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The inherent contradiction between using
long-lived, general-purpose COTS components
and the demand for highly adaptable informa-
tion systems creates a challenging problem.

Flexible information systems use COTS
components because they cost-effectively sup-
ply required component functionality. A soft-
ware architecture can capture a system design
as a set of interacting components and capture
the role of COTS software in “implementing”
certain components. However, as we move to-
ward a world in which programmable devices
greatly outnumber people, information systems
will increasingly need to address this ubiqui-
tous-computing context, or ambient intelligent
environment. Such dynamic environments re-
quire coping with anticipated change, such as
the release of new COTS versions. However,
they also require coping with emergent behav-
ior, which arises from interactions between a

system’s components (including its environ-
ment) and thus can’t always be anticipated. 

Classical software engineering has for the
most part adopted a reductionist component-en-
gineering style toward COTS-based systems (see
the “Related COTS-Based Approaches” side-
bar). This style results in developers either disre-
garding or inadequately dealing with dynamic
environments, implying that such environ-
ments—and in particular emergent behavior—
are traits to suppress. However, because a large
class of software systems (including many con-
structed with COTS components) must exploit
their dynamic environments, emergent behavior
is not only inevitable, it should be recognized
and exploited. The architecture of such flexible
systems must not only reflect the components’
initial static configuration but also the ongoing
reconfiguration of components, capturing the
system’s evolution at an architectural level. 
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C
OTS software products are increasingly becoming standard com-
ponents for building integrated information systems. At the same
time, the growth of electronic trading, turbulent market condi-
tions, and a project-style approach to business have created a de-

mand for information systems that can be rapidly adapted to changing busi-
ness process demands. However, the ongoing development of COTS products
is unpredictable as their developers and source code are rarely available. 
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An active-architecture model that changes as
the system evolves can capture the integration
of COTS components into a system and the
composition of those components. The Arch-
Ware framework is a process-centered ap-
proach that implements the core system as a
network of evolvable cooperating processes.
The active architecture captures each COTS
component’s role within the system and identi-
fies how the system can incorporate new COTS
or replace existing COTS as the process net-
work evolves. 

ArchWare framework
We developed and implemented the Arch-

Ware framework approach as part of the Arch-
Ware project.1 We focused on developing COTS-
based software systems that are inherently
capable of changing and of being changed. The

ArchWare framework lets us integrate COTS
components into adaptable distributed software
systems—ArchWare-based information systems.

An AIS has four fundamental elements: 

■ COTS components, 
■ ArchWare transformer/connectors (T/Cs), 
■ ArchWare Architecture Description Lan-

guage components, and 
■ users. 

T/Cs provide the wrappers that capture a
COTS component’s role in the system. The
ADL components make up the active-architec-
ture model describing the COTS integration.

The ArchWare framework uses a runtime ar-
chitecture to integrate COTS components into
a flexible information system. Such a system ex-
ists in a dynamic environment and must evolve
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Classical software engineering has often given inadequate at-
tention to the dynamic environment when developing COTS-
based systems. Ignoring this problem leads to legacy systems that
are unaware of their changing environment. Techniques such as
parameterization, inheritance, and polymorphism help but only
when the potential environment changes are predictable. Plug
and socket mechanisms reduce the technical problems of connect-
ing components but provide limited support for the semantics of
component composition. 

Recent specifications address the deployment and configu-
ration of COTS-based software systems. The Object Manage-
ment Group has adopted a platform-independent infrastructure
that seeks to allow the automated deployment and configura-
tion of distributed component-based systems.1 Developers can
customize the standard for different application domains (such
as the CORBA Component Model; Java 2 Platform, Enterprise
Edition; and .NET). The Java community also recently adopted
a deployment API specification that aims at such a standard
across J2EE servers.2 These standards envisage a classical 
software engineering approach to the development of COTS-
based software systems, however, and thus don’t address the
inevitable emergent behavior issues of ubiquitous computing
systems. 

The ArchWare framework’s basic evolve-produce structure
(see the main article) has many similarities to the autonomic
managers and managed elements proposed for autonomic
computing.3 Indeed, both aim to create cellular self-managing
components. Autonomics emphasizes the application of prede-
fined management policies. Our evolve elements are open to

environmental influence, including external user feedback, and
changes can combine automatic and user-supplied elements.

Researchers have addressed some aspects of active model
systems—in particular, dynamic reconfiguration. In general,
however, research has approached this problem by restricting
it and implementing predetermined change-management solu-
tions wherever possible.4–6 Many solutions include a configura-
tion manager to ensure that no unspecified change occurs. Al-
though using a predetermined set of allowable state changes
eases the task of ensuring that a dynamically changeable sys-
tem remains in an architecturally permitted state, it also ex-
cludes the possibility of dealing generally with the concept of
emergent behavior. 
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Figure 1. Coevolution of
a business system and
information technology
environment that 
includes COTS software
components.

to incorporate new capabilities from that envi-
ronment. We’ve developed a set of mechanisms
for integrating COTS components and incorpo-
rating control systems principles, letting the ar-
chitecture model guide the system’s ongoing
evolution. The ArchWare ADL provides the ca-
pabilities for modeling the system’s malleability,
so the system can evolve while it’s in opera-
tion.2 The system evolves to extend its use of
COTS components’ capabilities, replace one
COTS component with another, or refine its
own architecture based on the COTS compo-
nents available in its environment. Given this
generic change capability, the ArchWare frame-
work must also provide mechanisms for sensi-
ble engineering control of changes.

Flexible COTS integration
Our approach’s philosophy emphasizes the

sociotechnical nature of organizational sys-
tems—that is, the coevolution relationship exist-
ing between social and technical domains. It
might therefore be appropriate to consider these
systems as autopoietic (self-producing). They’re
continually trying to reinvent themselves to ex-
ploit the opportunities presented by their dy-
namic environment. We incorporate COTS com-
ponents into flexible systems using an interface
that explicitly models the components’ roles.
This interface also acts as the soft, or coordina-
tion, layer3—the flexible membrane integrating
the COTS components into the overall system.

In the ArchWare framework, the soft, flex-
ible layer that integrates COTS components
into an AIS is the architecture model. As part
of the runtime system, the model helps guide
the system’s evolution throughout its lifetime.
The model is active: it maintains its state as
the business system changes (the react rela-
tionship) and can help constrain or guide
changes in the business system (the proact re-
lationship), as Figure 1 shows. Executing the
runtime architecture model on a process-based
server orchestrates the components. Our ap-
proach is therefore a “wrapped” COTS ap-
proach. We wrap each COTS component to
enable two-way communication with the ac-
tive-architecture model, which manages the
information system’s coevolution with its
sociotechnical environment.

The ArchWare framework places no con-
straints on the COTS components, so users
can reuse available COTS as components in
their AISs. A COTS component is effectively a

black box that behaves as a message source
and destination. The ongoing development of
any COTS component is outside the AIS’s do-
main of influence, but users might want the
AIS to evolve and incorporate new capabilities
from the COTS components.

We implement the active-architecture
model as a set of ArchWare ADL components,
including integration and control capabilities
for other components. One or more ArchWare
ADL environments provide the context for
defining and modifying ArchWare ADL com-
ponents through an ADL virtual machine that
executes and manages ADL definitions.

Each COTS component has an ArchWare
T/C, which forms the bridge between the COTS
component and the ArchWare ADL component
(see figure 2). The T/C provides a filter, exposing
the COTS component capabilities that are used
by the AIS. As a connector, the T/C can check
that the COTS component’s behavior, in terms of
the pattern of observed messages, is what the
ADL component expects, and vice versa. It also
transforms messages between the formats ex-
pected by the components it connects.

Users interact with the system in two ways.
They can be users of the COTS systems that
are components of the overall system, or users
who interact with the active ADL model to
monitor and evolve the system. An ArchWare
environment provides an interface to its own
T/C, letting users of appropriate software
clients interact with the active ADL model, ob-
serve its state, introduce new ADL compo-
nents, and direct the system’s evolution. (Al-
though there’s an ArchWare ADL client, a
COTS system that interacts with the Arch-
Ware environment’s T/C can replace it.)

Figure 2 shows the simplest possible AIS,
consisting of one COTS component, one T/C,
and one ArchWare environment. The Arch-
Ware environment consists of a single Arch-
Ware component and an ADL proxy acting as
the interface to the T/C.

The underlying network is basically inde-
pendent of this architecture. We’re currently us-
ing a Web services infrastructure (www.w3.
org/2002/ws) because it’s rapidly becoming a
useful industry standard approach4 for compo-
nent integration. In the ArchWare framework,
Web services-based behaviors implement the in-
teractions between COTS components and T/Cs
and between T/Cs and ArchWare environments.

Integrating COTS systems as components



within an AIS is essentially process integration.
The active-architecture model describes the sys-
tem as a set of coordinated behaviors. Within
this active model, each COTS component cor-
responds to an ADL behavior describing its in-
teraction with the other system components.
Each COTS component’s T/C performs the nec-
essary syntactic and semantic mediation be-
tween the COTS component’s domain and the
active model domain. The active model-based
process integration need not model all of a
COTS component’s potential interactions, only
the current expected interactions. A COTS
component that doesn’t match its expected be-
havior indicates that the system should change,
using the model’s evolution capabilities.

Modeling composition and
evolution

The ArchWare ADL supports the composi-
tion and evolution of component-based sys-
tems.2 The ADL is based on the �-calculus, a for-
mal process algebra for modeling interactive and
mobile systems.5 In an ADL model, connections
link a set of concurrent behaviors. The behaviors
interact by passing messages along these connec-
tions. The ability of behaviors to create new be-
haviors and connections, and to communicate
connections over existing connections, lets us
model dynamic component networks. The ADL
also provides explicit compose and decompose
operators. Through decomposition, one behav-
ior breaks an executing subsystem into its con-
stituent components, which it can change and re-
compose to form an evolved subsystem.

Hypercode technology supports the Arch-
Ware ADL. We create a hypercode program in
the ArchWare execution environment, replacing

references that would otherwise need runtime
binding with explicit links. A hypercode pro-
gram is thus an active executing graph linking
source code and existing values.6 Hypercode
unifies the concepts of source code, executable
code, and data into a single representation (as a
combination of source code text and hyperlinks
to existing values) of software throughout its life
cycle. Multiple links to the same value represent
sharing. Hypercode lets developers explicitly re-
fer to existing state, including behaviors, and
shared data, including connections, when evolv-
ing an ADL model. At all times, anyone can in-
spect an ADL model by viewing its hypercode
representation. 

An ArchWare environment is a reflective
system consisting of a set of subsystems whose
definitions can be manipulated. When one
subsystem decomposes another subsystem, it
reifies the subsystem’s current state, giving a
hypercode representation of the subsystem’s
components and their connections. It can
evolve these representations to capture new re-
quirements without losing their context.  The
ArchWare environment includes a compiler
for ADL hypercode as a callable function in
the ADL so it can create evolved or new com-
ponents and bind them back into the system.
The ArchWare ADL capabilities aren’t COTS
specific; they’re relevant to any situation in
which components need to be composed flex-
ibly and might need to be decomposed, modi-
fied, and recomposed while maintaining im-
portant shared context. 

Exploiting cybernetic principles
Because we want systems to be responsive

to both predicted and emergent change, the in-
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tegration of the COTS components must be
evolvable at all levels of granularity. The mech-
anisms binding components together must be
dynamically changeable, as must be the wrap-
pings that realize the components’ integration.
Exploiting cybernetic principles to achieve this,
we build the active architecture using elements
that conform to a standard structure, ensuring
the system’s potential for change. 

Formally, the ArchWare component is the
basic building block of an ArchWare environ-
ment. As figure 3 illustrates, an ArchWare com-
ponent is a process (a behavior in ADL terms)
formed from a pair of interacting behaviors
(hereafter, we’ll use this term rather than process
when referring to the active model in ADL): 

• Produce (P) represents the component’s
production or operational behavior—that
is, the behavior that fulfills the compo-
nent’s purpose. For example, if an Arch-
Ware component is supposed to transform
input “raw” to output “widgets,” P ful-
fills this transformation. 

• Evolve (E) represents the component’s
management behavior and is responsible
for ensuring P’s effectiveness in circum-
stances requiring change. So, E affects P.

The interaction between the evolve and
process elements in figure 3 represents both P’s
feedback to E and E’s effect on P. E might affect
P because P’s performance is deficient in some
way (a standard feedback control loop). Or, E
might affect P because E receives an external
stimulus from the environment to change P. 

This approach has roots in classical cyber-
netics and its application to software architec-

ture.7 Similarly, Mary Shaw8 observed that an
important characteristic of the control para-
digm is the separation of the operation (“pro-
duce” in figure 3) from the compensation for
external disturbances, the control (“evolve” in
figure 3).

In general, behaviors E and P will each be
ArchWare components. That is, E and P can
each be formed from a further produce ele-
ment and a further evolve element. This E/P
building block lets us structure components
both cooperatively and hierarchically. For ex-
ample, figure 4 shows two components coop-
eratively bound at one level, together with an
evolve coevolution component to form a hier-
archical component at the next level.

Thus, we can build ArchWare components
from a set of recursive E/P components and
compose them into more complex structures.
The grounding of this recursive structure can
occur

■ when an ArchWare component is consid-
ered to have no E behavior—that is, when
it has no means of adaptation, and

■ when the P behavior is considered atomic—
that is, the component’s architecture exposes
no further structure.

For P, these circumstances typically occur
when a COTS component implements the Arch-
Ware component being considered (figure 5). 

We construct an active-architecture model
with ArchWare components in which each
component’s evolve parts use the ADL’s evolu-
tionary capabilities. We similarly structure
T/Cs with both produce and evolve parts. Just
as the produce parts of the ArchWare compo-
nents and T/Cs will interact during normal op-
eration, their corresponding evolve parts will
interact to achieve any required evolutions.
COTS components are outside the system’s
control and can be manually evolved inde-
pendently. Thus, the evolution capabilities in
the ADL model and the T/Cs must react to
emergent COTS changes and implement pre-
dicted changes when appropriate. 

Ongoing and future work
In the ArchWare project, the ArchWare

framework integrates both COTS and project-
specific tools from various European partners.
We’re evaluating the working prototype in the
industrial partners’ environments. The frame-
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Figure 3. An ArchWare
component’s basic
structure.



work also builds on experience integrating
COTS tools with the ProcessWeb system, an
earlier persistent, reflective system designed to
support system development through evolu-
tion. This is sufficient evidence to convince us
that the approach can work technically, but
we don’t have sufficient independent experi-
ence to report any empirical results.

We’re exploring two main areas of techni-
cal development for the ArchWare framework: 

■ developing and evolving the active-archi-
tecture models in the ArchWare ADL, and 

■ integrating models with the required
COTS tools. 

Various ArchWare project tools address the
first area: the use of styles to define a domain-
specific ADL variant, Unified Modeling Lan-
guage stereotypes for ADL development, model
checking of ADL models, and a generic refine-
ment process that users can focus to their needs. 

The second area is one motivation behind
the explicit T/Cs. This lets us develop a library
of generic wrapping code. By adopting Web
services, we can dynamically generate wrap-
ping code based on published interfaces and
exploit existing Web service toolkits.

The active-architecture approach’s major
strength—its ability to incrementally evolve the
system—can also be a weakness. The user’s
ability to evolve an architecture model when he

or she notices a mistake can encourage lack of
care. This ability doesn’t help a user understand
a complicated erroneous model and define an
appropriate “correcting” evolution. The coop-
erative and recursive E/P structures are one ele-
ment of good practice, but further research and
experience is required. In general, asking users
to browse the current system state and define
an appropriate evolution is the default (last-re-
sort) technique for resolving problems.

Because highly flexible systems can evolve
in undesirable directions, we need evolution
strategies to ensure that appropriate engineer-
ing discipline is applied to reduce the risk of in-
appropriate evolutions. Runtime verification
techniques can provide early warnings when a
system isn’t behaving as expected and should
be changed. The system evolution process can
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incorporate a range of checks and tests before
implementing any proposed change. 

We also need techniques for managing user
access to the mechanisms for evolving systems.
These must be flexible to let users choose and
change their change control policies—for ex-
ample, a user might want the system’s change
control to be highly centralized rather than
distributed. Much of our ongoing research in-
volves refining the basic E/P structure to show
how we can embed good engineering practice
in the basic architectural structures of highly
flexible systems. 

Finally, we need to effectively incorporate au-
tonomic techniques so we can develop systems
that manage themselves where appropriate and
allow innovation through their ability to incor-
porate users’ unforeseen changes.

T he independent development of COTS
is an opportunity as well as a prob-
lem. Innovation can arise through ex-

amining new COTS features, which are unpre-
dictable. One feature of our approach is that it’s
also effective for dynamically located off-the-
net services, open source software, or user-cre-
ated exploratory tools, which all exploit the dy-
namic environment’s emergent behavior and
require flexible integration mechanisms.

The ArchWare framework doesn’t mandate
a particular development process, but an AIS
can integrate a set of COTS software develop-
ment tools and a chosen development process.
Of particular interest is the case in which both
the developing software system and the devel-
oped software system are based on the Arch-
Ware framework. Considerable flexibility ex-
ists in the relationship between these two
systems. The interface between them could be
based on standard release versions, with the
developed system’s evolution capabilities be-
ing the deployment of new versions. Alterna-
tively, the developed system could request new
capabilities from the developing system as it
requires them.

In his definition of the viable system model,
Stafford Beer9 argued that a viable system is
one that can maintain a separate existence.
Both biological entities and successful social
organizations are viable systems—that is, they
can survive in their environments with some
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degree of autonomy. Exploiting the ArchWare
framework endows a network of COTS com-
ponents with this necessary autonomy.
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