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Prefacio
La evolución de la tecnología siempre ha tenido como objetivo permitir que la sociedad

pueda resolver sus problemas y mejorar su calidad de vida. En partícular, la informática es
probablemente la ciencia que más ha evolucionado a partir de la segunda mitad del siglo XX,
permitiendo alcanzar soluciones a problemas cada más desafiantes y variados gracias a su
naturaleza interdisciplinar.

Esta tesis proporciona soluciones en disciplinas tan diferentes como el campo de la Microrre-
ología, la reducción de dimensionalidad, y el tratamiento digital de imágenes. Como su nombre
indica, esta tesis aborda la resolución de dichos problemas mediante el uso de computación
cuántica y de computación de alto rendimiento, HPC. El rápido progreso que la computación
cuántica está teniendo en los últimos años permite que podamos ya utilizarla no solo a nivel
teórico, sino también práctico para resolver problemas actuales.

El propósito de esta tesis es doble. Primero, y como objetivo principal, se presende resolver
utilizando computación cuántica y/o HPC una serie de problemas definidos formalmente en los
campos previamente mencionados. Como se verá en la tesis, algunas de las soluciones aportadas
podrían extrapolarse a otros campos de aplicación. Sin embargo, en esta tesis los exponemos en
el contexto en que nosotros los hemos encontrado y resuelto. El segundo propósito de la tesis
es el de contribuir al desarrollo de la computación cuántica de forma práctica. La aplicabilidad
de este paradigma de computación tiene un importante cuello de botella causado por la escasez
de recursos de los computadores cuánticos actuales y de las altas exigencias computacionales
de los simuladores cuánticos. En esta tesis se estudian con detalle las formas de reducir dicha
problemática, y se proponen soluciones en forma de circuitos que permitirán extender el uso de
la computación cuántica a problemas de mayor complejidad.

El documento está dividido en cuatro capítulos. Puesto que ambos paradigmas de com-
putación (cuántico y clásico) son utilizados para el mismo fin de resolver ciertos problemas, la
estructura del documento está enfocada en diferenciar esos problemas, de forma que todos los
esfuerzos orientados a un mismo resultado se presenten de forma sinérgica, no como alternativas
que compiten entre sí.

El primer capítulo presenta los objetivos que persigue la tesis y el contexto en el que se
desarrolla. Se presentan con profundidad (pero sin caer en repeticiones del contenido presentado
en los artículos científicos que componen la tesis) las tecnologías utilizadas a lo largo de la tesis,
para que el lector pueda tener una perspectiva global de los distintos aspectos abordados. También
se explican nuestras contribuciones en el diseño de circuitos cuánticos, que han permitido que
hayamos podido aplicar con éxito este paradigma de computación en nuestros problemas. Y,
finalmente, se presentan los problemas que ha abordado la tesis y en los que hemos aplicado
todo el conocimiento anteriormente explicado.

El segundo capítulo expone los artículos que componen esta tesis. Son un total de 10 artículos,
9 de ellos ya publicados en revistas reconocidas de alto impacto, y uno de ellos actualmente
en proceso de revisión. Para su mejor comprensión, el capítulo está dividido en secciones que
abordan, cada una, uno de los problemas tratados en la tesis. De esta forma, en una misma
sección se pueden encontrar todas las soluciones que hemos aplicado en un mismo campo.
Soluciones que, como norma, son totalmente complementarias.
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El tercer capítulo hace un listado extenso de todas las aportaciones científicas realizadas
como parte de la tesis. En una tesis por compendio se exige un mínimmo de artículos publicados
en revistas de alto índice científico. Estos méritos son los que presentamos en el Capítulo
2. Sin embargo, nuestras publicaciones no se limitan a estos artículos, sino que incluyen un
elevado número de aportaciones a congresos, jornadas, simposios, revistas sin índice de impacto,
revisiones para revistas, y trabajos docentes.

El último capítulo presenta las conclusiones que hemos obtenido del trabajo realizado en
la tesis. Se analiza el desarrollo de los objetivos de este trabajo y las claves tanto a nivel
computacional como desde el punto de vista de cada aplicación. Se destacan tambien algunas
limitaciones de las soluciones aportadas y se definen los trabajos futuros que pretendemos
abordar.

Terminamos este prefacio describiendo de forma resumida la estructura del presente docu-
mento:

• El primer capítulo resume el trabajo realizado en la tesis.
• En el segundo capítulo se muestran las publicaciones que componen la tesis.
• El tercer capítulo enumera las aportaciones ciéntificas no incluidas en el segundo capítulo.
• Finalmente, el cuarto capítulo presenta las conclusiones.
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Preface
The evolution of technology has always been aimed at enabling society to solve its problems

and to improve its quality of life. In particular, computer science is probably the science that has
evolved the most since the second half of the twentieth century, allowing us to reach solutions to
increasingly challenging and varied problems thanks to its interdisciplinary nature.

This thesis provides solutions in very different disciplines such as the field of Microrheology,
dimensionality reduction, and digital image processing. As its name indicates, this thesis
addresses the resolution of such problems through the use of quantum computation and high
performance computing. The rapid progress that quantum computation has been making in the
last years allows us to use it not only at a theoretical level but also practical to solve current
problems.

The purpose of this thesis is twofold. First, and as a main objective, it is intended to solve a
series of formally defined problems, previously mentioned. As will be seen in the thesis, some
of these solutions may well be extrapolated to other fields of application. However, in this thesis
we present them in the context in which we have encountered and solved them. The second
purpose of this thesis is to contribute to the development of quantum computing in a practical
way. The applicability of this computing paradigm has an important bottleneck caused by the
scarcity of resources of current quantum computers and the high computational demands of
quantum simulators. In this thesis we study in detail the ways to reduce this problem, and we
propose solutions in the form of circuits that will extend the use of quantum computing to larger
problems.

The document is divided into four chapters. Since both paradigms (quantum and classical
computing) are used for the same purpose of solving certain problems, the structure is focused
on differentiating those problems, so that all efforts towards the same result are presented
synergistically, not as competing alternatives.

The first chapter presents the objectives of the thesis and the context in which it is developed.
The technologies used throughout the thesis are presented in depth (but without repeating the
content presented in the scientific articles that make up the thesis), so that the reader can have a
global perspective of its contents. It also explains our contributions in the design of quantum
circuits, which have made it possible for us to successfully apply this computing paradigm to our
problems. And finally, the problems addressed by the thesis and in which we have applied all the
knowledge previously explained are presented.

The second chapter presents the articles that make up this thesis. There are a total of 10
articles, 9 of them already published in recognized high impact journals, and one of them is
currently under review. Since it would be chaotic to present the articles individually or in
chronological order based on their date of publication, the chapter is divided into sections, each
of which deals with one of the problems addressed in the thesis. In this way, all the solutions we
have applied in the same field can be found in the same section. Solutions that, as a rule, are
fully complementary.

The third chapter makes an extensive listing of all the scientific contributions made as part
of the thesis. A thesis by compendium requires a minimum number of articles published in
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journals with a high scientific index. However, our publications are not limited to these articles,
but include a large number of contributions to congresses, conferences, journals without impact
index, reviews for journals, and teaching papers.

The last chapter presents the conclusions we have drawn from the work done in the thesis.
The development of the objectives of this work and the key computational and application aspects
are discussed. We also highlight some limitations of the solutions provided and define the future
work we intend to undertake.

We conclude this preface by summarizing the structure of this document:

• The first chapter summarizes the work carried out in the thesis.
• The second chapter shows the publications that make up this thesis.
• The third chapter lists the scientific contributions not included in the second chapter.
• Finally, the fourth chapter presents the conclusions.
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Resumen
Esta tesis por compendio recoge un conjunto de diez trabajos. Dichos trabajos son el fruto de

numerosas colaboraciones con diferentes grupos nacionales e internacionales, y están enfocados
en resolver una serie de problemas de áreas tan distintas como son la micro-reología, el escalado
multidimensional, y el tratamiento digital de imágenes. El punto en común de estos trabajos es
que todos ellos utilizan la computación de alto rendimiento (HPC) y la computación cuántica
como herramientas para solucionar los mencionados problemas. Estos dos paradigmas de
computación no se utilizan como dos alternativas excluyentes la una de la otra, sino como
enfoques totalmente complementarios que permiten optimizar aún más las soluciones alcanzadas
por cada uno de los paradigmas por separado. En el caso de la micro-reología, se consigue
extender mediante HPC un modelo físico ya existente, así como acelerar aún más la parte más
costosa del cálculo involucrado en la extensión de dicho modelo mediante computación cuántica.
En el caso del escalado multidimensional, los resultados obtenidos están enfocados a permitir que
una de las técnicas de reducción más costosa en términos computacionales sea viable en tiempo
y consumo energético. Finalmente, en el campo del tratamiento digital de imágenes hemos
aplicado con éxito la técnica anterior como parte de un algoritmo mayor, llamado ISOMAP,
que está enfocado en la clasificación de cierto tipo de imágenes. A la par, hemos obtenido un
primer prototipo de binarizador para computadores cuánticos que mejora a los existentes en la
literatura, como primer paso en nuestra carrera por construir un circuito mayor que nos permita
mejorar ciertas partes de ISOMAP utilizando el paradigma cuántico. Una aportación importante
de estos trabajos viene de la mano de los numerosos diseños de circuitos cuánticos propuestos,
que optimizan a los disponibles en el estado del arte. Además, como complemento de estos 10
trabajos principales, y dentro de las tres áreas citadas, también se expone la lista de las más de
30 aportaciones a congresos nacionales e internacionales que se han llevado a cabo como parte
de la tesis.
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Abstract
This thesis by compendium gathers a set of ten papers. These works are the result of our

numerous collaborations with different national and international groups, and are focused on
solving a series of problems in areas as different as microrheology, multidimensional scaling,
and digital image processing. The common point of these works is that they all use high-
performance computing (HPC) and quantum computing as tools to solve these problems. These
two computing paradigms are not used as two mutually exclusive alternatives, but as fully
complementary approaches that further optimize the solutions achieved by each of the paradigms
separately. In the case of microrheology, HPC is used to extend an existing physical model, as
well as to further accelerate the most expensive part of the computation involved in the extension
of that model by using quantum computation. In the case of multidimensional scaling, the
obtained results are focused on allowing one of the most computationally expensive reduction
techniques to be viable in terms of time and energy consumption. Finally, in the field of digital
image processing we have successfully applied the above technique as part of a larger algorithm
called ISOMAP that is focused on the classification of certain types of images. At the same
time we have obtained a first prototype of a binarizator for quantum computers that improves the
existing ones in the literature as a first step in our race to build a larger circuit that allows us to
improve certain parts of ISOMAP using the quantum paradigm. An important contribution of
this work comes from the numerous quantum circuit designs proposed, which optimize those
available in the state of the art. Also, as a complement to these 10 main papers and within the
three areas mentioned above, the list of more than 30 contributions to national and international
congresses is presented.
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1. Introduction

This chapter gives the reader a complete overview of the work done. It begins in Section 1.1 by
justifying the current interest in High Performance Computing (HPC) techniques and quantum
computing to extend and to accelerate specific computationally demand problems. It also sets
out the main objectives to be achieved. Secondly, Section 1.2 gives a brief description of the
specific HPC and quantum technologies used in this thesis. Section 1.3 presents the advances
achieved in the thesis in terms of quantum circuits. Finally, Section 1.4 describes the problems
covered, which are related to the fields of Microrheology, MultiDimensional Scaling, and Image
Processing.

1.1 Context, motivation and goals

Problems that involve the processing of a large amount of data, as well as complex data structures
and operations, are good candidates for taking advantage of the HPC techniques. Such techniques
are based on the optimal parallel execution on modern computers, according to the specific
combination of problem/ HPC platform. This parallelization offers important benefits, such as
the resolution of big problems in less time and the ability to solve larger problems [34]. In this
way, HPC allows interested researchers to extend their models and accelerate their simulations
by exploiting a wide variety of computing resources. Some applications that typically benefit
from these advantages and which are addressed in this thesis include physics simulations [46],
dimensionality reduction of large volumes of data [23], and image processing [21]. However,
the selection of HPC architectures and programming interfaces for the models to be developed
requires significant ingenuity and is far from trivial [30].

Parallelizing involves a thorough understanding of the problem, as well as the ability to
break it down into smaller problems that are relatively independent [31]. In an ideal case,
the independence between subproblems is total. However, there are usually dependencies and
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constraints that complicate parallelization. Of course, it is also needed to understand the available
technologies for parallelization. It is worth mentioning that each technology has its benefits
and drawbacks, which are enhanced or diminished depending on the problem to which they are
applied and the machines available to solve it [44]. In certain programming paradigms, such as
GPU programming, special hardware constraints must be taken into account, such as reduced
shared memory, libraries that work in a substantially different way than those we would use for
multicore parallelization, or inter-GPU communications that are not intuitive for an outsider [66].

On the other hand, parallelizing a problem is not the only way to optimize its resolution.
Choosing the best machines for the computation, applying the most efficient methodology accord-
ing to the available resources, and even modelling the problem in other terms can allow solving
a problem in less time or with fewer resources. In a world composed of such heterogeneous
architectures and so many different tools, the possibilities to solve a problem are enormous. But
as it usually happens when you have many possibilities, not all of them are equally good and
it is necessary to have a strategy to choose the optimal one in terms of performance or energy
consumption.

HPC is commonly used to try to improve the performance of the resolution of a large number
of problems. In this thesis, HPC techniques are used to solve certain specific problems in
Microrheology, dimensionality reduction (using a specific technique called SMACOF), and
digital image processing. Moreover, quantum computing is also addressed to try to solve these
problems. This thesis is not a comparison between HPC and quantum computing, but both
computing paradigms are used in a complementary way and with a common purpose. Quantum
computing is currently experiencing strong growth thanks mainly to the emergence of simulators
and real prototypes freely available to the general public. With the proven and promising
advantages offered by this type of computing [18, 63], it has been a focus in our thesis.

To develop the scientific models addressed in this thesis, the collaboration with other re-
searchers has been essential. This way, we have been involved in several interdisciplinary
work-teams. We want to emphasize the high degree of collaboration we have had with other
departments and universities. It is fair to point out all these researchers have been a relevant key
to define and model most of the applications addressed in this thesis. Next, we highlight the
main researchers related to this thesis and their lines and institutions.

At the University of Almería itself, Department of Applied Physics, Dr. Antonio Puertas
is the main responsible for the microrheology model treated in this thesis. Professor Matthias
Fuchs, from the Physics Department of the Universität Konstanz, has also been essential in the
extension of the model. At a computational level, we have also worked with Dr. Inmaculada
García of the Department of Computer Science at the University of Málaga on the parallelization
of suchs models. It has been the union of the knowledge of all these people that has made it
possible to achieve results in this area.

The collaboration with the Computer Science Department of the University of Vilnius has
given us important results in terms of dimensionality reduction and image processing. In
particular, Dr. Ernestas Filatovas and Dr. Olga Kurasova have worked with us in this line from
the very beginning, contributing with their wide experience in this and other topics. Professor
Ernestas is also working with us in our line on quantum computation, which I will just talk about
next.
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In quantum computing, Dr. Elías Combarro from the Computer Science Department of the
University of Oviedo has been the one who has guided us the most and with whom we have
achieved our best results. We have also worked in this line with Dr. Iñaki Fernández from the
Mathematics Department of the University of Oviedo, who has provided the necessary statistics
to advance in the definition of our problems in terms of quantum computation.

The problems that these people have raised have helped us to apply HPC and quantum
computing in different contexts. They have also presented us with new computational challenges
that have led to the extension of the corresponding models as well as to the development of some
resources associated with those challenges.

As a consequence of the collaborations described above, the objectives addressed in the
thesis were as follows:

• To design an optimal way to compute the thousands of microrheology simulations and to
interpret the results in order to advance in the definition of new models. To extend the
initial model, it is necessary to perform a large number of simulations, so it is necessary to
study the possibilities -in terms of hardware, techniques, etc.- to perform this computation
in as short a time as possible. Apart from the large number of simulations to be carried out,
each one involves a heavy computational load. The approach should seek the best way to
solve one simulation, and then focus on finding the best way to solve all of them.
• To develop computationally efficient implementations for the most expensive dimensional-

ity reduction methods and to study their applicability. The most accurate dimensionality
reduction methods are, unfortunately, the most expensive. Their applicability is very
limited precisely because of the high computational costs involved. Their use should be
extended to allow their application to real problems of high dimensions that can benefit
from their high accuracy. As a complement, study possible applications to reduce costs
and consumption of this type of methods. Moreover, we want to study the applicability
of dimensionality reduction methods in hyperspectral image classification, as well as the
general improvement of the accuracy of such classification.
• To analyse the applicability of quantum computation in the previous objectives, and to de-

velop more efficient quantum circuits that enable the application of advanced algorithms to
achieve the above objectives using quantum computation. Despite the great achievements
made in quantum computing at the theoretical level, the truth is that at the practical level
it is still in its infancy. The scarcity of resources of current quantum computers prevents
the implementation of solutions for medium and large problems. We aim to study the
applicability of quantum computing in the above points, so searching for the best circuits
in the literature and even trying to design more efficient circuits also become objectives if
we want to be able to implement the corresponding algorithms on today’s small quantum
computers.

To illustrate the different contributions of this thesis in several journals of international
impact, Figure 1.1 summarizes the journal articles we have published as a result of addressing
these objectives.
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• [52]

• [53]

• [54]

• Paper under revision

1. To design an optimal way to compute the
thousands of microrheology simulations and to
interpret the results in order to advance in the
definition of new models.

• [46]

• [49]

2. To develop computationally efficient
implementations for the most expensive
dimensionality reduction methods and to study
their applicability.

• [47]

• [48]

• [50]

• [51]

3. To develop more efficient quantum circuits
that enable the application of advanced
algorithms to achieve the above objectives
using quantum computation.

Figure 1.1: Thesis objectives and published papers as a result of addressing these objectives.

1.2 Technologies

This thesis has been carried out using classical and quantum computing technologies. The term
“classical computing” arises to distinguish non-quantum computing from quantum computing. In
particular, in this thesis classical computing involves HPC techniques related to the current super-
computers, i.e. distributed architecture of nodes of multi-core processors which are accelerated
by Graphics Processing Units (GPUs).

1.2.1 Classical HPC technologies

The previous section discussed the usefulness of dividing a large problem into a set of smaller
problems in order to work in parallel with them. Splitting a problem into other problems involves
not only properly separating the instructions that make up the problem, but also separating the
data. Moreover, the available hardware to solve a problem is a determining factor in choosing
the appropriate HPC technique to solve it. However, although the hardware sets the limits of
what can and cannot be done, it is essential to know this hardware in depth in order to make
good use of the features it offers [9].

The most widespread classification of parallel computers is Flynn’s taxonomy. This classifi-
cation distinguishes four architectures according to the number of instructions and data streams.
In particular, we are interested in two of these architectures: Single-Instruction, Multiple Data
(SIMD), and Multiple Instruction, Multiple Data (MIMD).In the first type, the processors execute
the same instruction but concurrently access different data, the data blocks being usually handled
as vectors. In the second type, processors handle global parallelism of both instructions and data.
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Figure 1.2: Example diagram of a multicore architecture.

In this, MIMD is the most widely used architecture. MIMD in turn can be divided into two
groups according to its memory architecture. A first group would consist of those systems in
which the processors access the same memory space. A second type would include systems
whose processors have different memory modules assigned to them, so they must communicate
via messages even though they are part of the same logical system. The first type, the so-called
multiprocessors, are simpler to use because of their directly shared information. However, they
also have drawbacks. Firstly, it is the programmer who is entirely responsible for synchronization.
Secondly, there is a much more difficult problem to solve: the scalability between memory and
processors is very limited.

Multicore

Instead of focusing on increasing clock frequency or processor speed, adding more processors
(cores) to the same chip has become the architecture of choice in terms of improving overall
system performance. Such cores are connected to the same bus, sharing the same memory
device and other resources of the chip, as well as all external resources. This is shown in Figure
1.2. In terms of memory, current implementations are vendor-dependent, and include shared or
independent cache modules, bus implementations and extra threading capabilities, etc.

Depending on its internal structure, multiprocessors can be divided into two other types:
centralized and distributed shared memory. The former are called Uniform Memory Access
(UMA) because the access time of all processors to all memory is precisely the same. The latter
consists of individual nodes with their own resources but connected through an interconnection
network (Figure 1.3). In this way, processors can access their local memory faster than any other.
This is why they are called Non-Uniform Memory Access (NUMA).

Quantum Computing and HPC Techniques for Solving Microrheology and
Dimensionality Reduction Problems

23



Cache1

P1

Interconnection network

Cache2

P2

Cachen

Pn

RAM1 RAM2 RAMn

Figure 1.3: Non-Uniform Memory Access system.

At the software level, a multicore architecture will be useful when the code can be parallelized,
that is, executed in different threads. As mentioned at the beginning, the software must be
implemented specifically to perform this parallelization, which is challenging because it requires
complex coordination of threads and control of access to shared resources. Also, debugging
such programs is far from trivial since data is shared among the different threads. On the other
hand, the performance of parallel applications in a multicore environment is limited by their
non-parallel part that form bottlenecks. Therefore, for an optimal use of multicore processors, the
non-parallel part has to be optimized, either by parallelizing the non-parallel part or by making it
faster using more efficient algorithms [65].

When it comes to measuring the benefits of using this architecture, the most intuitive metric is
the execution time, which is the total time the program takes from start to finish. However, there
are other interesting metrics that can be useful depending on the objectives to be achieved. For
instance, throughput, which is the average rate of how many processes have been successfully
executed. There is also the so-called response time, which is the elapsed time between the request
and the time when the system starts working on this request. The memory bandwidth measures
the amount of data that can be moved simultaneously between the cores and the memory. With
the current concern for the environment and global warming, the energy consumption is also
a very important metric. These metrics can be categorized into three groups: higher is better,
lower is better, and nominal is better. As an example, higher performance is better, shorter run
time is better, and nominal energy consumption is better [65].

There are a large number of tools that can be used to program in these architectures, the
following being some of the most well-known and widely used [9]:

• OpenMP: Open Multi-Processing is a programming interface that allows you to add
concurrency to code written in C, C++, and Fortran. It is cross-platform, and is composed
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of a set of compiler directives, library routines, and global variables that affect the program
at runtime. It is based on the fork-join model, which consists of dividing a heavy task
into threads and then collecting the results of each of the threads to join them into a single
result [7].
• MPI: Message Passing Interface is a communication protocol designed for use in programs

that use multiple processors. It defines the syntax and semantics of a library of functions
for message passing in multiprocessor environments. Some of its most important charac-
teristics are that it is portable, and that it does not need shared memory, being therefore
especially useful for synchronizing processes in distributed systems [17].
• PThreads: The POSIX Threads library is a library oriented to work with several threads

simultaneously. It contains a set of interfaces for programming using threads that in terms
of memory share the same data and heap segments, but each using its own stack. Since it
complies with POSIX standards, any program made with pthreads will be portable to any
POSIX operating system that supports threads [40].
• Java threads: Java threads have a similar purpose to pthreads, but unlike pthreads, Java

threads are structured as objects.Each thread is an instance of the Thread class, and each
time the object is created a separate task is created. However, Java also gives the possibility
to use interfaces (provided by Java) to handle the tasks by passing them to an executor
[43].
• TBB: The Threading Building Blocks library was developed by Intel to simplify the

development of thread-based applications while offering scalability and efficiency. It is
designed in C++, and includes options to automatically parallelize the routines chosen in
user programs. However, its strong point is that it offers the programmer the possibility to
control in detail the parallelism design [57].

GPU computing

Graphics Processing Units (GPUs) offer another HPC alternative for parallelizing and accel-
erating applications. A GPU is made up of hundreds or thousands of cores, with these cores
organized into several multiprocessor arrays. Thus, any routine designed to run on a GPU
(commonly called kernel), is divided into threads which in turn are grouped into blocks whose
configuration must be set by the programmer depending on the problem and the GPU itself [37].
GPUs should be viewed as devices designed to act as co-processors to CPUs, and should never
be viewed as separate processors [66]. A GPU always involves CPU-GPU interaction, a host/
device programming model where the CPU is the host and tells its GPU device what to do. Once
the CPU tells the GPU the appropriate instruction, all it has to do is wait for the GPU to return
the result of its work.

This CPU-GPU interaction has its advantages and disadvantages. The most obvious advan-
tage is that a GPU greatly expands the computational potential of the system. The most important
disadvantage comes from the fact that this interaction involves passing data from one device to
another. The GPU’s high operational capacity is justified when a significant amount of data is to
be worked with, so transferring that data from the CPU to the GPU (and subsequently retrieving
the results, i.e. a GPU-CPU transfer) is assumed to be a costly task in terms of time [37]. In an
ideal case, it will only be necessary to transfer twice, at the beginning and at the end. In real
applications, several transfers will be necessary, which could reduce the time gain achieved by
the high computational speed of the GPU. This is because, despite the increasing use of GPUs
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Figure 1.4: Example of GPU architecture.

to solve new problems, it is not a method that can be used to solve every problem, even if it
involves a large amount of computation.

It has been mentioned that a GPU is composed of several processing units commonly called
multiprocessors. In turn, each multiprocessor is composed of many cores. The number of
multiprocessors and cores per multiprocessor depends on each particular GPU. Also, different
GPU models have different memory architectures, but we can simplify by saying that as a rule,
the cores of each multiprocessor share one memory, as well as there is a global memory shared
among all multiprocessors. As is intuitive to understand, a core will access its multiprocessor’s
memory faster than the overall memory. Of course, proper use of these memories is critical
to optimize the computer performance and should be a fundamental part of problem solving
problems. As an example, Figure 1.4 shows an NVIDIA GPU architecture with n multiprocessors
(labelled as SM). Each multiprocessor has 32 cores and its own cache memory. There are other
3 levels of memory, labelled as L2 cache, global memory, and constant memory, respectively.
Each memory has its own characteristics.

The approach to parallelizing a task is different from that which would be used in a multicore
system as described in the previous subsection, since millions and millions of threads can be
launched on a GPU. Despite this large number of threads, it is essential to parallelize the problem
properly so that it can be mapped to the GPU optimally. As a rule, there is a minimum number
of threads (this unity is commonly called warp) that will be running at any given time. This is
why the GPU executes programs based on warps. However, it is often the case that a warp is too
small to be used as a unit. That is why kernels are launched in terms of blocks, which are simply
a set of warps. At the programming level, problems arise in terms of threads/blocks. There is no
block size that we can set as good, but this value will depend on the problem and, of course, on
the GPU architecture [45].
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The two most popular tools for GPU programming are Open Computing Language (OpenCL)
and Compute Unified Device Architecture (CUDA). OpenCL is a programming language used
to parallelize applications on both CPUs and GPUs. It enables a high-level abstraction for
low-level hardware routines, as well as a consistent memory and execution model for parallel
code execution [74]. However, CUDA is more widely used and it is the tool we use in the thesis.
CUDA is a parallel program development platform that uses a variation of the C language for
programming (although through wrappers it can also be used with Python, Fortran and Java).
It was developed by NVIDIA in 2007, and although it has not stopped evolving since then, it
only works on NVIDIA GPUs [15]. CUDA is based on the single instruction, multiple threads
model, which implies that each instruction in the program is executed by hundreds of threads
with different data. The mapping of threads to the GPU cores is performed automatically by
CUDA [16].

1.2.2 Quantum computing

In quantum computing, the qubit is the basic unit of information. Like the bit, a qubit can
be in one of two values. However, the most characteristic properties of the qubit are that (i
- superposition) the qubit can be in both states at the same time, and that (ii - wave function
collapse) only one of such values will be obtained if the qubit is measured. The state of a qubit
can be expressed algebraically as follows:

c1 |b1〉+ c2 |b2〉 (1.1)

This equation defines any quantum state, that is, the value of a qubit at a given time. In this
equation, |b1〉 and |b2〉 (represented in Dirac notation) are the so-called base states, which for the
moment can be interpreted as the values 0 and 1 used by the classical bit. On the other hand, c1
and c2 represent what percentage of the qubit is in |b1〉 and |b2〉 states, respectively. Suppose an
experiment has n possible outcomes E1, E2,..., En. Associated with each output Ei is a probability
pi. The probabilities must be between 0 and 1, and must sum to 1. In the case of the qubit, the
possible outputs are |b1〉 and |b2〉 with probabilities p1 = c1

2 and p2 = c2
2, respectively.

To accurately define a qubit and its associated state, complex numbers must be used. In
particular, a two-dimensional complex space C2 is sufficient. However, for the purpose of
exposing its operation, it is sufficient to use R2 [3]. In fact, it is only necessary to consider the
unit vectors of R2, that is, the kets of the form:

|v〉=
[

c1
c2

]
, with c1

2 + c2
2 = 1 (1.2)

On the other hand, b1 and b2 can be any two vectors that form an ordered orthonormal basis
(|b1〉 , |b2〉).

In quantum computing, the action of measuring affects the result. In quantum mechanics,
we work with small particles such as atoms and electrons. To measure, we need to interact with
them, so we affect them. Suppose a qubit q is in the state:
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|q〉= 1
[

1
0

]
+0
[

0
1

]
(1.3)

For the sake of readability, we will also label the following quantum states:

|0〉=
[

1
0

]

|1〉=
[

0
1

]

|+〉=
[

1√
2

− 1√
2

]

|−〉=
[

1√
2

1√
2

]

Thus, equation 1.3 will be redefined as:

|q〉= 1 |0〉+0 |1〉 (1.4)

Probability says that measuring q will always result in |0〉 if we measure with the bases
(|0〉 , |1〉). If we measure the same qubit n consecutive times in this way, we will get the same
result every time. However, if we use different bases (|+〉 , |−〉), we will surprisingly get
another result [3]. Although the idea itself is counter-intuitive, it can be easily demonstrated
mathematically by simply expressing q as a linear combination of the new basis vectors:

[
1
0

]
= c1

[
1√
2

− 1√
2

]
+ c2

[
1√
2

1√
2

]

A = (

[
1√
2

− 1√
2

]
,

[
1√
2

1√
2

]
) =

[
1√
2

1√
2

− 1√
2

1√
2

]

AT
[

1
0

]
=

[
1√
2
− 1√

2
1√
2

1√
2

][
1
0

]
=

[
1√
2

1√
2

]

|q〉= 1√
2

[
1√
2

− 1√
2

]
+

1√
2

[
1√
2

1√
2

]

(1.5)

We say that two states are equivalent if they give the same result when they are measured
-their priorities are similar-. However, and based on what has just been mentioned about bases,
some states could be equivalent if they measured in a certain direction, but not be equivalent
if measured in another direction. For example, the following two states are equivalent if we
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Figure 1.5: (a) Standard Basis (|0〉 , |1〉). (b) (|0〉 , |1〉) rotated α◦.

measure on the basis (|0〉 , |1〉), but they are not if we measure on the basis (|+〉 , |−〉). This is
because, beyond the probability of the outcome, the state is still important for the next operations
to be performed on the qubit. These operations can be translated into moving the qubit by a
certain angle.

Continuing with our 2D simplification, we could represent the basis (|0〉 , |1〉) as shown in
Figure 1.5(a). Rotating this base by an angle α◦ would be equivalent to performing the operation
shown in Figure 1.5(b). If we rotate an angle of 90 degrees we arrive at a base equivalent to the
original but exchanging the elements. Or said correctly, exchanging the probabilities of each
base:

(

[
0
−1

]
,

[
1
0

]
) (1.6)

In pure measurement terms, we denote θ as the angle by which we rotate the measuring
apparatus with which we measure the qubit, while α is the angle by which we rotate the basis
vectors. A complete set of directions ranges from 0◦ to 180◦, while a complete set of rotated
bases ranges from 0◦ to 90◦. If we reach θ = 180◦ or α = 90◦, the two elements of the original
basis are exchanged. Thus, we can establish that:

θ = 2α (1.7)

Therefore, the basis associated with the rotation of an angle θ of the measuring device will
be given by:
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(

[
cos(θ

2 )

−sen(θ

2 )

]
,

[
sen(θ

2 )

cos(θ

2 )

]
) (1.8)

This defines the relationship between the angle of rotation of the bases on which it measures,
with the angle of rotation of the measuring device itself. We have demonstrated the importance
of these rotations in the result, but we have yet to expose the rotations that the qubits can undergo,
which are the ones that will really allow us to operate in a quantum computer.

Quantum gates

For simplicity, in the following it will be understood that we are working with the basis (|0〉 , |1〉).
As recently described, we can express any qubit in the form:

|q〉= c1 |0〉+ c2 |1〉 (1.9)

Also for simplicity, we will assume that our measuring devices will be fixed and will not
rotate. Thus, we can define a quantum gate as a quantum version of the logic gates used in
quantum circuits. Mathematically speaking, quantum gates are orthogonal arrays that allow us to
operate (rotate) on the qubit. In digital electronics, there are only two gates that operate on a
single bit: the identity gate and the NOT gate. In quantum computing, since the only requirement
is that the matrix representing the gate (which, for obvious algebraic reasons, must have the size
2×2) must be orthogonal, there are infinite possibilities.

Among the infinite quantum gates that exist, there are four particularly well-known and
widely used ones: the so-called Pauli gates. The first gate, the gate I, consists of the matrix
identity and therefore leaves the qubit in the state it was originally in without producing any
change in it. The other three Pauli gates, called X, Y and Z, do produce interesting changes in
the qubit. The X and Y gates exchange the probabilistic amplitudes of |0〉 and |1〉 with each
other. The Y gate also changes the relative phase of the qubit. The Z gate leaves the probabilistic
amplitude of |0〉 intact, but changes the sign of the probabilistic amplitude of |1〉. The effect of
each of these gates on a qubit in its general state is shown in Figure 1.6.

Two other key gates are the Hadamard gate and the CNOT gate. These gates will introduce
the concepts of superposition and entanglement to quantum circuits. We must also highlight the
T gates for their usefulness in fault tolerance in quantum computing. All the circuits realized as
part of this thesis can be built using the set of quantum gates presented in this section.

Quantum search algorithms

Several algorithms have already demonstrated the superiority of quantum computing over classi-
cal computing. Among these algorithms, Grover’s algorithm and its many variants constitute
a particularly effective class of algorithms. The problem that this type of algorithm solves is
defined as follows: given a search space of size N, and without prior knowledge of how the
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Figure 1.6: Effect of Pauli gates on a qubit. Image extracted from [1].

information is structured, we want to find an element that satisfies a certain condition. Using
classical computation, solving the problem requires approximately N operations. However, a
quantum computer can solve it in approximately

√
N operations [41].

The operation of quantum search algorithms is shown in Figure 1.7. The core of it is the
small subcircuit called Oracle. The mission of this subcircuit is to check whether or not an
element x satisfies the search condition, so it must return 1 if x satisfies the condition, and 0 if it
does not. Of course, the oracle/circuit depends entirely on the specific problem to be solved and
is a part of the algorithm that must be customized to suit each specific problem. Precisely, the
difficulty of applying the algorithm to a problem (assuming that the problem is tractable with
this algorithm), is to build an efficient oracle. Mathematically, we can define the oracle O as a
circuit that performs the following action:

|x〉 |q〉 → |x〉 |q⊕ f (x)〉 (1.10)

where f (x) is the function that determines whether or not x satisfies the condition, and q is a
qubit that is flipped if and only if x satisfies the condition.

Figure 1.7: Schematic circuit for Grover’s algorithm. Image extracted from [28].
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The rest of the algorithm is always the same (Figure 1.7), regardless of the problem being
solved. The gate denoted with H is the Hadamard gate discussed in the previous subsection,
which is responsible for putting the qubits in superposition. Subsequently, the G circuit is
applied, which consists of 4 sequential steps: the oracle, applying the Hadamard gates, applying
a conditional phase shift (with the Pauli X gates) and, again, applying the Hadamard gates.
What the G circuit essentially does is increase the probabilistic amplitude of the result. G must
be repeated the appropriate number of times so that the probability of the desired outcome is
sufficiently high. Identifying the number of times to apply G depends on the problem, but as an
illustration, we can say that in an N-element problem with M solutions, it is necessary to apply it
O(
√

N/M) times to find a solution.

1.3 Thesis contributions in the design of quantum circuits

A quantum computer is programmed by circuits. Similar to the way a program is made in a
classical computer, every quantum circuit has a specific design for the problem it must solve. An
example already discussed earlier is that of Grover’s algorithm oracle, which must have a design
dependent on the problem being addressed. Small and optimized quantum circuits are a very
valuable asset even when they do not offer any quantum advantage, since they can be used as
part of larger circuits to implement quantum algorithms [56]. An important part of the present
thesis has been, precisely, to design and implement optimized quantum circuits that would allow
progress in the construction of quantum algorithms to solve the problems addressed in the thesis
(discussed in the next section). To this end, our initial efforts were focused on an intensive study
of the state of the art of quantum circuits for certain arithmetic operations.

The first problem we encountered was the lack of standard metrics to define the goodness
of such circuits. That is why we focused on establishing a measurement framework that would
provide as much information as possible about each circuit so that any interested researcher
could use our work to quickly and visually obtain this information and choose the right circuit for
their needs. This framework is based (but not limited to) on the work developed by Mohammadi
et al [36]. Our contribution has been to search and measure the circuits in the literature using the
same metrics to catalogue and coherently compare them, making this information public domain.
The most relevant metrics included in such a framework are:

• Quantum cost: the quantum cost of quantum gates that act over one or two qubits is defined
as 1. The quantum cost of any other gate will be the sum of the quantum costs of the gates
that compose it.
• Delay: the delay of a quantum gate that acts over one or two qubits is set to 14. The delay

of a circuit consists of the sum of the delay of the gates it has in its critical path.
• Ancilla qubits: qubits that are used to perform auxiliary operations, but not to contain an

input of the circuit.
• Garbage outputs: qubits that are not part of the solution given by a circuit and that contain

unknown values. The value of these qubits must be restored (uncomputed) to their initial
value or these qubits could not be entangled with qubits of other circuits.
• T-count: the number of T gates a circuit has. This gate is expensive in comparison to the

rest of the gates, so this metric can give more valuable information than the quantum cost
in certain cases.
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Figure 1.8: We have studied and designed optimized quantum circuits in several fields to be able
to perform major operations using quantum computing.

• T-depth: the number of T gates a circuit has in its critical path. This gate is very slow in
comparison to the rest of the gates, so this metric can give more valuable information than
the delay in certain cases.

There are a large number of existing circuits in the literature and cataloguing them has been
a productive work. However, sometimes even the best circuit of its type is not optimized enough
to allow certain algorithms to be performed on a particular machine due to its limited resources.
That is why we have also designed and produced optimized circuits to advance in these fields.
Figure 1.22 shows a schematic of the operations we have addressed. We discuss these areas and
our progress in each of them below.

Adders/Subtractors

Adders are possibly the most important circuit in quantum computing today. This is because
addition is a fundamental operation in Shor’s algorithm. In fact, it is the main bottleneck in the
implementation of this algorithm, so there is a major research race to obtain the best possible
adders. As a result, there is a wide variety of adder circuits, which includes circuits of various
types and methodologies.

The contribution of the thesis in the field of adders comes from a thorough review of the
circuits of this category available in the literature [48]. Some of these circuits also perform
the subtraction operation (these circuits are called adder/subtractors), so the study of this type
of circuits has also been included. As part of this review, more than 40 references have been
searched, measured, and classified, summarizing all this information in several detailed tables
for quick reference (Tables 1.1, 1.2, 1.3, and 1.4).
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Adder Quantum Delay Auxiliary Garbage Adder/
cost inputs outputs subtractor

[25] 14 144 3 3 Yes
[41] 6 64 1 0
[81] 5 54 1 0
[62] 5 54 1 0 Yes
[22] 4 44 1 0

Table 1.1: Comparison between half adders.

Adder Quantum Delay Auxiliary Garbage Adder/ Fault
cost inputs outputs subtractor tolerant

[61] 18 184 5 6 Yes
[81] 15 154 3 0
[62] 15 104 1 0 Yes
[10] 14 144 0 0
[22] 12 124 3 0
[38] 12 124 1 0
[35] 11 114 2 3 Yes
[26] 11 114 4 4 Yes
[76] 10 84 1 0
[59] 10 104 1 3 Yes
[64] 8 84 1 1
[4] 8 84 1 1

[69][b] 8 54 2 0 Yes
[84] 8 74 2 2 Yes
[32] 6 44 1 1

[69][a] 6 44 1 0

Table 1.2: Comparison between full adders.

Adder Quantum Delay Auxiliary Garbage Cin
cost inputs outputs

[67] 26N−29 24N−274 0 0
[10] 17N−12 10N4 1 0
[68] 15N−9 13N−74 0 0
[72] 15N−6 9N +54 0 0 Yes
[73] 13N−8 11N−44 0 0
[38] 12N 10N4 4N 0 Yes

Table 1.3: Comparison between ripple-carry adders.
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Adder Quantum Delay
cost

[13] 28N−15W (N)−15log(N)−6 logN + logN/3+74
[70] 26N−15W (N)−15log(N−4) logN + logN/3+24

Table 1.4: Comparison between carry-lookahead adders. W (N) is the number of ones in the
binary expansion of N.

On the other hand, we have also made a contribution in the form of three fault-tolerant
optimized adder circuits. These circuits are each focused on reducing the T-cost, the T-depth,
and/or the number of qubits needed to perform the summation in a noise mitigation context.
The design of these adders has been achieved by combining computer structure techniques with
the use of a special gate that allows the use of T-gates to be reduced without compromising the
reliability of the result obtained with it. The metrics of each of the three proposed adders are
shown in Table 1.3. More details about the review can be found in our paper [48].

Adder T-depth T-count Ancilla qubits
(Out-FT-QCLA1) [71] 10 36 10
(Out-FT-QCLA2) [71] 13 48 6
(In-FT-QCLA1) [71] 20 56 13
(In-FT-QCLA2) [71] 22 76 5

New Adder 1 10 36 9
New Adder 2 14 51 5
New Adder 3 12 41 6

Table 1.5: Depth and cost comparisons between the most optimized 4-digit adders in terms of T
gates.

Two’s complement

The two’s complement operation is fundamental in classical computing. We wanted to study
its possible advantages in quantum computing. This operation allows, among other things, to
perform subtractions employing adders, which together with the large availability of adders (as
explained in the previous subsection) allows to increase and optimize the possibilities to perform
subtraction in a quantum computer, both in terms of quantum cost and speed.

Our contribution in this operation consists in the design of four binary sign/magnitude to two’s
complement converters [51, 52]. These converters will allow working with two’s complement in
quantum computers, each of them offering its own advantages. The first converter was designed
to be used in a free-noise environment (i.e. quantum simulators). Therefore, it is non-fault
tolerant, but it is optimized in terms of delay and is the fastest circuit of its kind. Its design
is based on the propagation of classical carry-lookahead adders, but adapting it to a quantum
environment while maintaining reversibility and in a context free of garbage outputs. The circuit
is shown in Fig. 1.9.
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Figure 1.9: First proposed converted. ai are the qubits of the input number, Zg(i) will contain
Si+1 (the result) at the end, and Zp(i) are auxiliary qubits used to store propagated carry value
for intermediate digits (they are uncomputed at the end).
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and it has a delay of 44.
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Figure 1.11: Fourth proposed converter, for the 4-digits case.

Based on the idea of this first converter, we developed a second circuit but this time based
on the operation of ripple-carry adders. As a result, this second design consists of a converter
that, digit by digit, performs the conversion sequentially so that its quantum cost is the most
optimized of the circuits in the literature of this type. The circuit is shown in Fig. 1.10.

For the design of the other two circuits we focused on making them fault tolerant. In
particular, the third circuit is an almost direct conversion of the previous one (the second one) to a
fault-tolerant environment, trying to optimize this conversion as much as possible so that neither
the quantum cost nor the T-cost would increase. However, in this aspect our greatest achievement
came with the fourth circuit. Instead of starting from a previous design, the fourth circuit has a
design of its own. In combination with the selection of the appropriate quantum gates (Figure
1.11), the fourth converter improves the existing converters in terms of fault tolerance and T-gate
related measurements. These two circuits are also free of garbage outputs.

Comparators

A comparator circuit compares two numbers A and B, and returns a result that indicates if
A > B, A = B, or A < B. In classical computing, this kind of circuit usually returns −1, 0, and
1, respectively. There is another kind of comparator called half-comparator, which is able to
compute if a < B, or if A≥ B. These circuits are widely used in digital electronics, in operations
as common as, for instance, checking that a value does not exceed a certain threshold.

We developed two quantum comparators focused on be fault-tolerant circuits in order to
reduce the effects of the internal and external noise [49]. Since the objetive here was to design
valid comparators for real quantum computation, the main metrics to optimize were the T-count
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Figure 1.12: First proposed comparator for the N = 4 case. This circuit is focused on reducing
the T-count. ai and bi are the bit strings to be compared. A are ancilla qubits.

and the T-depth. Moreover, a circuit with a small quantum cost will be less affected by noise
than a larger one, since each quantum gate used has its own probability of failure due to noise.
On the other hand, qubits slowly lose their value, so a circuit that is faster than another (that is,
with lower delay) will be less prone to failure than a faster one. These parameters must therefore
also be taken into account when designing.

The first comparator was focused on this first metric. It is based on the methodology used
on the most optimized adder in these terms, but working in two’s complement and saving
several operations to compute the half-comparison between the two inputs. A fundamental
part in achieving the reduction in the number of T gates was the inclusion of the so-called
temporary logical-AND gate. This gate performs a similar operation to the Toffoli gate, but with
a considerable saving in the T-count, especially in its uncomputation. Thanks to the original
methodology, the techniques employed, and the use of this gate, the proposed circuit is the best
comparator in terms of T-count. An example for the case N = 4 is shown in Fig. 1.12.

In turn, a second comparator was designed, but this time focused on the T-depth and the delay.
This circuit is O(Lg(N), and it was designed based on the methodology of another efficient adder.
It is no surprise that the adder on which it is based is the most optimized in terms of T-depth. The
fast calculation of the carry-over, which in the case of the comparison is the result of the circuit,
allows the operation to be completed in the above-mentioned logarithmic time. Uncomputing
the rest of the circuit adds extra time to the critical path, but it is worth it in the interest of saving
a large number of garbage outputs. Fig. 1.13 shows an example of the second comparator, for
the N = 8 case.

Distances

The calculation of distances between two points is one of the most common operations in
classical computing. There are several types of distances, such as Geodesic and Euclidean ones.
Focusing on the latter, the distance between two points A(x1,y1,z1) and B(x2,y2,z2) would be
defined by the formula d(A,B) =

√
(x2− x1)2 +(y2− y1)2 +(z2− z1)2. In certain contexts, for

example in the context of comparing distances, you can work with the square of these distances.
In this way, the square root operation of the above formula is not necessary. It may seem like a
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Figure 1.13: Second proposed comparator for the N = 8 case. This circuit is focused on reducing
the T-depth. ai and bi are the bit strings to be compared. A are ancilla qubits.
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negligible computational saving in classical computing, but it is nevertheless a significant saving
in classical computing due to the complexity of performing square roots with qubits. Thus, the
computation of the distance between two points can be calculated by performing the following
operations:

1. To calculate dx = xi− x j, dy = zi− z j, dz = zi− z j.
2. To calculate the squares dx

2, dy
2, dz

2.
3. To compute the addition d2 = dx

2 +dy
2 +dz

2.

Building a circuit that computes d2 will involve, if working with three dimensions, three
subtractions, three squares, and two additions. The required number of qubits will depend on
the size of the data we want to work with, but we can already deduce in advance that it will not
be a small number even for a small prototype. In relation to the above, it is worth noting that
the square will greatly increase the need for qubits, so it is not possible to stay at the initial size
of the coordinates to estimate the required number of qubits. Similar to what has been done
with the adders, a thorough review is necessary here to find the most suitable type of circuit to
perform each of the three types of operations. The resulting circuit will be a clear example of
the importance that we pointed out at the beginning of this section that small circuits are a very
precious asset, because only with them we will be able to implement this type of larger circuits
without exceeding the resources we have.

Fortunately, at the time of undertaking this circuit, we already had the adder review, which
as we have said is the most abundant kind of arithmetic circuit. The same review process had
to be repeated with circuits that allow us to calculate the square of a number, as well as with
subtractors. Regarding the first type, it is true that there are not a large number of them in the
literature. The second type (subtractors) is more abundant, although there are not as many as
in the case of adders. Nevertheless, and as seen in the previous subsection, subtraction can be
performed by means of a two’s complement adder, so this review should include a comparison
with all the adders adapted to work with two’s complement. For this assumption, we differentiate
two cases: the possibility of using converters, or the possibility of adapting the adders by means
of certain techniques so that they can work directly in two’s complement (something that the
adders that support carry can do in a simple and natural way).

The prototype built, despite admitting a reduced size of coordinates and being limited to a
maximum of three x,y,z coordinates, has been a success and is in the process to be published
in an international journal at the time of writing these lines. The justification of this circuit in
quantum computing is explained in the next section.

1.4 Applications

The current subsection provides a formal definition of the kind of problems addressed as part of
this thesis and the main strategies used to solve them. While the quantum computing paradigm
used in the thesis was explained in Subsection 1.2.2, the applications described in this section
have been achieved by developing the circuits presented in Subsection 1.3.
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Fig. 1.14 summarizes the three applications -Microrheology, dimensionality redution using
MultiDimensional Scaling, and Image Processing- and shows a simple definition of the involved
techniques. It is relevant to mention that the term “classical computing” is used to differentiate
any non-quantum computing from quantum computing. In particular, the “classical comput-
ing”, which was described in Subsection 1.2.1, involves high performance techniques, such as
multicore and GPU computing.

APPLICATIONS

Quantum algorithms Specific quantum circuits

Distances
Microrheology

Dimensionality
Reduction/Image

Processing

Two’s complementComparators

Adders /Subtractors

Quantum computational Model

Techniques

Multicore
Clusters

Workload distribution

Classical model

GPU computing

Figure 1.14: This thesis covers three problems: Microrheology, MultiDimensional Scaling, and
Image Processing. Both classical and quantum computing techniques are used to address them.

1.4.1 Microrheology

Active microrheology is a technique to find the properties of viscoelastic materials. In particular,
the use of this technique involves pulling a colloidal tracer into such materials, studying the
dynamics, and interpreting the results. In this context, a material is usually represented as a bath
of hard spheres, and the tracers have a size comparable to the bath particles, with Langevin,
Stokesian, or Brownian dynamics [58]. In active microrheology, the most simple observable is
the tracer mean velocity v, that can be used to calculate the effective friction coefficient, γeff of
the bath via the stationary state relation Fext = γeffv, where Fext is the force applied to the tracer.
γeff is the microscopic equivalent to the viscosity, which characterizes the rheological behaviour
of a given material (identifying Newtonian fluids, viscoelastic materials, ...). Therefore, the
strategy is to measure experimentally, or simulate, the trajectory of the tracer subjected to an
external force, to obtain the average velocity and thus the effective friction coefficient. The high
computational cost of this strategy will be demonstrated below.

Our simulations of such materials have been done considering N Brownian particles in a
cubic box [53, 54]. These particles include the tracer one, labelled with j = 1. Simulations in
a system of quasi-hard Brownian spheres are strongly affected by finite size effects [20]. To
palliate these effects and to obtain realistic measures, simulations of different sizes are required.
The systems have been modeled using the Langevin equation of motion [12]:

Quantum Computing and HPC Techniques for Solving Microrheology and
Dimensionality Reduction Problems

41



m j
d2 r j

dt2 = ∑
i 6= j

Fi j− γ j
d r j

dt
+ f j(t)+Fextδ j1 (1.11)

where:

• j is the number of the particle, with 0 < j <= N.
• m j is the particle mass.
• Fi j represents the interaction force between particles i and j.
• The friction force d r j

dt is proportional to the velocity of the particle. The proportionality
constant, γ j, is calculated a γ j = γ0a j, where a j is the radius of the particle.
• f (t), the Brownian force, is random but related to the friction force.
• Fext , the external force, is caused by the tracer.
• δ j1 is the Dirac-delta symbol.

The interaction between two particles i and j can be computed from the central inverse-power
potential as follows [27]:

V (r) = kBT
(

r
ai j

)−36

(1.12)

being r = |r| y ai j the distance between such particles. All particles have the same value of m.

We have mentioned that finite-size effects must be considered since the simulations consist
of a cubic array of tracers launched into an infinite bath [20]. Therefore, it is used a model based
on solving the Navier-Stokes equation for an infinite array in a Newtonian fluid to analyze the
results of the simulations [20]. In this model, γeff is related to the lattice spacing, L, as follows:

1
γeff

=
1
γ∞

(
1− c

L

)
(1.13)

being γ∞ the coefficient in an infinite system, and c a constant related with the array structure
and whose value in our case is c = 2.8373at [20]. at is the tracer radius.

One approach to this problem involves computing simulations of systems of different sizes.
This is necessary to extrapolate the friction coefficient γ∞. Simulations of systems with sizes
N = 216, 512, 1000, 2197, 4096, 8000, 15625 and 32768 particles has been carried out. In these
simulations, energy is measured in units of the thermal energy kBT , mass is measured in units of
the particle mass m, and all lengths in units of the mean bath particle radius a. More details can
be found in reference [12].

It is necessary to compute several tracer trajectories for various sizes to obtain an accurate
value of the friction coefficient. In terms of computation, there are three parallelism levels in
the model: 1) the computation of a single trajectory, 2) the computation of several trajectories,
and 3) the simulation of sets of trajectories for several sizes to finally extrapolate γ∞. For the
sake of clarity, a schema of these levels is shown in Fig. 1.15. Moreover, this figure shows a
graph where the abscissa axis shows the inverse system size, and the ordinate axis shows the
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Figure 1.15: A microrheology simulation can be divided in three levels: 1) the computation
of a trajectory, 2) the computation of all the needed trajectories for an specific size, and 3) the
computation of the trajectories of each size.

normalized inverse effective friction coefficient. The aim is to find the values of the friction
coefficient for very large N sizes and thus extend the microrheology models.

To address the parallelization of the microrheology model, different strategies have been
considered on each level. Focusing now on the first level, a GPU code implemented in C and
CUDA has been developed to accelerate the simulation of a single trajectory of the tracer particle.
Algorithm 1 shows how a trajectory on a bath of N particles is computed. As can be seen,
there is a GPU involved in the process. Each iteration of this algorithm not only evaluates the
position and velocity of all the particles but also gets the list of neighbors of every particle. The
complexity of these operations is O(N) and O(N2), respectively.

On the one hand, the computation of the positions and velocities involves several steps. The
initial values are transferred to the GPU. Then, the interaction forces among each pair of particles
(Fi j) are computed. The positions and velocities are updated using the calculated forces, and Fi j is
computed one more time to take into account the new positions. The velocities are again updated
according to the equations of motion, and finally, the center of mass velocity is computed. This
part is globally computed using 5 kernels (cuForces, cuUpPosVel1, cuUpPosVel2, cuVelVMC,
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Algorithm 1 Host pseudocode of the model of bath of Brownian quasi-hard spheres.
Require:

ntra j: the number of trajectories,
ttra j: the total time steps of every trajectory,
δ t: time step,
N: the number of particles,
γ0: solvent friction coefficient,
Fext: external force,
a[]: vector to store the radius of the particles (a[0] = at and a[i] = ab),
φ : volume fraction,
Init_Part[N]: initial spatial locations and velocities of the N particles,
mn: the maximum number of neighbors of a particle,
~Pos[N]: auxiliary structure to store the position of every particle.
~Vel[N]: auxiliary structure to store the velocity of every particle.
NList[N][mn]: auxiliary structure composed by a list which will store the neighbors of every particle.

Ensure:
~T [i][t]: spatial location vector for the tracer at time t in the trajectory i

1: Init the GPU device
2: Memory allocation on the GPU of the required structures
3: th = ab . threshold
4: for i← 1 to ntra j do
5: ~T [i][0]← (0,0,0) . Init tracer trajectory at origin of coordinates
6: ~Pos[], ~Vel[]← Init_Part( ~Pos[], ~Vel[]) . Init locations and velocities of N particles
7: Copy the values of ~Pos[], a[] and NList[][] from CPU to GPU
8: NList[][], th← cuNeighbors(N, ~Pos[], ~Vel[],a[],mn,NList[][], th)
9: for t← 0 to ttra j do

Difus algorithm (lines 10-18)
10: Add Brownian kick in ~Pos[] on the CPU
11: Copy the values of ~Pos[] and ~Vel[] from CPU to GPU Numerical solution of the Langevin equation
12: ~d f []← cuForces(N, ~Pos[],a[],NList[][])
13: ~Pos[], ~Vel[]← cuUpPosVel1(N, ~Pos[], ~Vel[], ~d f ,γ0,δ t)
14: ~d f []← cuForces(N, ~Pos[], ~Vel[],a[])
15: ~Vel[]← cuUpPosVel2 (N, ~Vel[], ~d f [],δ t) Corrections to fix the center of mass
16: ~Vmc ← cuVelVMC(N, ~Vel[])
17: ~Vel[]← cuUpVelVMC (N, ~Vel[],~Vmc)
18: Copy the values of ~Pos[] and ~Vel[] from GPU to CPU
19: if the displacement with respect to the location of NList for at least one particle ≥ th/2 then
20: NList[][], th← cuNeighbors(N, ~Pos[], ~Vel[],a[],mn,NList[][], th)
21: Memory deallocation on the GPU
22: return ~T [i][t] with 0≤ i≤ ntra j, 0≤ t ≤ ttra j . Return tracer trajectories

and cuUpVelVMC). According to the system size, each kernel uses an adequate amount of
threads in order to accelerate the calculation of the involved operations.

On the other hand, the complexity of the computation related to the neighbors is higher than
the computation of the positions and velocities. As a counterpart, the list of neighbors must be
updated only if any particle has moved more than a threshold distance. Moreover, a specific
definition of neighborhood has been implemented to reduce the computational cost. It is based
on two ideas: 1) two particles are neighbors if their distance is smaller than the radius of the
particles, and 2) it is enough to consider the 200 closest particles in the list of neighbors of each
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particle. The list is labelled as Nlist[i][200] (with 0≤ i < N) and stores the index of neighbors of
each particle. Nlist is stored by column-major order to accelerate its computation on the GPU.

Exploiting 2-3 parallelism levels on heterogeneous clusters

Once we have accelerated the computation of a trajectory (level 1), the next step is to compute
sets for several sizes to extrapolate γ∞ (levels 2 and 3). To compute such sets, several processing
units (CPU-cores and GPUs) can be used as the nodes of a cluster. Algorithm 1 for a GPU and
also a sequential version for a CPU-core are used here to exploit the different units of the cluster.
Let ∑I

i=1 Qi be the number of trajectories to compute, where I is the size of the system (we said
previously that the possibilities were N = 216, 512, 1000, 2197, 4096, 8000, 15625 and 32768),
and 1≤ i≤ I. The main idea to accelerate this part is to minimize the makespan, Cmax:

Find: X to
minimize: Cmax

subject to: tk =
I

∑
i=1

xk,itk,i ≤Cmax,1≤ k ≤ K (1.14)

K

∑
k=1

xk,i = Qi,1≤ i≤ I

xk,i ∈ {0,1, . . . ,Qi},1≤ k ≤ K;1≤ i≤ I

being xk,i (each element of a k× i matrix X , which is the result) the number of tasks of each
size Ni assigned to the processing unit k, and tk,i the runtime to compute a task of size Ni on the
processing unit k. Each task must be computed one (and only one) time.

1

Parents

1

K

k

X2

Children

X1’ X2’

i

xk,i

number of tasks of 

size Ni on the k 

processing element

I

X1

Figure 1.16: Crossover operator is applied over two individuals splitting their matrices in a
random column and swapping the right and left parts. As a result, a new pair of individuals is
obtained.

A genetic algorithm (GA) [77] was defined to find a scheduling that minimizes Cmax. The
GA takes as population a set of possible solutions, that is, the individuals of populations are X
matrices. It starts using a randomly generated population. Each iteration of the GA applies the
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operators 1) crossover, 2) mutation, 3) evaluation, and 4) selection. In the crossover operation, a
random pair of individuals are selected as parents. Two new individuals (children) are obtained
from the parents selecting a random column and splitting the matrices of the parents and swapping
the right and left parts of such parents as it is shown in Fig. 1.16. After the crossover, a child
can suffer a mutation with a probability of 1%. The mutation exchanges tasks of the same size
between two processing units. Then, the individuals are evaluated and ordered from best to worst
using a fitness function. Finally, only the best individuals are kept.
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Figure 1.17: Runtime, in hours, for the GA on a cluster composed by 2 kind of CPU’s and 2
kind of GPU’s (blue - N=15625, green - 8000, black - 4096, yellow - 2197, grey - 1000, orange -
512, pink - 216).
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Figure 1.18: Percentage of each type of task solved on each kind of PU (blue - N=15625, green -
8000, black - 4096, yellow - 2197, grey - 1000, orange - 512, pink - 216).

Fig. 1.17 illustrates an example of a solution that the GA gives for a case of 250 trajectories
of each one of the sizes using a cluster composed of 56 cores of Bullx R424-E3 Intel Xeon E5
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2650 with 8GB RAM, 10 cores of Bullx R421-E4 Intel Xeon E5 2620v2 with 64GB RAM, 8
NVIDIA Tesla M2070 GPUs, and 2 NVIDIA Kepler GK210 GPUs [55]. The figure shows the
distribution of tasks in the different machines. It is visible at a glance how the heaviest tasks
(labelled in blue) are mainly assigned to the fastest devices. The rest of the tasks are reordered
in a way that tries to minimize the makespan while balancing the load. The same result is
shown in Fig. 1.18, but such figure represents the percentage of each type of task executed on
each processing unit. It is clear that the biggest sizes are computed on the GPUs. In terms of
results, this rearrangement translates into a strong improvement in efficiency compared to other
alternatives of the state-of-the-art.

Quantum computing

The applicability of quantum computing to accelerate the computation of the neighbors has also
been studied. The creation of a neighborhood can be described as a search of a set of particles
that satisfy a condition -their distance is less than a threshold value-. Therefore, an adaptation
of Grover’s algorithm [18] can be applied if an appropriate oracle is designed. In particular,
this oracle needs to determine if the (Euclidean) distance between two particles is under the
mentioned threshold value. We have designed such an oracle using the most relevant circuits
available in the literature, as it is shown in Fig. 1.19. Our oracle (Oµ

ν ) marks µ elements from a
set of size ν .

g(i, j, δ2)

xj
xi

yj
yi

zj
zi

dx

dy

dz

square

square

square

da

𝑑2

δ2

Comp

𝑑2(i, j)

Figure 1.19: Scheme of the final circuit for the 3D-case. dx,dy and dz are computed using [73](no
input carry) (a+b). The squares are computed using [39]. da and d′ are computed using [73]
(no input carry). Finally, the comparison is computed using the circuit of [80].

We have developed three algorithms (three adaptations of Grover’s one) that find such
particles using only O

(√
ν

µ

)
calls to the oracle (a classical algorithm would need Ω

(
ν

µ

)

consults). Similar to the GPU code, these quantum algorithms look for pairs of close particles,
and then update the list of neighbors. The first algorithm is focused on the case in which the
number of neighbors is previously known. Algorithms 2 and 3 consider that this number is
unknown. The difference between the second and the third is that the second one chooses the
number of iterations of Grover’s algorithm in a uniform way, whereas the third one increases the
iterations number, from 1 to 6

5 . These three algorithms can be combined in a meta-algorithm to
achieve the computation of the neighbors as follows:

First step: initialize the pairs of close particles
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At this initial stage, the parameter ν is initialized as N2 (all possible pairs of neighbors in the
whole system), and µ is the number of close pairs to be found. The choice of the algorithms is as
follows:

• If µ is not known, then:
· If µ is believed to be negligible in relation to the total number of pairs, use Algorithm

2 (O(N) oracle calls in the worst case) with an estimated upper bound B≤ 27N of µ .
· Else, use Algorithm 3 with an estimated upper bound B≤ 27N of µ (O(N

√
N) oracle

calls in the average case).
• Else (µ is known), then:

· If µ is negligible in relation to the total number of pairs, use Algorithm 1 (in the
worst scenario, O(N) oracle calls) or Algorithm 2 (O(N logN) oracle calls in the
worst case) with B = µ .
· Else, use Algorithm 1 (O(N

√
N logN) oracle calls in the worst case) or Algorithm 3

with B = µ (O(N
√

N) oracle calls in the average case).

Second step: update the set of particles close to fixed ones

At this stage, the parameter ν is initialized as N, the number of updated particles is α , and
for a fixed particle, µ represents the number of close particles to be found.

The alternatives are the following:

1. If α logα is close to N, then backtrack to the first step.

2. Else, set S =

⌈
log(w

α )
log(w)

⌉
. Then:

(a) If µ is known, then use Algorithm 1 S times for each of the α particles (O(
√

N
√

α logα)
oracle calls in the worst case).

(b) Else, use Algorithm 2 S times for each of the α particles (O(
√

N
√

α logα) oracle
calls in the worst case).

This procedure illustrates how to apply the quantum oracle model of a statistical nature and
the advantages of using superposition, but also the difficulty of information retrieval and the
construction of circuits that process many qbits. In any case, the results obtained have been better
than those expected from the asymptotic analysis, especially in cases where the particle density
is low.

This work has been presented in the 21th International Conference Computational and
Mathematical Methods in Science and Engineering, and is being revised by an international
journal as part of a special issue dedicated to the mentioned conference.

1.4.2 MultiDimensional Scaling

Dimensionality reduction methods are focused on mapping high-dimensional real-world data
into lower-dimensional spaces [6]. The objective is to minimize the size of the data but without
losing the information it keeps. There is a wide amount of dimensionality reduction methods.
Among them, the so-called MultiDimensional Scaling (MDS) methods are very popular [14].
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Algorithm 2 SMACOF (m, s, ∆, kmax, ε , Y )
Require:

m: number of items;
s: dimension of low-dimensional space;
∆: m×m matrix of dissimilarities of observed data on the high-dimensional space (n);
kmax: maximum number of iterations;
ε: threshold for the stress variance

Ensure:
Y : set of finding points in the low-dimensional space stored in a m× s matrix

1: Initial Solution randomly generated, Y 0

2: Compute Euclidean distances, D0 = [d(Y 0
i ,Y

0
j )] . O(m2s)

3: k = 0, error = 1
4: if (k < kmax) and (error > ε) then
5: Compute Guttman transform matrix, Bk ≡ Bk(∆,Dk−1) (see Alg. 3) . O(m2)
6: Compute Guttman transform, Y k = 1/m ·Bk ·Y k−1 . O(m2s)
7: Update distances Dk = [d(Y k

i ,Y
k
j )] . O(m2s)

8: Compute Ek
MDS (Eq. 1.15)

9: error = |Ek
MDS−Ek−1

MDS|
10: k = k+1
11: return Y

MDS techniques try to find a set of points Y1,Y2, . . . ,Ym ≡ Y (m is the number of observations)
in the space Rs, s < n, whose distances between them are as similar as possible to the distances
between the original set of points X1,X2, . . . ,Xm ≡ X in the space Rn, with s < n [6]. To obtain
such points, these methods minimize the stress function:

EMDS = ∑
i< j

(
δi j−d(Yi,Yj)

)2
(1.15)

where δ y d are the distances between original and obtained points, respectively. MDS methods
are often used to evaluate criteria of objects classification, for graphical visualization, to discover
human patterns in psychology, and in a multitude of applications where the correlation between
the features of the data is linear [11].

The algorithm called Scaling by MAjorizing a COmplicated Function (SMACOF) is con-
sidered the most accurate MDS method. However, it is also the most expensive among them,
with a complexity of O(m2) [11]. SMACOF uses the concept of majorization to minimize the
stress function. Majorization consists of approximating a complex function using a simpler one
through an iterative process. Each iteration gets a new function over the original one, touching it
at the supporting point. Each new function is closer of the minimum of the stress function. This
process is shown in Algorithm 2.

The algorithm shows that SMACOF involves large data structures: an input m×m matrix
∆, several m× s matrices to save the output, and three auxiliary m×m matrices to store the
similarities among the objects of the low-dimensional space. The number of floating point
operations of SMACOF is: 3s/2m2+3s/2m for the initialization and (7/2s+3/2)m2+1/2(3s+
1)m for the iterative process. The computational cost of SMACOF is O(sm2). The requirements
in terms of memory are O(m2). These requirements have limited the applicability of SMACOF
with big datasets. There are several MDS techniques that simplifies this process, but at the cost
of reducing the accuracy.
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Algorithm 3 Bk ≡ Bk(∆,Dk−1) (Eq. 8.24 of [6] to compute Guttman transform)
Require:

m: number of items;
∆: [δi j], m×m matrix of dissimilarities based on observed data;
D: [di j], Euclidean distances matrix

Ensure:
B: [bi j], Guttman transform matrix

1: for i = 0; i < m; i++ do
2: for j = i+1; j < m; j++ do
3: if di j 6= 0 then
4: bi j =−δi j/di j
5: else
6: bi j = 0
7: for i = 0; i < m; i++ do
8: bii =−∑m

j=1, j 6=i bi j

9: return B

Parallel Implementations and energy efficiency of SMACOF

We have developed two parallel implementations of SMACOF -multicore and CPU- (extensive
description of our both implementations are in [47]). The two implementations focus on the
computation of the Euclidean distances, and in the computation of the Guttman transform (Alg.
3). Matrices Bk,Dk and δ are symmetric matrices, so only L = (m(m+1)/2) elements needs to
be computed. In such cases, we work with unidimensional vectors of L elements to get a better
distribution among the processing units.

The multicore version has been implemented in C and OpenMP. The Intel MKL library has
also been used [75]. The L elements of the matrices have been distributed among the cores,
synchronizing certain parts of Bk since in this cases the non-diagonal elements must be computed
using the rest of the values. The MKL library is used to compute the matrix-matrix product
related to the Guttman transform. The GPU version has been implemented in C and CUDA.
Three kernels has been defined, one for the computation of the Euclidean distances, and two for
the Guttman transform: one for the non-diagonal elements, and a second one to compute the
diagonal ones. cuBLAS library and shuffle instructions have been used to accelerate certain parts
of such computations [8, 42].

A heuristic for selecting the optimal version and configuration of SMACOF for any specific
situation has also been designed and implemented in Python. The heuristic is focused on
the optimization of the energy efficiency (EE), which can be described as the ratio of the
computational speed and the power. It can be expressed as:

EE(rk) =
F

T k(rk)Pk(rk)
=

F

(T k(1)
rk

+TCk(rk))(Pk
idle + rk pk(rk))

(1.16)

Here, F is the number of floating point operations on one platform k, T k(rk) and Pk(rk) are the
runtime and power consumption on rk machines respectively, TCk(rk) represents the runtime
penalties due to the contention among the actives machines on the k platform, Pk

idle represents

50 Quantum Computing and HPC Techniques for Solving Microrheology and
Dimensionality Reduction Problems



Algorithm 4 Heuristic for computing the set of optimal platforms {ko}, with their configurations
{ro

ko
}, which optimize the EE of SMACOF.

Require:
F = {F k} f

k=1 with F k = {Mk
i }

ck
i=1; . Set of platforms

Parallel versions of SMACOF(m, s, ∆, kmax, ε , Y ) to execute on the f available platforms;
m (items), s (output dimensions); . Particular data size
sampling.

Ensure:
{ko,ro

ko
} optimize the EE on the f available platforms

1: Evaluate the number of FLOAT operations of SMACOF(m, s, ∆, kmax, ε , Y )
2: for k← 1 to f do
3: Execute Parallel SMACOF(m, s, ∆, kmax, ε , Y ) on rk = ck machines and evaluate its EE denoted by E E k

4: for i← ck− sampling to sampling do
5: Execute Parallel SMACOF(m, s, ∆, kmax, ε , Y ) on rk = i machines and evaluate E E Aux

6: if E E Aux ≤ E E k then
7: rko = i+ sampling
8: Break i-loop
9: else

10: E E k = E E Aux

11: Select the platforms {ko} with their optimal configurations {ro
ko
} which maximize EE

12: return {ko,ro
ko
}

the idle power consumption when no process is actively using any machine and pk(rk) is the
contribution to the power of every machine.

The heuristic was tested with different sizes of the problem (values are shown in Table 1.6)
in three different clusters:

F1 : Bullion S8: 4 Intel Xeon E7 8860v3 (16 × 4 CPU-cores);
F2 : Bullx R421-E4 Intel Xeon E5 2620v2 (12 CPU-cores and 64 GB RAM);
F3 : NVIDIA K80 (composed by two Kepler GK210 GPUs) connected to the host Bullx

R421-E4 Intel Xeon E5 2620v2.

Table 1.6 details the test problems used for the evaluation of SMACOF. The runtime, power, and
EE of the set of test problems on the first two platforms F1 and F2 are shown in Fig. 1.4.2. We
also show these values for F3 in Table 1.7.

Table 1.6: Test problems using several number of items (m), dimensions of multi-dimensional
space (n), and dimensions of low-dimensional space (s). The number of iterations of SMACOF
used in such tests is 100.

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11
m 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
n 100 200 300 400 500 600 700 800 900 1000 1100
s 2 3 4 5 6 7 8 9 10 11 12

As an example, Table 1.8 shows the result of applying Alg. 4 on the two first platforms for
the biggest size (T 11) to automatically select the optimal parallel platform and their best resource
configuration. Although the GPU version is faster than the multicore one -as it is described in
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Figure 1.20: Runtime, power, and energy efficiency of the set of test problems on F1 and F2
platforms.

our paper [47]-, the multicore version has better EE (each version on the corresponding clusters).
Therefore, it can be concluded that in these cases there is no better option, and the selection of
the version and cluster depends on the priorities of the users.

1.4.3 Image Processing based on SMACOF and quantum computing

HyperSpectral Images (HSIs) are a special kind of images that contain extended information
about the characteristic of the materials across the electromagnetic spectrum [5]. In such images,
each pixel can be described as a vector that contains the luminosity of the reflectance value for

Table 1.7: Runtime, power and energy efficiency of the set of test problems (Table 1.6) on F3
(GPU) platform.

F3 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11
Time (s) 2.8 4.9 5.1 5.9 6.5 11.0 18.8 28.7 42.3 64.9 91.5
Power (Watts) 38.7 98.6 105.2 108.0 112.6 113.6 112.8 110.1 112.3 111.5 110.3
EE (GFLOPs/Watt) 13.8 24.7 75.1 150.0 255.1 257.2 240.7 241.7 228.7 205.9 196.6
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Table 1.8: Sampling of EE for T 11 test according to the benchmarking proposed in Alg. 4 for
multicore platforms F1 and F2.

F1
r1 64 61
EE (GFLOPs/Watt) 85.5 85.0

F2
r2 12 9
EE (GFLOPs/Watt) 176.1 155.8

each spectral band. These bands do not cover only the visible spectrum but also the infrared. The
width of a band depends on the sensor, but is usually between 5 and 10 nm. Since each material
has its own reflectance profile, every pixel of the image contains a huge amount of information.

The big amount of information that this kind of images contains is its main advantage.
However, it is also challenging due to the high computational requirements [60]. To be able to
exploit all this information in an efficient way, pixels are usually labelled into classes according
to their spectral values. Moreover, HSIs can be compressed into a low-dimensional images [19].
The previous subsection describes how MDS methods can be used to reduce dimensionality.
However, this kind of images contains relations between their data that can not be linearly
obtained, so such methods are not valid to maintain the information of HSIs.

There is another well-known dimensionality reduction technique called ISOmetric MAPping
(ISOMAP) that generalizes MDS to a non-linear context, replacing Euclidean distances with
geodesic ones (Fig. 1.21) [2]. ISOMAP consists of 3 steps:

• A number l of neighbors is set. Then, the algorithm looks for the l nearest points for every
point Xi, building a graph G. This can be done, for example, using the K-Nearest Neighbor
(KNN) algorithm [82].
• The shortest path between each pair of points in G is computed, that is, d(Xi,X j) =

min{dG(Xi,X j),dG(Xi,Xn)+ dG(Xn,X j)}, for each pair of point Xi and X j. This can be
done using Dijkstra’s algorithms [24].
• An MDS method is used at this point for dimensionality reduction.

A

B

Figure 1.21: Line red represents the geodesic distance between A and B. In this structure, the
distance between points depends of its form, being Euclidean distances (blue line) invalid to give
valuable information about the real distance.
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ISOMAP often employs eigen-decomposition [78] as the MDS method in the third step
since this method (eigen-decomposition) has low computational costs. We have experimentally
proven that the use of SMACOF improves the accuracy of ISOMAP in the analysis of HSIs
as we present in our paper [50]. Table 1.9 shows the improvement (in terms of accuracy) of
using ISOMAP with SMACOF instead of classical MDS (labelled as Eigen-decomposition in
the table) in three different HSIs and setting the final dimension (s) in a range from 50 to 10.
Moreover, obtained results showed that this version of ISOMAP improves the accuracy of other
popular methods like Support Vector Machine, KNN, and Random Forest, used as classificators.
It is necessary to deal with higher requirements, but the version of SMACOF exposed in the
previous subsection (Subsection 1.4.2) has helped with such requirements.

SMACOF EIGEN-DECOMPOSITION

IMAGE s
k′ 1 3 5 1 3 5

Indian Pines

50 0.8112 0.7958 0.7943 0.7250 0.6956 0.6881
40 0.8046 0.7987 0.7912 0.7200 0.6965 0.6884
30 0.8068 0.7849 0.7814 0.7150 0.6933 0.6893
20 0.8179 0.8069 0.7845 0.7150 0.6916 0.6879
10 0.8090 0.7915 0.7877 0.7050 0.6896 0.6880

Salinas-A

50 0.9946 0.9931 0.9890 0.9899 0.9714 0.9658
40 0.9952 0.9913 0.9925 0.9896 0.9733 0.9654
30 0.9950 0.9935 0.9904 0.9898 0.9765 0.9645
20 0.9952 0.9917 0.9914 0.9892 0.9743 0.9699
10 0.9963 0.9890 0.9924 0.9890 0.9765 0.9687

Pavia

50 0.9917 0.9503 0.9488 0.9729 0.9365 0.9211
40 0.9929 0.9407 0.9463 0.9720 0.9320 0.9232
30 0.9940 0.9597 0.9525 0.9729 0.9365 0.9235
20 0.9937 0.9598 0.9526 0.9735 0.9312 0.9245
10 0.9934 0.9615 0.9576 0.9715 0.9348 0.9234

Table 1.9: Classification results of three wide known test HSI images (Indian Pines, Salinas-A
and Pavia) using KNN for k′ = 1,3 and 5, and varying the final dimensions in a range from 50 to
10. For a detailed description, please consult our paper [49].

On the other hand, we have also applied quantum computing to certain parts of the reduction
of the HSIs. For instance, the problem described in the second step of ISOMAP is similar to the
one we are dealing with in microrheology. However, the lack of optimized circuits to perform
operations not only on hyperspectral images, but also on the most basic images [33], keeps us
working only on this topic at a theoretical level. In order to be able to perform the operations
we need, we have started to design some quantum circuits that allow us to test our models at
the level of current quantum computers and simulators. One of these operations, which in fact
is the first one we have been able to complete successfully, is to perform image binarization.
Therefore, not only HSI classification is studied in image processing but also image binarization
using quantum computing (Fig. 1.22). Binarization consists of transforming a color image into a
black and white one. In a little more detail, what it does is to compare each pixel of the image
with a threshold value, setting the pixel to black or white according to the result obtained in this
comparison.
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Figure 1.22: HSI classification and image binarization are studied as part of this thesis using
both classical and quantum techniques.

The designed circuit employs the NEQR representation (Novel Enhanced Quantum Repre-
sentation) to work with images. NEQR representation defines a pixel as follows [83]:

|CY X〉=
1
2n

2n−1

∑
Y=0

2n−1

∑
X=0

∣∣∣Cq−1
Y X Cq−2

Y X ...C1
Y XC0

Y X

〉
⊗|Y X〉 (1.17)

where
∣∣∣Cq−1

Y X Cq−2
Y X ...C1

Y XC0
Y X

〉
codifies the value of the pixel (X,Y), n is related to the size of the

image, and q defines the color range. The design of the circuit is based on a circuit available in the
literature [80]. The original circuit is shown in Fig. 1.23. It consists of two distinct parts: a first
part that performs the comparison between each pixel and a threshold value set in advance, and a
second circuit that will set the pixel as white or black depending on the result of the comparison.
It compares the pixel to that threshold value and returns 0 if it is less, or 1 if it is greater or equal.
This original circuit uses a comparator that, although it was the most optimized in cost and noise
tolerance, was still not feasible for implementation in today’s quantum computers, or even in a
simulator without having to resort to the power of a cluster (and even then it is only suitable for
the smallest prototypes).

To improve the original circuit, we designed two new comparators and published them in [49].
Both have a common goal: to be fault tolerant but involving the lowest possible cost. However,
the second one also tries to maximize speed, being a prototype that although it is not so useful
today (in a context where gaining speed at the cost of increasing size and cost is not feasible), we
are confident that it will be useful in the future when quantum technology advances. To achieve
the goal of reducing the cost, we resort to a novel gate called temporary logical-AND. This gate
allows us to perform a proprietary implementation of the most optimized addition algorithms
for computer architecture, considerably reducing the aforementioned cost. Starting from the
idea that a semi-comparator is enough and a full comparator is not necessary, the comparison is
performed as a subtraction A−B , knowing that if the result is negative it will imply that A is
greater, and that otherwise A is less or equal. This subtraction, similar to a classical computer, is
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Figure 1.23: Circuit for image binarization proposed in [80].

performed in the form A−B. The output of this circuit can be connected directly to the second
part of the original circuit, reducing the cost of the original circuit by almost three times. Table
1.10 shows a comparison in terms of T-count, T-depth and ancilla qubit of our proposals versus
other state-of-the-art implementations. Our proposed comparators improve the existing ones in
terms of T-count and T-depth. Our first comparator greatly improves the T-count compared to
existing circuits, while the latter is the only existing log-order comparator in the literature.

Circuit Comparator T-count T-depth Ancilla qubit
Xia et al. (2018) [79] 14n 6n 2
Xia et al. (2019) [80] 14n−7 6n−3 2
Li et al. (2020) [29] 14n−7 6n−3 1

Proposed comparator 4n 2n n
Proposed comparator 12n−8W (n)−4Log(n) Log(n) 4n−2W (n)−2log(n)

Table 1.10: Analysis of comparators in terms of T gates and ancilla qubits for a number of n
binary digits. W (n) represents the number of ones in the general expansion.

Thanks to the use of such comparators, binarization requires fewer resources. Fewer quantum
gates means not only lower cost, but also lower probability of error. On the other hand, their
higher speed also has a positive influence on error reduction, since we know that qubits lose their
value over time. Thus, the proposed comparators contribute to binarization (and in general, to
any application that requires such an operation) by greatly reducing the cost, improving speed,
and offering good fault tolerance.
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2. Contributions to scientific journals

According to the regulations of the International Doctoral School of the University of Almería
(EIDUAL), at least three publications are required to write a thesis by compendium modality. Of
these three publications, two of them must be included in category A of the evaluation scale of
research results contained in the University of Almería’s Research and Transfer Plan approved in
the corresponding year. A third contribution, different from the previous ones and necessarily
in a journal, must be included in category B. In the case of the PhD in Computer Science, the
responsible committee establishes as category A the journals with JCR included in the first two
quartiles, and category B the journals included in the Q3 quartile.

This thesis is made up of 9 publications, of which 8 would fall within the aforementioned
category A, and 1 of them in category B. Their classification according to the Journal Citation
Reports (JCR) is as follow:

• Q1 papers: 5
• Q2 papers: 3
• Q3 papers: 1

Following the aforementioned regulations, this chapter presents the articles included in the
thesis. In addition to the papers already published, there is a paper produced as a result of the
advances achieved in this thesis that is currently in process of being reviewed. This paper is
important because it is a link between the HPC techniques used so far to solve the microrheology
problems studied in the thesis and the quantum computing techniques also developed during the
thesis. That is why, although it is not yet published, I wanted to include it in this chapter.

The articles are presented following the structure developed in chapter 1. Thus, subsection
2.1 presents the progress made in the search for new tools that allow the advancement of quantum
computing in the fields addressed in the thesis. The first of the articles included in this subsection
is a converter of binary numbers in sign-magnitude to two’s complement, which will allow
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the use of this notation and its benefits (such as being able to perform subtractions faster) in
quantum computers and simulators. The converter is focused on increasing the speed of the
operation, being still at the time of writing the fastest existing converter. A second paper follows
this one and proposes up to three new converters, but this time focused on reducing their cost
and minimizing noise effects, being again the most suitable for such purposes. Also included is
a paper that performs a review of currently available adders for quantum environments. As it
has been mentioned in the previous chapter, addition is one of the most important operations in
quantum computing, so a review about this kind of circuits it was necessary.

Section 2.2 details the advances made in microrheology using HPC and quantum computing.
This includes a paper presenting a simulation of active microrheology in hard colloids. The
second paper, which continues the study initiated by the first one, studies the dynamics of a large
tracer pulled with a small force in a bath of quasihard colloidal spheres using Langevin dynamics
simulations. The third article details the genetic algorithm used to perform the scheduling of
the thousands of tasks that had to be computed to arrive at the results of the two previously
mentioned articles. Finally, the fourth article -the one that is submitted but not yet published-
uses quantum computing to perform (and accelerate) the computation of neighboring particles in
the studied systems.

The third section (2.3) shows our work related to the dimensionality reduction and digital
image processing. Our article proposes two optimized versions -with CUDA and OpenMP,
respectively- of SMACOF, a method of high computational cost that allows to reduce the
dimensionality of a large amount of data. Moreover, a heuristic for selecting the optimal version
and configuration of SMACOF for any specific situation that optimizes the energy efficiency is
also presented.

Finally, the fourth section (2.4) shows our advances in Image Processing. Our first article
shows, precisely, the use of SMACOF within a larger method called ISOMAP. ISOMAP is
then used to reduce hyperspectral images, improving previous results with respect to other
methods used in the literature. ISOMAP is also focused on dimensionality reduction, but unlike
SMACOF it allows to detect and maintain nonlinear relationships hidden in a datasets, so that
all information is maintained after the reduction of such datasets. The second paper shows
our advances in quantum computing and digital image processing with the exposition of a
fully functional algorithm for image binarization, a fundamental operation to undertake more
important tasks in quantum computing.

The articles, although interrelated, have been independently published in their respective
journals. That is why each has its own bibliography, which is also in the format of each journal.
Therefore, the bibliography of each publication should be consulted in the article itself, and not
in the bibliography section of this thesis, which only includes the bibliography presented in the
other sections of the document.

Finally, it should be clarified that as a direct or indirect consequence of this thesis, other
works such as contributions to congresses or articles in non-indexed journals have been published.
Since in this section only the merits leading to the thesis by compendium are presented, these
contributions are shown, in a summarized form, in a later chapter.
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2.1 Quantum computing tools

As it has been mentioned, this section contains the following papers:

F. Orts, G. Ortega and E.M. Garzón. An optimized quantum circuit for converting from
sign-magnitude to two’s complement. Quantum Information Processing, 18(332), 1-14, 2019.
JCR (2019) = 2.433. Subject categories = Physics, Mathematical: 7/55 (Q1); Physics, Multidis-
ciplinary: 34/85 (Q2); Quantum Science & Technology: 9/17 (Q2).

F. Orts, G. Ortega and E.M. Garzón. Efficient reversible quantum design of sign-magnitude
to two’s complement converters. Quantum Information and Computation, 20(9 & 10), 747-765,
2020. JCR (2020) = 0.976. Subject categories = Computer Science, Theory & Methods: 82/110
(Q3); Physics, Mathematical: 42/55 (Q4); Quantum Science & Technology: 15/17 (Q4); Physics,
Particles & Fields: 26/29 (Q4).

F. Orts, G. Ortega, E.F. Combarro and E.M. Garzón. A review on reversible quantum adders.
Journal of Network and Computer Applications, 170(102810), 1-16, 2020. JCR (2020) = 6.281.
Subject categories = Computer Science, Hardware & Architecture: 5/53 (Q1); Computer Science,
Interdisciplinary Applications: 14/112 (Q1); Computer Science, Software Engineering: 6/108
(Q1).
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2.1.1 An optimized quantum circuit for converting from sign-magnitude to two’s com-
plement

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Title An optimized quantum circuit for converting from sign–magnitude 
to two’s complement 

Authors F. Orts, G. Ortega, E.M. Garzón 
Journal Quantum Information Processing 
Year 2019 
Volume 18(332) 
Pages 1-14 
DOI https://doi.org/10.1007/s11128-019-2447-7 
IF (JCR 2019) 2.433 
Categories Physics, Mathematical: 7/55 (Q1) 
 Physics, Multidisciplinary: 

Quantum Science & Technology 
34/85  
9/17 

(Q2) 
(Q3) 

 

Contribution of the Ph.D. candidate

The Ph.D. candidate, F. Orts, is the first author and main contributor to this paper.

60 Quantum Computing and HPC Techniques for Solving Microrheology and
Dimensionality Reduction Problems



Quantum Information Processing (2019) 18:332
https://doi.org/10.1007/s11128-019-2447-7

An optimized quantum circuit for converting from
sign–magnitude to two’s complement

F. Orts1 · G. Ortega2 · E. M. Garzón1

Received: 10 November 2018 / Accepted: 5 September 2019 / Published online: 11 September 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Nowadays, one of the critical issues to implement quantum algorithms is the required
number of elementary gates, qubits and delay. Current quantum computers and simu-
lators are mainly prototypes, and there is a lack of computational resources. Therefore,
it is necessary to optimize the quantum operations to reduce the necessary number of
gates and qubits. This work presents a novel reversible circuit which is able to convert
signed binary numbers to two’s complement of N digits in a quantumenvironment. The
depth of the circuit is O(log N ). It is based on the fastest out-of-place carry look-ahead
addition quantum circuit currently available. This addition circuit has been adapted
to make the conversion using the minimum number of gates and qubits, being faster
than other adder circuits. A robust metric has been used to measure the quantum cost,
delay, ancilla inputs and garbage outputs of the proposed converter. Moreover, it has
been compared with others described in the literature.

Keywords Quantum computation · Quantum circuit · Reversible circuit · Two’s
complement · Sign–magnitude representation to two’s complement converter

1 Introduction

Quantum computers are based on reversible gates as they must satisfy the principles
of quantum mechanics, for example, the reversibility [26]. There is a wide variety
of the literature about building circuits in quantum computers using reversible gates,
especially circuits related to arithmetic operations. For instance, there is a special
interest in getting faster arithmetic reversible gates to be used as a module in Shor’s
algorithm. There are optimized gates to compute addition [6,36], subtraction [25,28,
35], multiplication [4,8] and division [11,27].

B F. Orts
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1 Informatics Department, University of Almería, ceiA3, Almería, Spain

2 Computer Architecture Department, Campus Teatinos, University of Málaga, Málaga, Spain
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However, the optimization of arithmetic gates is not the only way to improve these
circuits. Sometimes, it can be done with new high-level approaches, like using differ-
ent formats to represent the information. For example, the two’s complement is the
way how classic computers represent integers to simplify the hardware for additions
and subtractions [1]. In terms of quantum computers, adder circuits are faster than
subtractor ones [35,36]. Focusing our attention on the two’s complement, subtractions
can be computed as additions.

In this work, a circuit to convert from signed binary numbers to two’s complement
is presented. The design of a two’s complement quantum converter can be based on
quantumgates or quantumadders that compute a+1.Our proposal is based on themost
optimized state-of-the-art adder circuits for quantum computers since they improve
the converter circuits based on quantum gates in terms of delay. The conversion from
a signed binary number, a, to two’s complement can be computed as a + 1 [13]. It
can be done negating each digit of a and using an adder to compute a + 1. The best
quantum adders in terms of cost and depth are proposed in [6,36]. They are considered
as the start point to design a specific adder to compute a + 1.

The rest of the work is presented as follows: Sect. 2 details popular metrics to
evaluate a quantum circuit. Section 3 describes the state-of-the-art converter circuits.
Section 4 presents the proposed circuit, and Sect. 5 compares the proposed circuit with
respect to the state-of-the-art converter circuits described in Sect. 3. Finally, Sect. 6
summarizes the conclusions.

2 Measures in a quantum circuit

The metric described in [22] has been adopted in this work. This metric defines four
important factors to measure a circuit in terms of efficiency:

– Number of ancilla inputs: constant inputs used to perform auxiliary operations.
– Garbage outputs: outputs which cannot be used at the end of the circuit since it
is impossible to know their values. Unless these garbage outputs were reversibly
removed (uncomputed), such outputs (qubits) may not be used later, which would
result in a waste of resources. So, if they were entangled with inputs of other
circuits, they would produce uncertain results [26].

– Delay: the logical depth of the circuit. It is an important parameter which is related
to the efficiency of the circuit [35]. In [22], � is defined as the delay unit.

– Quantum cost: number of gates.

It is necessary to underline that not all gates have a similar size. For instance, it is
unfair to consider the Pauli-X gate [41] and the Toffoli gate [38] are similar in terms
of quantum cost or delay, as the Toffoli gate involves 5 2× 2 gates (two controlled-V
gates, one controlled-V+ gate [9] and two controlled-NOT (CNOT) gates) [26] and
Pauli-X gate is one 1 × 1 gate. So, [22] sets the delay according to the size of the
gates. This metric has also been considered in this work. Authors in [22] set the delay
of 1 × 1 and 2 × 2 gates to 1�, and the delay of an N × N gate is calculated as its
depth when it is built using 1 × 1 and 2 × 2 gates. Moreover, the quantum cost of a
circuit depends on its number of gates with delay 1�. For instance, as Toffoli gate has

123



Optimized quantum converter circuit for two’s complement Page 3 of 14 332

Fig. 1 Symbol of the Pauli-X
gate A Ā

Fig. 2 Symbol of the CNOT gate

B A    B

A A

Fig. 3 Symbol of the Toffoli gate

C AB    C

B B
A A

Fig. 4 Symbol of the Peres gate

B A    B

A A

C AB    C

5 2 × 2 gates, it has a quantum cost of 5 and a delay of 5� (as no operations can be
done simultaneously).

It is relevant to underline that different physical realizations have been explored to
develop quantum circuits. At those levels of abstraction, the evaluation metrics can
also focus on other parameters. For instance, in linear optics, there is a special interest
in optimizing the number of controlled-unitary gates since the CNOT gate can only
be probabilistically implemented. There are several works focused on optimizing the
number of needed CNOT gates to implement the Toffoli gate as it is one of the most
used. In [14], authors introduced a new implementation of the Toffoli gate using only
two CNOT gates and one generalized controlled-phase gate. Another version of the
Toffoli gate was presented in [15], with an optimized controlled-phase gate. This last
version has only three two-qubit gates. It is the best option in terms of the number of
two-qubit gates.

For the sake of clarity, the symbols of the used gates are shown in Figs. 1, 2, 3
and 4. According to [22], the Pauli-X and the CNOT gates have a quantum cost of 1
and a delay of 1�. As it was mentioned in the previous paragraph, according to [22],
the Toffoli gate has a quantum cost of 5 (three two-qubit gates according to [15]) and
a delay of 5�. The Peres gate is built with two controlled-V+ gates, a controlled-V
gate and a CNOT gate. Therefore, it has a quantum cost of 4 and a delay of 4�.

3 Methodology to design two’s complement converters

The two’s complement of an N -digit number is its complement with respect to 2N .
The range of numbers in a two’s complement system is −(2N−1) ≤ a ≤ (2N−1 − 1)
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Table 1 Signed and Two’s
complement representation of
binary numbers with N = 4

Signed binary number Two’s complement

0111 7

0110 6

0101 5

0100 4

0011 3

0010 2

0001 1

0000 0

1111 −1

1110 −2

1101 −3

1100 −4

1011 −5

1010 −6

1001 −7

1000 −8

[13]. For instance, Table 1 shows the conversion of a number a from signed binary
to two’s complement when N = 4. Converting a number a from signed binary to
two’s complement is as follows. If a >= 0, no conversion is necessary because both
representations, signed binary and two’s complement, of a are equal. However, if
a < 0, the conversion is necessary. It can be calculated as the inversion of all the digits
of a and then to compute a + 1.

There are two approaches to convert signed binary numbers to two’s complement
of N digits in a quantum environment. One of them consists of designing a specific
circuit for such purpose, and the another one is considering available addition circuits
for the conversion.

There are several proposals in the literature which follow the approach based on
designing a specific circuit. In [30], authors mathematically propose a new gate, called
SSMT gate, to compute the conversion of a 4-digit number. In [2], a quantum gate
called TCG is proposed. In a similarway than the previous SSMT gate, it performs the
conversion of a 4-digit number (N = 4). The TCG gate is also used (and optimized)
in [3], and it achieves the best quantum cost (25) for the case N = 4. However, it is not
possible to join several TCG gates to compute the two’s complement of any number
with more than four digits. The reason is that the TCG gate does not handle either
input or output carries. Besides, it only computes the truth table for the 4-digit case.

Other approaches in the literature are based on using existing addition circuits. This
strategy is more widely used because this kind of circuits is more efficient in terms of
delay than the specific converter circuits. As it has been mentioned, the conversion can
be computed as the inversion of all the digits of a and then a+1, so it is only necessary
to invert each digit of awith N Pauli-X gates and then to use an existing addition circuit
to compute a + 1. There are several papers about quantum addition circuits of two
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integers [5,6,19,31–33], which is one of the most important basic operations. The two
most efficient addition circuits are [6,36], with a delay of O(log N ).

The circuit proposed in this work is based on the circuit presented in [36]. However,
instead of using this circuit in a direct way to compute a + 1, it has been adapted and
improved to compute the conversion from signed numbers to two’s complement. The
details of the proposed circuit are presented in the next section.

4 Proposed two’s complement converter

As it has been mentioned in the previous section, the proposal circuit is an adaptation
of a reversible out-of-place carry look-ahead adder presented in [36]. The objective
is to perform a + 1 (assuming that a is a negative number in signed binary format).
The mentioned adder performs the operation between two numbers, so if we consider
a and b = 1, it is only necessary to apply a Pauli-X gate to each digit of a at the
beginning and the conversion could be done. However, taking into account that b is
always 1, several improvements can be done in order to reduce the original circuit.

The converter improves the delay performing gi and pi in parallel when possible
(being gi = aibi and pi = ai + bi , according to the notation given by [17]) and
removing or simplifying the operations related to b, since b = 1. It uses N ancilla
qubits (Zgi ) to allocate the sum Si+1. It also needs extra ancilla qubits (Zpi ) to store
propagated carry values, which are restored to 0 at the end of the circuit to avoid
garbage outputs. Since b = 1, the qubits used to represent b in [36] are deleted except
the least significant one.

The first change to apply with respect to [36] is to include several Pauli-X gates to
transform a into a. The second change consists of removing the first Toffoli gate (quan-
tum cost 5 according to [26], three two-qubit gates according to [15]) and replacing
it with a CNOT gate (quantum cost 1). This can be done as the Toffoli gate computes
a0b0 ⊕ Zg0, which is always a0 ⊕ Zg0 if b0 = 1. Thirdly, the (N − 1) Peres gates
(quantum cost 5) can be removed from the circuit. The i-Peres gate computes ai ⊕ bi
in its second qubit, which is always ai if bi = 0. Also, the i-Peres gate computes
aibi ⊕ Zgi in its third qubit, which is always Zgi if bi = 0. The Peres gates have a
quantum cost of 5, so this step reduces the quantum cost in 5 for each removed gate,
that is, 5(N − 1). Moreover, [36] applies Toffoli gates at locations Zgi , bi and Zgi+1
for i = 2 to N/2. All these Toffoli gates except the first one can be removed since, for
the case b = 1, Zgi = 0 when i > 2. This reduces the quantum cost in (N/2− 1)× 5
and the delay in 5�. (The remaining gates can be computed in parallel.)

As above mentioned, the inputs of b can be removed except the first one, since
the other values are always 0. The b0 digit can be converted into an ancilla input of
value 0 inverted with a Pauli gate at the same time that the digits of a. By this way,
the number of qubits is reduced by N − 1. All the CNOT gates applied at the end to
restore the qubits of b can be deleted (except the one which acts over the new ancilla
qubit), so a reduction in N −1 CNOT gates is applied. However, as the ai -inputs have
been inverted, a new inversion is required at the end of the circuit to evade garbage
outputs. This adds 1� to the global delay, but this operation would be also necessary
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for the original circuit if it worked with two’s complement. The remaining gates on
which bi acts as a control qubit are modified so that the new control qubit was ai .

This way, the idea is to design a reversible look-ahead adder to compute the partic-
ular addition ā+1. The recurrence relation of a general look-ahead adder to accelerate
the computation of the carries is well-known [17]. It can be simplified for our particular
adder, and the addition can be computed as follows:

S0 = a0 ⊕ 1
S1 = a1 ⊕ a0
· · ·
Sn = aN ⊕ a0 a1 . . . aN−1

(1)

where the term Ci = a0 a1 . . . ai−1 represents the carry to compute Si = ai ⊕ Ci .
The proposed circuit to compute a+ 1 for an example of N = 8 is shown in Fig. 5.

The design of such circuit can be explained with the following eight steps.

– Step 1: The first step is to transform a into a and also to specify b. The input b
is supplied by an auxiliary qubit (b0 = 1), instead of the N qubits of [36]. These
operations can be done using Pauli-X gates and deleting the N − 1 qubits of b. It
consists of nine Pauli-X gates (quantum cost 1× 9 = 9), and it has a delay of 1�.

– Step 2: It is the start point since its output is α0 = a0 which is involved in the
generation of all the carry look-ahead formation process. It consists of one CNOT
gate (quantum cost 1), and it has a delay of 1�.

– Step 3: The outputs of this step are α1 = a0 a1, α2 = a2 a3, α3 = a4 a5 and
α4 = a6 a7. This way, the carry C1 is computed and also the intermediate AND
operations to compute the following carries. This stage consists of f our Toffoli
gates (quantum cost 5 × 4 = 20 according to [26], two-qubit gates 3 × 4 = 12
gates according to [15]), and it has a delay of 5�. (All the gates of this step can
be computed in parallel.)

– Step 4: This stage only computes two outputs, β1 = a0 a1 a2 a3 and β2 =
a4 a5 a6 a7. Therefore, C4 = β1 is ready to compute S4. It consists of two Toffoli
gates (quantum cost 5 × 2 = 10 according to [26], two-qubit gates 3 × 2 = 6
according to [15]) with a delay of 5�. (The two gates can be computed in parallel.)

– Step 5: This step computes δ1 = a0 a1 . . . a7 and δ2 = a0 a1 . . . a5. Thus, C6 and
Cout are computed. This step involves two Toffoli gates (quantum cost 5×2 = 10
according to [26], two-qubit gates 3× 2 = 6 according to [15]), and it has a delay
of 10�.

– Step 6: In this step, θ1 = a0 a1 a2, θ2 = a0 a1 . . . a4 and θ3 = a0 a1 . . . a6
are computed. Hence, C3 = θ1, C5 = θ2 and C7 = θ3 are ready to compute the
corresponding sums.Moreover, R0 = 0 is the result of uncomputing β2, avoiding a
garbage output. This step consists of f our Toffoli gates (quantum cost 5×4 = 20
according to [26], two-qubit gates 3 × 4 = 12 according to [15]) and a delay of
5�. (All the gates of this step can be computed in parallel.)

– Step 7: R1 = 0, R2 = 0 and R3 = 0 are the results of uncomputing α2, α3 and
α4, respectively. Consequently, all the auxiliary inputs have been uncomputed. It
consists of three Toffoli gates (quantum cost 5 × 3 = 15 according to [26], two-
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Fig. 5 Design of the converter for a 8-digit number. ai are the qubits of the input number; Zg(i) will
contain Si+1 (the result) at the end, and Zp(i) are auxiliary qubits used to store propagated carry value for
intermediate digits (they are uncomputed at the end)

qubit gates 3 × 3 = 9 according to [15]) and a delay of 5�. (The three Toffoli
gates can be computed in parallel.)

– Step 8: In this stage, the sums can be calculated since the carries Ci have been
computed. So, the output sum is complete at this step. This step consists of eight
CNOT gates (quantum cost 1 × 8 = 8) and a delay of 1�. (All the CNOT gates
can be computed in parallel.)

– Step 9: The qubits of a are restored to their input values to avoid garbage outputs.
It consists of eight Pauli-X gates (quantum cost 1 × 8 = 8) and a delay of 1�.
(All the Pauli-X gates can be computed in parallel.)

Therefore, the quantumcost of the converter for N = 8 is 101 (54 controlled-unitary
gates if the Toffoli gate of [15] is used) and the delay is 34�. An analogous design
can be carried out for a generic N value with a quantum cost of 21N − 15w(N ) −
15log(N − 4) (w(N ) represents the number of ones in the binary expansion of N )
and a delay of logN + logN/3 + 1.
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Fig. 6 First carry look-ahead quantum adder design proposed in [29]. ai and bi are the input numbers, c0
is the carry input, Si are the qubits of the result, Cout is the carry output, and gi are the garbage outputs
with an unknown output

5 Results and discussion

In this section, the state-of-the-art circuits are analyzed in order to justify the selection
of [36] as the start point to design the converter. This analysis is based on the widely
used methodology introduced in [22]. Finally, the obtained results by the proposed
converter are compared with the results of the most efficient state-of-the-art circuits.

5.1 Revision of modern quantum adders

After papers [6,36] were published, other adders have been proposed, but none of them
has improved them in terms of delay and cost. A reversible 16 digit carry look-ahead
adder is proposed in [40]. It consists of 72 CNOT gates and 96 Toffoli gates with a total
quantum cost of 552. Several works propose new designs of ripple-carry adder circuits
[20,23,39], but the delay of this kind of adders is longer than the carry look-ahead adder
circuits [10]. A quantum adder based on genetic algorithms is proposed in [16], which
is not comparable since it uses an alternative methodology. The proposal introduced
in [34] does not achieve improvements in the terms studied in Sect. 2, but it gives
valuable information about fault tolerant techniques in adder circuits. On the other
hand, there are several works in which additions and subtractions are computed using
the same circuit [7,12,21,24,37]. Although they are able to compute both operations,
they are less competitive than [6,36] in terms of delay and quantum cost, due to the
extra cost of performing both operations, as it is shown in Table 7 of [24].
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Fig. 7 Second carry look-ahead quantum adder design proposed in [29]. ai and bi are the input numbers,
c0 is the carry input, Si are the qubits of the result, Cout is the carry output, and gi the garbage outputs with
an unknown output

In [29], a new adder circuit which optimizes the number of gates and depth is
presented (see Fig. 6). It is built using Peres and CNOT gates, with a quantum cost
of 2 × N × 4 + (N × 1), which is better than the circuit we present even including
the extra cost of 2 × N necessary to the inversion and restoration of the a inputs.
However, in the proposal of [29], the garbage outputs have not been uncomputed (g
outputs in Fig.6). As it was mentioned in Sect. 2, these garbage outputs cannot be used
later and it is a waste of resources. The circuit has 3 × N garbage outputs. Notice
that uncomputation will increase the number of gates and the depth of the circuit [26],
so the numbers given in Table 3 of [29] need to be revised. On the other hand, they
consider any output which is not part of the result is garbage output, uncomputed or
not. The metrics of [22] does not consider an uncomputed output as a garbage output.
According to the metrics proposed in [22], the proposal of [36] overcomes the adder
of [29]. They present another circuit which reduces the delay (Fig. 7), but it has the
same problems as the previous version.

One more reversible carry look-ahead adder is presented in [18]. It proposes a new
technique for generating carry output (see Fig. 8). This circuit uses a new gate called
Reversible Partial Adder (RPA) which has a quantum cost of 5 (and delay 5�) (Figs.
3(a) and 3(b) of [18]) and also has several Fredkin gates, which a cost of 5 each one
(and delay 5�) for the 3 inputs case (Figs. 2(a) and 2(b) of [18]). Figure 8 shows
that the quantum cost of the circuit, for the case N = 4, includes f our CNOT gates
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Fig. 8 Reversible carry look-ahead adder proposed in [18]. ai and bi are the input numbers, c0 is the carry
input, Si are the qubits of the result, Cout is the carry output, and gi the garbage outputs

(4 × 1), f our RP A gates (4 × 5) and f our Fredkin gates (4 × X ), where X is the
quantum cost of the 4-input Fredkin gates. (Their quantum cost is not covered by [18].)
Considering a quantum cost of 5 for the 4-input Fredkin gate (this is the quantum cost
they describe for the 3-input Fredkin gate), the circuit has a quantum cost of 4 × 1 +
4 × 5 + 4 × 5 = 44. Adding the extra cost of 2 × N to act as a converter, it has a
quantum cost of 52. Moreover, the garbage outputs have not been uncomputed like in
[29].

5.2 Comparison between the proposed circuit and themost efficient circuits

In this subsection, the results of a comparative analysis between the most efficient
circuits to convert signed binary numbers to two’s complement of N digits and our
proposal are discussed.

Table 2 shows the comparison in terms of quantum costs for the conversion of
numbers of N digits for [6], [36] and the proposed circuit. This table takes into account
the necessary operations so that the adders of [6] and [36] can make the conversion
into two’s complement.

The circuit of [6] (year 2004) is less competitive than [36] (year 2013). However,
it is still better than the circuits studied in the previous subsection in terms of delay
and quantum cost. It has a quantum cost of 28N − 15w(N ) − 15log(N ) − 6. The
circuit proposed in [36] cannot have input carry, and it has several ancilla inputs to
improve the delay and quantum cost. It has no garbage outputs. The complete circuit
has 4N − 3w(N ) − 3logN Toffoli gates (the Toffoli gate has a quantum cost of 5
[26], or three two-qubit gates according to [15]), N − 1 Peres gates (the Peres gate
has a quantum cost of 4 [36]) and 2N CNOT gates, that is, it has a quantum cost of
26N − 15w(N ) − 15log(N − 4). It contains less gates than the circuits presented
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Table 2 Comparison of quantum costs for the conversion of numbers of N digits. Works [6,36] include
extra cost of 2 × N (N to transform a into a and N to restore a and avoid garbage outputs) to act as a
converter. The improvement column shows the percentage of improvement in our proposal with respect to
[36]

N [6] [36] Proposed circuit Improvement(%)

4 69 63 41 35

6 105 95 55 42

8 175 160 101 37

10 214 196 119 40

16 399 369 236 36

32 864 802 521 35

64 1869 1743 1166 33

128 3714 3460 2291 34

256 7539 7029 4676 33

512 15,204 14,182 9461 33

Table 3 Comparison of logic depth for N -digit numbers. Works [6,36] include two extra levels (one to
transform a into a and other to restore a and avoid garbage outputs) to act as a converter

Circuit Delay Normal Ancilla Garbage
� Inputs Inputs Outputs

[6] logN + logN/3 + 9 2N 5N/4 0

[36] logN + logN/3 + 4 2N 5N/4 0

Proposed circuit logN + logN/3 + 1 N 5N/4 − 9 0

in [6]. On the other hand, our proposed circuit improves the quantum cost of [36]
thanks to the changes explained in Sect. 4. Results in Table 2 show that the proposed
converter improves in terms of quantum costs with respect to the use of general adders
to compute the two’s complement.

Table 3 shows a comparison of the delay, number of inputs and garbage outputs of
some of the most relevant adder circuits in the literature. [36] has a delay of logN +
logN/3+2�, whereas the circuit of [6] has a delay of logN+logN/3+7�. However,
to perform a + 1, the inversion of a with Pauli-X gates and another inversion to evade
garbage outputs are necessary. This requires two extra levels of depth, so the final
delays are logN + logN/3+ 4� and logN + logN/3+ 9�, respectively, for [6,36].
In Table 3, the logic depth of the circuits includes the necessary changes to allow them
to make the conversion into two’s complement. These changes involve to negate a
at the beginning and to restore it at the end, to avoid garbage outputs. Furthermore,
Table 3 shows that the proposed converter optimizes the number of inputs of the circuit
and the answer delay. Therefore, our proposal improves converters based not only on
quantum gates, such as [3] (O(N )), but also on quantum adders, such as [6,36], in
terms of answer delay.
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6 Conclusions

In this paper, a reversible circuit which is capable of computing the conversion from
signed numbers to two’s complement has been presented. This converter is an adapta-
tion of a reversible out-of-place carry look-ahead adder presented in [36], simplifying
it to the specific operation a+1 (being a the number to be converted). We have carried
out a deep analysis of the existing converter and adder circuits (current circuits that
allow conversion from signed numbers to two’s complement) to find the best ones
considering a solid metric. We have justified that [6,36] are the best adders in terms
of delay and quantum cost comparing them with the most modern circuits.

Once the best circuits have been identified,wehave used them to design our proposal
and, later, to compare the obtained results by all the studied circuits. Obtained results
have shown that our proposed circuit outperforms the existing ones in terms of delay.
The circuit improves the delay of [36] since all the Peres gates have been removed
and several Toffoli gates have been replaced or simplified. Moreover, the number of
normal input qubits has been reduced by half since the operations associated with the
deleted inputs have been simplified.

An additional advantage of our proposal is that it does not contain any garbage
output; therefore, the circuit could be entangled with any other reversible circuit which
needs to operatewith two’s complement.As futurework,we are planning to implement
a new carry look-ahead converter to compute the two’s complement of a number.
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Despite the great interest that the scientific community has in quantum computing, the
scarcity and high cost of resources prevent to advance in this field. Specifically, qubits are

very expensive to build, causing the few available quantum computers are tremendously

limited in their number of qubits and delaying their progress. This work presents new
reversible circuits that optimize the necessary resources for the conversion of a sign binary

number into two’s complement of N digits. The benefits of our work are two: on the

one hand, the proposed two’s complement converters are fault tolerant circuits and also
are more efficient in terms of resources (essentially, quantum cost, number of qubits, and

T-count) than the described in the literature. On the other hand, valuable information

about available converters and, what is more, quantum adders, is summarized in tables
for interested researchers. The converters have been measured using robust metrics and

have been compared with the state-of-the-art circuits. The code to build them in a real
quantum computer is given.

Keywords: Quantum Computing, Quantum circuits, Reversible circuit, Two’s comple-
ment, Sign-magnitude representation to two’s complement converter

Communicated by: R Jozsa & M Mosca

1 Introduction

Quantum computing uses the principles of quantum mechanics to define a new paradigm

of computing that allows reaching goals that cannot be achieved by those already known

algorithms or classical computing. There is a great interest in the scientific community for

quantum computing [1]. Specifically, efforts must be made to determine what kind of problems

can be solved more efficiently by quantum computing than by traditional computation. In

any case, there are problems that can be solved using quantum computing more efficiently.

Grover’s and Shor’s algorithms are the best examples of such problems [2, 3].

The most remarkable difference between both paradigms, quantum computing and classi-

cal computing, is the basic unit of each one. In the case of classical computing, the bit is the

fundamental unit. A bit has only two possibilities, 0 and 1. Despite the simplicity of the bit,

current computers can perform any type of operation if they have enough number of bits. On

the other hand, quantum computers define their own unit, the quantum bit (qubit). These

qubits can also be in states 0 or 1 and, what is more, because of the properties of quantum

mechanics they can be simultaneously in both states. This property is called superposition.

aCorresponding author: F. Orts. e-mail: francisco.orts@ual.es.
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Thanks to the superposition, a qubit can easily and completely imitate the behavior of, for

example, an atom. For this reason among others, quantum computing is interesting in many

research fields such as chemistry [4], image processing [5] or mathematics [6].

Nowadays, quantum computing is focused on making possible the implementation of the

aforementioned Shor’s algorithm. This algorithm allows a number N to be decomposed into

factors. It is faster than any similar algorithm in classical computation [3]. The problem of

computing Shor’s algorithm does not come from the algorithm itself, but from the current

quantum computers since they have only a few qubits [1]. However, companies like Google,

IBM or Intel are currently working on getting larger quantum computers, that is, with more

qubits. Meanwhile, to accelerate the achievements of the computation of Shor’s algorithm,

current works are focusing on optimizing the necessary resources for its computation.

Following the line of optimizing resources, it is especially important to optimize basic

arithmetic operations. There are current works that present optimized versions to perform

addition [7, 8], subtraction [9, 10, 11], multiplication [12, 13], and division [14, 15] in quantum

computers. Very relevant is the addition, which has a fundamental role in Shor’s algorithm.

However, the optimization of the involved operations is not the only possibility to achieve the

effective computation of Shor’s algorithm and the advance of quantum computing in general.

For example, another possibility is to take an appropriate numeric representation and to pro-

vide tools for its use. In classical computing, the use of the two’s complement representation is

common. Among other improvements, the two’s complement allows the addition of negative

numbers to be computed more efficiently [16]. Working in two’s complement can be beneficial

for the optimal use of the available resources in quantum computing, and for the acceleration

of several operations [17, 18, 19, 20, 21, 22, 23, 24, 25].

Quantum circuits have several parameters such as the number of required qubits or the

quantum cost (the number of used logical gates). This work proposes sign-magnitude to two’s

complement converters which are focused on optimizing resources to make their implementa-

tion as simple and inexpensive as possible. Circuits that involve a small number of resources

are really appreciated in quantum computation. They are relevant even when they do not

achieve quantum advantages since they may be a useful part in bigger circuits and algorithms

[26]. To achieve this, a study of the state-of-the-art circuits that allow the conversion of sign-

magnitude to two’s complement has been carried out. This study has analyzed the benefits

of each circuit to be able to implement new ones reducing their quantum cost, the number

of involved qubits, the number of T gates, and other interesting parameters in an effort to

minimize the use of resources. A solid metric has been defined to evaluate these parameters

in both the proposed converters and the state-of-the-art circuits.

This paper is organized as follows. Section 2 presents background information on quantum

gates, defines the metrics in terms of quantum computing, explains the two’s complement

methodology and finally explores the state-of-the-art circuits which can compute a conversion

from sign-magnitude to two’s complement and their methodology. In Section 3 the designs of

the proposed sign-magnitude to two’s complement converters are presented and discussed in

detail. Finally, the conclusions are exposed in Section 4.

The circuits have been tested in the real quantum computer ibmq ourense. Our im-

plemented circuits are freely available through the following website: https://github.com/

2forts/QuantumConversor. The code is ready to be used in the IBM Quantum Experience
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Name Pauli-X V V+ CNOT Controlled-V Controlled-V+

Symbol

Matrix
Form

VA X

0 1

1 0

1+i 1-i

1-i 1+i

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

A X V+A X

1-i 1+i

1+i 1-i

B Y

A X

1 0 0 0
0 1 0 0
0 0 1+i 1-i

0 0 1-i 1+i

1 0 0 0
0 1 0 0
0 0 1-i 1+i

0 0 1+i 1-i

B Y

A X

B Y

A X

V+V

Fig. 1. Information of the basic reversible gates used in quantum circuits. (a) Pauli-X gate, (b) V

gate, (c) V+ gate, (d) CNOT gate, (e) controlled-V gate, and (f) controlled-V+ gate.

platform, which includes quantum simulators and real quantum computers [27]. Due to the

topology of each platform, several switch operations could be necessary. Luckily, the IBM

Quantum Experience platform is able to perform them automatically.

2 Background

2.1 Measures in quantum circuits

This work has considered the metrics described in [28] to measure quantum circuits. Such

metrics define five essential factors:

• Quantum cost: The quantum cost of a circuit defines the number of basic gates inte-

grated into the circuit. This parameter is the most important when optimization of

resources is mandatory [11].

• Delay: The delay of a circuit is its speed. A circuit is faster than other if its delay is

lower.

• Normal inputs: inputs whose value is given by the user.

• Ancilla inputs: extra qubits used to compute auxiliary operations. Qubits remain a

scarce resource, so the number of required qubits should be reduced whenever possible.

• Garbage outputs: outputs that are not part of the solution and whose value is unknown.

For instance, an ancilla input whose value has not been uncomputed. All the outputs

which are not part of the solution must be restored to its initial values or they will

not be available to be entangled with other inputs of circuits since this operation will

generate anomalous results [1].

In [28], authors set an important rule for measuring: the quantum cost of 1× 1 and 2× 2

gates is 1. Progressively, the quantum cost of an N ×N gate consists of its number of 1× 1

and 2× 2 gates. The quantum cost of a circuit can be easily calculated adding the quantum

cost of all its gates. Moreover, [28] defines the delay of 1 × 1 and 2 × 2 gates (that is, gates

with quantum cost 1) as 14. In the same way, the delay of an N×N gate is its depth when it
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Name Peres Toffoli

Symbol

Matrix
Form

A X

B Y
C Z

A X

B Y
C Z

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

Fig. 2. Information of the basic reversible gates used in quantum circuits. (a) Peres gate and (b)
Toffoli gate.

is built using 1×1 and 2×2 gates. In this work, all the measures of circuits have been carried

out using these terms so that the comparisons were coherent. Therefore, the gates shown in

Fig. 1 have a quantum cost of 1 and a delay of 14. The Peres gate has a quantum cost of 4

and a delay of 44, and the Toffoli gate a quantum cost and delay of 5 and 54 respectively.

Both gates are shown in Fig. 2.

Apart from the mentioned factors, because of quantum computers are extremely vulnerable

to noise errors, other factors can be considered to include fault tolerance and palliate noise

problems [29]. The T gates are used to make possible the use of error-correcting codes to

ensure fault-tolerance in quantum circuits. But their drawback is that they are more expensive

than the rest in terms of space and time cost due to their increased tolerance to noise errors

[29, 30]. Therefore, there are two important factors to minimize the cost when using such

gates: the T-count, that is, the number of T gates; and the T-depth, that is, the number of

T gates which must be computed sequentially. Two or more T gates computed in parallel are

at the same level and they only increase the T-depth in 1 unit. Therefore, the T-count and

the T-depth of the circuits are also considered in this work.

2.2 Two’s complement

Two’s complement is a binary numeric representation. Its main advantage is that the rep-

resentation of an integer is easily manipulated by the hardware. For instance, negating a

number can be done inverting all its digits and also adding one to the whole number. Nega-

tion in sign-magnitude representation involves more operations because it is necessary to

handle the sign of the number as a special digit. Other examples are the addition and sub-

traction. Adding negative numbers is identical to adding positive numbers. Therefore, it is

not necessary additional logic to handle the negative case.

The representation of an N -digit number in two’s complement consists of its complement

with respect to 2N . The numeric range of notation, for the N -digit case, is −2N−1 ≤ X ≤
(−2N−1 − 1) [31]. As an example, the case N = 4 is shown in Table 1. Converting a number

A from signed binary to two’s complement is as follows. If A >= 0, no conversion is necessary

as both representations are equal, that is, A has the same representation in signed binary

as in two’s complement. However, in the case of A < 0, the conversion is necessary. Such a

conversion can be computed as the inversion of all the digits of A and then A + 1.

The conversion from sign-magnitude to two’s complement can be done in two ways;
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Table 1. Decimal, Sign-magnitude and Two’s complement representation of binary numbers with

N = 4.
Sign-magnitude Two’s complement Decimal

0111 0111 7
0110 0110 6
0101 0101 5
0100 0100 4
0011 0011 3
0010 0010 2
0001 0001 1
0000 0000 +0
1000 − −0
1001 1111 −1
1010 1110 −2
1011 1101 −3
1100 1100 −4
1101 1011 −5
1110 1010 −6
1111 1001 −7
− 1000 −8

◦ Designing a specific circuit which computes the conversion described in Table 1.

◦ Using an addition circuit.

Instead of using a specific converter, the conversion of a number A can be computed

inverting its digits and then computing A + 1. Therefore, the conversion can be done with

N Pauli-X gates and an existing addition circuit. In the next subsection, the state-of-the-art

converters and adders are reviewed.

2.3 Related work

Only a few works can be found in the literature related to the specific implementation of

sign-magnitude to two’s complement converters without using adders. And worse, none of

0

𝐴
𝐵

𝑌
𝐶

Garbage

𝑃
𝑄

𝐼
𝑅

0 Garbage

𝑄𝑢𝑎𝑛𝑡𝑢𝑚
𝑐𝑜𝑠𝑡: 9 5 5 5 1 1 1 20 1 1 1 1

𝑆𝑒𝑐𝑡𝑖𝑜𝑛 1 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 2 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 3
Fig. 3. Ripple-carry sign-magnitude to two’s complement converter. It is based on the circuit

presented in [32], adding it carry-in (Y ) and carry-out (I). It accepts a number or a piece of
the number of 3 digits (A,B,C), giving its conversion to two’s complement (P,Q,R). It has two

auxiliary inputs and two garbage outputs. Moreover, in the Figure can be observed the quantum

cost of every step.
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these works is based on fault-tolerant Clifford + T gates. [33] presented the mathematical

design (but not a circuit design) of a gate called SSMT which computes the conversion of

a 4-digit number. [34] proposed a gate called TCG. This gate is only valid for the 4-digit

case like the previous converter but, in this case, the logic design was presented. TCG was

optimized in [32]. This design has a quantum cost of 25 for the case N = 4, being the best

converter in terms of quantum cost. Although these converters have a good quantum cost,

they are not able to compute numbers with more than 4 digits. They do not have carry input

nor carry output, so several converters cannot be joined to compute numbers with more than

4 digits. In [35], a novel converter valid for any N -digit number was presented. It is based

on a reversible out-of-place carry look-ahead adder presented in [8], adapted to compute the

conversion specifically. Its delay improves the delay of the rest of converters and adders that

are able to compute the conversion.

The sign-magnitude to two’s complement converter of [32] has the lowest quantum cost, 35.

However, as it has been mentioned, it is only valid for the case N = 4 as it does not support

carry output nor carry input of any type. We have modified this gate with the objective to

make it available for the general N -digit case, converting it in a ripple-carry converter. This

circuit is shown in Fig. 3. Nevertheless, the cost of adding this extra feature is expensive

because three qubits of the original gate need to be dedicated to the carry: on the one hand,

it is necessary to add one new qubit to accept and compute the carry-in (Y in Fig. 3). We

have replaced an original input qubit of the circuit of [32] by Y , so the circuit can compute

a number (or a piece of the number) of N = 3. If Y = 0, the circuit acts like in [32] (Fig. 3,

Section 1), but if Y = 1, the values of the inputs A,B and C are inverted (Fig. 3, Section

2). On the other hand, there are extra costs to generate the carry out (Fig. 3, Section 3).

Two auxiliary qubits are needed. The first one is the target qubit of a multiple Toffoli gate

(MTG, quantum cost of 20 [36, 37]), which is set to 1 for the case which generates carry-out,

it means A B C Y . The second one is used to change the value of Y to I when necessary.

The total quantum cost is 51, and the delay is also 514. The quantum cost of each gate of

the circuit is shown in Fig. 3. However, the two garbage outputs have not been uncomputed,

so the quantum cost and delay are assumed to be bigger than 51. For instance, following the

Bennett’s garbage removal scheme [38], it would be necessary four extra qubits to save the

results, four extra CNOT gates to translate the result into these qubits, and also to apply the

logical reverse of the entire circuit (except for the part which involves the new four qubits).

As it has been mentioned, the conversion of a number A can be done computing A + 1.

For this, it is necessary to invert the digits of A using Pauli-X gates (one gate per digit)

and to use an adder circuit to compute A + 1. This is the most usual way to compute

the two’s complement since there are lots of quantum addition circuits in the state-of-the-

art [7, 8, 11, 39, 40, 41, 42, 43, 44, 45], contrary to what happens with specific converters.

Moreover, there are several fault tolerant adders [46, 47]. We have summarized the information

of the most relevant adders in Table 2, but without including fault tolerant adders in this

first comparison since they have a higher quantum cost due to their tolerance to noise errors.

Adders with garbage outputs have not been included, for the reasons explained in subsection

2.1 about garbage outputs. Table 2 shows that the two most efficient addition circuits in terms

of delay are [7, 8], with a delay of O(log N) (they are the only carry-lookahead adders in the

table). However, they are expensive in terms of quantum cost. Ripple-carry adders improve
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them in terms of quantum cost. In general, ripple-carry adders are more optimized in terms

of quantum cost, and carry look-ahead adder are better than them in terms of delay [48]. On

the other hand, the ripple-carry adder which can be built using the full adder presented in

[11] is the adder with the best quantum cost. They are adders with better quantum cost or

delay, but they have garbage outputs [49, 50].

Table 2. Comparison of adders for N -digit numbers. The comparison only includes the ripple-

carry and carry-lookahead adders which do not have garbage outputs and without the use of the
fault-tolerant T gates.

Circuit Quantum Delay Ancilla Garbage
cost 4 inputs outputs

[7] 28N − 15W (N)− 15log(N)− 6 logN + logN/3 + 7 5N/5 0
[8] 26N − 15W (N)− 15log(N − 4) logN + logN/3 + 2 5N/4 0
[41] 26N − 29 24N − 27 0 0
[39] 17N − 12 10N 1 0
[51] 15N 15N 3N 0
[52] 15N 10N N 0
[43] 15N − 9 13N − 7 0 0
[53] 15N − 6 9N + 5 0 0
[54] 13N − 8 11N − 4 0 0
[55] 12N 12N 3N 0
[56] 12N 12N N 0
[56] 12N 10N 4N 0
[44] 10N 8N N 0
[11] 6N 4N N 0

The proposed circuits in this work are focused on optimizing the necessary resources of

the current converters and adders acting as converters. Their details are presented in the next

section.

3 Design of the new sign-magnitude to two’s complement converters

We have developed three converters focused on minimizing the metrics of [28]. We propose

three models:

• A first one focused on quantum simulators, which do not have noise problems. Its

priorities are optimizing the quantum cost and the number of qubits.

• A second one focused on real quantum computers. Its priorities are achieving a balance

between quantum cost, T-count and number of necessary qubits.

• A third one also focused on real quantum computes, but prioritizing T-count and number

of necessary qubits.

3.1 First design: optimal quantum cost converter

We have developed a first sign-magnitude to two’s complement converter focusing on the

reduction of the quantum cost and the ancilla inputs. Neither the T-count nor the T-depth

are taken into account since this design is focused on its use in simulators. This converter has

two inputs: the digit to be converted (A) and the carry input (Cin). In the same way, it has
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𝑉 𝑉 𝑉+

𝐶𝑖𝑛

𝐴

0

𝑃 = 𝐶𝑖𝑛 𝐴

𝐴

𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛𝐴

1∆ 1∆ 1∆ 1∆
Fig. 4. Proposed sign-magnitude to two’s complement converter. Cin is the input carry, A is the

input, P is the output and Cout is the output carry. It has 1 auxiliary input and no garbage

outputs. Its quantum cost is 6 and it has a delay of 44.

two outputs: the converted digit (P ) and the carry out (Cout). The idea behind this converter

is that a sign-magnitude to two’s complement conversion consists of negating a number and

adding 1. That is, A + 1. Focusing on this specific addition, the conversion can be done digit

by digit, taking into account that there is a carry which must be propagated. Since a digit

only has two possibilities (0 or 1), its conversion depends on whether there is carry-in or not.

Likewise, the conversion of such digit may generate carry-out or not. As there are only four

possibilities (considering A and Cin), this can be expressed in a simple truth table as it is

shown in Table 3.

Table 3. Truth table of the proposed converter.

Cin A P Cout

0 0 1 0
0 1 0 0
1 0 0 1
1 1 1 0

Cin is the input carry, A is the input, P is the output and Cout is the output carry.

The proposed converter to compute the function of Table 3 has been built using Controlled-

V , Controlled-V +, CNOT and Pauli-X gates. The circuit is shown in Fig. 4. It has 1

auxiliary input and no garbage outputs. It has been implemented using the properties of the

Controlled-V and Controlled-V + gates described in Subsection 2.1. As the circuit has 1 V +

gate and 2 V gates, the quantum cost of these gates is 3. It also uses a CNOT gate, which

has a quantum cost of 1, and two Pauli-X gates which also have a quantum cost of 1 each

one. In conclusion, the circuit has a quantum cost of 6 and a delay of 44. From Table 3

can be deduced that P = Cin A + CinA and Cout = CinA. On the one hand, CinA can be

computed using the properties of the Controlled-V + and Controlled-V gates. On the other

hand, Cin A+CinA can be easily computed using a CNOT gate. Although the CNOT gate

calculates the result inverted, the desired result can be achieved inverting A at the beginning

with a Pauli-X gate. A is reverted at the end to avoid a garbage output.

For a better understanding of the circuit, all possible combinations and the obtained

results are shown in Fig. 5. They coincide with the results of Table 3, verifying that the

circuit works properly:

• Fig. 5(a) shows the case Cin = 0, A = 0. The second Controlled-V gate and the

Controlled-V + are activated. V (A)× V +(A) = V +(A)× V (A) = A, so Cout maintains

the initial value (0). The CNOT gate is activated, so P is inverted to 1.

• Fig. 5(b) shows the case Cin = 0, A = 1. Neither gates Controlled-V nor Controlled-V +
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Fig. 5. For the sake of clarity, all the possible states of the proposed circuit are checked in detail,

verifying that the obtained results are equal to those of Table 3. In (a), the circuit is tested for

the case Cin = 0, A = 0. In (b), the circuit is tested for the case Cin = 0, A = 1. (c) shows
the results of Cin = 1, A = 0. In (d), it is verified that the circuit also responds adequately for

Cin = 1, A = 1.

are activated, so Cout maintains the initial value (0). The CNOT gate is not activated,

so P maintains its value.

• Fig. 5(c) shows the case Cin = 1, A = 0. The two Controlled-V gates are activated, so

Cout inverts the initial value to 1. The CNOT gate is activated, so P is inverted to 0.

• Fig. 5(d) shows the case Cin = 1, A = 1. The first Controlled-V gate and the

Controlled-V + are activated. As V (A) × V +(A) = V +(A) × V (A) = A, Cout main-

tains the initial value (0). The CNOT gate is not activated, so P maintains its value.

The real utility of the converter is its scalability, that is, the possibility of connecting

it in cascade with other converters of the same type, to convert numbers of any size. A

ripple-carry sign-magnitude to two’s complement converter can be constructed with several

converters in cascade, with the carry output from each converter connected to the carry input

of the next one in the chain. In the general case, N converters can compute the conversion of

an N -digit number (i.e. A), as it is shown in Fig. 6. In the figure, Converter 0 computes the

least significant digit of A, it means A0, and Converter N − 1 computes the most significant

digit of A (AN−1). It is important to always start the process setting the initial carry input

to 1. As an example, we explain how to convert the number −5 (1101 in sign-magnitude

representation). The most significant digit is 1, so the value represented is negative. The
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Fig. 6. Ripple-carry sign-magnitude to two’s complement converters computing the conversion of

an N -digit number.

number to be converted is 1101. Therefore, Cin0 = 1 and A = 101 (A2 = 1, A1 = 0, A0 = 1).

Given that the number to be converted has 3 digits, the ripple-carry converter will consist of

3 converters:

• The inputs of the Converter 0 are Cin0 = 1 and A0 = 1. According to Fig. 5(d), the

results of this case are P0 = 1 and Cout0 = 0.

• The inputs of the Converter 1 are Cin1 = 0 and A1 = 0. According to Fig. 5(a), the

results of this case are P1 = 1 and Cout1 = 0.

• The inputs of the Converter 2 are Cin2 = 0 and A2 = 1. According to Fig. 5(b), the

results of this case are P2 = 0 and Cout2 = 0.

The result is given by P , that is, (1)011.

3.2 Second design: balance between quantum cost and T-count

A second circuit can be obtained from the circuit described in the previous subsection replacing

its non-Clifford + T gates and optimizing the use of the T gates. It has the same number

of qubits than the previous proposed converter and also no garbage outputs. The first step

consists of achieving a circuit with only Clifford + T gates. In [58], a heuristic called “Initial

expansion algorithm” is presented. This heuristic, which is very easy to be applied, is focused

on transform a circuit into another circuit which only has Clifford + T gates. We have chosen

the definition of the Controlled-V and V + in terms of Clifford + T gates proposed in [57] to

expand these gates. The result is shown in Fig. 7a. Moreover, several Hadamard gates can

be removed since they are applied consecutive, reducing the quantum cost of the circuit (Fig.

7b). Until now, we have limited ourselves to convert the original design to another one that

uses only Clifford-T gates.

Finally, it is mandatory to optimize the T-count and the T-depth. The circuit can be

optimized in these terms using a heuristic for the parallelization of the T gates [59]. Two

T gates can be sequentially computed after several transforms, so they can be replaced by a

Phase gate, reducing the T-count in one gate. At the end of the heuristic, the final circuit

has a T-count of 8 and a T-depth of 4. The final circuit is shown in Fig. 7c. The quantum
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Fig. 7: Second proposed converter. (a) Resulting circuit of expanding the Controlled-V and
V + gates in the circuit of Fig. 4 as shown in [57] using the “Initial expansion algorithm”
proposed in [58]. (b) Removing some redundant Hadamard gates from the previous circuit.
(c) Minimization and parallelization of the T gates according to the method described in [59].
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Fig. 8. Temporary logical-AND gate and its uncomputation gate [46]. The temporary logical-AND
gate has a T-count of 4 and a T-depth of 2. The uncomputation gate does not involves T gates.
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Fig. 9. Example of the third proposed converter, for the 4-digits case.

cost and delay of this new proposed circuit is bigger than the best ones presented in Table 5.

However, to compare these circuits with the proposed one in this section in terms of quantum

cost and delay is not coherent since the proposed circuit is the only one with fault tolerant

capabilities.

3.3 Third design: optimal T-count and number of qubits

As it has been mentioned in Section 1, ripple-carry adders involve lesser resources than carry-

lookahead adders. We can adapt the methodology of a ripple-carry adder, which computes

A + B, to perform the operation A + 1. On the one hand, the resulting converter simplifies

the operations of the original adder since B0 = 1 and Bi = 0 for i > 0. For instance, The

first carry out depends only on A0: if A0, then the carry out will be 0, and 1 otherwise as

A0 + 1 = 10 in this last case. The computation of the remaining carries also depends only of

the digits of A. Therefore, the only difficulty is keeping a constant product of all the digits

of A, which can be expensive if Toffoli gates are employed. On the other hand, all the qubits

used to contain B can be removed, resulting in a significant reduction of necessary resources.

In [46], a new construction called temporary logical-AND gate, which performs the AND

operation of two qubits into an ancilla qubit, is presented. This gate is similar to the Toffoli

gate, but its T-count and T-depth are 4 and 2, respectively (whereas the T-count and T-depth

of the Toffoli gate are 7 and 3, respectively. Moreover, its uncomputation does not need any

T gate (the uncomputation of a Toffoli gate should be done using another Toffoli gate, so

the same T-count and T-depth are required). We reproduce the temporary logical-AND gate

and its uncomputation gate in Fig. 8. Using the reduced T-count and T-depth of this gate,

we can achieve an optimized converter. An example of this converter for the 4-digit case is

shown in Fig. 9. The circuit can be obtained for any N -digit number A following these steps:

1. For i = 0 to i = N − 1, apply a Pauli-X gate at every digit (qubit) Ai.

2. Apply a temporary logical-AND gate at A0, A1 over an ancilla qubit. We call this ancilla

qubit as C1, since its contains the output carry.

3. For i = 2 to i = N − 1, apply a temporary logical-AND gate at Ci−1, Ai over an ancilla

qubit Ci.

4. For i = N − 1 to i = 2, apply a CNOT gate at Ci−1 over Ai. Then, uncompute Ci−1
using the uncomputation gate.

5. Apply a CNOT gate at A0 over A1, and finally a Pauli-X gate over A0.
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3.4 Cost analysis

The first proposed circuit in this work consists of 2 Controlled-V gates, 1 Controlled-V + gate,

1 CNOT gate and 2 Pauli-X gates (quantum cost: 6). In the general case and assuming that

N converters are necessary to compute the conversion of an N -digit number, the quantum

cost is 6N . In terms of delay and following the same metrics of [28], it has a delay of 4N4
since a gate with the quantum cost of 1 has a delay of 14, and the Pauli-X gates can be

computed in parallel with other gates, as it is shown in Fig. 4. Every converter has an

auxiliary input, so the general case needs N auxiliary qubits. There are not garbage outputs

in the proposed circuit. To calculate the T-count and T-depth of the Controlled-V gates we

have considered the values given in [57]. Then, we conclude that the T-count and T-depth of

the circuit are 9N and 6N , respectively.

In this work, we have obtained the circuit directly from the truth table. However, it is

also possible to use a SAT solver to quickly search the minimum quantum cost of a function

with a small number of inputs [60]. To assure the quality of our circuit, we have checked it

using such solvers. It can be concluded that the minimum cost of implementing the function

given by the proposed circuit (considering the uncomputation of the garbage outputs) is 6,

so we can affirm that the proposed circuit is optimal in that term. On the other hand, the

number of garbage outputs cannot be improved since it is 0. The number of ancilla inputs

(1) cannot be reduced either due to the maintenance of reversibility.

Focusing now on the second circuit, it has a T-count of 8 and a T-depth of 4, which can

be obtained directly in Fig. 7c using the same metrics than in the previous circuit. The

number of necessary qubits is 3N (the same number of the first circuit). It also has no

garbage outputs. It optimizes the T-count and T-depth of the first circuit into 8N and 4N ,

respectively.

Finally, focusing on the third circuit, only steps 2 and 3 require T gates as they involve

temporary logical-AND gates. According to the T-count and the T-depth of the temporary

logical-AND gate, it can be concluded that this circuit requires 4N − 4 T gates. These gates

are computed sequentially, so the T-depth will be 2N − 1. The circuit requires N normal

inputs (the digits of the number) and N − 1 ancilla inputs, that is, a total of 2N − 1 qubits.

For the rest of the metrics we have proceeded as in the previous cases, obtaining a quantum

cost of 15− 13, a delay of 12N − 104, and 0 garbage outputs.

For the sake of clarity, we show the numbers of our three proposals in Table 4.

Table 4. Comparison of our three proposed converters for N -digit numbers, in terms of the metrics

proposed in [28], but also in terms of T-count and T-depth.
Circuit Quantum Delay Ancilla Total Garbage T-Count T-Depth

Cost 4 Inputs Qubits Outputs
First Proposed Circuit 6N 4N N 3N 0 9N 6N

Second Proposed Circuit 19N 13N N 3N 0 8N 4N
Third Proposed Circuit 15N − 13 12N − 10 N − 1 2N − 1 0 4N − 4 2N − 2

3.5 Cost comparison

3.5.1 Non Fault tolerant circuits

A comparison between several state-of-the-art converters and our first proposed circuit, in

terms of quantum cost, delay, number of inputs, ancilla inputs and garbage outputs, is shown
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Table 5. Comparison of converters for N -digit numbers.
Circuit Quantum Delay Normal Ancilla Garbage

cost 4 inputs inputs outputs
[7] 28N − 15w(N)− 15log(N)− 6 logN + logN/3 + 9 2N 5N/4 0
[8] 26N − 15w(N − 15log(N − 4) logN + logN/3 + 4 2N 5N/4 0
[35] 21N − 15w(N)− 15log(N − 4) logN + logN/3 + 1 N 5N/4 + 1 0
[41] 28N − 29 26N − 27 2N 0 0
[39] 19N − 12 10N + 2 2N 1 0
[51] 17N 15N + 2 3N 3N 0
[52] 17N 10N + 2 3N N 0
[43] 17N − 9 13N − 5 2N 0 0
[53] 17N − 6 9N + 7 2N 0 0
[54] 15N − 8 11N − 2 2N 0 0
[55] 14N 12N + 2 2N 3N 0
[56] 14N 12N + 2 2N N 0
[56] 14N 10N + 2 2N 4N 0
[44] 12N 8N + 2 3N N 0
[11] 8N 4N + 2 3N N 0

[32] extended 51(((N − 1)/3) + 1) 51(((N − 1)/3) + 1) 4((N − 1)/3 + 1) N 2N
Proposed Circuit 1 6N 4N 2N N 0

The adders include two extra levels of delay (A level for the initial inversion and another to
restore and avoid garbage outputs) and 2N extra quantum cost to act as a converters.

in Table 5. The converters presented in [32], [34] and [36] have not been included in the

comparison since they are only valid for the N = 3 or N = 4 cases. We have also not included

fault tolerant adders since these circuits will be compared to our fault tolerant proposals.

Table 5 include all the adders described in Subsection 2.2, but acting as a converter in this

case (this has extra quantum cost and delay derived to compute the inversion of all the digits

of the number to be converted and to restore the number to avoid garbage outputs). [35] is a

specifically designed circuit to compute the sign-magnitude to two’s complement conversion.

Notice that the circuits of Figs. 3 and 4 will hereinafter be referred to as [32] extended and

proposed circuit, respectively.

Focusing on delay on Table 5, circuits [7], [8] and [35] are O(logN), and the remaining

circuits are O(N). So, the fastest circuit of the comparison is [35] with a delay of logN +

logN/3+14. Therefore, [35] is the best choice when speed is the priority. In terms of normal

inputs (qubits which are not auxiliary), [11, 44, 51, 55] have 3N inputs (which are the number

A to be converted), the 1 to be added to A (is 1 in the first digit and 0 in the remaining

digits) and the carries. [32] extended has 4((N − 1)/3 + 1) inputs since it computes three

digits (and the carry-in) at once. [7], [8] and the proposed circuit have 2N inputs. In the rest

of the circuits except [35] and the proposed one, the inputs are A and also the 1 to be added.

In the proposed circuit, the inputs are the digit and the carry-in. Finally, [35] optimizes the

number of inputs since it was specifically designed to compute the conversion, so it only needs

the number to be converted.

In terms of ancilla inputs, [7] and [8] have 5N/4, and [35] has 5N/4 + 1. These circuits

prioritize the delay, using more qubits to achieve the highest speed. The most optimized

circuits of the table have N ancilla qubits (they prioritize the reduction of the number of

necessary qubits). In terms of garbage outputs, only [32] extended contains uncomputed

outputs. It has been included only to demonstrate that an optimization starting from an

existing specific converter was not possible (or, at least, not trivial). As it has been mentioned,

the cost of adding carry-in and carry-out to the existing converters is expensive.

The quantum cost is the most important factor when the optimization of resources is the
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priority, especially considering the current scarcity of resources in quantum computing [1].

In terms of quantum cost, the proposed circuit is the best choice. It improves the quantum

cost in a 33% with respect to [45] (which is not included in the table since it has garbage

outputs) and [11], which are the circuits currently available with the best quantum cost. [44]

has a quantum cost of 12N , so the proposed circuit improves the quantum cost in a 50%.

Circuits [7, 8, 35] have a higher quantum cost than the others since they decrease their delays

at the expense of the quantum cost. Finally, [32] extended has an expensive quantum cost

(51(((N − 1)/3) + 1)), as it has been mentioned. Focused on quantum cost, the proposed

circuit overcomes the other options, therefore is the best option when the optimization of

resources is mandatory.

Focusing on our proposal, we have demonstrated that our converter is the best circuit in

terms of quantum cost. Moreover, Table 4 have shown that it outperforms the rest of the

circuits in terms of delay, with the exception of the first three converters. However, these three

circuits have a very expensive quantum cost, being non-viable in current quantum computers

and simulators. In the same way, only the circuit of [35] improves our proposal in terms

of normal inputs, but again at the cost of using three times more quantum gates than our

proposal. In terms of ancilla inputs, several circuits outperform ours, but once again at the

cost of using (at least) two times more gates. Our focus was to achieve a converter optimized

in terms of quantum cost, but without neglecting the relevance of the rest of the metrics.

Table 4 have shown that our proposal is the most balanced converter in all metrics.

3.5.2 Fault tolerant circuits

This comparison is focused on the T-count, T-depth and the number of required qubits to

perform the operation. We mentioned that there are no fault tolerant converters in the

literature. Fortunately, there are several fault tolerant adders. On the one hand, the adder

presented in [46] is the best adder of the state-of-the-art in terms of T-count. On the other

hand, [47] proposes four new adders. Since none of the adders included in [47] outperforms

the adder of [46] in terms of T-count, we have selected the best of the four adders in terms of

T-depth. Therefore, Table 6 shows a comparison between our converters and the best adders

in terms of T-count, T-depth and number of qubits. Our third circuit outperforms the rest

of the circuits in terms of T-count, with 4N − 4. The second best circuit in T-count is the

circuit of [46], followed by our second proposal. The worst circuit in terms of T-count is [47],

with a value of 16N − 8w(N)− 8log(N)− 4 (where w(n) = n−∑∞
i=1( n

2y )).

The circuit of [47] is the best option in terms of T-depth, with 4log(N) + 2log( 2N
3 ) + 3.

The second best circuit is our third proposal, with 2N − 2, followed by [46] with a T-depth

of 2N , and by our second proposal with 4N . Finally, in terms of number of qubits, the best

option is again our third circuit, with only 2N−1. The second best circuit is [46] with 3N−1,

and the third is our second proposal with 3N . The worst is terms of necessary qubits is [47],

which we have already seen that it sacrifices T-count and qubits to improve its T-depth.

To finish, we can conclude with the following classification:

• The best quantum cost: the first proposed circuit, with an improvement of a 33% with

respect to the best current converters.

• The best delay: [35].
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Table 6. Comparison of converters for N -digit numbers, in terms of T-count, T-depth and number

of necessary qubits.
Circuit T-count T-depth Number of qubits

Second Proposed Circuit 8N 4N 3N
[46] 4N 2N 3N − 1
[47] 16N − 8w(N)− 8log(N)− 4 4log(N) + 2log( 2N

3 ) + 3 6N − 2w(N)− 2log(N)
Third Proposed Circuit 4N − 4 2N − 2 2N − 1

• Less number of inputs: [35] and the third proposed circuit.

• No garbage outputs: all the included except [32] extended.

• The best in terms of T-count: the third proposed circuit.

• The best in terms of T-depth: [47].

• Less number of qubits: The third proposed circuit.

4 Conclusion

In this work, we have presented the design of several scalable reversible sign-magnitude to

two’s complement converters. The first one optimizes the quantum cost, being also the most

balanced in the rest of the metrics defined in [28]. Obtained results have shown that the

quantum cost of our first proposed circuit improves a 33% with respect to the state-of-the-art

circuits based on reversible gates and quantum adders. We have also presented a version of

this circuit (the second proposal), achieving a balance between quantum cost and T-count.

Additionally, we have designed an specific version (third proposal) that optimizes ancillary

qubits and T-count. This last version outperforms the best fault tolerant circuits in the state-

of-the-art. An advantage of our proposals is that they do not contain any garbage output,

therefore they could be entangled with any other reversible circuit which needed to operate

with two’s complement. Moreover, we have demonstrated that adding carry-in and carry-out

to the current best converter (in terms of quantum cost), which is limited to the case N = 4, is

not a competitive option. A comparison, using a solid metric, between the proposed circuits

and the best converters has been carried out in terms of quantum cost, delay, number of

inputs, auxiliary qubits, garbage outputs, T-count, T-depth and number of qubits.

Additionally, we have analyzed the state-of-the-art converters and adders, giving valuable

information summarized in tables which will be very useful for interested researchers in order

to select the correct adder to their own applications.
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a solution based on Grover’s algorithm. In Proceedings of the 3rd Conference on Computing
Frontiers, pages 71–82. ACM, 2006.

20. Fei Yan, Abdullah M Iliyasu, Yiming Guo, and Huamin Yang. Flexible representation and ma-
nipulation of audio signals on quantum computers. Theoretical Computer Science, 752:71–85,
2018.

21. S Manjula Gandhi, J Devishree, and S Sathish Mohan. A new reversible smg gate and its applica-
tion for designing two’s complement adder/subtractor with overflow detection logic for quantum
computer-based systems. In Computational Intelligence, Cyber Security and Computational Mod-



764 Efficient reversible quantum design of sig-magnitude to two’s complement converters

els, pages 259–266. Springer, 2014.
22. Michael Nachtigal, Himanshu Thapliyal, and Nagarajan Ranganathan. Design of a reversible

floating-point adder architecture. In 2011 11th IEEE International Conference on Nanotechnology,
pages 451–456. IEEE, 2011.

23. Ajinkya Borle and Samuel J Lomonaco. Analyzing the quantum annealing approach for solving
linear least squares problems. In International Workshop on Algorithms and Computation, pages
289–301. Springer, 2019.

24. Maii T Emam and Layle AA Elsayed. Reversible full adder/subtractor. In 2010 XIth interna-
tional workshop on symbolic and numerical methods, modeling and applications to circuit design
(SM2ACD), pages 1–4. IEEE, 2010.

25. Jenil Jain and Rahul Agrawal. Design and development of efficient reversible floating point arith-
metic unit. In 2015 Fifth International Conference on Communication Systems and Network
Technologies, pages 811–815. IEEE, 2015.
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29. Edgard Muñoz-Coreas and Himanshu Thapliyal. T-count optimized design of quantum integer
multiplication. arXiv preprint arXiv:1706.05113, 2017.

30. Fang Zhang and Jianxin Chen. Optimizing T gates in Clifford+ T circuit as pi/4 rotations around
Paulis. arXiv preprint arXiv:1903.12456, 2019.

31. Israel Koren. Computer arithmetic algorithms. AK Peters/CRC Press, 2001.
32. Ayan Chaudhuri, Mahamuda Sultana, Diganta Sengupta, Chitrita Chaudhuri, and Atal Chaud-

huri. A reversible approach to two’s complement addition using a novel reversible tcg gate and
its 4 dot 2 electron qca architecture. Microsystem Technologies, pages 1–11, 2018.

33. Vandana Shukla, OP Singh, GR Mishra, and RK Tiwari. Design of a 4-bit 2’s complement
reversible circuit for arithmetic logic unit applications. In The International Conference on Com-
munication, Computing and Information Technology (ICCCMIT), Special Issue of International
Journal of Computer Applications, pages 1–5, 2012.

34. Ayan Chaudhuri, Mahamuda Sultana, Diganta Sengupta, and Atal Chaudhuri. A novel reversible
two’s complement gate (tcg) and its quantum mapping. In Devices for Integrated Circuit (DevIC),
2017, pages 252–256. IEEE, 2017.

35. F. Orts, G. Ortega, and E. M. Garzón. An optimized quantum circuit for converting from sign–
magnitude to two’s complement. Quantum Information Processing, 18(11):332, Sep 2019.

36. D Michael Miller, Robert Wille, and Zahra Sasanian. Elementary quantum gate realizations for
multiple-control toffoli gates. In 2011 41st IEEE International Symposium on Multiple-Valued
Logic, pages 288–293. IEEE, 2011.

37. Kamalika Datta, Indranil Sengupta, and Hafizur Rahaman. A post-synthesis optimization tech-
nique for reversible circuits exploiting negative control lines. IEEE Transactions on Computers,
64(4):1208–1214, 2014.

38. Charles H Bennett. Logical reversibility of computation. IBM journal of Research and Develop-
ment, 17(6):525–532, 1973.

39. Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. A new
quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184, 2004.

40. Igor L Markov and Mehdi Saeedi. Constant-optimized quantum circuits for modular multiplication
and exponentiation. Quantum Information & Computation, 12(5–6):361–394, 2012.

41. Yasuhiro Takahashi and Noboru Kunihiro. A linear-size quantum circuit for addition with no
ancillary qubits. Quantum Information & Computation, 5(6):440–448, 2005.

42. Yasuhiro Takahashi and Noboru Kunihiro. A fast quantum circuit for addition with few qubits.
Quantum Information & Computation, 8(6):636–649, 2008.



F. Orts, G. Ortega, and E.M. Garzon 765

43. Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum addition circuits and un-
bounded fan-out. Quantum Information & Computation, 10(9):872–890, 2010.

44. Feng Wang, Mingxing Luo, Huiran Li, Zhiguo Qu, and Xiaojun Wang. Improved quantum ripple-
carry addition circuit. Science China Information Sciences, 59(4):042406, 2016.

45. Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne. Quantum circuit
simplification and level compaction. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(3):436–444, 2008.

46. Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74, 2018.
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A B S T R A C T   

Reversible adders are essential circuits in quantum computing systems. They are a fundamental part of the al-
gorithms implemented for such systems, where Shor’s celebrated factoring algorithm is one of the most prom-
inent examples in which reversible arithmetic is needed. There is a wide variety of works in the existing literature 
which tackle the design of an adder for quantum systems, and today there is still a great interest in the creation of 
new designs and the perfection of the existing ones. Similar to how it happens in classical digital systems, there 
are different methodologies to approach the addition using reversible circuits. Some methodologies focus on 
minimizing the necessary resources, others on optimizing computing time, etc. In this work we analyze the 
reversible adders in the state-of-the-art for quantum computing, classifying them according to their type, and 
finally, comparing each other using referenced and validated metrics that allow highlighting the strengths and 
weaknesses of each adder.   

1. Introduction 

Reversible computation was first considered in the pioneering works 
of Landauer (1961), Lecerf (1963) and Bennett (1973) in the context of 
the energetic cost of computational operations. These authors unveiled 
deep connections between the thermodynamics of computation (in 
particular, the minimum amount of heat that a physical computing 
machine needs to dissipate per instruction) and the logical irreversibility 
of some operations. Surprisingly enough, it was discovered that the only 
computational task that implies an energy consumption is information 
erasure. Thus, in principle, computations may be physically executed 
without using energy as long as all operations are kept reversible and no 
information is lost in the process. 

These profound results motivated further studies of, among others, 
Fredkin and Toffoli (Toffoli, 1980; Fredkin and Toffoli, 1982), who 
showed how any function computed by a logical circuit can be also 
computed by a reversible circuit. The key element is the existence of 
reversible gates that are universal in the sense that they can be used to 
simulate any other possible logic gate (reversible or not). With them, any 
circuit can be transformed in a reversible one with only a linear increase 
in the number of wires and gates (Fredkin and Toffoli, 1982). This opens 
the possibility of using reversible circuits in order to decrease the en-
ergetic consumption of computations, a topic that has gained interest in 
recent years (Cohen et al., 2016; Anamika, 2018; Chaves et al., 2018; 

Sahu et al., 2019). 
Interest in reversible computation in general, and in reversible gates 

in particular, also comes from an intimate connection with quantum 
computing (Nielsen and Chuang, 2011). Quantum computing is a 
computational paradigm that exploits the physical properties of sub-
atomic particles in order to achieve speedups in solving computational 
problems (Zhou et al., 2018; Zhang et al., 2018). Far from being solely a 
theoretical model, several quantum computer prototypes have been 
constructed in recent years (Linke et al., 2017; Michielse et al., 2017; 
Neill et al., 2018). In fact, Google has recently reported solving, with a 
quantum computer, a problem that would be unfeasible to solve with 
only classical resources, thus achieving the so-called quantum suprem-
acy (Arute et al., 2019). 

The main model of quantum computing is that of quantum circuits, 
in which logical gates are replaced with quantum ones (Nielsen and 
Chuang, 2011). These gates must obey the laws of quantum physics and, 
as a consequence, they are always reversible. Reversibility is therefore 
no longer the interesting energy saving option that we have described: it 
is now a fundamental requirement of quantum computing. This quan-
tum paradigm requires us to reversibly implement even the most trivial 
algorithms that exist in classical computing. In fact, classical reversible 
gates such as the Toffoli gate play a very important role in quantum 
computing since they can be used, in combination with a few others, to 
approximate any possible quantum circuit (Shi, 2003). But in general, 
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this conversion to a reversible methodology is not trivial, and implies an 
increase in the necessary resources compared to the classic counterpart 
(with the consequent effort to optimize their use), and even the search 
for more efficient alternative approaches from the point of view of 
reversibility (Vartiainen et al., 2004; Fowler et al., 2004). 

Circuits for performing the addition are especially relevant for 
several quantum algorithms that achieve a speedup over the best known 
classical methods. Chief among them are Shor’s algorithms, which can 
famously factor numbers and compute discrete logarithms in poly-
nomial time (Shor, 1994), with momentous implications for classical 
cryptographic protocols such as the RSA cryptosystem (Rivest et al., 
1978) or Diffie-Hellman key exchange (Diffie and Hellman, 1976). For 
instance, the most computationally intensive part of the algorithm for 
integer factorization is the modular exponentiation circuit. The most 
usual approach to compute the modular exponentiation is to use 
modular multiplier circuits, which are constructed using adders (Pavli-
dis and Gizopoulos, 2014). Although classically tractable, the design of 
the arithmetic part of the method usually requires considerable in-
genuity in order to minimize the number of gates used and reduce the 
operational error, especially because all the operations must be con-
ducted in a reversible way, making actual implementations highly 
non-trivial, as we have mentioned previously. 

If checking that reversible adders are used in the most computa-
tionally critical part of the probably most important quantum algorithm 
were not enough to highlight the importance of such circuits, there are 
more examples. In addition to Shor’s algorithms, quantum methods for 
achieving a quadratic speedup over classical algorithms in search and 
detection tasks have been proposed, most notably Grover’s algorithm 
(Grover, 1996) and quantum walks (Venegas-Andraca, 2012). Although, 
in general, these methods do not involve arithmetical operations, they 
use a quantum oracle that is problem-depending and that may, in some 
cases, benefit from optimized reversible circuits for addition, as for 
instance when algebraic structures are involved (Combarro et al., 2019a; 
Combarro et al., 2019b). 

Then, to build a circuit that implements any of these algorithms, is it 
necessary to design a reversible adder? Are there alternatives already 
implemented? In the literature, there is a wide variety of reversible 
circuits for basic arithmetic operations such as addition or multiplica-
tion. However, it is not always easy to analyze or compare them, 
because, on the one hand, the reported figures of merit are not consistent 
from one author to another and, on the other, not all parameters that are 
of potential interest are always clearly acknowledged. How can we know 
if a circuit is the right one for us if we do not have all of its information? 
How do we know that there is no better one? 

For these reasons, together with the above mentioned connections of 
reversible circuits to computation energy reduction and to quantum 
computing, we think that a thorough, exhaustive, clear and impartial 
review of the existing reversible circuits for binary addition is needed. A 
review that seeks and establishes suitable metrics to accurately and 
verifiably measure a reversible circuit. A review that finds and analyzes 
the state-of-the-art adders based on these metrics, conveniently and 
visually offering all this information to anyone interested in using a 
reversible adder. A review that, in summary, is a reliable database of 
reversible adders. In this work, we aim to provide such a review, with 
special emphasis on being consistent on the parameters under which the 
circuits are evaluated and on highlighting their particular merits and 
flaws. We report the analysis of more than 40 references on reversible 
adders, clearly classifying them according to their different types and 
studying all their relevant parameters (including delay, quantum cost 
and the presence of garbage outputs). We also summarize all the perti-
nent information in several tables that interested researchers can quickly 
refer to in order to select the adder that is more suitable for their needs 
and provide original figures that exemplify some of the most prominent 
reversible adders for some values of their inputs. 

The rest of the paper is organized as follows. In Section 2, we 
introduce and explain the different metrics that will be used to compare 

all the reversible adders studied in this work (Section 2.1), explaining 
how we have used them to carry out the review (Section 2.2). Since the 
adders are analyzed and compared based on their methodology, the 
types of adders and their main characteristics are presented in Section 3. 
Section 4 reviews the reversible adders that have been proposed in the 
literature, paying attention first to half-adders (Subsection 4.1), then to 
full adders (Subsection 4.2) and, finally, to carry propagate adders 
(Subsection 4.3, which includes ripple-carry adders and carry- 
lookahead adders). The comparison of all these adders is carried out 
in Section 5, where we also provide summary tables for quick reference 
of our findings in each category. Finally, in Section 6, we raise some 
conclusions of our study. 

2. Metrics 

2.1. Choice and justification of metrics 

In the classical, non-reversible setting, measuring the complexity of a 
digital circuit is usually straightforward. A set of universal gates (for 
instance, AND, OR and NOT or just NAND) is fixed and the circuit 
complexity can be computed as the number of gates plus the number of 
bits that are needed to implement it together with a measure of its depth 
(which captures how many gates can be executed in parallel). When 
dealing with reversible circuits, in addition to considering the number of 
gates and the depth of the circuit, it is also important to take into account 
other aspects, such as the presence of garbage outputs. Also, as previ-
ously mentioned, one of the most important applications of reversible 
circuits comes from its use in quantum computing, something that af-
fects the gates that can used to decompose the circuits. For these reasons, 
in this section we clearly define the parameters that will be used 
throughout the paper in order to study the complexity of reversible 
adders. 

There are a large number of adder circuits available for quantum 
computing, as will be seen in this review. They all have a common goal: 
to make the addition of two numbers as efficient as possible. However, 
the concept of efficiency often changes among the authors of these cir-
cuits. And most importantly, each author frequently measures his circuit 
using the metrics he considers appropriate or even metrics defined by 
himself. Comparing adders becomes a tedious task because each circuit 
has been evaluated differently and therefore their metrics cannot be 
directly compared. We want to illustrate this problem with a specific 
example. Li et al. presented in Mohammadi et al. (2020) an adder which 
involves 28 quantum gates to perform and addition between two 5-digit 
binary numbers. On the other hand, Gidney presented an adder that 
needs 29 gates to perform the same operation (Gidney, 2018). However, 
none of them mentioned this information in their results. Li et al. eval-
uated their circuit in terms of the quantum cost and delay, while Gidney 
measured his circuit in terms of the T-count. This example reveals the 
difficulty in comparing the different quantum adders and the need to 
carry out a comparative study according to a wide and recognized set of 
characteristic parameters associated with quantum circuits. 

The objective is to measure and to compare the existing adders using 
a common methodology that allows a direct comparison between them, 
also avoiding differences in the nomenclature. For instance, the quan-
tum cost of a circuit is defined in several works as the number of gates 
which composes a circuit. According to this, a circuit which consists of 2 
Toffoli gates has the same quantum cost than other circuit which con-
sists of 2 CNOT gate s. Taking into account that a Toffoli gate is 
composed of 2 CNOT gates and other 3 gates (Nielsen and Chuang, 
2011), this definition of quantum cost is imprecise. Moreover, an entire 
personalized circuit built with 5 Toffoli gates could be defined as a novel 
reversible gate, being its quantum cost 1. Comparing this new gate with a 
circuit which has 2 Toffoli gates would show that the first one has a 
quantum cost of 1 and the second one a quantum cost of 2. 

This review is focused on the digital and logic levels of the adders. 
Therefore, exact and verifiable metrics at these levels are desirable. For 
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these reasons, the metrics defined in Mohammadi et al. (2009) are fol-
lowed. Four parameters are defined in Mohammadi et al. (2009) to 
evaluate reversible circuits:  

• Quantum Cost (QC): the quantum cost of a circuit or a X × X gate is 
defined as the number of the 1 × 1 and 2 × 2 gates which composes 
it. The quantum cost of 1 × 1 and 2 × 2 gates is 1. This is a sensible 
metric, since we are mainly interested in the possibility of using 
arithmetical reversible circuits in quantum computing and most 
quantum computers use only 1 × 1 and 2 × 2 gates as primitives.  

• Delay (D): the delay of a circuit defines its speed. A higher delay 
implies that a circuit is slower. △ is the unit of delay defined in 
Mohammadi et al. (2009). 1 × 1 and 2 × 2 gates have a delay of 1△. 
The delay of a circuit or a X × X gate is defined by the number of 1 ×
1 or 2 × 2 which must be computed sequentially. Therefore, if 2 or 
more gates can be computed in parallel, the delay will be determined 
by the delay of the slowest gate. To facilitate the evaluation of the 
delay, several schematic diagrams of this work graphically analyze 
the steps to complete the corresponding specific operations.  

• Number of auxiliary Inputs (I): inputs which are set to a constant 
value (usually 0 or 1) and are used to do auxiliary operations.  

• Garbage Outputs (GO): outputs which cannot be used at the end of 
the circuit since they have useless values. Garbage outputs must be 
reversibly removed (uncomputed) or these outputs may not be used 
later, which would result in a waste of resources. An output which is 
uncomputed to its original (and known) value is not considered as a 
garbage output. Uncomputing garbage outputs is especially impor-
tant if the circuits are to be used in quantum computations, for 
garbage outputs can prevent the interference that quantum algo-
rithms need to work properly. 

According to Mohammadi et al. (2009), the quantum cost and delay 
of the basic gates used by the adders studied in this work are shown in 
Table 1, and their symbols in Fig. 1. Several gates are only used in 
specific adders, and they are analyzed along such adders. 

The final idea is to show as much useful information as possible 
about a circuit (using the same metrics across all circuits to enable 
comparisons), understanding that there is no single better parameter. 
For example, on a machine with few resources, the general interest 
might be to reduce the number of qubits and the quantum cost; while in 
a machine that has more resources the interest could be to reduce the 
delay. However, we recognize that these metrics are not perfect and that 
it needs to be supplemented in some aspects. First, and as described 
below, there are various methodologies for performing addition. That is 
why we have considered it appropriate to classify and compare the ad-
ders according to their methodology instead of making a single com-
parison. The types of adders are explained in the next section. Second, 
there is a growing interest in implementing adders that allow the use of 
error detection and correction codes. These adders suffer from an in-
crease in their metrics, but they have the advantage that they allow such 
error handling. In the review, we considered it convenient to indicate 
which adders have this capacity. It is important to mention that in these 
cases, the implementation of the gates in Table 1 may be different, 
increasing the quantum cost and the delay due to, usually, the 

incorporation of T gates. In relation to this matter, we also want to 
remark the work done in Gidney (2018), which is focused on improving 
the number of T gates needed to build N-bit adders. 

There is a third point to consider. As it has been mentioned, this work 
is focused on the logic level of the adders. However, it must be remarked 
that behind this level there are several physical realizations of these 
reversible gates and circuits like quantum computation, optic compu-
tation, quantum-dot cellular automata or ultra low power VLSI design 
(Thapliyal and Ranganathan, 2010). Each of these technologies has its 
own rules and limitations, which are out of the scope of this paper. For 
instance, we use the version of the Toffoli gate described in Nielsen and 
Chuang (2011) (except for several adders focused on error detection) 
since it optimizes the quantum cost and delay. Nevertheless, in linear 
optics, it is more important to optimize the number of controlled-unitary 
gates since the CNOT gate can only be probabilistically implemented 
(Orts et al., 2019). In these terms, versions of the Toffoli gate like the 
presented in Lanyon et al. (2009) and Lemr et al. (2015) are better op-
tions than the one described in Nielsen and Chuang (2011) since they are 
focused in reducing the number of controlled gates. 

2.2. Review methodology 

In this review, we have tried to analyze all the adders published at 
the time of writing these lines. However, it could be possible that we did 
not notice the existence of some adders due to the enormous amount of 
related works, which sometimes include the design of adders as part of a 
larger circuit without indicating it externally. Therefore, the existence of 
such adders goes unnoticed by anyone who does not read the article in 
depth. On the other hand, we have tried to make a thorough review in 
terms of the metrics described in the previous subsection. We have not 
limited ourselves to gather the information described in each work, but 
we have 1) implemented and tested the corresponding adder, and 2) 
measured the circuit using the proposed metrics. 

For the implementation and testing of each adder, we have used the 
ProjectQ simulator, an open-source software framework for quantum 
computing (Steiger et al., 2018). The circuits have been implemented in 
Python under this framework and subjected to software tests to verify 
their correct operation. On the other hand, the measurement in terms of 
the metrics of Mohammadi et al. (2009) has also been done in Python 
over the circuits taking into account the following:  

• The quantum cost can be easily measured setting a weight for each 
circuit and multiplying the number of gates of each type by its 
weight.  

• The delay can be measured by dividing the circuit into levels in 
which no qubit acts twice. The delay of each level is given by the gate 
with the greatest weight.  

• To count the number of ancilla inputs is trivial.  
• The number of garbage outputs is measured by labeling the qubits 

which are not used to contain the result, and checking if they have 
been reverted symmetrically. 

Some circuits offer designs adaptable to variable data size. In these 
cases, the circuit has been implemented in a way that dynamically 
adapts to the size of the input data. Thus it is possible to obtain the 
corresponding equation to each metric since the part to repeat of each 
circuit to increase it by each digit is perfectly defined. 

Finally, we have made a comparison with the information obtained, 
gathering this information in tables to facilitate both its understanding 
and its use. In order not to make the comparison unnecessarily long, 
some of the analyzed adders have not been included. The main reason 
for discarding is the presence of garbage outputs in circuits that do not 
improve in any metric to those that do not present garbage outputs. 

2.2.1. About the implementation of functions 
Several types of adders are presented in the next section. The first 

Table 1 
Gates and their quantum cost and delay.  

Gate QC D 

Pauli-X 1 1 
V 1 1 
V+ 1 1 
Feynman/CNOT 1 1 
Controlled-V 1 1 
Controlled-V+ 1 1 
Peres (Hung et al., 2006) 4 4 
Toffoli (Nielsen and Chuang, 2011) 5 5  
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two, called half adder and full adder, are functions that implement a truth 
table of 2 and 3 inputs, respectively (see Tables 2 and 3). However, the 
implementation of these small functions has no merit: since we have the 
optimal implementations for the gates described in Table 1, it is possible 
to determine the optimal design of these functions in terms of the met-
rics described in this work using a SAT solver (Große et al., 2008). 
However, for the completeness of the review, we have included the 
analysis corresponding to the half and full adders. 

2.2.2. About error detection and correction codes 
We have mentioned that when analyzing an adder, we indicate 

whether or not it is fault-tolerant. However, an equivalent but fault- 
tolerant circuit can be obtained from any adder presented in this re-
view by following these steps:  

1. To apply the “Initial expansion algorithm” presented in Miller et al. 
(2014) to map the adder into a Clifford + T Circuit.  

2. To remove redundant gates if necessary.  
3. To minimize and parallelize the T gates according to the method 

described in He et al. (2019). 

This review focuses on finding, analyzing, and comparing the work 
done by authors, so we do not make this adaptation in the circuits. 
Therefore, when in this review it is indicated that a circuit is fault- 
tolerant, it is because the authors of the adder have oriented its meth-
odology to optimize it in these terms. In other words, authors present a 
circuit already prepared for fault-tolerance. 

3. Types of adders 

Addition is one of the basic operations in digital systems (Harris and 
Harris, 2015). Despite its apparent simplicity, there are a wide variety of 
ways to implement an adder. Since the review analyzes and catalogs the 
adders according to their type, it is important to make clear what each of 
the different types of adders consists of. 

We have followed the terminology and classification order of adders 
described in Harris and Harris (2015) for classical adders:  

• The half adder is the simplest case of an adder. This kind of circuit has 
two inputs: two digits A and B. Its objective is the computation of A 
+ B. Notice that the result of the half adder needs two digits as the 
case 1 + 1 returns 10. Therefore, the half adder has two outputs: S, 
which contains the least significant digit of the addition, and Cout, 
which contains the most significant digit (usually called carry out). 

Table 2 shows the truth table of the half adder. As consequence, it 
can be established that Cout = AB and S = A ⊕ B.  

• A full adder is similar to a half adder, but accepting the carry in, Cin, 
as an input. Therefore, a full adder has 3 inputs (A, B and Cin) and 2 
outputs S and Cout. According to its truth table (Table 3), it can be 
deduced that S = A ⊕ B ⊕ Cin and Cout = AB + ACin + BCin.  

• Carry propagate adders are able to sums two N-bit numbers A and B 
(usually with a carry in Cin). Their output consists on a N-bit number 
S, the result of the addition, and the carry out of that operation, Cout. 
The name carry propagate adder is used because the Cout of every pair 
of bits Ai and Bi is propagated into the next pair Ai+1 and Bi+1 (Harris 
and Harris, 2015). There are two kinds of carry propagate adders: 
ripple-carry adders and carry-lookahead adders. 
– A N-bit ripple-carry adder is built chaining N full adders, just con-

necting the Cout output of every full adder with the Cin input of the 
next full adder. This is shown in Fig. 2. 

– Carry-lookahead adders divide the addition into blocks to accel-
erate the computation of the carry out. 

4. Analysis of adders 

4.1. Half adder 

On the one hand, a half adder can be built using a Toffoli gate to 
compute Cout = AB followed by a CNOT gate to compute S = A ⊕ B 
(Nielsen and Chuang, 2011). This circuit has a quantum cost of 6, a delay 
of 6△, an auxiliary qubit and no garbage outputs, as it is shown in 
Fig. 3. This design has been widely used to implement schemes in 
different experimental systems (Chatterjee and Roy, 2015; Barbosa, 
2006; Srivastava et al., 2017; Wu and Cain, 2014; Dridi et al., 2015; 
Eloie et al., 2018). 

On the other hand, the Peres gate (Peres, 1985) can also act as a half 
adder (Akbar et al., 2011; Batish et al., 2018). The version of the Peres 
gate presented in Hung et al. (2006) achieves the best quantum cost 
among the 3 × 3 reversible gates (Thapliyal and Ranganathan, 2010). 
This version consists of 1 CNOT gate, 1 Controlled-V gate and 2 Con-
trolled-V+ gates. The Peres gate has 3 inputs A, B and C, and produces 3 
outputs P = A, Q = A ⊕ B and R = AB ⊕ C. Setting C = 0, the outputs are 
P = A, Q = A ⊕ B and R = AB, which are the outputs of a half adder. 
Fig. 4 shows this use of the Peres gate. It has a quantum cost of 4, a delay 

Fig. 1. Gates symbols: (a) Pauli-X, (b) V, (c) V+, (d) Feynman/CNOT, (e) Controlled-V, (f) Controlled-V+, (g) Peres and (h) Toffoli.  

Table 2 
Truth table of the half adder.  

A B Cout S 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0  

Table 3 
Truth table of the full adder.  

Cin A B Cout S 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1  
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of 4△, an auxiliary qubit and no garbage outputs. 
In Yamashita et al. (2008), a quantum circuit for half adder is 

mentioned in Fig. 3 of Section 2.2 as an example of semi-classical 
quantum circuit. The circuit is reproduced in Fig. 5. It has a quantum 
cost of 5 and a delay of 5△. To illustrate how it works, its truth table is 
shown in Table 4. In a similar way than the Peres gate, this circuit works 
as a half-adder if C is set to 0 and the variables P and Q denote Cout and S, 
respectively. Considering this case, the circuit has not garbage output 
and an auxiliary qubit. 

There are several reversible half adder/subtractors (that is, circuits 
which compute half addition and subtraction at once) in the literature. 
These circuits have a quantum cost higher than regular half adders since 
they also perform the subtraction. A fault tolerant1 full adder/subtractor 
using reversible gates was presented in Kaur and Dhaliwal (2012). The 
circuit of Kaur and Dhaliwal (2012) consists of two Feynman double 
gates (quantum cost 2 (Parhami, 2006)) and two Fredkin gates (quan-
tum cost 5), with a total quantum cost of 14, the same delay, 3 auxiliary 
inputs, 1 selection qubit and 3 garbage outputs. Sarma and Jain (2018) 
presented a novel reversible half adder and subtractor circuit. This 

circuit has a quantum cost of 5, the same delay, 1 auxiliary qubit and no 
garbage outputs. It is shown in Fig. 6. Authors named this circuit RSG 
gate, and it can also be used to build a full adder/subtractor circuit. That 
functionality will be analyzed in the next section. In the same year, 
2018, Balaji et al. (2018) presented a fault tolerant half adder/-
subtractor, which is similar in term s of quantum cost to Kaur and 
Dhaliwal (2012) (it also consists of two Fredkin gates and two Feynman 
double gates). The circuit of Balaji et al. (2018) improves the number of 
garbage outputs and auxiliary inputs, from 5 to 3 and from 4 to 2 
respectively. However, it has fan-out. Fan-out is not allowed in revers-
ible logic design (Nielsen and Chuang, 2011). Both circuit s are shown in 
Fig. 7 and Fig. 8. 

4.2. Full adder 

A simple way to build a full adder is to use three half-adders. A first 
half adder is used to compute S1 = A ⊕ B and Cout1 = AB. Then, a second 
half adder computes S = S1 ⊕ Cin and Cout2 = S1Cin. Finally, a third half 
adder computes Cout = Cout2 ⊕ Cout1 and an unused value (garbage) 

Fig. 2. N ripple-carry adder.  

Fig. 3. Quantum implementation of the half adder proposed in Nielsen and 
Chuang (2011). 

Fig. 4. Peres gate acting as a half adder, using the quantum implementation 
proposed in Hung et al. (2006). 

Fig. 5. Quantum implementation of the half adder presented in Yamashita 
et al. (2008). 

Table 4 
Truth table of the half adder of Fig. 5.  

A B C P Q R 

0 0 0 0 0 0 
0 0 1 1 0 1 
0 1 0 0 1 0 
0 1 1 1 0 1 
1 0 0 0 1 1 
1 0 1 1 1 0 
1 1 0 1 0 0 
1 1 1 0 0 1  

Fig. 6. Quantum implementation of the reversible half adder and subtractor 
circuit presented in Sarma and Jain (2018). 

1 A fault tolerant circuit protects the information while it dynamically un-
dergoes computation. This kind of circuit is specially useful since the error 
probability per gate is guaranteed to be lower than a given constant threshold. 
Of course, they need extra quantum cost to achieve this result (Nielsen and 
Chuang, 2011). Although interesting, the study of the techniques used to ach-
ieve this remarkable result is beyond the scope of this review. 
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Cout2Cout1. This circuit is shown in Fig. 9, and can be built using any of 
the half adders described in the previous subsection. However, this 
design can be improved using 2 Peres gates (Bhagyalakshmi and Ven-
katesha, 2010). A first Peres gate computes Q = A ⊕ B and R = AB 
(second and third outputs respectively), and a second one accepts Q, Cin 
and R as inputs to compute S = Q ⊕ Cin and Cout = QCin ⊕ R (second and 
third outputs respectively). This circuit can be seen in Fig. 10. It has a 
quantum cost of 8, a delay of 8△, 1 auxiliary qubit and 1 garbage 
output. These metrics have been calculated considering the version of 
the Peres gate presented by (Hung et al., 2006). 

Khlopotine et al. (2002) proposed a full adder which uses the Fredkin 
gate (the Fredkin gate has a quantum cost of 5). This circuit consists of 5 
Fredkin gates, so it has a quantum cost of 25. This version was improved 
in Bruce et al. (2002), reducing the necessary number of Fredkin gates 
into 4. In 2004, Cuccaro et al. (2004) proposed a new ripple-carry adder. 
It is based in 2 components (gates): a gate called Majority (MAJ), and 
another called UnMajority (UMA). These two gates can be combined to 
act as a full adder. The MAJ gate has three inputs, Cin, B and A, and three 
outputs, U = Cin ⊕ A, V = B ⊕ A and Cout. Once the MAJ gate has been 
applied, Cout must be used or saved since the computation of the UMA 
gate will reverse this value into A. When the use of Cout is finished, the 
UMA gate is computed. It has three inputs (U, V and Cout) and three 
outputs: Cin and A (those values are reversed to avoid garbage outputs) 
and the sum S. The complete circuit to compute this process is shown in 
Fig. 11. It has a quantum cost of 14, the same delay, 0 auxiliary qubits 
and no garbage outputs (the complete ripple-carry adder of Cuccaro 
et al. (2004) will be analyzed in a later section). The design of Cuccaro 
et al. (2004) was improved in later works (Takahashi and Kunihiro, 

2005; Takahashi and Kunihiro, 2008; Trisetyarso and Van Meter, 2010; 
Meter et al., 2008). In 2016, Wang et al. (2016) proposed a new design 
which keeps Cout. This circuit is shown in Fig. 12. It has a quantum cost 
of 10, a delay of 8△, 1 auxiliary qubit and no garbage outputs. 

Maslov et al. (2008) designed a full adder which consists of 1 Con-
trolled-V+ gate, 3 Controlled-V gates and 2 CNOT gates. As it is shown in 
Fig. 13, this adder has a quantum cost of 6, a delay of 4△, 1 auxiliary 
qubit and 1 garbage output. In Nagamani et al. (2014), it was presented 
a full adder with a quantum cost of 12, delay 12△ and keeping 1 
auxiliary qubit but avoiding garbage outputs. A circuit proposed in 
Thapliyal (2016) improves them. This circuit has the same quantum 
cost, delay and number of auxiliary qubits than (Maslov et al., 2008), but 
with no garbage outputs. It consists of 3 Controlled-V+ gates, 1 Con-
trolled-V gate and 2 CNOT gates. The circuit of Thapliyal (2016) is 
shown in Fig. 14. Also in 2016, Singh and Rai (2016) proposed two 
alternative designs of full adder based on reversible gates, but none of 
them improves the adder of Thapliyal (2016). The best of the adders of 
Singh and Rai (2016) has a quantum cost of 8, a delay of 8△, 1 auxiliary 
input and 1 garbage output. 

Several fault tolerant full adders have been proposed. As it was 
mentioned, a fault tolerant circuit has a higher quantum cost because of 
parity preservation (Valinataj et al., 2016). For instance, Mitra and 
Chowdhury (2012) proposed a fault tolerant full adder with a quantum 
cost of 11, the same delay, 2 auxiliary inputs and 3 garbage outputs. 

Fig. 7. Circuit of reversible fault tolerant half Adder/subtractor proposed in 
Kaur and Dhaliwal (2012). F2 represents a Feynman double gate, and FK a 
Fredkin gate. 

Fig. 8. Circuit of reversible fault tolerant half Adder/subtractor proposed in 
Balaji et al. (2018). F2 represents a Feynman double gate, and FK a Fred-
kin gate. 

Fig. 9. Quantum implementation of a full adder using half adders.  

Fig. 10. Quantum implementation of a full adder using two Peres gates.  

Fig. 11. Full adder proposed in Cuccaro et al. (2004). It consists of two gates 
called MAJ and UMA. Cout must be used before applying the UMA gate. 

Fig. 12. Full adder proposed in Wang et al. (2016). The first sub-circuit S1 
computes Cout and the second one computes S starting from the outputs of S1 
without erasing Cout. 
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Previously to Mitra and Chowdhury (2012), several fault tolerant full 
adders were proposed: (Islam et al., 2009a) with a quantum cost of 14 
and 3 garbage outputs, Bruce et al. (2002) which has been already 
analyzed in this section, and Haghparast and Navi (2008) with a 
quantum cost of 18 and 6 garbage outputs. Other fault tolerant adders 
are (Islam et al., 2009b) with a quantum cost of 14 and 3 garbage out-
puts, Dastan and Haghparast (2011) with a quantum cost of 14 and 3 
garbage outputs, and Zhou et al. (2014) with a quantum cost of 8, delay 
7 and 2 garbage outputs (Fig. 15). The circuit of Valinataj et al. (2016) 
has a quantum cost of 10 and 3 garbage outputs, but it offers interesting 
benefits against (Zhou et al., 2014) in terms of the transistor count or the 
total logical calculation (the number of XOR, AND, and NOT operations). 

Similar to what happened with half adders, there are several 
reversible full adder/subtractors in the literature. Again, these circuits 
have a quantum cost higher than normal full adders since they also 
perform the subtraction. Rangaraju et al. (2010) proposed three designs. 
The best one consists of 2 CNOT gates and 2 Peres gate. It has a quantum 
cost of 10, the same delay, 1 auxiliary qubit and 3 garbage outputs. It 
also needs an extra selection qubit in order to select the operation to be 
computed (addition or subtraction). The half adder/subtractor of Kaur 
and Dhaliwal (2012) can be used to build a fault tolerant full adder/-
subtractor. 2 of these half adder/subtractors and 1 Feynman double gate 
(quantum cost 2 (Parhami, 2006)) are needed, with a total quantum cost 
of 30, the same delay, 9 auxiliary inputs, 1 selection qubit and 11 
garbage outputs. A similar circuit was proposed in Saligram and Rak-
shith (2013), which consists of 4 Feynman double gates and 2 Fredkin 
gates, reducing the quantum cost to 18, the auxiliary inputs to 5 and the 
number of garbage outputs to 6. Moreover, Kumar et al. (2017) 
improved this design, using 3 Feynman double gates and only 1 Fredkin 
gate (total quantum cost of 11). It has 4 garbage outputs and 4 auxiliary 

inputs. The full adder of Thapliyal (2016) (Fig. 14) can be converted into 
a full adder/subtractor adding a selection qubit and a CNOT gate, having 
a quantum cost of 8 and a delay of 5△. On the other hand, the RSG gate 
presented in Sarma and Jain (2018), whose use as half adder/subtractor 
has been studied in the previous section, can be used to built a full 
adder/subtractor. It is able to compute both operations in parallel, 
without a selection qubit. This circuit has a quantum cost of 15, a delay 
of 10△, 1 auxiliary input and no garbage outputs. If we only consider 
the adder path of the circuit, the quantum cost is reduced to 10. Also in 
2018, Balaji et al. (2018) proposed a fault tolerant full adder/subtractor 
using its half adder/subtractor described in the previous section. The 
complete circuit requires 2 of those half adder/subtractor s (quantum 
cost of 14 each one) and 1 Feynman double gate. Its final quantum cost is 
30, with 5 auxiliary inputs and 3 garbage outputs. 

In Batish et al. (2018), a comparative analysis for performance 
evaluation of reversible full adders is carried out. As a part of the 
analysis, they considered several methods to implement full adders 
using reversible gates:  

• Full adder using PCTG gates: the PCTG gate consists of 1 Fredkin gate 
and 1 Feynman double gate. The full adder is built using 2 of these 
gates and 2 Feynman double gate s. As it is shown in Fig. 16, it has a 
quantum cost of 18, the same delay, 5 auxiliary inputs and 6 garbage 
outputs.  

• Full adder using BKG gates: this gate was defined in Bhuvana and VS 
(2016). In that work, it is said that the BKG has a quantum cost of 1 
since it is only 1 gate. However, according to the metrics of 
Mohammadi et al. (2009), a 4 × 4 gate cannot have a quantum cost 
of 1. The internal design of this gate is not described. It is detailed 
that it has four inputs A, B, C and D, and four outputs 
P = A,Q = AD ⊕ C,R = (AD⊕C) ⊕ B and S = (AD⊕C)B ⊕ AC ⊕ AD. 
Setting D = 0, it acts as a full adder with 1 garbage output.  

• Full adder using DKG gates: this circuit is defined in Krishnaveni 
et al. (2012). Similar to BKG gate, the internal design of this gate is 
not described. It has four inputs A′, B′, C′ and D′, and four outputs 
P = B′

,Q = A′C′

+ A′D′
,R = (A′

⊕B′

)(C′

⊕D′

) ⊕ C′D′ and S = B′ ⊕ C′

⊕ D′. If the inputs were set to A′ = 0, B′ = A, C′ = B and D′ = Cin, the 
outputs would be P = A, Q = B, R = A(B ⊕ C) ⊕ BC = Cout and S = A ⊕
B ⊕ C = Sum. According to Mohammadi et al. (2009), it has no 
garbage outputs.  

• Full adder using Peres gates: this can be seen in Fig. 10.  
• Full adder using Peres and CNOT gates: this idea was introduced in 

Rohini and Rajashekar (2016). It s quantum cost is higher than the 
version of Fig. 10, and it has more garbage outputs.  

• Full adder using IG gates: the IG gate was presented in Islam et al. 
(2009c). It has 4 inputs A, B, C and D, and four outputs P = A, Q = A 
⊕ B, R = AB ⊕ C, and S = BD ⊕ B(A⊕D). Two IG gates connected in 
cascade can act as a full adder, as shown in Fig. 17. It has 3 garbage 
outputs. Once again, the internal design is not covered. 

Fig. 13. Full adder proposed in Maslov et al. (2008).  

Fig. 14. Full adder proposed in Thapliyal (2016).  

Fig. 15. Fault tolerant full adder proposed in Zhou et al. (2014).  
Fig. 16. Full adder using PCTG gates. A PCTG gate consists of 1 Fredkin gate 
(FK) and 1 Feynman double gate (F2). 

F. Orts et al.                                                                                                                                                                                                                                     



Journal of Network and Computer Applications 170 (2020) 102810

8

• Full Adder using Feynman and Fredkin gates: this full adder is the 
version proposed in Singh and Rai (2016), which has already been 
studied in this section. 

4.3. Carry propagate adder 

4.3.1. Ripple-carry adder 
Since a N-digit ripple-carry adder is composed of N full adders, its 

QC, D, I and GO are given by the following equations: 

QCripple = N⋅QCfulladder
Dripple = N⋅Dfulladder
Iripple = N⋅Ifulladder

GOripple = N⋅GOfulladder 

If the ripple-carry adder did not have carry in (Cin = 0), the least 
significant full adder could be replaced by a half adder. In this case, the 
equations are: 

QCripple = (N − 1)⋅QCfulladder + QChalfadder
Dripple = (N − 1)⋅Dfulladder + Dhalfadder
Iripple = (N − 1)⋅Ifulladder + Ihalfadder

GOripple = (N − 1)⋅GOfulladder + GOhalfadder 

It is possible to use any of the full adders of subsection 4.2 to build a 
ripple-carry adder. For the case Cin = 0, the least significant full adder 
can be replaced by any of the half adders of subsection 4.1. Ripple-carry 
adders are the best of the carry propagate adders in terms of quantum 
cost. However, due to their linear nature, they have a delay higher than 
others adders since the carry signals must propagate though every pair 
of bits Ai and Bi (Harris and Harris, 2015). In terms of quantum com-
puters, which currently have few resources, this kind of adders are the 
best option as they minimize the quantum cost. 

In addition to the ripple-carry adders that can be formed by 
combining the described full (and half) adders, it is worth noting some 
special cases. For instance, in Cuccaro et al. (2004) a ripple-carry adder 
is built using their full adder (Fig. 11). Then, this ripple-carry adder is 
optimized swapping and avoiding unnecessary gates. Assuming Cin = 0, 
the circuit can be even optimized further. For the general case, the cir-
cuit needs 2N − 1 Toffoli gates, 5N − 3 CNOT gates, and 2N − 4 Pauli-X 
gates, with a total quantum cost of (2N − 1) × 5 + (5N − 3) × 1 + (2N −
4) × 1 = 17N − 12. The delay is 10N△ as it has 2N − 1 Toffoli 
time-slices and 5 CNOT time-slices ((2N − 1) × 5 + 5 × 1). It has 1 
auxiliary input and no garbage outputs. As an example, the optimized 
circuit for the case N = 6 is shown in Fig. 18. Other proposals in the 
literature which presented a ripple-carry adder without Cin are (Taka-
hashi and Kunihiro, 2005) (Quantum cost: 26N − 29, delay: 24N −
27△, number of auxiliary inputs: 0, number of garbage outputs: 0), 
(Takahashi et al., 2010) (QC: 15N − 9, D: 13N − 7△, AI: 0, GO: 0), and 
Thapliyal and Ranganathan (2013) (QC: 13N − 8, D: 11N − 4△, AI: 0, 
GO: 0). The circuit of Thapliyal and Ranganathan (2013) is shown in 
Fig. 19 for the case N = 4. 

On the other hand, there are several proposals (Cuccaro et al., 2004; 
Vedral et al., 1996; Skoneczny et al., 2008) which consider the input Cin. 
Thapliyal and Ranganathan (2011) presented an adder which optimizes 
the reduction of the computation in the ripple-carry process thanks to 
the use of a new gate called TR. This gate was defined in Thapliyal and 
Ranganathan (2009), but in Thapliyal and Ranganathan (2011) is 
optimized, using only 1 CNOT gate, 2 Controlled-V gates and 1 Con-
trolled-V+ gate. It has a quantum cost of 4 and a delay of 4△. The 
resulting adder has a quantum cost of 15N − 6, a delay of 9N + 5△, and 
neither auxiliary inputs nor garbage outputs (Fig. 20). The ripple-carry 
adder of Nagamani et al. (2014) improves the quantum cost and delay of 
Thapliyal and Ranganathan (2011) (12N and 10N△ respectively) at the 
cost of using 4N auxiliary inputs. The optical reversible ripple-carry 
adder with Cin proposed in Kotiyal (2016) is remarkable. It is not bet-
ter than (Thapliyal and Ranganathan, 2011) in terms of the metrics of 
Mohammadi et al. (2009), but it improves it in terms of optical cost. 
Optical cost is one of the most important metric parameters in optical 
computing. 

Moving away from the goal of reducing the quantum cost, Gidney 
presented an alternative gate to the Toffoli gate focused on reducing the 
cost of T gates (Gidney, 2018). This new gate has a higher quantum cost 
than the Toffoli gate if we consider the version proposed in Nielsen and 
Chuang (2011). However, it improves upon Toffoli gate implementa-
tions focused on fault-tolerance. As an example of the advantages of this 
gate (called temporary logical-AND), the author proposes an imple-
mentation of a fault-tolerant adder. This circuit has a quantum cost of 

Fig. 17. Full adder using IG gates.  

Fig. 18. Ripple-carry adder for N = 6 (assuming Cin = 0) proposed in Cuccaro et al. (2004).  
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18N − 2, a delay of 15N − 5△, and requires N ancillary entries and 
0 garbage outputs. Although these numbers are worse than previous 
circuits, that is due to their fault tolerance. 

At the time of writing this article, the last adder in this category 
corresponds to the one published by Li et al. (Mohammadi et al., 2020). 
This adder combines Peres and TR gates to achieve the addition with a 
quantum cost of 13N − 10, a delay of 10N − 4, only 1 ancilla input and 
no garbage outputs. An example of this adder is shown in Fig. 21. The 
authors of this adder also describes its implementation in terms of T 
gates, obtaining an equivalent but error-oriented circuit. This second 
version has a quantum cost of 35N − 25, a delay of 16N − 3, and the 
same number of ancilla inputs and garbage outputs (1 and 0, 
respectively). 

4.3.2. Carry-lookahead adder 
This kind of adders employs two special signals to compute the carry 

out: generate signal (G) and propagate signal (P) (Harris and Harris, 

2015):  

• The carry out Cout of a pair of bits Ai and Bi is always 1 if both values 
are 1. This is called generation of a carry. Following this idea, Gi, the 
generate signal for the i-th pair, can be computed as Gi = AiBi.  

• If a carry out Cout is produced when there is a carry in Cin, it is said 
that the carry is propagated. Pi, the propagate signal, can be computed 
as Pi = Ai + Bi. 

Considering both signals, the carry out can be computed as: 

Ci = AiBi + (Ai +Bi)Ci− 1 = Gi + PiCi− 1 

These adders are faster than the previous 1 s. However, they have a 
higher quantum cost since they need more operations to anticipate the 
computation of the Gi and Pi signals (Harris and Harris, 2015). 

In 2004, Draper et al. proposed a logarithmic-depth reversible carry- 
lookahead adder which improves the delay of the previous linear -depth 

Fig. 19. Ripple-carry adder without carry in for N = 4 proposed in Thapliyal and Ranganathan (2013).  

Fig. 20. Ripple-carry adder with carry in for N = 4 proposed in Thapliyal and Ranganathan (2011).  

Fig. 21. Ripple-carry adder with carry in for N = 4 proposed in Mohammadi et al. (2020).  
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adders (Draper et al., 2004). It has a quantum cost of 28N − 15W(N) −
15log(N) − 6 (where W(N) represents the number of ones in the binary 
expansion of N), a delay of logN + logN/3 + 7, 5N/4 auxiliary inputs and 
no garbage outputs. Thapliyal et al. optimized the methodology to 
compute a carry-lookahead addition (without Cin), improving the 
quantum cost and delay of the previous adder (Thapliyal et al., 2013). It 
has a quantum cost of 26N − 15W(N) − 15log(N − 4) and a delay of logN 
+ logN/3 + 2. The optimization is possible by computing Gi and Pi in 
parallel, and also replacing several CNOT and Toffoli gates by Peres 
gates. The circuit involves the use of several ancilla inputs, Zgi and Zpi, to 
compute Gi and Pi respectively. An example of this circuit is shown in 
Fig. 22. It works as follow s:  

• Step 1: This step computes Gi+1 and Pi+1, where 0 ≤ i ≤ N − 1. Zg0 is 
transformed into Zg0⊕ = A0B0 with a Toffoli gate. For the case i > 0, 
Bi⊕ = Ai and Zgi⊕ = AiBi using Peres gates.  

• Step 2: This step computes Gi+2 and Pi+2, where 0 ≤ i ≤ N − 2 for G 
and 2 ≤ i ≤ N − 2 for P. Using Toffoli gates, compute Zpi⊕ = BiBi+1 
for i = 2 to N − 2 and Zgi+1⊕ = ZgiBi+1 for i = 0 to N − 2.  

• Step 3: This step computes Gi+3, Gi+4 and Pi+4, where i = N/2 and 
0 for G and i = N/2 for P. For i = N/2 and i = 0, compute Zpi+3⊕ =

Zgi+1Zpi+1. When i = N/2, compute Zpi+1⊕ = ZpiZpi+2.  
• Step 4: This step computes Gi+1 for i = N and i = N − 2. Compute 

Zgi− 1⊕ = Zgi− 3Zpi− 2 for i = N/2 and Zgi− 1⊕ = Zgi− 5Zpi− 3 for i = N. 
Also, this step uncomputes the values of Zp computed in step 3.  

• Step 5: For i = 2 to i = N − 2, transform Zgi into Zgi⊕ = Zgi− 1Bi, and 
Zpi+1 into Zpi+1⊕ = Zpi− 1Zpi+1 for i = N/2.  

• Step 6: Uncompute Zpi to avoid garbage outputs, and transform Zgi 
into Zgi⊕ = Bi+1 to compute Si+1.  

• Step 7: Compute S0 and uncompute Bi. 

Two reversible carry-lookahead adders were presented in Rahmati 
et al. (2017). They are shown (for the case N = 4) in Figs. 23 and 24. The 
first one has a quantum cost of (2 × N × 4) + (N × 1), better than the 

Fig. 22. Example of the carry-lookahead adder proposed in Thapliyal et al. (2013) for the case N = 8. It is built using Toffoli, CNOT and Peres gates. Ai and Bi are the 
numbers to be added, Cout are the carry out and Si are the digits of the sum. Zgi and Zpi are auxiliary inputs used to compute Gi and Pi respectively. 
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presented in Thapliyal et al. (2013). However, this circuit presents 3 × N 
garbage outputs, whereas the circuit of Thapliyal et al. (2013) has no 
garbage outputs. Following Bennett’s garbage removal scheme (Bennett, 
1973), it would be necessary to add N + 1 extra qubits to save Si and Cout, 
four extra CNOT gates to copy Si and Cout to those qubits, and to apply 

the reverse of the circuit. Therefore, uncomputing the garbage outputs 
would mean a final quantum cost of 2 × ((2 × N × 4) + (N × 1)) + N + 1, 
which is higher than the quantum cost of Thapliyal et al. (2013). The 
second adder presented in Rahmati et al. (2017) also presents garbage 
outputs, so the same procedure can be applied to it. Its final quantum 

Fig. 23. Example of the first design of a carry-lookahead adder proposed in Rahmati et al. (2017) for the case N = 4. It is built using CNOT and Peres gates. Ai and Bi 
are the numbers to be added, Cin and Cout are the carry in and the carry out respectively, Si are the digits of the sum, and gi are garbage outputs. 

Fig. 24. Example of the second design of a carry-lookahead adder proposed in Rahmati et al. (2017) for the case N = 4. It is built using CNOT and Peres gates. Ai and 
Bi are the numbers to be added, Cin and Cout are the carry in and the carry out respectively, Si are the digits of the sum, and gi are garbage outputs. 

F. Orts et al.                                                                                                                                                                                                                                     



Journal of Network and Computer Applications 170 (2020) 102810

12

cost and delay do not improve that of Thapliyal et al. (2013). 
A reversible adder presented in Lisa and Babu (2015) improves the 

quantum cost and delay of Thapliyal et al. (2013) using a novel tech-
nique for generating carry output. Nevertheless, it also has garbage 
outputs (Fig. 25). This adder was built using a new 4 × 4 gate called RPA 
(Reversible Partial Adder) gate, which has a quantum cost of 5 and delay 
5△. It also uses several 4 × 4 Fredkin gates (the 3 × 3 Fredkin gate has a 
quantum cost of 5 and the same delay). The quantum cost is 11N, but 
uncomputing the garbage outputs with (Bennett, 1973) would increase 
this number to 2 × 11N + (N + 1). For instance, for the case N = 4, this 
circuit would have a quantum cost of 93, whereas the adders of Rahmati 
et al. (2017) and Thapliyal et al. (2013) have 61 and 55 respectively. 

Focusing on fault-tolerance, Thapliyal et al. presented in Thapliyal 
et al. (2020) four adders based on their own design of Thapliyal et al. 
(2013) but optimizing the number of T gates at the cost of increasing the 
rest of the metrics. To achieve this optimization they use the Gidney’s 
temporary logical-AND gate. Through the four circuits they explore 
several combinations of temporary logical-AND and Toffoli gates to find 
the best possibilities in terms of T-count and number of ancilla inputs. At 
best, 2N − W(N) − log(N) + 1 ancilla inputs are required (as opposed to 
5N/5 of the original circuit). Their quantum cost and delay are much 
higher than the (Thapliyal et al., 2013) circuit. It is the cost to pay for 
fault tolerance. 

5. Comparative analysis 

In this section, the analyzed adders are compared. Since comparing 
adders of different types makes no sense, the comparison is carried out 
between adders of the same kind. Therefore, four comparison are pre-
sented: half adders, full adders, ripple-carry adders and carry-lookahead 
adders. Nevertheless, at the end of the section an overview of all the 
results is made to consider the comparison as a whole. 

5.1. Half adders 

Table 5 shows the quantum cost, delay, number of auxiliary inputs 
and number of auxiliary outputs of the most representative half adders. 
The final column indicates if the adder can be used as a subtractor. In 
terms of quantum cost, the Peres gate proposed in Hung et al. (2006) 
(Fig. 4) achieves the best value. The proposals of Sarma and Jain (2018) 
and Yamashita et al. (2008) have a quantum cost of 5, one more than 
(Hung et al., 2006), but (Sarma and Jain, 2018) can also act as a sub-
tractor, so the extra value is justified in this case. Nielsen and Chuang 
(2011) has a quantum cost of 6, and Kaur and Dhaliwal (2012) has the 

highest quantum cost, 14. The quantum cost of Kaur and Dhaliwal 
(2012) is justified since this adder was the first reversible adder/-
subtractor. None of the half adders can compute any operation in par-
allel, so their delay is equal to their quantum cost. In terms of auxiliary 
inputs, all of them have 1 input, except (Kaur and Dhaliwal, 2012) which 
has 3. Only (Kaur and Dhaliwal, 2012) presents garbage outputs. 

5.2. Full adders 

Table 6 focus the comparison on the most relevant full adders. A new 
columns ha been added to this comparison in order to identify which 
adders are fault tolerant. The most optimized adder in terms of quantum 
cost, delay and garbage output is Thapliyal (2016) [a], with 6, 4△ and 
0 respectively. The adder o f (Maslov et al., 2008) also presents the same 
quantum cost, delay and number of auxiliary inputs, but it has 1 garbage 
output. The only full adder which has no auxiliary inputs is Cuccaro 
et al. (2004), but it has a quantum cost and a delay higher than the 
average (14 and 14△ respectively). Bhagyalakshmi and Venkatesha 
(2010), Maslov et al. (2008), Singh and Rai (2016), Mitra and Chowd-
hury (2012), Zhou et al. (2014), Rangaraju et al. (2010), Saligram and 
Rakshith (2013) and Kumar et al. (2017) present garbage outputs, so 
their quantum cost and delay would be higher if they were uncomputed 
(Bennett, 1973). The best adder/subtractor is the proposed in Thapliyal 
(2016) [b] as it has no garbage outputs, and it has the best quantum cost 
and delay among the adder/subtractor s, 8 and 5△ respectively. It is 
followed by (Rangaraju et al., 2010) with a quantum cost of 10 and delay 
10△, but with 3 garbage outputs. Therefore, the adder of Sarma and 
Jain (2018), which has a quantum cost of 15, would be a better option 

Fig. 25. Carry-lookahead adder proposed in Lisa and Babu (2015), for the case N = 4. It is built using 4 × 4 RPA and Fredkin gates. Ai and Bi are the numbers to be 
added, Cin and Cout are the carry in and the carry out respectively, Si is the sum, and gi are garbage outputs. 

Table 5 
Comparative evaluation of half adders.  

Adder Quantum 
cost 

Delay 
△ 

Ancilla 
inputs 

Garbage 
outputs 

Adder/ 
subtractor 

Kaur and 
Dhaliwal 
(2012) 

14 14 3 3 Yes 

Nielsen and 
Chuang 
(2011) 

6 6 1 0  

Yamashita 
et al. (2008) 

5 5 1 0  

Sarma and 
Jain (2018) 

5 5 1 0 Yes 

Hung et al. 
(2006) 

4 4 1 0   
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than (Rangaraju et al., 2010) as it has no garbage outputs. Finally, 
focusing on the fault tolerant adders, Zhou et al. (2014) and Mitra and 
Chowdhury (2012) are the most optimized options. Zhou et al. (2014) 
presents lower values of quantum cost and delay, and both have the 
same number of auxiliary inputs. Moreover, Zhou et al. (2014) has less 
garbage outputs. 

5.3. Ripple-carry adders 

The comparison between ripple-carry adders is shown in Table 7. A 
N-bits ripple-carry adder could be built chaining N full adders of Table 6. 
The better the selected full adder, the better the ripple-carry adder. 
However, even choosing (Thapliyal, 2016)[a] (the best full adder) re-
sults in a ripple-carry adder which is worse than, for instance, the 
improved ripple-carry adder presented in Thapliyal and Ranganathan 
(2013). For that reason, the resulting ripple-carry adders are not 
included in Table 7. In this table, the new column Cin indicates if the 
adder support s Cin or not. 

In terms of auxiliary inputs, only Cuccaro et al. (2004) and Nagamani 
et al. (2014) have them. The adder of Cuccaro et al. (2004) has only 1, 
whereas the adder of Nagamani et al. (2014) employs 4N. In terms of 
quantum cost, Nagamani et al. (2014) achieves the best value -even 
considering that it supports Cin- thanks to the use of the mentioned extra 
ancilla inputs. The non fault-tolerant adder of Mohammadi et al. (2020) 
improves the quantum cost of Nagamani et al. (2014), but only when N 
< 10. Thapliyal and Ranganathan (2013) is the third best adder in these 
terms. However, both Mohammadi et al. (2020) and Thapliyal and 
Ranganathan (2013) do not support Cin. In terms of delay, the circuit of 
Thapliyal and Ranganathan (2011) gets the best value, 9N + 5△, fol-
lowed by the non fault-tolerant adder of Mohammadi et al. (2020), 
which has 10N − 4△. Finally, we can highlight that no circuit has 
garbage outputs. 

The adder presented by Gidney (2018) is optimized for fault toler-
ance, and that is why it has higher values of quantum cost and delay. It 
even sacrifices multiple ancillary inputs to reduce the number of T gates. 

The fault-tolerant adder proposed in Mohammadi et al. (2020) does not 
improve the quantum cost nor the delay with respect to the previous 
one, but it represents a substantial improvement in terms of ancilla 
inputs. 

Table 6 
Comparative evaluation of full adders.  

Adder Quantum cost Delay △ Ancilla inputs Garbage outputs Adder/subtractor Fault tolerant 

Saligram and Rakshith (2013) 18 18 5 6 Yes  
Yamashita et al. (2008) 15 15 3 0   
Sarma and Jain (2018) 15 10 1 0 Yes  
Cuccaro et al. (2004) 14 14 0 0   
Hung et al. (2006) 12 12 3 0   
Nagamani et al. (2014) 12 12 1 0   
Mitra and Chowdhury (2012) 11 11 2 3  Yes 
Kumar et al. (2017) 11 11 4 4 Yes  
Wang et al. (2016) 10 8 1 0   
Rangaraju et al. (2010) 10 10 1 3 Yes  
Singh and Rai (2016) 8 8 1 1   
Bhagyalakshmi and Venkatesha (2010) 8 8 1 1   
Thapliyal (2016) [b] 8 5 2 0 Yes  
Zhou et al. (2014) 8 7 2 2  Yes 
Maslov et al. (2008) 6 4 1 1   
Thapliyal (2016) [a] 6 4 1 0    

Table 7 
Comparative evaluation of ripple-carry adders.  

Adder Quantum cost Delay △ Ancilla inputs Garbage outputs Cin Fault tolerant 

Li et al. (2) (Mohammadi et al., 2020) 35N − 25 16N − 3 0 0  Yes 
Takahashi and Kunihiro (2005) 26N − 29 24N − 27 0 0   
Gidney (2018) 18N − 2 15N − 5 N 0  Yes 
Cuccaro et al. (2004) 17N − 12 10N 1 0   
Takahashi et al. (2010) (2) 15N − 9 13N − 7 0 0   
Thapliyal and Ranganathan (2011) 15N − 6 9N + 5 0 0 Yes  
Thapliyal and Ranganathan (2013) (2) 13N − 8 11N − 4 0 0   
Li et al. (1) (Mohammadi et al., 2020) 13N − 10 10N − 4 0 0   
Nagamani et al. (2014) 12N 10N 4N 0 Yes   

Table 8 
Comparative evaluations of carry-lookahead adders. W(N) is the number of ones 
in the binary expansion of N. The quantum cost and delay of the circuits of 
Thapliyal et al. (2020) cannot be precisely indicated because certain trans-
formations in the quantum state of the ancilla qubits need to be taken into ac-
count for use with temporary logical-AND gates. The study of how these 
transformations can influence the logarithmic propagation of the adders is not 
trivial.  

Adder Quantum 
cost 

Delay △ Ancilla 
inputs 

Fault- 
tolerance 

Thapliyal et al. 
(2020)[a] 

>40N O(logN) 4N − 2W 
(N) 
− 2log(N) 

Yes 

Thapliyal et al. 
(2020)[b] 

>40N O(logN) 2N − W(N) 
− log(N) +
1 

Yes 

Thapliyal et al. 
(2020)[c] 

>40N O(logN) 4N − 2W 
(N) 
− 2log(N) 

Yes 

Thapliyal et al. 
(2020)[d] 

>40N O(logN) 2N − W(N) 
− log(N) +
1 

Yes 

Draper et al. (2004) 28N − 15W 
(N) 
− 15log(N) 
− 6 

logN +
logN/3 
+7 

5N/4  

Thapliyal et al. 
(2013) 

26N − 15W 
(N) 
− 15log(N −
4) 

logN +
logN/3 
+2 

5N/4   
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5.4. Carry-lookahead adders 

Finally, the carry-lookahead adders are compared in Table 8. As it 
has been mentioned in the subsection of the carry-lookahead adders, 
there are several adders whose garbage outputs have not been uncom-
puted. They are the two adders of Rahmati et al. (2017) and Lisa and 
Babu (2015). It is not useful to compare such circuits with those which 
have uncomputed their garbage outputs since uncomputing these out-
puts following (Bennett, 1973) would increase the quantum cost, delay 
and auxiliary inputs (Orts et al., 2019). On the other hand, a 4 × 4 
Fredkin gate is used in the case of Lisa and Babu (2015). The quantum 
cost and delay of this gate is not addressed, so it is not possible to 
determine the quantum cost and delay of this circuit with precision. 
Therefore, they have not been included in the table (but they have been 
analyzed in the subsection of the carry-lookahead adders for the sake of 
clarity). Considering the remaining non fault-tolerant adders, Draper 
et al. (2004) and Thapliyal et al. (2013), it can be concluded that Tha-
pliyal et al. (2013) presents the best quantum cost and delay. Both of 
them have 5N/4 auxiliary inputs and 0 garbage outputs. Considering 
now the four adders presented in Thapliyal et al. (2020), they do not 
improve any of the metrics from Mohammadi et al. (2009) to the pre-
vious adders. However, they are optimized in terms of the T gate, being 
the only adders focused on fault-tolerance in this category. In Table 8, 
the quantum cost and delay of these four adders are not shown accu-
rately: this is because certain transformations in the quantum state of 
their ancilla qubits need to be taken into account for use with temporary 
logical-AND gates. The influence of these transformations in the quan-
tum cost and delay of the adders is not trivial, and their effect is not 
included in the analysis done in citethapliyal2020tcount as it is focused 
on the optimization of T gates and necessary qubits. 

5.5. General discussion 

From the tables of the comparative evaluations, it can be concluded 
something that it is already known in classical circuits: ripple-carry 
adders have a lower cost, and carry-lookahead adders are the fastest. 
On the one hand, Mohammadi et al. (2020) and Thapliyal and Ranga-
nathan (2013) for the case without Cin and Nagamani et al. (2014) and 
Thapliyal and Ranganathan (2011) for the case with Cin are the most 
optimized ripple-carry adders nowadays in terms of quantum cost, 
delay, auxiliary inputs and garbage outputs. On the other hand, Tha-
pliyal et al. (2013) is the most optimized carry-lookahead adder. On the 
other hand, in the most recent works there is a growing interest in the 
optimization of circuits in terms of T gates. (Mohammadi et al., 2020; 
Gidney, 2018) (ripple-carry adders), and the four adders of Thapliyal 
et al. (2020) (carry-lookahead adders), are the best exponents in this 
new stage of optimization. 

6. Conclusions 

In this work, a revision on the state-of-the-art reversible adders has 
been carried out. First, appropriate metrics have been considered for the 
measurement and comparison of quantum circuits. Second, the adders 
have been classified in one of the four possible types: half adders, full 
adders, ripple-carry adders, and carry-lookahead adders, explaining 
their particular calculation methods and structures. Third, a complete 
analysis of each existing reversible adder has been done in terms of those 
metrics. Finally, a comparison between the analyzed adders has been 
done using the metrics and the category to determine which adders are 
the most beneficial in terms of quantum cost, delay, number of auxiliary 
inputs and/or number of garbage outputs, and taking into account the 
peculiarities of the category in question (if any) and fault tolerance. 

The analysis has been carried out with two essential goals in mind: 
first, to collect and compare, using a set of standard metrics, all the 
reversible adders existing in the literature; second, to focus on the pos-
sibility of applying these adders in quantum circuits. To this extent, our 

emphasis has been on analyzing quantum costs and delays, as well as the 
presence of garbage outputs (which prevent useful interference from 
arising in quantum algorithms) and in presenting our findings in a clear 
and concise way, with tables that summarize the main properties of all 
the most important adders and that can be used as a quick reference by 
the interested researchers. In addition, we also provide figures that 
exemplify some of the most remarkable adders for some values on the 
number of inputs. 
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a b s t r a c t

Active microrheology has emerged in recent years as a new technique to probe microscopically the
mechanical properties of materials, particularly, viscoelastic ones. In this technique, a colloidal tracer is
pulled through the material, and its dynamics is monitored. The interpretation of results usually relies on
the Stokes–Einstein approximation, which is valid for a continuous medium in equilibrium. In this work,
we have studied with simulations a suspension of quasi-hard colloidal spheres, where a large tracer is
pulled by a constant force. The Navier–Stokes equation for a continuous bath predicts important finite
size effects, decaying as the inverse box size, which require simulations of different systems to extract
the microviscosity of a bulk system. A strategy to optimize the scheduling of the simulation tasks on
a multi GPU–CPU cluster based on the adaptation of a genetic algorithm is presented here, and used to
study the effect of different conditions on the friction experienced by the tracer (adding the tracer volume
to the total system volume, fixing the center of mass of the system, varying the fluid friction coefficient
and tracer size). It is observed that the theoretical prediction is not followed, but deviations are observed
for large systems in all cases. These are attributed to the finite size of the bath particles, and the intrinsic
dynamics of colloidal systems, as shown by the analysis of the velocity profile in the bath.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Soft matter is characterized by the interplay of very different
length and time scales. Physically, this is achieved, e.g., in suspen-
sions of macromolecules or colloids, where the solvent degrees of
freedom and macromolecule diffusion extend over many different
scales [1,2]. This poses a major problem in resolving all of them,
both computationally and experimentally, which is typically tack-
led integrating out the fast degrees of freedom, or using effective
models [3]. The canonical example is probably Brownian hard
spheres, where internal degrees of freedom are absent and the
solvent dynamics is integrated in the so-called Brownian motion;
still, the separation between short time and long time diffusion
of the colloidal particles provokes viscoelastic behavior when the
glass transition is approached.

In order to probe the complex mechanical behavior of soft
matter, several techniques have been developed [4]. In addition
to the direct measurement using bulk rheology, where macro-
scopic stresses are applied, microrheology has emerged over the
last decades as a new methodology, both in the passive or active
modes [5–8]. Here, the dynamics of a tracer (typically of colloidal
size) is studied,with an external force driving it (activemicrorheol-
ogy), or without any force (passive microrheology). This approach,

∗ Corresponding author.
E-mail address: apuertas@ual.es (A.M. Puertas).

initially thought for expensive or difficult to obtain samples [9,10],
but still in development [11,12], requires a deep understanding of
the interplay of the dynamics of bath and tracer, in particular due
to the non-affine strain field provoked by the latter [13,14]. It is
therefore compulsory to test the theory models to be used in the
interpretation of the results.

Computer simulations have emerged as an ideal tool to test
these models, using simple systems, whose bulk properties are
well-known [7]. However, because simulations consider always
a finite number of particles, finite-size effects can appear. This
is even more plausible, since the hydrodynamic correlations, ex-
pected from models based on a continuum description of the
bath [15], have a very long range. This makes the simulation work
a formidable task because a large number of particles have to be
considered to obtain the trajectory of a single tracer; even more, a
large number of trajectories are needed to average out the thermal
noise and initial conditions; and finally different system sizes have
to be considered [16,17].

Previous simulation works in this line have focused on passive
microrheology, i.e. the dynamics of a large unperturbed tracer, in
a bath of hard spheres undergoing Newtonian dynamics [16–20].
In this way, those works have simulated the motion of a nanocol-
loidal particle, resulting in Brownian motion, and the fluctuation–
dissipation theorem. The results show good qualitative agreement
with the predictions from continuum theory for the bath, and
when the tracer is larger than around five times the bath particles

https://doi.org/10.1016/j.cpc.2018.10.003
0010-4655/© 2018 Elsevier B.V. All rights reserved.
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the agreement is quantitative. Active microrheology in a bath of
hard spheres, on the other hand, has been studied with tracers of
size comparable to the bath particles, with Brownian, Langevin,
or Stokesian microscopic dynamics [7,21–27]. Both the simulation
and theoretical models show that the effective friction coefficient
experienced by the tracer has a plateau for small pulling forces,
where the properties of the bath are probed — linear response and
generalized Stokes–Einstein relations are expected to be applicable
here. Upon increasing the driving force, the effective friction enters
a so-called force-thinning regime, where the coefficient decreases,
until a plateau is eventually reached for strong pullings [28].

We present here simulations of active microrheology in a sys-
tem of quasi-hard Brownian spheres with large tracers. These,
however, are affected by strong finite size effects, requiring simu-
lations of different sizes. Given the large number of independent
simulations of different lengths, a multi GPU–CPU cluster was
used, which supplies processors with several CPU-cores and GPUs.
A sequential code to compute simulations on CPU-cores, and a
parallelized one for computing on GPUs, prepared previously [29],
have been used. To reduce the runtime for the set of simulations
it is very important to distribute the different simulations among
CPU-cores and GPUs in a balanced way, i.e. with a minimal idle
processors time. This is a challenge due to the heterogeneity of
simulations and computational power of CPU-cores and GPUs. A
genetic algorithm has been implemented to obtain a near optimal
balance in the distribution of simulations on the clusters, which
is the result of this work (freely available at https://github.com/
2forts/GENS). We focus on a system with a bath volume fraction
of 50%, and a tracer three times larger than the bath particles.
The scheme presented here optimizes the whole set of simulations
required to analyze the friction coefficient. The acceleration of
the single trajectories, due to the GPU parallelization, has allowed
us to simulate large systems and study the effects of different
parameters of the simulations of active microrheology in colloidal
hard spheres, aiming to identify the optimal simulation conditions
to test the theoreticalmodel. For large systems, the simulation data
deviate from the theoretical prediction, and the velocity field in
the bath oscillates in phase with the density. More interestingly,
we show that the velocity in the bath decays faster than predicted,
and becomes negligible for distances similar to the simulation box
size where the deviations appear.

Themanuscript is organized as follows: In Section 2 the physical
system is described, and themodel used for its analysis introduced.
Our scheme for the distribution of the tasks among the computa-
tional resources is described in Section 3. Section 4 is devoted to
the presentation of the results, in particular analyzing the effects
of the consideration of the volume of the tracer, the size of the
tracer, or fixing the center of mass of the systems. In the final part
of this section, we study the velocity profile induced in the bath
by the moving tracer, and compare it with the theoretical predic-
tions from the Navier–Stokes equation. Finally, the conclusions are
presented in Section 5.

2. System details

Microrheology in a colloidal system is simulated considering
N polydisperse Brownian particles containing the tracer (labeled
with j = 1) in a cubic box with periodic boundary conditions.
Microscopic Brownian dynamics is modeled with the Langevin
equation of motion, which for particle j reads [30]:

mj
d2 rj
dt2

=

∑
i̸=j

Fij − γj
d rj
dt

+ fj(t) + Fextδj1 (1)

wheremj is the particle mass, and the terms in the right hand side
correspond to the interaction forces between particles i and j, the
friction with solvent, Brownian force and the external force, which

acts only on the tracer (as shown by the Kronecker-delta symbol,
δj1). The friction force is proportional to the particle velocity, and
the proportionality constant is given by γi = γ0ai, where ai is
the particle radius. This expression mimics the Stokes formula
for spheres at low Reynolds numbers, γi = 6πηai, where η is
the solvent viscosity. The Brownian force, f(t), is random, but its
intensity is linked to the friction force, as given by the fluctuation–
dissipation theorem, ⟨fj(t) · fj(t ′)⟩ = 6kBTγjδ(t − t ′), where kBT is
the thermal energy and δ(x) is the Dirac-delta symbol [30].

The direct interaction between particles i and j is derived from
the central inverse-power potential:

V (r) = kBT
(

r
aij

)−36

(2)

with r = |r| and aij the center to center distance between the
particles. It has been shown previously that with this potential
the particles behave effectively as hard spheres [31]. To avoid
crystallization at high density, size polydispersity is introduced
in the bath. Sizes for the bath particles are selected from a flat
distribution of width 2δ = 0.2a, with a themean radius of the bath
particles. All particles, including the tracer, have the same mass:
mj = m.

In the simulations, the system is equilibrated with the tracer
for a long time without the external force. At t = 0, the external
force is switched on, and the tracer trajectory is recorded. The long-
time steady tracer velocity, ⟨v⟩, is calculated as the slope of the
tracer displacement vs. time, and averaged overmany independent
trajectories. This allows the calculation of the effective friction co-
efficient using the steady-state relationship Fext = γeff⟨v⟩. Previous
simulations (with tracers of the same size as the bath particles)
have shown that γeff develops a plateau for small forces, indicating
a linear regime (Newtonian behavior) [7,21,22].We intend to focus
here in this linear regime for small forces, using tracers larger than
the bath particles.

However, the use of periodic boundary conditions in the three
dimensions implies that the actual simulated system is a cubic
array of tracers pulled in an infinite bath. Because the lattice
spacing in this array of tracers is given by the size of the simulation
box, this is a finite size effect. In order to analyze, and eventually
correct it, a continuum model based on solving the Navier–Stokes
equation for an infinite array of tracers in aNewtonian viscous fluid
is used [15]. Hasimoto [15] showed that the friction coefficient,
γeff, experienced by a cubic array of tracers is related to the lattice
spacing, L, as:
1

γeff
=

1
γ∞

(
1 −

c
L

)
(3)

where γ∞ is the friction coefficientmeasured in an infinite system,
and c is a constant that depends on the array structure (simple
cubic, BCC, FCC, . . . ). In our case, due to the periodic boundary con-
ditions, the simple cubic array applies, yielding c = 2.8373 at [15]
with at the tracer size.

Based on this result, the full analysis ofmicrorheology therefore
requires simulations of systemswith different sizes, to extrapolate
the friction coefficient γ∞ using Eq. (3), for a single value of the
force, volume fraction, or tracer size. Because the simulation time
for a system of N particles evolves as ∼ N lnN , it is important to
state the validity of this extrapolation, which is themain aim of the
present work.

Previous simulations in passive microrheology, i.e. without ex-
ternal force acting on the tracer, have shown that Eq. (3) describes
the dependence of the diffusion coefficient (Deff = kBT/γeff) on
the system size [16,17]. Evenmore, the value of γ∞, extracted from
the fitting corresponds to the Stokes value, with slip boundary con-
ditions and the viscosity calculated from Green–Kubo integration
of the stress autocorrelation function [16]. We check here if those
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Fig. 1. Snapshots of the systems with N = 216 and 32768 particles (left and right
panels, respectively), with the same scale. The tracer, with at/a = 3, is marked in
red, and the particles in front of it have been removed. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

conclusions are valid for a finite force, helping in understanding
the generalized Stokes–Einstein relation. The application of an
external force implies a continuous input of energy in the system,
needing an energy sink, where this energy is dissipated, which is
an important difference with respect to previous works in passive
microrheology. In our case, energy is dissipated in the friction with
the solvent, given by γ0.

In order to test the theoretical model, we have run simulations
of systems with N = 216, 512, 1000, 2197, 4096, 8000, 15625
and 32768 particles. Fig. 1 presents snapshots of the extreme
sizes, with a tracer three times larger than the bath particles,
at = 3 a. In our simulations, lengths are measured in units of the
mean bath particle radius, a, energy in units of the thermal energy
kBT , and mass in units of the particle mass, m. For the friction
coefficientwith the solvent, we take γ0 = 5

√
mkBT/a, which gives

a mean single particle diffusion coefficient of D0 = kBT/γ0 =

0.2 a
√
kBT/m for the bath particles. The volume fraction of the

bath is φ = 0.50. The external force is applied in the x-axis. The
equations of motion are integrated using the Heun algorithm [32],
with a time step of δt = 0.0005 a

√
m/kBT . In this algorithm, the

friction force is integrated analytically in the time interval δt .

3. Computational implementation

From a computational point of view, the problem requires a
large set of simulations of tracer trajectories in systems of different
sizes (N); therefore, the use of high performance computing is
mandatory.

In the model it is possible to identify two parallelism levels.
Level 1 allows us to accelerate the computation of a single tracer
trajectory; and level 2 is related to the computation of several
trajectories. To compute the function γ0/γeff(a/L) it is necessary to
analyze the tracer dynamic for different sizes of the bath. There-
fore, the second level of parallelism can be exploited executing
simulations with different number of particles in parallel, needed
for the extrapolation leading to γ∞.

We have accelerated the computation of a single tracer tra-
jectory (level 1) by means of GPU computing using CUDA inter-
face [29,33]. Our attention has been focused on the acceleration
of the routines which evaluate the tracer dynamics; mainly, the
calculation of interaction forces and integration of the equations
of motion [34]. Every simulation of the tracer dynamic includes a
massive parallelism since the same computation has to be com-
pleted for all particles in the bath. This parallelism is harnessed by
the simulations computed on GPUs.

The whole set of simulations (level 2) to analyze the friction
coefficient has been distributed on modern Multi-GPU clusters,

which provide CPU-cores and GPUs which can compute several
simulations in parallel. A subset of tracer trajectories can be com-
puted in parallel on the CPU-cores and GPUs of a cluster. This way,
every CPU-core (GPU) can execute the sequential code in Fortran
(CUDA) to compute a single tracer trajectory, and the whole set of
tasks can be run on the heterogeneous cluster with the collabora-
tion of the CPU-cores and the GPUs. Moreover, the computational
loads of the corresponding tasks are also different because the
computation of trajectories in systems with different sizes are
needed. Consequently, it is necessary to define an appropriated
tasks scheduling to obtain the optimal parallel performance. Sev-
eral strategies have been devised for this purpose, some of them
specifically for particle systems [35]. Here, we have adapted a
genetic algorithm (GA) to optimize the trajectories scheduling.

There is a wide variety of previous work where genetic algo-
rithms are used to solve scheduling problems [36]. GA works with
a set of individuals which represent every possible solution of
the scheduling policy problem (population). The procedure evolves
iteratively starting with a random set of individuals, P0, and at
every iteration, i, the selection and genetic operators are applied
to the population, Pi. Thus, the population is constantly evolving.
The selection mechanism allows that the individuals of new popu-
lations are closer to the optimal.

The methodology to execute the microrheology model with
several system sizes on a Multi-GPU cluster includes the following
stages:

1. Profiling stage, which estimates the sequential runtime of
the microrheology model on every computational resource
(GPU/ CPU-core) for the considered system sizes of the prob-
lem.

2. GA scheduling estimation, which plans the set of trajectories
on every CPU-core and GPU to optimize the parallel runtime
of all simulations by the GA. The inputs of this stage are:
the profiling stage output, the number of computational
resources of every type on the cluster (number of GPUs/
CPU-cores) and the number of trajectories of every system
size of the model.

3. Parallel execution of the model on the cluster according to
the scheduling estimation.

The software to carry out stages 2 and 3 has been implemented in
Python and is freely available at https://github.com/2forts/GENS.

To analyze the friction coefficient, we study the set of simu-
lations with sizes: N = 216, 512, 1000, 2197, 4096, 8000, 15625
and 32768, with 500 trajectories of 500 time units (corresponding
to 106 time steps). So, the model has to compute a total of 4000
trajectories. A state-of-the-art cluster has been considered as the
test platform. It is composed by 4 nodes with a multiprocessor of
16 CPU-cores (Bullx R424-E3 Intel Xeon E5 2650 with 8 GB RAM)
and 2 GPUs NVIDIA Tesla M2070.

Table 1 shows the runtime on a CPU-core and a GPU to simulate
a single trajectory on such test platform obtained in the profiling
stage. The acceleration factors (AF) onGPUvs. CPU-core to simulate
a single trajectory are also included. High acceleration factors,
specially for large system sizes, are obtained (up to 24×). However,
for small problems the use of theGPU computing has no advantage.

From the profiling data, the scheduling is estimated by the GA
according to the available resources on the cluster. If the 8 GPUs of
the cluster and 56 CPU-cores are used (8 CPU-cores are devoted to
controlling the 8 GPUs) to simulate the 4000 trajectories included
in the model, the runtime is 2024 h when the GA scheduling
is applied. If only a multiprocessor of a node was exploited, the
runtime would be 2905 h for all trajectories. To illustrate the ad-
vantages of the GA scheduling in terms of runtime for the analyzed
model, Table 2 shows the runtime for the GA and a Round Robin
approach for several configurations of the cluster and also the
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Table 1
Execution time (in seconds) of the simulation of a single trajectory for the eight sizes
of the problem (N). tGPU and tCPU columns identify the runtime for a single trajectory
on a GPUNVIDIA TeslaM2070/a and CPU-core Bullx R424-E3, respectively. AF is the
acceleration factor of a GPU vs. a CPU-core for each N .
N tGPU tCPU AF

216 1580 790 0.5
512 1785 1860 1.0

1000 2240 3715 1.7
2197 2930 8710 3.0
4096 4450 18065 4.1
8000 7650 43080 5.6

15625 12050 113940 9.5
32768 20012 479313 24.0

Table 2
Parallel execution time, in hours, for a Round Robin placement (RR) and the GA
solving 500 trajectories of 500 time units (N = 216, 512, 1000, 2197, 4096, 8000
and 15625) for the cases A) 14 CPU-cores and 2 GPUs; B) 28 CPU-cores and 4 GPUs;
C) 28 CPU-cores and 8 GPUs; D) 56 CPU-cores and 8 GPUs; E) 8 GPUs and F) 64
CPU-cores. GAAF shows the GA acceleration factor.

A B C D E F

RR 844.8 422.4 369.6 211.2 290.4 211.2
GA 410.4 206.4 139.2 102.5 283.2 206.4

GAAF 2.1 2.0 2.7 2.1 1.0 1.0

GA acceleration factor (GAAF). The results show that the GAAF
ranges from 1, 0× (the homogeneous cluster configurations) to
2, 7× (themost heterogeneous cluster configuration). So themore
heterogeneous the cluster is, the more advantages the GA reaches.
Therefore, the use of a multi GPU–CPU cluster in combination with
theGA scheduling has allowed that every simulation is executed on
a CPU/GPU according to its size, reaching a considerable reduction
of the total runtime of the microrheology model.

4. Results

The effective friction coefficient probed by a tracer of the same
size as the bath particles develops a plateau for small driving forces,
and decreases for increasing forces [7], in analogy with the shear
viscosity in bulk systems. We will focus here on the linear regime
at small forces, with large tracers, which is expected to be closer to
the model of Newtonian fluids used in the theoretical description.
Thus, we study first the behavior of γeff with the external force
for a tracer three times larger than the bath particles, at/a = 3.
Fig. 2 shows the results for two systems with different number of
particles:N = 2197 andN = 216. Indeed, γeff depends strongly on
the systemsize, as expected from the theoretical analysis discussed
previously.

The effective friction coefficient shows the same qualitative
behavior for a large tracer as the previously reported for at = a
(a plateau at small forces, followed by a force-thinning regime),
irrespective of the number of particles in the system. The linear
regime at small forces extends to Fext ≈ 10 kBT/a. Thus, we select
a force of Fext = 2.5 kBT/a, which is well inside this linear regime.
In the following, we first study finite size effects in different cases,
and then compare with the theoretical model.

The first point we analyze is the volume occupied by the tracer.
In the simulations shown in Fig. 2, the tracer is inserted in the
system, compressing it, and increasing effectively the volume frac-
tion of the bath. Note that the increase of volume fraction is larger
for smaller systems. In the theoretical model, the properties of the
bath are not affected by the insertion of the tracer, or bymodifying
the tracer lattice spacing, namely, the simulation box size. We

Fig. 2. Effective friction coefficient for a system with at/a = 3, normalized with
the friction with the solvent atγ0 . Two system sizes are considered, N = 216 and
N = 2197, as labeled.

Fig. 3. Effect of considering the volume of the tracer: normalized inverse effective
friction coefficient for a system with at/a = 3 as a function of the inverse system
size, for a systemwith volume correction, or without it, as labeled. The thick dashed
line is a free linear fitting to the data without volume correction, for systems up to
N = 8000 particles, and the thick line is the fitting according to the theoretical
model, Eq. (3).

have thus run simulations with different simulation boxes keeping
the volume fraction of the system (bath and tracer) constant, and
equal to 50% in all cases. The results are presented in Fig. 3, in
comparison with the data from simulations without correcting
the tracer volume. Both data sets agree for large systems, where
the volume of the tracer is negligible, compared with the volume
of the whole system, but differ significantly for small systems.
Notably, in this case, the friction coefficient is much larger when
the tracer volume is not added to the system, due to the increase of
effective volume fraction in the bath (note that the inverse friction
coefficient is plotted in the figure).

In comparing with the theoretical prediction, we note that the
simulation data for the system without the volume correction
fits better to the expected qualitative behavior for small systems
(namely, a decreasing linear trend of 1/γeff vs. 1/L). However, the
results from the theoretical model are more strict than a linear
dependence of 1/γeff vs. 1/L; Eq. (3) implies a relation between
the slope and intercept. The thick dashed line in Fig. 3 shows the
theoretical prediction (γ∞ is fitted), for small and intermediate
systems. The fitting is not satisfactory, probably due to the impor-
tant differences between the simulated system and the theoretical
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Fig. 4. Effect of fixing the center of mass of the system in microrheology: normal-
ized inverse effective friction coefficient as a function of the inverse system size, for
a system with the CM fixed or free, as labeled. The dashed line is a linear fitting to
the data for small and intermediate systems.

model (continuous bath vs. particles, Newtonian fluid vs. viscoelas-
tic bath, boundary condition in the tracer surface...).

It must be mentioned that these deviations were not observed
in passive microrheology [16,17] (recall that Newtonian dynamics
were used those simulations and no forcewas applied). In our case,
however, the agreement with the theory is not quantitative. Still,
a decreasing linear dependence is found for 1/γeff vs. 1/L (thin
dashed line) although for large systems the data deviate from the
linear trend.

The effect of fixing the center of mass (CM) of the system, or
leaving it free is studied next. The application of an external force,
even though applied onto a single particle, implies a displacement
of the CM, while in a macroscopic system, this should be fixed.
The CM can be fixed in the simulations artificially, correcting the
particle positions at every time step. Again, this aspect is absent
in the theoretical model, where the solvent is an incompressible
Newtonian fluid. Fig. 4 presents the results of γeff for different
system sizes from simulations with the CM fixed, in comparison
with the results leaving it free (in both cases the tracer volume has
not been considered in the total volume of the system).

The results for both cases differ for small sizes, but agree for
large systems, when the effect of pulling a single particle becomes
negligible, and thus the correction of the particle motion is less
important. Thedatawith theCM fixeddeviate froma linear trend at
both small and large systems,while the data for the free CM follows
the linear trend, as shown above. Thus the following simulations
are run with the CM free, to improve the comparison with the
theory.

The microscopic motion of the particles is also affected by the
solvent friction coefficient, γi = γ0ai — large values of γ0 reduce the
effect of inertia, making the dynamics more Brownian like. Again,
the theoretical model does not consider explicitly this aspect; the
bath in the theory is a continuousmedium and not Brownian. Fig. 5
presents the results of simulationswith different values of γ0. Upon
increasing the friction with the solvent, γeff/γ0 decreases, as the
contribution from the solvent to the total friction experienced by
the tracer increases. On the other hand, in all cases, the inverse
friction coefficient shows a linear dependence on 1/L for not-too-
large systems, as shown by the thin dashed lines.

Finally, we study the effect of the tracer size, as the assumption
of a continuous bath is expected to be applicable if the tracer is
much larger than the bath particles. Fig. 6 presents the results of
the inverse effective friction coefficient as a function of the inverse
system size for at/a = 3 and at/a = 4. In both cases, the CM

Fig. 5. Effect of the solvent friction coefficient γ0 on the effective friction coefficient.
The lines show the linear fittings (dashed lines).

Fig. 6. Effect of varying the tracer size, as labeled. The dashed lines show again the
linear fittings to the data from small and intermediate systems.

is free, the volume of the tracer has not been considered, and
γ0 = 5

√
mkBT/a. The results show the same trend for both sets

of data; namely, a linear trend appears for small systems (dashed
lines), while both of them deviate for large systems. The figure also
allows checking if γeff is linear with the tracer size, as expected
from Stokes’ law. The results, however, indicate that the friction
coefficient grows with at faster than linear, indicating that the
Stokes’ regime is not valid in this system and for this range of tracer
sizes.

The analysis presented so far have shown that the theoretical
prediction is only qualitatively followed for small and intermediate
systems, with the appropriate conditions in the simulations, but
fails for large systems in all cases. Thus, we analyze in the following
the reason for this discrepancy.

Within the theoretical model, the friction experienced by the
tracer is calculated from the velocity profile in the bath [37].
Therefore, we study the velocity of the bath particles in the sim-
ulations and compare it with the theoretical result. Because for
large systems γeff becomes independent on the system size, we
focus on the system with N = 15625 particles and compare the
velocity map with the theoretical results for a single particle in
an incompressible Newtonian fluid. The latter is given, in polar
coordinates, by [37]:

vr (r, θ ) = utracer cos θ

(
3at
2r

−
a3t
2r3

)
(4)
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Fig. 7. Velocity maps in the bath from simulations (panels (a) and (b)) and theory (panels (c) and (d)); the radial (angular) component is presented in the top (bottom)
panels.

vθ (r, θ ) = −utracer sin θ

(
3at
4r

+
a3t
4r3

)
(5)

where θ is the angular coordinate, measured from the force direc-
tion, and utracer is the tracer velocity. This result is valid for low
Reynolds number, which is indeed our case; a rough estimate of
the ratio of inertia to viscous forces is (mutracer/at )/(γ at ) which is
below 0.1 in all cases.

Fig. 7 shows both components of the velocity in the bath (di-
vided by the tracer velocity) from simulations (left panels) and
theory (right ones). In the simulations, the systemwithN = 15625
has been run for ca. 5 · 104 time units (amounting to 108 integra-
tion steps), to improve the statistics. The comparison shows some
important differences, and some similarities. The normal compo-
nent shows that the velocity in front of the tracer is positive in
both the simulations and theory, and negative behind it; however
while it decays monotonously to zero from the tracer to infinity
in the theory , panel (c), in the simulations, it oscillates — panel
(a). Transversal to the force, the velocity has a negligible normal
component both in the simulations and in the theory.

The angular component (bottom panels), on the other hand,
shows also some differences between the simulations and the
theory. In the model, panel (d), the minimum is in the tracer sur-
face, perpendicular to the force direction (recall that stick bound-
ary conditions are assumed in the tracer surface), and decays
monotonously to zero. The simulations, shown in panel (b), are
much noisier, but a dip develops in this region; further from the
tracer (in the direction perpendicular to the force), vθ becomes
positive (but small) and decays to zero far from the tracer. In
this case, oscillations are not observed, probably due to the poor
statistics.

The radial component is studied in more detail in Fig. 8, where
the bath velocity in front of the tracer is studied (to reduce the

Fig. 8. Normalized radial component of the bath velocity in front of the tracer, from
simulations (red points and lines) and theory (thick blue line). The bath density is
also presented (thin black line), scaled. The inset shows the same velocity data in
logarithmic scale. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

statistical noise, it has been averaged over an angle of 30◦). The
oscillations of the bath velocity have a wavelength of one (bath)
particle diameter, and reproduce the oscillations of the density
profile (black line). Thus, these are a direct consequence of the
finite size of the bath particles. The inset to this figure presents the
same data on a logarithmic scale, showing that the bath velocity
in front of the particle decays faster in the simulations than in
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the theory, probably due to the friction with the solvent and the
Brownian motion that disrupt the transfer of momentum in the
bath. Notably, the velocity in the bath is negligible, within the
noise level, for distances of ca. 20 − 25a. The systems with a box
size smaller than (twice) this value should present interactions
between the tracer and its periodic images due to the cutoff of the
velocity profile. In systemswith a large simulation box, the velocity
profile can decay inside the box, and the friction experienced by the
tracer is not affected by its periodic images. It can be concluded,
therefore, that large systems, beyond this limit, should be free of
finite size effects, and the limit corresponds to the systems of 8000
particles, as indeed observed in the evolution of γeff vs. L, studied
previously.

5. Conclusions

We have presented simulations of activemicrorheology in hard
colloids. This system is strongly affected by finite size effects,
which have been analyzed using a model developed previously
for an array of tracers moving in a Newtonian fluid. According
to the model, the inverse effective friction felt by the tracer de-
pends linearly on the inverse lattice parameter. In order to test
this prediction, different simulation conditions have been pro-
posed (consideration of the tracer volume, motion of the center
of mass, tracer size, and friction with the solvent), but deviations
for large systems are observed in all cases, although linear trends
have been observed in particular cases for small and intermediate
systems.

The deviations of γeff with respect to the theoretical behavior
indicate that the approximations in the theoretical model are too
strong for the simulated system. This invalidates the use of this
model to extract the effective friction coefficient for a macroscopic
system from the linear extrapolation 1/L → 0. Previous simula-
tions of passive microrheology in a bath of particles undergoing
molecular dynamics did follow the linear trend, and could use it
to extract γ∞ and check Stokes’ law. The failure of the model in
our case must be attributed to the different microscopic dynamics,
which is dissipative in our case. This, presumably, implies a damp-
ing for the shear waves, and a saturation of the finite size effect
predicted by the theory.

Computationally, on the other hand, it presents an important
advantage; namely, simulations in a large enough system can be
used to obtain the effective friction coefficient probed by a tracer,
skipping the necessity of making simulations with different sys-
tem sizes and rely on an extrapolation to 1/L → 0. It must be
mentioned, however, that theminimum size of the system to avoid
finite size effects may depend on the tracer size.

The results presented here concern a system of quasi-hard
spheres, i.e. with short-range interactions. While it is difficult to
extrapolate these results for systems with interactions of longer
range, structural correlations will extend to larger distances, pos-
sibly increasing the range of validity of the continuous medium
approximation for the bath. However, if the microscopic dynamics
is indeed responsible for the damping of the shear waves and
hydrodynamic correlations, as proposed here, it should eventually
dominate over long enough distances, making a proper analysis
of finite size effects mandatory. The technique proposed here (GA

scheduling of simulation tasks of different loads) is a powerful tool
for this analysis.
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The analysis of the dynamics of tracer particles in a complex bath can provide valuable information about the
microscopic behavior of the bath. In this work, we study the dynamics of a forced tracer in a colloidal bath by
means of Langevin dynamics simulations and a theory model within continuum mechanics. In the simulations,
the bath is comprised of quasihard spheres with a volume fraction of 50% immersed in a featureless quiescent
solvent, and the tracer is pulled with a constant small force (within the linear regime). The theoretical analysis
is based on the Navier-Stokes equation, where a term proportional to the velocity arises from coarse-graining
the friction of the colloidal particles with the solvent. As a result, the final equation is similar to the Brinkman
model, although the interpretation is different. A length scale appears in the model, k−1

0 , where the transverse
momentum transport crosses over to friction with the solvent. The effective friction coefficient experienced by
the tracer grows with the tracer size faster than the prediction from Stokes’s law. Additionally, the velocity
profiles in the bath decay faster than in a Newtonian fluid. The comparison between simulations and theory
points to a boundary condition of effective partial slip at the tracer surface. We also study the fluctuations in
the tracer position, showing that it reaches diffusion at long times, with a subdiffusive regime at intermediate
times. The diffusion coefficient, obtained from the long-time slope of the mean-squared displacement, fulfills the
Stokes-Einstein relation with the friction coefficient calculated from the steady tracer velocity, confirming the
validity of the linear response formalism.

DOI: 10.1103/PhysRevE.101.052607

I. INTRODUCTION

In soft matter, different time- and length scales are in-
volved, due to the presence, typically, of simple solvents and
macromolecules. This is usually tackled by integrating out
the fastest degrees of freedom, which leaves an equation of
motion for the relevant (macromolecular) ones [1–3]. A clear
example is the Langevin equation for the Brownian motion
of a colloidal particle, where the solvent is modelled only
through the friction and random forces acting on the particle.
This allows the calculation of parameters characterizing the
solvent by studying the diffusion of a single particle. This idea
has been elaborated further to study more complex fluids and
is the core of so-called microrheology.

In microrheology, a single colloidal tracer (or a very small
number of them) is introduced in a complex fluid to study
its mechanical behavior at the microscopic scale [4–8]. The
tracer can be left undisturbed to undergo diffusion in the
complex bath due to thermal and density fluctuations (passive
microrheology) or forced to probe the response of the bath
(active microrheology). Experiments [9–11] and simulations
of active microrheology [12–17] have shown that the effective
friction coefficient shows a linear dependence on the force for
small forces, allowing the definition of a microviscosity. A
nonlinear regime is entered for larger forces and a second lin-
ear regime, featuring a smaller viscosity, may be attained for

large forces. This overall phenomenology resembles that of
conventional (bulk) rheology, showing shear thinning, thick-
ening, or more complex scenarios [18–20]. Different possi-
bilites have also been reported in microrheology, depending
on the interactions considered [17].

The interpretation of the results from microrheology must
take into account all the degrees of freedom. While in dilute
cases, theory achieves to consider the bath particles explicitly
(e.g., by the direct interactions between the tracer and bath
particles, or among the bath particles) [7,21–26], a dense fluid
is often described within hydrodynamics. This implies that not
only the solvent but also the bath must be treated as continuum
fluid [18]. While the solvent is typically a Newtonian fluid,
the bath is a complex one, namely the transport coefficients
depend on the driving. The models used in microrheology,
thus, must describe the interaction of the tracer with these two
baths, either as fluids with different properties [27–30], sacri-
ficing a detailed structural description, or using a microscopic
theory to describe the motion of the tracer and bath particles
in a solvent [31–33].

In this work, we study the dynamics of a large tracer in a
dense bath of colloidal particles; the tracer is subjected to an
external constant force, small enough to remain in the linear
regime. All particles exhibit Langevin motion characterized
by a constant friction coefficient with the solvent, which also
provides the random forces. They are taken to be Gaussian

2470-0045/2020/101(5)/052607(10) 052607-1 ©2020 American Physical Society
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and white, and the fluctuation dissipation relation holds. This
widely used model focuses on the collective interactions
among bath particles and tracer, while it neglects the solvent
flow, which leads to hydrodynamic interactions [2]. We have
run simulations with a tracer up to eight times larger than
the bath particles, and a bath volume fraction of φ = 0.50.
The results are analyzed using a hydrodynamic model, within
the formalism of continuum mechanics. It differs from the
(naively expected) Navier-Stokes hydrodynamics even in the
limit of macroscopic tracers. The model has been derived
coarse-graining systems of Langevin particles [34], and the
resulting hydrodynamic equation is the Brinkman equation,
which has been applied previously to diffusion in porous
systems [35], although our interpretation is different from
previous ones. Notably, the solution of the Brinkman equa-
tion brings out a length scale where transverse momentum
transport crosses over to friction with the solvent. The friction
coefficient thus grows with the tracer size much faster than
Stokes’s law while the velocity profile in the bath decays as
the inverse cubed distance to the tracer. After performing a
finite-size analysis in the simulation results, the friction coef-
ficient and velocity profile can be correctly rationalized within
the theoretical model. The effect of the different boundary
conditions on the tracer surface is also discussed. Finally,
we study the dynamics of the tracer using the mean-squared
displacement and confirm the validity of the Stokes-Einstein
relation for all tracer sizes.

II. MODEL

The system we aim to describe is a colloidal bath at high
density with a (colloidal) tracer particle equal or larger than
the bath particles. There are, therefore, three components
in the system: solvent, bath particles, and tracer particle.
While the system is in equilibrium, at time t = 0 a constant
external force starts to pull the tracer. Similar systems have
been considered to study microrheology both in simulations
[16,23,32,36–38] and in theory [14,21,22,39]. In our case, the
force is small enough to drive the system out of equilibrium
within the linear regime.

We approach this system from two points of view: us-
ing Langevin dynamics simulations and a theoretical model
based on continuum mechanics. In both cases, the solvent
is assumed to be at rest, its only effect being a friction
force proportional to the particles velocities, and a random
force which produces Brownian motion. This implies that
we neglect hydrodynamic interactions (HI) among all parti-
cles but allows us to run simulations of large systems and
proceed analytically in the theory, and connects with many
previous works where HI are also neglected. This may seem
a harsh approximation but its effect on the local cageing of
particles is only quantitative [17,40], not affecting the physical
behavior of the system, in particular at the high bath density
studied here.

A. Simulations

In the simulations, the system under study is composed
of N polydisperse particles, including a tracer (labeled with
j = 1), in a cubic box with periodic boundary conditions. All
particles undergo Brownian motion, which we model by the

Langevin equation [2]. For particle j, the equation of motion
reads:

mj
d2 r j

dt2
=

∑
i �= j

Fi j − γ j
d r j

dt
+ f j (t ) + Fextδ j1, (1)

where mj is the particle mass; Fi j is the interaction force
between particles i and j; γ j is the friction coefficient with the
solvent, assumed to be proportional to the particle radius aj ,
γ j = γ0a j , mimicking Stokes’s law; and f j is the Brownian
force. The latter is random, but its intensity is linked to the
friction force, as given by the fluctuation-dissipation theorem,
〈f j (t ) · f j (t ′)〉 = 6kBT γ jδ(t − t ′), where kBT is the thermal
energy and δ(x) is the Dirac-delta symbol [2]. Finally, the
external force, Fext, acts only on the tracer (as shown by the
Kronecker δ symbol, δ j1). The energy injected by this force is
dissipated by the friction of the tracer with the solvent and
the bath particles, keeping the kinetic temperature constant
in the stationary state. As mentioned above, hydrodynamic
interactions have been neglected in the equation of motion.

The interaction potential between particles i and j is de-
rived from the central inverse-power potential:

V (r) = kBT

(
r

ai j

)−36

(2)

with r = |r| the center-to-center distance between the parti-
cles and ai j = ai + a j . Due to the high value of the exponent,
this system behaves as colloidal hard spheres [41]. To avoid
crystallization at high density, a continuous size distribution
of width 2δ = 0.2a, with a the mean radius, is used for the
bath particles. The tracer has radius at � a. For the sake of
simplicity in the numerical algorithm, all particles, including
the tracer, have the same mass: mj = m (note that the tracer
particle gives a scale for the external force). The mean bath
particle radius a, the thermal energy kBT , and particle mass
m are the length, energy, and mass units, respectively. The
friction coefficient with the solvent of particle j is calculated
with γ0 = 5

√
mkBT /a, which gives a single-particle diffusion

coefficient of D0 = kBT/γ0 = 0.2 a
√

kBT/m for the mean
particle. The Langevin equations of motion are integrated
using the Heun algorithm [42], with a time step of δt =
0.0005 a

√
m/kBT .

In our simulations, the system containing the tracer is
equilibrated without external force. For t > 0, the constant
external force is applied onto the tracer in the z direction, and
its trajectory is monitored. The effective friction coefficient
experienced by the tracer is obtained from its long-time steady
velocity, 〈v〉, averaged over many independent trajectories,
and using the steady-state relationship Fext = γeff〈v〉. For
small forces, the tracer velocity presents a linear regime with
the external force, resulting in a constant friction coefficient,
followed by a decrease of γeff for larger forces (nonlinear
response) [43]. We focus here on the linear regime at small
forces. The connection to the hydrodynamic calculation of
the theoretical section below is then given by Onsager’s
regression hypothesis [8].

In hydrodynamics, it is well known that there are long-
range correlations in the fluid, decaying typically with the
inverse distance. Although our model predicts a faster de-
cay of these correlations, as shown below, it is mandatory
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FIG. 1. Snapshots of the systems with N = 15 625, with a tracer
with at = 3a (top panel) and at = 7a (bottom panel). The tracer is
marked in red, and the particles in front of it have been removed
for clarity.

to perform an analysis of finite-size effects. In fact, since
periodic boundary conditions are used, an infinite cubic array
dragged through a bath of particles is considered. We have
thus run simulations of systems with N = 216, 512, 1000,
2197, 4096, 8000, 15 625, and 32 768 particles and tracer sizes
from at = a to at = 8a. Figure 1 presents two snapshots of
the system with N = 15 625 particles, including a tracer of
size at = 3a [Fig. 1 (top)] and at = 7a [Fig. 1 (bottom)]. The
bath volume fraction is φ = 0.50 in all cases, and the volume
occupied by the tracer is not accounted for in the calculation
of the simulation box size [43]. The center of mass of the
system is not fixed when the external force is applied. For the
calculation of the friction coefficient, 500 tracer trajectories
have been analyzed. In addition to the tracer dynamics, the
density and velocity profile in the bath have been studied in

several cases to check the theoretical predictions; note that
Langevin dynamics gives directly the particle velocity.

Numerical implementation

From a computational point of view, the requirement of a
finite-size analysis implies running simulations with different
number of particles, N , for every tracer size, at . For this
purpose we have used high performance computing in two
ways: (i) programming in graphics processing units (GPU)
to speed up the simulation of a single trajectory, and (ii)
using a genetic algorithm (GA) to balance the load of all the
processing units of the computer cluster, taking into account
the different durations of the simulations with different N .

We have accelerated the computation of a single tracer
trajectory by means of GPU computing using the CUDA
interface [43–45]. Note that the full system with N particles
has to be simulated, although the trajectory of a single particle
(the tracer) is the most relevant. In particular, the calculation
of the interaction forces among all particles and the integration
of the equations of motion are very demanding, and have been
thoroughly optimized [46]. In addition to this CUDA-GPU
core, a standard sequencial FORTRAN code has been used
in the CPUs. It was checked that both codes give the same
results when the same sequence of random numbers is used
for the Brownian force.

The whole set of simulations to analyze the friction coeffi-
cient has been run on modern multi-GPU clusters, that provide
CPU cores and GPUs which can compute several simulations
in parallel. Since the simulations of systems with different
sizes are needed, the computational loads of the corresponding
tasks are also different. Therefore, an appropriate balance for
the execution is decisive. Here we have adapted a genetic
algorithm to achive the optimal parallel performance [47].
In our GA, a set of possible solutions of the scheduling
problem is the population. The algorithm evolves iteratively,
starting with a random population, using the mutation and
selection mechanisms until the optimal solution is reached, as
defined by the minimum spread in execution times among all
processing units. A code written in Python has been developed
to calculate the optimal distribution of tasks.

In our procedure, a single trajectory in every unit (CPU
core or GPU core) is executed for every size and a given
tracer radius, and the running times are recorded. With these
times, the optimal distribution of trajectories per unit is
calculated, ensuring that all units finish their tasks with a
minimum difference. This distribution is then passed to the
cluster to perform the whole set of simulations for a sin-
gle tracer size. As mentioned above, simulations with N =
216, 512, 1000, 2197, 4096, 8000, 15 625, and 32 768 parti-
cles have been run, ensuring that all particles can fit into the
simulation box (recall that the tracer volume is not accounted
for in the calculation of the simulation box size). Thus, for
large tracers, only the biggest systems are simulated. Every
trajectory has been recorded for 106 time steps, corresponding
to t = 500 a

√
m/kBT or t = 100a2/D0. This time is long

enough to reach the stationary state and provide a correct
estimation of the tracer velocity, as checked with longer
simulations in selected cases.

A cluster composed by four nodes with a multiprocessor
of 16 CPU cores (Bullx R424-E3 Intel Xeon E5 2650 with
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TABLE I. Runtime in seconds of the simulation of a single
trajectory for different sizes (N). The tGPU and tCPU columns show
the execution time for a single trajectory on a GPU NVIDIA Tesla
M2070/a and CPU-core Bullx R424-E3, respectively.

N tGPU tCPU

216 1580 790
512 1785 1860
1000 2240 3715
2197 2930 8710
4096 4450 18 065
8000 7650 43 080
15 625 12 050 113 940
32 768 20 012 479 313

8 GB RAM) and 2 GPUs NVIDIA Tesla M2070 has been
used. Table I shows the runtime on a CPU core and a GPU
to simulate a single trajectory (profiling stage) for the systems
with at = 3a. Note that GPU programming is particularly
advantageous for large systems (up to 24× faster), although
the sequencial code is faster for small systems.

B. Theory

We now search for a continuum mechanics description,
in order to understand the motion of a macroscopic tracer
in the bath of interacting Brownian particles. This search is
motivated by the success of Stokes’s calculation of the friction
of a macroscopic tracer in a Newtonian fluid. He obtained it
based on the Navier-Stokes equation (NSE) for the velocity of
a continuous Newtonian fluid subjected to external stresses or
forces. In colloid science, Stokes’s law describes an isolated
rigid particle immersed in a solvent which is dragged with
a constant velocity, with stick (or slip) boundary conditions
on the particle surface. The resulting friction force depends
linearly on the solvent viscosity and the bead radius and is
proportional to its velocity.

Here to describe the tracer in a colloidal bath we have to
coarse-grain the system of coupled Langevin equations for the
bath particles j = 2, . . . , N in Eq. (1). This was recently per-
formed using the Zwanzig-Mori projection operator technique
[48,49] and considering the long-wavelength limit [34]. The
presence of the solvent leads to the inclusion of an additional
friction term in the NSE, proportional to the bath particle
velocity field, u. This accounts for the local dissipation of the
bath particles in the solvent, and arises from coarse-graining
the drag forces on the particles [34]. In the stationary state, the
hydrodynamic equation reads:

∇P − η0∇2u = −ζ0u + Fext, (3)

where P is the pressure. This equation contains the hydrody-
namic friction with a bath of viscosity η0 (that represents the
colloidal system), and with an inert solvent, of friction coeffi-
cient ζ0 (representing the solvent) as well as an external force
acting on the system. Without hydrodynamic interactions, the
friction coefficient in incompressible systems is simply ζ0 =
nγ0 where n is the bath number density. For the calculation
of the analog of Stokes’s friction, the external force Fext is
assumed to be a point force acting on the tracer center. This

equation is complemented by the incompressibility condition:

∇ · u = 0. (4)

Equation (3) was already proposed by Brinkman to de-
scribe the motion of a tracer in a swarm of colloidal particles
[35], as a combination of Darcy’s equation and the NSE.
However, the interpretation of the parameters is different:
In the Brinkman model, the divergence of the stress tensor
represents the solvent, and the linear term in u is due to the
presence of the other particles, which act as a porous matrix.
Tam [50] used a more rigorous derivation to this equation
from first principles, albeit with the same interpretation. Due
to this interpretation, the Brinkman equation has been widely
used to study the diffusion in a porous medium [51]. It must
be also mentioned that the Brinkman equation is similar to the
Laplace-transformed unsteady Navier-Stokes equation.

It has been shown previously [34] that Eq. (3) holds with or
without hydrodynamic interactions. It requires that momen-
tum is not conserved (as holds in the Langevin simulations,
where the solvent relaxes the momenta), yet that the bath
viscosity η0 is large in order for a region (later identified
by the wave vector k0) to emerge where the NSE holds
in approximation. As any continuum mechanics description,
application of Eq. (3) requires smooth and slow fluctuations,
which translates into large tracer sizes. As specific approxima-
tion, Eq. (3) neglects the diffusive build-up of a density profile
around the forced tracer, which could become noticeable in
an appreciably compressible system. It is also interesting to
note that the Brinkman’s equation is not Galilei invariant,
which is different from the NSE. This is in agreement with
the Langevin equation, which is also not Galilei invariant. On
the other hand, this implies that the problem of the moving
sphere in a quiescent fluid is different from a fixed sphere in
an incoming fluid. The problem we are interested in is the
former one, namely, a moving tracer in a quiescent fluid.

This case has been solved previously in the literature, see,
e.g., Ref. [52], giving a velocity profile around the tracer
(located at r = 0):

u(r) = 1

8πη0
S (r) · Fs + uhom(r), (5)

where S (r) is a matrix of elements:

Si j (r) = δi j
A(r)

r
+ rir j

r3
B(r) (6)

with

A(r) = 2

(
1 + 1

k0r
+ 1

k2
0r2

)
e−k0r − 2

k2
0r2

, (7)

B(r) = −2

(
1 + 3

k0r
+ 3

k2
0r2

)
e−k0r + 6

k2
0r2

, (8)

and Fs = Fsêz is an effective surface force that depends on
the boundary conditions (see below). The inverse distance k0,
appearing in the expressions above is defined as k0 = √

ζ0/η0

and describes the length scale of the crossover from friction at
large distances, originating from the coupling of the particles
to the solvent according to the Langevin equation, to diffusive
transverse momentum transport intrinsic in the NSE based on
Newtonian dynamics, for short distances. The ratio between
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this length scale and the tracer size, viz. the dimensionless
parameter k0at , plays a central role in the following results;
for k0 → 0 the NSE description of a particle in a Newtonian
solvent is recovered, whereas for k0 → ∞ the innert solvent
is dominant. In particular, for small k0:

lim
k0→0

A(r) = lim
k0→0

B(r) = 1, (9)

which recovers the velocity profile for the Newtonian solvent
[53].

The second term in Eq. (5), uhom, is the velocity profile
without external force and pressure, which decays exponen-
tially:

uhom(r) = −êr
Fha2e−k0r

4πη0r3
(1 + k0r) cos θ

+êθ

Fha2e−k0r

8πη0r3

(
1 + k0r + k2

0r2
)

sin θ. (10)

Here Fh has to be determined by the boundary conditions, as
well as Fs. For stick boundary conditions,

u(at ) = u0, and u(r → ∞) = 0

with u0 the tracer velocity. This yields:

Fs = 6πη0at u0

(
1 + k0at + 1

3
k2

0a2
t

)

and

Fh = −4πη0at u0

(
1 + 3

k0at
+ 3

k2
0a2

t
− 3

ek0at

k2
0a2

t

)
. (11)

For slip boundary conditions, on the other hand, it is cus-
tomary to introduce a slip length, b, and replace the condition
of the surface velocity with

ur (at ) = u0 cos θ, and η[uθ (at ) + u0 sin θ ] = bτrθ ,

where ur and uθ refer to the radial and angular components of
the velocity field, and τrθ to the shear stress at the slip plane.
For pure slip boundary conditions b → ∞, resulting in [54]:

Fs = 6πη0at u0

[
2(1 + k0at ) + k2

0a2
t + k3

0a3
t /3

3 + k0at

]

and

Fh = −4πη0at u0

[
2
(
1 + k0at − ek0at

) + k2
0a2

t + k3
0a3

t /3

k2
0a2

t (1 + k0at/3)

]
.

(12)
The friction force experienced by the tracer, equal to Fext, is

calculated integrating the stress tensor over the tracer surface.
For stick boundary conditions, this leads to [52]:

Fext = 6πη0at u0

(
1 + k0at + 1

9
k2

0a2
t

)
. (13)

Note that this expression reduces to Stokes’s formula for a
Newtonian fluid, ζ = 0 (giving k0 = 0), while in the oppo-
site limit, k0 → ∞, or η0 → 0, the friction coefficient gives
Vtζ0/2, with Vt the volume of the tracer.

The velocity profile from the Brinkman equation, Eq. (5),
on the other hand, shows a faster decay than the NSE, as

FIG. 2. Inverse friction coefficient as function of the inverse
simulation box size for different tracer sizes (different colors and
symbols). From top to bottom: at = 1a, 2a, 3a, 4a, 5a, 6a, 7a,
and 8a.

shown by the ∼1/(k2
0r3) dependence at long distances. As

expected, for k0 = 0, the 1/r decay, typical of a Newtonian
fluid within the NSE, is recovered.

For slip boundary conditions the friction coefficient is
given by:

Fext = 6πη0at u0

(
2 + 2k0at

3 + k0at
+ 1

9
k2

0a2
t

)
, (14)

which reduces to 4πη0at for a Newtonian fluid, as expected.
In the opposite limit, k0 → ∞, the boundary condition is not
relevant and the friction coefficient is again Vtζ0/2.

We end this section by discussing a few important caveats
in the connection between the hydrodynamic theory and the
Langevin simulations. While one would directly identify ζ0

with nγ0 in Eq. (1), possible differences might be relevant
in comparisons. On the one hand, the minimum size of the
tracer for the hydrodynamic theory to apply is unknown; and,
on the other hand, the compressibility of the colloidal bath
(considering only the particles, not the solvent), might be
relevant, as the density is diffusive in Langevin systems. Even
more, the correct boundary condition on the tracer surface is
unknown.

III. RESULTS AND DISCUSSIONS

In this section we first test the theoretical results of the
modified NSE with simulations, and then analyze the dynam-
ics of a large forced tracer in a bath of colloidal particles.

A. Friction coefficient of the tracer

The friction coefficient is determined from the steady-state
tracer velocity, but due to long-range spatial correlations in
the bath, it may show importat finite-size effects. Figure 2
analyzes this effect by showing the inverse effective friction
coefficient as a function of the inverse box size for different
tracer sizes. This representation is motivated by the theoretical
analysis of the finite-size effects in a Newtonian solvent within
the NSE. Hasimoto [55] showed that the friction coefficient,
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FIG. 3. Friction coefficient extrapolated to the infinite system as
function of the tracer size (the error bars indicate the dispersion of
the data for large systems). The lines are the results from Brinkman’s
equation with stick or slip boundary conditions and Stokes’s law, as
labeled.

γeff, experienced by an array of tracers follows:

1

γeff
= 1

γ∞

(
1 − C

L

)
, (15)

where γ∞ is the friction coefficient measured in an infinite
system, C is a constant that depends on the array structure
(simple cubic, BCC, FCC, and so on) and L is the lattice
spacing, namely, the simulation box size. For the simple cubic
array, that corresponds to the periodic boundary conditions,
C = 2.8373 at [55]. Previous simulations of the diffusion of
a tracer in a bath of particles, with microscopic Newtonian
dynamics, have shown the validity of this result [56,57].
Furthermore, the value of the friction coefficient extrapolated
for the bulk, agrees with the Stokes value using the viscosity
(calculated with the Green-Kubo integration of the stress au-
tocorrelation function, as discussed below), and slip boundary
conditions.

The data in Fig. 2 shows that γ −1
eff grows for increasing

system sizes for small and intermediate L, but levels off for
large systems. These results clearly deviate from the predic-
tion for a Newtonian fluid, Eq. (15), as expected for Langevin
systems with a dissipative term. Notably, it also indicates
that the bulk value can be obtained from simulations of large
enough systems. In a previous work, it was shown that this
general result does not depend on the particular details of the
simulation [43] (considering the volume of the tracer in the
system volume, fixing the center of mass of the system, or
varying the friction coefficient with the solvent).

The values of the friction coefficient with an infinite bath,
to be compared with the theory, are taken from the plateau for
large systems. The results are plotted in Fig. 3 as a function of
the tracer size, with the error bars representing the dispersion
of the data. The simulation data deviates clearly from the
linear trend predicted by Stokes’s law for a Newtonian fluid,
while the Brinkman equation predicts the qualitative behavior
of the friction coefficient adjusting the only unknown param-
eter k0 (see below).

To make a more quantitative test of the theoretical models,
we calculate the shear viscosity of the bath of quasihard
particles. This is given by the Green-Kubo relation, namely
the integral of the stress autocorrelation function, which ac-
counts for the particle-particle direct interactions as well as
the kinetic energy [48]:

η0 = β

3V

∫ ∞

0
dt

∑
μ<ν

〈σμν (t )σμν (0)〉, (16)

where β = 1/kBT is the inverse thermal energy, V the system
volume, and σμν (t ) is the μν component of the stress tensor.
The sum runs over all off-diagonal terms of the stress tensor,
and 〈σμν (t )σμν (0)〉 is the stress autocorrelation function. The
time integral over the correlation function is more conve-
niently performed using the Einstein relation [58,59].

The Green-Kubo integration gives for the viscosity of the
bath η0 = (3.9 ± 0.1)

√
kT m/a2. With this value, the Stokes

prediction is plotted in Fig. 3 (blue continuous line), which
underestimates notably the simulation data for large tracers,
although the small size limit is correctly captured. The friction
coefficient obtained from the Brinkman equation has been
adjusted to reproduce the simulations, using k0 as fitting
parameter. The dashed lines in Fig. 3 show the fittings with
the calculations considering stick or slip boundary conditions
(red or green lines, respectively). Both fittings are equally ac-
ceptable, but they give different values of the fitting parameter
k0, as shown in the figure.

From the simulation, identifying ζ0 = nγ0, we expect k0 =√
nγ0/η0 = 0.39/a, which is within the range of values pro-

vided by both fittings. A small value of k0 corresponds to a
system controlled by the viscosity of the bath of particles, as
expected due to the high density of the bath (recall that the
volume fraction is φ = 0.50).

To further compare the model and the simulations, we
study the velocity profile in the bath. Figure 4 shows the
velocity of the bath particles in front of the tracer for two
tracer sizes and the system with N = 15 625 particles (only
the radial component is studied). The distribution of bath
particles surrounding the tracer, ρ(r), is also included in
the figure to facilitate the interpretation. The velocity profile
oscillates in phase with the bath density, and decays faster than
the inverse distance, the prediction for the Newtonian fluid,
irrespective of the boundary condition. Brinkman’s model,
Eq. (5), on the other hand, reproduces quite well the decay
of the velocity profile (as 1/r3), but also quantitatively with
the values of k0 obtained from the fitting of the friction coef-
ficient for both boundary conditions, and for both tracer sizes.
However, the theory fails to capture the oscillations due to the
finite size of the bath particles, as expected for a continuum
model for the bath. Again, both boundary conditions compare
equally well with the simulations, bracketing the simulation
results.

A more prominent difference between the stick and slip
boundary conditions is obtained if the angular component
of the velocity field in the direction perpendicular to the
external force is studied. This is tackled in Fig. 5 for the
same tracer sizes (the z component of the velocity, parallel
to the force, is studied). For small distances from the tracer,
the stick boundary conditions result in a positive velocity,
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FIG. 4. Velocity profile in the colloidal bath in front of the tracer
from simulations (continuous red line), for two tracer radii, as la-
beled. Theory results for a Newtonian fluid (thin red and green lines)
and the Brinkman equation with stick or slip boundary conditions
(dashed red and green lines, respectively) are also included. The
dash-dotted black line represents the density of bath particles around
the tracer.

which becomes negative further away, but the slip boundary
condition produces a negative velocity for all distances. The
simulation results agree with both cases for long distances
(negative velocity), but are close to zero near the tracer. This
result, in conjuction with all previous comparisons, proba-
bly indicates that a mixed boundary condition is optimal in
describing the friction and velocity fields of the tracer in a
colloidal bath with the Brinkman equation. For completeness,
the predictions from the NSE for stick and slip boundary
conditions are shown, indicating that the behavior observed
in the simulations cannot be reproduced.

B. Tracer dynamics

In this subsection, we analyze the transient dynamics of
the forced tracers of different sizes, for a small pulling force.
Figure 6 shows the mean-squared displacement of the tracer
perpendicular to the force direction and parallel to it (with
the drift velocity substracted). Long-time diffusion is reached
for all tracers, in particular in the longitudinal direction, i.e.,

FIG. 5. The z component of the velocity in the colloidal bath
in the plane perpendicular to the tracer for at = 3a (upper panel)
and at = 8a (lower panel). Simulations (continuous red line), and
theory results for a Newtonian fluid (thin red and green lines) and the
Brinkman equation with stick or slip boundary conditions (dashed
red and green lines, respectively) are shown. The dash-dotted black
line represents the density of bath particles around the tracer rescaled
to fit into the same scale.

superdiffusion is not observed for this density [16] (superdif-
fusion has been indeed observed in this same system for larger
densities). Notably, the self diffusion coefficient decreases
with increasing tracer size, developing a shoulder in the MSD
and a sublinear increase at intermediate times. The typical
distance corresponding to the height of the shoulder also
decreases with the size of the tracer. Recall that the length
unit is the bath particle radius, i.e., if the tracer radius is used,
the decrease in the localization length is enlarged, pushing to
a tiny fraction of the tracer radius (smaller than 10−4a2

t for the
biggest tracer).

The self-diffusion coefficients, obtained from the long-time
slope of the MSD in both directions, are shown in Fig. 7. Both
of them are very similar and follow the same trend, decaying
almost two decades in the range of tracer sizes studied here.
Indeed, not only the slopes of the MSD in both directions are
close to each other, but the MSD themselves are very similar
(the relative differences are below 20% in all cases, and
constant within the statistical noise). The equality of the MSD
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FIG. 6. Tracer mean-squared displacement in the direction per-
pendicular to the force (upper panel), and parallel to the force (lower
panel), for different tracer radii, as labeled (increasing from top to
bottom).

in both directions, and the concomitant diffusion coefficients,
despite the anisotropy induced by the external force, indicates

FIG. 7. Diffusion coefficients in the direction perpendicular and
parallel to the external force, as labeled.

FIG. 8. Diffusion coefficient in the force direction times the
friction coefficient. The blue line is the average over all data.

that the force is small enough to keep the system in the linear
regime.

Finally, we check the Stokes-Einstein relation for the tracer
by plotting the product of the diffusion coefficient times the
friction coefficient for all tracer radii. Figure 8 shows these
results as a function of the tracer size. The product is close
to 1 in all cases, fluctuating around a mean value of 0.986,
confirming the validity of the Stokes-Einstein relation, or
stated more generally, of the linear response formalism. The
mobility, viz. the inverse friction coefficient, of a tracer feeling
a small force is proportional to the diffusion coefficient of
the unforced tracer, and the prefactor is given by the thermal
energy, which is set to unity in the simulations.

IV. CONCLUSIONS

The dynamics of a large tracer pulled with a small force
in a bath of quasihard colloidal spheres has been studied with
Langevin dynamics simulations, and with continuum mechan-
ics. The force is small enough to keep this out-of-equilibrium
system in the linear response regime. The analysis of finite-
size effects in the simulations has shown that the correlations
in the bath, induced by the moving tracer, decay faster than
in a Newtonian fluid, and within the simulation box, if the
system is large enough. This has allowed the analysis of the
microviscosity without futher extrapolation with the theory.
The Navier-Stokes equation has been modified, adding a term
proportional to the fluid velocity, resulting in an equation
identical to the Brinkman equation, albeit our interpretation of
the terms is different. This two-fluid model provides a length
scale, k−1

0 , for the crossover from diffusive transverse mo-
mentum transport to friction with the solvent, which depends
on the viscosities of the two fluids. The resulting friction
coefficient for the tracer grows faster than linear, with both
stick and slip boundary conditions, and the velocity profile
decays as ∼1/r3 for finite k0. The results for a Newtonian
fluid are recovered in the limit k0 → 0.

The comparison of the simulations and theory gives semi-
quantitative agreement. Fitting k0, the simulation data can be
reproduced with the model, both the friction coefficient and
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velocity profile in the bath for long distances. The value of
k0 also corresponds to the expectation based on the viscosity
calculated from the Green-Kubo relation and the solvent fric-
tion coefficient. The two-fluid model describes satisfactorily
the physical phenomena in colloidal microrheology and shows
that a correct interpretation of the results requires accounting
for colloidal bath particles and solvent. Also, our results
apparently point to mixed effective boundary conditions be-
tween stick and slip.

The fluctuations of the tracer position have been studied to
obtain the mean-squared displacement in the direction parallel
to the force and perpendicular to it. Diffusion is attained in
both cases at long times, after a transient trapping with a
typical length decreasing for increasing tracer sizes. Because
the system is in the linear response regime, the diffusion
coefficients in both directions are similar despite the anisotry

provoked by the external force. Furthermore, the Stokes-
Einstein relation is fulfilled, confirming the validity of linear
response.
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Abstract
Modern computational platforms are characterized by the heterogeneity of their pro-
cessing elements. Additionally, there are many algorithms which can be structured 
as a set of procedures or tasks with different computational cost. Balancing the com-
putational load among the available processing elements is one of the main keys 
for the optimal exploitation of such heterogeneous platforms. When the process-
ing time of any procedure executed on any of the available processing elements is 
known, this workload-balancing problem can be modeled as the well-known sched-
uling on unrelated parallel machines problem. Solving this type of problems is a 
big challenge due to the high heterogeneity on both, the tasks and the machines. In 
this paper, the balancing problem has been formally defined as a global optimization 
problem which minimizes the makespan (parallel runtime) and a heuristic based on 
a Genetic Algorithm, called Genetic Scheduler (GenS), has been developed to solve 
it. In order to analyze the behavior of GenS for several heterogeneous clusters, an 
example taken from the field of statistical mechanics has been considered as a case 
study: an active microrheology model. Given this type of problem and a heterogene-
ous cluster, we seek to minimize the total runtime to extend and analyze in depth the 
case of study. In such context, a task consists of the simulation of a tracer particle 
pulled into a cubic box with smaller bath particles. The computational load depends 
on the total number of the bath particles. Moreover, GenS has been compared to 
other dynamic and static scheduling approaches. The experimental results of such 
a comparison show that GenS outperforms the rest of the tested alternatives achiev-
ing a better distribution of the computational workload on a heterogeneous cluster. 
So, the scheduling strategy developed in this paper is of potential interest for any 
application which requires the execution of many tasks of different duration (a priori 
known) on a heterogeneous cluster.

Keywords Parallel scheduling · Heterogeneous cluster · Unrelated machines · 
Genetic Algorithm
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1 Introduction

Modern computational systems consist of heterogeneous clusters which are com-
posed by the interconnection of Processing Units (PUs) with different compu-
tational power, such as CPU-cores, GPUs and so on [1]. Algorithms developed 
for this kind of platforms have to treat such heterogeneity to efficiently exploit 
the different resources on modern computers. To this effect, the programmer is 
responsible for explicitly selecting the devices and mapping the tasks among 
PUs. So, scheduling techniques become one of the most challenging problems, 
having a tremendous impact on performance. Many examples of parallel appli-
cations consist of a set of independent tasks, with different computational cost, 
which have to be scheduled on a set of heterogeneous processing units in an opti-
mal way. This problem can be modeled as a scheduling tasks on unrelated paral-
lel machines problem, which is NP-complete [2] and very well known in the field 
of operational research [3].

There are two different approaches for the scheduling problems, dynamic and 
static. The dynamic one is based on the definition of a global queue of tasks from 
which every available PU picks a new task up. A dynamic scheduling does not 
need any a priori information and usually is the best option when the tasks load is 
unpredictable. However, dynamic scheduling can produce non-optimal solutions 
when the tasks runtime is strongly heterogeneous. Several dynamic interfaces 
have emerged in the last few years to face scheduling in heterogeneous clusters. 
For instance, StarPU [4], Qilin [5] and Scout [6] offer different methods to map 
tasks to CPU and GPU. The disadvantage of these paradigms is that they require 
the programmers to rewrite their codes using a new programming language in the 
case of StarPU or Scout or using specific APIs in Qilin [7].

On the other hand, static approaches are useful when it is possible to have an 
estimation of the runtime of the tasks a priori. In such cases, they can provide 
results near optima since they consider the problem from a holistic view. This 
paper is focussed on such context. Although this kind of problems is challenging, 
it can be efficiently solved if an a priori knowledge about the runtime of every 
task on every machine is considered. The proposed scheduling is of potential 
interest for any problem that meets the above-mentioned premises.

In this work, an active microrheology model (AMM) in hard colloids has been 
selected as a case study to illustrate the scheduling of simulations of bulk systems 
on heterogeneous platforms. From the computational point of view, simulations 
of bulk systems have huge requirements and can be structured as a set of inde-
pendent tasks with different computational loads (simulations of systems with 
different sizes).

Here, a finite size analysis is used to extrapolate the results from a finite system 
to an infinite one, requiring simulations of systems with different (large) sizes. 
In active microrheology, the mechanical and flow behavior of a complex fluid is 
studied at the microscopic level [8, 9]. Therefore, in order to compute the micro-
viscosity for a bulk system, it is necessary to run simulations of systems with 
different sizes, and extrapolate to the infinite system relying on the model. Note 
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that for every system size, many tracer trajectories must be evaluated (typically 
500 in this work) to obtain a good estimation of the average tracer velocity. In the 
context of AMM simulations, it is feasible to have a good a priori estimation of 
the simulation time on different processing units.

So, a static scheduling based on a global analysis is an appropriate option to opti-
mize the parallel execution of such simulations. In this paper, the scheduling strategy 
is formally defined as a global optimization problem which minimizes the makespan 
(parallel runtime of the simulation processes). Then, a heuristic based on a Genetic 
Algorithm is developed to solve the scheduling on unrelated parallel machines. Here-
inafter, it is referred to as the Genetic Scheduler (GenS). Other scheduling approaches 
(two dynamic and two static strategies) are revised and comparatively evaluated with 
respect to GenS. Our results show that GenS outperforms the other scheduling methods 
in terms of makespan using the paradigmatic case study.

The main contributions of the paper can be summarized as follows: (1) a new sched-
uling heuristic based on a Genetic Algorithm to efficiently distribute the heterogeneous 
tasks on heterogeneous resources has been designed and comparatively evaluated; (2) 
this scheduling makes feasible to solve computationally harder simulations of the active 
microrheology case study; (3) a scheduling software to efficiently distribute a set of 
independent tasks with different costs on heterogeneous processing units, called GenS, 
is provided (https ://githu b.com/2fort s/GENS). Thus, this software can be useful for all 
problems which can be modeled by scheduling on unrelated parallel machines beyond 
the case study of this paper.

2  Scheduling problem on unrelated parallel machines

Let assume that a cluster has K PUs (Processing Units), that is, for example the total 
number of available CPU-cores plus GPUs. Let {Rm} be the set of tasks that defines 
the model, with m = 1,… ,M and M =

∑I

i=1 Qi represents the total number of tasks to 
compute, I denotes the number of different system sizes Ni , with 1 ≤ i ≤ I , and Qi rep-
resents the number of tasks with system size Ni . Then, the goal is to find a scheduling 
that minimizes the makespan, Cmax

where xk,i represents the number of tasks of size Ni assigned to the k-th PU; xk,i is 
an element of the matrix, X, that defines the assignment of tasks to PUs (machines); 
tk,i represents the runtime to compute a task of system size Ni on the k-th PU. The 

(1)

Find: X

to minimize: Cmax

subject to: tk =
I∑

i=1
xk,itk,i ≤ Cmax, 1 ≤ k ≤ K

K∑

k=1
xk,i = Qi, 1 ≤ i ≤ I

xk,i ∈ {0, 1,… ,Qi}, 1 ≤ k ≤ K;1 ≤ i ≤ I
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constraints for X mean that every task is computed on a single PU and every set 
of Qi tasks with the same size is distributed among all the PUs. The k-th row of X 
defines the set of tasks assigned to k-th PU, and the i-th column establishes the dis-
tribution of the tasks of size Ni among the K PUs (see Fig. 1).

The scheduling problem defined by Eq. 1 includes the runtime of every task at 
every PU, tk,i . The estimation of tk,i can be accurately and fast computed a priori, 
because the K × I matrix T = (tk,i) includes a high percentage of identical rows 
related to the same kinds of PUs. The runtime of the tasks can be characterized by 
a matrix T  of reduced dimensions S × I where S represents the number of different 
kinds of PUs.

The scheduling on unrelated parallel machines is a challenge because of the het-
erogeneity of both, the required tasks and cluster architecture. Then, it is necessary 
to define an appropriate task scheduling to obtain the optimal parallel performance.

3  Scheduling approaches

According to the formalism introduced, the static methodology to optimize the task 
distribution among the heterogeneous PUs consists of three stages: (1) profiling 
stage, which estimates the values of every element of the matrix T, according to 
the different sizes of the systems involved in the analysis and the number of Pro-
cessing Units, PUs; (2) optimal scheduling estimation to identify the set of tasks 
which every PU should compute, bearing in mind the a priori knowledge provided 
by the profiling stage, so a parallel runtime can also be estimated; and (3) parallel 
execution of all simulations on the heterogeneous PUs of the cluster according to the 
scheduling defined in the second stage.

The optimal scheduling estimation (stage 2) could be simpler if there was a single 
type of tasks and PUs, since we could easily reach a good solution using a homoge-
neous distribution. However, in general, this estimation is more complex, even with 

Fig. 1  Matrix X defines the assignment of tasks to PUs
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a single type of PU, because the parallel software may include tasks with different 
computational loads. Of course, the computational complexity of the optimal sched-
uling estimation increases for high values of I, M and K. The scheduling on a hetero-
geneous cluster is NP-complete [10]. Our goal is to apply a heuristic which provides 
near-optimal solutions for the scheduling problem [10].

3.1  Genetic scheduler (GenS)

Genetic Algorithms (GAs) have been widely used for the resolution of scheduling 
problems. For instance, GAs are used to solve scheduling problems according to 
a static scheme in Sels et al. [11]. A scheduling algorithm based on double-fitness 
adaptive algorithm-job spanning time and load-balancing genetic algorithm is 
applied in cloud computing in Wang et al. [12]. Another GA for the same case was 
presented by Sharma et al. [13]. Adan et al. present a GA for production schedul-
ing at a back-end production of electronics manufacturing [14]. A GA to schedule 
non-preemptive tasks onto identical multiprocessors was presented in Al-Said et al. 
[15]. Cappadona et al. afford the unrelated parallel machine scheduling with limited 
and differently skilled human resources [16]. A stochastic search method based on 
a GA approach was presented in Hou et al. [17]. Jooyayeshendi et al. and Page et al. 
presented GAs for solving the unrelated parallel machine scheduling on heteroge-
neous distributed systems, in a dynamic context [18, 19]. The proposal of Kaiser 
et al. affords the scheduling on homogeneous clusters [20]. A GA for the unrelated 
parallel machine scheduling problem but with sequence-dependent setup times was 
presented in Vallada et al. [21].

In this work, a GA is customized for solving the unrelated parallel machine 
scheduling on heterogeneous clusters for the specific case defined by Eq. 1. A GA 
works with a set of individuals which represents possible solutions of the sched-
uling policy problem (population). It is an iterative procedure which starts with a 
random set of individuals, P(0), and at every iteration, iter, a selection mechanism 
and genetic operators are applied to the population, P(iter). Thus, the population 
is constantly evolving. The selection mechanism allows the individuals of the next 
generation to be closer to the optimal solution (see Algorithm 1). 

Algorithm 1 Genetic Algorithm

1: iter ← 0
2: Initialize random population P (0)
3: Evaluate the fitness for the population P (0)
4: while termination condition is not true do
5: iter ← iter + 1
6: Select P (iter) from P (iter − 1)
7: Apply genetic operators (crossover and mutation) to P (iter)
8: Evaluate the fitness for P (iter)

9: end
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To apply Algorithm 1 to the problem of finding a near-optimal scheduling, it 
is necessary to specify the following concepts: individual, fitness function, and 
genetic operators (crossover and mutation). We propose to adapt a GA to the 
aforementioned scheduling problem, resulting in the GenS algorithm.

Bearing in mind the formalism introduced above, every individual in P(iter) 
is represented by a K × I matrix X which defines the assignment of tasks to the 
PUs according to the definition in Eq. 1 (and Fig. 1). After the evaluation of the 
fitness function (UB) for the whole population, individuals are ordered according 
to their fitness. Thus, the individuals with smaller UB will be selected while the 
GA advances.

At every iteration of Algorithm 1, two operations are applied to the population 
to promote the evolution. Firstly, a random set of pairs of individuals (parents) is 
defined and then, new individuals (children) are produced by the crossover oper-
ator. Then, the well-known single point crossover operator is applied. Figure  2 
describes how the crossover is applied. A random column is selected to split the 
matrices of both parents, and new individuals are generated swapping the four 
sets of columns. In this scheme, the children can be considered as valid solu-
tions since the constraints for the columns of their matrices are verified. After the 
crossover, the mutation operator acts on every descendant and it can alter the dis-
tribution of every column (with a probability of 1%). It is a random exchange of 
tasks of the same size between a pair of PUs, i.e., elements in the same column of 
the corresponding matrix interchange their tasks partially. Every iteration starts 
with the same population size (PS). The selection phase only consists of choos-
ing/ keeping the best PS individuals since the population has been previously 
ordered according to the fitness, UB. The procedure stops when the UB over 10 
iterations does not change for the 30% of best individuals. Summarizing, if {tk,i} 
with 1 ≤ k ≤ K and 1 ≤ i ≤ I is known, GenS is able to identify a near-optimal 
distribution of tasks among the set of PUs.

1

Parents

1

K

k

X2

Children

X1’ X2’
i

xk,i

number of tasks of 
size Ni on the k 

processing element

I

X1

Fig. 2  Crossover procedure to produce new individuals in the population
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3.2  Additional static approaches

An example of static approach is the Polynomial Time Approximations Scheme 
(PTAS) algorithm [10]. The PTAS algorithm can give a good estimation of the optimal 
scheduling, with the additional advantage that it is possible to estimate theoretically the 
ratio to the optimal solution. However, PTAS has a high computational overhead due 
to the large amount of information that it is necessary to store. This is the reason PTAS 
has not been included in the comparative study of GenS.

An alternative approach to GenS consists of a cyclic distribution of the tasks over 
the set of PUs. First of all, the tasks are ordered according to their computational load. 
After that, they are distributed in a cyclic order among the PUs. In this way, every PU 
computes similar percentages of tasks of different costs. Hereinafter, this scheme will 
be referred to as Cyclic. It is probable that it achieves a near-optimal schedule in homo-
geneous clusters.

A greedy heuristic following the scheme considered in [22] can also be defined to 
solve the scheduling problem (Greedy). For a given system size, ( Ni ), the a priori esti-
mation of the runtime allows us to identify the slowest PU, and the acceleration factor 
of the remaining PUs with respect to it. These factors define the percentage of tasks 
of a specific size that will be executed in every PU. So, every set of Qi tasks with the 
same workload is distributed among the PUs. The PUs with less computational power 
compute fewer simulations, and PUs with more power will compute the percentage of 
tasks defined by the corresponding acceleration factor. This procedure is repeated for 
every subset of tasks, obtaining a near-optimal distribution in every case, with the aim 
of obtaining a global optimal solution.

3.3  Dynamic approaches

Several kinds of scheduling policies without a priori estimations of the tasks runtime 
can be defined. However, our interest is focussed on two dynamic approaches that par-
tially use this information, since the starting point of both is an ordered tasks queue 
according to their computational load, Ni.

The Simple Tasks Queue (STQ) solves the problem dynamically, managing a single 
queue. Each PU will compute a task from this queue, and when it finishes, it takes the 
new task from the head of the queue.

Another dynamic approach is to use a Double-Ended Queue in combination with 
a classification of the devices in two categories, slow and fast devices. In this scheme, 
slower devices take the lighter tasks of the queue, and faster devices the heavier ones. 
It will be referred to as Double-Ended Tasks Queue (DETQ), and it considers a priori 
information about the loads of tasks and the power of machines.
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4  Active microrheology model (AMM) as a case study

As mentioned above, AMM is considered here as case study because from the com-
putational of view it can be seen as a set of independent tasks of several different 
loads which can be executed on heterogeneous clusters. In active microrheology, the 
mechanical and flow behavior of a complex fluid is studied at the microscopic level 
[9, 23]. For this, an intruder particle, typically of colloidal size, is introduced and 
pulled through the system, and its dynamics is monitored. In particular, the micro-
viscosity can be computed from the stationary tracer velocity at long times.

In our case study, the host fluid is modeled as Brownian quasi-hard spheres, mim-
icking hard colloids. Brownian motion is described by the Langevin equation [24], 
which for particle j reads:

where the terms in the r.h.s. are the interaction forces ( 
∑

i �ij ), friction with the 
solvent ( −�j

d�j
dt

 ), random force ( �j(t) ), and external force ( �ext�j1 ), respectively; 
�j is the friction coefficient with the solvent, which is related to the random force 
via the fluctuation dissipation theorem [24], and depends linearly on the parti-
cle radius. The external force, �ext , which acts only onto the tracer, labeled by 
j = 1 , is constant in our model (this fact is expressed by the well-known Kro-
necker delta, denoted by �j1 ). The interaction forces are derived from the interpar-
ticle potential V(rij) = kBT(rij∕dij)

−36 , where rij is the center to center distance, and 
dij = (ai + aj)∕2 , where ai is the radius of particle i.

The simulations are run in a cubic box, with N particles and periodic boundary 
conditions. The bath particles and tracer have radii ab and at , respectively, and all 
particles have the same mass, m. Details of the features of the simulations can be 
found in [25]. Figure 3 presents a snapshot of a system with N = 15, 625 particles.

In the simulations, the tracer particle is pulled at a constant force, and its tra-
jectory is recorded. The effective friction coefficient of the tracer with the bath, 

(2)mj

d2�j

dt2
=
∑

i

�ij − �j

d�jdt

+
�j(t) + �ext�j1

Fig. 3  Snapshot of the system 
with N = 15,625 particles. The 
tracer, three times larger than 
the bath particles, a

t
= 3a

b
 , is 

marked in red, and the particles 
in front of it have been removed
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�eff , is obtained from the average tracer velocity using the stationary state relation: 
�ext = �eff⟨�⟩ . A large number of trajectories are therefore needed to obtain reliable 
values of �eff . However, the tracer distorts the bath as it displaces, and since it is 
much larger than the bath particles, FSE can be present. In fact, due to the periodic 
boundary conditions, an array of particles is simulated with the lattice sparing equal 
to the box size. Starting from the Navier–Stokes equation, Hasimoto [26] showed 
that the effective friction coefficient measured by an array of particles in an incom-
pressible Newtonian fluid depends on the lattice spacing, L, as:

where c is a constant that depends on the structure of the array, and �∞ is the effec-
tive friction coefficient measured by an isolated particle [26]. Following this theo-
retical result, �∞ can be obtained running simulations with different system sizes, L, 
in order to obtain �eff(L) , and extrapolate linearly to 1∕L → 0 . Note that changing the 
system size implies changing the number of particles because the volume fraction 
is constant. Figure 4 shows the results of �eff for seven system sizes, with the num-
ber of particles ranging from N = 216 to 15,625. The inverse friction coefficient is 
indeed linear for small systems, but deviates for 1∕L → 0 , due to the approximations 
in the theoretical model.

The full analysis of the finite size effects in the system necessitates a large 
number of simulations or tasks of (i) systems with different number of particles, 
Ni with 1 ≤ i ≤ I , and (ii) a large number of trajectories ( Qi ) for every system size 
( Ni ), requiring (iii) solving Ni equations of motion repeatedly for each trajectory. 

(3)
1

�eff
=

c

L
+

1

�∞

Fig. 4  Inverse friction coefficient vs. inverse length of the simulation box for a system with a volume 
fraction of � = 0.50 , and a tracer of size a

t
= 3a

b
 pulled with a force F = 2.5 k

B
T∕a

b
 . The labels indicate 

the number of particles used in every simulation. The number of trajectories analyzed for every point is 
500
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Therefore, the computational requirements of AMM models are very high which 
are provided by modern multi-GPU clusters. The model exhibits several parallel-
ism levels, which allows the appropriate exploitation of such heterogeneous clusters. 
Previous works focused on accelerating the computation of a single tracer trajectory 
(bottom parallelism level) on the GPU [27, 28]. However, to advance in this kind of 
models, it is necessary to run efficiently many simulations in parallel on heterogene-
ous clusters (the highest parallelism level).

This way, the model defines a set of M =
∑I

i=1 Qi tasks which compute every 
tracer trajectory. So, tracer trajectories can be computed in parallel on the CPU-
cores and GPUs of a cluster. Every CPU-core (GPU) can execute the sequential code 
(CUDA code) to compute one tracer trajectory, and the set of tasks can be computed 
with the collaboration of all processing units (PUs) of the cluster, CPU-cores and 
GPUs (PUs). Consequently, to get an optimal exploitation of heterogeneous clusters 
of models AMM is necessary to solve the scheduling problem on unrelated parallel 
machines defined in Sect. 2.

5  Results

In this section, the above-mentioned strategies for load balancing (GenS, Cyclic, 
Greedy, STQ and DETQ) the case study in AMM are evaluated on a wide variety of 
heterogeneous clusters. For all the estimations and tests, the same problem is used: 
System sizes of Ni = 216, 512, 1000, 2197, 4096, 8000 and 15,625, with 250 trajec-
tories of 500 time units (corresponding to 106 time steps). Four kinds of PUs have 
been considered: 

Core1∶  1 core of Bullx R424-E3 Intel Xeon E5 2650 with 8GB RAM
GPU1∶  NVIDIA Tesla M2070 GPUs (Fermi)
Core2∶  1 core of Bullx R421-E4 Intel Xeon E5 2620v2 with 64GB RAM
GPU2∶  NVIDIA Kepler GK210 (NVIDIA K80)

The characteristics of the GPU devices are given in Table  1. From these PUs, 
seven test clusters have been defined (five heterogeneous clusters and two homoge-
neous ones) to evaluate the scheduling methods (see Table 2).

Two implementations have been considered to simulate every tracer trajectory: a 
sequential CPU version coded in Fortran and a GPU version implemented in ANSI 
C and CUDA. Moreover, a Python’s multiprocessing module has been used to code 
the schedulers considered in the experimental evaluation.

Firstly, focusing the attention on the static policies the profiling stage has been 
carried out. Hence, an estimation of the runtime for all system sizes involved in the 
case study and the four kinds of PUs (CPU-cores and GPUs) was obtained (matrix 
T  ) and shown in Table 3. AF stands for the acceleration factor of each kind of device 
versus the slowest device for each system size. These values are used in the Greedy 
strategy, as it was mentioned in the previous section. Let us remark that the execu-
tion time increases with Ni . Moreover, the use of GPU computing is not beneficial 
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to accelerate microrheology problems when Ni is low. However, when Ni ≥ 1000 , 
GPUs increase the performance.

Secondly, focusing our attention on the second stage of our methodology, Table 4 
shows the estimated parallel runtime ( Cmax ) in hours. Analyzing the homogeneous 
platforms (F and G), it is observed that GenS achieves the best makespan, equal-
ing or improving the other strategies by 3%. So, for these platforms, the advan-
tages of GenS are maintained although they are not very relevant. But for all the 

Table 1  Characteristics of the 
GPU devices

M2070 GK210
(GPU

1
) (GPU

2
)

Peak performance (double prec.) (TFlops) 0.51 2.91
Peak performance (simple prec.) (TFlops) 1.03 8.74
Device memory (GB) 5.2 24
Clock rate (GHz) 1.2 0.82
Memory bandwidth (GBytes/s ) 150 480
Multiprocessors 14 13
CUDA cores 448 2496
Compute capability 2.0 3.7

Table 2  PUs provided for every 
test cluster (A–F)

Core
1

GPU
1

Core
2

GPU
2

K

A 14 2 16
B 28 4 32
C 28 8 36
D 56 8 64
E 56 8 10 2 76
F 8 8
G 64 64

Table 3  Total execution time (in 
seconds) for seven tasks sizes 
( N

i
 ). t

GPU1,i
 ( t

GPU2,i
 ) and t

CPU1,i
 

( t
CPU2,i

 ) columns identify the 
runtime to compute a single 
trajectory on a GPU of kind 1 
(2) and a CPU-core of kind 1 (2)

AF
s
 , with 1 ≤ s ≤ 4 , are the acceleration factors of every kind of 

device versus the slowest one for each N
i

N
i

s = 1 s = 2 s = 3 s = 4

t
GPU1,i

t
CPU1,i

t
GPU2,i

t
CPU2,i

AF
1

AF
2

AF
3

AF
4

216 1580 790 1406 101 1.0 2.0 1.1 15.6
512 1785 1860 1714 507 1.0 1.0 1.1 3.7
1000 2240 3715 2030 2319 1.7 1.0 1.8 1.6
2197 2930 8710 2112 5315 3.0 1.0 4.1 1.6
4096 4450 18,065 3235 10,465 4.1 1.0 5.6 1,7
8000 7650 43,080 4587 24,427 5.6 1.0 9.4 1.8
15,625 12,050 11,3940 10,043 63,788 9.5 1.0 11.3 1.8
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heterogeneous platforms (A–E), the experimental results of GenS are significantly 
better than the other approaches, and this improvement is more evident as the heter-
ogeneity and size of the platform increase. The Cyclic strategy always has the worst 
runtime by far, STQ obtains reasonable runtime close to the DETQ (the second best 
one), and the Greedy, although it improves the cyclic one, has large makespan.

It is relevant to underline that due to the non-deterministic behavior of GenS, it 
has been executed 10 times in order to check its robustness and the dispersion of the 
results has been less than 0.15%. Therefore, we can remark the high robustness of 
the GenS solution.

To demonstrate that a simple random search is not competitive with respect to 
GenS, it has been executed during a time interval significantly greater than the GenS 
runtime to solve the same problem. Results have shown that the GenS overcomes 
the random search in terms of makespan. For the sake of clarity, this study has not 
been included.

Let us now focus our attention on the heterogeneous cluster with more resources, 
E. Figure  5 (a–e) shows the runtime for every device from each strategy, and (f) 
shows the percentage of task sizes in every platform scheduled by the GenS (the 
colors show the task size, as given in the legend). In the STQ strategy (a), large 
tasks that consume a lot of time are computed on the CPU-cores; meanwhile, the 
GPUs are inactive, causing important imbalances with large makespans. In the 
DETQ strategy (b), the number of heavy tasks that come to the CPU-cores is not 
so important (the Core2 does not take any, for example) and therefore the makespan 
is reduced, but there are still large imbalances. The Cyclic strategy (d), as the dis-
tribution is made without taking into account the heterogeneity of the platform, is 
the worst one. The Greedy strategy is also far from the optima. GenS tries to fit the 
heterogeneity of the tasks and the hardware of the platform, so its evolution makes 
the most powerful PUs compute the largest tasks (see that the Core2 has more large 
tasks than Core1 ) and being the less powerful devices those that are in charge of 
the light ones Fig. 5f. If we analyze the unbalance among the different platforms in 
Fig. 5e, we can conclude that the GenS solution is not far from the optimum since 
all devices finish almost at the same time (a makespan of 79.2 h).

So, the GenS scheduling obtains the minimum estimation of parallel runtime. 
Then, the next step is to analyze the parallel executions on the test clusters (stage 3) 

Table 4  Makespan, in hours, for 
each strategy for cases exposed 
in Table 2

The scheduling scheme that obtains the best performance is marked 
in bold

Heterogeneous Homogeneous

A B C D E F G

STQ 489.6 244.8 184.8 129.6 108.0 283.2 211.2
DETQ 412.8 223.2 141.6 122.4 103.2 283.2 211.2
Greedy 504.0 261.6 177.6 136.8 112.8 290.4 211.2
Cyclic 844.8 422.4 369.6 211.2 211.2 290.4 211.2
GenS 410.4 206.4 139.2 102.5 79.2 283.2 206.4
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to verify that GenS estimations are realistic. Real executions on the clusters D and 
E (the clusters which have the largest number of devices) have been tested. Table 5 
shows the estimated makespan by GenS, in hours, in comparison with executions 
using GenS scheduling on both clusters. Analyzing the execution time, it can be 

Table 5  Estimated (stage 2) and 
experimental makespan (stage 
3), in hours, obtained by GenS 
scheduling, for heterogeneous 
clusters D and E from Table 2

Estimated Experimental

D E D E

C
Max

102.5 79.2 105.4 82.5
C
Min

101.8 76.4 104.4 79.4
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Fig. 5  Figure a–e shows the runtime, in hours, for all the devices of every strategy on cluster E. Each 
column k, shown as several stacked bars, corresponds to a device. A stacked bar represents the time spent 
by device k to compute the tasks of size i assigned to the device, so the entire column represents its total 
runtime. Figure f shows the percentage of the sizes of the tasks scheduled by GenS on each platform
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concluded that the estimation of the GenS is close to the makespan of the real exper-
imentation. Experimental runtime is a little larger than the predicted one because 
GenS estimation does not take into account the runtime to prepare and to send a task 
to the corresponding machine and also the contention among the PUs in the clusters.

Therefore, using GenS to schedule a model composed by heterogeneous tasks on 
a heterogeneous cluster has resulted in an important reduction of the impracticable 
runtime of the previous versions of such model. For the study case, if the set of sim-
ulations is computed on a Core1 the estimated sequential runtime would be 13205, 6 
hours. Then, an acceleration factor of ×129 ( ×167 ) is achieved on cluster D (on clus-
ter E) using the GenS scheduling.

6  Conclusion

In this work, the scheduling of heterogeneous tasks on unrelated parallel machines 
has been studied. An approach for distributing the workload in a near-optimal way 
based on a Genetic Algorithm (GenS) has been analyzed. GenS has been compara-
tively evaluated with respect to other schedulers using a real problem from the field 
of statistical mechanics (active microrheology model) as a case study. The goal of 
such model is the computation of the effective friction coefficient of complex fluids 
where Finite Size Effects are dominant. The computational cost for these models is 
huge because they are based on statistical analysis of the dynamics of a tracer parti-
cle for several system sizes. Therefore, the use of appropriate scheduling approaches 
on heterogeneous clusters has been a key to strengthen the applicability of these 
models.

Experimental results have shown that GenS achieves a near-optimal load balance, 
even when the cluster supplies a large and heterogeneous set of processing units, 
outperforming other studied strategies. GenS improves the performance with respect 
to the second fastest scheduling (DETQ) up to 23.56% on the cluster E (the highest 
heterogenous one). Thus, the advantages of GenS are more relevant as the cluster 
heterogeneity increases.

Only the evolution of GenS has allowed to define the assignment task/ process-
ing-unit according to the load-of-task/ computational power optimally for highly 
heterogeneous tasks and processing units. This way, all processing units finish their 
computation almost simultaneously. A suitable definition of the operators and indi-
viduals involved in the Genetic Algorithm has been relevant to achieve these sched-
uling results.

The main contribution of this work has been to design and to provide a schedul-
ing software for efficiently distributing a set of independent tasks varying in cost on 
heterogeneous processing units (https ://githu b.com/2fort s/GENS). Thus, this soft-
ware can be useful for all problems which can be modeled by scheduling on unre-
lated parallel machines beyond the case study.
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1. Introduction

The N-body problem is widely used in simulations in a large variety of fields,

from material science, statistical physics, to astrophysics [1, 2, 3]. However,

the high computational load of N-body simulations is well-known. When the

number of particles, N , is not too large, the interactions can be computed by5

a brute-force approach, with complexity order O(N2) [1, 2, 4]. Nevertheless,

when N increases it is necessary to reduce the complexity.

Barnes & Hut defined a hierarchical tree cells scheme to locate the particles

and an algorithm to compute the interactions with a complexity of O(Nlog(N)).

It is widely applied to a large number of long-range interactions ranging from10

stellar dynamical applications [5] to material science or molecular dynamics

[1]. Moreover, an adaption of Barnes & Hut’ scheme has also been simplified for

the approximate computation of long-range forces between mutually interacting

bodies with a complexity of O(N) [6].

In the context of short-range interactions, the main approach to get a com-15

plexity of O(N) is to define a neighbour list, where the interactions are only

computed among neighbour particles. However, the neighbour list has to be

updated after several time steps and its complexity is O(N2). The frequency

of such computation can be reduced if the neighbourhood radius is optimized

[2, 7].20

Our interest is the acceleration of simulations related to N-body systems

with short-range interactions by the fast computation of neighbour lists. This

technique is commonly used in computer simulations in many different fields,

such as phase equilibria, equilibrium or out-of-equilibrium molecular dynamics,

or soft-matter systems [8]. Particularly in suspensions of macromolecules or25

colloids, the interaction among the particles is of a much shorter range than

the radius or typical length, making the use of neighbour lists very convenient.

This has allowed the experimental realization of the paradigmatic hard-sphere
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model, or the attractive square-well with controllable range, in addition to the

Lennard-Jones potential typical of atoms of molecules.30

Quantum computing [9] can be considered as a strategy to predictably accel-

erate these computationally expensive simulations. Quantum computing relies

on the basic quantum principles of superposition and entanglement, which make

it suitable for accelerating parallel and distributed applications and also for im-

proving networks and communications.35

Previous works exploit the quantum parallelism in many-body system sim-

ulations based on adiabatic quantum computation [10, 11, 12]. In contrast, this

paper addresses the N-body simulations considering quantum circuit algorithms

to accelerate the computation of neighbour lists. It is designed using Grover’s

Algorithm, the main oracular quantum search algorithm [9].40

The aim of this paper is two-fold. Firstly, to propose several comprehen-

sive solutions to the computation of the neighbour list with quantum comput-

ing under different alternative hypothesis. The algorithms proposed here are

tested with a simplified oracle, where a fixed number of pairs of particles are

set as neighbours. The circuits obtained from this study are freely available45

at https://github.com/2forts/qsec. Secondly, to set a decision methodology for

the actual use of the proposed quantum algorithms. And, additionally, to set

a design methodology for the development of quantum algorithms, taking into

account a comprehensive design that supplies both algorithms and related cir-

cuits.50

The manuscript is organized as follows. In Section 2 an overview about

quantum computing is established. Section 3 is devoted to describing the three

proposed quantum algorithms for finding pairs of close particles and the se-

lection criteria. Furthermore, details about the oracle design as a reversible

quantum circuit are discussed. In section 4 statistical simulations to test the55

proposed algorithms with a simplification of the oracle are carried out. Finally,

the conclusions are presented.
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2. Quantum Computing Background

Quantum computers have been considered a promising technology from its

introduction to our days. These computers benefit from the special and counter-60

intuitive properties of quantum mechanics, like superposition. Superposition

allows a qubit (a quantum bit, the basic unit of the quantum computers) to

be in the states |0〉 and |1〉 simultaneously. Thanks to this feature, quantum

computers can evaluate a function f(x) at many values of x at once, what is

known as quantum parallelism [9].65

Since their introduction, quantum algorithms have outperformed classical

ones in several problems. Grover and Shor algorithms are the two best-known

examples. In fact, most of the current quantum algorithms are based on the

methodology of one of these two [9]. Focusing on Grover’s algorithm, it performs

a search through an unstructured space, achieving a quadratic speedup with70

respect to classic search algorithms. Among other quantum properties, Grover’s

algorithm is based on the concepts of superposition and quantum parallelism to

compute several evaluations of a function as one [13]. The algorithm obtains a

solution with a certain probability, being necessary a minimum of iterations of

the algorithm to get the solution with the desired probability. The estimation75

of the necessary number of iterations is one of the most important parts in the

algorithm.

Grover’s algorithm needs a black box oracle O as an input. This oracle has

to check if a value x is (or not) a solution to the search problem. Therefore, to

apply Grover’s algorithms to a real problem it is necessary to build an oracle80

with the capacity to recognize if a given value is a valid solution to that problem.

It is just as important to use the algorithm in the correct context, as it is to build

an efficient oracle for it. The circuits paradigm is the most usual methodology to

design and implement quantum algorithms, where an oracle based on the design

of reversible quantum circuits is required. In the literature, it is a common85

practice to mathematically define an oracle for the problem. However, without

a real implementation, the algorithm is not functional on a quantum computer
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or simulator.

So, the methodology widely used to design quantum applications involves

the combination of: (1) the design of quantum algorithms based on well-known90

quantum procedures (for example, Grover) bearing in mind the statistical com-

putation provided by them and (2) and the use of a particular reversible quan-

tum circuit that implements the specific oracle use in such design. In this work

we provide a whole design of quantum algorithms to compute the neighbour

list.95

In the rest of this paper, we introduce a quantum algorithm based on

Grover’s algorithm, showing that it involves fewer queries than classical alterna-

tives. Moreover, we present the complete design of the oracle for our algorithm,

ready for its use in quantum simulators.

3. Quantum algorithms for finding pairs of close particles100

In this section, we propose three quantum algorithms that can be used to

find all the pairs of particles that are closer than a given threshold distance. For

this, we will assume, as it is customary in this kind of problem [13, 9], that we

are given a quantum circuit implementing an oracle O such that

O(|x〉 |0〉) =




|x〉 |1〉 if x satisfies certain conditions

|x〉 |0〉 otherwise

Notice that this is a completely general situation and can be applied not105

only for the case of finding all the pairs of particles that are close (in which case

|x〉 = |x1〉 |x2〉, with x1 and x2 indices of two particles), but to any setting in

which we have to find all the elements in a set that satisfy a certain condition.

This is closely related to the Coupon Collector Problem [14], that has been

recently studied in a quantum context [15] but with an important difference:110

in general, we do not know how many pairs of particles are closer than the

threshold, so we are not able to use the methods presented in that work. Another

important feature is the fact that, for a given particle, the number of close
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particles is upper bounded by a constant independent of the total number of

particles.115

The availability of the oracleO allows us to use Grover’s search algorithm [13],

that will be central to our methods. It is important to note that the success

probability of Grover’s algorithm and the number of times it consults the oracle

are completely determined by the number of elements ν in the set and by the

number µ of marked elements (i.e., elements that satisfy the condition). For that120

reason, in our algorithms we will consider oracles O = Oµν that mark exactly

µ elements from a set of size ν. This general setting allows us to consider two

different situations: we can search among all the pairs of particles at once (i.e.,

ν = N2, and µ is the number of pairs of close particles) or we can fix one of the

particles and search for the close ones (i.e., ν = N , and µ is the number of close125

neighbour). This will prove useful in certain situations, as we explain below,

but from the point of view of the analysis of our quantum algorithms we can

consider both cases in just one abstract setting, with the only difference being

the values of the parameters ν and µ.

3.1. Oracle Construction130

In this subsection we discuss the construction of a quantum circuit imple-

menting the oracle O for the particular case of marking pairs of particles that

are below a given distance. In this paper, we will consider that all our algo-

rithms use that circuit as an instantiation of the oracle. Therefore, we want to

demonstrate the feasibility of building such an oracle.135

A circuit implementing the oracle must return 1 if the distance between two

particles i and j is less than or equal to a threshold value δ, and 0 otherwise.

That procedure can be divided into two operations: the computation of the

distances between i and j, and the comparison between that distance and δ.

Additionally, as required in two of the proposed algorithms, we will need to140

modify the oracle O so that, once found a marked element x0, it is excluded

from being marked by a new oracle O′:
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O′(|x〉 |0〉) =




|x〉 |1〉 if x is marked and x 6= x0

|x〉 |0〉 otherwise

Focusing on the arithmetic part, the process supports some simplifications.

On the one hand, it is possible to work with the squared distances. Therefore,

the square root of the distances between particles is not necessary. Then, the145

distances can be computed using subtractors, adders, and squaring circuits. On

the other hand, the comparison can be computed using a half comparator instead

of a full comparator since it is only necessary to identify if the distance is, or is

not, less than or equal to the threshold. Half comparators involve less resources

than full ones. Focusing now on the modification proposed in the previous150

equation, it can be achieved by standard procedures, such as for instance the

use of X gates and a multi-controlled Toffoli gates. We will repeatedly use these

modifications of the original oracles in our algorithms.

It is important to note that this oracle will not provide any quantum ad-

vantage. However, even quantum circuits that does not provide quantum ad-155

vantages can be useful as part of larger circuits if they involve an small number

of resources [16]. In our case, the oracle must use the least possible number

of resources to be efficiently used by our algorithms. In terms of quantum cir-

cuits, resource optimization is commonly measured using the number of involved

qubits. It is also important to avoid the so-called garbage outputs: qubits that160

are not part of the result and whose value is not restored to the initial one, so

they cannot be used in other circuits. A reduction in the number of operations

(represented by the so-called quantum cost) is also desirable [17, 18].

Table 3.1 shows some of the most prominent adders, subtractors, squaring

circuits, and half-comparators available in the literature. The table shows their165

quantum cost, their number of ancilla inputs, and the number of garbage out-

puts, according to the definitions given by Mohammadi et al. [17]. To carry out

a complete analysis of the available circuits in the state-of-the-art is out of the

scope of this article. However, we have studied a few selection of them in order
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Circuit Quantum Ancilla Garbage

cost inputs outputs

Adders and subtractors [23] (full subtractors) 6n n 0

[23] (full and half subtractors) 6n− 2 n 0

[24] + [23] 6n n+ 1 0

[20](input carry) (a+ b) 18n− 6 2 0

[20](input carry) (a+ b+ 1) 16n− 4 2 0

[20](no input carry) (a+ b) 16n− 8 1 0

[25] (a+ b) 31n− 15W (n)− 15log(n)− 6 5n/4 0

[26] (a+ b+ 1) 30n− 15W (n)− 15log(n)− 4 5n/4 0

Squaring circuits [27] 36n 7n 7n

[28] 35n 10n 10n

[29] 36n 7n 13n

[30] 38n 13n 13n

[21] 32n 6n− 3 0

Half comparators [31] O(n2) 2n 0

[32] 39n+ 9 6n+ 1 0

[18] 18n+ 9 4n− 3 0

[33] 14n 4n− 2 0

[34] 28n 2 0

[20] (a+ b) 32n− 18 3 0

[20] (a+ b+ 1) 30n− 10 3 0

[23] (full and half subtractors) 12n 2n− 3 0

[22] 16n− 8 2 0

Table 1: Evaluation of most optimized circuits which can be used as part of the oracle O

for the general n-digit case, in terms of quantum cost, ancilla inputs and number of garbage

outputs.

to implement a functional oracle. We have followed the methodology described170

in [19] to measure and to test these circuits. We have chosen the best circuits

of each category to build the oracle, prioritizing the absence of garbage outputs

and the number of ancilla inputs since their optimization involves less qubits.

In particular, we have built and tested a prototype of the oracle in ProjectQ

simulator using the circuits proposed in [20] (computing a+ b), [21], and [22].175

The source code is freely available in https://github.com/2forts/qsec.

3.2. The algorithmic methodology

All our algorithms are based on the use of Grover’s search [13]. This quan-

tum algorithm allows, given an oracle Oµν that marks µ elements from a set of
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size ν, to find, with high probability, a marked element with O
(√

ν
µ

)
consults180

to the oracle, compared to the Ω
(
ν
µ

)
that would be needed with a classical

algorithm. This means that there is a quadratic gap between the upper-bound

of the quantum algorithm, and the lower-bound of the classical ones. We will

exploit this quadratic speed-up to obtain algorithms that are asymptotically

faster than any possible classical algorithm that also uses a black-box oracle.185

Namely, this allows to beat the Ω(N2) bound for the search of pairs of closed

particles, in a non-quantum setting. Because of the intrinsic probabilistic na-

ture of quantum computing, our algorithms will provide a right answer with

probability at least 1− w, where w is a chosen input parameter.

We first consider the situation in which the number of marked elements µ is190

known. This case will be rarely encountered in practice (when our algorithms

are used to find the pairs of particles that are below a given threshold), but we

present it here anyway for two reasons. First, it is closely related to the Quantum

Coupon Collector Problem, that has recently attracted some attention [15].

Second, it will provide a useful benchmark for the more realistic algorithms we195

present later, as an ideal minimal bound on the number of oracle consults.

Since we are assuming that we know µ, we can simply run Grover’s algo-

rithm, checking every time if we have obtained a new marked element, until

all of them have been found. However, since Grover’s algorithm only returns a

marked element with certain probability, there is no upper bound to the num-200

ber of required oracle consults. For that reason, we propose first to compute a

number R of Grover iterations that guarantees finding all marked elements with

probability of failure at most w (see the details in Appendix A). The complete

procedure is, then, the one presented in Algorithm 1.
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Algorithm 1.

INPUT:

• An oracle Oµν marking a known number of µ elements in

a database of ν elements (0 < µ ≤ ν
2 ).

• A desired error bound probability 0 < w < 1.

OUTPUT:

• A set of r marked database elements L = {x1, . . . , xr}.
With probability at least 1− w, we will have r = µ.

PROCEDURE:

1. Set L = ∅; R =

⌈
log(wµ )

log(1− 1
2µ )

⌉

2. FOR l from 1 to R do

(a) Run Grover’s algorithm with
⌈
π
4

√
ν
µ

⌉
iterations

(b) If a marked element x is found, set L = L ∪ {x}
(c) If |L| = µ GO TO 3.

3. Return L

205

In practice, however, µ will be unknown to us. This affects our application

of Grover’s search in two different ways. On the one hand, we can never be

sure that we have already found all the marked elements and this affects the

stopping conditions (cf. line 2(c) of Algorithm 1). On the other, we do not know

what is the optimal number of iterations in Grover’s algorithm (cf. line 2(a) of210

Algorithm 1). Of course, not knowing µ, also prevents us from computing R.

To overcome these difficulties, we adopt a strategy similar to the one pro-

posed in [35]. For the number of iterations in Grover’s search, we select a random

number in {0, . . . , b√νc − 1}. For the stopping condition, we compute a value

R that will guarantee that if after R executions of Grover’s search no marked215

element has been found, then the probability that indeed there are marked el-

ements is below w, an error bound selected by the user. The mathematical

10



derivation of R is given in Appendix A. Note that this bound is very conserva-

tive and that, in practice, errors much smaller than w will be usually obtained,

as shown in the numerical simulations that we have conducted (see Section 4).220

The complete procedure is described in Algorithm 2. Notice that in line

3(b), after a new element has been found, we modify the oracle so that this

element is not considered again. For that, we use the construction of oracle the

O′ mentioned above (Subsection 3.1).

11



Algorithm 2.

INPUT:

• An oracle Oµν marking an unknown number of µ elements

(upper bounded by a known or estimated B) in a database

of ν elements (0 ≤ µ ≤ B ≤ 3ν
4 ).

• A desired error bound probability 0 < w < 1.

OUTPUT:

• A set of r marked database elements L = {x1, . . . , xr}.
With probability at least 1− w, we will have r = µ.

PROCEDURE:

1. Set L = ∅; R =

⌈
log

(
1−(1−w)

1
B

)

log( 3
4 )

⌉
; FOUND = FALSE

2. FOR l from 1 to R do

(a) Choose j uniformly at random from the set

{0, . . . , b√νc − 1}
(b) Run Grover’s algorithm with j iterations

(c) If a marked element x is found, set FOUND =

TRUE; GO TO 3.

3. IF FOUND = FALSE, OUTPUT L

ELSE

(a) Set L = L ∪ {x}; FOUND = FALSE

(b) Eliminate x from the list of marked elements by the

oracle

(c) GO TO 2.

225

Although Algorithm 2 gives an acceptable worst case asymptotic behaviour

(cf. Table 2), the average number of oracle consults can be improved by using

techniques similar to the ones used in [35]. This yield us to introduce a third

algorithm to achieve such an improvement (Algorithm 3). Instead of always

12



choosing the number of iterations of Grover’s algorithm in a uniform way (see230

line 2(a) in Algorithm 2), we now increase the number of iterations, starting

from 1, by a factor of 6
5 (see Algorithm 3, line 3.(a)). This allows us to

improve the behaviour in the average case, as shown in Table 2. We still need,

however, a stopping condition that guarantees that the probability of missing

some elements is less than w, leading to a worst case behaviour equivalent to235

that of Algorithm 2. The details of the analysis can be found in Appendix A.

Table 2 summarises the oracle query complexities of the three algorithms

that we have proposed, where we suppose that, in general, µ is a function of ν.

Algorithm Worst case Average case

1 O
(√
νµ log(µ)

)
O
(√
νµ log(µ)

)

2 O (
√
νµ log(B)) O (

√
ν(log(B) + µ))

3 O (
√
νµ log(ν)) O

(√
ν(log(ν) +

√
µ)
)

Table 2: Summary of query complexities (ν is the size of the database, µ is the number of

marked elements, B ≤ 3ν
4

is an upper bound on µ)
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Algorithm 3.

INPUT:

• An oracle Oµν marking an unknown number of µ elements

(upper bounded by a known or estimated B) in a database

of ν elements (0 ≤ µ ≤ B ≤ 3ν
4 ).

• A desired error bound probability 0 < w < 1.

OUTPUT:

• A set of r marked database elements L = {x1, . . . , xr}.
With probability at least 1− w, we will have r = µ.

PROCEDURE:

1. Set L = ∅; m = 1; λ = 6
5 ; R = 1; FOUND = FALSE

2. FOR l from 1 to R do

(a) Choose j uniformly at random from the set

{0, . . . , dme − 1}
(b) Run Grover’s algorithm with j iterations

(c) If a marked element x is found, set FOUND =

TRUE; GO TO 3.

3. IF FOUND = FALSE

(a) IF m =
√
ν, OUTPUT L.

ELSE,

set m = min{λm,√ν};
FOUND = FALSE.

IF m =
√
ν, set R =

⌈
log

(
1−(1−w)

1
B

)

log( 3
4 )

⌉

(b) GO TO 2.

ELSE

(a) Set L = L∪{x}; m = 1; R = 1; FOUND = FALSE

(b) Eliminate x from the list of marked elements by the

oracle

(c) GO TO 2.

14



3.3. The case of particle pairs240

The general search methods presented in the previous subsection can be

applied to the problem of determining all the particle pairs that are closer than

a given threshold distance. In this paper, the number of close particles to a

fixed one is upper bounded by a constant independent of the total number of

particles, because of the characteristics of the physical problem (see Section 4).245

We will explore two possible instantiations.

The first one is to consider all possible pairs of particles and apply any of

the three algorithms directly. In this case, we will have ν = N2, where N is

the total number of particles, and µ represents the number of pairs of close

particles. Provided some mild conditions are met (see Appendix B), we obtain250

the asymptotic complexities shown in Table 3

Algorithm Worst case Average case

1 O
(
N
√
µ logµ

)
O
(
N
√
µ logµ

)

2 O (Nµ logB) O (N(logB + µ)

3 O (Nµ logN) O
(
N(logN +

√
µ)
)

Table 3: Query complexities in our particular problem, first instantiation: pairs of close

particles (N ≥ 54 is the number of particles, µ is the number of pairs of close particles,

B ≤ 27N is an upper bound on µ)

In the second instantiation, we fix one particle and search, with any of the

three proposed algorithms, for all the particles that are close to it. This can

be helpful, as explained in detailed in the next subsection, when only a few of

the particles have changed their positions and, thus, we only need to update255

their neighbour lists. If we consider α to be the number of particles with new

positions, then the complexities of the algorithms are those given in Table 4.

For the detailed analysis, which is based on the key fact that the number of

closed particles to a fixed one is upper bounded by a constant independent of

the total number of particles, see Appendix B.260

Notice that several of the algorithms offer asymptotic complexities which
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Algorithm Worst case Average case

1 O
(√

Nα logα
)

O
(√

Nα logα
)

2 O
(√

Nα logα
)

O
(√

Nα logα
)

3 O
(√

N log(N)α logα
)

O
(√

N log(N)α logα
)

Table 4: Query complexities in our particular problem, second instantiation: particles close

to a fixed one (N ≥ 54 is the number of particles, α is the number of particles to search for

close neighbours)

can be, in the average or even in the worst case, better than those of any classi-

cal algorithm (which, necessarily, would have to make N(N−1)
2 or αN distance

computations and comparisons). In fact, we will show in Section 4 that for a

range of parameter values found in real-life problems, our algorithms can greatly265

reduce the number of oracle queries that need to be performed.

In the next subsection, we explain how the different choices of algorithm can

be integrated in a decision procedure depending on the problem parameters and

the evolution of the system.

3.4. The decision procedure270

As we can see, the second and third algorithms are memory procedures in

which the input oracle must be updated in order to keep track of found elements.

The three algorithms can be combined with different input parameters in order

to obtain the set of close pairs of N particles in the space. Since the particles

are continuously moving in space, we propose a two-step dynamic programming275

strategy: first, looking for close particles among the set of all pairs; later on,

looking for close particles to fixed ones, when the positions of particles change

(i.e., an update methodology). One aspect to be considered is that Algorithm 3

performs uniformly better than Algorithm 2 in the average case. So, if desired,

Algorithm 3 could be a substitute for Algorithm 2 in the alternatives given280

below.

First step: initialise the pairs of close particles
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At this initial stage, the parameter ν is to be instantiated as N2, and µ is

the number of close pairs to be found. The choice of the algorithms is as follows:

• If µ is not known, then:285

– If µ is believed to be negligible in relation to the total number of

pairs, use Algorithm 2 (O(N) oracle calls in the worst case) with an

estimated upper bound B ≤ 27N of µ.

– Else, use Algorithm 3 with an estimated upper bound B ≤ 27N of

µ (O(N
√
N) oracle calls in the average case).290

• Else (µ is known), then:

– If µ is negligible in relation to the total number of pairs, use Al-

gorithm 1 (in the worst scenario, O(N) oracle calls) or Algorithm 2

(O(N logN) oracle calls in the worst case) with B = µ.

– Else, use Algorithm 1 (O(N
√
N logN) oracle calls in the worst case)295

or Algorithm 3 with B = µ (O(N
√
N) oracle calls in the average

case).

Second step: update the set of particles close to fixed ones

At this stage, the parameter ν is to be instantiated as N , the number of

updated particles is α, and for a fixed particle, µ represents the number of close300

particles to be found.

The alternatives are the following:

1. If α logα is close to N , then backtrack to the first step.

2. Else, set S =

⌈
log(wα )
log(w)

⌉
. Then:

(a) If µ is known, then use Algorithm 1 S times for each of the α particles305

(O(
√
N
√
α logα) oracle calls in the worst case).

(b) Else, use Algorithm 2 S times for each of the α particles (O(
√
N
√
α logα)

oracle calls in the worst case).
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4. Statistical simulation of the algorithms

In this section, the performance of the first-step algorithms introduced in

Section 3 are tested in practical situations. A key aspect of the simulation is

the oracle O, where the particle configuration should be fed into, and the use of

Grover’s search. For the purpose of testing the actual behaviour of algorithms

1− 3, the oracle is simplified notably, just taking into account the number µ of

pairs of close particles, among the total number of N particles. The simulation

will simply identify such a number of pairs. Since Grover executions in the

algorithms are independent, we can directly simulate (because of the results

in [35]) the running of the Grover steps by sampling from a Bernoulli distribution

with success probability given by

sin2((2j + 1)θ)

where j is the number of Grover iterations, sin2 θ = t
ν and t is the number of310

marked elements (notice that t = µ for Algorithm 1, but in Algorithms 2 and

3 t starts at µ and is decreased in one unit with each found element). This

means that we do not actually run the Grover steps: we simply simulate the

success probability of such runs, instead. In the case of Algorithms 2 and 3 that

is enough, because each successful run of Grover will find a different element315

(we eliminate the obtained ones from the oracle). For Algorithm 1, when the

simulation shows that Grover has found a marked element, we sample uniformly

from the set {1, 2, . . . , µ} to determine the actual element that has been found.

In all cases, three values of µ are considered, µ = 40, 80, and 150. This

implies a mean number of neighbours per particle ranging from 2.3 to 0.08,320

which corresponds to some situations found in practice. For instance, in the

canonical hard-sphere system, taking a threshold value for the center to center

distance of 3a, with a the particle radius, these mean number of neighbours are

obtained volume fractions below.

For Algorithm 1, following the analysis of Appendix A, the bounds on the325

total number of iterations for different success probabilities are given in Ta-

bles 5, 6 and 7. These bounds, however, are shown to be very conservative once
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we take into account the actual results found in the simulations. In Tables 8, 9

and 10 we show the minimum, maximum, average and standard deviation of the

number of oracle calls needed until all the pairs are found, across 106 repetitions330

of the algorithm. Notice that these values are much lower than those expected

from the asymptotic analysis, even when we take into account the standard

deviation.

Error bound w # Calls # Calls # Calls # Calls

125 part. 216 part. 512 part. 1000 part.

0.1 7632 15264 30528 61056

0.05 8512 17024 34048 68096

0.01 10560 21120 42240 84480

0.005 11440 22880 45760 91520

0.001 13488 26976 53952 107094

Table 5: Bounds on # of oracle calls for Algorithm 1 when µ = 40

Error bound w # Calls # Calls # Calls # Calls

125 part. 216 part. 512 part. 1000 part.

0.1 12804 24541 48015 96030

0.05 14124 27071 52965 105930

0.01 17208 32982 64530 129060

0.005 18540 35535 69525 139050

0.001 21612 41423 81045 162090

Table 6: Bounds on # of oracle calls for Algorithm 1 when µ = 80

In Table 11, we show the value of R for Algorithms 2 and 3 for B = 27N .

. Again, these bounds prove to be extremely conservative. We have executed335

Algorithms 2 and 3 for 106 times with values of R taken from {5, 10, . . . , 70}.
The full results can be found in the supplementary material. In this section,

we present only the data for the first value of R that successfully finds all the
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Error bound w # Calls # Calls # Calls # Calls

125 part. 216 part. 512 part. 1000 part.

0.1 19719 37247 72303 144606

0.05 21582 40766 79134 158268

0.01 25920 48960 95040 190080

0.005 27792 52496 101904 203808

0.001 32130 60690 117810 235620

Table 7: Bounds on # of oracle calls for Algorithm 1 when µ = 150

Particles Minimum Maximum Average Standard deviation

125 928 12600 2749.08 790.33

216 1888 24224 5481.58 1575.03

512 3904 44928 10957.61 3150.78

1000 7552 86144 21909.18 6313.69

Table 8: Minimum, maximum, average and standard deviation of the number of iterations for

106 repetitions of Algorithm 1 when µ = 40

Particles Minimum Maximum Average Standard deviation

125 1908 20064 4920.50 1243.43

216 3795 33833 9181.87 2318.84

512 7254 61650 17887.36 4516.25

1000 14940 131490 35743.77 9016.89

Table 9: Minimum, maximum, average and standard deviation of the number of iterations for

106 repetitions of Algorithm 1 when µ = 80
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Particles Mininum Maximum Average Standard deviation

125 3636 28665 8038.76 1819.60

216 6613 49691 14415.13 3266.95

512 12606 92532 27695.03 6265.49

1000 24354 180774 55391.35 12542.27

Table 10: Minimum, maximum, average and standard deviation of the number of iterations

for 106 repetitions of Algorithm 1 when µ = 150

particle pairs in all 106 experiments for a fixed value of µ. Since all these results

can be quickly obtained from simulations alone, for other values of N , ν and340

µ, one can repeat experiments similar to the ones presented here in order to

determine, before using an actual quantum computer, which algorithm is most

suitable for the situation and what is the desirable value of R. In Tables 12

through 17 we show those results, including the value of R and the minimum,

maximum, average and standard deviation of the number of oracle calls used345

by the algorithms.

We can see that, as it was the case with Algorithm 1, Algorithms 2 and 3,

we achieve an error rate below one in a million for values of R much less than

what Table 11 would lead to expect.

Error bound w R 125 part. R 216 part. R 512 part. R 1000 part.

0.1 37 39 41 44

0.05 39 42 44 46

0.01 45 47 50 52

0.005 47 50 52 54

0.001 53 55 58 60

Table 11: Number of repetitions for different error bounds in Algorithms 2 and 3 when µ = 40

In Figures 1, 2 and 3, we compare the number of queries needed by the350

classical algorithm with the average number of queries made by Algorithms 1,
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Particles R Mininum Maximum Average Standard deviation

125 30 4275 11155 6966.10 679.77

216 30 8783 22207 13987.19 1364.44

512 30 17789 43981 28031.48 2729.62

1000 30 34156 90053 56105.27 5462.89

Table 12: Minimum, maximum, average and standard deviation of the number of oracle

queries for 106 repetitions of Algorithm 2 when µ = 40

Particles R Mininum Maximum Average Standard deviation

125 20 2027 4928 3183.36 260.28

216 20 4255 10959 6742.70 528.98

512 20 8806 22982 13986.88 1067.27

1000 20 19203 43485 28652.95 2151.95

Table 13: Minimum, maximum, average and standard deviation of the number of oracle

queries for 106 repetitions of Algorithm 3 when µ = 40

Particles R Mininum Maximum Average Standard deviation

125 30 8209 17179 12066.42 948.43

216 30 16616 35536 24232.50 1905.19

512 30 33531 69521 48549.50 3805.91

1000 30 66544 139891 97211.92 948.43

Table 14: Minimum, maximum, average and standard deviation of the number of oracle

queries for 106 repetitions of Algorithm 2 when µ = 80
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Particles R Mininum Maximum Average Standard deviation

125 20 2572 5504 3815.21 271.06

216 20 5832 11881 8242.92 552.67

512 20 12368 24762 17312.67 1117.62

1000 20 25475 50528 35718.52 2251.94

Table 15: Minimum, maximum, average and standard deviation of the number of oracle

queries for 106 repetitions of Algorithm 3 when µ = 80

Particles R Mininum Maximum Average Standard deviation

125 35 15946 28345 21269.77 1288.21

216 35 31338 56721 42704.70 2586.14

512 35 63555 112327 85583.67 5176.96

1000 35 127876 226940 171312.89 10360.06

Table 16: Minimum, maximum, average and standard deviation of the number of oracle

queries for 106 repetitions of Algorithm 2 when µ = 150

Particles R Mininum Maximum Average Standard deviation

125 20 3178 6341 4522.74 280.11

216 20 7495 13782 10012.76 572.83

512 20 15898 28518 21342.74 1160.47

1000 20 32971 57502 44433.08 2337.95

Table 17: Minimum, maximum, average and standard deviation of the number of oracle

queries for 106 repetitions of Algorithm 3 when µ = 150
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2 and 3. Notice that, while the growth in the case of the classical algorithm is

quadratic, for our algorithms it is linear for fixed values of µ. In fact, for the

lowest values of µ, the average number of queries of all our algorithms is lower

than the number of queries performed by the classical algorithm. For bigger355

values of µ (80 and 150), the classical algorithm beats some of the quantum

algorithms for low number of particles (125 and 216) but for the simulations

with 512 and 1000 particles, our algorithms are always better (and the speed-

up increases with the number of particles). In fact, Algorithm 3 was always

better than the classical algorithm for all the cases under study.360

These data show that our algorithms can clearly outperform the best classical

algorithm in terms of oracle queries when the density of particles is low (µ is low

or ν is high). Thus, once robust quantum hardware is available, these methods,

especially Algorithm 3, may be of use in practical situations, where the density is

usually low, a situation in which our algorithms show their better performance.365

Figure 1: Comparison of the number of oracle queries of the different algorithms when µ = 40
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Figure 2: Comparison of the number of oracle queries of the different algorithms when µ = 80

5. Conclusions

The focus of this work has been on the use of quantum computing to ef-

ficiently calculate the neighbour list in the context of N-body simulations. A

quantum algorithm, based on oracle procedures (Grover) has been considered

to carry out the whole proposal. The oracle has been designed with efficient370

reversible circuits that identify if pairs of bodies are neighbours or not. A proto-

type of the oracle has been developed in ProjectQ simulator based on the circuits

proposed in [20, 21, 22] and it is available at https://github.com/2forts/qsec.

Three quantum algorithms have been designed to get the pairs of neighbour

particles from the information provided by the oracle. They can be combined375

in a two-step procedure for achieving such an objective: first, looking for pairs

of close particles; second, updating the neighbour list of a small number of par-

ticles that move beyond a certain threshold. The actual combination of the

algorithms has been described in a decision procedure, that aims to provide the

best algorithm for each possible situation.380

The asymptotic analysis of every algorithm has been justified from a the-
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Figure 3: Comparison of the number of oracle queries of the different algorithms when µ = 150

oretical point of view. A statistical simulation of the oracle O in combination

with the algorithms has been considered to test their statistical behavior for µ

pairs of close particles, among N particles.

After 106 repetitions of the algorithms, the developed test has evaluated the385

minimum, maximum, average, and standard deviation of the number of oracle

calls needed until all the pairs were found. The obtained values have been much

lower than those expected from the asymptotic analysis.

Thus, once robust quantum hardware is available, these methods, especially

Algorithm 3, may be of use in practical situations, where the density is usually390

low, a situation in which our algorithms have shown their best performance.
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Appendix A. Mathematical proof of the asymptotic behaviour of the400

proposed quantum algorithms

Algorithm 1

Given a database of ν unsorted elements and an oracle that detects µ =

µ(ν) marked elements, Algorithm 1 provides a method that finds all marked

elements with a bounded probability error, based on a repeatedly use of Grover’s405

algorithm. We shall require that, for all ν, 0 < µ(ν). We will also assume that

the sequence µ(ν) has a limit, when ν →∞.

Grover’s algorithm provides, with O

(√
ν

µ(ν)

)
oracle calls, a success prob-

ability greater or equal than δ(ν) := 1 − µ(ν)
ν , i.e., δ(ν) := P (finding a marked

element out of the µ(ν)) [35, Section 3]. Assuming that µ(ν) ≤ ν
2 , for all ν,

we have a uniformly bounded success probability δ(ν) ≥ 1
2 . Because such an

algorithm does not distinguish between marked elements, we have that

Pi(ν) := P (finding the i−th marked element out of the µ(ν)) =
δ(ν)

µ(ν)
≥ 1

2µ(ν)

for all i = 1, . . . , µ(ν), and for all ν. We want to independently repeat the search

R = R(ν) times and estimate the probability P ′(ν) of not finding all marked

elements. Namely,

P ′(ν) := P (not finding all marked elements in R(ν) experiments)

= P (not find. the first elem. in R(ν) exp. ∨ . . . ∨ not find. the µ(ν)−th elem. in R(ν) exp.)

≤ µ(ν)

(
1− 1

2µ(ν)

)R(ν)

In order to obtain a bounded algorithm, we require that such a probability

is less than some w < 1, for all ν. This yields µ(ν)
(

1− 1
2µ(ν)

)R(ν)

≤ w or,
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equivalently,

R(ν) ≥
log
(

w
µ(ν)

)

log
(

1− 1
2µ(ν)

)

Taking R(ν) as

⌈
log( w

µ(ν) )
log(1− 1

2µ(ν) )

⌉
, we have that R(ν) = O (µ(ν) log(µ(ν))), and the

procedure requires an overall number of O
(√

νµ(ν) log(µ(ν))
)

oracle calls.

# Marked #Iterations #Orac. calls Total # oracle

elements per it. calls

µ(ν) O (µ(ν) log(µ(ν))) O

(√
ν

µ(ν)

)
O
(√

νµ(ν) log(µ(ν))
)

Table A.18: Summary of Algorithm 1

The main obstacles to a practical application of this methodology are the410

requirements on µ(ν), namely it has to be known and satisfy 0 < µ(ν) ≤ ν
2 ,

for all ν. Moreover, the correctness of the asymptotic analysis is conditioned to

the sequence µ(ν) having a limit. Since µ(ν) is not always known, Algorithms

2 and 3 give two practical approaches based on Grover’s algorithm with a ran-

dom number of iterations. In both cases, an algorithm with memory and an415

appropriate time-out is taken.

Algorithm 2

This algorithm consists in a direct randomisation of the number of Grover’s

iterations of Algorithm 1. The list L keeps track of marked elements already

found (a memory list), and the number R = R(ν) of times that Grover’s search is420

repeated has to be taken so that the algorithm has a bounded success probability.

This time we shall require that, for all ν, 0 < µ(ν) ≤ 3ν
4 , and that the sequence

µ(ν) has a limit, when ν →∞.

Let us consider the correctness of the second step in a single iteration of

the algorithm. In such a step, the number of marked elements by the oracle is425

0 ≤ t ≤ 3ν
4 . When t = 0, the algorithm forces (in the third step) OUTPUT L

with no new elements added to the list L, and the output is right. On the other

hand, when t > 0, because of Lemma 2 and the proof of Theorem 3 in [35], the
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probability of finding a marked element is δ(ν) ≥ 1
4 , with O (

√
ν) oracle calls,

so the overall probability of finding a marked element is 1 − (1− δ(ν))
R(ν) ≥430

1−
(
3
4

)R(ν)
.

Since the second step must be independently repeated µ(ν)+1 times for the

algorithm to succeed (the last iteration is the one forcing the output), the proba-

bility P ′(ν) of not finding all marked elements is P ′(ν) := 1−
(

1− (1− δ(ν))
R(ν)

)µ(ν)
≤

1−
(

1−
(
3
4

)R(ν)
)µ(ν)

which, in order to obtain a bounded algorithm, is required

to be less than some w < 1, for all ν. This yields

R(ν) ≥
log
(

1− (1− w)
1

µ(ν)

)

log
(
3
4

)

Taking R(ν) as




log

(
1−(1−w)

1
µ(ν)

)

log( 3
4 )




, we have that R(ν) = O (log(µ(ν))), and

the procedure requires an overall number of O (
√
νµ(ν) log(µ(ν))) oracle calls.

Of course, since µ(ν) is assumed to be unknown, in practice we might know an

upper bound B(ν) of µ(ν) (in the worst case we can always choose B(ν) = 3ν
4 ).435

This allows to take R(ν) =




log

(
1−(1−w)

1
B(ν)

)

log( 3
4 )




= O(log(B(ν)) and the overall

asymptotic complexity is O (
√
νµ(ν) log(B(ν))).

#Step 2 #Iterations #Orac. calls Total #

iterations in Step 2 per it. oracle class

µ(ν) + 1 O (log(B(ν))) O (
√
ν) O (

√
νµ(ν) log(B(ν)))

(output iter.)

Table A.19: Summary of Algorithm 2: worst case

In this algorithm, it is also interesting to analyse the average number of oracle

queries. Since the probability of finding an element in any of the Grover execu-

tions of the loop of step 2 is at least 1
4 , the average number of queries on each440

execution of step 2 is less than 4
√
ν
2 = 2

√
ν when there are still marked elements

to be found. We need to add to that the number of queries of the output itera-
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tion (when all elements have already been found) to obtain an average number

of queries which is 2
√
νµ(ν) +O (

√
ν log(B(ν))) = O (

√
ν(log(B(ν)) + µ(ν))).

#Step 2 #Iterations #Orac. calls Total #

iterations in Step 2 per it. oracle class

µ(ν) + 1 4 or O (log(B(ν)))
√
ν
2 or

√
ν O (

√
ν(log(B(ν))

(output iter.) +µ(ν))

Table A.20: Summary of Algorithm 2: average case

The main obstacles to a practical application of this methodology are: the445

requirements on µ(ν), as it has to satisfy 0 < µ(ν) ≤ 3ν
4 , for all ν; the asymptotic

behaviour of the algorithm, which is worst than in the straightforward approach;

the need of a continuous oracle update. The main advantages are that µ(ν) is

now not required to be known, and that the sequence µ(ν) is not required to

have a limit, when ν →∞.450

Algorithm 3

This alternate algorithm is a variation of the previous one, based on [35],

and it consists in two stages. In the first one, the parameter m increases from 1

to
√
ν by a factor of λ. In each iteration, Grover’s algorithm is only run once.

When the critical stage is reached (i.e., when m =
√
ν), the algorithm behaves455

exactly as the previous one. Since the algorithm never outputs before reaching

the critical stage, the error probability is bounded as above. The difference

here consists on the number of oracle calls. In the worst case, the algorithm

performs the number of calls of the previous algorithm plus the oracle calls of

the noncritical stage, but this latter number is O (
√
ν log(ν)), since O(log(ν))460

iterations are needed to reach the critical stage. So the overall complexity of

the worst case is O (
√
νµ(ν) log(ν)).

Again, the average number of queries can be substantially lower than that.

Indeed, from Theorem 3 in [35], when there are t > 0 marked elements to

be found, the average number of oracle queries that our algorithm needs to465

perform in order to find one of them is O
(√

ν
t

)
. Hence, the average number of
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#Step 2 #Iter. to reach #Orac. calls Total #

iterations the critical stage per it. oracle class

µ(ν) + 1 O (log(ν)) O (
√
ν) O (

√
νµ(ν) log(ν))

(output iter.)

#Step 2 #Iter. in Step 2 #Orac. calls Total # oracle class

iterations (critical stage) per it. class

µ(ν) + 1 O (log(B(ν))) O (
√
ν) O (

√
νµ(ν) log(B(ν)))

(output iter.)

Table A.21: Summary of Algorithm 3: worst case (noncritical and critical stages)

queries is O
(∑µ(ν)

t=1

√
ν
t

)
+O (

√
ν log(ν)) +O (

√
ν log(B(ν))) = O

(√
νµ(ν)

)
+

O (
√
ν log(ν)) = O

(√
ν(log(ν) +

√
µ(ν))

)
, because B(ν) = O(ν) (see Table

A.22).

#Step 2 iterations #Orac. calls per it. Total # oracle class

t = 1, . . . , µ(ν)
√

ν
t O

(√
νµ(ν)

)

1 (output iter.)
√
ν log(ν) (noncritical) O(

√
ν log(ν))

+
√
ν log(B(ν))

Table A.22: Summary of Algorithm 3: average case

The obstacles to a practical application of this algorithm are mostly the ones470

of the previous one. However, although its asymptotic number of calls is never

smaller than the algorithm above, its average number of queries can be better in

practice (this has been observed in simulations) . In fact, even though the worst

case query complexity is worse than that of the first algorithm proposed, the

average number of queries is better when log(ν)+
√
µ(ν) is o(

√
µ(ν) log(µ(ν))).475

Summary of complexities

In Table A.23, we provide a table that summarises the complexities of the

three algorithms that we have proposed.
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Algorithm Worst case Average case

1 O
(√

νµ(ν) log(µ(ν))
)

O
(√

νµ(ν) log(µ(ν))
)

2 O (
√
νµ(ν) log(B(ν))) O (

√
ν(log(B(ν)) + µ(ν)))

3 O (
√
νµ(ν) log(ν)) O

(√
ν(log(ν) +

√
µ(ν))

)

Table A.23: Summary of query complexities (B(ν) ≤ 3ν
4

is an upper bound of µ(ν))

Appendix B. Rationale behind the decision procedure

As mentioned in the text, the decision procedure for the determination of480

pairs of close particles consists in two steps. First, look for close particles among

the set of all pairs. Second, look for close particles to a fixed one, when the

positions of particles change (i.e., an update methodology). In each case, any of

the three methods above can be potentially used. Next we explain the rationale

behind our proposal.485

First step: look directly for pairs of close particles

In this case ν = N2, and the required bounds on µ(N2) are always satisfied

when the number of particles is N ≥ 54 (for the first algorithm) or N ≥ 36 (for

the second and third ones), because the characteristics of the physical problem

(see Section 4). However, for smaller sizes of the problem and particularly small490

values of µ(N2) the algorithms could still work. The assumption that µ(N2)

has a limit, as N2 → ∞, is realistic since the density is fixed, namely, the

ratio of number of particles to available space is constant. Therefore, the more

particles we have, the more chances of having pairs of close particles, i.e., it

seems realistic assuming that µ(N2) is non-decreasing, and so it has a limit.495

The main obstacle for using the first algorithm is the need of a knowledge of the

actual value of µ(N2). The asymptotic number of oracle calls of each algorithm

is given in Table B.24

Depending on the actual µ(N2), we will have different complexities. For

instance, it has been noticed in practice that sometimes the number of close500

pairs of distinct particles is small in relation to the total number of pairs. This
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Algorithm Worst case Average case

1 O
(
N
√
µ(N2) log

(
µ(N2)

))
O
(
N
√
µ(N2) log

(
µ(N2)

))

2 O
(
Nµ(N2) log

(
B(N2)

))
O
(
N(log

(
B(N2)

)
+ µ(N2)

)

3 O
(
Nµ(N2) log(N)

)
O
(
N(log(N) +

√
µ(N2))

)

Table B.24: Query complexities in our particular problem

can be translated as the condition µ(N2) = O(1) (since we do not count the

N pairs of a repeated particle), and so the number of oracle calls, in both the

worst and average cases, is simply O(N) for the first two algorithms (observe

that µ(N2) = O(1) allows B(N2) to be taken as O(1)) and O(N log(N)) for505

the third one. In this situation it seems reasonable to expect that the three

algorithms might give accurate outputs even for small values of N .

On the other hand, we might simply assume that µ(N2) = O(N) (because

of the uniform bound on the number of closed particles to a fixed one), and so

the algorithms require queries of the orders given in Table B.25. Notice that,510

in this case, algorithm 2 (taking the natural choice B(N2) = O(N)) should be

avoided, and one can choose between algorithm 1 (in a conservative setting,

and if the exact value of µ(N2) is known) and algorithm 3 (if only the average

running time is of interest).

Algorithm Worst case Average case µ(N2), B(N2)

1 O (N) O (N)

2 O (N) O (N) O(1)

3 O (N log(N ) O (N logN)

1 O
(
N
√
N log(N))

)
O
(
N
√
N log(N))

)

2 O
(
N2 log(N)

)
O
(
N2
)

O(N)

3 O
(
N2 log(N)

)
O
(
N
√
N)
)

Table B.25: Query complexities when µ(N2), B(N2) = O(1), or µ(N2), B(N2) = O(N)

Second step: fix one particle and look for the close ones515
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Here we have ν = N and µ(N) ≤ 27. If we want to apply the general

setting, the requirement on the minimum number of particles is the same as

above (N ≥ 54 for the first algorithm and N ≥ 36 for the second and third

ones). Also, for the first method, we need to assume that µ(N) has a limit, as

N → ∞. Again, this assumption is realistic, since the more particles we have,520

the more chances of having close particles to a given one, i.e., it seems realistic

assuming that µ(N) is non-decreasing, and so it has a limit. Moreover, in this

situation µ(N) = O(1) always. The need of a knowledge of µ(N) is, as above,

the main obstacle for using the first algorithm.

Application of the general setting yields an asymptotic number of oracle525

calls that is O
(√

N
)

for the first two methods, and O(
√
N log(N)) for the

third one. This number of oracle queries has to be multiplied by the number

of “updated” particles, that we will call α(N). There is still another missing

factor that must be taken into account. We know that any of the algorithms

provides a uniform success probability 0 < 1 − w < 1. When we repeat the530

algorithm α(N) times, the lower bound on the success probability becomes

(1 − w)α(N), which tends to 0, as α(N) tends to infinity. To avoid this, we

can repeat the search method S times for each updated particle, so that the

probability that we do not find all the close pairs is bounded from above by
∑α(N)
i=1 P (fail to find the neighbour list of the i-th particle in all the S repetitions) =535

α(N)wS . Then, if we take S =

⌈
log( ε

α(N) )
log(w)

⌉
, which is O(log(α(N))), we can make

the failure probability less than any given ε, in particular w. Therefore, the total

amount of oracle calls that we need to consider is O
(√

Nα(N) log(α(N))
)

for

the first two algorithms and O
(√

N log(N)α(N) log(α(N))
)

for the third one.

Backtracking540

A final question to be addressed is when it would be desirable to retake

the first approach instead of updating with the second approach. This would

happen, for instance, when the number of updated particles, α(N), verifies

α(N) log(α(N)) ≥ N , but the constants hidden by the O notation can make it

interesting even for smaller α(N).545
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SUPPLEMENTARY MATERIAL

Results for the Algorithm 2 and Algorithm 3 experiments

In this Appendix, we present the full set of results for the experiments per-

formed with Algorithms 2 and 3. In all the cases, we have consider values

of R ranging from 5 to 70, number of particles 125, 216, 512 and 1000, and550

µ = 40, 80, 150. The results are shown in Tables C.26 through C.49. In all the

cases, we present the values of R and the number of times that not all particle

pairs were recovered (“Fails”), together with minimum, maximum, average and

standard deviation of the number of oracle queries.

R Fails Mininum Maximum Average Standard deviation

5 718450 40 7418 2939.6492 1717.0896

10 41249 197 9648 5569.0876 852.5619

15 1505 654 9932 6009.2337 671.0525

20 58 1211 10080 6329.9406 669.5504

25 4 4001 10578 6648.2113 674.7998

30 0 4275 11155 6966.1094 679.7743

35 0 4324 11405 7283.0392 684.7065

40 0 4928 11613 7600.7908 690.3017

45 0 5189 12223 7918.7430 695.0099

50 0 5315 12237 8237.5179 699.4031

55 0 5641 12459 8553.4562 704.2803

60 0 5777 12843 8872.4479 708.3241

65 0 6195 12964 9189.5284 712.8600

70 0 6528 13612 9505.8860 718.6782

Table C.26: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 125 particles and µ = 40

35



R Fails Mininum Maximum Average Standard deviation

5 2824 386 3712 2228.2688 217.8424

10 67 1165 4018 2548.1559 232.4877

15 1 1813 4630 2866.3376 246.8998

20 0 2027 4928 3183.3695 260.2819

25 0 2322 5271 3500.6617 273.3451

30 0 2597 5657 3818.5138 285.3814

35 0 2701 5959 4136.2548 297.1029

40 0 2964 6127 4453.5569 308.5054

45 0 3190 6810 4770.9495 319.0550

50 0 3463 6904 5088.6793 329.8067

55 0 3823 7400 5405.9980 339.7549

60 0 4015 7586 5723.9451 349.8596

65 0 4329 7833 6040.8812 359.2226

70 0 4647 8415 6358.7057 368.9050

Table C.27: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 125 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 718628 37 15516 5901.4243 3448.7590

10 41357 503 18982 11181.1341 1714.4627

15 1556 1420 20896 12065.4905 1345.8739

20 54 2051 21332 12711.5539 1341.5124

25 2 6818 21172 13349.2033 1353.0338

30 0 8783 22207 13987.1952 1364.4461

35 0 8966 23816 14624.5805 1373.5282

40 0 9563 22670 15264.0114 1382.1603

45 0 10208 23718 15898.3035 1392.8924

50 0 11040 24741 16537.0394 1403.1162

55 0 11684 25428 17174.2995 1412.9613

60 0 12096 26344 17812.5433 1421.5418

65 0 12830 27214 18450.4361 1431.4450

70 0 13201 28141 19089.2051 1441.6392

Table C.28: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 216 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 2377 898 7689 4825.1556 445.2583

10 59 2104 8534 5466.6574 473.8216

15 3 3780 9491 6103.8121 501.5960

20 0 4255 10959 6742.7040 528.9813

25 0 4824 11518 7379.4405 553.3524

30 0 5463 11685 8016.7392 577.5888

35 0 5995 12124 8654.2270 601.4419

40 0 6501 13166 9292.0317 623.7913

45 0 6944 13961 9930.4703 645.1531

50 0 7375 14465 10567.1632 666.4657

55 0 8018 15225 11204.3752 685.5598

60 0 8800 15461 11840.9150 705.6348

65 0 9069 16568 12478.6143 724.6778

70 0 9830 17082 13115.8680 743.3970

Table C.29: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 216 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 718791 160 30868 11825.2023 6914.3259

10 41221 878 38631 22403.9427 3427.6403

15 1517 2051 40597 24178.9512 2702.7087

20 57 4604 39848 25475.3335 2691.4411

25 1 7201 43896 26750.3906 2707.0025

30 0 17789 43981 28031.4853 2729.6234

35 0 18180 44091 29304.0688 2750.3152

40 0 19496 46887 30585.1129 2770.6149

45 0 20388 48264 31859.0301 2788.2287

50 0 21896 49474 33138.2467 2807.0429

55 0 23460 49567 34416.2805 2826.3657

60 0 24140 50592 35691.7640 2850.4040

65 0 24539 51950 36970.7488 2867.3966

70 0 26362 54432 38242.6094 2887.9825

Table C.30: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 512 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 1923 1910 15753 10145.7909 902.9648

10 44 4633 17451 11432.0083 960.5882

15 3 8536 20316 12710.2747 1015.7321

20 0 8806 22982 13986.8836 1067.2772

25 0 10351 22902 15264.6188 1117.9356

30 0 11131 23273 16540.8108 1166.4377

35 0 12455 25087 17819.0396 1212.3312

40 0 13582 26600 19095.3893 1255.3162

45 0 14479 28519 20374.3377 1298.8724

50 0 14841 28812 21648.2902 1342.0320

55 0 16772 30478 22927.2429 1380.5863

60 0 17651 32652 24205.4284 1419.4951

65 0 18730 34298 25486.3516 1457.7054

70 0 19923 34743 26760.8443 1494.1648

Table C.31: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 512 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 718391 166 63409 23683.5436 13833.8447

10 40895 2324 75457 44862.0495 6874.5329

15 1492 5649 77415 48402.0877 5402.9775

20 72 9992 85992 50994.6734 5381.6955

25 2 20000 84930 53551.7566 5423.7290

30 0 34156 90053 56105.2792 5462.8954

35 0 36937 89677 58674.4402 5503.6964

40 0 38349 91133 61227.9910 5542.4209

45 0 40524 97136 63783.1961 5582.8703

50 0 43766 99471 66336.5767 5621.0076

55 0 46921 101023 68902.9617 5656.8642

60 0 46568 104222 71462.3188 5697.8280

65 0 48738 107966 74008.3424 5741.4485

70 0 54323 109460 76582.4883 5770.1841

Table C.32: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 1000 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 1635 4265 31542 20964.4723 1823.0690

10 39 13441 35629 23536.2271 1936.5643

15 0 16590 37738 26093.3338 2046.9211

20 0 19203 43485 28652.9518 2151.9537

25 0 21504 46209 31208.2892 2250.5519

30 0 23149 48898 33770.6442 2342.3008

35 0 24765 49575 36319.7148 2434.8336

40 0 27083 56501 38880.8974 2525.8832

45 0 30029 56789 41439.2587 2609.3545

50 0 31775 58314 43996.7575 2693.1135

55 0 33189 61831 46553.6430 2770.0797

60 0 35264 65534 49114.7834 2850.8926

65 0 38689 67909 51672.2018 2926.7659

70 0 39434 71960 54225.1105 2999.7123

Table C.33: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 1000 particles and µ = 40
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R Fails Mininum Maximum Average Standard deviation

5 923296 25 13624 3635.9636 2856.8485

10 80365 279 15537 10336.4948 1842.9808

15 2888 624 16060 11098.5778 983.8430

20 98 1196 16695 11430.6496 942.7164

25 5 3176 17785 11750.7350 945.5938

30 0 8209 17179 12066.4249 948.4360

35 0 8317 17552 12385.7663 952.5189

40 0 8636 17778 12701.6750 956.0423

45 0 8748 17962 13021.0638 958.9156

50 0 9394 18442 13336.8252 963.1836

55 0 9767 19120 13654.1344 967.2429

60 0 9806 19565 13972.2885 970.1708

65 0 10307 19695 14291.1269 972.7903

70 0 10502 19788 14607.5681 976.9584

Table C.34: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 125 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 2862 452 4268 2859.8728 231.2177

10 70 1063 4739 3179.8891 244.7497

15 4 2322 5091 3497.5590 258.2530

20 0 2572 5504 3815.2131 271.0638

25 0 2887 5860 4132.6062 283.2911

30 0 3173 6244 4449.8254 295.0987

35 0 3438 6949 4767.5163 306.8322

40 0 3646 6940 5085.1520 317.8033

45 0 3916 7512 5402.9935 327.4926

50 0 4177 7580 5720.4103 338.1065

55 0 4443 7898 6037.9105 348.5818

60 0 4525 8792 6355.0305 357.9535

65 0 5042 8803 6672.3907 367.2009

70 0 5055 9106 6990.2224 376.5325

Table C.35: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 125 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 923535 53 26838 7278.0833 5732.9068

10 80164 466 30978 20764.6058 3686.2588

15 2893 1269 33464 22288.0032 1971.9172

20 98 3378 34485 22956.6472 1888.5995

25 4 6163 33952 23589.5022 1897.7596

30 0 16616 35536 24232.5031 1905.1978

35 0 16131 35181 24866.5963 1909.3065

40 0 18018 36800 25505.5612 1916.9934

45 0 17745 37909 26141.1385 1921.6054

50 0 18943 37610 26782.8205 1929.7497

55 0 19437 37705 27416.0201 1936.2964

60 0 20150 38316 28058.5007 1945.9851

65 0 20475 39788 28694.4024 1955.4758

70 0 20119 40084 29329.3894 1956.2711

Table C.36: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 216 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 2392 1059 9052 6325.5507 474.2337

10 72 2573 10293 6967.4328 500.9015

15 0 5310 11499 7605.0946 527.7988

20 0 5832 11881 8242.9234 552.6728

25 0 6322 13802 8880.8130 577.3092

30 0 6792 13112 9517.5153 600.0381

35 0 7086 14341 10155.0858 621.8501

40 0 7719 14952 10793.2809 644.4091

45 0 8440 15185 11430.6318 664.4279

50 0 8552 15962 12067.8135 685.1698

55 0 9246 16926 12704.4590 703.8530

60 0 9872 17237 13343.4304 723.7423

65 0 10533 17705 13979.7554 743.0180

70 0 10967 18852 14618.0132 760.9026

Table C.37: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 216 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 923253 187 52725 14611.2056 11490.1537

10 80134 1061 63761 41596.0359 7411.9602

15 2842 2385 67161 44658.7835 3943.5957

20 108 3890 67044 46001.3135 3790.5698

25 2 10629 68236 47280.9809 3798.1814

30 0 33531 69521 48549.5045 3805.9196

35 0 32346 70270 49839.0316 3822.6188

40 0 34265 71939 51111.6997 3840.7633

45 0 36299 73514 52389.4730 3858.2295

50 0 37650 74989 53670.5450 3874.8880

55 0 39547 76226 54943.0548 3881.4406

60 0 39633 76825 56222.5949 3896.9765

65 0 41269 79521 57496.3640 3908.8121

70 0 42185 80082 58775.9391 3928.2244

Table C.38: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 512 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 1950 2115 19522 13470.1575 961.4043

10 54 4566 20804 14756.1635 1014.3651

15 4 11101 22472 16033.6005 1066.0397

20 0 12368 24762 17312.6776 1117.6257

25 0 12699 26817 18589.4395 1166.2992

30 0 14627 28121 19865.9294 1212.8327

35 0 15245 28624 21143.3044 1254.8767

40 0 16422 29459 22422.5002 1298.9550

45 0 17223 31994 23698.2628 1339.9998

50 0 18717 32834 24978.4924 1380.1082

55 0 19943 33593 26254.1776 1418.1368

60 0 20652 35096 27534.4299 1456.9480

65 0 21862 38463 28808.9218 1493.8088

70 0 23100 38009 30084.4850 1529.7581

Table C.39: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 512 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 923323 255 104888 29222.7712 2856.8485

10 79935 2390 129834 83289.8695 1842.9808

15 2916 4740 134464 89407.7511 983.8430

20 88 7803 133875 92074.9924 942.7164

25 2 64634 135505 94648.8913 945.5938

30 0 66544 139891 97211.9290 948.4360

35 0 67639 142266 99766.2836 952.5189

40 0 71193 146028 102337.1896 956.0423

45 0 74491 149917 104881.7774 958.9156

50 0 73612 148087 107438.8263 963.1836

55 0 78205 158620 109989.6281 967.2429

60 0 80210 154721 112540.4592 970.1708

65 0 80626 158723 115106.1941 972.7903

70 0 82811 160788 117668.0933 976.9584

Table C.40: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 1000 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 1738 4574 40682 28031.4885 1945.7548

10 56 11198 43337 30607.4803 2048.0667

15 1 19392 46624 33163.4896 2152.5102

20 0 25475 50528 35718.5258 2251.9494

25 0 27591 54305 38278.1468 2346.4738

30 0 30115 56163 40836.8827 2441.6654

35 0 31025 57841 43394.7480 2526.3774

40 0 33172 61129 45955.3550 2610.1783

45 0 36524 62045 48514.9762 2694.3705

50 0 37159 67122 51068.2165 2774.7045

55 0 39510 69679 53620.3119 2851.4596

60 0 43035 73106 56183.0602 2925.0693

65 0 44113 75208 58741.6703 3003.4321

70 0 46962 76631 61300.5532 3071.1791

Table C.41: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 1000 particles and µ = 80
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R Fails Mininum Maximum Average Standard deviation

5 991625 23 22017 3936.0119 3539.2533

10 141155 229 26817 18238.5071 4088.6913

15 5007 694 27105 19945.3744 1482.5957

20 178 1326 27614 20312.2466 1286.8417

25 7 3865 27146 20631.0459 1280.5572

30 1 15250 27272 20950.8806 1286.0155

35 0 15946 28345 21269.7710 1288.2153

40 0 15910 28047 21584.3052 1291.9420

45 0 16573 29365 21901.8913 1293.7654

50 0 16521 29823 22219.7388 1296.2946

55 0 17168 29288 22536.5065 1297.8384

60 0 17380 29745 22856.1961 1301.6468

65 0 17835 29883 23171.8584 1303.7534

70 0 17672 30728 23490.2205 1306.3670

Table C.42: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 125 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 2954 342 5015 3567.7794 241.7000

10 77 1533 5699 3887.7511 254.1947

15 2 2880 5828 4205.6119 267.2645

20 0 3178 6341 4522.7434 280.1169

25 0 3603 6610 4840.4259 292.1643

30 0 3749 7134 5157.9179 303.3228

35 0 3966 7528 5475.1769 314.3134

40 0 4304 7636 5792.8299 324.8783

45 0 4590 8200 6110.0810 335.2959

50 0 4791 8346 6427.4647 345.2632

55 0 5012 8680 6745.1640 354.6144

60 0 5358 9359 7062.6664 364.8543

65 0 5557 9307 7380.1786 373.4239

70 0 5895 9825 7697.6120 382.8709

Table C.43: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 125 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 991606 56 44866 7900.6697 7117.2576

10 140843 609 53792 36621.1976 8220.3127

15 5104 1370 54612 40048.2808 2980.3527

20 181 2722 54079 40784.4320 2579.0162

25 6 18818 54880 41431.0001 2574.3050

30 0 31161 55336 42063.5458 2579.5387

35 0 31338 56721 42704.7072 2586.1462

40 0 32303 57387 43336.8190 2587.6622

45 0 33082 57541 43977.8210 2591.9175

50 0 33625 58658 44618.2815 2599.5720

55 0 34127 59394 45255.0186 2604.8972

60 0 34587 60574 45886.6671 2610.6267

65 0 34515 59675 46530.9800 2616.4212

70 0 35837 61274 47168.8694 2618.2031

Table C.44: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 216 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 2329 937 11030 8095.4643 497.3407

10 58 5365 12306 8737.4271 522.6686

15 1 6995 12657 9375.3278 548.0367

20 0 7495 13782 10012.7649 572.8338

25 0 7965 14121 10650.1500 596.2434

30 0 8176 15215 11287.6006 618.6946

35 0 9106 16204 11925.8409 640.3208

40 0 9565 16007 12562.8546 660.9694

45 0 10093 17563 13199.8430 681.4702

50 0 10632 17767 13837.7113 700.9023

55 0 11348 18398 14475.9172 720.4413

60 0 11748 19119 15114.0568 738.7913

65 0 12333 20315 15748.6789 757.0198

70 0 12957 20667 16386.4846 774.5531

Table C.45: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 216 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 991722 171 87389 15787.1779 14214.6269

10 141218 1133 104564 73370.9227 16477.8624

15 5119 2584 106443 80267.4885 5956.5470

20 191 8396 110829 81734.6673 5176.2931

25 5 18438 112943 83029.7071 5154.9605

30 0 61565 112791 84295.9919 5163.6106

35 0 63555 112327 85583.6788 5176.9628

40 0 64111 113811 86853.8841 5194.6757

45 0 66188 115603 88128.6841 5194.7385

50 0 66729 117867 89402.4787 5205.8579

55 0 67905 117424 90693.6458 5219.0534

60 0 69315 119052 91965.4294 5231.4581

65 0 69658 124526 93241.4550 5240.3562

70 0 72515 124582 94512.2240 5245.4772

Table C.46: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 512 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 1875 3230 23859 17501.6378 1012.9452

10 54 8240 25333 18787.8901 1061.4635

15 2 15497 26884 20064.1490 1112.5338

20 0 15898 28518 21342.7490 1160.4791

25 0 17546 30946 22622.6177 1206.2732

30 0 18106 32741 23897.8824 1249.8472

35 0 19230 32645 25176.4913 1293.0121

40 0 20251 34749 26454.0754 1335.0615

45 0 21517 35411 27730.7457 1376.7511

50 0 22288 37427 29007.4129 1415.1234

55 0 24033 38662 30284.7649 1452.5908

60 0 24633 39454 31562.9967 1489.6124

65 0 26049 42284 32839.0674 1528.9651

70 0 26944 42412 34118.9010 1563.3344

Table C.47: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 512 particles and µ = 150

56



R Fails Mininum Maximum Average Standard deviation

5 991505 414 180395 31684.0844 28523.4480

10 140787 2180 206019 146916.3709 32947.0996

15 5019 5198 219209 160687.7883 11937.5891

20 147 12020 221281 163628.5918 10357.0073

25 6 36939 227243 166217.6099 10331.6578

30 0 117389 227737 168767.3977 10334.1867

35 0 127876 226940 171312.8985 10360.0652

40 0 129330 228330 173867.6444 10383.3829

45 0 132929 237269 176427.3668 10392.6679

50 0 135468 235256 178971.1799 10419.4715

55 0 139009 233572 181569.7748 10439.0855

60 0 141583 238208 184098.0041 10464.7435

65 0 142251 242487 186666.0778 10483.9050

70 0 142234 245575 189222.6928 10520.2681

Table C.48: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 2 with 1000 particles and µ = 150
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R Fails Mininum Maximum Average Standard deviation

5 1673 6193 48431 36746.5779 2044.8347

10 42 30478 53071 39321.0275 2147.6401

15 3 31524 55663 41873.6086 2244.5502

20 0 32971 57502 44433.0812 2337.9566

25 0 35685 62610 46991.5814 2431.9973

30 0 37507 63685 49547.2117 2522.8804

35 0 40071 66778 52107.0978 2607.5169

40 0 40262 69429 54662.2551 2687.0371

45 0 44408 74472 57220.2541 2768.7009

50 0 46548 74999 59780.8423 2842.9850

55 0 48635 78220 62337.2892 2925.5149

60 0 48742 84650 64890.8063 2998.5694

65 0 53761 82784 67451.0666 3066.7362

70 0 55717 86997 70007.5573 3139.5400

Table C.49: # of fails and minimum, maximum, average and standard deviation of the number

of oracle queries for 106 repetitions of Algorithm 3 with 1000 particles and µ = 150
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2.3 MultiDimensional Scaling

One publication has been published as part of our efforts in this area:

F. Orts, G. Ortega, E.M. Garzón and A.M. Puertas. Improving the energy efficiency of
SMACOF for multidimensional scaling on modern architectures. Journal of Supercomputing,
75, 1038-1050, 2018. JCR (2018) = 2.157. Subject categories = Computer Science, Theory &
Methods: 35/105 (Q2); Computer Science, Hardware & Architecture: 22/53 (Q2); Engineering,
Electrical & Electronic: 132/266 (Q2).
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solve MDS problems have been developed and evaluated on multicore and GPU. To
help the user of SMACOF, we provide these parallel versions and a complementary
Python code based on a heuristic approach to explore the optimal configuration of the
parallel SMACOF algorithm on the available platforms in terms of energy efficiency
(GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been
considered for the experimental evaluation.

Keywords Dimensionality reduction ·Multidimensional scaling · Energy efficiency ·
SMACOF algorithm

1 Introduction

Real-world data, such as speech signals, images, biomedical, financial, telecommuni-
cation and other data usually have a high dimensionality as each data instance (point)
is characterized by a set of features. The dimensionality of such data, as well as
the amount of data to be processed, is constantly increasing therefore the require-
ment of processing these data within a reasonable time frame still remains an open
problem. Dimensionality reduction methods which aim to map high-dimensional data
into a lower-dimensional space play extremely important role when exploring large
datasets. Among such methods multidimensional scaling (MDS) remains one of the
most popular [2,8].

One of the dimensionality reduction applications is a graphical visualization of the
structure of the high-dimensional data in 2D or 3D space for easier data understanding.
Some applications in this line can be found in [12,18,22]. Moreover, MDS has proven
to be useful as a technique to evaluate criteria of objects classification [14] or discover
criteria which initially had not been taken into account [1], serving as a psychological
model that allows to discover human patterns [15].

A well-known algorithm for MDS is called SMACOF (Scaling by Majorizing a
COmplicated Function) [7]. The experimental investigation has demonstrated that
SMACOF is most accurate algorithm comparing to others [16]. It should be noted
that the SMACOF algorithm is the most expensive, as its complexity is O(m2), where
m is the number of observations. Several different approaches have been developed
to reduce computational complexity of the MDS techniques. In [23], the complex-
ity was reduced to O(m

√
m) by developing iterative MDS spring model. In [32],

authors reduced the complexity to O(m logm) by dividing the original matrix into
sub-matrices and then combining the sub-solutions to obtain a final solution. The
improved versions of MDS reduce complexity insignificantly, however, optimization
accuracy suffers [16]. Consequently, SMACOF version of MDS is usually chosen as
it ensures the sufficient accuracy that is essential in many dimensional cases. In short,
theMDS techniques remain in high time complexity order therefore parallel strategies
should be considered to accelerate the computation of the MDS procedure [24].

During the last decade, the high-performance computing (HPC) has greatly
improved and has been widely applied for MDS techniques. In [29], authors pro-
posed a MDS parallel implementation and explored it under MPI and other libraries.
In [11], Fester et al. proposed a CUDA implementation of MDS algorithm based on
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the high throughput multidimensional scaling (HiT-MDS). In [28], authors suggested
a new efficient parallel GPU algorithm for MDS based on virtual particle dynamics
[9] and experimentally compared it with multicore CPU version. In [16], the multi-
level MDS Glimmer algorithm was developed for GPU by dividing the input data into
hierarchical levels and executing the algorithm recursively. It must be noted that cur-
rently Glimmer is the most well-known and widely used GPU tool for MDS. Another
CUDA-based technique to get MDS approximation is CFMDS [27] that implements
both single-level and multilevel approaches.

In [26], authors proposed a correlation clustering framework which uses MDS
for layout and GPU-acceleration to speedup visual feedback. In [25], GPU version
of MDS was developed to improve content-based image retrieval (CBIR) systems.
Summarizing, the research on this HPC field is being carried out actively; it remains
relevant as the new GPU architecture and heterogeneous platforms constantly appear,
and should be effectively exploited for solving dimensionality reduction problems of
different complexities.

Currently, the target of HPC includes the optimization of energy consumption.
The ratio of the computational speed to the electrical power (GFLOPs/watt) is usu-
ally defined as a parameter that is a suitable indicator of the energy efficiency [19].
The increase in this parameter means that the system achieves better performance
(GFLOPs) with less electrical power (watts) and, as consequence, less energy is con-
sumed. Therefore, for the optimal parallel executions of SMACOF, the ratio should
be maximized.

In this paper, parallel versions of the SMACOF algorithm on multicore and GPU
are developed and evaluated on prototypes of modern architectures. As the parallel
SMACOF algorithm can be executed on different alternative platforms, the kind of
platform and its resources that optimize the runtime and/or energy efficiency need to
be determined. Bearing in mind that the parallel performance depends on the problem
sizes, the users of parallel SMACOF need support to configure it. For this purpose, a
benchmarking process to find the optimal solutions has been developed. It is based on
a heuristic approach which combines two concepts: the analysis of the first iterations
of SMACOF representative computation and functional models of performance and
power consumption of homogeneous parallel platforms. The benchmarking process
has been evaluated using different platforms (multicore and GPU) and various sizes
of the problem. Moreover, the energy efficiency of SMACOF has been experimentally
evaluated on two different multicore platforms and a GPU device.

The paper is organized as follows. In Sect. 2, the descriptions of the Multidimen-
sional Scaling and the SMACOF algorithm are provided. Section 3 describes the
proposed multicore and GPU parallel implementations of the SMACOF algorithm. In
Sect. 4, the algorithm for tuning the energy efficiency of SMACOF is presented. Exper-
imental evaluations of the parallel implementations on three platforms are discussed
in Sect. 5. Finally, conclusions are drawn in Sect. 6.
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Algorithm 1 SMACOF(m, s, Δ, kmax , ε, Y )
Require:

m: number of items;
s: dimension of low-dimensional space;
Δ: m × m matrix of dissimilarities of observed data on the high-dimensional space (n);
kmax : maximum number of iterations;
ε: threshold for the stress variance

Ensure:
Y : set of finding points in the low-dimensional space stored in a m × s matrix

1: Initial Solution randomly generated, Y 0

2: Compute Euclidean distances, D0 = [d(Y 0
i , Y 0

j )] � O(m2s)
3: k = 0, error = 1
4: if (k < kmax) and (error > ε) then
5: Compute Guttman transform matrix, Bk ≡ Bk (Δ, Dk−1) (Algorithm 2) � O(m2)

6: Compute Guttman transform, Yk = 1/m · Bk · Yk−1 � O(m2s)
7: Update distances Dk = [d(Yk

i , Yk
j )] � O(m2s)

8: Compute Ek
MDS (Eq. 1)

9: error = |Ek
MDS − Ek−1

MDS |
10: k = k + 1
11: return Y

2 SMACOF algorithm for MDS

Multidimensional scaling is a technique for the analysis of similarity or dissimilarity
data on a set of objects (items). It aims at finding points Y1,Y2, . . . ,Ym ≡ Y in the
low-dimensional space Rs, s < n, such that the distances between them are as close
as possible to the distances between the original points X1, X2, . . . , Xm ≡ X in the
space Rn . This is achieved by minimizing the stress function:

EMDS =
∑

i< j

(
δi j − d(Yi , Y j )

)2
(1)

Here, d(·, ·) (δ) is the distance between two points in the low-dimensional space
(multidimensional space).

There aremany strategies to solveMDS problems [8].We focus our attention on the
well-known SMACOF algorithm which is based on a particular minimization process
of the stress function [7]. The theoretical background of SMACOF is simpler andmore
powerful than other approaches from convex analysis, because it guarantees monotone
convergence of stress [2]. SMACOF has demonstrated better results when optimizing
stress function comparing to other proposals in the literature [16]. The main idea is
based on the majorizing concept which consists in approximating a complex function
by another one simpler. This method iteratively finds a new function, which is located
above the original function and touches at the supporting point. At every iteration
of the algorithm, the minimum of the new function is closer of the minimum of the
complex function, in our case the stress function [2]. SMACOF can be expressed
by Algorithm 1 in which the complexity order of the most relevant tasks appeared
between parenthesis.
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Algorithm 2 Two pseudocodes to compute Bk (line 5 of Alg 1): On the left, the
approach from Eq. 8.24 of [2]; on the right, the two nested loops are collapsed in only
one to later obtain a balanced parallel execution of Guttman transform matrix

Require:
m: number of i tems;
Δ: [δi j ], m × m matrix of dissimilarities;
D: [di j ], Euclidean distances matrix

Ensure:
B: [bi j ], Guttman transform matrix

1: for i = 0; i < m; i + + do
2: for j = i + 1; j < m; j + + do
3: if di j �= 0 then
4: bi j = −δi j /di j
5: else
6: bi j = 0

7: for i = 0; i < m; i + + do
8: bii = −∑m

j=1, j �=i bi j

9: return B

Require:
m: number of i tems;
Δ: [δi j ], m × m matrix of dissimilarities;
D: [di j ], Euclidean distances matrix

Ensure:
B: [bi j ], Guttman transform matrix

1: for l = 0; l < (m · (m + 1)/2); l + + do
2: i = �l/(m + 1)�, j = l%(m + 1)
3: if j > i then
4: i = m − i − 1, j = m − j

5: if di j �= 0 then
6: bi j = −δi j /di j
7: else
8: bi j = 0

9: b ji = bi j
10: for i = 0; i < m; i + + do
11: bii = − ∑m

j=1, j �=i bi j

12: return B

Algorithm 1 has a high computational cost and high memory requirements due
to the large data structures involved: input matrix Δ (m × m), output and auxiliary
matrices (m × s) and three auxiliary matrices (m ×m) to store the similarities among
the objects of the low-dimensional space. The symmetry has not been exploited in the
storage of the data structures; however, it has been considered for the above-mentioned
matrices update. Bearing in mind this fact, the number of floating point operations of
Algorithm 1 is: 3s/2m2 + 3s/2m for the initialization (line 2 of Algorithm 1) and
(7/2s + 3/2)m2 + 1/2(3s + 1)m for the iterative process.

3 Parallel implementations of the SMACOF algorithm

The SMACOF computational cost is O(s ·m2) and memory requirements are O(m2).
This feature has limited for years the applicability of SMACOF to solve large MDS
problems. The use of HPC techniques helps to overcome this drawback. In this work,
we propose two parallel versions based on the exploitation of large-scale modern
multicore and GPU architectures. This section is devoted to describing these parallel
implementations.

Both implementations are focused on the parallel execution of the computation
of the Euclidean distances matrices (lines 2 and 7 of Algorithm 1) and the Guttman
transform (lines 5 and 6 of Algorithm 1). Parallel procedures are highlighted in bold in
Algorithm 1. To calculate the outputs of these procedures, we have taken into account
thatwe areworkingwith symmetricmatrices (Bk , Dk andΔ). For example, to compute
the symmetric matrix Bk (which defines Guttman transform) is only necessary to
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calculate a triangular sub-matrix of L = (m · (m + 1)/2) elements. Thus, Bk can be
managed as a unidimensional vector of L elementswhich can be updated in parallel. To
distribute this computation among the processing elements, the left part of Algorithm 2
has been transformed into the right one. This way, two nested loops are collapsed
into a regular loop to compute the triangular matrix of L elements. It can be easily
parallelized with maintaining the load balance. This idea has also been applied to the
parallel computation of Dk .

The multicore version has been implemented using C, OpenMP [3] and MKL
library [17]. The parallel computations of Bk and Dk consider the symmetry of these
matrices. Therefore, Algorithm 2 on the right is taken as reference for the parallel
computation of Bk . The l-loop of such algorithm is distributed among the cores and
when it has finished a synchronization point is included to ensure that the non-diagonal
elements of Bk are computed before starting the parallel i-loop. Moreover, the MKL
library (concretely the cblas_dgemm routine) is in charge of computing in parallel
the matrix-matrix product linked to the Guttman transform (line 6 of the Algorithm 1).

In the GPU version, three kernels have been coded using C and CUDA to compute
in parallel Dk (lines 2 and 7 of Algorithm 1) and Bk (line 5 of Algorithm 1). The
Euclidean distances require one kernel, and the Guttman transform requires two, as it
is explained below. To compute the distances matrix, every thread updates two sym-
metric elements of Dk matrix. Moreover, shuffle instructions have been used for the
reductions involved in the computation of Dk elements. These instructions, available
from Kepler NVIDIA architecture, essentially allow threads in the same warp to share
information. They can improve the reduction processes [6]. In our experiments, shuffle
instructions have demonstrated to improve the performance compared to the reductions
based on shared memory. We have observed that the advantage of shuffle instructions
versus the sharedmemory version increases with s. Specifically, we have evaluated the
performance for sizes of problem from m = 10,000 to m = 40,000 with s = 64 and
the shuffle version has obtained the same or better performance (up 30%) than shared
memory version in the computation of Dk matrix (lines 2 and 7 of Algorithm 1).

The CUDA version of Algorithm 2 to compute Bk on GPU consists of two kernels.
In the first kernel, each thread starts by calculating a non-diagonal element of Bk .
Next, its symmetric element is copied without requiring any synchronization. When
this kernel finishes, the second one computes the diagonal elements from the non-
diagonal ones. For Y k , cublasDgemm routine from the cuBLAS library [5] has been
used to accelerate matrix-matrix product on GPU (line 6 of Algorithm 1).

4 Tuning the energy efficiency of the SMACOF algorithm

In this work, two parallel implementations have been developed to accelerate the
SMACOF algorithm. When solving real-world problems, it is reasonable to run the
most energy efficient parallel SMACOF version on a particular subset of resources of
available computational platforms.

The idea consists in an initial benchmarking that identifies, for every available
platform, the optimal selection of resources for a size of problem of interest. Then, the
user can choose the optimal platform for the subsequent execution of the SMACOF
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algorithm. According to the developed parallel versions, multicore processors and
GPUs are considered as target platforms in this work.

The energy efficiency (EE) is usually defined as the ratio of the computational speed
to the electrical power, that is GFLOPs/watt [19]. Therefore, for the optimal parallel
executions of SMACOF, the ratio should be maximized.

The optimization of the EE of parallel applications on modern platforms can be
viewed as a problem of scheduling parallel machines with costs [30]. The parallel
SMACOF versions can be executed on one of the alternative platforms, for example
the different multicore or GPUs architectures. Every platform is denoted by Fk ∈ F ,
k = 1, . . . , f where F is the set of f available parallel platforms. Every platform Fk

consists in a set of parallel machines Mk , Fk = {Mk
i }cki=1 where ck is the number of

available machines of the platform k. The corresponding energy efficiency depends
on the number of machines involved in the computation and the particular input size.

Then, the solution of the scheduling problem corresponds to the subset of platforms
Fko ⊆ F with their optimal configurations defined by the machines number roko that
optimizes EE (roko ≤ cko ). We propose a heuristic approach for solving this problem.
It is based on a functional model of EE for modern platforms (multicore and GPUs)
and the definition of the significant computation in the SMACOF algorithm.

The functional performance models were introduced by Lastovetsky [4,33]. The
processor performance depends on the problem size and can be empirically estimated
by a benchmarking process. In this way, the modeling performance depends on the
combination of the architecture and the application. In similar lines, other authors
have been focussed on the benchmarking and they have proposed the concepts of
application signature and small-scale executions [10,31]. If the parallel application is
iterative, then a subset of iterations can define the significant portion of the application
and can be used in the benchmarking [20,21].

Themodels to estimateEEhave to combine performance and power. Previousworks
have proposed functionalmodels for the EE estimation on iterative applications [13]. If
it is focused on a particular execution of the applicationwith F floating point operations
on one homogeneous platform k, and it is assumed a perfect load balance among rk
actives machines, then the following model of EE as function of rk is reasonable:

EE(rk) = F

T k(rk)Pk(rk)
= F(

T k (1)
rk

+ T Ck(rk)
) (

Pk
idle + rk pk(rk)

) (2)

where T k(rk) and Pk(rk) are the runtime and power consumption on rk machines
respectively, T Ck(rk) represents the runtime penalties due to the contention among
the actives machines on the k platform, Pk

idle represents the idle power consumption
when no process is actively using any machine and pk(rk) is the contribution to the
power of every machine.

According to this model T k(rk), one minimum for a number of active machines
is obtained since T Ck(rk) is an increasing function and Pk(rk) is also an increasing
function for rk . Therefore, EE(rk) achieves a maximum for roko machines.

Then, from the point of view of the SMACOF usage, to optimize EE, it should be
identified rok on the set of available platforms for the sizes problem and choose the
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Algorithm 3 Heuristic for computing the set of optimal platforms {ko}, with their
configurations {roko}, which optimize the EE of the SMACOF

Require:
F = {Fk } fk=1 with Fk = {Mk

i }
ck
i=1; � Set of platforms

Parallel versions of SMACOF(m, s, Δ, kmax , ε, Y ) to execute on the f available platforms;
m (items), s (output dimensions); � Particular data size
sampling.

Ensure:
{ko, roko } optimize the EE on the f available platforms

1: Evaluate the number of FLOAT operations of SMACOF(m, s, Δ, kmax , ε, Y )
2: for k ← 1 to f do
3: Execute Parallel SMACOF(m, s, Δ, kmax , ε, Y ) on rk = ck machines and evaluate its EE denoted

by EEk

4: for i ← ck − sampling to sampling do
5: Execute Parallel SMACOF(m, s, Δ, kmax , ε, Y ) on rk = i machines and evaluate EE Aux

6: if EE Aux ≤ EEk then
7: rok = i + sampling
8: Break i-loop
9: else
10: EEk = EE Aux

11: Select the platforms {ko} with their optimal configurations {roko } which maximize EE

12: return {ko, roko }

platform ko which optimizes EE, i.e. achieves EE(roko). Modern computers provide
two different platforms, multicore processors and GPUs and the number of kinds
of platforms can increase if clusters of heterogeneous nodes with several kinds of
multicore and GPUs platforms are available. We have defined a heuristic to decide
what is the best platform to run their particular instances of the parallel SMACOF. Our
proposal is organized in two stages, first the identification of the optimal configuration
of every platform and second the selection of optimal platforms and configurations.
Previous considerations about theEEmodel help us to define an efficient benchmarking
exploration to find the optimal configurations on every platform. Therefore, selective
search described in Algorithm 3 can be used to find the optimal platforms and their
configurations in the benchmarking process.

As above mentioned, the benchmarking is usually based on the execution of a
significant core of the application. SMACOF consists in an iterative procedure to
compute the Guttman transforms. The computational cost of every iteration is the
same; therefore, a subset of iterations can be considered as the SMACOF significant
core to compute the profiling in a efficient way. SMACOF can be configured using
the information provided by this preprocess based on exploration of several resources
selection on particular combinations of platforms and data sizes.

5 Experimental evaluation

In this section, the SMACOF algorithm to solve MDS problems is evaluated in terms
of runtime and energy efficiency on three computational architectures:

F1 : Bullion S8: 4 Intel Xeon E7 8860v3 (16 × 4 CPU-cores);
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Table 1 Test problems using several number of items (m), dimensions of multidimensional space (n), and
dimensions of low-dimensional space (s)

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11

m 2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000 22,000

n 100 200 300 400 500 600 700 800 900 1000 1100

s 2 3 4 5 6 7 8 9 10 11 12

F2 : Bullx R421-E4 Intel Xeon E5 2620v2 (12 CPU-cores and 64 GB RAM);
F3 : NVIDIA K80 (composed by two Kepler GK210 GPUs) connected to the host

Bullx R421-E4 Intel Xeon E5 2620v2.

F1, F2 and F3 run Ubuntu 16.04 LTS and F3 runs CUDA Toolkit 8. The pro-
grams have been compiled using gcc 5.4.0 and nvcc 8.0.44 with optimization flags O3
for GPU architecture 3.5. For the acquisition of energy measurement data, we have
collected this information from various hardware counters. For Intel, we have used
the Running Average Power Limit (RAPL) interface and, for NVIDIA, the NVIDIA
Management Library (NVML).

For the evaluation of SMACOF, test problems of different sizes defined by values
of m, n and s have been considered (see Table 1). For this experimental investigation,
randomly generated input data were used. The number of evaluated iterations of the
SMACOF algorithm has been 100.

Figure 1 shows, the runtime, power and energy efficiency of the set of test problems
onF1 andF2 (multicore) platforms andTable 2 shows similar parameters onF3 (GPU)
platform with the same test cases. Execution times of the multicore versions (plotted
on the top of Fig. 1) are according with runtime models described in Sect. 4. The
runtime decreases with the values of r1 and r2; therefore, the best performance is
achieved for the maximum number of cores. The experimental power measurements
are plotted in the middle of Fig. 1. It is remarkable that the temporal evolution of the
power partially depends on unpredictable factors for programmers. To overcome this
drawback, it has been necessary to collect the measurements after an activity period
on the processor to minimize their variance due to changes in the temperature. This
instability can be observed in the power plot for both platforms, but we can conclude
that power consumption trend increases as the number of cores and the size of the
problem.

Focusing our attention on the energy efficiency (plotted on the bottom of Fig. 1),
it increases as the number of cores. The highest values of r1 and r2 optimize the
energy efficiency for the plateau in the plot. Therefore, the optimal value of rk in both
platforms is in a wide interval, for instance 32–64 (10–12) for F1 (F2).

To choose the optimal platform, we could compare the three platforms in terms of
performance. This way, the best option for T 11 is F1, since the execution times are
46.6, 96.2 and 91.5 s on F1 with ro1 = 64 , F2 with ro2 = 12 and F3, respectively.
This selection is the same for all test cases. If we focus on the energy efficiency, the
best option is the GPU when the problem size is enough high since it consumes less
power than F1 and achieves a reasonable performance. Then, to optimize the energy
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Table 2 Runtime, power and energy efficiency of the set of test problems (Table 1) on F3 (GPU) platform

F3 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11

Time (s) 2.8 4.9 5.1 5.9 6.5 11.0 18.8 28.7 42.3 64.9 91.5

Power (W) 38.7 98.6 105.2 108.0 112.6 113.6 112.8 110.1 112.3 111.5 110.3

EE (GFLOPs/W) 13.8 24.7 75.1 150.0 255.1 257.2 240.7 241.7 228.7 205.9 196.6

Table 3 Sampling of EE for T 11 test according to the benchmarking proposed in Algorithm 3 formulticore
platforms F1 and F2

F1 F2

r1 64 61 r2 12 9

EE (GFLOPs/W) 85.5 85.0 EE (GFLOPs/W) 176.1 155.8

efficiency, the best option is the use of the GPU platform for the test cases T 4− T 11.
For instance for T 11, the energy efficiencies on the different platforms are 85.5, 176.1
and 196.6GFLOPs/watt forF1,F2 andF3, respectively. The best platform for T 1−T 3
is the multicore F2 which consumes less power than F1.

These results support the benchmarking process explained in Sect. 4 to explore in
an automatic way the selection of the optimal parallel platform and its best resource
selection. This procedure has been developed in Python.Wehave chosen sampling = 3
to obtain relevant differences between successive experimental evaluations on both
platforms. The results support the idea of starting the benchmarking process by the
highest numbers of CPU-cores available on every platform to find the optimal rk is
efficient. To illustrate the behavior of the benchmarking (Algorithm 3) for multicore
platforms, we focus on the T 11 test. Table 3 shows the EE obtained when a set of ten
iterations of SMACOF are executed on platforms F1 and F2. Only two samples for
the benchmarking exploration are required for T 11 since ro1 = 64 and ro2 = 12 are
identified by the preprocess. So, we can conclude that the proposed benchmarking can
execute an efficient exploration to optimize the energy efficiency of parallel SMACOF.

6 Conclusions

This work has analyzed an approach to optimize the energy efficiency (GFLOPs/watt)
of the SMACOF algorithm, a well-known and precisemethod to solveMDS problems.
Two parallel versions of SMACOF, multicore and GPU, have been developed and
evaluated. To help the user of SMACOF parallel codes, we provide these versions and
a complementary Python code based on a heuristic approach to explore the optimum
configuration of the available platforms.

An experimental evaluation has been carried out on three platforms based on
architectures with 64CPU-cores, 12CPU-cores and a GPU device. The results show
64-cores processor is the best platform to optimize the runtime of SMACOF; the 12-
cores processor is the best option to improve the energy efficiency for the smallest test
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problems and, for the largest test problems, the optimal energy efficiency is achieved
on the GPU.

In currently known parallel versions of SMACOF, only the runtime is considered,
and neither the energy consumption nor adaptive capability to the platform and prob-
lem size are optimized. Therefore, our SMACOF implementation is of great interest
for developing energy efficiency aware applications based on MDS problems. Our
implemented versions of the SMACOF algorithm are freely available through the fol-
lowing website: https://github.com/2forts/SMACOF. As future work, we consider to
implement a distributed parallel version of SMACOF and to analyze and develop other
methods for solving MDS problems.
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2.4 Image Processing based on SMACOF and quantum computing

Two publications have been published in this area:

F. Orts, G. Ortega, E. Filatovas, O. Kurasova and E.M. Garzón. Hyperspectral Image
Classification Using Isomap with SMACOF. Informatica, 30(2), 349-365, 2019. JCR (2019) =
3.312. Subject categories = Mathematics, Applied: 9/261 (Q1); Computer Science, Information
Systems: 46/156 (Q2).

F. Orts, G. Ortega, A.C. Cucura, E. Filatovas and E.M. Garzón. Optimal fault-tolerant
quantum comparators for image binarization. Journal of Supercomputing, 2021. JCR (2020)
= 2.474. Subject categories = Computer Science, Theory & Methods: 33/110 (Q2); Computer
Science, Hardware & Architecture: 26/53 (Q2); Engineering, Electrical & Electronic: 139/273
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Abstract. The isometric mapping (Isomap) algorithm is often used for analysing hyperspectral
images. Isomap allows to reduce such hyperspectral images from a high-dimensional space into
a lower-dimensional space, keeping the critical original information. To achieve such objective,
Isomap uses the state-of-the-art MultiDimensional Scaling method (MDS) for dimensionality re-
duction. In this work, we propose to use Isomap with SMACOF, since SMACOF is the most accu-
rate MDS method. A deep comparison, in terms of accuracy, between Isomap based on an eigen-
decomposition process and Isomap based on SMACOF has been carried out using three benchmark
hyperspectral images. Moreover, for the hyperspectral image classification, three classifiers (support
vector machine, k-nearest neighbour, and Random Forest) have been used to compare both Isomap
approaches. The experimental investigation has shown that better classification accuracy is obtained
by Isomap with SMACOF.
Key words: dimensionality reduction, hyperspectral imaging, isometric mapping (Isomap),
manifold learning, SMACOF algorithm.

1. Introduction

HyperSpectral Images (HSIs) contain an exhaustive variety of information about specific
characteristics of the materials, with hundreds or even thousands bands (Borengasser et al.,
2007). The spectrum of each pixel can be seen as a vector, where each component rep-
resents the luminosity of the reflectance value for each spectral band. The set of bands
which composes an HSI shows the representation of a scene, but each one individually
contains information from a different wavelength range, which can cover both the visible

*Corresponding author.
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and infrared spectrum. The width of each band can be between 5 and 10 nm, depending
on the considered sensor. Each material throws a different reflectance profile for all the
bands. Thus, for each point of the image, a specific curve that provides a lot of information
for the corresponding point of the scene is obtained. Therefore, to efficiently exploit this
information in applications, classification of HSIs is usually performed, where pixels are
labelled to one of the classes based on their spectral characteristics.

There are many applications which take advantage of a large amount of information
provided by hyperspectral sensors, such as remote sensing (Wang et al., 2017), biotech-
nology (Asaari et al., 2018), medical diagnose (Leavesley et al., 2018), forensic science
(Almeida et al., 2017), environmental monitoring (Virlet et al., 2017), etc. This available
information leads us to develop new processing techniques. In addition, many applica-
tions which work with HSIs require a fast response. Examples of these applications may
be obtained in the areas of modelling and environmental assessment, detection of mili-
tary objectives or prevention and response to risks, such as forest fires, rescue operations,
floods or biological threats (Chang et al., 2001; Manolakis et al., 2003).

However, the large amount of information contained in an HSI, which is its main ad-
vantage, is also a disadvantage in terms of computational performance. The work with
large HSIs involves a high computational complexity and requires a lot of resources and
time (Rizzo et al., 2005). On the other hand, it is well-known that high-dimensional data
spaces are mostly empty. This indicates that the data structure of an HSI exists basically in
a subspace (Plaza et al., 2005). Taking into account these ideas, it can be concluded that
there is a need (and a possibility) to reduce the size of the HSIs. So, it is usual to apply
techniques to reduce the dimensions of the original HSIs, obtaining reduced images which
can be handled in a more efficient way without losing critical information (Harsanyi and
Chang, 1994; Bruce et al., 2002; Wang and Chang, 2006).

Multidimensional Scaling (MDS) consists of a set of techniques which are used to
reduce the dimensions of a data set. Such techniques are used in many applications –
multiobjective optimization (Filatovas et al., 2015), data mining (Medvedev et al., 2017),
(Bernatavičienė et al., 2007), marketing (Green, 1975), cryptography (Gupta and Ray,
2015), a wide variety of mathematical and statistical methods (Granato and Ares, 2014),
psychology (Rosenberg, 2014), etc. They use a mapping function usually based on Eu-
clidean distances which is able to find an optimal data representation. However, also other
distance metrics could be considered (Fletcher et al., 2014). MDS techniques represent
data in a low-dimensional space in order to make these data more accessible (Borg and
Groenen, 2005; Dzemyda et al., 2013). For instance, a graphical visualization of the data
in 2D or 3D space for an easier understanding of the information.

A well-known technique named Isometric mapping (Isomap) generalizes MDS to
non-linear manifolds, replacing Euclidean distances by geodesic distances (Bengio et al.,
2004). Isomap has been used successfully in a multitude of applications, such as HSIs
(Li et al., 2017), face recognition (Yang, 2002a), biomedical datasets (Lim et al., 2003),
pattern classification (Yang, 2002b), learning multi-class manifold (Wu and Chan, 2004),
supervised learning (Pulkkinen et al., 2011), etc. Focusing on the HSIs, Isomap could be
used in their reductions, achieving images with almost the same accuracy than the origi-
nal but with fewer bands (Li et al., 2017). The main goal here is to reduce the number of
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bands keeping the critical information they contain. Isomap is able to find hidden patterns
in the bands and to reproduce the same pattern but with less bands.

Isomap often uses classical scaling such as eigen-decomposition as a part of its pro-
cess. Classical scaling is a MDS method to reconstruct a configuration from the inter-
point distance, which achieves a good accuracy and has a feasible computing cost (Sibson,
1979). However, any MDS method could be used.

The main contribution of this paper is the use of Isomap based on SMACOF (Scaling
by MAjorizing a COmplicated), which is considered to be the most accurate MDS method
(Borg and Groenen, 2005), and used when solving various MDS problems in social and
behavioural sciences, marketing, biometrics, and ecology. Nevertheless, it is also one of
the most computationally demanding methods (Ingram et al., 2009). In previous work
(Li et al., 2017), where Isomap is studied in depth, authors consider classical scaling
methods such as an eigen-decomposition process. However, our propose is to consider
Isomap based on SMACOF due to its high accuracy. In this paper, the obtained results of
both strategies, Isomap using eigen-decomposition and Isomap based on SMACOF, are
compared in terms of classification accuracy. Such comparison is carried out by means of
three popular HSIs and the same configurations in both cases.

The paper is organized as follows. In Section 2, the description of the Isomap method
is provided. Section 3 describes the SMACOF algorithm. In Section 4, the results obtained
after applying two versions of Isomap (with eigen-decomposition and with SMACOF) on
several test images are discussed. Finally, we conclude this work in Section 5.

2. Isomap

Isomap is a manifold learning algorithm which can reduce the data redundancy preserv-
ing the original geometry of it. Isomap estimates the geodesic distance between all the
items, given only input-space distances. For the points which are neighbours, input-space
is an accurate approximation to the geodesic distance. For the distant ones, the geodesic
distance can be computed as the addition of a sequence of distances between neighbour-
ing points. The main idea is to find the shortest paths in a graph with edges connecting
neighbouring data points (Tenenbaum et al., 2000).

Isomap tries to build a matrix which contains all the minimum (geodesic) distances
between the m items which are contained in a data set X (an HSI in our case), and then
it reduces such matrix. In detail, the algorithm has three steps. They are shown in Algo-
rithm 1 and described below:

1. To set a number l of neighbours. This number will be the same for all the items
(points) Xi . Then, to determine the neighbours for every item Xi finding the l near-
est points, taking into account that two points Xi and Xj cannot be neighbours if the
distance between them is greater than a fixed value k. Euclidean distances between
the m items are used. In this way, a graph G is constructed. Algorithm 2 describes
the l-nearest neighbour (KNN) algorithm, which is commonly used to build neigh-
bourhoods (Tay et al., 2014).
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Algorithm 1 Isomap(m, b, X, l, k, s, imax, ǫ)
Require:

m: number of items;
b: number of bands;
X: m × b matrix which represents the HSI;
l: maximum number of neighbours for each item;
k: neighbourhood radius;
s: dimension of low-dimensional space;
imax: maximum number of iterations;
ǫ: threshold for the stress variance

Ensure:
Y : set of finding points in the low-dimensional space stored in a m × s matrix

1: Construct the neighbourhood graph, G = KNN(m,b,X,k, l) (Algorithm 2)
2: Compute shortest path between nodes, 1 = Dijkstra(m,G) (Algorithm 3)
3: Compute MDS method. For instance, SMACOF, Y = SMACOF(m, s , 1, imax, ǫ, Y ) (Algorithm 4)
4: return Y

Algorithm 2 KNN(m, b, X, k, l, j )
Require:

m: number of items;
b: number of bands;
X: m × b matrix which represents the HSI;
k: neighbourhood radius;
l: maximum number of neighbours for each item;
j : index of the selected item

Ensure:
G: The neighbourhood graph

1: for i = 0; i < m; i + + do
2: Compute Euclidean distances, D = [d(Xi ,Xj )]

3: Compute set G containing indices for the l smallest distances (with l < k) of each element of D

4: return G

2. To calculate the shortest distance between all pair of points in G. When Xi and Xj

are neighbours, their distance is Euclidean. However, when the points are not neigh-
bours, the distance is computed as the shortest path between all possible ones in G

which connects Xi and Xj , that is, d(Xi,Xj ) = min{dG(Xi ,Xj ), dG(Xi ,Xn) +

dG(Xn,Xj )}, where n = 1, . . . ,m. As a result of this step, an m × m matrix which
contains the short distances 1, is obtained. In this work, Dijkstra’s algorithm has
been used to calculate the shortest paths among G according to Algorithm 3 (Di-
jkstra, 1959). Authors in Deng et al. (2012) explain Dijkstra’s algorithm as these
steps:

• To initialize all nodes to ∞, except the initial, which is set to 0. Neighbours
already have their distances. To mark all nodes as unvisited, as it is shown in
Fig. 1(a).

• To consider all the unvisited neighbours and to calculate their distances
through each node. For every neighbour, to compare this distance with its pre-
vious distance and to assign the smallest one to the node. An example is shown
in Fig. 1(b).
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Algorithm 3 Dijkstra(m, G)
Require:

m: number of items;
G: neighbourhood graph

Ensure:
1: m × m matrix with the shortest distances

1: for i = 0; i < m; i++ do
2: 1[i] = ∞

3: previous[i] = −1
4: 1[0] = 0
5: Q = the set of all nodes in G

6: while Q is not empty do
7: u = vertex in Q with the smallest 1

8: if 1[u] = ∞ then break;
9: Delete u from Q

10: for each neighbour v of u do
11: alt = 1[u] + distbetween(u, v)

12: if alt < 1[v] then
13: 1[v] = alt

14: previous[v] = u

15: Reorder v in Q

16: return 1

• When all the neighbours have been considered, to mark the current node as
visited. A visited node will never be checked again. Move to the next unvisited
node with the smallest distance and to repeat the previous steps, as it is shown
in Fig. 1(c).

• If the final node has been marked as visited or if there is no path between the
initial and the final node (all paths have a step marked as infinite), then the
algorithm has finished. The final step is shown in Fig. 1(d).

3. To apply any MDS method to the shortest distances (1). Particularly, in this work,
SMACOF and the eigen-decomposition methods are considered.

To evaluate the accuracy of Isomap based on SMACOF and eigen-decomposition
methods for HSIs, a classification process with several classifiers – the Support Vector
Machine (SVM) (Cortes and Vapnik, 1995), the KNN classifier (Altman, 1992) and the
Random Forest algorithm (Breiman, 2001) – has been used.

3. SMACOF

SMACOF, as other MDS methods, is used for the analysis of similarity data on a set
of items. As it has been mentioned before, SMACOF is the most accurate MDS tech-
nique (Ingram et al., 2009). Its objective is to find a set of points Y1, Y2, . . . , Ym ≡ Y in a
low-dimensional space Rs , s < b (where b is the original number of dimensions), taking
into account that the distances between these points must be as similar as possible to the
distance between the original points X1,X2, . . . ,Xm ≡ X (Orts et al., 2018). The key is
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Fig. 1. Steps of the Djikstra’s algorithm.

the stress function (Eq. (1)). The less stress, the better results, since it measures the dif-
ference between the distances of the original points and the distances of the points in the
low-dimensional space. In Eq. (1), δ represents the distance between points of X, and d

does it between points of Y .

EMDS =
∑

i<j

(

δij − d(Yi, Yj )
)2

. (1)

The majorizing concept, which implies to approximate a big or complex function
through another smaller or simpler, is used by SMACOF to achieve the reduction of
the stress (Groenen et al., 1995). It consists of finding a new function iteratively. The
new function will be located over the complex one, touching it at a point called sup-
porting point (Fig. 2). Each iteration brings the minimum of the new function closer to
the minimum of the original one, that is, the stress function (Borg and Groenen, 2005;
Mairal et al., 2014). In De Leeuw and Mair (2011), the majorization is defined in the
following steps:

1. To choose an initial value y = y0.
2. To find update x t such that g(x t , y)6 g(y, y).
3. If f (y) − f (x t )> ǫ, then y = x t and go to step 2.

In Algorithm 4, all the steps of SMACOF are shown. In such an algorithm, the initial
value y = y0 mentioned in step 1 is randomlygenerated. It has been tested in other works in
which SMACOF obtains good results beginning from solutions randomly generated (Orts
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Supporting point

New function g

Original function f New minimum reached

Fig. 2. Illustration of the majorization concept. The original function f is represented with a blue dashed line.
The function obtained by majorization at every iteration, g, represented as a red dotted line, touches f at the
supporting point. Taking into account that a new minimum of g is obtained at every iteration.

et al., 2018). The stress value of the current mapping is measured and then compared to the
stress value of the previous mapping result. Each iteration minimizes the stress value due
to the generation of closer solutions to the original. If the difference between the distances
is smaller than a fixed threshold value, the algorithm stops (Ekanayake et al., 2010), as it
is mentioned in step 3. For the sake of simplicity, the details of the Guttman transform,
used to update x(t), have not been explained here.

Algorithm 4 SMACOF(m, s, 1, imax , ǫ)
Require:

m: number of items;
s: dimension of low-dimensional space;
1: m × m matrix of dissimilarities of observed data on the high-dimensional space (n);
imax: maximum number of iterations;
ǫ: threshold for the stress variance

Ensure:
Y : set of finding points in the low-dimensional space stored in a m × s matrix

1: Initial Solution randomly generated, Y 0

2: Compute Euclidean distances, D0 = [d(Y 0
i
, Y 0

j
)]

3: k = 0, error = 1
4: if (k < imax) and (error > ǫ) then
5: Compute Guttman transform matrix, Bk ≡ Bk(1,Dk−1)

6: Compute Guttman transform, Y k = 1/m · Bk · Y k−1

7: Update distances Dk = [d(Y k
i
, Y k

j
)]

8: Compute Ek
MDS (Eq. (1))

9: error = |Ek
MDS − Ek−1

MDS |

10: k = k + 1
11: return Y
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4. Evaluation Results

Such an investigation methodology has been considered in this work: first, to run Isomap
based on SMACOF or eigen-decomposition methods and, after that, to apply a classifica-
tion process with SVM, KNN or Random Forest classifiers.

Obtained results of Isomap using SMACOF are compared with the obtained results of
a recent paper where Isomap considers an eigen-decomposition process (Li et al., 2017)
in the problem of hyperspectral images reduction. As in Li et al. (2017), three popular HSI
images collected by the AVIRIS and ROSIS sensors have been considered to test Isomap
(see Fig. 3). The considered data sets have the following characteristics:

• Pavia city centre (AVIRIS Salinas Valley, 2019), acquired by the ROSIS sensor. Pavia
consists of 1096 × 715 pixels and 102 bands. For the sake of clarity, the data set is
reduced to a 150 × 150 pixels subset. However, authors in Li et al. (2017) do not
detail how they truncate the image in the study. In our work, random subsets of
150 × 150 are collected, keeping the ground truth variety.

• A finer spatial resolution of Salinas (AVIRIS sensor), named Salinas-A. Salinas-A
consists of 86×83 pixels, which are the [samples, lines] = [591−676,158−240]

of the original Salinas data set. It contains 204 bands.
• The Indian Pines data set (NW AVIRIS, 2012) collected by the AVIRIS sensor. It

consists of 145 × 145 pixels and, originally, 224 bands. However, 24 bands which

A B C D

E F

Fig. 3. HSIs tested. Pavia city centre (A) and its ground truth (B), Salinas-A (C) and its ground truth (D), and
Indian Pines with its ground truth ((E) and (F) respectively).
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contain the information about water absorption are removed in Li et al. (2017), so it
has 200 bands in the tests.

Both Isomap versions (SMACOF and eigen-decomposition) have been implemented
in Matlab and executed on a cluster composed by 64 cores of Bullx R424-E3 Intel Xeon
E5 2650 with 8GB RAM. Specifically, KNN and Dijkstra procedures (Algorithms 2 and 3)
have been coded using the Matlab functions find_nn and dijkstra, respectively. The pre-
cision of the classification process is dependent on the considered dimension of low-
dimensional space (s) on Isomap. Therefore, several dimensions s have been taken into
account to study their accuracy in the classification. Concretely, we varied the dimen-
sion of s from 10 to 50, as it was performed in Li et al. (2017). The parameter k, which
describes the number of neighbours handled for each point has been set to 20.

We follow the idea described in Li et al. (2017) of considering several classifiers to
evaluate the accuracy of both versions of Isomap for HSI classification, such as SVM
and KNN classifiers. In addition, we have also considered the Random Forest algorithm.
Similarly to Li et al. (2017), training and testing data were randomly selected from the
ground truth. The 20% of the total pixels of each image were used to train, and the 80%
to test. The comparative analysis has been based on the classification accuracy, which is
obtained as the ratio: correctly predicted data/total testing data.

The SVM is coded using LIBSVM described in Chang and Lin (2011) with the fol-
lowing parameters: “−t 2 −c 100” (−t 2 sets the type of kernel function as radial basis
function, and −c 100 set the cost parameter to 100). It is not necessary to set the gamma
value, −g (a parameter used as input by the radial basis function), as it is automatically set
to “−g 1/D”, where D is the dimension. The input data must be transformed following
the data preprocessing described in Hsu et al. (2003). The results obtained using the SVM
are depicted in Fig. 4.

KNN is a straightforward classification method, however, it is one of the most accurate
ones (Keogh and Kasetty, 2002; Wei and Keogh, 2006). The results of the preliminary
analysis of KNN are presented in Table 1 to consider the most suitable value of the number
of neighbours (k′). This table shows the accuracy of the classification considering several
values of k′ (1,3,5), for every reduced image on both dimensionality reduction methods
(eigen-decomposition and SMACOF). Here, the best values are marked in italic style. As
it can be observed in the table, the accuracy is reduced as the value of k′ increases and
1NN obtains the best values of accuracy in all analysed cases. Therefore, KNN with k′ = 1
(1NN) will be considered hereinafter. An additional advantage of 1NN is that it does not
have tuning parameters and does not require a special transformationof the data or another
preprocessing (Xing et al., 2009). The Matlab function fitcknn has been used to perform
KNN.

Apart from the classifiers used in Li et al. (2017), the Random Forest algorithm has
also been considered in our evaluation (Fig. 6). The Matlab function TreeBagger has been
used to perform Random Forest.

Obtained results with SVM, 1NN and Random Forest can be observed in Figs. 4, 5
and 6, respectively. The figures show the accuracy of the classification from the reduced
images compared to the ground truth images, for both versions in each range from s = 10
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Fig. 4. Classification results (in terms of accuracy) of the three HSI data sets using SVM: (a) Indian Pines;
(b) Salinas-A; (c) Pavia.

to s = 50. Such results have shown that the use of SMACOF improves the accuracy of
Isomap for the three tested classifiers. In comparison with the version based on the eigen-
decomposition process, the SMACOF approach is able to achieve better accuracies which
involves a more optimized classification of HSI data sets.
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Table 1
Classification results (in terms of accuracy) of the three HSI data sets using KNN for k′ = 1,3 and 5 and test

images Indian Pines, Salinas-A and Pavia.

SMACOF EIGEN-DECOMPOSITION
k′

IMAGE s 1 3 5 1 3 5

Indian Pines 50 0.8112 0.7958 0.7943 0.7250 0.6956 0.6881
40 0.8046 0.7987 0.7912 0.7200 0.6965 0.6884
30 0.8068 0.7849 0.7814 0.7150 0.6933 0.6893
20 0.8179 0.8069 0.7845 0.7150 0.6916 0.6879
10 0.8090 0.7915 0.7877 0.7050 0.6896 0.6880

Salinas-A 50 0.9946 0.9931 0.9890 0.9899 0.9714 0.9658
40 0.9952 0.9913 0.9925 0.9896 0.9733 0.9654
30 0.9950 0.9935 0.9904 0.9898 0.9765 0.9645
20 0.9952 0.9917 0.9914 0.9892 0.9743 0.9699
10 0.9963 0.9890 0.9924 0.9890 0.9765 0.9687

Pavia 50 0.9917 0.9503 0.9488 0.9729 0.9365 0.9211
40 0.9929 0.9407 0.9463 0.9720 0.9320 0.9232
30 0.9940 0.9597 0.9525 0.9729 0.9365 0.9235
20 0.9937 0.9598 0.9526 0.9735 0.9312 0.9245
10 0.9934 0.9615 0.9576 0.9715 0.9348 0.9234

Once it is proven that the SMACOF approach is more accurate than the eigen-
decomposition process, the global precision of Isomap with SMACOF has been tested
in a more extended range of the values of s than (Li et al., 2017) using 1NN (see Fig. 7).
In this figure, it can be observed that the classification accuracy is quite high for all the
analysed dimensionality reduction cases (from 50 to 2). However, it should be noted that
the classification accuracy slightly decreases among the range from 9 to 2. Thus, we can
conclude that SMACOF achieves a good accuracy even for the significant dimensionality
reduction.

5. Conclusions

In this paper, our intention was to improve the accuracy of Isomap algorithm in the analysis
of hyperspectral images. To achieve this, Isomap has been based on SMACOF, which is
the most accurate MDS method, instead of classical scaling such as eigen-decomposition
process.

The proposed version of Isomap based on SMACOF has been experimentally com-
pared to a state-of-the-art version with an eigen-decomposition process. For that, well-
known hyperspectral images taken from airbornes or satellites have been considered (In-
dian Pines, Salinas-A and Pavia Center). Moreover, a classification process using several
classifiers (SVM, KNN and Random Forest) has been carried out to determine the accu-
racy of every test image with every method (SMACOF of eigen-decomposition).Obtained
results have shown that the use of SMACOF improves the accuracy of Isomap in the re-
duction of the hyperspectral images for all studied cases.
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Fig. 5. Classification results (in terms of accuracy) of the three HSI data sets using 1NN: (a) Indian Pines;
(b) Salinas-A; (c) Pavia.

In this work, only one criteria, the classification accuracy, is considered when reducing
dimensions of the hyperspectral images. However, it should be noted that the drawbacks
of Isomap and SMACOF are high consumptions of time and resources. Therefore, to de-
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Fig. 6. Classification results (in terms of accuracy) of the three HSI data sets using Random Forest: (a) Indian
Pines; (b) Salinas-A; (c) Pavia.

crease these aspects could be very valuable to make their application more approachable.
Consequently, our current and future work is focused on the implementation of a GPU
version of Isomap based on SMACOF.
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Fig. 7. Classification results (in terms of accuracy) of the three HSI data sets using 1NN for ranges from 50 to
2: (a) Indian Pines; (b) Salinas-A; (c) Pavia. Solid lines are to guide the eye.
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Abstract
Quantum image processing focuses on the use of quantum computing in the field 
of digital image processing. In the last few years, this technique has emerged since 
the properties inherent to quantum mechanics would provide the computing power 
required to solve hard problems much faster than classical computers. Binarization is 
often recognized to be one of the most important steps in image processing systems. 
Image binarization consists of converting the digital image into a black and white 
image, so that the essential properties of the image are preserved. In this paper, we 
propose a quantum circuit for image binarization based on two novel comparators. 
These comparators are focused on optimizing the number of T gates needed to build 
them. The use of T gates is essential for quantum circuits to counteract the effects 
of internal and external noise. However, these gates are highly expensive, and its 
slowness also represents a common bottleneck in this type of circuit. The proposed 
quantum comparators have been compared with other state-of-the-arts comparators. 
The analysis of the implementations has shown our comparators are the best option 
when noise is a problem and its reduction is mandatory.

Keywords Quantum computing · Quantum image binarization · Quantum 
comparator

1 Introduction

Quantum computing has emerged as a new and promising science that has new 
challenges. One of them is that quantum computing is counterintuitive since it has 
some interesting but not intuitive features like entanglement and quantum parallel-
ism [13]. Just a few years ago, the interest of researchers in quantum computing 
was focused on mathematical and physical fields because of the lack of real quan-
tum computers and efficient quantum simulators. Recently, IBM, D-Wave, Google, 
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and other important organizations have built real and functional quantum computers 
[18]. Moreover, Microsoft, QuTech, Intel, Amazon and other vendors have opened 
new services based on several kinds of computers and architectures [5].

There are different paradigms in quantum computing. For instance, quantum 
annealers, like the D-Wave machine, are focused on solving problems that can be 
expressed as energy minimization [18]. On the other hand, topological quantum 
computers work with two-dimensional quasiparticles to process quantum informa-
tion, which allows a better resilience against perturbations [17]. Nevertheless, topo-
logical quantum computers have not even been built nowadays, and only theoretical 
models have been developed. Furthermore, several ambitious quantum simulators 
have been developed recently, for example, QuEST, ProjectQ and myQLM [6, 8, 
19].

Despite the fact that quantum technology is very innovative and powerful, there 
are many challenges to make quantum computing be practical. One of its main limi-
tations is that quantum computers are difficult to program because their computa-
tional models are quite different from the classical one. The most well-known model 
is based on quantum circuits, where each specific procedure involves the design of 
particular quantum circuits. Because of the scarcity of quantum resources and the 
strong sensibility of the quantum computers to noise, the design of quantum circuits 
should be optimized in terms of number of resources and fault-tolerance. Therefore, 
an active research line is the optimal design of basic quantum operations involved in 
complex algorithms [14–16, 20].

Quantum image processing (QIMP) is an interdisciplinary subject between quan-
tum computation and image processing. In recent years, along with the bright future 
of quantum computers, QIMP has become a hot research field. Combining quantum 
mechanics with image processing is an effective approach to improve the processing 
speed of images [21]. Its main function is to capture, manipulate and recover quan-
tum images by means of the quantum computing [27]. According to the literature, 
QIMP techniques could improve classical processing algorithms in terms of perfor-
mance, guaranteed security and minimal storage requirements [7, 27]. The benefits 
of such techniques have been demonstrated in a wide number of applications such 
as image classification, morphology, registration, synthesis, segmentation, filtering, 
and pseudocolor [28].

In this work, the focus is the quantum image binarization. The binarization is a 
crucial step in many image processing techniques. Binarization is a simple thresh-
olding process over the image where the pixels with grey levels lower than a given 
threshold are classified into a class (i.e., the background), and all the remaining pix-
els into another (i.e., the foreground). It is well-known that the key of a binarization 
process is the comparison between each pixel and the threshold value. So, our inten-
tion is to design an efficient circuit to compare two quantum logic states and to iden-
tify whether they are equal or, otherwise, which of them is the largest [22].

There are already many classical methods proposed for image binarization [11]. 
However, quantum image processing provides an opportunity for faster image pro-
cessing; therefore, recently received some attention in the quantum research com-
munity. Probably, the first proposed quantum comparator for image binarization 
is presented in [1]. A novel 8-bit half comparator was proposed in the context of 
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binarization in [25], and in [26], it was optimized by rearranging the quantum gates. 
A quantum version of the Otsu’s threshold selection method which contains image 
binarization procedure was designed in [10]. These publications showed that quan-
tum computing offers a potential solution to efficiently deal with image binarization; 
however, currently, research content is very limited.

In this work, we propose two fault-tolerant comparators focused on optimizing 
the number of T gates. Quantum circuits are very sensitive to external and internal 
noise; therefore, noise reduction and fault tolerance are two of the most important 
objectives in quantum computing. The T gates are used to make possible the use of 
error-correcting codes to ensure fault-tolerance in quantum circuits. However, they 
are more expensive than other gates in terms of space and time cost due to, pre-
cisely, their increased tolerance to noise errors [12, 29]. In the design of quantum 
circuits, it is very relevant to specify the metrics used to evaluate the efficiency of 
such circuits. In order to evaluate our proposed and state-of-the-arts quantum cir-
cuits, we have considered the number of T gates a circuit has (T-count), the number 
of steps involving T gates, that is, the number of T gates which must be computed 
sequentially (T-depth) and the number of ancilla qubits.

The main contributions of the paper can be summarized as follows: (1) Develop-
ment of a fault-tolerant quantum comparator; (2) Integration of the comparators in a 
circuit for image binarization that can be used as part of QIMP circuits that outper-
forms their classical counterparts [2, 3, 23]; and, (3) Evaluation of the proposed and 
other state-of-the-arts quantum comparators.

The manuscript is written as follows. Section  2 describes the quantum image 
binarization circuit design. In Sect. 3, we propose efficient quantum comparators. In 
Sect. 4, a comparative evaluation is carried out between our comparator and others 
of the state-of-the-art. Finally, we present the conclusions in Sect. 5.

2  Quantum image binarization circuit design

Our proposal is based on the binarization algorithm described by Xia et al [25]. This 
algorithm assumes that the image to be binarized is encoded in NEQR representa-
tion (Novel Enhanced Quantum Representation) [30]. In the NEQR representation, 
an image is represented according to the following equation:

where �Cq−1

YX
C
q−2

YX
...C1

YX
C0

YX
⟩ codifies the value of the pixel (Y,X), n is related to the 

size of the image (it is a 2n × 2n image), and q defines the color range as 2q . YX 
encodes the spatial location of the pixel. A visual example of this representation for 
the 23 color range case is shown in Fig. 1.

For the sake of clarity, Algorithm 1 shows the pseudo-code for the 23 color range 
case. This algorithm needs two external values for each pixel of the image to be 
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which is used to decide whether the pixel should be black or white. The algorithm 
consists of two steps:

• The first part compares CYX with the threshold value b. There is no need to 
perform a complete comparison since it is only needed to compute if CYX < b 
or CYX ≥ b . Therefore, half comparator can be used. It should return c = 1 if 
CYX < b , and 0 otherwise.

• The second part changes Cq−1

YX
C
q−2

YX
...C1

YX
C0

YX
 to 0 if c = 1 , or to 1 if c = 0 . That 

is, the algorithm sets the pixel as black if its original value is lesser than the 
threshold value, or sets it as white if its original value is greater or equal than the 
threshold value.

A quantum circuit to implement Algorithm 1 is shown in Fig. 2. On the one hand, 
the implementation of the second part of this circuit involves several swap gates. 
Such gates set the qubits of the pixel to 0 or 1 depending on the result of the com-
parison. The operation may seem simple, but it involves n inputs in state �0⟩ and n 
in state �1⟩ . These states are swapped with the original pixel value under the condi-
tions described in the previous paragraph. Also, and since we do not know before-
hand into which group of inputs ( �0⟩ or �1⟩ ) the original values of the pixels will be 
exchanged, we can therefore consider that we have 2n garbage outputs. On the other 
hand, the implementation of the half comparator is far from trivial [9, 24, 25]. This 
implementation is discussed in the next section.

Fig. 1  A 23-color range image 
represented in NEQR. C7

YX
...C0

YX
 

is the codification of the pixel, 
and XY the location

n
n



1 3

Optimal fault-tolerant quantum comparators for image…

3  Proposed quantum comparators

In this section, we describe our proposed comparators. Two comparators have 
been developed as part of this work. The first one is focused on reducing the 
T-count, and the second comparator is focused on reducing the T-depth. They use 
the temporary logical-AND gate [4] in order to reduce the number of involved T 
gates. This gate performs an AND operation of two inputs (qubits), saving the 
result in an ancilla qubit. This is similar to the Toffoli gate, but the T-count of 
the temporary logical-AND is 4, and its T-depth is 2 (for the Toffoli gate, these 

Fig. 2  Circuit implementation for Algorithm  1. This algorithm consists of two parts: a comparison 
between the pixel C

YX
 and the threshold b; and the assignment of the value 0 or 1 using swap gates to the 

pixel, according to the result of the previous comparison
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values are 7 and 3, respectively). Moreover, the uncomputation of the temporary 
logical-AND does not involve T gates, whereas the uncomputation of the Tof-
foli gate involves another Toffoli gate. The temporary logical-AND gate (and its 
uncomputation gate) is shown in Fig. 3.

As it will be shown later, both of them have lower T-count and T-depth than 
existing quantum comparators.

The first proposed comparator is shown in Fig.  4. It is based on the meth-
odology of the adder developed by Gidney in 2018 [4], which is the best adder 
in terms of T-count currently available [14]. The comparison between two-bit 
strings a and b is carried out performing the operation a − b . This operation can 
be performed using an adder, computing a + b . Actually, we are only interested 
in the sign of the operation, so that we can determine that a is lower than b if the 
sign of a − b is negative, or that a is greater (or equal) than b if the result is posi-
tive. Therefore, several simplifications can be done to perform only the computa-
tion of the sign. The circuit can be reproduced for any size n of bits following 
these steps:

• For i = 0 to i = n − 1 , to apply a Pauli-X gate at every bit ai to perform a . These 
operations are computed in parallel as it is shown in the circuit example of Fig. 4.

• Perform the operation a0b0 using a temporary logical-AND gate instead of a 
Toffoli gate to save T-count and T-depth. Each temporary logical-AND will 

xx
yy
xy

=

xx
yy

xy
=

Fig. 3  Temporary logical-AND gate and its uncomputation

Fig. 4  Example of the first proposed comparator for the n = 4 case. This circuit is focused on reducing 
the T-count. a

i
 and b

i
 are the bit strings to be compared. A are ancilla qubits
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require an extra qubit, which must be initialized to the state 1√
2
(�0⟩ + e

i�

4 �1⟩) . 
These ancilla qubits are marked as A in Fig. 4.

• For i = 1 to i = n − 1 , apply two CNOT gates to compute (ai−1bi−1)⊕ ai and 
(ai−1bi−1)⊕ bi . Then, to apply a temporary logical-AND to compute aibi . 
Finally, to apply another CNOT gate to perform (ai−1bi−1)⊕ (aibi) . Each step 
of the loop must be computed sequentially.

• The result is given by the last operation of the last iteration computed in the 
previous step. However, uncomputation is required to avoid garbage outputs. 
Applying two CNOT gates to perform (an−2bn−2)⊕ an−1 and (an−2bn−2)⊕ bn−1.

• For i = n − 2 to i = 1 , apply a CNOT gate to perform (ai−1bi−1)⊕ (aibi) . Then, 
apply the uncomputation circuit for the logical and operation at aibi . Finally, 
apply two CNOT gates at (ai−1bi−1)⊕ ai and (ai−1bi−1)⊕ bi . Again, each step 
of the loop must be computed sequentially.

• Finally, for i = 0 to i = n − 1 apply a Pauli-X gate at every bit ai to uncompute 
them. All the qubits except the one that contains the result have been uncom-
puted.

The second proposed comparator is shown in Fig. 5. It is based on the meth-
odology of the adder developed by Thapliyal et  al. in 2020 [20], which is the 
best adder in terms of T-depth currently available [14]. Again, the comparison 
is performed computing a + b . This circuit involves the use of a huge amount of 
ancilla qubits to achieve a logarithmic T-depth since every and operation is per-
formed using temporary logical AND gates. These gates could be replaced totally 
or partially to reduce the number of ancilla inputs. However, this will increase the 
T-depth and also the T-count of the circuit. The comparator can be reproduced for 
any size n of bits following these steps:

• For i = 0 to i = n − 1 , to apply a Pauli-X gate at every bit ai to perform a . 
Then, apply a temporary logical-AND gate to calculate aibi . According to the 
original adder, this value will be renamed as g[i, i + 1].

• For i = 1 to i = n − 1 , to apply a CNOT gate at ai ⊕ bi . This value will be 
renamed as p[i, i + 1].

• For i = 2 to i = log(n) − 1 , and for j = 1 to j = n

2i
− 1 , apply a temporary 

logical AND at locations p[x,  y],  p[y,  z], being x = 2ij , y = 2ij + 2i , and 
z = 2ij + 2i−1 , respectively.

• For i = 1 to i = log(n) , and for j = 0 to j = n

2i
− 1 , apply a temporary logical 

AND and an uncomputation gate at locations g[x,  y], g[y,  z], being x = 2ij , 
y = 2ij + 2i , and z = 2ij + 2i−1 , respectively.

• For i = log(
2n

3
) to i = 1 , and for j = 1 to j = n−2i−1

2i
 , to apply a temporary logi-

cal-AND and its uncomputation at g[0,x], p[x,y] y g[x,y], being x = 2ij , and 
y = 2ij + 2i−1 , respectively.

• For i = 1 to n − 1 , to apply a CNOT gate at p[i, i+1] and g[0, i].
• For i = 1 to n − 1 , to apply a CNOT gate at p[0, 1] and the corresponding 

ancilla input.
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• Steps 3, 2, and 1 (in this order) must be computed again to uncompute garbage 
outputs.

4  Analysis and comparison

The proposed comparators consist of only four kinds of gates: Pauli-X gates, 
CNOT gates, temporary logical-AND gates, and the uncomputation gate for 
the temporary logical-AND gate. Among these gates, only the temporary 

Fig. 5  Example of the second proposed comparator for the n = 8 case. This circuit is focused on reducing 
the T-depth. a

i
 and b

i
 are the bit strings to be compared. A are ancilla qubits



1 3

Optimal fault-tolerant quantum comparators for image…

logical-AND involves T gates. Therefore, the T-count and the T-depth of our 
circuits can be obtained from the total number of temporary logical-AND gates 
they have and the number of temporary logical-AND gates that the circuits must 
compute sequentially, respectively. The T-count and the T-depth of the temporary 
logical-AND gate are 4 and 2, respectively (Fig. 3).

The first circuit involves n consecutive temporary logical-AND gates. 
Then, it has a T-count of 4n and a T-depth of 2n. Since the circuit only uses 
the ancilla qubits involved in the logical-AND operations, it can be concluded 
that the first comparator needs n ancilla qubits. On the other hand, the second 
comparator involves 3n − 2W(n) − log(n) temporary logical-AND gates, being 
W(n) the number of ones in the binary expansion of n. Therefore, its T-count is 
12n − 8W(n) − 4log(n) . The T-depth is not trivial to compute since the depth of 
the circuit depends on the value of n. However, we have shown that the circuit 
grows logarithmically. Then, its T-depth can be set as log(n).

Table  1 shows a comparison in terms of T-count, T-depth, and number of 
ancilla inputs between the most recent comparators in the state-of-the-art and our 
two proposed circuits. In terms of T-count and T-depth, it is shown that our cir-
cuits outperform the other comparators. Focusing on the T-count, the first pro-
posed is the best option with a T-count of 4n. The circuit with the best T-count in 
the literature is the proposal of Li et al. [9]. This circuit has a T-count of 14n − 7 , 
which is a value three times greater than our proposal. Our second proposal has a 
T-count of 12n − 8W(n) − 4log(n) , which is still better than the circuit of Li et al 
[9].

Focusing now in the T-depth, the only logarithmic circuit is our second pro-
posal. The other comparators are lineal. Again, the circuit of Li et  al. is the 
best option in the literature, with a T-depth of 6n − 3 . Our first proposal, with a 
T-depth of 2n, also outperforms the circuit of Li et al.

However, the circuit of Li et al. [9] has an important feature: it is the best in 
terms of necessary qubits. It is the only comparator with a single ancilla qubit. In 
these terms, our best proposal is the first one with n ancilla qubits. Therefore, the 
circuit of Li et al. [9] improves us in n − 1 qubits.

Table 1  Evaluation of comparators in terms of T-count, T-depth and Ancilla qubits as functions of n 

W(n) is the number of ones in the binary expansion of n

Circuit cComparator T-count T-depth Ancilla qubit

Xia et al. (2018) [24] 14n 6n 2
Xia et al. (2019) [25] 14n − 7 6n − 3 2
Li et al. (2020) [9] 14n − 7 6n − 3 1
Proposed comparator 4n 2n n
Proposed comparator 12n − 8W(n) − 4Log(n) Log(n) 4n − 2W(n) − 2log(n)
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5  Conclusion

In this paper, we continue the work started in [25] about binarization in quan-
tum computing. In particular, we have improved a quantum circuit for binariza-
tion providing two novel comparators focused on the reduction of the internal and 
external noise. Although we work in a binarization framework, these comparators 
are valid for a general purpose.

Our two circuits are able to reduce the number of necessary T gates (which 
involves the reduction in the T-count and T-depth), thanks to the use of the 
temporary logical-AND gate proposed by [4], and also using the most efficient 
methodologies for noise reduction in quantum binary adders. Our first circuit 
is focused on the reduction in the T-count, and the second one is based on the 
reduction in the T-depth. However, the two circuits improve both in T-count and 
T-depth to the currently available circuits.

As a complement, we have carried out a comparison between our circuits and 
the most prominent comparators in the literature. The conclusions are that our 
circuits are the best option when noise is a problem and its reduction is manda-
tory. However, we also shown than the circuit proposed in Li et al. [9] is the best 
option when the focus is to minimize the number of qubits.
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3.4 Contributions as a reviewer

The candidate has been reviewed papers for 5 different journals:

• Journal of Ambient Intelligence and Humanized Computing
• ACM Transactions on Knowledge Discovery from Data
• Computational and Mathematical Methods
• Journal of Computational and Applied Mathematics
• The Journal of Supercomputing
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4. Conclusions and future work

In this thesis, new approaches for solving computational problems in three different lines using
HPC and quantum computing have been proposed and studied. The first line of research focuses
on making computationally feasible the reproduction of a series of simulations in the field of
microrheology. The second research line deals with MultiDimensional Scaling methods and their
high computational cost. The third one is about Image Processing. From the computational point
of view, the three lines have been approached with a similar methodology, applying from classical
HPC techniques to new quantum computing techniques. The application of HPC techniques
has improved the performance and energy efficiency of the problems studied. In addition, the
solutions to these problems have been extended. In the context of quantum computing, we have
focused on the design of optimized quantum circuits to solve the corresponding problems. The
main problems have been formulated in terms of mathematical optimization. Therefore, a state-
of-the-art study on the possible tools and methods that could be applied for their solution has been
carried out. Then, the most appropriate tool was chosen for each case, adapting and optimizing
it where necessary, and even combining tools or innovating in cases where no available tool
provided the necessary solution. The use of parallel computing and quantum computing has been
considered during the whole thesis as a way to improve the developed methods. This chapter
draws the main conclusions in each line.

4.1 Microrheology

At the physical level, important advances have been made in the extension of the size of the model-
based simulations. The model has been strongly expanded thanks to the new development of the
microrheology model [54] since such a development allows the exploitation of the parallelism
levels of the model on modern clusters. An enormous amount of simulations have been carried
out to generate sufficient statistics for such a definition, which has been possible thanks to the
acceleration carried out at each of the three possible levels of parallelism: the calculation of a
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trajectory, the computation of all trajectories of a given size, and the calculation of the various
sizes have been optimized to finally extrapolate the friction coefficient.

Going into more detail on the computational achievements, a GPU version of the trajectory
calculation has been implemented. This version made in CUDA achieves such acceleration
thanks to the reordering of the different data structures for its optimal treatment in the GPU,
as well as with different kernels that through tools like cuBLAS and the shuffle instructions
manage to perform the calculations minimizing the necessary shared memory and the CPU-GPU
information transfer.

On the other hand, a genetic algorithm customization has been proposed to harness the
heterogeneous resources of the modern cluster when all sets of simulations are computed
to extrapolate the friction coefficient. In particular, this genetic algorithm, by means of the
appropriate definition of the usual operators in this type of algorithms, manages to find the
appropriate distribution to assign each of the trajectories (for several system sizes) to be calculated
to the corresponding machine so that the total time required for the calculation of all the
trajectories is the shortest possible. To this end, the algorithm focuses on load balancing
reduction, using two versions of the program and all the processing units of our multi-GPU
cluster, although it is fully valid for any number of programs and processing units.

Finally, up to three functional quantum algorithms have been defined to speed up one of the
most expensive parts of the simulations: the calculation of neighbors. These three algorithms
form a meta-algorithm that, depending on the starting conditions, allows choosing which of these
three algorithms should act to perform the neighbor search to reduce the computational needs,
identified in this case as calls to the oracle. Concerning the latter, a fully functional circuit for the
calculation of distances between particles and a comparison of these distances with a threshold
value (which is precisely the one that defines which particles are or are not neighbors) has been
developed.

4.2 MultiDimensional Scaling

In reference to this line, we have made two contributions. First, there are our two versions of
SMACOF, one multicore and the other for GPU. SMACOF is one of the most accurate of the
MDS methods, but also the most computationally expensive. However, our versions considerably
speed up its computation, making SMACOF a more affordable method. The multicore version,
made in C and OpenMP, is supported by the MKL library. The GPU version in C and CUDA, and
uses the cuBLAS library. Both versions optimize the processing of the various data structures
and operations to achieve a further reduction in computation time.

On the other hand, a heuristic oriented to the optimization of energy consumption has been
defined. Since there are two versions of SMACOF, what this heuristic does is to estimate the
energy efficiency of each version in each of the processing units available in one or more clusters.
By means of a quick estimation, it provides information that not only allows to choose the
appropriate cluster for the user’s needs, but also the appropriate configuration of such cluster to
minimize the energy consumption.
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4.3 Image Processing

A successful attempt has been made to apply ISOMAP for the classification of so-called hyper-
spectral images. ISOMAP is a method consisting of three distinct parts, one of them being an
MDS method. Although SMACOF is the most accurate MDS method, it is not commonly used
due to its high computational cost, but thanks to our advances in the previous line we have used
SMACOF. The use of ISOMAP with SMACOF has allowed us to improve the classification
accuracy in hyperspectral images, as demonstrated by the different tests we have performed on
some of the most commonly used images for testing and demonstration.

Another part of ISOMAP is very similar to the neighbor search computation discussed in
the microrheology line. That is why we want to address its resolution by quantum computation.
Although we have not yet been able to do so given the lack of tools for digital image processing
in quantum computing, we have begun to design various tools that will allow us to achieve
this goal. We have successfully designed an image binarizing circuit that improves on those
currently available in the literature in terms of fault tolerance, which is a first step towards the
aforementioned goal.

4.4 Quantum Circuits

As part of the thesis, numerous contributions have been made to the field of quantum computing,
in the specific design of quantum circuits. One of these contributions has consisted of a wide
review of quantum adder circuits, considered the most important arithmetic circuits in quantum
computing today because of their relationship with Shor’s algorithm. This review previously
defined a solid measurement platform to provide complete and uniform information on each of
the circuits reviewed. Once the metrics have been chosen, more than 40 bibliographic references
have been reviewed, their circuits have been analyzed, and they have been classified by typology
and metric.

Significant progress has also been made in terms of two’s complement converters. We have
shown that this numerical representation also has its advantages in quantum computing. Several
converters circuits have been proposed, each of them being the best in its category: the first of
them is the fastest, and the others need the lowest quantum cost and/or auxiliary inputs. Both
circuits, like all the circuits we make, are free of garbage outputs to allow all qubits to interleave
with other circuits.

We have also made contributions in the field of comparators through the realization of
several of these circuits. Our comparators have proven to be the best of their kind in terms
of fault tolerance thanks to a proper use of T-gates that allow performing operations properly
while minimizing cost and computation time. These circuits have allowed advances in image
binarization, as indicated in the image processing part.

A functional oracle has also been developed to indicate whether two particles are closer
or not to a threshold distance. This circuit has two distinct parts: the calculation of distances
between particles, and the comparison of this distance with the threshold value. This second part
can be performed with any comparator, including ours. However, in the distance calculation
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there are several operations involved (adders, subtractors, squares), so a review of the state of the
art circuits available for each type of operation (fortunately we already had the review of adders)
had to be carried out to find the optimal circuit for these operations.

4.5 Future work

As future work, it is possible to define new goals in the three main research lines covered.
Focusing on Microrheology, we will continue extending the model. We are currently studying
the obtained results of our simulations in different scenarios in order to test the applicability
of the model in them. We will also analyze new improvements and extensions to the related
code using the latest GPU technologies. Special attention will be paid to quantum computing.
Our goal is to apply our new circuits (and design ad-hoc ones) to accelerate the collection of
statistics on the models results. Finally, we will consider advancing the theory on microrheology
to empirically test certain assumptions that have only been demonstrated at the mathematical
level.

In relation to MultiDimensional Scaling methods, we would like to extend some of the results
achieved with quantum computation in the other two lines to this field, both for the individual
advancement of this line and for the one related to hyperspectral imaging. At another level, we
would like to realize a CUDA version of the well-known Glimmer algorithm (another MDS
method, currently available only in OpenCL), to make a comparison between SMACOF and it
and to be able to include it in our energy efficiency heuristics. We have also superficially tested
the applicability of these methods as part of scheduling heuristics, and would like to study such
applicability further to consider the potential benefits.

Finally, in the imaging line, we would like to extend the results presented in the thesis. In
relation to the good results achieved with ISOMAP and its usefulness with hyperspectral imaging,
we want to realize two optimized versions of ISOMAP for GPU and multicore. We have studied
the substitution of KNN by other methods with results that apparently give better results (in
terms of speed and accuracy), but we need to perform more extensive tests to be able to confirm
these results. On the other hand, we will continue to work on optimized quantum circuits that
will allow us to study the possible applications of such computation in this field.

Needless to say that we will continue to keep a close eye on the evolution of quantum
computing in order to use any innovations that arise to the benefit of our lines, as well as to
contribute as much as possible to the development of quantum computing.
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