DESIGN METHODOLOGY OF BIDIRECTIONAL BARREL SHIFTER BASED ON REVERSIBLE LOGIC

V. SRUJANA
Vaagdevi College of Engineering, Warangal,A.P, India, vsrujana@gmail.com
G. BABU
Vaagdevi College of Engineering, Warangal,A.P, India, gbabu@gmail.com

Follow this and additional works at: https://www.interscience.in/ijssan
Part of the Digital Communications and Networking Commons, and the Electrical and Computer Engineering Commons

Recommended Citation

SRUJANA, V. and BABU, G. (2012) "DESIGN METHODOLOGY OF BIDIRECTIONAL BARREL SHIFTER BASED ON REVERSIBLE LOGIC," International Journal of Smart Sensor and Adhoc Network. Vol. 3 : Iss. 1 , Article 11.

DOI: 10.47893/IJSSAN. 2013.1195
Available at: https://www.interscience.in/ijssan/vol3/iss1/11

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research Network. It has been accepted for inclusion in International Journal of Smart Sensor and Adhoc Network by an authorized editor of Interscience Research Network. For more information, please contact sritampatnaik@gmail.com.

DESIGN METHODOLOGY OF BIDIRECTIONAL BARREL SHIFTER BASED ON REVERSIBLE LOGIC

V.SRUJANA ${ }^{\mathbf{1}}$, G.BABU ${ }^{\mathbf{2}}$
${ }^{1}$ M.Tech (VLSI), ${ }^{2}$ Assoc.Prof.,ECE, Vaagdevi College of Engineering, Warangal,A.P, India

Abstract

Data shifting is required in many key computer operations from address decoding to computer arithmetic. Full barrel shifters are often on the critical path, which has led most research to be directed toward speed optimizations. With the advent of quantum computer and reversible logic, design and implementation of all devices in this logic has received more attention. Rotating and data shifting are required in many operations such as logical and arithmetic operations, indexing and address decoding etc. Hence barrel shifters which can shift and rotate multiple bits in a single cycle have become a common choice of design for high speed applications. The design has been done using reversible fredkin and feynman gates. In the design the $2: 1$ mux can be implemented by fredkin gate which reduce quantum cost, number of ancilla bits and number of garbage outputs. The feynman gate will remove the fanout. By comparing the quantum cost, number of ancilla bits and number of garbage outputs the design is evaluated.

Keywords- barrel shifters, quantum cost, ancilla bits, verilog.

I. INTRODUCTION

Rotating and shifting data is required in several applications including variable-length coding, arithmetic operations, and bit-indexing. Consequently, barrel shifters, which are capable of shifting or rotating data in a single cycle, are commonly found in both digital signal processors and general purpose processors. In reversible system information is not erased. Thus in reversible gates number of inputs and outputs are equal which means that the input stage can always be retained from the output stage. If a bit is erased in an irreversible circuit then it will dissipate $\mathrm{kT} \ln 2$ joules of heat energy where k is the Boltzmann's constant and T is the absolute temperature of environment [4]. There won't be dissipation of kTln 2 joules of heat energy if the operations are performed in reversible manner based on reversible logic circuits [3]. Based on this observation, Bennett [3] showed, for a reversible computer the heat dissipation is exactly $\mathrm{kT} \ln 1$ which is logically zero. Thus reversible computation is a highly potential field for upcoming low power/high performance computing. Reversible logic also has the applications in emerging nanotechnologies such as quantum dot cellular automata, quantum computing, optical computing and low power computing, etc.

The constraints involved in designing reversible circuits using reversible gates are:
a. The fan-out of every signal is equal to one.
b. Loops are not permitted in a strictly reversible system.

On the other hand, data shifting and rotating is important and frequently used in arithmetic operations, bit-indexing, variable-length coding and many more. The reversible circuits have associated overhead in terms of number of garbage outputs and
the number of ancilla inputs. The outputs which do not perform any useful operation and needed to maintain reversibility of the circuit are termed as garbage outputs, while an auxiliary constant input used to design a reversible circuit is called the ancilla input bit [17].

A (n, k) barrel shifter is a combinational circuit with n inputs and n outputs where k select lines controls the shift operation. The existing designs of the reversible barrel shifters can only perform the left rotate operation [11], [15].

The reversible barrel shifter can shift and rotate multiple bits in a single cycle and thus will be considerably faster than the reversible sequential shift register. This paper examines design alternatives for barrel shifters that perform the following operations: shift right logical, shift right arithmetic, rotate right, shift left logical, shift left arithmetic, and rotate left. In the proposed design the basic building blocks are reversible Fredkin and Feynman gates.

The structure of the paper is as follows: Section II provides the necessary background on reversible logic as well as the definitions of some commonly used reversible logic gates. Section III describes several barrel shifters. Section IV describes the proposed design of the reversible bidirectional barrel shifter. In Section V, the performance analysis of the proposed shifter is presented. Lastly, the conclusions and further studies are discussed in Section VI

II. REVERSIBLE GATES

A Reversible Gate is an n-input, n-output (denoted by $\mathrm{n} * \mathrm{n}$) circuit. To maintain the reversibility property of reversible logic gates several dummy output signals are needed to be produced in order to equal
the number of input to that of output. These signals are commonly known as Garbage Outputs. For example, for reversible Exclusive-OR operation Feynman gates are used which produce an extra dummy output along with its principal output signal to preserve reversibility. The quantum cost of reversible gate is equal to the number of 1×1 and 2×2 reversible gates needed to design a 3×3 reversible gate. The quantum cost of all 1×1 and 2×2 reversible gates are considered as unity [18], [7], [2]. The 3×3 reversible gates are designed from 1×1 NOT gate, and 2×2 reversible gates such as Controlled-V and Controlled- $\mathrm{V}+(\mathrm{V}$ is a square-root of NOT gate and $\mathrm{V}+\mathrm{is}$ its hermitian), the Feynman gate which is also known as Controlled NOT gate.

A NOT gate is 1 x 1 gate represented as shown in Fig. 1. Its quantum cost is unity since it is a 1×1 gate.

Fig. 1. NOT GATE
The input vector, Iv and output vector, Ov for $2 * 2$ Feynman Gate (FE) is defined as follows: $\mathrm{Iv}=(\mathrm{A}, \mathrm{B})$ and $\mathrm{Ov}=\left(\mathrm{P}=\mathrm{A}\right.$ and $\left.\mathrm{Q}=\mathrm{A}^{\wedge} \mathrm{B}\right)$. Feynman gates are typically used as copying gates. If $\mathrm{Iv}=(\mathrm{A}, \mathrm{B}=0)$ then $\mathrm{Ov}=(\mathrm{P}=\mathrm{A}$ and $\mathrm{Q}=\mathrm{A})$. Fanout is not allowed in reversible logic. Feynman gate is helpful in this regard as it can be used for copying the signal by which it avoids the fanout problem as shown in Fig.2(c).

(a) CNOT Gate

(b) Quantum representation of the CNOT Gate

(c) Feynman gate for avoiding the fanout

(d) Feynman gate for generating the complement of a signal
Fig. 2. CNOT gate, its quantum implementation and its useful properties

The input and output vector for $3 * 3$ Fredkin gate (FR) [1] are defined as follows: $\mathrm{Iv}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$ and $\mathrm{Ov}=\left(\mathrm{P}=\mathrm{A}, \mathrm{Q}=\mathrm{A}^{\prime} \mathrm{B}^{\wedge} \mathrm{AC}\right.$ and $\left.\mathrm{R}=\mathrm{A}^{\prime} \mathrm{C}^{\wedge} \mathrm{AB}\right)$. Figure 3(a) shows the block diagram of a Fredkin gate. A Fredkin gate can work as 2:1 MUX, as it is able to swap its other two inputs depending on the value of its first input. The first input A works as a controlling input while the inputs B and C work as controlled inputs as shown in the Fig. 3(a). Thus when $\mathrm{A}=0$ the outputs P and Q will be directly connected to inputs A and B and if $A=1$ the inputs B and C will be swapped resulting in the value of the outputs as $\mathrm{Q}=\mathrm{C}$ and $\mathrm{R}=\mathrm{B}$. The quantum implementation of a Fredkin gate with a quantum cost of 5 is shown in Figure 3(b) [7]. In Fig. 3(b) each dotted rectangle is equivalent to a 2×2 Feynman gate and the quantum cost of each
dotted rectangle is considered as 1 [18]. The same assumption is used for calculating the quantum cost of the Fredkin gate [7]. Thus, the quantum cost of the Fredkin gate is 5 as it consists of 2 dotted rectangle, 1 Controlled-V gate and 2 CNOT gate.

(a) Fredkin Gate

(b) Quantum representation of the Fredkin Gate
Fig. 3. Fredkin Gate and its quantum implementation

III. BIDIRECTIONAL BARREL SHIFTER

A barrel shifter is a combinational circuit which has n -input and n -output and m select lines that controls bit shift operation. A barrel shifter having n inputs and k select lines is called (n, k) barrel shifter. Barrel shifter can be unidirectional allowing data to be shifted or rotated only to left (or right), or bidirectional which provides data to be rotated or shifted in both the directions. The logarithmic barrel shifter is most widely used among the different designs of barrel shifter, because of its simple design, less area and the elimination of the decoder circuitry. An n-bit logarithmic barrel shifter has a total of $\log 2(\mathrm{n})$ stages. Each stage determines whether to shift or not to shift the input data. The stage k will shift the input times if the control bit sk (where $\mathrm{k}=0,1, \ldots$ $(\log 2(n)-1))$ is set to 1 otherwise the input will remain unchanged. Logarithmic shifter is more efficient in terms of design as well as area but delay cost is large [11]. This paper presents the designs of reversible bidirectional arithmetic and logical barrel shifter that can perform six operations: logical right shift, arithmetic right shift, right rotate, logical left shift, arithmetic left shift and left rotate. The existing shifter is a unidirectional logarithmic shifter consists of multiplexers. A 3x3 Fredkin Gate works as simple (2:1) multiplexers. Feynman gates are used for producing fanouts.

The existing shifter is complex in design and requires large number of gates. As a result the total number of garbage outputs is high. Thus there is great room for improving the circuit complexity, total number of gates and garbage outputs, delay and quantum cost. For efficient designing of a reversible circuit several criteria are needed to be considered:
a. Minimize the number of gates as possible.
b. Minimize the quantum cost of the circuit.
c. Total number of garbage outputs and usage of constant inputs should be minimized.

By maintaining the above parameters and observing the previous design, a novel logarithmic Reversible Barrel Shifter has been proposed. The proposed barrel shifter is a left rotating shifter which uses Fredkin gates for reversible ($2: 1$) multiplexing and Feynman Gates for producing fan outs. A $(4,2)$ logarithmic barrel shifter has been illustrated in Figure 4. The circuit uses a total of 6 Fredkin gates, 4 Feynman gates and produces 6 Garbage outputs. The Quantum cost of the circuit has also been evaluated. The calculation shows that the Quantum Cost of the proposed $(4,2)$ circuit is 34 .

Figure 4. Proposed Reversible $(4,2)$ Barrel Shifter

IV. DESIGN OF REVERSIBLE BIDIRECTIONAL BARREL SHIFTER

The proposed design of reversible bidirectional barrel shifter can perform logical right shifting, arithmetic right shifting, rotating right, logical left shifting, arithmetic left shifting and rotating left operations. The proposed reversible bidirectional arithmetic and logical barrel shifter design approach is illustrated as shown in Fig. 5 with an example of a $(8,3)$ barrel shifter. The barrel shifter performs the various operations such as logical right shift, logical left shift, rotate left etc. depending on the values of sra, sla rot and left control signals. Table I shows that for different values of control signals sra, sla, rot and left the operations that can be performed by a $(8,3)$ reversible bidirectional arithmetic and logical shifter.

TABLE I
Operation performed by a (n, k) reversible bidirectional Barrel shifter

Operation performed	Control signal values			
Logical right shift	Left=0	Rot=0	Sra=0	Sla=0
Arithmetic right shift	Left=0	Rot=0	Sra=1	Sla=0
Rotate right	Left=0	Rot=1	Sra $=0$	Sla=0

Logical left shift	Left=1	Rot=0	Sra=0	Sla=0
Arithmetic left shift	Left=1	Rot=0	Sra=0	Sla=1
Rotate left	Left=1	Rot=1	Sra=0	Sla=0

In this design, the input data is represented as i 7 , i 6 , i5, i4, i3, i2, i1, i0 while the shift value is controlled by select signals represented as S 2 S 1 S 0 and the output data is obtained as shown in Table II .

TABLE II
Shift and rotate operation output for $\mathrm{k}=3$

Operation	Y
3-bit shift right logical	000 a7a6a5a4a3
3-bit shift right arithmetic	a7a7a7a7a6a5a4a3
3-bit rotate right	a2a1a0a7a6a5a4a3
3-bit shift left logical	a4a3a2a1a00000
3-bit shift left arithmetic	a7a3a2a1a0000
3-bit rotate left	a 4 a 3 a 2 a 1 a 0 a 7 a 6 a 5

The design of a reversible barrel shifter can be divided into six modules: (i) Data reversal control unit-I, (ii) Arithmetic right shift control unit, (iii) Shifter or rotation unit which consists of three submodules that performs Stage I, Stage II and Stage III operations, (iv) Rotation unit, (v) Arithmetic left shift control unit, (vi) Data reversal control unit-II. The reversible design of the modules of the reversible bidirectional barrel shifter along with their working are explained as follows:

1. Data Reversal Control Unit-I

In reversible barrel shifter the direction of the shift operation performed is controlled by the control signal left as shown in the Table I. The reversible bidirectional barrel shifter performs the shift operation in the left direction if the value of control signal left as 1 , that is, the arithmetic left shift operation or logical left shift operation. Otherwise, the shift operation is performed in the right direction for the value of left $=0$, that is, arithmetic right shift operation or logical right shift operation. The data reversal control unit-I has Fredkin gates, since two outputs of the Fredkin gate can work as 2:1 MUXes. 4 Fredkin gates can be used to reverse the 8 bit input data by utilizing two outputs of the Fredkin gate as 2:1 Muxes. A left shift operation for a n bit input data by k-bit can be performed in three steps:
(i) reverse the input data,
(ii) perform k bit right shift operation, and
(iii) reverse the outputs of the step (ii).

For example, for a 8 -bit input data i7, i6, i5, i4, i3, i2, i1, i0 the three steps of logical left shift operation by 3 bits will be: (i) reverse i7, i6, i5, i4, i3, i2, i1, i0 to produce i0, i1, i2, i3, i4, i5, i6, i7, (ii) perform the 3 bit logical right shift operation to produce $0,0,0, \mathrm{i} 0$, i1, i2, i3, i4, and (iii) reverse the outputs of step (ii) to
yield i4, i3, i2, i1, i0, $0,0,0$. The date reversal control unit-I is shown in Fig. 5.

2 Arithmetic Right Shift Control Unit

The reversible arithmetic right shift control unit is shown in Fig.5. The arithmetic right shift operation is controlled by the arithmetic right shift control unit. The designing of this unit is done using a single Fredkin gate controlled by the control signal sra, and preserves the sign bit of input data. The arithmetic right shift operation is performed if the value of control signal sra $=1$, otherwise it simply passes the data to the next module. Multiple copies of the sign bit are created using the Feynman gates because fanout is not allowed in reversible logic.

Fig. 5. Proposed (8,3) reversible bidirectional barrel shifter *FE represents Feynman Gates, FR represents Fredkin gates and \mathbf{G} represents the garbage outputs

3 Shifter Or Rotation Unit

The three stage design of the reversible shifter or rotation unit is as shown in Fig. 5. The amount of shift operation that has to be performed is done by the shifter unit in the design of reversible bidirectional barrel shifter. This unit is controlled by the control signals S2, S1 and S0. This unit can be divided into three stages. Depending on the value of control signal S2, S1 and S0, the first, second and the third stages of this unit right shifts the input data by $2^{2}, 2^{1}$ and 2° bits respectively. All the three stages are designed using the chain of 8 Fredkin gates controlled by the control signals S2, S1 and S0. The Feynman gates are used in the design to avoid the fanout problem. The working
of the three stages of the shifter unit is explained as follows:

- Stage - I : The first stage of shifter unit is controlled by the control signal S2 and it will shift the input data by 2^{2}-bits. The input data is right shifted by 2^{2}-bits if the value of control signal S 2 is 1 , else the input data remains unchanged. The outputs of the Stage I is passed as inputs to Stage II of the shifter unit.
- Stage - II : The second stage of the shifter unit is controlled by the control signal S1 and it works on the outputs of the first stage. The input data provided to the second stage is right shifted by 2^{1}-bits if the value of control signal S1 is 1 , else the input data remains unchanged. The outputs of the Stage II is passed as inputs to Stage III of the shifter unit.
- Stage - III : The third stage of the shifter unit is controlled by the control signal S0. The output data generated by the stage-II is right shifted by
-bits If the value of control signal S0 is 1 else the output data remains unchanged. The outputs of this stage is passed as inputs to the next module in the design of reversible bidirectional barrel shifter.

4 Rotation Unit

The rotation unit is shown in Fig.5. The rotation operation is controlled by the rotation unit. The designing of this unit is done using a chain of 8 Fredkin gates and controlled by the control signal rot, and performs the rotation operation of input data. The rotation operation is performed if the value of control signal rot $=1$, otherwise it simply passes the data to the next module.

5 Arithmetic Left Shift Control Unit

The arithmetic left shift control unit is shown in the Fig. 5. The design of the arithmetic left shift control unit and the design of the arithmetic right shift control unit are same. This control unit is controlled by the control signal sla and is responsible to perform the arithmetic left shift operation. This unit is implemented using a single Fredkin gate. This unit preserves the sign bit needed to perform the arithmetic left shift operation if the value of control signal sla $=1$, else it simply passes the LSB of the shifter or rotation unit.

6 Data Reversal Control Unit II

The data reversal control unit is controlled by the control signal left. If the value of control signal left is 1 , this unit reverses its input data to generate a left shifted result else it simply passes the input data to its outputs. The data reversal control unit II reverses its 8 bit input which consists of 1 bit from the output of the arithmetic left shift control unit and 7 bits from the outputs of the shifter unit. The design of this unit is shown in Fig. 5 which is same as explained for data reversal control unit I.

The $(8,3)$ reversible bidirectional arithmetic and logical barrel shifter uses 32 Feynman gate to copy the input data to avoid the fanout, and 41 Fredkin gates are used for arithmetic and logical bidirectional shifting and rotating. The above design of the $(8,3)$ reversible bidirectional barrel shifter can be generalized to design a (n, k) reversible bidirectional barrel shifter.

V. PERFORMANCE ANALIZATION

To avoid the fanout problem, in the proposed design Feynman gate is used. Chains of $\mathrm{n} / 2$ Fredkin gates are used in data reversal unit-I and data reversal unit-II. The arithmetic right shift control unit uses one Fredkin and $2^{k}-1$ Feynman gates. Chain of n Fredkin gates and n Feynman gates are used in shifter or rotation unit at each stage. Rotation unit 2^{k} fredkin gates for $\mathrm{m}=0$ to ($\mathrm{k}-1$) for each stage. One Fredkin gate and one Feynman gate is used in arithmetic left shift control unit. Thus the total number of Fredkin gates used to design a (n, k) reversible bidirectional barrel shifter can be written as:

FR= Number of Fredkin gates used in data reversal control unit-I+ Number of Fredkin gates used in arithmetic right shift control unit+ Number of Fredkin gates used in shifter or rotation unit+ Number of Fredkin gates used in rotation unit+ Number of Fredkin gates used in arithmetic left shift control unit +Number of Fredkin gates used in data reversal control unit-II-

$$
\begin{aligned}
& =\mathrm{n} / 2+1+(\mathrm{n} * \mathrm{k})+\sum_{m=0}^{k-1} 2^{m}+1+\mathrm{n} / 2 \\
& =\sum_{m=0}^{k-1} 2^{m}+\mathrm{n}^{*}(\mathrm{k}+1)+2
\end{aligned}
$$

The total number of Feynman gates used to design a (n, k) reversible bidirectional barrel shifter is:

FE=Number of Feynman gates required to design arithmetic right shift control unit+ number of Feynman gates used in shifter or rotation unit+ number of Feynman gates used in arithmetic left shift control unit=($\left.2^{k}-1\right)+(n * k)+1$.

A. Ancilla input Bits

The table III shows the number of ancilla bits required to design a reversible bidirectional barrel shifter for different values of n and $\mathrm{k} .2^{k}+(\mathrm{n} * \mathrm{k})$ Feynman gates are required to design a (n, k) reversible bidirectional barrel shifter. Each Feynman gate requires one ancilla input bit to copy the input data. Additionally, the Fredkin gate used in arithmetic right shift control unit requires one ancilla bit. Hence the total number of ancilla inputs (ANs) required to design a (n, k) reversible bidirectional arithmetic and logical barrel shifter is $\mathrm{ANs}=2^{k}+\left(\mathrm{n}^{*} \mathrm{k}\right)+1$. Table III shows that the total number of ancilla inputs required to design a $(8,3)$ reversible bidirectional barrel shifter are 33 which is same as illustrated in Fig. 5.

TABLE III
ANCILLA INPUTS IN (N,K) REVERSIBLE BIDIRECTIONAL BARREL SHIFTER

n / k	$\mathrm{n}=4$	$\mathrm{n}=8$	$\mathrm{n}=16$	$\mathrm{n}=32$	$\mathrm{n}=64$
$\mathrm{~K}=2$	13	21	37	69	133
$\mathrm{~K}=3$		33	57	105	201
$\mathrm{~K}=4$			81	145	273
$\mathrm{~K}=5$				193	353
$\mathrm{~K}=6$					449

B. Quantum Cost

Table IV shows the quantum cost for a reversible bidirectional barrel shifter for different n and k values. The number of Feynman and Fredkin gates used will decide the quantum cost of (n, k) reversible bidirectional barrel shifter. The quantum cost of the Feynman gate is considered as one, while the quantum cost of the Fredkin gate is considered as five. Hence the quantum cost of the proposed design of (n, k) reversible bidirectional barrel shifter can be calculated as QuantumCost $=5 *$ (number of Fredkin gates) +(number of Feynman gates).

The quantum $\operatorname{cost}(\mathrm{QC})$ of the (n, k) reversible bidirectional barrel shifter can be represented as $\mathrm{QC}=5 *\left(\sum_{m=0}^{k-1} 2^{m}+\mathrm{n} *(\mathrm{k}+1)+2\right)+2^{k}+(\mathrm{n} * \mathrm{k})$

The quantum cost of a $(8,3)$ reversible bidirectional barrel shifter shown in Fig. 5 is 237.

TABLE IV QUANTUM COST OF (N,K) REVERSIBLE BIDIRECTIONAL BARREL SHIFTER

n / k	$\mathrm{n}=4$	$\mathrm{n}=8$	$\mathrm{n}=16$	$\mathrm{n}=32$	$\mathrm{n}=64$
$\mathrm{~K}=2$	137	165	301	573	1117
$\mathrm{~K}=3$		237	421	789	1525
$\mathrm{~K}=4$			565	1029	1957
$\mathrm{~K}=5$				1317	2437
$\mathrm{~K}=6$					3013

C. Garbage Outputs

For different reversible bidirectional barrel shifter designs the number of garbage outputs produced is as shown in Table V. In the table, n is the number of input data bits and k represents the shift value. In the design of (n, k) reversible bidirectional barrel shifter the shifter unit can be designed in k stages and each stage consists of the chain of n Fredkin gates to perform the shift operation. Each Fredkin gate in the chain of n Fredkin gates produces atleast one garbage output except the last Fredkin gate which produces two garbage outputs. Two garbage outputs are produced by Fredkin gate which is used in the design of arithmetic left shift control unit and arithmetic right shift control unit. One garbage output is produced by last Fredkin gate of the data reversal control unit-II as the control signal left cannot be utilized further. Hence the number of garbage outputs (GOs) required to design a (n, k) reversible
bidirectional arithmetic and logical shifter can be written asGOs=k(n +1$)+6+. \sum_{m=0}^{k-1} 2^{m}$. In $(8,3)$ reversible bidirectional barrel shifter design the number of garbage outputs produced in Fig. 5 are 40 which is equal to the result in Table V .

TABLE V
GARBAGE OUTPUTS IN (N,K) REVERSIBLE BIDIRECTIONAL BARREL SHIFTER

n / k	$\mathrm{n}=4$	$\mathrm{n}=8$	$\mathrm{n}=16$	$\mathrm{n}=32$	$\mathrm{n}=64$
$\mathrm{~K}=2$	19	27	43	75	139
$\mathrm{~K}=3$		40	64	112	208
$\mathrm{~K}=4$			89	153	281
$\mathrm{~K}=5$				202	362
$\mathrm{~K}=6$					459

VI. CONCLUSIONS

In this paper, we presented the design methodologies of the (n, k) reversible bidirectional barrel shifters, where n is the number of data bits and $\mathrm{k}=\log 2 \mathrm{n}$. We proposed several lower bounds on the numbers of garbage outputs and constant inputs. It has also been proved that the proposed rotator circuits are constructed with the optimum garbage outputs and constant inputs. Except the left rotators, all the designs are first ever proposed in the literature, to the best of our knowledge. The functional verification of the proposed design of the reversible barrel shifters are performed through simulations using the Verilog HDL flow for reversible circuits. The design of bidirectional barrel shifter is been evaluated in terms of garbage outputs, ancilla inputs and the quantum cost. The proposed design of reversible bidirectional barrel shifter can perform logical right shifting, arithmetic right shifting, rotating right, logical left shifting, arithmetic left shifting and rotating left operations.

REFERENCES

[1] E. Fredkin and T. Toffoli, "Conservative logic," International J. Theor. Physics, vol. 21, pp. 219-253, 1982.
[2] D. Maslov and D. M. Miller, "Comparison of the cost metrics for reversible and quantum logic synthesis," http://arxiv.org/abs/quantph/0511008, 2006.
[3] C.H. Bennett, "Logical reversibility of computation," IBM J. Research and Development, vol. 17, pp. 525-532, Nov. 1973.
[4] R. Landauer, "Irreversibility and heat generation in the computational process," IBM J. Research and Development, vol. 5, pp. 183-191, Dec. 1961.
[5] A. Peres, "Reversible logic and quantum computers," Phys. Rev. A, Gen. Phys., vol. 32, no. 6, pp. 3266-3276, Dec. 1985.
[6] T. Toffoli, "Reversible computing," MIT Lab for Computer Science, Tech. Rep. Tech memo MIT/LCS/TM-151, 1980.
[7] W. N. Hung, X. Song, G.Yang, J.Yang, and M. Perkowski, "Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis," IEEE Trans. Computer-Aided Design, vol. 25, no. 9, pp. 1652-1663, Sept. 2006.
[8] S. Kotiyal, H. Thapliyal, and N. Ranganathan "Design of a reversible bidirectional barrel shifter," in Proceedings of the 11th IEEE International Conference on Nanotechnology, Portland, Oregon, USA, Aug 2011, pp. 463-468.
[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. New York: Cambridge Univ. Press, 2000.
[10] S. Kotiyal, H. Thapliyal, and N. Ranganathan, "Design of a ternary barrel shifter using multiple-valued reversible logic," in Proceedings of the 10th IEEE International Conference on Nanotechnology, Seoul, Korea, Aug. 2010, pp. 1104-1108.
[11] S.Gorgin and A. Kaivani, "Reversible barrel shifters," in Proc. 2007 Intl. Conf. on Computer Systems and Applications, Amman, May 2007, pp. 479-483.
[12] V. Vedral, A. Barenco, and A. Ekert, "Quantum networks for elementary arithmetic operations," Phys. Rev. A, vol. 54, no. 1, pp. 147-153, Jul 1996.
[13] H. Thapliyal and N. Ranganathan, "Design of reversible sequential circuits optimizing quantum cost, delay and garbage outputs," ACM Journal of Emerging Technologies in Computing Systems, vol. 6, no. 4, pp. 14:1-14:35, Dec. 2010.
[14] N. Nayeem, M. Hossain, L. Jamal, and H. Babu, "Efficient design of shift registers using reversible logic," in 2009 International Conference on Signal Processing Systems, may 2009, pp. 474-478.
[15] I. Hashmi and H. Babu, "An efficient design of a reversible barrel shifter," in VLSI Design, 2010. VLSID '10. 23rd International Conference on, Jan 2010, pp. 93-98.
[16] H. Thapliyal and N. Ranganathan, "Design of efficient reversible logic based binary and bcd adder circuits," To appear ACM Journal of Emerging Technologies in Computing Systems, 2011.
[17] M. H. Khan and M. A. Perkowski, "Quantum ternary parallel adder/subtractor with partially-look-ahead carry," vol. 53, no. 7, 2007, pp. $453-464$.
[18] J. A. Smolin and D. P. DiVincenzo, "Five two-bit quantum gates are sufficient to implement the quantum fredkin gate," Physical Review A, vol. 53, pp. 2855-2856, 1996.
[19] H. Thapliyal and N. Ranganathan, "Design of efficient reversible binary subtractors based on a new reversible gate," in Proc. the IEEE Computer Society Annual Symposium on VLSI, Tampa, Florida, May 2009, pp. 229234.

