8 research outputs found

    Computer-Aided Design of Switched-Capacitor Filters

    Get PDF
    This thesis describes a series of computer methods for the design of switched-capacitor filters. Current software is greatly restricted in the types of transfer function that can be designed and in the range of filter structures by which they can be implemented. To solve the former problem, several new filter approximation algorithms are derived from Newton's method, yielding the Remez algortithm as a special case (confirming its convergency properties). Amplitude responses with arbitrary passband shaping and stopband notch positions are computed. Points of a specified degree of tangency to attenuation boundaries (touch points) can be placed in the response, whereby a family of transfer functions between Butterworth and elliptic can be derived, offering a continuous trade-off in group delay and passive sensitivity properties. The approximation algorithms have also been applied to arbitrary group delay correction by all-pass functions. Touch points form a direct link to an iterative passive ladder design method, which bypasses the need for Hurwitz factorisation. The combination of iterative and classical synthesis methods is suggested as the best compromise between accuracy and speed. It is shown that passive ladder prototypes of a minimum-node form can be efficiently simulated by SC networks without additional op-amps. A special technique is introduced for canonic realisation of SC ladder networks from transfer functions with finite transmission at high frequency, solving instability and synthesis difficulties. SC ladder structures are further simplified by synthesising the zeros at +/-2fs which are introduced into the transfer function by bilinear transformation. They cause cancellation of feedthrough branches and yield simplified LDI-type SC filter structures, although based solely on the bilinear transform. Matrix methods are used to design the SC filter simulations. They are shown to be a very convenient and flexible vehicle for computer processing of the linear equations involved in analogue filter design. A wide variety of filter structures can be expressed in a unified form. Scaling and analysis can readily be performed on the system matrices with great efficiency. Finally, the techniques are assembled in a filter compiler for SC filters called PANDDA. The application of the above techniques to practical design problems is then examined. Exact correction of sinc(x), LDI termination error, pre-filter and local loop telephone line weightings are illustrated. An optimisation algorithm is described, which uses the arbitrary passband weighting to predistort the transfer function for response distortions. Compensation of finite amplifier gain-bandwidth and switch resistance effects in SC filters is demonstrated. Two commercial filter specifications which pose major difficulties for traditional design methods are chosen as examples to illustrate PANDDA's full capabilities. Significant reductions in order and total area are achieved. Finally, test results of several SC filters designed using PANDDA for a dual-channel speech-processing ASIC are presented. The speed with which high-quality, standard SC filters can be produced is thus proven

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl

    Efficient algorithms for arbitrary sample rate conversion with application to wave field synthesis

    Get PDF
    Arbitrary sample rate conversion (ASRC) is used in many fields of digital signal processing to alter the sampling rate of discrete-time signals by arbitrary, potentially time-varying ratios. This thesis investigates efficient algorithms for ASRC and proposes several improvements. First, closed-form descriptions for the modified Farrow structure and Lagrange interpolators are derived that are directly applicable to algorithm design and analysis. Second, efficient implementation structures for ASRC algorithms are investigated. Third, this thesis considers coefficient design methods that are optimal for a selectable error norm and optional design constraints. Finally, the performance of different algorithms is compared for several performance metrics. This enables the selection of ASRC algorithms that meet the requirements of an application with minimal complexity. Wave field synthesis (WFS), a high-quality spatial sound reproduction technique, is the main application considered in this work. For WFS, sophisticated ASRC algorithms improve the quality of moving sound sources. However, the improvements proposed in this thesis are not limited to WFS, but applicable to general-purpose ASRC problems.Verfahren zur unbeschränkten Abtastratenwandlung (arbitrary sample rate conversion,ASRC) ermöglichen die Änderung der Abtastrate zeitdiskreter Signale um beliebige, zeitvarianteVerhältnisse. ASRC wird in vielen Anwendungen digitaler Signalverarbeitung eingesetzt.In dieser Arbeit wird die Verwendung von ASRC-Verfahren in der Wellenfeldsynthese(WFS), einem Verfahren zur hochqualitativen, räumlich korrekten Audio-Wiedergabe, untersucht.Durch ASRC-Algorithmen kann die Wiedergabequalität bewegter Schallquellenin WFS deutlich verbessert werden. Durch die hohe Zahl der in einem WFS-Wiedergabesystembenötigten simultanen ASRC-Operationen ist eine direkte Anwendung hochwertigerAlgorithmen jedoch meist nicht möglich.Zur Lösung dieses Problems werden verschiedene Beiträge vorgestellt. Die Komplexitätder WFS-Signalverarbeitung wird durch eine geeignete Partitionierung der ASRC-Algorithmensignifikant reduziert, welche eine effiziente Wiederverwendung von Zwischenergebnissenermöglicht. Dies erlaubt den Einsatz hochqualitativer Algorithmen zur Abtastratenwandlungmit einer Komplexität, die mit der Anwendung einfacher konventioneller ASRCAlgorithmenvergleichbar ist. Dieses Partitionierungsschema stellt jedoch auch zusätzlicheAnforderungen an ASRC-Algorithmen und erfordert Abwägungen zwischen Performance-Maßen wie der algorithmischen Komplexität, Speicherbedarf oder -bandbreite.Zur Verbesserung von Algorithmen und Implementierungsstrukturen für ASRC werdenverschiedene Maßnahmen vorgeschlagen. Zum Einen werden geschlossene, analytischeBeschreibungen für den kontinuierlichen Frequenzgang verschiedener Klassen von ASRCStruktureneingeführt. Insbesondere für Lagrange-Interpolatoren, die modifizierte Farrow-Struktur sowie Kombinationen aus Überabtastung und zeitkontinuierlichen Resampling-Funktionen werden kompakte Darstellungen hergeleitet, die sowohl Aufschluss über dasVerhalten dieser Filter geben als auch eine direkte Verwendung in Design-Methoden ermöglichen.Einen zweiten Schwerpunkt bildet das Koeffizientendesign für diese Strukturen, insbesonderezum optimalen Entwurf bezüglich einer gewählten Fehlernorm und optionaler Entwurfsbedingungenund -restriktionen. Im Gegensatz zu bisherigen Ansätzen werden solcheoptimalen Entwurfsmethoden auch für mehrstufige ASRC-Strukturen, welche ganzzahligeÜberabtastung mit zeitkontinuierlichen Resampling-Funktionen verbinden, vorgestellt.Für diese Klasse von Strukturen wird eine Reihe angepasster Resampling-Funktionen vorgeschlagen,welche in Verbindung mit den entwickelten optimalen Entwurfsmethoden signifikanteQualitätssteigerungen ermöglichen.Die Vielzahl von ASRC-Strukturen sowie deren Design-Parameter bildet eine Hauptschwierigkeitbei der Auswahl eines für eine gegebene Anwendung geeigneten Verfahrens.Evaluation und Performance-Vergleiche bilden daher einen dritten Schwerpunkt. Dazu wirdzum Einen der Einfluss verschiedener Entwurfsparameter auf die erzielbare Qualität vonASRC-Algorithmen untersucht. Zum Anderen wird der benötigte Aufwand bezüglich verschiedenerPerformance-Metriken in Abhängigkeit von Design-Qualität dargestellt.Auf diese Weise sind die Ergebnisse dieser Arbeit nicht auf WFS beschränkt, sondernsind in einer Vielzahl von Anwendungen unbeschränkter Abtastratenwandlung nutzbar

    NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

    Get PDF
    Digital filters are an important part of Digital Signal Processing (DSP), which plays vital roles within the modern world, but their design is a complex task requiring a great deal of specialised knowledge. An analysis of this design process is presented, which identifies opportunities for the application of optimisation. The Genetic Algorithm (GA) and Simulated Annealing are problem-independent and increasingly popular optimisation techniques. They do not require detailed prior knowledge of the nature of a problem, and are unaffected by a discontinuous search space, unlike traditional methods such as calculus and hill-climbing. Potential applications of these techniques to the filter design process are discussed, and presented with practical results. Investigations into the design of Frequency Sampling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved especially successful, improving on published results. An analysis of the search space for FS filters provided useful information on the performance of the optimisation technique. The ability of the GA to trade off a filter's performance with respect to several design criteria simultaneously, without intervention by the designer, is also investigated. Methods of simplifying the design process by using this technique are presented, together with an analysis of the difficulty of the non-linear FIR filter design problem from a GA perspective. This gave an insight into the fundamental nature of the optimisation problem, and also suggested future improvements. The results gained from these investigations allowed the framework for a potential 'intelligent' filter design system to be proposed, in which embedded expert knowledge, Artificial Intelligence techniques and traditional design methods work together. This could deliver a single tool capable of designing a wide range of filters with minimal human intervention, and of proposing solutions to incomplete problems. It could also provide the basis for the development of tools for other areas of DSP system design

    Wavelets and multirate filter banks : theory, structure, design, and applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 219-230) and index.Wavelets and filter banks have revolutionized signal processing with their ability to process data at multiple temporal and spatial resolutions. Fundamentally, continuous-time wavelets are governed by discrete-time filter banks with properties such as perfect reconstruction, linear phase and regularity. In this thesis, we study multi-channel filter bank factorization and parameterization strategies, which facilitate designs with specified properties that are enforced by the actual factorization structure. For M-channel filter banks (M =/> 2), we develop a complete factorization, M-channel lifting factorization, using simple ladder-like structures as predictions between channels to provide robust and efficient implementation; perfect reconstruction is structurally enforced, even under finite precision arithmetic and quantization of lifting coefficients. With lifting, optimal low-complexity integer wavelet transforms can thus be designed using a simple and fast algorithm that incorporates prescribed limits on hardware operations for power-constrained environments. As filter bank regularity is important for a variety of reasons, an aspect of particular interest is the structural imposition of regularity onto factorizations based on the dyadic form uvt. We derive the corresponding structural conditions for regularity, for which M-channel lifting factorization provides an essential parameterization. As a result, we are able to design filter banks that are exactly regular and amenable to fast implementations with perfect reconstruction, regardless of the choice of free parameters and possible finite precision effects. Further constraining u = v ensures regular orthogonal filter banks,(cont.) whereas a special dyadic form is developed that guarantees linear phase. We achieve superior coding gains within 0.1% of the optimum, and benchmarks conducted on image compression applications show clear improvements in perceptual and objective performance. We also consider the problem of completing an M-channel filter bank, given only its scaling filter. M-channel lifting factorization can efficiently complete such biorthogonal filter banks. On the other hand, an improved scheme for completing paraunitary filter banks is made possible by a novel order-one factorization which allows greater design flexibility, resulting in improved frequency selectivity and energy compaction over existing state of the art methods. In a dual setting, the technique can be applied to transmultiplexer design to achieve higher-rate data transmissions.by Ying-Jui Chen.Ph.D
    corecore