13 research outputs found

    Design and analysis of efficient QCA reversible adders

    Get PDF
    Quantum-dot cellular automata (QCA) as an emerging nanotechnology are envisioned to overcome the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the system. Therefore, reversible logic, which significantly controls the information flow of the system, is deemed suitable to achieve ultra-low-power structures. In order to benefit from the opportunities QCA and reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-layer crossover scheme. The new full-adder significantly advances previous designs in terms of the optimization metrics, namely cell count, area, and delay. The proposed efficient full-adder is then used to design reversible ripple-carry adders (RCAs) with different sizes (i.e., 4, 8, and 16 bits). It is demonstrated that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and architecture

    A Novel Nanometric Fault Tolerant Reversible Subtractor Circuit

    Get PDF
    Abstract: Reversibility plays an important role when energy efficient computations are considered. Reversible logic circuits have received significant attention in quantum computing, low power CMOS design, optical information processing and nanotechnology in the recent years. This study proposes a new fault tolerant reversible half-subtractor and a new fault tolerant reversible full-subtractor circuit with nanometric scales. Also in this paper we demonstrate how the well-known and important, PERES gate and TR gate can be synthesized from parity preserving reversible gates. All the designs have nanometric scales

    Design of efficient reversible floating-point arithmetic unit on field programmable gate array platform and its performance analysis

    Get PDF
    The reversible logic gates are used to improve the power dissipation in modern computer applications. The floating-point numbers with reversible features are added advantage to performing complex algorithms with high-performance computations. This manuscript implements an efficient reversible floating-point arithmetic (RFPA) unit, and its performance metrics are realized in detail. The RFP adder/subtractor (A/S), RFP multiplier, and RFP divider units are designed as a part of the RFP arithmetic unit. The RFPA unit is designed by considering basic reversible gates. The mantissa part of the RFP multiplier is created using a 24x24 Wallace tree multiplier. In contrast, the reciprocal unit of the RFP divider is designed using Newton Raphson’s method. The RFPA unit and its submodules are executed in parallel by utilizing one clock cycle individually. The RFPA unit and its submodules are synthesized separately on the Vivado IDE environment and obtained the implementation results on Artix-7 field programmable gate array (FPGA). The RFPA unit utilizes only 18.44% slice look-up tables (LUTs) by consuming the 0.891 W total power on Artix-7 FPGA. The RFPA unit sub-models are compared with existing approaches with better performance metrics and chip resource utilization improvements

    Implementation and Analysis of Reversible logic Based Arithmetic Logic Unit

    Get PDF
    There is a tremendous growth in fabrication from small scale integration (SSI) to giant scale integration (GSI). It however raises a question of sustainability of Moore's law due to almost intolerable levels of power consumption. Researchers have invented a lot of methods to reduce power consumption and recent technologies are switching to reversible logic. Reversible logic has various applications in fields of computer graphics, optical information processing, quantum computing, DNA computing, ultra low power CMOS design and communication. Arithmetic Logic Unit (ALU) is considered to be the basic building block of a CPU in the computing environment and portability in computing system highly demands reversible logic based ALU. Modern processors usually have a word length of 32 or 64 bits. Divide and conquer approach principle cascades n number of 1 bit ALU to implement n bit ALU. Several researchers have proposed 1-bit ALU design using various reversible logic gates. This paper aims at categorizing various ways of implementation in VHDL using Xilinx ISE design suit 14.2 tool and comparative analysis of existing 1 bit ALU designs in terms of optimization metrics like power consumption, number of gates, number of constant inputs, number of garbage outputs and quantum cost. ALU realized using carry save adder block is found to be most optimum design in terms of gate count and quantum cost

    T-COUNT OPTIMIZATION OF QUANTUM CARRY LOOK-AHEAD ADDER

    Get PDF
    With the emergence of quantum physics and computer science in the 20th century, a new era was born which can solve very difficult problems in a much faster rate or problems that classical computing just can\u27t solve. In the 21st century, quantum computing needs to be used to solve tough problems in engineering, business, medical, and other fields that required results not today but yesterday. To make this dream come true, engineers in the semiconductor industry need to make the quantum circuits a reality. To realize quantum circuits and make them scalable, they need to be fault tolerant, therefore Clifford+T gates need to be implemented into those circuits. But the main issue is that in the Clifford+T gate set, T gates are expensive to implement. Carry Look-Ahead addition circuits have caught the interest of researchers because the number of gate layers encountered by a given qubit in the circuit (or the circuit\u27s depth) is logarithmic in terms of the input size n. Therefore, this thesis focuses on optimizing previous designs of out-of-place and in-place Carry Look-Ahead Adders to decrease the T-count, sum of all T and T Hermitian transpose gates in a quantum circuit

    QUANTUM COMPUTING AND HPC TECHNIQUES FOR SOLVING MICRORHEOLOGY AND DIMENSIONALITY REDUCTION PROBLEMS

    Get PDF
    Tesis doctoral en período de exposición públicaDoctorado en Informática (RD99/11)(8908

    DESIGN OF AN EFFICIENT REVERSIBLE LOGIC BASED BIDIRECTIONAL BARREL SHIFTER

    Get PDF
    Embedded digital signal processors and general purpose processors will use barrel shifters to manipulate data. This paper will present the design of the barrel shifter that performs logical shift right, arithmetic shift right, rotate right, logical shift left, arithmetic shift left, and rotate left operations. The main objective of the upcoming designs is to increase the performance without proportional increase in power consumption. In this regard reversible logic has become most popular technology in the field of low power computing, optical computing, quantum computing and other computing technologies. Rotating and data shifting are required in many operations such as logical and arithmetic operations, indexing and address decoding etc. Hence barrel shifters which can shift and rotate multiple bits in a single cycle have become a common choice of design for high speed applications. The design has been done using reversible fredkin and feynman gates. In the design the 2:1 mux can be implemented by fredkin gate which reduce quantum cost, number of ancilla bits and number of garbage outputs. The feynman gate will remove the fanout. By comparing the quantum cost, number of ancilla bits and number of garbage outputs the design is evaluated

    DESIGN METHODOLOGY OF BIDIRECTIONAL BARREL SHIFTER BASED ON REVERSIBLE LOGIC

    Get PDF
    Data shifting is required in many key computer operations from address decoding to computer arithmetic. Full barrel shifters are often on the critical path, which has led most research to be directed toward speed optimizations. With the advent of quantum computer and reversible logic, design and implementation of all devices in this logic has received more attention. Rotating and data shifting are required in many operations such as logical and arithmetic operations, indexing and address decoding etc. Hence barrel shifters which can shift and rotate multiple bits in a single cycle have become a common choice of design for high speed applications. The design has been done using reversible fredkin and feynman gates. In the design the 2:1 mux can be implemented by fredkin gate which reduce quantum cost, number of ancilla bits and number of garbage outputs. The feynman gate will remove the fanout. By comparing the quantum cost, number of ancilla bits and number of garbage outputs the design is evaluated

    Design and synthesis of reversible logic

    Get PDF
    Energy lost during computation is an important issue for digital design. Today, all electronics devices suffer from energy lost due to the conventional logic system used. The amount of energy loss in the form of heat leads to immense challenges in nowadays circuit design. To overcome that, reversible logic has been invented. Since properties of reversible logic differ greatly than conventional logic, synthesis methods used for conventional logic cannot be used in reversible logic. In this dissertation, we proposed new synthesis algorithms and several circuit designs using reversible logic
    corecore