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 � 
Abstract—This article demonstrates how to use intelligent 

agents for testing and repairing a distributed system, whose ele-
ments may or may not have embedded BIST (Built-In Self-Test) 
and BISR (Built-In Self-Repair) facilities. 

Agents are software modules that perform monitoring, diag-
nosis and repair of the faults. They form together a society whose 
members communicate, set goals and solve tasks. 

An experimental solution is presented, and future develop-
ments of the proposed approach are explored. 
 

Index Terms—Intelligent agent, distributed BIST, BISR, 
self-repair, Java. 
 

I. INTRODUCTION 

A. Built-In Self-Test 
Any system needs to be tested, even the simplest ones, at 

least once after production but often also during all its mission 
life. Testing [1,2] however takes a lot of time and hassle. Tra-
ditional off-line testing requires the system to be turned off 
and testers connected to it. The external tester devices and the 
time lost with preparing and actually testing the components 
of the system can be expensive and in many cases it may be 
around the 50% of the overall development cost of the device. 
If the tests are run during the normal functioning of the sys-
tem, it is on-line testing. Otherwise, it is off-line testing. The 
on-line test can be concurrent, where the test mode is normal 
mode, and not concurrent, where the idle time is test mode. 
The on-line test is mandatory when very high functional secu-
rity and reliability is required, the target faults are transient 
faults or we need a low latency. In this case no ATE (Auto-
mated Test Equipment) is required, but we pay through high 
hardware overhead. 
A solution that fully or partially eliminates external testers 
involves building the testing capabilities right into the device 
or system during the design stage. In this way the device is 
able to test itself without the need of expensive and time con-
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suming external test equipments. This solution is usually 
known as Built-In Self-Test [3]. 

B. Distributed Built-In Self-Test 
As a method for enhancing the availability, stability and se-

curity in functioning, built-in self-test has been around for 
quite a while. However, large systems, with many subsys-
tems – like nationwide telecommunication infrastructures, 
major computer networks and huge manufacturing plants –
 need a slightly different approach. Their subsystems may 
even be scattered over large geographical areas. Another prob-
lem is that the subsystems may be of different types, requiring 
different testing methods. These systems need distributed 
monitoring, diagnosis and repairing, since it is more expensive 
to go there and verify the subsystem periodically and, eventu-
ally, fix it, than monitoring, diagnosing and repairing it in a 
distributed manner. Even the communication among different 
BIST modules of different subsystems and with central man-
agement becomes an issue. If the communication is expensive, 
a decentralized test management can be more efficient. 

 
Fig. 1.  Heterogeneous network of devices. 

 
The distributed nature of DBIST (Distributed Built-In 

Self-Test) [4-8] means that each of the modules in the DUT 
has its own BIST routine, which runs the test more or less 
independently from the other modules. This way, the actual 
BIST of the whole device is decomposed into smaller, dedi-
cated BISTs, which should be simpler and easier to develop 
and maintain. The testing is not done centrally, but locally, in 
a distributed manner. The system may or may not have a cen-
tral DBIST management module. 

C. Software Agents 
In general, an agent is a software module which is designed 

to assist an individual user, and to act on that user’s behalf. 
An agent should be able to assist the user in the performance 
of routine or tedious tasks, to learn the patterns or quirks of a 
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given situation, to examine and learn from its environment, 

and to determine the best method in which to carry out its 

tasks. An agent is delegated to execute a given task, under the 

constraints it has been given in which to operate.  

 
Fig. 2.  An agent in its environment. 

 

This automation and learning should be ongoing acts of the 

agent in order to make it effective. By automating these tasks, 

an agent frees the user to accomplish other, more productive 

work.  

Agents should be able to resolve ambiguity and make deci-

sions to complete their tasks. They also should be able to learn 

from other agents the best manner in which to complete a 

given task. For example, in a test environment a software 

agent should be able to identify the test requirements of a de-

vice, find out how to test the device, and then enable or di-

rectly perform the test of the device. 

Agents are intended to reduce waste of resources (not re-

duce use of resources, per se, but rather the waste of re-

sources). A task that can be automated can usually be done 

more efficiently, especially for frequently-executed, similar 

tasks. Not only can an agent help avoid the waste of time, but 

also other resources such as bandwidth, because it can make 

decisions by itself, without connecting to a central server over 

and over again. It needs to connect to the server only when it 

does not find a solution on its own. 

For more about agents, see [9]. 

II. AGENT-BASED DBIST AND DBISR 

A. Generalities 
The IEEE 1232 family of standards, analyzed in [10], de-

scribes common exchange formats and software services for 

reasoning systems used in system test and diagnosis. The goal 

is to make the data exchange between two different diagnostic 

reasoners easy. 

It is important to have a communication layer, because the 

test and repair knowledge is distributed between the agent of 

the society and the central knowledge base. The agents do not 

communicate much, but when they need to, it is critical they 

have a reliable connection. 

The standard also defines software interfaces, for the use of 

external tools that can access the diagnostic data in a consis-

tent manner. It allows exchanging diagnostic information and 

embedding diagnostic reasoners in any test environment.  

Most of the large systems we talk about are heterogeneous, 

comprising a large number of devices of different types. All 

these devices have different hardware and/or software, tasks, 

dependability requirements. 

Our distributed testing methodology deals with environ-

ments whose subsystems are all able to run agent code or able 

to be controlled by other subsystems that can run code. If a 

subsystem cannot run the agent code, an agent from a nearby 

subsystem – one that is able to run agent code – will 

test/repair the first subsystem. This idea was previously dis-

cussed in [11,12]. 

A multi-agent approach and diagnosis ontology for diagno-

sis of spatially distributed heterogeneous systems is presented 

in [13]; however, in that approach, each subsystem has its own 

agent monitoring and diagnosing it, which can be costly in 

some cases. Another problem of this approach is that each 

system has an ad-hoc designed agent, so it lacks generality 

and flexibility. 

Moreover, the memory holding the agent could be used for 

system purposes. 

In this paper, we propose an innovative solution based on 

multi-agent approach for testing, diagnosing and repairing 

distributed systems. It offers many advantages like flexibility, 

easy maintenance, diagnosis tool for parts of the overall sys-

tem. Monitoring and diagnosing faults is one of the applica-

tion areas for agent-based systems. Some modern complex 

devices have also BIST-ed components, so we can decompose 

the diagnosis of the whole system to the diagnosis of compo-

nents. Our approach differs from other multi-agent ap-

proaches, because the agents are portable, highly plat-

form-independent, they can deal with many types of devices 

and the system administrator can use various, inexpensive and 

friendly tools to supervise the devices, tests, agents and the 

agent society in general. 

B. The Agent Society 
The agent society is able to share resources and repair the 

faults whenever possible. One or more agents diagnose each 

subsystem. 

The agents travel from device to device, try to activate or to 

directly perform the test of a device and, if possible, to repair 

detected faults. Agents can perform these tasks either by 

themselves or with the help of other agents and a central data-

base. They can also gather “experience” through their work. 

When an agent cannot detect a cause of an observed fault or 

cannot repair it, it appeals to other agents to start cooperation. 

We use a decentralized diagnosis model, which reduces the 

complexity and communication overhead of centralized solu-

tions. Due to the diversity of devices in modern complex sys-

tems, heterogeneous agents can be implemented that take care 

of device(s) in their responsibility area. 

The agents travel from device to device, try to detect and 

repair errors, either by themselves or with the help of other 

agents or a central database. They can also gather “experi-

ence” through their work. 

Different agents have different repair capabilities and they 

have to ask their colleagues if they cannot repair the fault by 

themselves. 

AGENT 

Enviroment 

Actions 

output 

Input 

sensors 
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When an agent has to analyze a specific subsystem (device) 

its main goal is to devise a way to test the device, to diagnose 

errors, and if possible to repair faults. These tasks require the 

agents to work in a very organized and coordinated way. In 

particular we can highlight the following macro-steps: 

- make a plan 

- get the necessary information to execute the plan 

- execute the plan 

- analyze the results (not compulsory) 

- decide (not compulsory) 

The first step is to see if there is a fault or not. This may or 

may not be possible, depending on he agent’s capability in 

finding a way to check that specific device. 

The simplest case is when the device has BIST capabilities, 

and the agent knows how to access it. One of the most useful 

aspects of Built-In Self-Test is that the user (in our case, the 

agent) does not need to know the actual details of the testing 

process. The only thing the agent needs to know is how to 

activate the device’s BIST functions, and, eventually, what 

parameters to pass to these built-in testing functions. If the 

agent does not know how to access the BIST module of the 

device, it can ask other agents or the central database about it. 

Another case is when the device does not have BIST, but 

has some previously generated and stored test sequences in its 

memory. This is not Built-In Self-Test, only some input values 

(test patterns or test vectors) for which the output values of the 

fault-free device are known. Usually, these test patterns are 

stored together with the corresponding expected outputs. 

These test patterns can be stored in the device itself, or in an 

agent, or a central database – knowledge base. 

This approach is close to Software Implemented Hardware 

Fault Tolerance [14], where the system level fault tolerance is 

improved resorting to software, only. 

In this situation, if the agent knows how to access them, it 

can extract and apply these test patterns. If not, the agent can 

ask other agents or a database about how to access and apply 

these test patterns in the device. 

Of course, there may be cases when the device does not 

contain the test patterns in its memory, thus the agent has to 

request them from other agents or databases. 

Central knowledge base

- Device BIST interface data

- Device test patterns

Nameserver
agent

Agent 2,  wondering

about Device 3

Agent 3,

preparing to

repair

Device 4

Agent 1,

moving to

Device 2

Device 3,  with

unknown BIST

interface or

test patterns

Device 2,

with known

test patterns

Device 1,

with known

BIST interface

Facilitator agent

Visualizer
agent

Agent 4,  preparing to help

Agent 2 test Device 3, after

finding out its test patterns from

the central knowledge base

Device 4,

ready for

repair
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After detecting the fault, the agent starts a diagnosis (al-
though most fault detection methods include diagnosis as 
well). In order to do this, the agent uses the same sources of 
information as for detection. 

When the fault has been correctly diagnosed, the agent tries 
to repair it. It uses the same sources of information as for the 
detection and diagnosis. Of course, being software by nature, 
the agent is limited mainly to software repairs. 

There are four basic types of agents in the society: 
- Tester/repair agents (Agents 1-4 in fig. 3) 
- Nameserver agents 
- Facilitator agents 
- Visualizer agents 

Tester agents are the ones “working”, i.e. effectively testing 
the devices. 

Nameservers are like phone books, they make easier for the 
agents to find each other. 

Facilitators are like the Yellow Pages, they know who has 
what and who knows how to detect or fix what problem. 

Visualizers are the interfaces between the agent society and 
other systems, for example accepting commands from the sys-
tem administrator and supplying information about tested de-
vices and society status. 

If you look at Figure 3, you may notice that there are four 
Devices to be tested, four tester Agents, a central knowledge 
base, a Nameserver agent, a Visualizer agent, and a Facilitator 
agent. 

Device 1 is a watch with radio capabilities. One or more of 
the agents, or the knowledge base, know how to activate the 
built-in self-test functions of the watch. 

Device 2, the personal video recorder and DVD combo, 
does not have built-in self-test functions, but the agent soci-
ety – knowledge base and the agents – has some input-output 
value pairs, or test patterns, for this device. Agent 1 is moving 
“inside” Device 2, to apply the known inputs, and then meas-
ure the outputs and compare them to the expected values. 

Agent 2 does not know how to test Device 3, a PDA with 
wireless capabilities and attached camera – the agent does not 
have information about the device’s internal test functions, not 
even known outputs for given input values. Therefore, Agent 
2 queries the Facilitator about someone with the skills to test a 
device of type Device 3. The Facilitator, who knows the abili-
ties of all four tester agents, tells him that Agent 4 is familiar 
with Device 3 type devices. Happy that someone can help 
him, Agent 2 contacts the Nameserver, to communicate with 
Agent 4. The Nameserver introduces Agent 2 and Agent 4 to 
each other, and the two agree that Agent 4 will go and test 
Device 3. However, Agent 4 previously asked the central 
knowledge base about more efficient or new test methods for 
Device 3. 

Device 4 is a storage server. Agent 3 just finished testing it, 
and found some unstable storage areas in the server. Fortu-
nately, Device 4 is repairable on the field, because the data 
from unstable areas can be relocated, and the unstable zones 
can be marked bad. This is exactly what agent 3 in about to 
do. 

Of course, all this exciting action cannot be seen from the 
outside, without the Visualizer agent. The Visualizer agent 
reports to the administrator of the system, in real-time or by 
keeping a log of events.  

More about agent management can be found in [15]. 

C. Agent communication 
At software level, the agents communicate with each other 

through the FIPA (Foundation for Intelligent Physical Agents) 
ACL (Agent Communication Language) [15]. FIPA ACL 
specifications describe aspects of the structure of messages 
and the ontology service. For now, our agents have a reduced 
language set, mainly allowing sharing test sets, device 
test/repair data and system coverage plans. 

The FIPA MTP (Agent Message Transport Protocol) speci-
fications [15] present different ways of communication for the 
agents to exchange data. IIOP (Internet Inter-ORB Protocol), 
WAP (Wireless Application Protocol) and HTTP (HyperText 
Transfer Protocol), TCP/IP over wireline are described, as 
well as generic wireless solutions. They also deal with 
bit-oriented, string-oriented and XML-oriented message rep-
resentations. Our agents, in their current development status, 
use TCP/IP over wireline and wireless connections, with the 
messages in ASCII string format. They ask information from 
the central database through HTTP. Another variant uses 
XML to simplify inter-agent, agent-to-database 
communication and use of protocols like HTTP and WAP. 

At hardware level, the agents use whatever communication 
layer is available for the device (serial, I2C, Ethernet or 
other). We have also considered embedded TCP/IP solutions. 

For a system with mobile subsystems to be tested, short 
range, standardized radio-based Bluetooth chips can be used. 
For large scattered systems, radio-based Wi-Fi solutions or 
GPRS boards are available. Wi-Fi works even with public 
Access Points, while GPRS boards are adequate for low-cost, 
always-on sporadic communication over large distances.  

D. Implementation 
The programming language of choice was Java, due mainly 

to its platform independence and strong network facilities, 
which make it ideal for distributed applications running on 
heterogeneous systems. From the large spectrum of available 
multiagent platforms, we selected the Agents Development 
Kit (ADK) from Tryllian BV, The Netherlands. This 
platform is built upon Java Standard Edition and offers a 
flexible, scalable and consistent task model for the agents’ 
behavior, a natively distributed multiagent environment, 
strong mobility for agents (i.e. both data and execution state 
are transferred along with the agent code), and last but not 
least, powerful and standards-compliant communication facili-
ties. The interagent communication in ADK complies with a 
subset of the FIPA ACL standard. 

In order to clarify how the testing society works, we shall 
give an example of such a society, detailing the tasks each 
type of agent must perform. The society is presented in figure 
4. The ellipses enclose separate multiagent environments, the 
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agents themselves being represented as coloured labeled rec-
tangles. 

 
Fig. 4. Example of a testing society. 

 
The Directory Facilitator (DF) implements the Directory 

service. Exactly one DF must be present at each location and 
each DF holds a map of the services (“things” that agents 
know how to do) supplied by all agents within its location, 
that can be updated and queried via messages. The DFs are 
capable of federating over the network – grouping in a cluster 
within which all services are accessible. The Dispatcher is 
responsible with supplying testers with device wrappers (see 
below), when they wish to initiate tests, and with balancing 
the testers load by transferring them between locations. The 
dispatcher holds wrappers for all devices to be tested present 
at its location, and maintains a ratings system that ensures that 
the first tested device is always the one that was tested earliest 
in the past. Exactly one dispatcher must be present at each 
location that can host tests (testers can travel and devices are 
“seen” by the society only through the dispatcher). DFs and 
dispatchers will hereafter be called service agents. 

The Tester carries out the effective testing. Currently, the 
testers are able to perform vector testing and BIST. When they 
do not know how to test an encountered device, they ask 
among the other agents about it. Testers are also able to trans-
fer between locations at the dispatchers’ requests, unregister-
ing from the originating habitat and registering in the new one 
with all the services that they supply. The testers notify the 
Visualizers of each test outcome and of transfers. The visual-
izers are then responsible of informing the human supervisor 
of these events via a Graphical User Interface. 

The database Connector maintains the link between the 
agent society and the database, which stores information 
about all types of devices present in the system and test se-

quences for all non-BISTed devices that do not store such 

sequences on local memory. Tester agents use the database via 
the connector as a last resort when they cannot learn how to 
test a device from anywhere else. Typically, the connector 
resides either on the database machine or on a closely situated 
one, separated from the rest of the testing society. 

The society is fully scalable, new locations can be added 
dynamically, testers and visualizers can be spawned at any 
location in the testing society at any moment, as long as the 
service agents conform to the requirements stated above. 

A requirement imposed on the application was uniform 
handling of the devices by testers. This is accomplished by 
separating the devices’ physical and logical levels by means of 
an object called a device wrapper (see figure 5). 

 
All device functionality is accessed via the execute() 

method of the corresponding wrapper, which knows how to 
transmit  signals to the hardware of the device and collect the 
results. Operations are identified by operation codes, such as 
SUSPEND, RESUME, APPLY_VECTORS etc. This model also 
facilitates the usage of emulated devices. Note also that a 
getID() operation is supplied by the wrapper. Device IDs 
uniquely identify device types. 

E. Experiments 
1) Local testing 

The test scenario includes two National Semiconductor 
SCAN928028 8 channel, 10:1 serializers with at-speed BIST 
capabilities, an Epson Electronics S1L35043 LSI CMOS gate 
array, and a National Semiconductor DP83840A VLSI physi-

cal layer device for 10-Base-T and 10-Base-X Ethernet. The 

Agent 

Physical/Emulated 
Device 

Wrapper 

getID() 
execute(opCode, opParams) 

physical interaction 

requests results 

Fig. 5. Device wrappers. 

Fig. 6. A screenshot of the Visualizer agent 
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visualizer runs in the current stage of the application under 
Java2SE, and communicates with the tester microagents by 
FIPA ACL. A screenshot of the GUI of this agent is shown in 
figure 6. To the left the visualizer outputs a table of known 
devices at the given location. The devices discovered faulty 
are visually differentiated. To the right, a history of all opera-
tions performed by the testers present at the given location is 
maintained. 

We shall explain in detail how a test takes place and how a 
tester is required to transfer and accomplishes this task, by 
setting first a test scenario.  

The testing society initially includes two locations. At the 
first location, identified loc_0, the device set includes a 
S1L35043. This IC does not have the capability to store the 
test sequence locally. 

Obviously, a DF must reside on loc_0, and, as devices to 
test are present, a dispatcher is also mandatory. A tester agent 
named tester_0 also resides here, and  up to the present 
moment did not test any S1L35043. However, another tester 
named tester_1, residing on a diferrent location identified 
loc_1, “knows” about S1L35043s and has registered this 
knowledge with the local DF. A visualizer also resides in 
loc_1. Noting that another dispatcher must reside in loc_1, 
and that a connector agent and a database are present in the 
society, but the example does not interact with them, we can 
summarize the situation in figure 7. 

 
Fig. 7. Test scenario. 

 
Each ADK agent receives a “clock signal” – heartbeat, 

from the ADK ARE (Agents Runtime Environment), and 
each tester has a test.rate property, that gives the rate at which 
heartbeats initiate tests. The tester uses a random numbers 
generator to uniformly initiate tests over time. Let’s say that at 
heartbeat k, tester_0 decides to initiate a test. Therefore it asks 
dispatcher_0 for a device to test – the testers maintain the ad-
dress of the local dispatcher internally, so the DF needs not be 
queried each time the dispatcher is needed. The dispatcher 
looks up its served devices table and sees that the device 
which hasn’t been tested for the longest time (or perhaps not 
at all) is the S1L35043, so it returns the S1L35043’s wrapper 
to tester_0, also locking the S1L35043 in the table, so that 
another tester cannot gain access to it while it is being tested. 

tester_0 queries the wrapper for the device ID, and is an-
swered with S1L35043. It looks for S1L35043 in its devices 
“knowledge base” (we use quotation marks as this currently is 
just a hash table), and does not find it. It must then ask the 
society about it, and does so by issuing a query for the service 
S1L35043-info-supplier with DF_0. DF_0 does not find any 
provider locally, so it propagates the search in the DFs federa-
tion, which includes DF_1. DF_1 knows that tester_1 supplies 

the requested service, so tester_1 is returned to DF_0 in 
DF_1’s subresults set. DF_0 then forms the result set by join-
ing all the results from the federation (which may or may not 
include testers other than tester_1), and returns this result set 
to tester_0. tester_0 then chooses at random an agent from the 
result set and asks it about S1L35043. If all works fine, the 
agent replies with the information. If not, after a timeout el-
lapses, another agent from the result set is queried, and so on. 
If the results are drained, the tester resorts to the database. Let 
us assume that in this particular case, tester_0 has chosen to 
ask tester_1 about the S1L35043, and that the answer has been 
sent. 

tester_0 saves the received information into its knowledge 
base and queries it to see wether the device supports BIST, 
and if not, wether a test sequence is locally stored. The 
S1L35043 does neither. So, the tester searches its knowledge 
base for a test sequence, does not find it, and the whole inter-
action pattern described above repeats until tester_0 gains 
possession of the test sequence. Note that the searched service 
name is this time S1L35043-test-sequence-supplier. 

tester_0 can now perform the test. All interaction with the 
device is done via execute() calls. It first asks the wrapper to 
SUSPEND the S1L35043 – take it from the normal circuit 
flow and prepare it for testing. Then it issues two 
APPLY_VECTOR operations, with the two input vectors 
from the test sequence, and reads the actual responses, com-
paring them to the expected ones. If they match, the device is 
RESUMEd and the dispatcher is notified that the test has been 
completed, so it can unlock the device in its served devices 
table. If the results do not match, and if it can be done, the 
tester DISABLEs the S1L35043, and then notifies the 
dispatcher of the test completion. 

All testers maintain an internal periodically updated list of 
currently active visualizers, and they send each test outcome 
to all the agents in that list. visualizer_0 will therefore be in-
formed of the test outcome and will reflect it in its GUI. The 
visual aspects of both faulty and fault-free test outcomes, to-
gether with their reflection in the devices GUI table, are 
shown in figure 6. 

All interactions among agents, except the visualizer notifi-
cations, follow a relaxed version of the FIPA Request Interac-
tion Protocol. The messages to the visualizer are simple in-
forms, and the testers do not expect any confirmation. We 
exemplify below with the search query issued to DF_0 by 
tester_0 for the providers of service S1L35043-info-supplier. 
 

(request 
 :sender (tester_0) 
 :receiver (DF_0) 
 :subject (search) 
 :conversation-id (<automatically_generated>) 
 :content ( 
  search-id=<automatically_generated> 
  search-key= S1L35043-info-supplier 
  search-depth=2 
  search-timeout=20 

DF_0 

dispatcher_0 
{…, S1L35043, …} 

tester_0 

loc_0 

DF_1 

dispatcher_1 

tester_1 
[… S1L35043 …] 

visualizer_0 

loc_1 
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 ) 
) 
(agree 
 :sender (DF_0) 
 :receiver (tester_0) 
 :subject (search) 
 :conversation-id (<same_as_above>) 
 :content ( 
  results-count=<results_count> 
  result-0=... 
  ... 
  result-i=tester_1 
  ... 
  result-<results_count>-1=... 
 ) 
) 
(refuse  /* sent if, for example, the search key was omit-

ted */ 
 :sender (DF_0) 
 :receiver (tester_0) 
 :subject (search) 
 :conversation-id (<same_as_above>) 
 :reason (missing-argument) 
) 

 
The search-depth content field specifies over how many 

DFs in the federation the search may propagate. Since all DFs 
know about each other, a depth of 2 suffices. The search-
timeout field is self-explanatory. If the search is successful, 
the DF replies with an agree holding the results count (which 
may be 0) and the 0-based indexed list of results (agent ad-
dresses). If the search request is invalid, the DF replies with a 
refuse holding the refusal reason. 

2) Agent Migration 
Testers can move between locations at the request of the lo-

cal dispatcher. The reason for which this agent issues move 
requests is load balancing. We define the load factor of a lo-
cation as being the ratio of the number of served devices to the 
number of testers present at that location. Periodically, each 
dispatcher recomputes its own load factor and queries all other 
dispatchers about theirs. If the maximum remote load factor 
exceeds its own by at least the value of the threshold (given in 
percents and customizable via the threshold dispatcher prop-
erty), the dispatcher randomly chooses a tester resident at its 
location and requests it to move to the heavier loaded location. 

The tester first completes any test it was running, then tries 
deregistering all its services from the local DF. The deregistra-
tion is atomic, i.e. if any individual service deregistration fails, 
the process fails completely, the services are re-registered and 
the agent cancels the transfer. If the deregistration succeeds 
(and in a normal society state it always does), the agent 
moves, updates its internal references towards the local ser-
vice agents, registers its services at the new location, and re-
sumes normal operation. Whether it succeeds or not, the tester 
always informs the requesting dispatcher of the attempt out-
come. Also, the visualizers are notified of a completed trans-

fer. Note that the dispatcher does not request another tester to 
move if the first one failed, rather any action is delayed until 
the next load balancing tick. The dispatchers avoid testers 
oscillation between location by not moving testers to the loca-
tion from where they received the last tester. 

We deepen the experiment scenario by adding a new loca-
tion, identified loc_2, and by specifying the number of de-
vices and testers at each location, as in table 1. 

Table 1. Location structures. 

 
The initial load factors of the locations are, respectively, 

1.43, 5 and 1.75. Assuming that the thresholds are all 30%, at 
the first load balancing tick, dispatcher_0 will see that the 
load factor of loc_1 exceeds its own by 149% and will send a 
tester there. Load factors change to, respectively, 1.66, 3.33 
and 1.75. Assuming loc_2’s first balancing tick occurs a bit 
later, the dispatcher there will determine that loc_1’s load 
factor exceeds its own by 90%, and will request a tester to 
move there. The process continues in a same manner and 
eventually reaches a steady state in which the load factors are 
as follows: 2.5, 2, 1.75. 

III. CONCLUSIONS AND FUTURE WORK 

The multiagent solution, being a natural approach to the 
DBIST problem, and to distributed testing in general, offers 
significant advantages over traditional solutions, among which 
the most important are: 
- a great increase in the flexibility and scalability of both the 

system under test and of the testing system itself; 
- greater speed due to parallelism; 
- reduction of the communicational overhead due to decen-

tralized management;  
- the high level of application modularity eases maintenance 

and further development. 
The areas in which further work needs to be done include 

redesigning the agent behaviour to include “real” artificial 
intelligence, more attention over the testing algorithms 
themselves, which at this point are rudimentary, designing and 
implementing an efficient physical level of the wrappers for 
various types of devices, and an eventual migration of the 
application to Java Micro Edition [16], in order to enlarge the 
range of machines on which the application can run, thus 
extending the area over which the testing can occur. 
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