that there was insufficient detail in the class and method descriptions to understand the design. Also,
they found that the event traces were not very useful. Many, both developers and customers, preferred to
view functional diagrams and scenario definitions. Programmer familiarity and experience has played a key
role in defining the documentation needs. Currently, the development staff uses Rational Rose, from
Rational Software Corporation, for forward and reverse engineering Discover, a software engineering tool
from Software Emancipation Technology, was selected to provide software impact analysis and code
comprehension. AX++, a product developed under Lockheed-Mar tin, displays classes, objects, functions
and atmbutes via an hml browser.

System requirements were laid out to a level 3 specification under the contract. These level 3s are currently
under configuration control through a CCB process. 'Lhe level 3s mere further broken down by the
contractor, creating level 4 requirements. These level 4 details are in turn mapped not only to the
subsystems and particular code drops, but also to the 00 classes. This mapping has subsequently become
quite a burden to maintain. It is difficult to keep up with changing ~equirements, understanding the heritage
of the level 4 and volatile scheduling.

In the early days of the project, considerable time was spent on benchmarks and prototypes. This early
evaluation of the components and system requirements was useful to determine how they might best be
incorporated or eliminated. For example, several benchmarks of database management systems were
undertaken at different times to determine which product would best support the ECS. The latest

SEW22 Proceedings 476 SEL-97-003

benchmark looked at spatial query processing of a IffiB database application, where clients were simulated
connecting to the server in small and large groups. Another example of benchmarking was early
examination of network attached storage (NAS). At the time, NAS was (and stili is) very popular, but it
was determined that the data transfer rate would be unable to support the high data rates of ECS. The user
interface was prototyped a number of times in an effort to meet end user needs.

Another aspect of developing the design was to establish a number of Working Groups. These committees
convened to discuss such subjects as:

the metadata model and schema
o system access pattern by end users
m data characterization and size estimation

One of the best ways to understand the design has proven to be through workshops and scenario-based
demonstrations. Workshops and demonstrations have been key tools for viewing ongoing development and
EOSDIS concepts. This use of demonstrations provides early insight into potential architectural: and
programmatic deficiencies and pennits users and testers of the system a chance to view the system prior to
completion.

Early in the development effort, it became apparent that the single delivery approach would not make
schedule. The project re-examined processes for potential problems. One area of concern was the choice of
the Waterfall Software Development Methodology. Used traditionally for mainframe development, this
methodology was not suited to the clienttserver nature of the system. Under this methodology, the concept
was to complete an entire build and deliver it all at once to the Test team. Another facet of this approach
was to implement an incremental track for development. Each subsystem was assigned to a specific track
independent of each other. This approach, however, does not show end-to-end functionality during the
development cycle. As a result, a new process for software development was adopted, similar to the Spiral
Model. This new process, called the Evolutionary Software Build Methodology, outlines an iterative
approach to software development whereby software functionality is built into the system in small steps.
So the present approach is called build a linle, test a little and the key focus is to demonstrate functionality.
These demonstrations then buy some measure of customer confidence in completion of this large system.
The development approach has mapped out several drops of the system. These drops focus sizable chunks
of functionality that meet user and tester needs. The drops are assigned basically as:

* what is needed prior to launch (science software and integration and test)
* what is needed at launch (launch critical)
* what is needed 60 days after launch (launch critical + 60)

andsoon ...

User needs were determined by DAACs, Instnunent Teams and Test Teams. This method of deploying
drops allows time for addressing performance issues in conjunction with development and integration.
Mode management is used to test different aspects of the system independently and simultaneously.

Many software development practices have been established to guide the development process. Numerous
program instructions have been written to provide software guidelines regarding coding standards, naming
conventions, and configuration management. Softwan? development files are also created by developers to
maintain historical design information representing the current state of their software. Programmers have
access to several tools for development like Builder Xcessory and S-Designer. At this time, ECS estimates
that 250 source lines of code are produced by a programmer per month. Once a set of classes has been
completed by the programmer, a code walkthrough is scheduled. The code is reviewed by peers and the lead
programmer, as we11 as a quality assurance reviewer. Code issues are recorded and the programmer makes
the necessary adjustments. Prior to unit test, Purify, from Rational Software Corp., is run on the code
segments to test for memory leaks and execution errors. The next step is to promote the code to the

SEW22 Proceedings 477 SEL-99-003

appropriate buildlmerge segment within the Clearcase environment, a configuration management tool also
from Rational. ECS has also instituted daily integration meetings to support the software development
effort. At these meetings, the developers keep track of problems, note changes in the environment, and
coordinate the integration effon. ECS tracks defects in the code thirwgh non-conformance reporting (NCR)
mechanisms. An NCR can be filed by a developer, integrator or tester. DDTS (Distributed Defect Tracking
System), yet another tool from Rational, is used to track NCRs. For planning purposes, ECS predicts that
3 NCRs will be found per 1000 source lines of integrated code and that it will rake a programmer 20 hours
to analyze an NCR problem and code and unit test the fix. One area which presents a high percentage of
problems for ECS is the configuration of clients and servers. To manage the configuration parameters
needed to correctly initialize the servers, ECS is developing a program called ECSAssist which will allow
interactive configuration of the servers.

Another challenge to developing this system was selecting the appropriate methods by which to
qualitatively and quantitatively measure software development. Wfiile Object-oriented analysis and design
continues to gain popularity, there are still limited approaches for gathering 00 software metrics.
Similarly, there are few documented 00 baselines for establishing productively rates and assessing quality.
McCabe tools arc now being used to measure reusability and maintainability (e.g., depth of inheritance trees
and number of children). A random sample of 5% of the code showed a complexity factor of greater than
10. McCabe is also being used to examine the number of classes and number of methods. Unfortunately,
several problems arise when evaluating the memcs. It is often difficult to isolate the COTS software from
the custom software. For this project, there also seems to be a significant amount of code that is either
oldlobsolete or not promoted to integration, which tends to skew h e metrics. As ECS polishes the
completed software, we anticipate more accurate metrics from the available tools.

Integrating COTS:

It would be difficult to find a project at NASA that tries to integrate so many different 'cutting edge'
hardware and software packages. It is often an easy decision to select a particular package based on its
reported performance and determine that it is a good solution for the entire project. Thc decision to use so
many products and platforms was driven by the desire to build a system to operate at least twenty years and
to have the flexibility to grow and change with those years. This is not a decision unique to the EOSDIS
project. This system uses approximately 75 off-the-shelf (OTS) psckages from commercial and government
sources. Principal packages (that drive the design) include:

ECS has chosen to implement the design on 3 base platforms: SGI Challenge Servers, SUN Enterprise
Servers and HP J210 and K420. The mass storage systems selected 'for ECS are also important design
dnvers. For the fast archive, EMASS AMU2 robotic units were chosen along with HP magneto-optical
drives. The EMASS units will house up to 4576 5.25" optical disks for a maximum capacity of 12 TB.
StorageTek STK Powderhotns form the base archive robotic devices, each supporting 16 SONY D3 drives.

, DCE and 00DCE
ClearCase
R d y

SEW22 Proceedings 478 SEL-97-003

distributed computing envit onrnent
CM tool to manage completion of different builds
trouble-ticketing software used across project

The 0 3 tape media holds 50 GB for approximately 250 TB in a storage unit. Each mass storage unit is
scaleable as new tape devices and media are developed.

Unfortunately, many development problems can be attributed to COTS integration. A significant learning
curve is associated with each COTS package. Some of the technical problems encountered include proper
tuning of the products per platform, maintenance of baseline products and a mismatch of product
availability to when it is needed. For example, ECS seeks to maximize the use of particular hardware
systems for optimal performance. SGI was chosen as a target platform because it has an enhanced V 0 bus
structure that will allow ECS to provide accelerated access to the data in the storage archive. However, SGI
is not a fmt string platform for SYBASE and there are delays in getting qualified SYBASE products for the
SGI. ECS has also chosen to implement Distributed Computing Environment (DCE) suuctures for inter-
process communication. In fact, since the system has been designed using an 00 methodology, OODCE
has been implemented in parts of the design. SUN has implemented DCE within the operating system,
where SGI chooses to view it as a layered product. Consquently , the support for W E on SGI platfoms is
secondary to that company. This project has to continuously deal with products that are not as mature as
required and have problems in a multi-platform environment. Use of HP, SUN and SGI as the basic
platforms for the architecture has proved difficult, despite a reliance on hardware and software standards.
These comments do not reflect on the 00 design of the code but are probably indicative of any project of
this size and complexity. To combat these problems, ECS brings in consultants to immediately attack
such problems. Another solution is to continuously meet with COTS vendors to push for solutions. In a
few cases, NASA has paid to improve a product to meet our needs.

Management of a Complex Development Effort:

There are a few key issues that bear particularly upon the management of the software development. These
issues encompass the characteristics of the EOSDIS contract, the staffing profile, and schedule management.
Hughes Information Technology Systems holds the prime contract for EOSDIS development, however it
employs a number of sub-contractors who specialize in a variety of areas. For example, EDS is contracted
to manage hardware and software procurements, while NYMA is responsible for system verification. Just to
give perspective on the staff size of the development effort, approximately 220 developers are employed by
ECS. Almost all of the contractors are located in Landover, MD in close proximity to Goddard Space
Right Center where the NASA project managing the EOS effort is located. The development staff is
organized hierarchically; programmers have been assigned to subsystems and subsystems are managed by a
lead programmer. A new change has been to co-locate government personnel at the Landover site, which
allow issues to be handled immediately and reduces the number of formal meetings.

Since the EOSDIS contract was awarded, the contractor for SDPS has been faced with a number of critical
issues. A key issue has been the staffing profile. The highly-specialized skills required to program objects
in C++ are much sought after in the Washington metropolitan area. Hiring and attrition have been
problems for the contractor. For example, financial compensation has not proved to be a good solution to
attrition. One method to compensate for staff turnover has been to develop in-house training programs.

Another critical issue has been resource and software development scheduling. The schedule for software
development has been replanned three times in the Iast two years. Part of the scheduling problem has been
the frequency with which unplanned work has entered into the software development effort. Unplanned
work is possibly a symptom of an object-oriented software development effort. Unanticipated problems
with COTS and hardware platforms have also contributed to delays meeting schedule. These problems are
exacerbated by the number of COTS packages used by the project. The iterative approach to software
development has led ECS to schedule parallel development efforts. Despite the careful attempts at
scheduling, subsystems found themselves working parallel branches of development at the same time,
which led to very long work hours. The time alloted to subsystem integration at the outset did not reflect

SEW22 Proceedings

the actual time it took. A year ago, it took several days to complete a merge that now can be performed in
hours. However, this integration time was not reflected in early schedules.

Several steps have been taken to improve our scheduling process. A new schedule has been drafted that
schedules completion of the launch critical elements of SDPS by the launch of AM-I in June 1998. To
ensure that the launch date can be met, ECS is using a new scheduling tool, Primavera Project Planner
from Primavera Systems, Inc. The new schedules factor in everything, from vacation time of the staff to
time for developing, testing and deploying. Extra time is also allocated for integration, bug fixes, training
and documentation. Since Prirnavera allows full resource management, ECS is better able to generate a
more accurate schedule. While then are many aspects to effectively managing the ECS project, schedule
and staff are the two most critical drivers in the success of this project.

Conclusion:

EOSDIS is an ambitious program and a keystone in the Mission To Planet Earth. Many things can be
learned from the development of this system. This paper focused on some of the key aspects of system
development and software management, COTS integration and program management. However, there are
many other aspeets to the development of this system that were not even mentioned. Perhaps other projects
can see parallels to the EOSDIS adventure. We encourage further discussion on these topics.

SEW22 Proceedings

S
E

W
22 P

roceedings

A Case Study of an
Object-Oriented System:

Jeanne Behnke
Sue Sekira

Earth Science Data Information Systems

Software Engineering Workshop
December 4,1997

EOSDIS Concept

* EOSDIS is a distributed system
- 6 major facilities across the US

* called Dishibuted Active Archive Centers @ M s)

* Software architecture is designed to receive,
process, archive and distribute several terabytes of
science data on a daily basis

* User community consists of several thousands of
science and non-science users

SEW22 Proceedings

Large Data Volumes!

260 different data products and sets of raw
instrument data

* 480 GB of raw instrument data to be stored daily
1.6 TI3 of processed data stored daily
At the GSFC DAAC
- permanent archive size specification is 245 TB and more

than 15 m u o n files
- 574 GB/day ingest

6.64 MB/s total throughput rate into the archive

- 368 GBlday distribution - 4 2 6 MB/s total throughput rate wt of the archive

SDPS System Goals

Flexible, Scaleable, Reliable
Use Open System standads

*. Support standard interface to Earth science to
enable coordinated data analysis

* Maximize the use of COTS packages and respond
to technological advances and techniques
Support new data centers (DAACs) with minimal

0 Architecture to support these goal'r:
- EOSDIS Core System (ECS)

SEW22 Proceedings

ECS Context Diagram

Case Study Focus

* Software Development Challenges

* COTS Integration
Managing a Complex Development Effort

SEW22 Proceedings

Documenting the design
- ECS used the OMT model to &sign the system
- Sofrwm-Through-Pictures (StP) used in early &sign phase

Challenge: insufficient detail about classes and event traces
weren't useful

- Cumntly use forward and mverse engineering products
Rational Rae, Dimvex, A X + +

Requirements Tracing
- Level 3 re~uintments from the contract crre broken down to

further details-->level 4
- Level 4 details arc mapped to subsystems and particular code

Design Phase (2)

Benchmarks and Prototypes
- Early evaluation of the components and system

* Several Working Groups (WG) established
- metadata data model and schema validation
- characterize the system access pattern by end users
- characterize the data (by instrument, dttatype...) to be

stored in the system
* Best way to understand the design:

- Frequent workshops
- Scenario-based demonstrations

Development Approach

Complete an entire software build and deliver to Test

- Waterfall Software Development methodology
- Incremental track used to develop piaces of the system

Migrated to Evolutionary Software Build

- better suited to client/semer nature of the system
- iterative approach (complete specific portions of the

system) more conducive to changing requirements

Present approach: build a little, test a little
- key focus is to demonstrate functionality

System deployed in multiple drops
- organizes a big effort into manageable chunks
- focus on meeting user and test needs

parailel integration efforts

Map features of the system to the time when they
are needed -- launch critical, launch + 60, erc ...
- Usa needs determined by DAACs, ITS and Test Teams
- Address performance issues in conjunction with

development and integration
- Use mode management to support concunent

Integration and Test activities

SEW22 Proceedings

Software Practices

* Estimate 250 SLOC per programmer per month
* Established Project Instructions and Software

Development Folders for code development
* Programmers have several tools like:

- Builder Xcessory
* Evaluation Techniques

- Code walkthroughs with peers
- Run Purify to test for code problems
- Daily integration meetings

Code Metrics

SEW22 Proceedings

Number of classes has changed from design to

- better understanding of the data and requirements

McCabe Cyclomtic Complexity
- Looked at a random sample of 5% of code

* look at code that has complexity of >10

- Analysis of number of classes and number of methods
look at method based on number of noncomment source statements to
determine complexity

Problems with metrics produced by tools
- Difficult for tools to isolate the COTS softwam from the custom software
- Code in CM that i s not promoted for i n t e p h

a DDTS used to track NCRs
- meet to discuss NCR issues daily
Predict 3 NCRs per 1000 SLOC during formal test

- Plan 20 hours per NCR for analysis, code and unit &st

Many problems arise with configuration of servers
and clients at integration time

SEW22 Proceedings

COTS Packages

System uses - 75 Off-The-Shelf packages from
commercial and government sources

* Principal COTS that impact design:
- Sybase Relational DBMSISQS - dbms and spatial query system
- AMASS - fJle storage managanent system fw robotic s m g e devices
- Autosys - scheduling software for the processing system
- Tivoli - system management tools
- HP Openview- graphical tool for system mar:agement
- RogueWave - libraties used to map components to objects
- DCE and OODCE - distributed computing e~vironment
- ClearCase - CM tool to manage completion of different builds
- Remedy - trouble-ticketing software used across project

Multi-platform Environment

- SGI Challenge Servers (S, DM, L, XL) using IRIX 6.2
- SUN Enterprise Servers (E3000, E4000) using Solaris 2.5.1
- HP 52 10 and K420 using HP-UX 10.0 1

Mass Storage Systems
- StorageTek STK Powderhorn - 16 Sony D3 drives (50 GB mag tape) for - 250 TB storage

- E M A S S AMU2 mixed media storage
3 HP MO drives (26 GB platters) for - 12000 GB storage

* SGI RAID for working storage

SEW22 Proceedings

COTS Issues

Significant learning curve associated with COTS
Technical problems including :
- proper installation and tuning of product per p l a h
- maintenance of baselined products

Product readiness/availability mismatch
- compatibiiity across platforms is difficult

Consultants are used to immediately attack problems

COTS Examples

* SYBASE/SQS
- SGI is not the first string platform for SYBASE
- Support for object-oriented applications is not first

- SQS product is immature

- SUN platform full support for DCE and OODCE;
support on SGIs has been a problem

SEW22 Proceedings

Managing a Complex
Development Effort

Contractor profile consists of a prime contractor and
several subcontracts
Development activity located near GSFC in

- move government personnel in with contractor to treat
issues and problems on the spot

- Reduces number of meetings
on-site presence allows for better understanding of the system

Scope of this effort: - 220 developers

Staff Development

Sipficant attrition problems (industry-wide)
Difficult to find developers who are seasoned in:

- any of the COTS packages

- On-Site Training
- On-Site Library

SEW22 Proceedings

Early Schedule Issues

Parallel development of subsystems
- subsystem communication problems

* Unanticipated problems with COTS packages
- hardware platforms

Integration Issues
- coordination of subsystems

* Continuous replan of activities
- better understanding of time required for development
- careful analysis of what needs to be done and when

Schedule Solutions

* Lesson Learned:
- new schedules factor in everything

time to develop, test and deploy
allow extra time for integration
allow time for bug fixes, mining, documentation

* determine all facets of work performed

- iterative integration approach is better

Tools used to manage the schedule

- Primavera

SEW22 Proceedings

* Overview of EOSDIS system development
- discuss aspects of developing a large 00 system
- how a NASA project evolves to meet customer needs
- show mettics associated with 00 project development

Share what has been learned by EOSDIS
- jeanne.behnkt@gsfc.nasa.gov
- susan.sekira@gsfc.nasa.gov

SEW22 Proceedings

Application of Use Case approach to a Small Project
Westinghouse Electric Corporation

H.J. Kopp, L.T. Ciccone
Commercial Nuclear Fuel Division

Application of Use Case Approach
to a Small Project

Larry Ciccone
Harold Kopp

Westinghouse Electric Corporation
Commercial Nuclear Fuel Division

SEW22 Proceedings

Application of Use Case approach to a Small Project
Westinghouse Electric Corporation

HJ. Kopp, L.T. Ciccane
Zommercial Nuclear Fuel Division

Overview
Use Case analysis for requirements and design phases of the development of a commercial software
product in a corporate environment is the focus of this paper. The effect of the following factors on the
software development activity will be discussed:

0 the environment
the project
the process

Amazing impmvements in requirement identification and initial product quality were achieved compared to
the previous "list of requirementsw approach. There was no conceptual gap between the objects in the
requirements and the design phases. Use Case analysis provided a process that resulted in up-front
activities which improved quality and reduced rework in a small but complex project.

The Environment
The Core Engineering Department of the Westinghouse Commercial Nuclear Fuel Division (CNFD) is
focused on the design of nuclear reactor fuel reloads. Quality and nliilii are critical factors in this
business. Development and deployment of analysis programs related to fuel reloading is a component of
the department charter. Management encourages employees to :ake steps to use the most effective
processes available to achieve quality and reliabili. Proximity to the Software Engineering Institute and
participation in the Pittsburgh Software Process lmp~ovement Network (SPIN) has influenced the direction
that has been taken. For example, adoptron of a formal inspectior: process for software requirements,
software design, and code was a direct result of employee participation of a Piburgh SPlN meeting(a
NASA speaker described experience with formal inspections).

Management encouragement to improve process is evidenced in the availability of the following courses:
Object Oriented Design and Analysis course (Community College instructor)
C and C++ Programming Courses (Westinghouse instructors)
Personal Software Process Course (an SEI course)

Course offerings are one of the steps currently being taken to move to a higher CMM level. Added attention
given to planning is another step being taken.

A panel discussion regarding commercial experience with Objed Oriented approaches at the May 1996
SPlN meeting identified that Jacobson (Ref 1) had an approach that bridged the gap between requirements
and design that some of the audience experienced with the Rumbaugh (Ref 2) approach. The adaptation of
Jacobsen's approach to a CNFD software project is the principal ftxws of this paper. The CNFD
environment encouraged investigation into the Jacobson (Ref 1) approach.

The Project
CNFD uses a set of computer programs that it developed to analyze nuclear reactor fuel loading designs. It
commercially provides these computer programs to nuclear utilities and to other fuel designers. In order to
demonstrate that these computer programs and the environment tnat these computer programs require is
exactly correct, a computer program was developed and released on UNlX systems in 1992. The principal
function of this program is to demonstrate that the data and executable fibs associated with the operating
system and the nuclear design programs are identical to those validated for production. Confirmation is
provided by showing that certain file attributes are identical to the validated attributes. The UNlX program
executes every 6 hours. Unsatisfactory results may invalidate the work performed on an engineering
workstation node.

Westinghouse Corporation upgraded its corporate desktop wmpi ter network in 1996 and 1997 and
experienced a need for a computer program to assist in maintainittg and upgrading the software distributed
on the network as well as correcting faults. A common source of faults on the Westinghouse corporate
network which primarily consists of Pentium PCs in an NT envirorment is the introduction of software by
users. In some cases the added software changes an existing shared library (a dll) which causes the failure
of a production program. The existing CNFD product accommoda!es HP, Sun, and IBM RlSC UNlX

SEW22 Proceedings

Application of Use Case approach to a Small Project K.J. Kopp, L.T. Ciccone
Westinghouse Electric Corporation Commercial Nuclear Fuel Division

platforms in networks consisting of 2 to 50 nodes. The Westinghouse corporate desktop network e x d s
10,000 nodes.

The project was to develop a new product which would be used to control, monitor, and modii independent
system mnfiiurations over a network of thousands of nodes. The new product also requires a highly
intuitive user interface that would be used by the diverse set of help desk personnel, backup support
personnel, and auditors. The size of the resulting corporate product is 6500 lines of executable code (LOC)
with substantial communication and operating system interaction. The new product would also continue to
support the significant QA requirements of the nucfear industry.

The Process
The emphasis of this paper is on experience with Use Case analysis. It is believed that valuable lessons
learned relating to Use Case analysis have been obtained. The process began with a brainstorming session
during which 11 Use Cases were identified in a vague manner. The following type of diagram can be used
to illustrate an overview of the Use Cases:

Each Use Case description was 3 - 5 pages in length and consisted of:
Paragraph - text description of the Use Case. Normally at the top of the page for the Object

Relation Diagram (not illustrated).
Object Relation Diagram - diagram showing the relationship between objects. Each object

categorized as an Actor, an Interface object, an Entity object, or a Controlling object. This
diagram is inferred from an Interaction Diagram and flaws appear as gaps between
objects.

intetaction Diagram - a diagram listing the process in the first column, remaining columns
are for objects. The diagram indicates when an object is active and the flow of
information to the object. Every process and every stimulus (that which triggers the next
object) is labeled.

Stimuli Listing - a description of the information passed tolfrom an object.
GUI S ~ t ' ~ n (s) - a screen name, reached from path, description of function, initial screen

settings, user actions, as well as attributes and behaviors with respect to requirements.

The above diagrams and listing are illustrated below.

SEW22 Proceedings

Ic%s. mm, L.T. C~CC[PB@
Zo Nw1w Fuel Dieion

Object :XeBa~on Dia for a
Skgle Use Cwe

I

a

Description
3

S h d i Lishg for Use Case . . .

la)... Use Cage

Application of Use Case approach to a Small Project
Westinghouse Electric Corporation

H.J. Kopp, L.T. Ciccone
Commercial Nuclear Fuel Division

Screen: Scretn name

Reached From: Parent scmn name and action

Description: Purpose of this screen

Initial Screen Setting: Initial values and enabled controls

User Action: Response:
User action 1 Response to user action 1
User action 2 Response to user action 2

Attributes: Contribution to GUI program attributes

Behaviors: Contribution to GUI program behavior

GUI Screen Description

SEW22 Proceedings

Application of Use Case approach to a Small Project H.J. Kopp, L.T. Ciccone
Westinghouse Electric Corporation Commercial Nuclear Fuel Division

The process followed during the project planning, requirements, and design phases is tabulated below:

al review-illustrates change in communication

reviewers could understand the requirements and provide meaningful comments
1 10 issues (medium and high)

Able to design GUI1 following unexfscted loss of team member. Documented
requirements detail was key factor.
Able to complete GUl2 design folbwing unexpected loss of second team
member. Requirements detail was key factor.

Microsoft Visual C++
Mixed review benefits for GU12.7 reviewets of 121 page document.
Restruchrring of material compared to GUI1 document helped. Additional

Training manual development caused movement of controls to alternate

Application of Use Case approach to a Small Project
W e s ~ o u s e Electric Corporation

HJ. Kopp, L.T. Ciccone
Commercial Nuclear Fuel Division

Lessons Learned Requirements

Use Case formatting and screen display availability are essential as details
change with project evolution and refinement.
Lesson: Use Cgse documentation automation is very important since

changes am the ~ i e .
Lesson: Be pmpaned to redo 8~-s 4 or more times.
Lesson: fhe awitikbillty of personnel may be limited. (Not Use Case

related)
Use Case approach caused team rrrembers to focus
e permitted non-team players to participate effectively
e allowed more requirements to be exposed than previous 'list" approach
Lesson: Use case a~?proach enhances communication significantly and

pennits team members to stay focused.
Use Case approach allowed the entire software project to be considered

integration obtained
system tests specifii

o attributes and behaviors of objects identified
postulating 'real workj" objects and adjusting them as the details unfolded
resulted in only 4 of 31 objects being replaced.

Lesson: Don't be eoncemd about picklng the "right" obj&cts. Let them
evolve.

Lesson: Pay attention to the attributes assigned to objects from the
anaiys~s step as they wiii c/ar@ concepts.

Use Case approach allowed reviewers to gain a better undemanding of the
requirements.

Resulted in many issues being identified early in the project.
e Product quality was enhanced.
Lesson: Use Cases are mdily understood by progmmming and

engineering audiences.

S E W22 Proceedings

Application of Use Case approach to a Small Project
Westinmuse Electric Corporation

HJ. Kopp, E.T. Ciccone
C:ommercial Nuclear Fuel Division

ns Learned = Design

Overall Easy to obtain concurrence on client-server decomposition. 2 day effort for
overall design. Bridging the gap between requirements and design was the inSW
motivation for investigating the Use Case methodology. The addition of program
environment constraints caused the introduction of additional objects, but these
changes were minor and appeared obvious.
Lemon: l b t e m l ~ of "nwl world" obJects raadily transkned into

-116-
Attributes and behaviors for each object were developed during the requirements
phase. Refinements were identified during the design phase, but only two
requirements required modification - the adelition of one additional step in two
Use Cases.
Lesson: MsnWWon ofbehavkm? and in the requlmnemts

phrsseptvvlbks a rignMkcant bsw, tor ob/ect dsHnltion In
dssEgnplwrs

Lesson: Use cases M W h d y the principal system tests and make
unlt testing ~~n easy.

GUI Design Process An initial set of screens were developed during the requirements phase.
Furictions and variables were assigned using the M i i s o f t Visual C++ wizard.
Names of the variables Referenced and Assigned were supplied as comments in
each function. Also, the description of each function and the actions required to
implement each function were inserted as comments. tines of executable code
beyond those supplied by the wizard were estimated for each function.

A'similar, but manual process was performed for each support program.

Lesson: Bmkprogmm Into m8l l plsoat prior to estimating line count
(Not Use Csse mm).

The capability of moving a file from one product to another was questioned and
resulted in a design change. The reason behind moving files was addressed at
this time. It had not been addressed during the requirements phase. The change
to requirements involved adding one process step to one Use case.
Lusmn: Oueartjon every procssls stup that is a manual step.
The project suffered the loss of a key person.
Lesson: Thr, GUI dwlgn dbt wnbvad a minor schedule hms when a new

person was awigtmd. fhe Use Csse mqulmments KM#
sMc&ntty detailed to mlnlmize the loss.

e The need to limit user access to program features was noted in the
requirements but no GUI screens ware developed or process steps were
added. Details were developed in the design phase.

Lesson: Expect to acddreff#nments to the ~ u h w m n t s durlng &signs M
do not expect to sue major mvlslons.

The project suffered the loss of a key person.
Lesson: The GUI design effort wfiamd a minor #:hedu& loss when a new

pmon was asslgtmd. ~ Y M Use Case nequlmmnts urrerr,
sufkient& detailed to m1nim;ze the bss.

Application of Use Case approach to a Small Project
Westinghouse Electric Corporation

WJ. Kopp, L.T. C i m e
Commercial Nuckar Fuel Division

Lessons Learned User ManuaVTraining

Preparation of the User Manual and Training course material for GU12 led to
some unexpected changes. The timing was not bad, so the pain was minor.
Lesson: 7he User manual and the tmlning manual COUM be ck

Use Cam l ~ t i o n prior to i m p ~ t s t l o n n

It had appeared that the Use Cases related to GU12 were complete during the
requirements phase. The features had indeed bwn captured, but the details of
proceeding from one screen to another were imperfect. Movement of "controls"
from one screen to another occurred on 5 of 32 screens. Oniy two additional
features were identified which added a process step to two Use Cases.

Separate Use Cases with each screen in GU12 being an object should have been
developed. Training scenario development provided a mechanism to develop
the needed information.
Lesson: The need to use seqwmes of screens to axmplish a task m y

mqultw a Use Case analysis of the GUl.
Lesson: Whenewr a compolldnt mquInw detalC8d Use Case analysis,

expect to d~ver8ddItionaI qu-ts.

status
The current status of the development which is scheduled for Beta test release in December follows:

I Role i

*does not include executable LOC generated by the Visual C++ wizard.

References: 1) Object-Oriented Software Engineering, A Use Case Driven Approach, Jacobson et al.,
Addison -Wesley, 1995

2) Object-Oriented Modeling and Design, Rumbaugh et all renti ice Hall, 1991.

SEW22 Proseedings

Application o use Case
Approach to a Small Project

Larry Ciccone
Harold Kopp

Westinghouse Commercial Nuclear
Fuel Division

Software Engineering
Approach

a Organization moving to higher CMM level
- Formal Inspections
- More emphasis on planning and metrics
- Personal Software Process (PSP) Course
- Object Oriented Design and Analysis

Participation in local Software Process
Improvement Network (SPIN - May, 1996)

Ivar Jacobson approach to continuity between
requirements and design

SEW22 Proceedings 505

Opportunity
e Assure that quality controlled softwax is available on an

ongoing, auditable basis
e Change in existing application scope

- Network increase from 50 nodes to 10,000 nodes
- Enhanced capability, 4 times as many features
- Enhanced User Interfaces
- UNIX and NT platforms
- Remote procedures

e 2 User Interface Programs -- estimated at 3000 LOC
0 10 Support Programs -- estimated at 3420 LOC

Components of a Use Case
(Jacobson, Ref 1)
a Textual description
a Object Relation Diagram

Interaction Diagram
a Stimuli Listing

GUI Screens

SEW22 Proceedings 506

Description

The Help Desk person and the System
Administrator need to specify the features to be
accessed by each user group. Any time a system
hction is accessed, the user interface will check
to determine the access rights of the user.

Object Relation Diagram

SEW22 Proceedings

System Admin. Repository

Interaction Diagram
Object Names - +
H A v R
e d i e
1 rn e P
P i w o

n s

Process
description

Process
Description

Process

description

Stimul,i Listing

Description of each stimulus and of data passed between
objects.

SEW22 Proceedings

Screens

a Screen graphic
Screen name

0 Reached from
Description of purpose

a Initial setting
a User Action -- Response

Attribute -- Behavior of Overall GUI

Use Case Analysis

a Identify essential Use Cases
Evolve a unique set of objects

a Identify attributes and behaviors of each
object

SEW22 Proceedings

The Process
Brainstorming to identify Use Cases
Begin planning
Requirements Preparation
- Refine Use Cases, combine, analyze

Requirements Review
Design Preparation
- Account for programming environment

Design Review
a Construction
0 Code Review
a Testing

Brainstorming -- Project 2
37 New Requirements a svstem

User Auditor

SEW22 Proceedings

Requirements Lessons
Learned

Use case approach enhances communication
significantly and permits team members to stay
focused.

e Use Cases are readily understood by
programming, engineering, and management
audiences.

e Use Case documentation automation is very
important since changes are the rule.
Be prepared to redo screens 4 or more times

Requirements Lessons
learned

a Don't be concerned about picking the
"right9' objects, let them evolve.

a Pay attention to the attributes and behaviors
assigned to objects from the analysis step as
they will clarify concepts.

e The availability of personnel may be
limited.

SEW22 Proceedings

Training Manual Lessons
Learned

a Use Cases from the design phase can be used as the basis
for training manuals. Training manual preparation can
begin at the later stages of design and can be used to test
the flow of GUI screens.

e The need to interact with sequences of screens to
accomplish a task may require a Use Case analysis of the
GUI. This depends upon the nesting level of the GUI
screens.

a Whenever a component requires detailed Use Case
analysis, expect to discover additional requirements.

Design Lessons Learned

a "Real World" objects are readily translated
into "software" objects.

a Question every process step that is a manual
step. It may be the next requirement.

a Expect to add refinements to the
requirements during design! but do not
expect to see major revisions.

a Break each program object into small pieces
prior to estimating line courlt.

Testing Lessons Learned

Use Cases provide system integration tests
@ Use Cases provide guidance for unit tests.

Reference

Object-Oriented Software Engineering. A
Use Case Driven Approach, Jacobson et al.,
Addison-Wesley, 1995.

	111111111 Multiple pages missing from document.pdf
	Local Disk
	file:///Z|/Legacy%20Image%20Verification/Multiple%20pages%20missing%20from%20document.txt

	111111111 Multiple pages missing from document.pdf
	Local Disk
	file:///Z|/Legacy%20Image%20Verification/Multiple%20pages%20missing%20from%20document.txt

	111111111 Multiple pages missing from document.pdf
	Local Disk
	file:///Z|/Legacy%20Image%20Verification/Multiple%20pages%20missing%20from%20document.txt

