
Agent Based Test and Repair of
Distributed Systems
Authors: Miclea L., Szilárd E., Benso A., Prinetto P.,

Author’s version of the manuscript published in the JOURNAL OF EMBEDDED COMPUTING Vol. 1,
No. 3, 2005, pp. 405-414.

The final PUBLISHED manuscript is available at:

URL: http://iospress.metapress.com/content/8cuwwa5vh6gy1dw0/fulltext.pdf

!Politecnico di Torino

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 �
Abstract—This article demonstrates how to use intelligent

agents for testing and repairing a distributed system, whose ele-
ments may or may not have embedded BIST (Built-In Self-Test)
and BISR (Built-In Self-Repair) facilities.

Agents are software modules that perform monitoring, diag-
nosis and repair of the faults. They form together a society whose
members communicate, set goals and solve tasks.

An experimental solution is presented, and future develop-
ments of the proposed approach are explored.

Index Terms—Intelligent agent, distributed BIST, BISR,
self-repair, Java.

I. INTRODUCTION

A. Built-In Self-Test
Any system needs to be tested, even the simplest ones, at

least once after production but often also during all its mission
life. Testing [1,2] however takes a lot of time and hassle. Tra-
ditional off-line testing requires the system to be turned off
and testers connected to it. The external tester devices and the
time lost with preparing and actually testing the components
of the system can be expensive and in many cases it may be
around the 50% of the overall development cost of the device.
If the tests are run during the normal functioning of the sys-
tem, it is on-line testing. Otherwise, it is off-line testing. The
on-line test can be concurrent, where the test mode is normal
mode, and not concurrent, where the idle time is test mode.
The on-line test is mandatory when very high functional secu-
rity and reliability is required, the target faults are transient
faults or we need a low latency. In this case no ATE (Auto-
mated Test Equipment) is required, but we pay through high
hardware overhead.
A solution that fully or partially eliminates external testers
involves building the testing capabilities right into the device
or system during the design stage. In this way the device is
able to test itself without the need of expensive and time con-

Manuscript received November 9, 2003.
Liviu Miclea is with the Automation Department, Technical University of

Cluj-Napoca, 26-28 BariĠiu str., 400027 Cluj-Napoca, Romania (phone/fax:
+40-264-594469, e-mail: Liviu.Miclea@aut.utcluj.ro).

Szilárd Enyedi is with the Automation Department, Technical University
of Cluj-Napoca, 26-28 BariĠiu str., 400027 Cluj-Napoca, Romania (phone/fax:
+40-264-594469, e-mail: Szilard.Enyedi@aut.utcluj.ro).

Paolo Prinetto is with the Automation and Informatics Department of
Politecnico di Torino, 24 Duca degli Abruzzi, 10129 Torino, Italy (phone:
+39- 0115647163/7163, e-mail: Paolo.Prinetto@polito.it).

suming external test equipments. This solution is usually
known as Built-In Self-Test [3].

B. Distributed Built-In Self-Test
As a method for enhancing the availability, stability and se-

curity in functioning, built-in self-test has been around for
quite a while. However, large systems, with many subsys-
tems – like nationwide telecommunication infrastructures,
major computer networks and huge manufacturing plants –
 need a slightly different approach. Their subsystems may
even be scattered over large geographical areas. Another prob-
lem is that the subsystems may be of different types, requiring
different testing methods. These systems need distributed
monitoring, diagnosis and repairing, since it is more expensive
to go there and verify the subsystem periodically and, eventu-
ally, fix it, than monitoring, diagnosing and repairing it in a
distributed manner. Even the communication among different
BIST modules of different subsystems and with central man-
agement becomes an issue. If the communication is expensive,
a decentralized test management can be more efficient.

Fig. 1. Heterogeneous network of devices.

The distributed nature of DBIST (Distributed Built-In

Self-Test) [4-8] means that each of the modules in the DUT
has its own BIST routine, which runs the test more or less
independently from the other modules. This way, the actual
BIST of the whole device is decomposed into smaller, dedi-
cated BISTs, which should be simpler and easier to develop
and maintain. The testing is not done centrally, but locally, in
a distributed manner. The system may or may not have a cen-
tral DBIST management module.

C. Software Agents
In general, an agent is a software module which is designed

to assist an individual user, and to act on that user’s behalf.
An agent should be able to assist the user in the performance
of routine or tedious tasks, to learn the patterns or quirks of a

Agent Based Test and Repair of Distributed Sys-
tems

Liviu Miclea, Szilárd Enyedi, Paolo Prinetto, Alfredo Benso, Members, IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

given situation, to examine and learn from its environment,

and to determine the best method in which to carry out its

tasks. An agent is delegated to execute a given task, under the

constraints it has been given in which to operate.

Fig. 2. An agent in its environment.

This automation and learning should be ongoing acts of the

agent in order to make it effective. By automating these tasks,

an agent frees the user to accomplish other, more productive

work.

Agents should be able to resolve ambiguity and make deci-

sions to complete their tasks. They also should be able to learn

from other agents the best manner in which to complete a

given task. For example, in a test environment a software

agent should be able to identify the test requirements of a de-

vice, find out how to test the device, and then enable or di-

rectly perform the test of the device.

Agents are intended to reduce waste of resources (not re-

duce use of resources, per se, but rather the waste of re-

sources). A task that can be automated can usually be done

more efficiently, especially for frequently-executed, similar

tasks. Not only can an agent help avoid the waste of time, but

also other resources such as bandwidth, because it can make

decisions by itself, without connecting to a central server over

and over again. It needs to connect to the server only when it

does not find a solution on its own.

For more about agents, see [9].

II. AGENT-BASED DBIST AND DBISR

A. Generalities
The IEEE 1232 family of standards, analyzed in [10], de-

scribes common exchange formats and software services for

reasoning systems used in system test and diagnosis. The goal

is to make the data exchange between two different diagnostic

reasoners easy.

It is important to have a communication layer, because the

test and repair knowledge is distributed between the agent of

the society and the central knowledge base. The agents do not

communicate much, but when they need to, it is critical they

have a reliable connection.

The standard also defines software interfaces, for the use of

external tools that can access the diagnostic data in a consis-

tent manner. It allows exchanging diagnostic information and

embedding diagnostic reasoners in any test environment.

Most of the large systems we talk about are heterogeneous,

comprising a large number of devices of different types. All

these devices have different hardware and/or software, tasks,

dependability requirements.

Our distributed testing methodology deals with environ-

ments whose subsystems are all able to run agent code or able

to be controlled by other subsystems that can run code. If a

subsystem cannot run the agent code, an agent from a nearby

subsystem – one that is able to run agent code – will

test/repair the first subsystem. This idea was previously dis-

cussed in [11,12].

A multi-agent approach and diagnosis ontology for diagno-

sis of spatially distributed heterogeneous systems is presented

in [13]; however, in that approach, each subsystem has its own

agent monitoring and diagnosing it, which can be costly in

some cases. Another problem of this approach is that each

system has an ad-hoc designed agent, so it lacks generality

and flexibility.

Moreover, the memory holding the agent could be used for

system purposes.

In this paper, we propose an innovative solution based on

multi-agent approach for testing, diagnosing and repairing

distributed systems. It offers many advantages like flexibility,

easy maintenance, diagnosis tool for parts of the overall sys-

tem. Monitoring and diagnosing faults is one of the applica-

tion areas for agent-based systems. Some modern complex

devices have also BIST-ed components, so we can decompose

the diagnosis of the whole system to the diagnosis of compo-

nents. Our approach differs from other multi-agent ap-

proaches, because the agents are portable, highly plat-

form-independent, they can deal with many types of devices

and the system administrator can use various, inexpensive and

friendly tools to supervise the devices, tests, agents and the

agent society in general.

B. The Agent Society
The agent society is able to share resources and repair the

faults whenever possible. One or more agents diagnose each

subsystem.

The agents travel from device to device, try to activate or to

directly perform the test of a device and, if possible, to repair

detected faults. Agents can perform these tasks either by

themselves or with the help of other agents and a central data-

base. They can also gather “experience” through their work.

When an agent cannot detect a cause of an observed fault or

cannot repair it, it appeals to other agents to start cooperation.

We use a decentralized diagnosis model, which reduces the

complexity and communication overhead of centralized solu-

tions. Due to the diversity of devices in modern complex sys-

tems, heterogeneous agents can be implemented that take care

of device(s) in their responsibility area.

The agents travel from device to device, try to detect and

repair errors, either by themselves or with the help of other

agents or a central database. They can also gather “experi-

ence” through their work.

Different agents have different repair capabilities and they

have to ask their colleagues if they cannot repair the fault by

themselves.

AGENT

Enviroment

Actions

output

Input

sensors

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

When an agent has to analyze a specific subsystem (device)

its main goal is to devise a way to test the device, to diagnose

errors, and if possible to repair faults. These tasks require the

agents to work in a very organized and coordinated way. In

particular we can highlight the following macro-steps:

- make a plan

- get the necessary information to execute the plan

- execute the plan

- analyze the results (not compulsory)

- decide (not compulsory)

The first step is to see if there is a fault or not. This may or

may not be possible, depending on he agent’s capability in

finding a way to check that specific device.

The simplest case is when the device has BIST capabilities,

and the agent knows how to access it. One of the most useful

aspects of Built-In Self-Test is that the user (in our case, the

agent) does not need to know the actual details of the testing

process. The only thing the agent needs to know is how to

activate the device’s BIST functions, and, eventually, what

parameters to pass to these built-in testing functions. If the

agent does not know how to access the BIST module of the

device, it can ask other agents or the central database about it.

Another case is when the device does not have BIST, but

has some previously generated and stored test sequences in its

memory. This is not Built-In Self-Test, only some input values

(test patterns or test vectors) for which the output values of the

fault-free device are known. Usually, these test patterns are

stored together with the corresponding expected outputs.

These test patterns can be stored in the device itself, or in an

agent, or a central database – knowledge base.

This approach is close to Software Implemented Hardware

Fault Tolerance [14], where the system level fault tolerance is

improved resorting to software, only.

In this situation, if the agent knows how to access them, it

can extract and apply these test patterns. If not, the agent can

ask other agents or a database about how to access and apply

these test patterns in the device.

Of course, there may be cases when the device does not

contain the test patterns in its memory, thus the agent has to

request them from other agents or databases.

Central knowledge base

- Device BIST interface data

- Device test patterns

Nameserver
agent

Agent 2, wondering

about Device 3

Agent 3,

preparing to

repair

Device 4

Agent 1,

moving to

Device 2

Device 3, with

unknown BIST

interface or

test patterns

Device 2,

with known

test patterns

Device 1,

with known

BIST interface

Facilitator agent

Visualizer
agent

Agent 4, preparing to help

Agent 2 test Device 3, after

finding out its test patterns from

the central knowledge base

Device 4,

ready for

repair

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

After detecting the fault, the agent starts a diagnosis (al-
though most fault detection methods include diagnosis as
well). In order to do this, the agent uses the same sources of
information as for detection.

When the fault has been correctly diagnosed, the agent tries
to repair it. It uses the same sources of information as for the
detection and diagnosis. Of course, being software by nature,
the agent is limited mainly to software repairs.

There are four basic types of agents in the society:
- Tester/repair agents (Agents 1-4 in fig. 3)
- Nameserver agents
- Facilitator agents
- Visualizer agents

Tester agents are the ones “working”, i.e. effectively testing
the devices.

Nameservers are like phone books, they make easier for the
agents to find each other.

Facilitators are like the Yellow Pages, they know who has
what and who knows how to detect or fix what problem.

Visualizers are the interfaces between the agent society and
other systems, for example accepting commands from the sys-
tem administrator and supplying information about tested de-
vices and society status.

If you look at Figure 3, you may notice that there are four
Devices to be tested, four tester Agents, a central knowledge
base, a Nameserver agent, a Visualizer agent, and a Facilitator
agent.

Device 1 is a watch with radio capabilities. One or more of
the agents, or the knowledge base, know how to activate the
built-in self-test functions of the watch.

Device 2, the personal video recorder and DVD combo,
does not have built-in self-test functions, but the agent soci-
ety – knowledge base and the agents – has some input-output
value pairs, or test patterns, for this device. Agent 1 is moving
“inside” Device 2, to apply the known inputs, and then meas-
ure the outputs and compare them to the expected values.

Agent 2 does not know how to test Device 3, a PDA with
wireless capabilities and attached camera – the agent does not
have information about the device’s internal test functions, not
even known outputs for given input values. Therefore, Agent
2 queries the Facilitator about someone with the skills to test a
device of type Device 3. The Facilitator, who knows the abili-
ties of all four tester agents, tells him that Agent 4 is familiar
with Device 3 type devices. Happy that someone can help
him, Agent 2 contacts the Nameserver, to communicate with
Agent 4. The Nameserver introduces Agent 2 and Agent 4 to
each other, and the two agree that Agent 4 will go and test
Device 3. However, Agent 4 previously asked the central
knowledge base about more efficient or new test methods for
Device 3.

Device 4 is a storage server. Agent 3 just finished testing it,
and found some unstable storage areas in the server. Fortu-
nately, Device 4 is repairable on the field, because the data
from unstable areas can be relocated, and the unstable zones
can be marked bad. This is exactly what agent 3 in about to
do.

Of course, all this exciting action cannot be seen from the
outside, without the Visualizer agent. The Visualizer agent
reports to the administrator of the system, in real-time or by
keeping a log of events.

More about agent management can be found in [15].

C. Agent communication
At software level, the agents communicate with each other

through the FIPA (Foundation for Intelligent Physical Agents)
ACL (Agent Communication Language) [15]. FIPA ACL
specifications describe aspects of the structure of messages
and the ontology service. For now, our agents have a reduced
language set, mainly allowing sharing test sets, device
test/repair data and system coverage plans.

The FIPA MTP (Agent Message Transport Protocol) speci-
fications [15] present different ways of communication for the
agents to exchange data. IIOP (Internet Inter-ORB Protocol),
WAP (Wireless Application Protocol) and HTTP (HyperText
Transfer Protocol), TCP/IP over wireline are described, as
well as generic wireless solutions. They also deal with
bit-oriented, string-oriented and XML-oriented message rep-
resentations. Our agents, in their current development status,
use TCP/IP over wireline and wireless connections, with the
messages in ASCII string format. They ask information from
the central database through HTTP. Another variant uses
XML to simplify inter-agent, agent-to-database
communication and use of protocols like HTTP and WAP.

At hardware level, the agents use whatever communication
layer is available for the device (serial, I2C, Ethernet or
other). We have also considered embedded TCP/IP solutions.

For a system with mobile subsystems to be tested, short
range, standardized radio-based Bluetooth chips can be used.
For large scattered systems, radio-based Wi-Fi solutions or
GPRS boards are available. Wi-Fi works even with public
Access Points, while GPRS boards are adequate for low-cost,
always-on sporadic communication over large distances.

D. Implementation
The programming language of choice was Java, due mainly

to its platform independence and strong network facilities,
which make it ideal for distributed applications running on
heterogeneous systems. From the large spectrum of available
multiagent platforms, we selected the Agents Development
Kit (ADK) from Tryllian BV, The Netherlands. This
platform is built upon Java Standard Edition and offers a
flexible, scalable and consistent task model for the agents’
behavior, a natively distributed multiagent environment,
strong mobility for agents (i.e. both data and execution state
are transferred along with the agent code), and last but not
least, powerful and standards-compliant communication facili-
ties. The interagent communication in ADK complies with a
subset of the FIPA ACL standard.

In order to clarify how the testing society works, we shall
give an example of such a society, detailing the tasks each
type of agent must perform. The society is presented in figure
4. The ellipses enclose separate multiagent environments, the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

agents themselves being represented as coloured labeled rec-
tangles.

Fig. 4. Example of a testing society.

The Directory Facilitator (DF) implements the Directory

service. Exactly one DF must be present at each location and
each DF holds a map of the services (“things” that agents
know how to do) supplied by all agents within its location,
that can be updated and queried via messages. The DFs are
capable of federating over the network – grouping in a cluster
within which all services are accessible. The Dispatcher is
responsible with supplying testers with device wrappers (see
below), when they wish to initiate tests, and with balancing
the testers load by transferring them between locations. The
dispatcher holds wrappers for all devices to be tested present
at its location, and maintains a ratings system that ensures that
the first tested device is always the one that was tested earliest
in the past. Exactly one dispatcher must be present at each
location that can host tests (testers can travel and devices are
“seen” by the society only through the dispatcher). DFs and
dispatchers will hereafter be called service agents.

The Tester carries out the effective testing. Currently, the
testers are able to perform vector testing and BIST. When they
do not know how to test an encountered device, they ask
among the other agents about it. Testers are also able to trans-
fer between locations at the dispatchers’ requests, unregister-
ing from the originating habitat and registering in the new one
with all the services that they supply. The testers notify the
Visualizers of each test outcome and of transfers. The visual-
izers are then responsible of informing the human supervisor
of these events via a Graphical User Interface.

The database Connector maintains the link between the
agent society and the database, which stores information
about all types of devices present in the system and test se-

quences for all non-BISTed devices that do not store such

sequences on local memory. Tester agents use the database via
the connector as a last resort when they cannot learn how to
test a device from anywhere else. Typically, the connector
resides either on the database machine or on a closely situated
one, separated from the rest of the testing society.

The society is fully scalable, new locations can be added
dynamically, testers and visualizers can be spawned at any
location in the testing society at any moment, as long as the
service agents conform to the requirements stated above.

A requirement imposed on the application was uniform
handling of the devices by testers. This is accomplished by
separating the devices’ physical and logical levels by means of
an object called a device wrapper (see figure 5).

All device functionality is accessed via the execute()

method of the corresponding wrapper, which knows how to
transmit signals to the hardware of the device and collect the
results. Operations are identified by operation codes, such as
SUSPEND, RESUME, APPLY_VECTORS etc. This model also
facilitates the usage of emulated devices. Note also that a
getID() operation is supplied by the wrapper. Device IDs
uniquely identify device types.

E. Experiments
1) Local testing

The test scenario includes two National Semiconductor
SCAN928028 8 channel, 10:1 serializers with at-speed BIST
capabilities, an Epson Electronics S1L35043 LSI CMOS gate
array, and a National Semiconductor DP83840A VLSI physi-

cal layer device for 10-Base-T and 10-Base-X Ethernet. The

Agent

Physical/Emulated
Device

Wrapper

getID()
execute(opCode, opParams)

physical interaction

requests results

Fig. 5. Device wrappers.

Fig. 6. A screenshot of the Visualizer agent

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

visualizer runs in the current stage of the application under
Java2SE, and communicates with the tester microagents by
FIPA ACL. A screenshot of the GUI of this agent is shown in
figure 6. To the left the visualizer outputs a table of known
devices at the given location. The devices discovered faulty
are visually differentiated. To the right, a history of all opera-
tions performed by the testers present at the given location is
maintained.

We shall explain in detail how a test takes place and how a
tester is required to transfer and accomplishes this task, by
setting first a test scenario.

The testing society initially includes two locations. At the
first location, identified loc_0, the device set includes a
S1L35043. This IC does not have the capability to store the
test sequence locally.

Obviously, a DF must reside on loc_0, and, as devices to
test are present, a dispatcher is also mandatory. A tester agent
named tester_0 also resides here, and up to the present
moment did not test any S1L35043. However, another tester
named tester_1, residing on a diferrent location identified
loc_1, “knows” about S1L35043s and has registered this
knowledge with the local DF. A visualizer also resides in
loc_1. Noting that another dispatcher must reside in loc_1,
and that a connector agent and a database are present in the
society, but the example does not interact with them, we can
summarize the situation in figure 7.

Fig. 7. Test scenario.

Each ADK agent receives a “clock signal” – heartbeat,

from the ADK ARE (Agents Runtime Environment), and
each tester has a test.rate property, that gives the rate at which
heartbeats initiate tests. The tester uses a random numbers
generator to uniformly initiate tests over time. Let’s say that at
heartbeat k, tester_0 decides to initiate a test. Therefore it asks
dispatcher_0 for a device to test – the testers maintain the ad-
dress of the local dispatcher internally, so the DF needs not be
queried each time the dispatcher is needed. The dispatcher
looks up its served devices table and sees that the device
which hasn’t been tested for the longest time (or perhaps not
at all) is the S1L35043, so it returns the S1L35043’s wrapper
to tester_0, also locking the S1L35043 in the table, so that
another tester cannot gain access to it while it is being tested.

tester_0 queries the wrapper for the device ID, and is an-
swered with S1L35043. It looks for S1L35043 in its devices
“knowledge base” (we use quotation marks as this currently is
just a hash table), and does not find it. It must then ask the
society about it, and does so by issuing a query for the service
S1L35043-info-supplier with DF_0. DF_0 does not find any
provider locally, so it propagates the search in the DFs federa-
tion, which includes DF_1. DF_1 knows that tester_1 supplies

the requested service, so tester_1 is returned to DF_0 in
DF_1’s subresults set. DF_0 then forms the result set by join-
ing all the results from the federation (which may or may not
include testers other than tester_1), and returns this result set
to tester_0. tester_0 then chooses at random an agent from the
result set and asks it about S1L35043. If all works fine, the
agent replies with the information. If not, after a timeout el-
lapses, another agent from the result set is queried, and so on.
If the results are drained, the tester resorts to the database. Let
us assume that in this particular case, tester_0 has chosen to
ask tester_1 about the S1L35043, and that the answer has been
sent.

tester_0 saves the received information into its knowledge
base and queries it to see wether the device supports BIST,
and if not, wether a test sequence is locally stored. The
S1L35043 does neither. So, the tester searches its knowledge
base for a test sequence, does not find it, and the whole inter-
action pattern described above repeats until tester_0 gains
possession of the test sequence. Note that the searched service
name is this time S1L35043-test-sequence-supplier.

tester_0 can now perform the test. All interaction with the
device is done via execute() calls. It first asks the wrapper to
SUSPEND the S1L35043 – take it from the normal circuit
flow and prepare it for testing. Then it issues two
APPLY_VECTOR operations, with the two input vectors
from the test sequence, and reads the actual responses, com-
paring them to the expected ones. If they match, the device is
RESUMEd and the dispatcher is notified that the test has been
completed, so it can unlock the device in its served devices
table. If the results do not match, and if it can be done, the
tester DISABLEs the S1L35043, and then notifies the
dispatcher of the test completion.

All testers maintain an internal periodically updated list of
currently active visualizers, and they send each test outcome
to all the agents in that list. visualizer_0 will therefore be in-
formed of the test outcome and will reflect it in its GUI. The
visual aspects of both faulty and fault-free test outcomes, to-
gether with their reflection in the devices GUI table, are
shown in figure 6.

All interactions among agents, except the visualizer notifi-
cations, follow a relaxed version of the FIPA Request Interac-
tion Protocol. The messages to the visualizer are simple in-
forms, and the testers do not expect any confirmation. We
exemplify below with the search query issued to DF_0 by
tester_0 for the providers of service S1L35043-info-supplier.

(request
 :sender (tester_0)
 :receiver (DF_0)
 :subject (search)
 :conversation-id (<automatically_generated>)
 :content (
 search-id=<automatically_generated>
 search-key= S1L35043-info-supplier
 search-depth=2
 search-timeout=20

DF_0

dispatcher_0
{…, S1L35043, …}

tester_0

loc_0

DF_1

dispatcher_1

tester_1
[… S1L35043 …]

visualizer_0

loc_1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

)
)
(agree
 :sender (DF_0)
 :receiver (tester_0)
 :subject (search)
 :conversation-id (<same_as_above>)
 :content (
 results-count=<results_count>
 result-0=...
 ...
 result-i=tester_1
 ...
 result-<results_count>-1=...
)
)
(refuse /* sent if, for example, the search key was omit-

ted */
 :sender (DF_0)
 :receiver (tester_0)
 :subject (search)
 :conversation-id (<same_as_above>)
 :reason (missing-argument)
)

The search-depth content field specifies over how many

DFs in the federation the search may propagate. Since all DFs
know about each other, a depth of 2 suffices. The search-
timeout field is self-explanatory. If the search is successful,
the DF replies with an agree holding the results count (which
may be 0) and the 0-based indexed list of results (agent ad-
dresses). If the search request is invalid, the DF replies with a
refuse holding the refusal reason.

2) Agent Migration
Testers can move between locations at the request of the lo-

cal dispatcher. The reason for which this agent issues move
requests is load balancing. We define the load factor of a lo-
cation as being the ratio of the number of served devices to the
number of testers present at that location. Periodically, each
dispatcher recomputes its own load factor and queries all other
dispatchers about theirs. If the maximum remote load factor
exceeds its own by at least the value of the threshold (given in
percents and customizable via the threshold dispatcher prop-
erty), the dispatcher randomly chooses a tester resident at its
location and requests it to move to the heavier loaded location.

The tester first completes any test it was running, then tries
deregistering all its services from the local DF. The deregistra-
tion is atomic, i.e. if any individual service deregistration fails,
the process fails completely, the services are re-registered and
the agent cancels the transfer. If the deregistration succeeds
(and in a normal society state it always does), the agent
moves, updates its internal references towards the local ser-
vice agents, registers its services at the new location, and re-
sumes normal operation. Whether it succeeds or not, the tester
always informs the requesting dispatcher of the attempt out-
come. Also, the visualizers are notified of a completed trans-

fer. Note that the dispatcher does not request another tester to
move if the first one failed, rather any action is delayed until
the next load balancing tick. The dispatchers avoid testers
oscillation between location by not moving testers to the loca-
tion from where they received the last tester.

We deepen the experiment scenario by adding a new loca-
tion, identified loc_2, and by specifying the number of de-
vices and testers at each location, as in table 1.

Table 1. Location structures.

The initial load factors of the locations are, respectively,

1.43, 5 and 1.75. Assuming that the thresholds are all 30%, at
the first load balancing tick, dispatcher_0 will see that the
load factor of loc_1 exceeds its own by 149% and will send a
tester there. Load factors change to, respectively, 1.66, 3.33
and 1.75. Assuming loc_2’s first balancing tick occurs a bit
later, the dispatcher there will determine that loc_1’s load
factor exceeds its own by 90%, and will request a tester to
move there. The process continues in a same manner and
eventually reaches a steady state in which the load factors are
as follows: 2.5, 2, 1.75.

III. CONCLUSIONS AND FUTURE WORK

The multiagent solution, being a natural approach to the
DBIST problem, and to distributed testing in general, offers
significant advantages over traditional solutions, among which
the most important are:
- a great increase in the flexibility and scalability of both the

system under test and of the testing system itself;
- greater speed due to parallelism;
- reduction of the communicational overhead due to decen-

tralized management;
- the high level of application modularity eases maintenance

and further development.
The areas in which further work needs to be done include

redesigning the agent behaviour to include “real” artificial
intelligence, more attention over the testing algorithms
themselves, which at this point are rudimentary, designing and
implementing an efficient physical level of the wrappers for
various types of devices, and an eventual migration of the
application to Java Micro Edition [16], in order to enlarge the
range of machines on which the application can run, thus
extending the area over which the testing can occur.

ACKNOWLEDGEMENT

The authors would like to thank dipl. eng. Lucian Buúoniu
for his help on agents.

REFERENCES

[1] Abramovici, M., Breuer, M.A., Friedman, A.D., Digital systems testing

and testable design, New Zork, Computer Science Press, 1990.

 loc_0 loc_1 loc_2
Testers 7 2 4
Devices 10 10 7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

[2] Rochit Rajsuman, Digital Hardware Testing: Transistor-Level Fault
Modelling and Testing, Artech House, Boston, London, 1992.

[3] Janusz Rajski, Jerzy Tyszer, Arithmetic Built-In Self-Test for Embedded
Systems, Prentice Hall PTR, 1997.

[4] L.Miclea, Enyedi Sz., R. Orghidan, “On line BIST Experiments for
Distributed Systems”, in Proc. IEEE European Test Workshop ETW
2001, Stockholm, Sweden, 2001, pp. 37-39.

[5] L. Miclea, D. Cimpoca, M. Gordan, “An On-Line BIST Structure for
Distributed Control Systems”, in Digest of IEEE European Test Work-
shop ETW 2000, Cascais, Portugal, 2000, pp. 283-284.

[6] A. Benso, S. Chiusano, S. Di Carlo, “HD2BIST: a Hierarchical Frame-
work for BIST Scheduling, Data Patterns Delivering and Diagnosis in
SoCs”, in Proc. International Test Conference ITC 2000, Atlantic City,
NJ, USA, 2000, pp. 899-901.

[7] Monica Lobetti Bodoni, A. Benso, S. Chiusano, G. di Natale, P. Prinetto,
“An Effective Distributed BIST Architecture for RAMs”, in Informal
Digest of IEEE European Test Workshop ETW 2000, Cascais, Portugal,
2000, pp. 201-206.

[8] R. Pendurkar, A. Chatterjee, Y. Zorian, “A Distributed BIST Technique
for Diagnosis of MCM Interconnections”, in Proc. International Test
Conference ITC 1996, Washington, DC, USA, 1996, pp. 214-221.

[9] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, Addison-Wesley, 1999.

[10] J. Sheppard, M. Kaufman, “IEEE 1232 and p1522 standards”, in Proc.
AUTOTESTCON, Anaheim, CA, USA, 2000, pp. 388-397.

[11] L. Miclea, Enyedi Sz., A. Benso, “Intelligent Agents and BIST/BISR -
Working Together in Distributed Systems”, in Proc. International Test
Conference ITC 2002, Baltimore, USA, 2002, pp. 940-946.

[12] L.Miclea, Enyedi Sz., “Distributed Built-In Self-Test using Intelligent
Agents”, in Proc. IEEE European Test Workshop ETW 2002, Corfu,
Greece, 2002, pp. 17-19.

[13] I. A. Letia, F. Craciun, Z Köpe, A Netin, “Distributed diagnosis by BDI
agents”, in Proc. International Conference on Applied Informatics
IASTED, Innsbruck, Austria, 2000, pp. 862-867.

[14] Alfredo Benso, Silvia Chiusano, Paolo Prinetto, A COTS Wrapping
Toolkit for Fault Tolerant Applications under Windows NT, IOLTW
2000: IEEE International On-Line Test Workshop, Majorca (ES), July
2000, pp. 9-16.

[15] FIPA standards and specifications, Foundation for Intelligent Physical
Agents, 2002. Available: http://www.fipa.org

[16] Qusay Mahmoud, Learning Wireless Java, O'Reilly, 2002.

IV. BIOGRAPHIES

Liviu Miclea (M’2000) was born in Unirea, Roma-
nia, on the 11th of January, 1959. Mr. Miclea gradu-
ated the Informatics High School of Cluj-Napoca,
Romania, in 1978, earned his engineering diploma at
the Faculty of Automation and Computer Science of
the Technical University of Cluj-Napoca in 1984, and
his PhD in Automatic Systems in 1995, at the same
university.
Between 1984 and 1995, he worked as Engineer,

Scientific Researcher and Senior Researcher at the Institute for Automation
IPA Bucharest, Cluj-Napoca subsidiary. From 1995 until 1998 he taught Reli-
ability and Diagnosis as well as Systems Theory, as Assistant Professor, at the
Automation Department of the Technical University of Cluj-Napoca. In 1998,
he earned his degree of Associate Professor at the Automation Department.
Currently, he is the Head of the Automation Department at the Technical
University of Cluj-Napoca. He is author or co-author of 10 books, 20 research
works and 50 scientific publications (of which in 23 as unique or first author).
His research interests include: design for testability, automatic testing, com-
puter aided design, distributed systems.
 Dr. Miclea is member and liaison for Romania of IEEE-TTTC (IEEE Test
Technology Technical Council), member of IEEE Computer Society, IEEE
Communications Society, IFAC Foundation Romania and the Romanian Soci-
ety of Automatics and Technical Informatics SRAIT.
 His IEEE achievements in 2003 include a Certificate of Appreciation from
the IEEE Computer Society, for more than five years of fructuous IEEE activ-
ity, and the Award of Excellence for an ITC paper and its presentation. He is
regular co-chairman of the bi-annual IEEE AQTR conference and often re-
views IEEE ITC, ETW and VLSI conference papers.

Enyedi Szilárd (M’2002) was born in Cluj-Napoca,
Romania, on the 26th of December, 1976. Mr. Enyedi
graduated Apáczai Csere János High School of
Cluj-Napoca, Romania, in 1995, earned his engineer-
ing diploma at the Faculty of Automation and Com-
puter Science of the Technical University of
Cluj-Napoca in 2000, and his MSc in Automatic
Systems in 2001, at the same university. He is cur-
rently preparing his PhD in Telecommunications

there.
 Since 2000, he teaches Reliability and Diagnosis, CAD, Computer Pro-
gramming, Process Equipments and Interfaces, Distributed Control Systems,
Application-Oriented Software Environments, Operating Systems and Com-
puter Networks and Internet Technologies at the Automation Department of
the Technical University of Cluj-Napoca, and Delphi courses at the Chamber
of Commerce of Cluj-Napoca. Since 2001, he is Research Assistant, at the
Automation Department. He is co-author of one book, 6 research works and
17 scientific publications. His research interests include: internet applications,
wired/wireless communication, design for testability, automatic testing, com-
puter aided design, distributed systems, embedded systems, digital electronics
and control.
 Mr. Enyedi is member of IEEE Communications Society since 2003.
 His IEEE achievements in 2003 include an ETW poster and the Award of
Excellence for an ITC paper. He is also a regular co-organizer of the bi-annual
IEEE AQTR conference.

Paolo Prinetto was born in Gassino Torinese, Italy,
on March 17, 1953. He received the M.S. in Elec-
tronic Engineering in 1976 from the Politecnico di
Torino, Italy. Since 1990 he is full professor of Com-
puter Engineering at the same University, and, since
1998, joint professor at the University of Illinois at
Chicago. His research interests cover testing, test
generation, BIST and dependability. He is a Golden
Core Member of the IEEE Computer Society and the
elected chair of the IEEE Computer Society Test
Technology Technical Council (TTTC).

Alfredo Benso was born in Torino, Italy, on Novem-
ber 28, 1970. He received his M.S. degree in Com-
puter Engineering (1995) and his Ph.D. (1998), from
the Politecnico di Torino, Italy. He is currently a
researcher at the same university, where his research
interests include Design-for-Testability techniques,
BIST for complex digital systems, dependability
analysis of computer-based systems, and software-
implemented hardware fault tolerance (SWIHFT). He
is the chair of the IEEE Computer Society Test Tech-
nology Technical Council (TTTC) Web-based Activi-

ties Group.

