680 research outputs found

    FPGA implementation of embedded fuzzy controllers for robotic applications

    Get PDF
    Fuzzy-logic-based inference techniques provide efficient solutions for control problems in classical and emerging applications. However, the lack of specific design tools and systematic approaches for hardware implementation of complex fuzzy controllers limits the applicability of these techniques in modern microelectronics products. This paper discusses a design strategy that eases the implementation of embedded fuzzy controllers as systems on programmable chips. The development of the controllers is carried out by means of a reconfigurable platform based on field-programmable gate arrays. This platform combines specific hardware to implement fuzzy inference modules with a general-purpose processor, thus allowing the realization of hybrid hardware/soffivare solutions. As happens to the components of the processing system, the specific fuzzy elements are conceived as configurable intellectual property modules in order to accelerate the controller design cycle. The design methodology and tool chain presented in this paper have been applied to the realization of a control system for solving the navigation tasks of an autonomous vehicle

    FPGA Implementation of Embedded Fuzzy Controllers for Robotic Applications

    Get PDF
    Fuzzy-logic-based inference techniques provide efficient solutions for control problems in classical and emerging applications. However, the lack of specific design tools and systematic approaches for hardware implementation of complex fuzzy controllers limits the applicability of these techniques in modern microelectronics products. This paper discusses a design strategy that eases the implementation of embedded fuzzy controllers as systems on programmable chips. The development of the controllers is carried out by means of a reconfigurable platform based on field-programmable gate arrays. This platform combines specific hardware to implement fuzzy inference modules with a general-purpose processor, thus allowing the realization of hybrid hardware/software solutions. As happens to the components of the processing system, the specific fuzzy elements are conceived as configurable intellectual property modules in order to accelerate the controller design cycle. The design methodology and tool chain presented in this paper have been applied to the realization of a control system for solving the navigation tasks of an autonomous vehicle. © 2007 IEEE.Ministerio de Educación y Ciencia TEC2005-04359/MIC y DPI2005-02293Junta de Andalucía TIC2006-635 y TEP2006-37

    A design environment for synthesis of embedded fuzzy controllers on FPGAs

    Get PDF
    This paper presents a design environment for the synthesis of embedded fuzzy controllers on FPGAs. It provides a novel implementation technique that allows accelerating the exploration of the design space of fuzzy control modules, as well as a codesign flow that eases their integration into complex control systems and the joint development of hardware and software components. The set of CAD tools supporting this environment includes specific fuzzy logic design tools provided by Xfuzzy, FPGA synthesis and implementation tools from Xilinx, and modeling and simulation facilities from Matlab. As demonstrated by the analyzed design examples, the described development strategy takes advantage of flexibility and ease of configuration offered by the different tools to dramatically speed up the stages of description, synthesis, and functional verification of embedded fuzzy control system

    Neuro-fuzzy techniques to optimize an FPGA embedded controller for robot navigation

    Get PDF
    This paper describes how low-cost embedded controllers for robot navigation can be obtained by using a small number of if-then rules (exploiting the connection in cascade of rule bases) that apply Takagi-Sugeno fuzzy inference method and employ fuzzy sets represented by normalized triangular functions. The rules comprise heuristic and fuzzy knowledge together with numerical data obtained from a geometric analysis of the control problem that considers the kinematic and dynamic constraints of the robot. Numerical data allow tuning the fuzzy symbols used in the rules to optimize the controller performance. From the implementation point of view, very few computational and memory resources are required: standard logical, addition, and multiplication operations and a few data that can be represented by integer values. This is illustrated with the design of a controller for the safe navigation of an autonomous car-like robot among possible obstacles toward a goal configuration. Implementation results of an FPGA embedded system based on a general-purpose soft processor confirm that percentage reduction in clock cycles is drastic thanks to applying the proposed neuro-fuzzy techniques. Simulation and experimental results obtained with the robot confirm the efficiency of the controller designed. Design methodology has been supported by the CAD tools of the environment Xfuzzy 3 and by the Embedded System Tools from Xilinx. © 2014 Elsevier B.V.Peer Reviewe

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    FPGA-Realization of a Motion Control IC for Robot Manipulator

    Get PDF

    Type-2 Fuzzy Control of an Automatic Guided Vehicle for Wall-Following

    Get PDF

    FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Get PDF
    Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot
    corecore