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Abstract

Wavelets and filter banks have revolutionized signal processing with their ability to process data
at multiple temporal and spatial resolutions. Fundamentally, continuous-time wavelets are gov-
erned by discrete-time filter banks with properties such as perfect reconstruction, linear phase and
regularity. In this thesis, we study multi-channel filter bank factorization and parameterization
strategies, which facilitate designs with specified properties that are enforced by the actual fac-
torization structure. For M-channel filter banks (M > 2), we develop a complete factorization,
M-channel lifting factorization, using simple ladder-like structures as predictions between channels
to provide robust and efficient implementation; perfect reconstruction is structurally enforced, even
under finite precision arithmetic and quantization of lifting coefficients. With lifting, optimal low-
complexity integer wavelet transforms can thus be designed using a simple and fast algorithm that
incorporates prescribed limits on hardware operations for power-constrained environments.

As filter bank regularity is important for a variety of reasons, an aspect of particular interest is
the structural imposition of regularity onto factorizations based on the dyadic form uvt. We derive
the corresponding structural conditions for regularity, for which M-channel lifting factorization
provides an essential parameterization. As a result, we are able to design filter banks that are
exactly regular and amenable to fast implementations with perfect reconstruction, regardless of
the choice of free parameters and possible finite precision effects. Further constraining u = v
ensures regular orthogonal filter banks, whereas a special dyadic form is developed that guarantees
linear phase. We achieve superior coding gains within 0.1% of the optimum, and benchmarks
conducted on image compression applications show clear improvements in perceptual and objective
performance.

We also consider the problem of completing an M-channel filter bank, given only its scaling
filter. M-channel lifting factorization can efficiently complete such biorthogonal filter banks. On
the other hand, an improved scheme for completing paraunitary filter banks is made possible by a
novel order-one factorization which allows greater design flexibility, resulting in improved frequency
selectivity and energy compaction over existing state of the art methods. In a dual setting, the
technique can be applied to transmultiplexer design to achieve higher-rate data transmissions.

Thesis Supervisor: Kevin S. Amaratunga
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

To See The Wood And The Trees

1.1 Wavelets - Mathematical Microscope

Wavelet transforms have emerged as a powerful tool for signal processing and mathematical

analysis over the past two decades [3, 19, 38, 72, 80, 108, 113, 129, 139, 144]. Wavelets are

functions that oscillate as a short wave, hence the name. Due to their compact support',

they can study and characterize efficiently the local behavior of a function, and consequently

are referred to as a "mathematical microscope." With wavelet transforms, functions or

signals are dissected according to the scale of the features present, and each component is

studied with a resolution matched to its scale. A compact representation is obtained.

The earliest wavelet basis was constructed by Haar back in 1910. It is the simplest ex-

ample of orthonormal wavelets, consisting of up and down box functions which compute

local differences and averages of signals. Since then, the field of wavelets was further de-

veloped independently in such disciplines as pure mathematics, physics, and engineering.

Many of these ideas merged in the 80's due to the French school [56,81-83], and the name

'This is to be contrasted with the conventional Fourier approach which uses infinite-support sinusoidal
functions for analysis. Though perfect in frequency resolution, the Fourier transform provides no information
on time localization at all. This is remedied by the compact support of the wavelet basis.
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wavelet was coined. A major advance in the field was the introduction of the multiresolu-

tion analysis (MRA) framework by Meyer and Mallat [70,71], which has connected wavelet

theory with discrete-time filter banks originally developed for subband coding of speech

[35, 36,47], leading to the discrete wavelet transform (DWT). In other words, wavelets and

the MRA framework are governed by a set of discrete-time filters (Chapter 2). Such one-to-

one correspondence enables one to study and design wavelets purely in the digital domain.

Furthermore, the filter bank representation leads to the fast wavelet transform (FWT).

Daubechies' well known work on compactly supported wavelets [34,37,38] has been the

foundation of a great amount of research in the field. In her design, a particular family of

compactly supported wavelets was constructed which possesses a certain flatness property in

the corresponding filters. These Daubechies wavelets have been employed in many applica-

tions ever since, and particularly in the FBI fingerprint compression specification [48] and in

the latest image compression standard, JPEG2000 [60,116]. One can arrive at the conclusion

that the signal/image processing community has been revolutionized by the development of

wavelet theory.

Extensions of conventional wavelet constructions have been made from two-band wavelets

to M-band wavelets [59,105, 129, 155], and even from scalar to vector wavelets [109]. More

recently, Sweldens proposed in 1996 a new framework, dubbed lifting, for a spatial-domain 2

based construction of wavelets [114], which includes the conventional wavelets as a spe-

cial case and allows for fast implementation, memory efficiency, and reversibility [39]. In

particular, integer-to-integer (wavelet) transforms have become possible based on this idea

[2, 20, 29,55,91,99, 152, 154].

2In particular, wavelets over bounded intervals and complex, unstructured geometries can be constructed
using lifting. Such wavelets, which are not translatation and dilation invariant (and hence cannot be con-
structed from classical Fourier domain approaches) were dubbed "the second generation wavelets" [115].
Recent research efforts have been geared toward designing second generation wavelets that facilitate local
refinement and incremental solution to the governing equations (usually in the form of a PDE or a boundary
integral equation) of a physical problem [4,5,7,21,112].
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1.2 Filter Bank Perspective

Perfect reconstruction filter banks were initially developed in the 1980's [35,127,137] inde-

pendently of wavelet theory. They have become an immensely popular signal processing

tool. The conventional discrete Fourier transform (DFT), and the discrete cosine transform

(DCT) used in JPEG and MPEG, are two examples of multi-channel filter banks. Figure 1-1

depicts a typical M-channel uniform filter bank.

The theories of wavelets and filter banks were unified within the framework of Meyer and

Mallat's MRA [70,71]. As we will see in Chapter 2, a given MRA corresponds to a perfect

reconstruction filter bank, but the converse is not always true, unless the filter bank satisfies

an extra property which is referred to as "zeros at r" for the conventional two-channel filter

banks. This important property is the regularity of the filter bank whose significance will be

reviewed in Section 2.4. One concentration of this thesis is to study the structural theory

x[n] H. z I iM --+ - -+ F~) -

H1(z) -- + tM-+M -+F1(z) -

H (z ) - - + tM- + M - - FM - z x n

Figure 1-1: M-channel uniform filter bank.

and design of regular perfect reconstruction filter banks.

1.2.1 Subband Decomposition with M-channel Filter Banks

From the analysis viewpoint, wavelets and filter banks are a tool for subband decomposition of

signals, their use being justified by the uneven distribution of signal energy in the frequency

domain [3]. The goal is to obtain an efficient representation of signals by way of energy

compaction.
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Conventional wavelets are two-band, corresponding to two-channel perfect reconstruction

filter banks (Chapter 2) which divide the frequency spectrum into lowpass and highpass

bands. They can be iterated in either of the two channels to achieve dyadic frequency

decompositions with desired characteristics. One can also design an intrinsic M-band filter

bank to achieve a finer subband partitioning and better frequency resolution, as opposed to

iterating two-band systems resulting in severe penalty on the system delay. Of course an

M-band system can be iterated in any channel as is done for M = 2. Figure 1-2 illustrates

the structure where the lowpass band is iterated ad infinitum, along with decomposition

of frequency spectrum. This is an M-band wavelet decomposition. Compared to M =

2, the basis functions are more compactly supported than the full dyadic wavelet packet

counterpart; subband energy compaction is improved over the conventional two-channel case

[3]. It can be shown that, as M increases, the wavelet coefficients decay faster and we obtain

a more compact representation (see Section 2.4 or [108]). Furthermore, the increased degrees

of freedom allow for optimal designs of the M-channel filter banks, by designing them so

as to adapt to signals of a particular nature and tailoring them for the given applications

(see, e.g., [45] for optimized and improved seismic data compression, and [122] for natural

image compression); orthogonality and symmetry of (real-valued) wavelet basis can coexist

for M > 2 which is not possible for the two-channel case [108] except for the trivial Haar

wavelet.

Examples of existing M-channel filter banks include the DFT [90], the DCT [100],

lapped orthogonal transform (LOT) [74], generalized LOT (GenLOT) [41], BiOrthogonal

LOT (BOLT) [132], generalized BOLT (GLBT) [119], lapped unimodular transform (LUT)

[63,98], etc.

1.3 Applications

Together, wavelets and filter banks have found applications in a wide variety of engineering

fields: feature detection [24,33,64,73,151] and classification [23], audio processing [42,75,76],

image compression [48,60,77,116,143,146-148,153], video compression such as MPEG4 and
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Figure 1-2: M-band wavelet. (a) tree structure of lowpass-iterated filter bank, (b) frequency
partitioning for M = 2 after four levels of iteration, (c) frequency partitioning for M = 4
after two levels of iteration.

H.26x [78,84,152], seismic data compression [45,46,141], biomedical applications (such as

ECG [43] and fMRI [67]), signal denoising [12,44,142,145,151], smooth signal interpolation,

data fusion [65], digital communications [32, 108, 129, 131, 150] (e.g. transmultiplexers used

in xDSL), analog-to-digital conversion [10,126,135,136], fault localization in CMOS circuits

[17], transmission line protection [96], signal reconstruction [16], regularization for feature

selection [62], solutions of large-scale partial differential equations arising from computer

simulations [4,5,8, 14, 15], etc.

In all cases, it is important to be able to design a filter bank which matches or adapts
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well to the nature of a given signal and application.

1.4 Objectives and Concentration

In this thesis, we will focus on the factorization strategies for the polyphase matrix char-

acterizing filter banks, motivated by the desire to build filter banks that achieve specified

design criteria (such as perfect reconstruction, orthogonality, phase linearity and regularity)

through the actual factorization structure, which offers a robust and efficient approach to

implementation and design.

1.4.1 Structure-Oriented Design Approach

M-channel perfect reconstruction filter banks can be designed and implemented using factor-

izations of their polyphase matrices. This structure-oriented approach robustly enforces the

most important property-perfect reconstruction, and also exposes the remaining degrees

of freedom for optimal design. An aspect of particular interest is the structural imposition

of regularity onto factorizations based on the dyadic form uvt with vtu = 1. Filter bank

regularity is important for a variety of reasons, as it determines the accuracy of wavelet ap-

proximations, the compactness of wavelet representations and the smoothness of the wavelet

basis, and it ensures no DC leakage in the subbands. Due to the approach taken, the re-

sulting filter banks are exactly regular regardless of the choice of free parameters, and they

have a higher approximation power and better energy compaction with no DC leakage, and

provide a smoother reconstruction given a bit budget. Both orthogonal and biorthogonal

filter banks with structural regularity will be considered, and a special dyadic form will be

derived that guarantees linear phase.

1.4.2 Lifting Structures and Multiplierless Approximations

But when it comes to finite-precision implementations, perfect reconstruction may not al-

ways be available; it all depends on how a particular implementation takes place. Further
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specialized structures are needed. For this purpose, Sweldens' conventional two-channel lift-

ing scheme has been found to be effective, always guaranteeing perfect reconstruction. An

important by-product is reversible integer-to-integer transforms, including integer wavelet

transforms for lossless coding. Moreover, lifting-based implementations of two-channel fil-

ter banks are memory-efficient and asymptotically faster than the already-efficient direct

polyphase implementation.

As a natural extension of Sweldens' factorization, we develop an intrinsic and systematic

M-channel lifting factorization, which extends the lifting benefits to arbitrary M-channel

perfect reconstruction filter banks, M > 2. The proposed structures take advantage of

simple inter-channel prediction steps to provide robust and efficient implementation. As a

result, perfect reconstruction is structurally enforced, even under finite precision arithmetic

and quantization of lifting coefficients. This leads to an approach (to be described below)

for designing low-complexity reversible integer-to-integer wavelet transforms, with prescribed

limits on hardware operations for use in power-constrained environments.

Although the lifting factorization allows for multiplierless implementations, it does not

guarantee the efficiency of a particular multiplierless approximation given fixed implemen-

tation resources, e.g., the number of adders. Of course, one could use trial and error until a

satisfactory multiplierless approximation is obtained, but this soon becomes intractable even

though there are just a few multipliers to approximate. Even if one could find a solution

with satisfactory performance (or accuracy), the implementation cost may not be efficient.

To address this practical issue, we propose an optimization algorithm for finding the optimal

multiplierless approximation subject to an adder budget. The method is simple yet fast and

effective, guaranteed to converge in a finite number of steps. During the design process,

one increases the adder budget until the desired accuracy is achieved, and the design is

guaranteed to be efficient. Reversibility is not lost since the lifting factorization is used.

1.4.3 Filter Bank Completion

Motivated by earlier work on filter bank design, we also study the problem of filter bank

completion given partial information about the filter bank. In particular, suppose we have
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designed part of the filter bank. The proposed completion algorithm will identify the causal

relations between the remaining free parameters, so as to enable design and parameteriza-

tion. In this way, one has the option to design a filter bank by sequentially designing the

individual filters, where each of the subproblems becomes easier to solve. Moreover, the

proposed completion algorithm is no longer constrained as its conventional counterpart -

given the filter length, the conventional approach is confined within a restricted set of filter

banks having only some fixed, minimal degrees of freedom for parameterization and design,

resulting in filter banks with moderate performance; on the other hand, we show how more

design freedom can be incorporated into the completed filter bank (given the same length

constraint) using the proposed completion algorithm, thus allowing for improved frequency

selectivity and energy compaction property.

1.5 Thesis Outline

In Chapter 2, we provide a brief review on fundamentals of wavelets and filter banks,

along with required background theory. Topics covered include wavelets and multiresolution

analysis, fast wavelet transforms, basics of perfect reconstruction filter banks, regularity,

degree-one and order-one dyadic-based building blocks, and matrix parameterization tech-

niques which are essential to the discussions of this thesis.

Chapter 3 develops the lifting scheme for arbitrary M-channel perfect reconstruction

filter banks, M > 2. We begin with the Euclidean algorithm which finds the gcd of M

Laurent polynomials, and show how repeated applications of the algorithm reduce the size

of the polyphase matrix, resulting in M-channel lifting factorization. We also propose a

specialized version of the Euclidean algorithm, dubbed Monic Euclidean algorithm, which

ensures that the gcd's leading coefficient is always unity. As a result, the corresponding

(monic) M-channel lifting factorization has a special property of unity diagonal scaling,

which is very desirable for finite-precision implementations. On top of this, multiplierless

or integer transforms are readily obtained without sacrificing the reversibility of the system.

Though formulated under a general setting, the proposed M-channel lifting factorization is
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specialized to paraunitary, unimodular, and a class of biorthogonal building blocks, as well as

block transforms such as the DCT. They are all minimum structures in the McMillan sense,

and enable a lifting-based filter bank parameterization, implementation, and design. They

can better initialize the design process as suggested by numerical experiments. Using the

proposed Monic Euclidean algorithm, the completion of perfect reconstruction filter banks

given some of the filters can be studied. The construction of multi-channel B-spline filter

banks is given as an example, which can potentially benefit numerical solutions of large-scale

PDE's.

Chapter 4 studies the design of regular paraunitary filter banks (PUFB) where the

regularity conditions are structurally enforced through the factorization structure, which

offers a fast, efficient, and robust design tool. Consequently, the filter banks are guaranteed to

be exactly paraunitary and regular, regardless of the free parameters in the lattice structures.

Both order-one and degree-one paraunitary building blocks are considered, enabling the

design of regular PUFBs with and without filter length constraint. The minimum length

requirement is derived. Linear phase specialization of the theory is made. Interestingly,

during the course of theory development, it was found that M-channel lifting factorization

(Chapter 3) possesses a physical interpretation in this context, and thus can conveniently

parameterize the problem. Conditions for, and important properties of, the regular lifting

structures are derived, along with their geometric interpretations. The resulting regular

PUFBs are shown to provide smoother reconstructions and outperform existing designs in

terms of transform-based image coding.

We then extend the study of structural regularity to a class of biorthogonal filter banks

in Chapter 5. The lattice considered can be regarded as a biorthogonal extension of that

used for PUFBs in Chapter 4. This biorthogonal extension enables more degrees of design

freedom, and in particular the analysis and synthesis banks are allowed to be significantly

different (e.g., having different lengths and/or degrees of regularity), which can be properly

exploited to match a given class of signals or applications. For example, one can optimize

the analysis bank for coding gain to improve energy compaction, and the synthesis bank for
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basis smoothness. We show how the structural conditions for regularity are derived, and

the designs are evaluated using image coding to demonstrate how regularity improves the

perceptual quality of compressed images.

Chapter 6 deals with the problem of completing a PUFB given its scaling filter Ho(z).

This is motivated by Chapter 3 where M-channel lifting is shown to facilitate completion

of a biorthogonal filter bank. However, as lifting steps are biorthogonal in nature, a PUFB-

specialized method is needed. On the other hand, this chapter is also motivated by earlier

work of Vaidyanathan et al. on PUFB design techniques [134]. We propose a novel order-one

factorization which relaxes the constraint on McMillan degree inherent in the construction

of [134]. In addition, the completion of linear-phase PUFBs has thus become possible. Fur-

thermore, the proposed order-one completion facilitates PUFB design by providing superior

results. Examples are given to illustrate the effectiveness of the proposed theory.

In Chapter 7, we consider the problem of approximating a given filter bank using only

integer arithmetic, i.e., bit shifts and adds. Particularly, we want to minimize the approxi-

mation error subject to some adder budget. Namely, the most accurate multiplierless approx-

imation is desired for a given number of adders - the more adders at our disposal, the more

accurate the multiplierless approximation can be. A simple yet effective quasi-coordinate

descent algorithm is proposed for finding the optimal adder allocation. Consequently, a de-

sired accuracy level is achieved using the fewest adders possible. Furthermore, to enforce

reversibility, the algorithm is built on top of the lifting factorization. By systematically find-

ing the optimal adder allocation given an adder budget, this algorithm avoids trial-and-error

multiplierless approximations, and it complements M-channel lifting factorization developed

in Chapter 3.

Finally, in Chapter 8 we summarize our main contributions and point out some future

research directions.
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Chapter 2

Review

In this chapter, we will review some background materials important for the thesis, including

perfect reconstruction filter banks (PRFBs) and the corresponding wavelets and multireso-

lution analysis (MRA) of the space of finite-energy functions. The significance of regularity

of filter banks and smoothness of the wavelet basis will be explained, followed by parame-

terization of matrices and important building blocks for PRFBs.

The unit impulse is denoted by 3[n] or J,. The output y[n] of a linear time-invariant (LTI)

system is its impulse response h[n] convolved with the input x[n], with y[n] = (h * x)[n] =

Em h[n - m] x[m] = Em h[m] x[n - m]. A filter h[n] is said to be causal if h[n] = 0, Vn < 0.

A filter h[n] is lossless if it is stable and allpass. If h[n] is of finite duration, the LTI filter is

said to be finite-impulse-response or FIR, as opposed to the infinite-impulse-response or IIR

filters for which h[n] has an infinite support in time. FIR filters are unconditionally stable

and can be efficiently implemented, and thus are preferred to their IIR counterparts [90].

Boldfaced characters will denote matrices and column vectors. OM and 1 M are the M-

vectors of all zeros and all ones, respectively. The identity and reverse identity matrices are

denoted by I and J. We use diag(A, B, . . ., C) to denote a (block) diagonal matrix composed

of A, B, ... , C along the diagonal. Subscripts will be used if the dimension is not clear from

the context. Complex conjugation is denoted by superscript *. The superscripts T and

t denote matrix transposition and conjugate transposition, respectively. The determinant
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and rank of a matrix A are denoted by det(A) and p(A), respectively. Such notations as

E(z) denote a matrix polynomial whose use is necessary in the context of PRFBs. The

tilde notation E(z) is defined to be the transposition of E(z-1 ) followed by conjugation of

coefficients (with z untouched). The M-dimensional Euclidean space is represented by RM,

with eo, el, ... , em-1 forming its standard basis. The symbols Z, N, R, and C denote the

set of integers, natural numbers, real numbers, and complex numbers, respectively.

2.1 Filter Banks

A filter bank (FB), as the name suggests, consists of a bank of filters, each of which can be

low-pass, band-pass, or high-pass, covering a different portion of the frequency spectrum.

When operating on a common input signal x[n] , these filters jointly decompose the input

into several subband signals, which are subject to further processing such as feature analysis

or compression. As this is equivalent to analyzing the frequency content of the input, the

corresponding filter bank is referred to as an analysis bank. Given the fact that input signals

of interest have an uneven distribution of energy in frequency, their subband decomposition

will result in an alternative characterization that is more compact [3].

It is usually required that a subband decomposition be invertible, because we want to

be able to reconstruct or synthesize the input signal from its subband representation. In

this case, no information loss should be introduced by the analysis bank, and there exist

another set of filters referred to as the synthesis filters which operate on the subband signals

to synthesize the input signal at the output of the filter bank.

Definition 2.1 (Perfect Reconstruction). A filter bank is said to have perfect reconstruc-

tion if the output, ,[n], of the synthesis bank is a delayed (and possibly scaled) version of the

input, x[n], i.e.,

, [n] = c - x[n - 2

for some c 4 0 and some integer f. Such a filter bank is referred to as a perfect reconstruction

filter bank or PRFB [108,129]. Without loss of generality, one can assume c = 1.

34



In performing the subband decomposition, a PRFB can introduce redundancy to the

subband signals, in which case the overall sampling rate is increased and the subband repre-

sentation is said to be overcomplete. Some examples of overcomplete or oversampled PRFBs

can be found in [49,51,69]. In this thesis, we will focus only on the class of PRFBs which pre-

serve the overall sampling rate, i.e. which do not introduce redundancy nor information loss.

Such PRFBs are called the maximally-decimated or critically-sampled filter banks. They de-

pend additionally on the rate change operators (downsamplers and upsamplers) to perserve

the overall sampling rate. In particular, we are interested in the maximally-decimated uni-

form filter banks where all the downsamplers have the same downsampling factor equal to

the number of channels, M, as shown in Figure 2-1(a). In what follows, the term PRFB will

refer exclusively to the maximally-decimated uniform filter banks.

2.1.1 Maximally-Decimated Uniform Filter Banks

Figure 2-1(a) depicts an M-channel maximally-decimated uniform filter bank [87, 113,129]

with analysis and synthesis filters Hj(z) and F(z), respectively, for i = 0, 1, ... , M - 1. The

sampling rate of each subband is 1 of that of input x[n], and therefore the overall sampling

rate of the subbands is equal to that of x[n], resulting in a non-redundant representation

- it is maximally decimated or critically sampled because any further decimation of the

subband signals will result in information loss and render perfect reconstruction impossible.

To satisfy PR, we first need to understand the possible sources of error in the filter bank.

As downsamplers are involved in the system, aliasing [90,108] will in general be observed at

the output [n]. In particular, one can show that the output :[n] in Figure 2-1(a) is related

to the input x[n] as follows:

A TO(z) A Tk(z)

1 M-1 M-1 M

X(z)= ( Fz)H(z)) X(z)+= (ZFi(z)Hi(zWk)) X(zWk) (2.1)

amplitude distortion aliasing components
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(a) M-channel maximally-decimated uniform filter bank
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(b) Frequency spectrum partitioning

Figure 2-1: M-channel maximally-decimated uniform filter bank with perfect reconstruction,
where [n] = c x[n - E] for some c -, 0 and integer f which is the system delay. Hi(z) and
Fi(z) denote the analysis and synthesis filters, respectively, i = 0, 1, . . , M - 1.

where W A e-j2r/M. Note that there are two sources of error in (2.1): amplitude distortion

due to imperfect To(z) and aliasing as a result of non-vanishing Tk(z), 1 < k < M - 1. To

avoid amplitude distortion, we require that To(z) = z~', which is called the distortion free

condition and requires To(z) be simply a delay. In this case, the reconstructed signal Z(z)
is a superposition of X(z) and a linear combination of the aliasing components X(zWk).

It is clear that we also need to set Tk(z) = 0 for 1 < k < M - 1 to eliminate the aliasing

components. This is called the alias cancellation condition. The objective of filter bank

design is to find a set of PR filters Hi(z) and F(z) such that both conditions hold.

The PR conditions implied from (2.1) can be written in the following matrix form

T (z) T,(z) .. . T_(z)] = [FO(z) F(z) ... F..(z) Hm(z)
M (2.2)

= z- [1 0 ... 0]
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where Hm(z) is the analysis modulation matrix defined as

Ho(z)

Hi(z)

HO(zW)

H1(zW)

HMl_(z) HMl_(zW)

... H 0(zWM-1)

... H1(zWM-l)

... HM-1(zW M - 1)

From (2.2), it is clear that an FIR analysis bank has an FIR synthesis bank that gives PR

if and only if det{Hm(z)} = nonzero monomial in z. Note that it is impossible for an FIR

single filter (as opposed to filter bank) to have an FIR inverse' - the inverse is at least IIR,

let alone stability [90], as illustrated below.

FIR h[n]

n -
0 1

Unstable IIR
Inverse

0 1 2

FIR h[n] Stable hIR Inverse

0 n

0 1 2

The synthesis modulation matrix Fm(z) can be similarly defined as follows

Fo(z)

F0 (zW)

F0 (zWM-1)

Fi(z)

F1 (zW)

F1 (zWM-1)

... FM-_(z)

... FM-1(zW)

... FM_1(zW M - 1)

Note the transpose convention between Hm(z) and Fm(z). Then, substituting zW' for z in

'Except for a simple delay z-k, which is just trivial.
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(2.2) followed by rearranging results in

Fm(z)Hm(z) = Mz-

1

W-e

W-f(M-1)

(2.5)

for a PRFB.

In the time domain, one can show that the above PR conditions are equivalent to the

following M-shift biorthogonality between filters h,[-n] and fk[n + f]:

(2.6)E hi[-n] fk[n+ Mp+f] = 6[p] [i - k]

which implies that each product filter P(z) A F2 (z)Hi(z) is an Mth-band filter [86,88,95,

108,149], satisfying

A [Mn + f] = 6 [n].

2.1.2 Polyphase Representation

An analysis filter Hi(z) = E hi[n]z-- can be uniquely decomposed into M phases Eg,(z),

j = 0,..., M - 1, as follows:

M-1

Hi(z) = E
j=0

z-j Eij (zM), Eij(z) = E hi[Mn + j] z-
n

(Type-I polyphase)

= 0,1, ... , M - 1. This is the Type-I polyphase representation of filter Hi(z). Egj(z) is

called the jth phase of filter Hi(z). Extending this idea to the entire analysis bank, we

obtain the Type-I polyphase matrix E(z) of the analysis bank given by

[E(z)1. =Eii (z),
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x[n]

Z-

Z-1
z.

E(zM)

,M +M 

M -+fM

+M -Mm

R(z M)

-1

x[n]
z1

Figure 2-2: Equivalent polyphase representation of the M-channel maximally-decimated
uniform filter bank shown in Figure 2-1(a).

It follows that the analysis filters Hj(z) are related to E(z) via

Ho(z)

H,(z)

HM1 (z)

= E(zM )

1

z--

1)

(2.7)

Similarly, the Type-II polyphase matrix R(z) of the synthesis bank is defined to be

= Ri(z) = f4[Mn + M - j - 1] z~"
n

(Type-II polyphase)

so that
M-1

F(z) = z-(m-1-j)Rji(zm)
j=0

and that the synthesis bank can be expressed in terms of R(z) as

.. FM-1(z) = [z-(M-1) z-(M-2) ... z-1 1] R(zM).

Rji(z) is referred to as the jth (Type-II) phase of filter F(z). Both (2.7) and (2.8) provide

an equivalent matrix characterization of the filter bank, as depicted in Figure 2-2. It can be

further simplified by switching the matrix filters E(zM) and R(zM) with the downsamplers

and upsamplers, respectively. The validity is furnished by the Noble Identities [108, 113]
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(a) The first Noble Identity

1'T M -* H(zM) :H(z) - M
(b) The second Noble Identity

Figure 2-3: The Noble Identities.

x[n] Mt

V E(z) R(z) I -1xnz~z

M -11 --+m M0

Figure 2-4: The more efficient polyphase representation with the Noble Identities applied.

illustrated in Figure 2-3. Figure 2-4 shows the resulting simplified polyphase representation.

The main difference between Figures 2-2 and 2-4 is a more efficient rate of operation - the

filtering in Figure 2-4 is done at -y of the input rate, while in Figure 2-2 the filters within

E(zM) operate at the input rate with only y of the computed results kept.

In summary, the analysis bank is equivalent to a multi-input multi-output (MIMO) linear

system represented by E(z), and similarly for the synthesis bank. As the mapping between

the filters and the polyphase matrices is one to one, the filter bank has PR if and only if

the corresponding polyphase matrix is non-singular. In particular, we have the following

necessary and sufficient condition for perfect reconstruction (PR) [129:

Theorem 2.1 (Polyphase Representation and Perfect Reconstruction). An M-

channel maximally-decimated uniform filter bank with analysis and synthesis polyphase ma-

trices E(z) and R(z), respectively, has PR if and only if

R(z) E(z) = c z-L [(M-r)xr IM-r (2.9)

Lz-~ r Orx(M-r)j
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for some integer r with 0 < r < M - 1, some integer L, and some constant c # 0.

This is a fundamental theorem on the polyphase representation of a PRFB. In fact, the

polyphase representation holds the key to design and implementation of a PRFB. If we know

how to design a suitable non-singular polynomial matrix E(z) with good desired properties,

we solve the filter bank design problem. Moreover, the special structures or building blocks

used in the design process also serve as a means of efficient implementation. In this thesis,

we will focus on such structure-oriented approaches to filter bank design/implementation

with desired properties structurally imposed.

In practice, FIR PRFBs are preferred to IIR ones as the former can be efficiently im-

plemented without the stability problem. One can show that an FIR analysis bank has a

PR FIR synthesis bank if and only if det{E(z)} = nonzero monomial in z. For a PRFB

satisfying (2.9), the reconstructed signal is given by

x[n]=c-x[n-n], nd=ML+r+M-1

which is a delayed and possibly scaled version of the input x[n]. The overall system delay is

f = ML + r + M - 1 so that To(z) = cze. Without loss of generality, we will assume r = 0

and c = 1 throughout this thesis.

2.1.3 Lifting Scheme

Daubechies and Sweldens demonstrate that any two-channel perfect reconstruction filter

bank can be factored into lifting steps [39]:

E(z) = [z)
0 1/K =10 1 ti (z) I

for some nonzero constant K and some Laurent polynomials si(z) and ti(z), i = 1, 2, ... , m.

The filters si(z) and ti(z) are referred to as the lifting steps. The lifting scheme provides

a faster and in-place implementation, and is trivial to invert-just reverse the order of the
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(a) Analysis bank E(z) (b) Synthesis bank R(z)

Figure 2-5: Sweldens' two-channel lifting scheme [39].

lifting steps and change signs. See Figure 2-5. The invertibility is structurally enforced by

lifting. As a result, one can apply any nonlinear operations to the outputs of lifting steps

without losing reversibility. Based on this principle, rational- and dyadic-coefficient perfect

reconstruction filter banks are readily obtained. We will develop an M-channel version of

lifting scheme in Chapter 3.

2.1.4 Categories of Filter Banks

A PRFB is either orthogonal or biorthogonal. Generally speaking, an analysis FB with a

non-singular polyphase matrix E(z) is said to be biorthogonal, in which case the synthesis

polyphase matrix can be chosen to be

R(z) = z-{E(z)} 1 , some integer f (2.10)

from which the synthesis filter F(z) can be determined using (2.8). For all practical purposes,

E(z) is usually FIR. However, FIR R(z) is not necessarily guaranteed by (2.10), unless the

determinant of E(z) is a monomial c z- for some c # 0 and L E Z.

If additionally E(z) is unitary on the unit circle Jzf = 1, namely,

{E(ei)} 1- = {E(esi)}t = {E(e-w)}T ,

if real-valued FB

the FB is called orthogonal or paraunitary (PU), and the synthesis filters are just time-

42



reversed or flipped versions of the analysis filters. In particular, one can choose

R(z) = E(z) or R(z) = z-dE(z), some d E N

for a PUFB. Namely, the inverse of E(z) is just its conjugate transposition followed by

time-reversal of the polyphase components (z - z'). Along with (2.8), this accounts for

the time-reversal relation between the analysis and synthesis filters. Namely, the synthesis

filters can be found directly from the analysis filters by inspection (time reversal and complex

conjugation) [129].

Another important subclass of PRFBs is the unimodular filter banks, for which not

only need det{E(z)} be a monomial, but it has no z dependency, i.e., it is a constant.

The importance of unimodular filter banks lies in that they achieve the minimal system

delay among all PRFBs given the number of channels, M, regardless of the filer length

[98,129]. This is a desirable property for real-time signal processing such as audio processing.

Moreover, it has been established that any causal FIR PR E(z) can be factored as a product

of a PU matrix and a unimodular matrix [128]. As PUFBs are known to have a complete

structure [50,52,129], we can parameterize all PRFBs if we know how to completely cover

the entire space of unimodular FBs.

In this thesis, we will consider exclusively causal and FIR PRFBs.

2.1.5 Performance Criteria

Several criteria can be used to evaluate the performance of a PRFB [122], including DC and

mirror frequency attenuation, stopband energy, transform coding gain, etc. Among them,

stopband energy is the most general criterion which is the L 2 norm of stopband frequency

responses, defined as
M-1

ctop= S f Hi(ej) 12 dw (2.11)
i=O 'i

for the analysis filter bank, where Qi denotes the stopband for filter Hi (z). It measures

the frequency selectivity of the analysis filters. See Figure 2-1(b) for typical passbands and
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stopbands of the filters. Stopband energy is similarly defined for the synthesis bank. Note

that Cstop has a closed-form expression in terms of the autocorrelations of the hi[n]'s [129].

Better frequency selectivity is achieved if stopband energy is minimized. For ideal brick-wall

filter banks, stopband energy is zero, which has been shown to be necessary for optimal

orthogonal [130] and biorthogonal [133] subband coders.

Similar to stopband energy is stopband attenuation which is the L' norm of stopband

frequency responses:
M-1

Catt = sup IHi(ew) (2.12)
i=0 WCQ 1

where Qj denotes the stopband for filter H (z). By minimizing Catt, filters with equiripple

stopband response are obtained.

Transform coding gain measures how well the signal energy is compacted in the subbands

or the transform domain, and is defined as

a.2
G = 10 logo 1 (2.13)

(f[r o Xlfill)

where ox and Or. refer to the variance of the input and the ith subband, respectively, and

|ffill is the 2 -norm of synthesis filter F(z). Maximizing G is equivalent to minimizing the

mean square reconstruction error due to subband quantization [130]. To compute G, a

commonly used model for natural signals is AR(1) with inter-sample correlation p, for which

the subband variance can be computed as

( 2 = Z S hi [m]hi [n] p -"I.
m n

Given a signal model such as AR(N), better coding gain can be obtained by filter banks

with more channels, i.e., larger M. In fact, the optimal coding gain is an increasing function
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of M, and has been established in [1] to be

2

1 M S,, (ej) d
G 4M2 -x (2.14)

4M2 _1(k) o-2 27r
.k=1

where Sxx(ejw) denotes the power spectral density (PSD) of the input signal. This optimal

value is obtained by allowing ideal brick-wall filters. Therefore, FIR solutions cannot achieve

this optimum, but the difference can be quite negligible as we will see in the design examples

of Chapter 5. Figure 2-6 plots G for various values of M, along with coding gain of the

KLT.

2

Coding Gain in dB

4 6 8 10
Number of channels M

12 14 16

Figure 2-6: Optimal coding gains versus the number of channels M.

2.2 Order and McMillan Degree of PRFBs

Consider an M x M FIR causal polynomial matrix E(z). The McMillan degree and the order

of E(z) are two distinct but important concepts. The (McMillan) degree of E(z) refers to the

minimum number of delay elements required for its implementation. A minimal structure

of E(z) is one which uses this minimum number of delay elements in it; as a contrast, the
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order of E(z) refers to the highest power of z- 1 in (causal) E(z). In particular, since E(z)

is assumed to be causal and FIR, one can always write E(z) = A 0 + Aiz-I + ... + ANZ-N

for some coefficient matrices Ai and some integer N with AN -/ 0. We see that the highest

power of z- is N, which is the order of E(z).

A (causal FIR) PRFB is said to have degree (or order) N if its polyphase matrix has

degree (or order) N. Note that the degree can be greater than the order. In terms of

the filters, for an M-channel E(z) of order L, the filters H (z) will in general have lengths

M(L + 1). However, a PUFB of length M(L + 1) can have degree ranging from L to ML.

For example,

E(z) = z-I = z-1 -

is order-one, but has degree two, because a minimum of two delay elements are needed for

its implementation:

x0[n] oz-y 0[n]=x0[n-1]

Xn] yjn]=x[n-1]

On the other hand, consider the following 2 x 2 system:

E(z) = z-[ 1 2] _ [1] z- [1 2]

which has degree one because the single delay element can be shared between the two chan-

nels:

x0I[n] yoI~n]
21 Z_11x, [n] 20 Z- yj [n]

In general, the degree of z-'A is p(A), the rank of A [129]. As another example,

1 0 0 1 0 0 0 0 0~

E(z) = z-1 1 0 = 0 1 0 + z-1 1 0 0

L1 z-1 1 1 0 1 0 1 0_

is order-one and degree-two.
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2.3 Wavelets and Multiresolution Analysis

Strictly speaking, wavelets are for analysis of continuous-time functions in a multi-resolution

fashion [38, 103, 108, 110, 111]. The term "multiresolution analysis" (MRA) refers to the

sequences of nested subspaces of the Hilbert space L2 (R):

Primal {0}- ... c V-1 C Vo C V C.. - L 2(R) (2.15a)

Dual {0}+- . .C. CV 1 C o C V 1 C ... - +L2 (R). (2.15b)

These subspaces VX and 9 represent coarse approximations of L 2 (R) at different resolutions

indexed by j, where a larger j corresponds to an approximation subspace of higher resolution

or detail. The reason for having two such sequences of nested subspaces is to allow for

birothogonal wavelet bases for function expansion (to be elaborated below). In the spirit of

MRA, we require the spaces V and Vo be shift-invariant, i.e., they are spanned by translations

of a single function, called the scaling function, as given by

Vo = span{$(t - n) : n E Z}, (2.16a)

VO = span{q$(t - n) : n c Z}, (2.16b)

where 4 and are the respective scaling functions of the two spaces. The nested subspaces

are then related by time scaling defined by

V = span{5Yn : n E Z}, (2.17a)

Vi = span{< O' : n E Z}, (2.17b)

where n5$(t) A My/ 2 g(Mit - n) and the same is for <Y4. Scaling functions at the same

resolution are required to be biorthogonal to each other:

9 q, I ,,) = 6nn,, V j, n, n' E Z. (2.18)
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The complement of V in j+1 is constructed as the union of M - 1 subspaces Wj,

k = 1, 2, ... , IM-1,

M-1

V+ Z W =V +1 (2.19a)
k=1

M-1

l +V= j+1. (2.19b)
k=1

Each W or Wk consists of detail at different frequencies. Per MRA, the Wk are also required3 3 .

to be shift-invariant, spanned by translates of Mj/12k(Mjt) for some function ?k(t), called

the mother wavelet, as follows:

wk = span{f kn : n C (2.20a)

where 'Vj (t) A Mj/ 2 /k(Mjt - n) are the scaled and translated versions of the mother

wavelet. Similarly for the dual subspaces W':

j, = span{i O : n E Z}. (2.20b)

The wavelet bases jn and j' ,, are also required to be biorthogonal to each other and to

their dual scaling functions at coarser resolutions:

K n, /)i,n) = 6jj' 6 kk' 6nn' (2.21a)

Kn, , = k, VJ' j (2.21b)

K , 0j, = 0, VJ f '. (2.21c)

Altogether, the WJ (WJ) represent the detail information needed in going from Vj to Vj+ 1

(from fr. to X§+1 )-
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2.3.1 Dilation and Wavelet Equations

Due to (2.15) and (2.19), there exist some discrete-time filters hi and fi, i = 1, 2,.. ., M - 1,

which relate the wavelets and scaling functions at two consecutive scales by

dilation equations

Primal q(t)= M fo[n] (Mt - n),
n

Dual q(t)= M E o[n] (Mt - n),
n

where the normalization is E, h0o[n] = E fo [n]

of the MRA and are referred to as the dilation

terms of the notation q,$(t) = Mj/ 2 O(Mit - n),

#( ) =fo[n] #' (t),
n

q$(t = ~ ho[ri] q$'(t),
n

wavelet equations

0i (t) = IM 1fi [n] # (Mt - n)
n

()= VM 7hi [n] q(Mt -rn)
n

(2.22a)

(2.22b)

= M. These are the governing equations

and wavelet equations as noted above. In

they can be more compactly written as

n

n

(2.23)

which is also intuitive if one notes

0(t) E V C V = span{fo : n E Z}.

Namely, the fo[n] are the expansion coefficients of 0(t) with respect to the basis {#j}. Similar

comments apply for the other filters.

2.3.2 Wavelet Series Expansion

Given a function f C L 2 (R), there exist expansion coefficients cj[n] and dj, k[n] (and their~

versions) such that
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fj = (P7f)(X)
___ ( ) = c __ 00

(X) = i c[n]q0'(x) +Z

n

= aJ
n

[n]q (x) +

1i rk EW
M-1,

dj,k [n] V)
j=J k=1 n

00 M-1

1: E E dj,k[n] j,n (X)
j=J k=1 n

for an arbitrary initial resolution index J, which can be chosen to be 0 without loss of

generality. As defined, fj is the projection of f onto the subspace Vj. The expansion

coefficients can be computed as inner products of f with the dual wavelet basis:

cj [n] =

j [n] = (f, 7 ,n'

dJ,k[n] =(f, jn)

ji, k[n] = (fI j,n) .

(2.26)

(2.27)

as a result of the biorthogonality conditions (2.18) and (2.21).

2.3.3 Fast Wavelet Transform and PRFB

The fast wavelet transform (FWT) relates efficiently the projections of f c L2(R) at two

consecutive resolutions, )P9f (E Vj and Pj+1f E Vj+i. Without loss of generality, let us

consider Pof and Pif. By definition, there exist expansion coefficients co[n] and c1 [n] such

that

(Pof)(t) = Eco[n]04(t) = Eco[n]#(t - n)
n

(Pif)(t) = ci [n]i 0'(t) =
nn

n

M -1

(Pof) (t) + 1E do,[n] k(t - n)
k=1 n

and that co[n] = f, q(- - n)). However, since Vo C V C L2 (R), we further have

co[[n] = KPif, $(- - n)) .
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Forward FWT

The forward FWT computes cj[n] from cj+i[n]. Substituting (2.29) into (2.30) gives

co[n] = JEc1[n']#0,(t) ho[ ]5(t - n)dt ...... using (2.23)

= ZZC1[n']Iho I] Kn, M vn+e)
n/ fe.

= Z c1[Mn + f]Iho[]

= Z c1[Mn + f}h0 [-C] = (c, * ho)(Mn)

which is a convolution of c1 [n] and ho [n] followed by M-fold downsampling. Similarly, the

wavelet coefficients do,k[n] can be computed by

do,k[n] = P1fk(- = ( c1[Mn + f]Ikf]

(2.31b)
= Z c1 [Mn + f]hk[-t] = (c1 * hk)(Mn)

for k = 1, 2, ... , M - 1. Eqn. (2.31) is referred to as the forward FWT.

Inverse FWT

To derive the inverse FWT, which synthesizes cj+1 [n] from cj[n] and dj,k[n], substitute (2.28)

into (2.29) and use the dilation and wavelet equations (2.22) or (2.23), obtaining

E ( co[n]fo[f]
n t (

M-1

+ Z do,k[n]fk[f] On+
k=1

M-1

= > co[n]fo[n' - Mn] + S do,k[n]fk[n' - Mn] 0',(t)
n n' k=1
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c1[n ] H 0 (z ) c [n] FM z)(- +

H1(z) d 1 [n] F 1(z)

H (z) [nd]n] F

Figure 2-7: Filter bank interpretation of the fast wavelet transform (FWT)

As , ci Z, form a basis for V 1, it follows that

M-1

c1[n] Z co[n'fo[n - Mn'] + 1 do,k[n']fk[n - Mn']
n/ k=1

= (fo* (T M)co) [n] +

(2.32)
Mj1

1:f * (I
k=1

which is the inverse FWT.

It is apparent from (2.31) and (2.32) that the FWT admits a filter bank interpretation as

Figure 2-7 illustrates, where the analysis filters H (z) correspond to the time-reversed filters

hi[-n], while the synthesis filters F(z) correspond to exactly the filters fi[n].

Note that one may as well consider the projections onto the dual subspaces Vj and T/+±

as we did in (2.25) and (2.27). In this case, we will still have a similar FWT algorithm for

which the corresponding analysis bank consists of fi[-n] and the synthesis bank hI[n].

2.3.4 Cascade Algorithm and the Inner Product Formula

The solution to the dilation equation with filter h, E h[n] = 1,

#(t) = M h[n] # (Mt - n),
n=o

some N E N

52

(2.33)

M)do,k [n],



governs the underlying MRA. This fundamental equation can be solved by the following

iterations:
N

q0$+1)(t) = M h[n]( )(Mt - n), i = 0,1,2,... (2.34)
n=O

called the cascade algorithm. Usually 0() = a box function over [0,1). In fact, any #(0) that

satisfies E 0(0) (t - n) = 1 can be used to initialize the cascade algorithm [108, Prob. 7.2.4].

The existence of a finite-energy (or L 2) solution to the dilation equation (2.33) can be

examined by calculating the inner products of #0() and its translates [108]:

a() [k] A j ()(t)# ow(t + k)dt, -oc < k < oo,

the rationale being that if lim 0#') is in L2 , the inner products converge, i.e., lim a( [k] exist.

As OW (t) is compactly supported on [0, N), the inner products aW [k] = 0 for all kI > N.

Note that a( [k] = a( [- k] and that a(') [0] = #(i|12 = energy of q0(). Across iterations, these

inner products are connected by the transition matrix T, which governs the convergence of

the inner products. In summary, the cascade algorithm converges if and only if the inner

products do, in which case the eigenvalues of T should not exceed 1 in absolute value, with

1 being a non-repeated eigenvalue. The matrix T also characterizes the smoothness of the

scaling function.

Transition Matrix

Consider the vector of inner products

am = (a()[1 - N] ... a('[0] ... a()[N - 1] )T

Due to the cascade algorithm, one expects a('+') and a(') to be related. To see this, substitute

(2.34) into the definition of a(+) [k] and obtain
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a(i+1) [k] = M2 5 E h[f] h[n] j 0() (Mt - f)q( (Mt + Mk - n)dt
t=O n=O - *

= ME E h[t] h[n] j (r - f)q( (T + Mk - n)dT
£=O n==O

N N

= M h[i] h[n] a(' [Mk - (n - f)]
f=O n=O

N N

= M n: ( h[C] h[n' + f] a(') [Mk - n']
n'=-N \f=0/

N

=M 5 h*h T (n')a()[Mk- n']
n'=-N

N-1

= M 5 h * hT(Mk - m) a() [m] = M(tM)h * hT a() [k]
m=-N+1

(2.35)

fork E {-N+ 1 ... , N - 1}. In matrix form, this is

a(+' - (I M)MHHTa(') A T a(')

or equivalently

a(') = T' a(0 )

where H is the convolution matrix of filter h and T is referred to as the transition matrix.

Note that the power method a('+') = T a( connects the inner products due to one iteration

of the cascade algorithm. The right eigenvector of T w.r.t. a simple eigenvalue 1 gives the

inner products of lim 0#') and its translates. The other eigenvalues should be less than 1 in
i *00

magnitude for the power method to converge. Then, L 2-convergence of the cascade algorithm

becomes convergence of the power method.

Based on (2.35), the entries of T can be computed as follows, where Rhh denotes the

autocorrelation of h:
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for i= -N+1: N--1
for j= -- N+1: N -1

m M*i -;

if (m < -N+1) |t (m > N -1)
Tij = 0;

else
Ti1 = M * Rhh(m);

end
end

end

We note below an efficient MATLAB implementation to construct the transition matrix cor-

responding to a given filter h:

function T = transmatrix(h, M)
YTRANSMATRIX Computes the M-band transition matrix
Oj T = (\down M) M*H*H'

% associated with a filter h.

h = h / sum(h); N = length(h)-1;

Rhh = conv(h, h(end:-1:1));
n = 2*N+1; T = zeros(n,n);
[jj,ii] = meshgrid([-N:N]);

idx = M*ii-jj+N+1;
T(idx>=1 & idx<=n) = M*Rhh(idx(idx>=1 & idx<=n));

Infinite Product Formula for @(w)

By taking the Fourier transform of (2.34) and iterating, we obtain that of lim 0()t):

(i)(w) = (1(0)(w/Mi) 17 H(w/M'),
j=1

(2.36)D(w) = fJ H(w/M)
j=1

where the normalization is f 0(0)(t)dt = 1.

Iterated Filter Bank Approach to Scaling Function Computation

Computationally, the cascade algorithm (2.34) can be efficiently implemented using iterated

filter banks. The idea is to treat discrete-time signals as samples of a continuous-time
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signal. As the cascade algorithm usually begins with 0(o) (t) = a box function over [0, 1),

the corresponding (initial) discrete-time signal y(o) [n] is chosen to be 0(O) (n) = 6[n], the

sampling rate being 1. Now, for 0(l)(t), we want to increase the sampling rate by a factor of

M, resulting in y(1 )[n] A lM)(1). In general, we will sample according to y(')[n] A OW( n)

in order to increase the sample density. One expects that in the limit the "entire" curve of

0(t) will be captured.

By definition of the cascade formula (2.34), one has

y () [n] = M E h[k]# 0 ) (M - k) = M(h * y( 0))[n] = Mh[n].
k

The samples of the next iteration are then

y G[n]2= 0 ( 2 ) = M h[k]0() M 2 - k) = M h[k]y 1 )[n - Mk]
k k

= M ({(TM)h} * y(1)) [n]

= M2 {(TM)h} * h) [n] = M {(TM)y()} *h) [n].

Another iteration will reveal the general rule:

(3 ) [n] = 0(:3) ( = ML h[k]#02 ) ( - k) = M E h[k]y( 2 ) [n - M 2 k]
k k

= M {(TM) 2h} * y [n] = M 3 {(TM) 2h} * {(TM)h} * h) [n]

= Mh * M2 ({(IM) 2 h} *{(TM)h}) [n] = M({(TM)y(2) }*h[n].

(TM)y(
2)

After K iterations, we have

y(K) O(K) ( K {(TM)K-1A [] (jK) K M h} * (M)h} * h) [n] (2.37)

= M( {(TM)y(K-1)} h) []
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which has the following filter bank interpretation:

Mh[n] - M -+ MH(z) - M -- MHMz) ... >(

Note that one can approximate the Fourier transform of 0(K) (t) using the above relation:

4D(K)(W) J (K)(-t 0 > i O(K) ( ejwn/MK KF y(K) (LK
(te-j't MK MK MK (MK

K

= {({M)K- 1h}* * {(TM)h}* h = flH (w.
j=1

Taking the limit, we obtain

j=1

which is exactly the infinite product formula (2.36), suggesting the above iterated filter bank

approach solves the dilation equation. Two examples are given in Figure 2-8.

An alternative to iterated filter banks would be to formulate the eigenvalue problem

[9, 108] for the M-channel setting, in order to obtain scaling function values at integers.

Then use recursion to compute the function values at n/MK.

Once we have computed the scaling function, the wavelets #k(t) = M E hk[n]#(Mt - k)

are readily obtained using the M - 1 wavelet equations, or equivalently

Mhk[n] - > TM -- MH(z)F {M - +MH(z - ... (t)

2.4 Regularity, Vanishing Moments, and Smoothness

The degree of regularity of a filter bank refers to the number of zeros that the lowpass

filter has at the Mth roots of unity ej 2xm/M, m = 1,... , M - 1, which can be shown to

be equivalent to the number of zeros that the bandpass and highpass filters possess at DC

frequency.
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Figure 2-8: Cascade algorithm for M = 3. (a) h[n] = [1, 3, 6, 7, 6, 3, 1] having triple
zeros at the aliasing frequencies zm = ei 2 m/ 3 , m = 1, 2. The cascade algorithm converges
to a 3-band quadratic B-spline with smax = 2.50. (b) h[n] = [1, -3, 6, -7, 6, -3, 1] having
no zeros at the aliasing frequencies. The cascade algorithm fails to converge in L2 . smax =
-3.00.

Definition 2.2 (Regular PRFB). An M-channel PRFB with analysis and synthesis filters

Hj(z) and F(z), respectively, is said to be (Ka, K)-regular if the lowpass filters Ho(z) and

FO(z) have zeros of multiplicity Ka and K8, respectively, at the Mth roots of unity ej 2
7m/M for

m 1,..., M - 1. In general, Ka and K, can be different, unless the PRFB is paraunitary,

in which case the PUFB is said to be K-regular where K A Ka = K.

Regularity determines the number of vanishing moments of the M-band wavelets [105],

which are suitable for approximating the Sobolev space as they are orthogonal to polynomials

up to a certain order [105, 108]. As such, the decay of wavelet coefficients [72, 93, 108]

and the accuracy of approximation [108, 124, 140] are both determined by the degree of
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regularity, which is further related to the smoothness of the scaling function. One smoothness

index is the Sobolev regularity, which measures the L2 or finite-energy differentiability of

the scaling function [57, 108]. One can show that the more regular the filter bank, the

smoother the scaling function, and the more derivatives it has. In many applications such as

image processing, numerical analysis, smooth signal interpolation, approximation, and data

compression [3,19, 67, 72, 108,139], smoothness plays a strong role and regular filter banks

are thus very desirable.

Below we summarize some important properties of regular PRFBs. For a proof, one

can generalize the lines of analysis for M = 2 [108] to an arbitrary M > 2. Proof for the

paraunitary case can be found in [155], for example.

Theorem 2.2. For a (Ka, K,) -regular M-channel PRFB with analysis and synthesis filters

Hi(z) and F(z), respectively, the following statements hold:

1. d'Hi (z) = ., for f 0, 1, ... , Ks - 1 Vi _ 0.

2. - -F(z) =0, for f 0, 1, . .. , Ka -- 1,V y

3. Polynomial cancellations:

Znehi[n] = 0, for e = 0, 1, ..., Ks - 1, Vi 0

n (2.38)
Zn'fi[n] = 0, for = 0, 1, ... , Ka - 1, Vi (0

n

4. Vanishing moment of wavelets:

/t4(t)dt=0, forf= 0,1...,K-1,Vi>1 (2.39)

t5 ri(t)dt = 0, for f = 0, 1, .o.. , Ka - 1, Vi 1a(2.ev)

5. Accuracy of Approximation: In (2.24), if f has at least K, derivatives, the wavelet
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coefficients dj,k[n] decay like M-jKS:

jdJ,k[n] - J Ot)'i/ (dt = O(M-jK)

Similarly, if f has at least Ka

M-iKa:

derivatives, the wavelet coefficients dj,k[n] decay like

d j,k[n]- = f f(t>?/~(t) dt = O(M-jKa) (2.41)

Remarks: The regularity assumption

following conditions on the polyphase

dn
dz J E(zM )

1

z-

z-(M-1)
z=1

along with Statements 1 and 2 is equivalent to the

matrices:

Cn

0

0

some cn : 0, 0 < n < Ks - 1 (2.42a)

and

d zm -(M-1) Z-(M-2) ... z-1 1 R(z) == dm 0 ... 0J (2.42b)

for some dm / 0, 0 < m < Ka -1. Statement 3 pertains to the capability of rejecting discrete

polynomials up to a certain degree by the bandpass and highpass filters. Statement 5 shows

that, for smooth functions, the rate of decay of the wavelet coefficients is dictated by the

degree of regularity and equivalently by the number of vanishing moments of wavelets. For

example, this asymptotic rate is O(64) for a two-regular eight-channel PUFB, and is 0(16j)

for the four-regular two-channel Daubechies wavelet. In practice, K < 4 is satisfactory for

the M = 2 case as pointed out in [89,108]. This suggests that regularity of degree two will

be sufficient in practice when the number of channels M is at least four.
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2.4.1 DC Leakage

DC leakage refers to the situation where the bandpass and highpass filters do not have zero

responses at DC, causing the DC component to leak out of the lowpass band (Ho(z)). Ideally,

we want the lowpass band to contain all the DC information, as higher frequency bands are

usually heavily quantized, and we don't want this to affect the DC component of the signal.

By definition, a regular filter bank is free from DC leakage. Figure 2-9 shows the effect of

DC leakage and thus the importance of regularity.

0-Regular 8x24 GenLOT

5 h

h
m' -5-

.-10 a2
-15h3

_ h (b) Original image
0

0 0.1 0.2 0.3 0.4

(a) Filter bank without regularity (c) 16:1 compression

Figure 2-9: Regularity and DC leakage. The (PU) filter bank is not regular: observe that

the bandpass and highpass filters do not have zero responses at DC, causing DC leakage.
The compressed image exhibits the checkerboard artifact.
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Figure 2-10: Illustration of functions with different smax: from left to right, 0.50, 1.75, 2.50.

2.4.2 Sobolev Exponent As Smoothness Measure

Closely related to regularity or vanishing moments is the concept of smoothness of the M-

band wavelet basis. The Sobolev exponent of a filter bank measures the L 2 differentiability

of the corresponding scaling function 0(t) (and thus the wavelet functions Vb(t)), and is

completely determined by the scaling filter Ho(z). Assume Ho(z) is K-regular. Then it can

be factored as

~1 + z-- + ... + z-(M-1)1 K
Ho(z) = [ M Q(z) (2.43)

for some Q(z). Let Q(z) be normalized such that Q(1) 1, and let Q be the associated

convolution matrix. Then the Sobolev exponent or Sobolev smoothness, smax, of the scaling

function 0(t) is given by [57,108]

Smax = K - log JAmax(TQ)1
2 log M

where Amax(-) denotes the largest eigenvalue of its argument and TQ - (t M) MQQt is the

transition matrix associated with Q(z), which captures how the cascade algorithm

h+l (t) = M q[n]g M (Mt - n)
n

converges in L 2(R), or equivalently, the stability of q[n] under iteration [108]. As revealed by

the above relation, the smaller the spectral radius of TQ, the smoother the scaling function

associated with (2.43). The maximum smoothness for K-regularity is achieved by B-splines,
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Figure 2-11: Impact of basis smoothness on visual quality. (Left) Compressed image resulting
from the smooth synthesis basis with smax = 2.50. (Right) Compressed image resulting from
the non-smooth synthesis basis with smax = -0.56. Compression ratio is 16:1 for both cases.
The basis functions shown are scaling functions with the mentioned smax.

for which Q(z) = 1, Ama(TQ) = M, and smax = K - 1/2. Figure 2-10 shows some

functions with different Sobolev regularity, and the impact of smax on the visual quality of

reconstructed images is demonstrated in Figure 2-11.

2.5 Matrix Parameterizations

We briefly summarize the various approaches to matrix parameterization which are essential

to filter bank design in this thesis.

2.5.1 Orthogonal or Unitary Matrices

This class of matrices can be completely parameterized either by Givens rotation [85,129]

or by Householder transform [129].
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1 2 3 M-1 ±1

V~ V

---------.- U .-- -------

Figure 2-12: Any orthonormal matrix U is decomposed into a product of Givens rotations.
U is also orthonormal.

Givens Rotation

Figure 2-12 demonstrates how an orthonormal matrix U is decomposed into a cascade of

Givens rotations of the form
cos

[-sin0 i

sin Oi

cos ?Jj

operating on pairs of channels, along with a sign parameter and a smaller matrix U which

is still orthonormal. The same decomposition can be recursively applied on U and so on,

until we have exhausted all the dimensions. An M x M orthonormal matrix requires (M)
rotation angles and M sign parameters to parameterize.

For a unitary matrix, one has a similar parameterization, but with M rotation angles

[85].

Householder Factorization of Unitary Matrices

Instead of using Givens rotations, which have determinant 1, one can use reflection. This is

the idea behind the Householder transform. An M-dimensional Householder transform with

parameter p, H[p], maps a given vector x in CM to the mirror image y with respect to a

plane E with unit normal p [107,129]. By simple geometry, it can be derived that

H[p] = I - 2 ppf, |p|l|= 1.
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P

P

Y

Figure 2-13: The Householder transformation which "turns" x into the direction of ej in a
length-preserving fashion. There are two possible outcomes y (for A = +1) and y' (for s =
-1), corresponding to unit-norm p and p' in forming the Householder matrix, respectively.

Apparently, this is an invertible, length-preserving and thus unitary transformation. Since

x is also the mirror image of y with respect to E, the inverse of H[p] is simply itself:

(H[p])- = H[p].

Given a nonzero vector x = [ x0 x1 ... XM1 ]T E CM with xi = xilei0Xi A|XjlZe

and a desired coordinate axis ej, one can choose a unit vector pi such that the transformation

H[pi]x aligns with the desired coordinate axis:

H[pi]x = s||x||ejZxi, s = t1.

In this case, one can show that pi = ei -9jjxjjei xi for any q$ E R and a proper choice of

s= ±1 such that x - sxjjejZx $ 0 [129]. Figure 2-13 provides a geometric interpretation.

A unitary matrix can be factored as a product of Householder matrices. Let U be M x M

unitary. There exists a Householder transformation H[po] which aligns the Oth column of U

with eo, namely,

H[po]U =_
0 U
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H[po

ejOOibo

:

- -- +

- -- - 0

U

1
2

30-

0-

2-

3

M-2

M-1

+------------- U -------------- +|

Figure 2-14: Any unitary matrix U is decomposed into a product of Householder matrices.
U is also unitary.

for some unit-norm vector po and some square unitary matrix U. Such a process can be

repeated on U and so on to arrive at

H[PM-2] H[pM-3] ... H[po] U = D (2.45)

where D = diag(edoo,..., ed9 m-1) is diagonal containing the phase parameters, 0m E R. If

U is real-valued, the 0 m are chosen to be either 0 or 7r.

Householder factorization of U:

U = H[po] ... H[PM- 2 ] D.

Note that the vectors p, take the following form,

Pi ... PM-2

I I i

x

x

x

x

x

0
x

x

x

x

Inverting (2.45), we obtain the

(2.46)

0
0

x
x
x

. . 0

. . 0

. . x
. . x

(2.47)

I

where x denotes possibly nonzero values.
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A Special Householder Matrix R[-]

The following special Householder matrix will be found useful and convenient for the struc-

tural imposition of regularity (biorthogonal case) in Chapter 5 and for the PUFB completion

in Chapter 6.

Definition 2.3 (Householder Matrix). Given a vector x = XOx 1 ... XMl E CM

where x0 = |xOJ00 , let R[x] be the Householder matrix that reflects x in a length-preserving

fashion and aligns it with e0 , i.e.,

R[x] x = eiOo ||xJeo or x = eiOo0IxJI R[x] eo.

See Figure 2-15. If u A x/ f|x| - ejooeo # 0, one can show that

u ut
R[x] = I - 2 -1H2; (2.48a)

otherwise, simply define

R[aeo] = I, a C C (2.48b)

in this degenerate case.

X

R[X

0eJo xeo

Figure 2-15: Illustration of Householder matrix R[x].

Remark: In practice, the degenerate case (2.48b) need be identified and handled appropri-

ately; otherwise numerical instability may occur. Below is a MATLAB function showing how

one may compute R[x], where the threshold of 10-10 can be adjusted as seen fit.
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function R=house(x)

% R=HOUSE(x)

% R*x=llxil * eO

M=length(x); I=eye(M); e0=I(:,1);

u=x(:)/norm(x)-eO*exp(j*angle(x(1)));

if norm(u)<le-10 % Very IMPORTANT!!!
R=I; return;

end

R=I-2*u*u'/(u'*u);

% END of HOUSE.M --------------------

2.5.2 Biorthogonal Matrices

The use of SVD to parameterize a non-singular matrix was proposed in [119], where an

invertible matrix A is decomposed into

A = UAV

with U, V unitary and A diagonal containing the positive singular values:

[AO 1
A,

AM-1

See Figure 2-16. The unitary U, V can in turn be further parameterized using either

Givens rotations or the Householder transform. In practice, the sign parameters (or phase

parameters if complex case) of U and V can be absorbed by A - no longer are the Am

positively constrained as the original SVD formulation would require; they can even be

complex-valued.

Another approach to non-singular matrix parameterization is based the QR factorization
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3 3
. V .U.

M-2- M-2

M-1- -- M-1

+----------- A=UAV ----------- d

Figure 2-16: SVD-based parameterization of an invertible matrix A.

where an invertible matrix A can be written as

A = QR

where Q is unitary and

r00 r01 ... o,M-1

R = ... ,M-1

rM-1,M-1

upper triangular with positive diagonal elements. See Figure 2-17. In practice, the sign con-

straint on the diagonal of R can be relaxed as described above for the SVD-based approach.

2.6 Dyadic-Based Structures

The philosophy of filter bank design is to start with a trivial PRFB - the lazy filter bank

[108] which does no filtering at all but has perfect reconstruction, and then work one's way

toward nontrivial, longer filters. This is often achieved by cascading building blocks of some

sort to increase the degree and/or order of the PRFB in a modular way. In particular, these
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Figure 2-17: QR-based parameterization of an invertible matrix A.

building blocks take the following general form:

WVn(Z) = I - UnVt + z'UnV (2.49)

where Um and Vm are M x 7im parameter matrices with 1 < 7ym 5 M. They are referred to

as the dyadic-based structures [52, 129,132,134].

2.6.1 Paraunitary Case

In (2.49), if we assume Um = Vn having orthonormal columns, the resulting building block

becomes paraunitary. Depending on the value of 7ym, we have a degree-one PU building block

(7Ym = 1) or a general order-one PU building block. Both provide a complete factorization of

a PUFB with or without length constraint, referred to as the order-one factorization [50,52]

and the degree-one factorization [52,129], respectively.

Lemma 2.1 (Degree-one Paraunitary Building Block [129]). The dyadic-based struc-

ture with parameter vector vm

VM(Z) = I - VmVt + Z- 1 VMV, IVi|l = 1 (2.50)

is the degree-one paraunitary building block: any degree-N paraunitary polyphase matrix E(z)
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can be factored as

E(z)= VN(z) VN-1(z) .. .Vi(z) Eo (degree-one factorization) (2.51)

where E0 is unitary: EIE 0 = I. This structure is referred to as the degree-one factorization

and is complete for any given degree N.

Remark: This structure covers a larger class than the GenLOT [41] as the linear phase

constraint is not assumed by (2.51). Each Vm(z) increases the filter length by M upon

cascaded, and therefore is of order one. However, it is not the most general building block

of order one. In fact, an M x M PU building block of order one can have degree up to M.

Generalizing the above degree-constrained structure Vm (z), Gao et al. have recently

proposed a complete and minimal factorization given the order of the PUFB [52]. They

also proposed an efficient parameterization using fewer free parameters than before, without

affecting the completeness of the factorization, which has been further improved in [50].

Lemma 2.2 (Order-One Paraunitary Building Block [52]). The dyadic-based structure

with parameter matrix Wm

Wm(Z) = I - WmWt + Z_1WmW , W Wm = Lm (2.52)

is the order-one paraunitary building block for some integer ym with 1 < -Ym < M. Any

order-L paraunitary polyphase matrix E(z) can be factored as

E(z) = WL(z) WL 1(z) ... W,(z) Eo (order-one factorization) (2.53)

for some M x M unitary E 0 and some integers Y1,... , yL. This structure is referred to as

the order-one factorization of E(z). It is complete for any given order L, and the integers

-m can be monotonically ordered

1 < 7YL < 7L-1 < .. -Y 1< M (2.54)
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or

I < 71 _ 72 < . - <L _ M (2.55)

without affecting the completeness of the structure.

Remarks: In (2.52), the parameter matrix wm consists of -yin orthonormal columns,

WM WWm, wm, 2 ... WMInfm (2.56)

with wwm,e = 6,a. Since the M x 7m matrix wm is unitary, we have p(wm) = P(Wmw ) =

7m, and the degree of Wm(z) is thus 7ym [129]. In fact, Wm(z) in (2.52) can be decomposed

into a cascade of 'ym degree-one PU building blocks:

WM(Z) = Vmym (Z) . . . Vm,i(Z) (2.57)

where for each i = 1, . . . , , Vm,i(z) is the degree-one PU building block (2.50) with pa-

rameter vector wm,i coming from (2.56); on the other hand, given an orthonormal basis

{wm,i E CM some i} of any non-zero subspace of CM and the corresponding degree-one

PU building blocks Vm,i(z), the product (2.57) is always of order one. In view of Wm(z),

Vm(z) is the minimum-degree order-one building block. In practice, order-one factorization

is preferred as one cares more about the filter length than the McMillan degree of the PUFB.

It is also necessary because when the order or filter length is specified, it allows for more

design flexibility than the degree-one factorization.

Order-One vs. Degree-One Factorizations

In practice, order-one factorization is preferred as one cares more about the filter length 2

than the McMillan degree of the PUFB. It is also necessary because with the order (L) or

2Recall that the polyphase matrix E(z) of a causal M-channel PUFB with filter length M(L + 1) is of
order L.
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filter length specified, it allows for more design flexibility than the degree-one factorization,

as demonstrated in Figure 2-18 where L = 2. In particular, one adjusts -m to obtain a

1 -Regular, 8x24 PUFB, CG=9.4894dB, C stop=0.0876

h

h 2

-1 h2

-15- -3aCD

-20 h4

'E -25 - -- h

C

-30 ...

h 6

0 0.1 0.2 0.3 0.4 0.5
o/2n

(a) Order-one factorization (Yi 4)

1-Regular, 8x24 PUFB, CG=9.3265dB, C stop=0.6702

5h h 
J0

-1W -- nhwo

-20.- h

V4

-25 h

-30

h

0 0.1 0.2 0.3 0.4 0.5
o/2n

(b) Degree-one factorization (7m 1)

Figure 2-18: Comparison of order-one and degree-one factorizations in regular PUFB design.
Both are one-regular eight-channel with length 24. Order-one factorization allows for more
degrees of freedom to optimize filter bank performance. (a) is the one-regular 8 x 24 PUFB
discussed in Section 4.5.1 of the thesis.

different number of design variables, where 7ym > 1 denotes the rank of parameter matrix

wm as in the order-one PU building block

Wm(Z) = I - WmW1 + Z_1 WmWn, WtWm = L

for m = 1, 2,... , L. In this perspective, the degree-one factorization is a special case where

all 7ym are equal to unity, permitting only the fewest degrees of freedom for the given order L.

The resulting design is restricted and usually exhibits a nearly minimum- or maximum-phase

pattern, where the filters energy is highly unbalanced, concentrating towards either end of

the filters regardless of filter length (Figure 2-18(b)). This should be compared to linear-

phase PUFBs or GenLOTs [411, which assume an order-one form in their factorizations.

Specifically, one can show that (nontrivial) linear phase is only possible with order-one
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factorization [6].

2.6.2 Biorthogonal Case

Any biorthogonal filter bank can be written as a cascade of paraunitary and unimodular sys-

tems [128,132]. However, the problem of completely parameterizing the space of unimodular

matrices remains unsolved, in the sense that there do not exist any finite-degree building

blocks which arbitrary-order unimodular filter banks can be factorized into3 [98, 128, 132].

Therefore, it is still unclear how to have a complete structure for the most general biorthog-

onal filter banks.

However, we can still pick a structure a priori and consider the corresponding class of

BOFBs. In this thesis, we will consider the class of causal FIR BOFBs spanned by the

following structure

E(z) = WL(z) ... W1(z)Eo (2.58)

which has an FIR inverse, where E0 is non-singular and each Wm(z) is the first-order

biorthogonal building block given by

Wrn(Z) = I - UmnVt + Z-1UmV t (2.59)

where the M x -yin parameter matrices Um and Vm satisfy certain biorthogonality condi-

tions (See Eqn. (5.3)). This can be viewed as a generalization of the paraunitary order-one

factorization given in [52] where Um = Vm, and has been used for factoring the BOLT [132].

More details are found in Chapter 5.

3Except that order-one unimodular matrices, also known as the lapped unimodular transform or LUT, can
always be factored as a product of degree-one unimodular building blocks [98]. Such a structure is complete.
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Chapter 3

M-Channel Lifting Factorization

An intrinsic M-channel lifting factorization of perfect reconstruction filter banks (PRFBs)

is presented as an extension of Sweldens' conventional two-channel lifting scheme. Given a

polyphase matrix E(z) of an FIR M-channel PRFB with det(E(z)) = z-K, K E Z, a sys-

tematic M-channel lifting factorization is derived based on the Monic Euclidean algorithm.

The M-channel lifting structure provides an efficient factorization and implementation; ex-

amples include optimizing the factorization for the number of lifting steps, delay elements,

and dyadic coefficients. Specialization to paraunitary building blocks enables the design of

paraunitary filter banks based on lifting. We show how to achieve reversible, possibly multi-

plierless, implementations under finite precision, through the unit diagonal scaling property

of the Monic Euclidean algorithm. Furthermore, filter bank regularity of a desired order

can be imposed on the lifting structure; in fact, as will be shown in the next chapter, M-

channel lifting factorization bears a physical interpretation in designing regular paraunitary

filter banks. Finally, PRFBs with a prescribed admissible scaling filter are conveniently

parameterized.
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X0(z) + 0  - 0(z

T S S T

X (Z) + Y (z) - WX(z)

Figure 3-1: Two lifting steps with lifting multipliers T and S which can be any time-invariant,
even nonlinear, systems. The first lifting step filters input Xo(z) with T and adds the result
to Xi(z), the sum being the output Yi(z). The second lifting step then applies S to Yi(z)
and adds the result to Xo(z) to give Yo(z). To invert, just subtract what was added in the
reverse order.

3.1 Introduction

The lifting scheme, also known as the ladder structure [18], has been used in both factor-

ization [39] and design [27,114] of filter banks (FBs). It features reversible and in-place

computation [39], and it leads to fast implementations of the discrete wavelet transform.

Notably, the JPEG2000 standard [60,116] uses the two-channel lifting scheme to implement

two-band wavelet transforms. The lifting scheme consists of a series of so-called "lifting

steps," each of which is a one-wing butterfly that adds a certain multiple of or a filtered ver-

sion of one channel to another. As a result, lifting steps can be easily inverted by subtracting

whatever was added in the forward transform. Figure 3-1 shows two lifting steps and their

inverses. It is this special structure of the one-wing butterfly that gives the lifting scheme its

power and flexibility. For example, one can design (nonlinear) wavelet-like transforms that

map integers to integers [20,30]; or one can design dyadic- and/or rational-coefficient filter

banks that possess perfect reconstruction (PR) [22,66,120,154].

Many practical applications in digital communications make use of M-channel filter

banks. For example, cosine-modulated filter banks [129] are frequently used in xDSL tech-

nology. Furthermore, greater design flexibility is allowed in the M-channel setting (M > 2),

such as the coexistence of orthogonality and linear phase. Because of the desirable prop-

erties that the lifting scheme provides, it is natural to extend the two-channel result to an

M-channel setting, M > 2. By M-channel lifting factorization, we mean the factorization of

76



an M-channel polyphase matrix E(z) with determinant z-K into M x M triangular matrices

with only ±1 on their diagonals, and possibly some permutations. Such triangular matrices

are called (M-channel) liftings or lifting steps, or shears if the diagonals consist of only 1's.

For the class of PRFBs with a constant polyphase matrix having determinant 1, an

interesting, but rather restricted, form of M-channel lifting known as the UL U decomposition

has been proposed [117]. The focus there was to express a matrix with unit determinant

as a product of lower and upper shears, with a canonical form for the lower shear. The

UL U decomposition is obtained by solving a few systems of linear equations. However, the

number of non-trivial lifting multipliers in the two upper shears tends to grow very quickly

as the matrix size increases, since special structure of the matrix, such as symmetry, is not

fully exploited. Although one can perform row/column permutations to the matrix followed

by UL U, the reduction in the number of non-trivial lifting multipliers is marginal, and it

becomes asymptotically infeasible to enumerate all row/column permutations as the matrix

size increases: an 8 x 8 matrix can be permuted in (8!)2 - 1, 625, 702, 400 ways!

In this chapter, we aim to factor an arbitrary M-channel PRFB into lifting steps (and

thereby provide a construction in which all matrix factors have diagonal entries of unity) by

using only Type-3 elementary matrices. Permutations can also be used wherever necessary,

with the possibility of having -1's on the diagonals. We will refer to this condition later

as a unit diagonal scaling, which in fact includes scaling factors of the form ±z-", m E Z.

This will permit a reversible implementation of the PRFB under finite precision. The

implementation can be rendered multiplierless if the lifting multipliers are re-optimized to be

dyadic numbers, k/2', k, n E Z. Consequently, the lifting structure lends itself to reversible

integer transforms.

As in [39], the proposed M-channel lifting factorization will assume a PRFB E(z) with

det(E(z)) = z-K (although some relaxation of this constraint is possible, as discussed in

Section 3.3.5). Furthermore, the M-channel lifting factorization is not unique, a direct

consequence of the non-uniqueness of Laurent polynomial division. As a result, it is desirable

to come up with the "best" lifting factorization. Fortunately, for M = 2, it is a relatively
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simple task to enumerate all possible lifting factorizations into a tree-like data structure [79],

as there is no ambiguity in choosing a divisor among the M - 1 = 1 polyphase components

when performing the Euclidean algorithm.

For M > 2, the approach provided in this chapter serves as general guidance, as it

becomes intractable to enumerate all possible lifting factorizations. Several variations of the

basic algorithm can be applied to derive a good factorization, depending on the particular

PRFB given. For example, the location of the pivot used in size reduction (Section 3.3.3) can

be anywhere seen fit. One can also perform some sort of locally optimal quotient selection

rule during the process of long division. Furthermore, exploiting the particular structure, if

present, in the PRFB can lead to more efficient results. These will be further discussed in

Section 3.4.

Though formulated under a general setting, the proposed algorithm is specialized to

paraunitary, unimodular, and a class of biorthogonal building blocks, as well as block trans-

forms such as the DCT. Also considered are the imposition of desirable properties such as

structural regularity, and the reduction of complexity through the minimization of delay ele-

ments and floating-point multiplications. The interesting problem of designing a PRFB given

an admissible lowpass (scaling) filter will be discussed within the context of the proposed

Monic Euclidean algorithm and the M-channel lifting factorization.

The remainder of the chapter is organized as follows. Section 3.2 provides preliminaries

on the lifting structure and the Euclidean algorithm. In Section 3.3, the proposed M-channel

lifting factorization is presented, based on the so-called Monic Euclidean algorithm, which

always generates a monic gcd. PRFB design with a prescribed admissible scaling filter is also

discussed within this context. All the proofs encountered in the above two sections are given

in the Appendices, and they are constructive. In Section 3.4, several PRFBs are examined in

the context of M-channel liftings, demonstrating the versatility of the proposed algorithm.

Finally, Section 3.5 concludes this chapter.
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3.2 Preliminaries

3.2.1 Elementary Matrix Operations

An elementary operation on a (polynomial) matrix can be any one of the following:

Type-1: Interchange two rows/columns.

Type-2: Multiply a row/column with a nonzero constant.

Type-3: Add a (polynomial) multiple of a row/column to another row/column.

In the context of the proposed M-channel lifting factorization, Type-2 operations will be

excluded, because we want to avoid non-dyadic scaling factors on the diagonals. This is

essential for reversibility in a finite-precision implementation. Type-3 operations will mainly

be the ones of choice. In case sign negation is permitted, Type-1 can also be admitted, but

we will show that the M-channel lifting can be achieved by using only Type-3 operations.

3.2.2 M-Channel Lifting Structure

Definition 3.1 (M-Channel Simple Lifting Step). An M-channel simple lifting step,

from channel j to i (i, j = 0,1, ... , M - 1; i # j) with multiplier A(z), is defined by the

following matrix operator:

ri,j [A(z)] = I + A(z) ej ej, (3.1)

where I is M x M and ej is M x 1. A simple lifting is said to be FIR if the multiplier A(z)

is FIR.

As defined, Fi,j[A(z)] is a triangular matrix with only I's on the diagonal, implying

det(J',y[-]) = 1. Its inverse is also a simple lifting:

(Fjj[A(z)])-1 = I - A(z) ej ejT = Pjj[-A(z)]. (3.2)
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Figure 3-2: (a) an M-channel simple lifting ri,j[A(z)] from channel j to i / j with multiplier
A(z), and (b) the inverse of Li,j[A(z)].

The signal flow diagram for Li,[A(z)] and its inverse is shown in Figure 3-2. These are

Type-3 elementary operations. Our goal will be to decompose the given E(z) into a product

of simple liftings, through the Monic Euclidean algorithm (Section 3.3.2), with each factor

containing only l's on its diagonal. A possible extension is to include a combination of ± 2m,

m E N U {0}, on the diagonal [18], in which case the extended version of the simple lifting

can be expressed as

Ii, [A(z)] = r, 3[A(z)] D,

with

(3.3)

where D is a diagonal matrix containing the particular combination of ± 2m on the diagonal,

and D-' can be implemented exactly by construction, using only bit shifts and adds. We

refer to this constraint on the diagonal entries as the lifting requirement, a consideration that

is important for applications such as reversible integer transforms [20]. In particular, we will

focus on the lifting requirement with +1 and +z- m on the diagonal, m E Z.
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Equations (3.2) and (3.3) are key to the perfect reconstruction property imposed by the

lifting structure. Note that perfect reconstruction is guaranteed by the lifting structure

even when the multiplier A(z) is quantized, provided that the same quantized version of

the multiplier, AQ(z), is used in both Fi,j[AQ(z)] and Fi,j[-AQ(z)]. Furthermore, PR is

still guaranteed in nonlinear liftings where the multiplication result of A(z) (or of AQ(z) if

the multiplier is quantized) is rounded. This makes it possible to design reversible wavelet

transforms that map integers to integers [20].

3.2.3 Euclidean Algorithm and M-Channel Lifting

The greatest common divisor (gcd) of M > 2 Laurent polynomials, po(z), pi(z), . . ., PM1(z),

can be computed using the Euclidean algorithm, which relies on repeated divisions to find

the gcd.

Lemma 3.1 (Euclidean Algorithm). Given a vector p(z) = [po(z) p1(z) ... PM-1(z)]

of M Laurent polynomials, not all zero, there exist a finite number of M-channel liftings

which reduce p(z) to an M-vector r(z) consisting of a (non-unique) gcd, g(z), of p(z) along

with M-1 zeros, i.e. rT(z) = [0 ... 0 g(z) 0 ... 0 . If desired, the M-channel liftings

can be chosen so that the gcd appears in the first entry of r(z).

Proof: See Appendix 3.A.

Note that po(z),.. .,pm_(z) are said to be relatively prime if g(z) is a monomial.

3.3 M-Channel Lifting Factorization of Perfect Recon-

struction Filter Banks

3.3.1 Prior Results For Two-Channel Lifting

Daubechies and Sweldens [39] have detailed the lifting factorization of two-channel (M = 2)

filter banks. In summary, any 2 x 2 polyphase matrix E(z) with det(E(z)) = 1 can always
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be lifting-factorized as (Theorem 7, [39])

K [ m 1 s(z) 1 0
E(z) = 1

0 1/K i-1 -0 1 tj (z) I

for some nonzero constant K and some Laurent polynomials si(z) and t (z), i = 1, 2,..., m.

Specifically, K is the gcd of the even and the odd phases of the lowpass filter, and can be

made 1 by four more lifting steps [39].

3.3.2 Monic Euclidean Algorithm For Arbitrary M

We now present, for the M-channel case, the Monic Euclidean algorithm where the generated

gcd always has unit scaling. For this we need:

Definition 3.2 (Monic Polynomials). A polynomial is said to be monic if the leading

coefficient is 1.

-T
Consider a set of Laurent polynomials p(z) po(z) p1 (z) ... pM-1(z)] with gcd

g(z). Note that the gcd is not unique-any nonzero monomial multiple of g(z) will be a gcd

as well. Therefore, we can always normalize the gcd to be monic. However, the gcd of p(z)

returned by the Euclidean algorithm may not always be monic. Hence,

Theorem 3.1 (Monic Euclidean Algorithm). Let p(z) be defined as in Lemma 3.1.

Then there exist a finite number of M-channel lifting steps, which reduce p(z) to an M-

vector r(z) containing a monic gcd of p(z) in the first entry and M - 1 zeros elsewhere.

Proof: See Appendix 3.B.

3.3.3 Size Reduction Via Monic Euclidean Algorithm

Lemma 3.2 (Size Reduction). Let E(z) be an M x M FIR polyphase matrix with det(E(z)) =

z-K for some K C Z and M > 2. Then there exist two sets of FIR M-channel simple lifting

82



steps, L,(z) and V,(z), such that

E(z) = LI(z)

1

0

0

0 ... 0

E1(z)
V1 (z),

det (6 1(z)) = det (E(z)) = z-K.

Proof. See Appendix 3.C.

3.3.4 M-Channel Lifting Factorization Via Size Reductions

0

Theorem 3.2 (Lifting Factorization of PRFBs). Let E(z) be

an M-channel (M > 2) FIR filter bank with det(E(z)) = z-K, K

two sets of FIR M-channel simple lifting steps, L(z) and V(z),

A(z) = diag(1, 1, ... , 1, z-K) such that

the polyphase matrix of

G Z. Then there exist

and a diagonal matrix

E(z) = L(z) A(z) V(z).

Proof: See Appendix 3.D. U

Figure 3-3 shows the lifting factorization of E(z) with determinant z-K. Note that this

result can be extended such that z-K appears anywhere on the diagonal of A(z), or that

A(z) becomes diag(z-Ko Z-K, I . -Z-1) with KO + K 1 + ... + KM_1 = K, or even its

row- or column-permuted version. Furthermore, the diagonal matrix A(z) can be moved
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Figure 3-3: The lifting factorization structure of an FIR M-channel filter bank E(z) with
determinant z-K, with KO+.. .+KM-1 = K. Vj(z) and Lj(z) are all sets of FIR M-channel
liftings, and Vi (z) correspond to applications of the Monic Euclidean algorithm, while Li (z)
correspond to Gaussian eliminations. See Appendix 3.D for definitions of V'(z).

towards the beginning:

E(z) = A(z) [A 1 (z) L(z) A(z)] V(z),

where [A-' (z) L(z) A(z)] is still an M-channel lifting. Similarly, A(z) may be moved to the

end of the expression.

3.3.5 Relaxation of Monic Determinant

The assumption det(E(z)) = z-K can be relaxed to include the case where det(E(z)) =

±2'z-K, m E N U {O}, while preserving PR. In this case, the size reduction algorithm

remains the same except det(0 1(z)) = ±2mz-K; hence, z-K in A(z) will be replaced by

±2mz-K
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3.3.6 Reversible Multiplierless M-Band Wavelet Transforms

The lifting structure lends itself to implementation of reversible wavelet transforms [20],

despite the finite word-length effect and/or rounding of intermediate multiplication results

in the lifting steps. Based on this structure, one can also design multiplierless reversible

wavelet transforms [22], even with a constraint on the number of hardware adders [31].

3.3.7 PRFBs with Prescribed Admissible Ho(z)

Recall (Appendix 3.C) that the M polyphase components of any filter Hj(z) of an M-band

PRFB must be relatively prime. In this sense, a filter G(z) is said to be PRFB-admissible

or simply admissible if its M polyphase components are relatively prime. Hence,

Theorem 3.3 (PRFB with Prescribed Admissible Ho(z)). Given an admissible filter

G(z) with G(1) $ 0, there exists a PRFB having Ho(z) = G(z).

Vetteri [138] has studied the simpler two-channel version (M = 2) of the problem. Here,

for an arbitrary M, it turns out that the proposed M-channel lifting factorization can pa-

rameterize the problem efficiently, by appropriately confining the degrees of freedom within

the remaining M - 1 filters while guaranteeing Ho(z) as prescribed.

For example, given the fact that the B-spline, /3#(t), of degree p satisfies the two-scale

equation [125]

/3P(t) = u'v[n] OP(Mt - n), (3.4)
n

where M E N is the dilation factor, one can use UP(z') as an admissible Ho(z) for an

M-band PRFB, where UmP(z) is the z-transform of uPm[n]. In this case, the corresponding

scaling function is exactly /3P(t), which governs the M-band multiresolution analysis (MRA)

of L 2(R).

The remaining M - 1 wavelets of the MRA can be designed based on the proposed

M-channel lifting factorization. The procedure is as follows:
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1. Apply the Monic Euclidean algorithm (Theorem 3.1) to the M polyphase components

of the admissible Ho(z). The result is an M-vector

r(z) = I ±z-Ai 0 ... ]

In particular, Theorem 3.1 furnishes the existence and structure of [Vi(z)]- 1 , a product

of finitely many M-channel lifting steps, such that

Ho,o(z) ... Ho,M_1 (z) V 1 (z)- = r T(z),

P T (Z)

where Ho,k(z) is the kth polyphase component of Ho(z). The row vector pT(z) will be

the first row of the polyphase matrix E(z).

2. Complete the remaining rows of the polyphase matrix by augmenting rT(z) with the

row vectors e[, i = 1, 2,..., M - 1. This results in an initial PRFB, E(z), where

rT(z)

0 1 0 ... 0

(z)= 0 0 1 ... 0

0 0 0 ... 1

Ho,o(z)
0

V1(z)= 0

0

Ho,1 (z)
x
x

x

... Ho,m1(z)
x
x

x

with corresponding filters Ho(z), H1(z),..., HM-1(z).

3. Improve the filters Hk(z), k = 1,..., M - 1, of the initial PRFB E(z) via a suitable

biorthogonal (M - 1) x (M - 1) sub-system O(z), to arrive at the final E(z) with

corresponding filters Hj(z), i = 0, 1, ... , M - 1, as follows:

E(z) = L1(z)
1 (z) E(z),

where L1 (z) contains the lifting steps corresponding to Gaussian elimination:
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A1 (z)

1 -- >-- ->1
E -AM-2(z)J

(Z ( NZ) A 0~z
M-2 - M-2

M-1 -- M-1

Figure 3-4: PRFB with prescribed admissible scaling filter Ho(z). E(z) is the initial PRFB
which is subject to further improvement in terms of Hi(z), i = 1,. . . , M - 1, using an
invertible matrix O(z) along with the final lifting steps Ak(z), k = 1 .. ., M - 1.

1 0 0 ... 0
A,(z) 1 0 ... 0

L 1 (z) = A 2 (z) 0 1 ... 0

Am1(z) 0 0 ... 1

In particular, the lifting steps Ai (z) can be chosen so that H (1) = 0 for i = 1, 2,. . ., M-

1, and that the synthesis scaling filter Fo(z) thus has regularity of at least first or-

der. Higher-order regularity of Fo(z) can be obtained by setting 2 Hi(z) = 0,

Vi = 1, .. ., M - 1, and = 0,. .. ,p - 1, for some order p.

4. Assume that Ho(z) corresponds to a finite-energy scaling function, i.e. that the cascade

algorithm converges [108]. Then the M - 1 wavelets are readily obtained from the

scaling function.

Figure 3-4 summarizes the above structure and provides a complete parameterization of

PRFBs based on a prescribed Ho(z) (cf. the general M-channel lifting structure in Figure 3-

3). The above design procedure will be demonstrated in the next section by a B-spline

example. The same procedure applies to other non-B-spline cases as well, provided that the

prescribed Ho(z) is admissible.
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3.4 Lifting Factorization and Design Examples

The previous section on the construction of an M-channel lifting factorization is meant to

serve as general guidance. Issues such as dynamic range and Laurent degree of the resulting

lifting multipliers and the number of simple liftings needed have not been addressed. These

issues are easier to deal with for M = 2: for example, the number of simple liftings is the

smaller degree of the two polyphase components plus one [39]. The minimization of multiplier

dynamic range can be achieved by choosing long division steps that optimize the dynamic

range of the quotient. The minimization of lifting multiplier degree can be performed by

carrying out partial long division instead of full long division [39]; however, this increases

the number of lifting steps. Nevertheless, it is a tractable problem to enumerate all possible

two-channel lifting factorizations [79].

When it comes to M > 3, the situation becomes more complicated. For example, there

is usually a choice of more than one divisor from among the polyphase components to

perform one step of the Euclidean algorithm. Furthermore, the size reduction can be per-

formed in any order seen fit, instead of the order adopted in Appendix 3.D. If desired, some

"pre-processing" liftings can be employed to reduce the relative degrees of the polyphase

components (or to even the degree distributions), so that the Euclidean algorithm that fol-

lows will not generate quotients with large degrees. If there is structure present in E(z),

it can in some cases be exploited either to reduce the number of simple liftings or to make

the lifting multipliers dyadic numbers. As in the two-channel case, the issue of dynamic

range of the lifting multipliers can be addressed by choosing the long division operation that

results in the best dynamic range of the quotient. For example, one can choose as divisor

a polyphase component whose smallest (absolute value) coefficient is maximized among the

divisor candidates.

The general factorization guidance outlined in Appendix 3.D is employed in conjunction

with the aforementioned criteria. In particular, the factorizations presented below in Sec-

tion 3.4.1 and 3.4.2 (and consequently in Section 4.5) are minimal in the McMillan sense

[129].
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3.4.1 Degree-One Paraunitary Building Block

An M x M matrix

U(z)= I -uu T +z- UUT, Hul -- 1

is the most general degree-1 paraunitary building block for FIR PUFB design' [129]. The

determinant is z 1 , regardless of u. U(z) can be factorized as follows. Let

U= U1  -... UM E Rm.

For the size-reduction step, one can choose any non-zero Uk as divisor. To limit the dynamic

range of the resulting lifting multipliers, the largest of {uol, lull, ... , UM-1, say ur, can

be chosen as divisor. The lifting factorization begins as

1

1
-N _0 _r1 _Ur+1 -Ufj41

U(z) -*o . _.. _' __-_+ . _.. _"-
U'r Ur Ur Ur

1

1.

1 (z- 1)UoU,

1 (z1 - 1)UriUr
= -_ o . . ~ - 1 1 + ( z - 1 - 1 ) U 2 -U 1 - rU 1 ( 3 5 )

(z1 - 1)Ur+U, 1

(zl 1)UM1lUr1

Ui(z)

to null the first row of U(z) except the first and the rth entries of the row. The reason for

choosing r = arg max {|ng|} should become clear now. Observe that, in (3.5), Ui(z) has a
k=0,..M-1

structure whereby multiple entries in the rth column can be nulled at a time:

1Replace UT by ut if designing complex-valued filter banks.
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-(z- - 1)uour

1 -(z- 1 - l)Ur-iUr

1

-(z-- 1)ur+iUr 1

-(Z-1 - 1)UM Ur 1

1

-U0 . Ur-1 z-1 -Ur+1
Ur Ur

1

. UM-1

Ur

1
(3.6)

where the fact that |jul = 1 has been used. Then, the lifting factorization of U(z) reads

1
-ao ... -ar- 1 -ar+1 ...

1
-aM_1

1

1_

~1

1
a0  ... ar_1 1 ar+1 . .. M

1

1

where ai = Ui/Ur and 3 i = uulr. An alternative factorization can be obtained by transposing

(3.7), since U(z) is symmetric. Both (3.7) and its transposed version require only 1 delay

element to implement, and thus are minimal in the McMillan sense. Figures 3-5(a) and (a')

show both minimal lifting factorizations of U(z) for M = 5 and r = 2, and Figures 3-5(b)

and (b') show those of U-1 (z). Observe that the lifting factorizations have unit diagonal

scaling throughout, which permits a reversible, possibly multiplierless, implementation of

U(z). In case dynamic range is not an issue, one can choose other values of r with ur # 0
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I1 3r-1
1

#3r+l 1

OM-1

~1 -/3o

11-r-1i
z- 1
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-3M-1

1]

1(3.7)
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Figure 3-5: (a) and (a'): lifting factorizations of degree-1 paraunitary building block U(z)
drawn for M = 5 and r = 2. Both structures are minimal in terms of the number of delay
elements (the McMillan degree) and the independent lifting multipliers. (b) and (b'): lifting
factorizations of U-1(z), obtained by reversing the order of the lifting steps in (a) and (a')
and flipping the signs.

and come up with similar factorizations.

From the synthesis perspective, (3.7) shows that U(z) can be parameterized by (M - 1)

independent lifting multipliers:

ai = uj/Ur,

Each ui u, in the middle sections of (3.7) can be expressed in terms of the ao:

ujr = aiu2 1 2
1+ M=,k+ak

where the second equality is a direct consequence of jul| = 1.

/i in terms of ak ensures paraunitariness.

Note that the definition of

This parameterization of U(z) using the lifting

multipliers ai is also minimal in the sense that only M - 1 independent parameters are

needed.
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Figure 3-6: The lifting factorization of the Householder matrix H[u], |ju|| = 1, drawn for
M = 5 and r = 2. Again, the diagonal scaling is unity throughout
suitable for reversible integer implementations of H[u].

and the structure is

3.4.2 Householder Matrix

An M x M Householder matrix

H[u] = I - 2 uuT, I|uII = 1,

reflects a vector in RM with respect to a plane having u as normal. H[u] is related to U(z)

by letting z = -1. One of its lifting factorizations is given in (3.8),

H[u] =

1

1r

1
Ur+ 1

UM -1

UT.

1

1

~1 - 2Uour

1 -2UrlUr
-1

-2fr+lUr 1

I-

T 1 _UO

Ur

U r-1

Ur

1
-Ur+1

UT.

-U-1

Ur.

1

1]
(3.8)

which is based on the transposed version of (3.7). This lifting structure is shown in Figure 3-6.
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3.4.3 Degree-One Biorthogonal Building Block

A useful class of biorthogonal filter banks (BOFBs), including BOLT [132], can be con-

structed by cascading the following degree-one BO building block [27,28,132]:

G(z) = I - uvf + z-luvt, Vu = 1.

This can be viewed as a generalization of the degree-one PU

above. G(z) assumes the following lifting factorization [27]:

~1

-ao ...
1

-ar-1 1 -r+1 ...

1

1

building block U(z) discussed

_1 Ao

I Ar-i
1

Ar+1 I

AM-1 1

71 -Ao

1 -Ar-1
z- 1

-Ar+1 1

-Am-, 1

~1

1
a0  ... ar_1 1 ar+1 .. au_1

1

1

(3.9)

where aci = /v,* and Ai = uiv* for some r E {0, 1, ... , M - 1} with Vr : 0. The structure

of (3.9) is similar to that of U(z) as shown in Figure 3-5. Both ai and Ai in (3.9) are design

variables. The condition vfu = 1 is structurally imposed by the lifting factorization.

3.4.4 Degree-One Unimodular Building Block

Unimodular filter banks are a special class of FIR PRFBs, where the polyphase matrix E(z)

is unimodular, i.e. det{E(z)} = c for some c $ 0. They achieve the minimum system delay

of M - 1 samples given the number of channels M, regardless of the filter length. Some
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important properties of unimodular FBs are summarized in [63]. In particular, the special

class, the lapped unimodular transforms (LUT), can be constructed using the following two

types of degree-one unimodular building blocks [63]:

Type-I Unimodular Building Block of Degree One

An M x M matrix of the form

D(z) = I - i t + fitz-', t = 0

is the degree-one unimodular building block of Type I, whose inverse is given by b)1 (z) =

I+fi-0 - fitz-. Using a similar technique as in Section 3.4.1, one arrives at the M-channel

lifting factorization of D(z):

1 ao 1 (z -1)o T

1 Or1 1 (Z"-1)/3_1

O(z) = 1 1
a,+, 1 (z-1)3+i 1

aM-1 1 (z'-1)M-1 1.

1 -ao

1 - 0Z_1
1 (3.10)

-ar+1 1

-Cm-1 1

where ai =u/u* and Oi u*v* for any r - {0 1 M - 1} with Ur # 0.

Type-IL Unimodular Building Block of Degree One

An M x M matrix of the form

D(z) = I + uvz-1, vtu =0

94



2 P2  (X2

cL3  P3  CL3
3""

(a) Type I

Figure 3-7: Lifting factorizations of (a)
and (b) Type-II degree-one unimodular
M = 4 and r = 0 [63].
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(b) Type II

0

1

2

3

Type-I degree-one unimodular building block D(z)
building block D(z). Both structures are drawn for

is the degree-one unimodular building block of Type II, whose inverse is given by D- 1 (z) =

D(-z) = I - uvlz-. Using a similar technique as in Section 3.4.1, one arrives at the

M-channel lifting factorization of D(z):

1
1r-iz' 1 /3r+ 1z-'

1
... O/_iz--

1

-aO

-ar_1

1
-ar+1

-aM-1

1

1

(3.11)

where ai = u*/u* and /v = ,*v" for any r E {0, 1, ... , M - 1} with ur, 0.

Both lifting structures are depicted in Figure 3-7 for M = 4 and r = 0. Designs of the

LUT based on (3.10) and (3.11) can be found in [63].
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floating-pt C1 C2 I C3 C4 C5 C6 C7

- 0.566454497 1/2 1/2 9/16 9/16 9/16 145/256 145/256

/ 0.541196100 17/32 69/128 69/128 69/128 277/512 277/512 4433/8192

a -0.640652284 -5/8 -5/8 -5/8 -41/64 -41/64 -41/64 -41/64

MSE 0 3.1e-5 2.0e-5 1.3e-5 3.4e -7 1.le-7 2.2e -9 3.2e-10

CG 7.5701 7.5640 7.5665 7.5690 7.5699 7.5701 7.5701 7.5701

Adds - 14 15 16 17 18 19 20

Shifts - 8 9 10 11 12 13 14

Table 3.1: Several adder-constrained reversible multiplierless approximations of the normal-

ized 4-point DCT.

3.4.5 Discrete Cosine Transform and Cosine-Modulated Filter Bank

The discrete cosine transform (DCT) [100] is perhaps the most popular block transform. It

is orthogonal and normalized: C' CM I, where CM is the M-point DCT kernel. Here, we

present lifting factorizations of the DCT which are different from the conventional Givens

rotation-based approaches. In particular, the presented factorizations have unit diagonal

scaling throughout, which benefits applications requiring reversible transforms.

DCT with M= 4

By exploiting the symmetry structure in C 4 and maximizing the occurrence of dyadic quo-

tients (±1 and ±1/2 in this example) in the course of the Monic Euclidean algorithm, one

can arrive at the 4-channel lifting factorization shown in Figure 3-8. This implementation is

normalized, and it requires 9 lifting steps, only 3 of which are floating-point multiplications.

In contrast, the best UL U factorization [117] of an appropriately permuted C4 requires 13

lifting steps, 12 of which are floating-point multiplications.

The structure in Figure 3-8 lends itself very well to a reversible multiplierless approxima-

tion [31] of C4 , as only 3 floating-point multipliers need be approximated. Several reversible

multiplierless approximations are given in Table 3.1 to demonstrate the idea. The config-

urations with 17 adders or more (C4, ... , C7) provide good approximations of the 4-point

DCT.
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Figure 3-8: A 4-channel lifting factorization of the normalized 4-point Type-II DCT using 9
simple liftings, 6 of which are dyadic numbers. In the figure, a = csc(ir/8)(cos(7r/8) - 2/2),
0 = v sin(7r/8), and -y = csc(7r/8)(1/2 cos(r/8) - V2/2). Their magnitudes are all less than
unity, providing a good dynamic range performance.

DCT with M=8

Figure 3-9 shows the proposed 8-channel lifting factorization of v2C8. Again, this is re-

versible due to the proposed M-channel lifting structure. It requires 29 simple liftings, 13 of

which are floating-point numbers. In Figure 3-9, the lifting multipliers are A= 0.534511,

A2 = -0.831470, A = -0.303347, A4 = 0.555570, A5 = -0.465489, A6  0.696653,

A7 = -0.707107, A8 = -0.707107, Ag = 0.707107, A10 = 0.707107. In contrast to [68],

our structure achieves a reversible implementation, at a cost of two extra floating-point

multiplications. As a comparison, the best UL U requires 55 floating-point multiplications.

The above DCT examples demonstrate the M-channel lifting factorizations of a given

constant (order 0) polyphase matrix. Below we consider an order-3 polyphase matrix and

its lifting factorization, using a 3-channel cosine-modulated filter bank with genus 4.

Cosine-Modulated Filter Bank (CMFB)

Table 3.2 lists the prototype filter po[n] of a 3-channel CMFB with 12 taps for each filter. It

can be verified that det(E(z)) = -z- 4. We give below one possible 3-channel factorization
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Figure 3-9: An 8-channel lifting factorization of VfC 8 using 29 simple liftings, 13 of which
are floating point numbers. The determinant of the polyphase matrix is 2 . In the figure,
the block of 4-point DCT-II is exactly as shown in Figure 3-8.

with low order lifting steps:

E(z) = i,o [0.73206] o, [-0.57735] F 2,1 [0.57735] F1 , [0.73206] FO,2 [-1] F1 ,o

F2,o I - 0.11738 z + 0.71132 - 0.64871 z- diag z-1

1-0.57735]

-z-1 z-2])

Fo,2 11.54152 F 2,0 [ - 0.24699 - 0.18727 z-2 ro,2 [ - 0.50361]. (3.12)

3.4.6 PRFB With Prescribed Admissible Ho(z) - A B-Spline Ex-

ample

As described in Section 3.3.7, given an admissible filter G(z) with G(1) f 0, there exists a

PRFB having Ho(z) = G(z). To illustrate the process of designing such PRFBs, let us take

for example the B-spline with M = 3 and p = 1. This is the "linear-hat" function in the
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n Po[n]

0,11 -0.1028004872325624

1,10 0

2,9 0.2041290690989870

3,8 0.4378825255433416

4,7 0.7071067811865476

5,6 0.8694954150524967

Table 3.2: Prototype filter po[n] for the 3-channel CMFB.

3-channel setting. The initial PRFB obtained from the filter ui [-n] is

1 (z+2)/3 (2z-+1)/3

E(z)= 0 1 0

0 0 1

for which the band-pass and high-pass filters have no frequency selectivity. This is improved

by using a suitable biorthogonal sub-system E(z) to increase their length (see Figure 3-4).

There is no unique way to choose 0(z), although one possibility is to generalize the PU

building blocks in Sections 3.4.1 and 3.4.2 to Vm(z) = I - umvT+ z-JUmVT and V,(-1)=

I - 2m , with u = 1 [132]. The results are degree-1 and degree-0 biorthogonal

building blocks2 , and E(z) H UmVm(z) HmVm'(1) in this case. Once the structure of

E(z) is in place, one can design the PRFB subject to suitable criteria, for example, stopband

attenuation and the transform coding gain [129]. Figure 3-10 shows a design which has equal-

length analysis filters Hi(z), with a coding gain of 5.93dB. Note that Ho(z) is as prescribed,

and that the analysis scaling function #(t) is indeed the linear-hat B-spline. For this example,

the lifting steps, Ak(z), shown in Figure 3-4 are chosen so that the synthesis scaling filter

Fo(z) has first-order regularity-a necessary condition for the synthesis scaling function to

exist in L 2(R) [108].

20ther biorthogonal building blocks exist. For example, see [98].
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Figure 3-10: Design example of a PRFB with a prescribed admissible scaling filter Ho(z)
which comes from the three-channel "linear-hat" B-spline. H (z) are chosen to have equal
length, and the lifting steps, Ak(z), shown in Figure 3-4 have been chosen so that the
synthesis scaling filter Fo(z) has first-order regularity. The coding gain is 5.9259dB.

3.5 Conclusions

We have presented a systematic M-channel lifting factorization of a perfect reconstruction

filter bank E(z) with det(E(z)) = z-K, K E Z, based on the Monic Euclidean algorithm.

The proposed M-channel lifting factorization is suitable for reversible, possibly multiplierless

[31], implementations of given filter banks and their corresponding M-band wavelet trans-

forms, even under finite precision and/or nonlinear liftings. We consider how to optimize

the M-channel lifting structure for the number of lifting steps, delay elements, and dyadic

coefficients, and also for the dynamic range. PRFBs with a prescribed admissible scaling
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filter Ho(z) can be naturally parameterized by a lifting structure that appropriately con-

fines the degrees of freedom within the remaining M - 1 filters. Specializing the M-channel

lifting factorization to paraunitary, biorthogonal, and unimodular building blocks enables a

lifting-based FB design [27,63]. Finally, we note that regularity can be conveniently imposed

on the lifting structure. Design examples have been given to demonstrate the versatility of

the proposed method.

Appendices

3.A Proof of Lemma 3.1

]TSince pj(z) are not all zero, we can choose from p(z) PO [(Z) PI (Z) ... PM-1(Z)]

the one with the minimum finite Laurent degree, say, pet (z). The finiteness is needed to

exclude zero polynomials from being selected. Then, divide each of the pj(z) by pe, (z), for

i E {O, 1, ... , M - 1} \ {f}. Denoting the corresponding quotients and remainders by qj(z)

and ri(z), respectively, we have pi(z) - qi(z)pe,(z) = ri(z) with deg(ri(z)) < deg(p,(z)) for

all i E {O, 1, ... , M - 1} \ {1}. This can be cast into matrix-vector form:

0 0 0

1

-qt1_1(z)

0

0

1

0

0

-ql+1 (z)

1

L 0 ... 0 0 0

Q (z)
ro(z) ... reli(z) pe,(z) re1+i(z)

rf(z)

0

0

-qM_1(z)

0

. . 1

. r (z) ],

101

~1

0

-qO (z)

0

p T (z)

I

=



or

pT (z) Qt, (z) = rf (z).

Note that Q, (z) is actually a cascade of at most M - 1 simple lifting steps:

M-1

Q,(z) = 1[ P,j[-q3 (z)].
j=O, jPr 1

Thus its inverse is straightforward:

M-1

[Qei(z)]V1 = J7 Fe1 ,[qj(z)], (A.1)
j=O, j=A1

which is also FIR.

We can apply the same procedure to r1 (z) to obtain

r (z) Qt2 (z) = r'(z)

r' (z) Qe (z) = r'(z)

and so on. This procedure is guaranteed to converge, because in going from ri (z) to rj+1 (z),

the maximum Laurent degree strictly decreases:

MAXDEG(Z) - 1> MINDEG(') - MAXDEG('+',

where i > 1 and MAXDEG%)/MINDEG(2) is the maximum/minimum finite Laurent degree

of the elements of ri(z). Therefore, there exists some finite integer N such that rN(z), which

is the M-vector r(z) in the Lemma, contains only one non-zero polynomial g(z)--the gcd of

p(z). p(z) is thus related to rN(z) by

N

pT (z)HQe (z) = r'(z) -[O0 ... 0 g (Z) 0 .. 1.
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In case the gcd g(z) appears in the fNth entry of rN(z), for some 1 < fN < M - 1, it

can be brought to the first entry by either a permutation, if so desired, or two more simple

liftings

]PEN,o[1] and FoMN [- 1]

In the latter case, it is easy to show that

rN(z) fN,[ 1]oN[-1 g(z) o ... o].

M

3.B Proof of Theorem 3.1

Suppose that the gcd g(z) of p(z) is found by the Euclidean algorithm after N repeated

divisions, for some integer N. Therefore, there exist some FIR M-channel liftings, Qj(z),

i = 1, 2, ... , N, such that

N

PT (Z) HlQ (Z)= [g(z) 0 ... 0 ].

If g(z) is monic, then a monic gcd has been found; otherwise, there exists a scalar a - 0, 1

such that

is a monic gcd of p(z).

The following post-processing on (A.2) guarantees both a monic gcd and the lifting

requirement as defined in Section 3.2.2:

QN+ 1(Z)

QN+2 (Z)

QN+3 (Z)

= I + az eo ej,

I+(1-az')ejeOT,

-I-eOeT,

(A.3)

(A.4)

(A.5)
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for any n E Z and any fixed j C {1, . . ., M - 1}. This results in

N+3

pT(z) Q(z) = go(z) z-n 0 ... 0 0 0 ... 01.

3.C Proof of Lemma 3.2

Since det (E(z)) is a (monic) monomial, the entries in each row (column) of E(z) are rela-

tively prime; otherwise, any polynomial common factor of them will also divide det (E(z)),

contradicting the assumption that det (E(z)) is a monomial.

Then, a monic monomial gcd of the first row of E(z) can be found using the Monic

Euclidean algorithm, and furthermore the gcd can be chosen to be a constant, i.e. 1 = zo,

by an appropriate choice of n in Appendix 3.B. Thus, there exist a set of FIR M-channel

liftings Qj(z), Q 2(z), ... , QN(z), such that

1 0 0 ... 0
N p1 (z) X X ... X

E(z) Q (z) = p 2 (Z) x x ... X , (A.6)

[Vi(z)] - .1M1(Z) X X ... X

where x denotes possibly nonzero entries, and all the pj(z) are FIR, since the left-hand side

of (A.6) is FIR. Now, using the gcd 1 as the pivot to perform Gaussian eliminations, we can

null all the pj(z) using only FIR liftings. This amounts to pre-multiplying (A.6) by

M-1

[L1(z)]-1 = J Pe,o[-pt(z)],
f=1

which is FIR and lower-triangular by construction. Therefore,

[L 1(z)]- 1 E(z) [V 1(z)]- 1 = [ (A.7)
0 61(Z)
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for some FIR 0 1(z). The fact that both Lj(z) and V1(z) are FIR is a direct consequence of

(A.1). Now, since M-channel liftings are determinant-preserving, we have

det(E(z)) = det
1

0

oT

e1 (z) = det(E1(z)).

0

3.D Proof of Theorem 3.2

Since E1(z) in Lemma 3.2 is FIR with det(E1 (z)) = z-K, one can again apply Lemma 3.2 to

0 1(z) to obtain two FIR (M - 1)-channel liftings L(z) and V'(z). Upon being augmented

to

I OT 1 OT

L2(Z) =and V 2(z)= ,
O L'(z) 0 V'2(Z)

these factors map (A.7) to

1 2 1 0

11 [Li(z)]-' E(z) H[Vj(z)]-1 = 0 1

L= 02=Z)1

with E2(z) being (M - 2) x (M - 2) FIR, and det(6 2(z)) =

this procedure recursively on E, (z) with the augmentations

Lj+j (z)=
Ii o]

+1 (Z)

I
and V+ 1(z)=

00 L'

det(6 1 (z)) = zK. Repeating

1

Vi'+1(z)J

will eventually lead to a scalar EM-_(z) = z-K

() )M-1

fj [Lj(z)]-1 E(z) rl [Vi(z)]-l = K
(i=M-1 i=1 Z

A(z)
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M-1

Setting L(z) = Lj(z) and V(z) = Vj(z), we arrive at
i=M-1

E(z) = L (z) A(z) V(z),

with L(z) and V(z) being FIR M-channel liftings.
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Chapter 4

Paraunitary Filter Banks With

Structural Regularity

Paraunitary filter banks (PUFBs) can be designed and implemented using either degree-one

or order-one dyadic-based factorizations. This chapter discusses how regularity of a desired

degree is structurally imposed on such factorizations for any number of channels M > 2,

without necessarily constraining the phase responses. The regular linear-phase PUFBs be-

come a special case under the proposed framework. We show that the regularity conditions

are conveniently expressed in terms of M-channel lifting structures, which allow for fast,

reversible, and possibly multiplierless implementations, in addition to improved design effi-

ciency as suggested by numerical experience. M-band orthonormal wavelets with structural

vanishing moments are obtained by iterating the resulting regular PUFBs on the lowpass

channel. Design examples are presented and evaluated using a transform-based image coder,

and they are found to outperform previously reported designs.

4.1 Introduction

Recall that an M-channel filter bank with polyphase matrix E(z) is said to be paraunitary

(PU) if E(z)E(z) = I, where the ~ operation stands for conjugate transpose (t) and time-
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reversal (z -- z- 1 ). Namely, E(z) is unitary on the unit circle IzJ = 1. If E(z) is both PU

and FIR, it is automatically lossless, and the synthesis filters can be found directly from the

analysis filters by inspection (in fact, by time reversal and complex conjugation) [129].

Any PUFB E(z) of degree N always assumes the degree-one factorization as in (2.51),

which is repeated here for ease of reference:

1

E(z) J 7 Vm(z)Eo.
m=N

Each dyadic-based building block Vm(z) can be implemented using only one delay element

[129]. In [134], the use of dyadic-based structure for filter bank design was studied and was

shown to outperform the Givens rotation-based parameterization. Generalizing the above

degree-constrained structure, Gao et al. have recently proposed a factorization given the

order of the PUFB [523. Definitions of the order and McMillan degree of PUFBs can be

found in Section 2.2.

Regularity of PRFBs is very desirable as explained in Section 2.4. In [58, 59, 105], a

closed-form expression for K-regular scaling filter Ho(z) was derived, and a technique for

constructing a family of PUFBs or E(z) from Ho(z) was proposed by further assuming a

given unitary matrix E0 , which was chosen in an ad-hoc fashion - the issue of how to choose

E0 was not fully addressed. Consequently, the resulting PUFB may not be optimal given

certain design criteria, and faces the same problem of being (McMillan) degree-constrained

as pointed out in [134].

For the class of M-channel linear-phase PUFBs (a.k.a. GenLOT [41]) with M even, the

imposition of up to two degrees of regularity on the lattice structure was discussed in [92].

The regularity conditions were expressed in terms of the Givens rotation angles of the lattice

components. On the other hand, for the most general class of M-channel regular PUFBs

without the linear-phase constraint, the imposition of structural regularity has not been

reported, except when M = 2 for which regularity of degree one is guaranteed if all the

rotation angles of the lattice structure sum up to 7r/4 [108]. We aim to solve this problem in

its most general form by considering a higher degree of regularity and an arbitrary number of
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channels M > 2 without necessarily constraining the phase responses. The resulting design

outperforms and spans a larger class than the regular GenLOT [92]. Preliminary results can

be found in [27].

In the following, we will focus on structurally imposing regularity on the degree-one (2.51)

and order-one (2.53) dyadic-based factorizations of the PUFBs, with important properties

and conditions derived and geometric interpretations given. In this way, regularity is always

guaranteed by the structure and does not appear as a side constraint during optimization.

The special class of linear-phase PUFBs is revisited within the proposed framework, and the

corresponding regularity conditions are shown to simplify in this case. All the regularity

conditions on the dyadic-based structures are shown to be conveniently expressed in terms

of the M-channel lifting factorization proposed in Chapter 3 (Section 4.4), which allows for

efficient and reversible implementations of the filter bank, and results in faster convergence

than the Givens rotation-based parameterization in the design process. Regular lifting struc-

tures are proposed. Finally, based on the derived regularity conditions, design examples are

presented (Section 4.5) and evaluated in a transform-based image coder (Section 4.6) - the

resulting regular PUFBs outperform existing ones in terms of both subjective and objective

measures. Concluding remarks are found in Section 4.7.

The following notations will be used. The ith column of an m-indexed matrix wm is

denoted as wmi, with wm [ ... Wmi ... . When references are made to the ith

element of an M-vector vm, we use v!', or equivalently, vm [ vg1 v ... v7g 1  . An

m x n constant matrix A is said to be unitary if AtA = I.
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4.2 Dyadic-based Factorizations with Structural Reg-

ularity

4.2.1 One-Regular PUFBs

We begin our discussion with the construction of one-regular PUFBs. The following Lemmas

will help establish the one-regular results for both the degree-one and order-one factorizations

(2.51) and (2.53).

Lemma 4.1. In the Householder factorization of a unitary matrix U as in (2.46), the 0th

column of U is completely determined by the unit-norm Po and the entry e0 of D.

Proof: Consider the special form (2.47) the pi take on. M

Lemma 4.2. A degree-0 (and thus order-0) M-channel PUFB with Type-I analysis polyphase

matrix E(z) = E0 is one-regular if and only if the 0th row of E0 has identical elements.

In particular, these elements are equal to 1e0 (equal magnitudes and equal phases), forVIM
arbitrary 0 E R.

Proof: Consider (2.43) with Q(z) = Me7 and K = 0. U

Lemma 4.2 is equivalent to the Type-II synthesis polyphase matrix, Et, having identical

elements (= 1 e-jO) of its Oth column.

Lemma 4.3. A degree-0 (and thus order-0) M-channel PUFB with Type-I analysis polyphase

matrix E(z) = Eo is one-regular if and only if the Householder factorization of E0

Et = H[po] ... H[pM-2] Dt (4.1)

where D = diag(eeo, ... ,eiOM), is such that po = p p ... p_ 1 ] with

0 VM - s
== eih (4.2)

2 M

0 ~-s ej?7
A , i=1,72, ... , M - 1 (4.3)

2(M -s M)
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where s can be either 1 or -1, and 1 is any real number. In this case, we have

E01M -cO 0 ... 0] (4.4)

where

co = svIKedoo. (4.5)

Proof: By Lemma 4.2, E0 is one-regular if and only if each element of the 0th row equals

7!eO. By Lemma 4.1, the 0th rowof E0 in (4.1) is eio 1-2 2 2 P ... -2pp

This gives ejio(1-2 0) eiJ or 1-2|pg|2 = eJ(O-Oo) s for some sign parameter

s = ±I, as 1 - 21pg| 2 E R. One can then obtain Ip0 12 = V/K-S and Ip| 2 120 0 2Y -M 2 (M - s v'7)'

i = 1, 2,. . , M-1, and hence (4.2) and (4.3). Now, since the PUFB is one-regular, (2.42a)

implies (4.4), which in turn implies 1col = |1ml = M as Eo is unitary. In fact, co =

M - ejo = v17ej'k = sVx/i7ej'o.

Theorem 4.1. A degree-N PUFB (2.51) is one-regular if and only if E0 is one-regular as

in Lemma 4.3.

Proof. Since E(1) = VN(1) ... V 1 (1)Eo =E,

E()1M = E01m =co 0 ... 0 1

Using (2.53) and (2.57), one can establish the following one-regular result for the order-one

factorization.

Corollary 4.1. An order-L PUFB (2.53) is one-regular if and only if E0 is one-regular as

in Lemma 4.3.

Remarks: This also establishes that regularity of degree one is completely determined by

the unitary matrix Eo in (2.51) and (2.53), irrespective of the filter length and the McMillan
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degree. Furthermore, the Householder matrix H[po] in (4.1) is the only controlling factor

for one degree of regularity. An order-L PUFB can have degree ranging from L to ML.

4.2.2 Two-Regular PUFBs

Having developed the conditions for one-regularity, we are now ready to derive the two-

regularity conditions on the dyadic-based structures.

Two-Regular Dyadic-based Structures With or Without Length Constraint

Theorem 4.2 (Two-Regular Dyadic-based Structure). A degree-N PUFB (2.51) is

two-regular if and only if

1. Eo is one-regular as in Lemma 4.3, and

2. the unit-norm parameter vectors vm of V,(z) as in (2.50) are such that

N

(4.6)sM 3 2 Y VO*Vm = -EobM

M=1

where bm = [0 1 ... M-1
T

Vm =

sejO0 iT
VI M I

and EO=
No

Proof: Setting K = 2 in (2.42a) with the degree-one factorization (2.51) for E(z), we

have

E01M = s Me 0 e0

from (4.5), and

N

-M E VmVt EolM - EObM = cle 0

m=1
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for some ci # 0. By deleting the 0th rows from both sides of the equation, we arrive at (4.6).

N

Similarly, we have the following two-regular result for the order-one factorization (2.53).

Corollary 4.2 (Two-Regularity with Length Constraint). An order-L PUFB (2.53)

is two-regular if and only if

1. Eo is one-regular as in Lemma 4.3, and

2. the unitary parameter matrices wm A [wm,1

PU building blocks Wm(z) are such that

wm,2 ... wm,Ym of the order-one

_ eJo EobM

Proof: Using the order-one factorization for E(z) in (2.42a) with K =

obtains Eo1M = s MeiOo eo and

cieo

2, one again

L

-M wmwm(EolM) - EObM
m=1

L

-sM fMeoO wm(w eo) - EObM
m=1

L ym_Sm312 m,i*
S-sM 3/2 Oo wo wm,i - EobM,

m=1 i=1

and thus (4.7). 0

Having obtained the two-regular dyadic-based structures, we now present the following

two Lemmas which are useful for further analysis.
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Lemma 4.4 (Norm of vo*V7m). For each of the terms voi*im, the norm is upper-bounded

by 1/2:

M-1

|* |2 = |vg21 S |v7"2
i=1

= |vOmI 2(1 _ |vm") < 1/4. (4.8)

The equality holds when fv"| = I/v2.

This norm bound will be used to prove the triangle inequality in the subsequent sections.

Lemma 4.5 (Constant Norm). If the PUFB E(z) is at least one-regular, the norm of

EobM, as appears in (4.6) and (4.7), will be constant, irrespective of E0.

Proof: Since EobM is obtained by deleting the 0th entry of EObM, we have

EobM = IIEobM12
2

ej0O 1T bM
V/M

M-1

=J n2

n=1

1
(M-1

n=1

2

M(M 2 - 1)
12

(4.9)

0independent of E0 .

Based on the above, the first result is the minimum McMillan degree required for two-

regularity.

Theorem 4.3 (Minimum Degree for Two-Regularity). For a PUFB to be two-regular,

its McMillan degree has to be at least one.

Proof: Taking the norm of (4.6) and using (4.8) and (4.9) give

M(M 2 _ 1)
1 2

=M3/2 vM*im
E m V= m

M=1
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from which it can easily be seen that N, the degree of the PUFB, has to be at least one for

the inequality to hold. 0

Note that this result is consistent with the fact that, for a two-regular PUFB, the mini-

mum order is one, and that the filter length is thus 2M [105] which is a stronger requirement.

One should also note that, if the linear-phase property is imposed, this minimum length is

increased to 3M [92].

Existence of Two-Regular Solutions

Not all choices of unit-norm vectors vm satisfy (4.6) for the degree-one factorization. Sim-

ilarly for the order-one case (4.7). In particular, the parameter vectors vm and wm,i have

to satisfy the triangle inequalities imposed by (4.6) and (4.7), respectively. Take (4.6) for

example. Dividing it by sM 31 2 and moving the first k terms of the summation to the other

side of the equation, we have the following inequalities

sei0o gobM+ k v N N-k
M 3 /2  ZVE V 0 ZVMV - 2

M=1 m=k+1

(4.11)

for k = 0,1,... , N - 1. The last inequality is obtained by appealing to triangle inequality

and Lemma 4.4. The following theorem summarizes the results obtained from this idea.

Theorem 4.4 (Two-Regular Feasibility-I). Consider a two-regular PUFB with the

degree-one factorization (2.51). In the corresponding two-regular condition (4.6), suppose

that Ak{v1, ... , Vk} has been given. Then there always exist unit-norm vectors Vk+1, ... , VN

which, together with vi in Ak, satisfy (4.6) regardless of the choice of Ak, for any k e
{. [ -1}, where it is understood that Ak 0 if N 2.

Proof: In the LHS of (4.11), we have

se-JOo k M2_-1 k 1 k
M3/2 - 12M 2  2 12 2m=1-
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by triangle inequality and (4.9). We want this bound to be upper-bounded by (N - k)/2

as in (4.11) so that there always exist some Vk+1, ... , VN which, together with v1 , ... , Vi

satisfy (4.6). This results in k - - 2 or k <[$]-1.

This theorem guarantees that for the two-regular degree-one factorization, approximately

half of the unit-norm vectors vm in (4.6) can be arbitrarily chosen in imposing two degrees

of regularity. Suppose the vectors vm are determined in the increasing order of m = 1, 2,. .

Then the condition (4.11) need be checked only for vm with m = [N] , ... , N - 1.

The following inequality is important in establishing the order-one equivalence of Theo-

rem 4.4.

Lemma 4.6. In (4.7), we have

Em,i*mi 5 -

W0 Wm' 2

Proof: We will postpone the proof to Lemma 4.7 in the next section where we establish

the properties and geometric interpretations of regular M-channel lifting structures. E

We are now ready to state the order-one equivalence of Theorem 4.4.

Theorem 4.5 (Two-Regular Feasibility-I). Consider a two-regular PUFB with the

order-one factorization (2.53). In the corresponding two-regular condition (4.7), suppose that

Be {wi,. . . , we} has been given. Then there always exist unitary matrices w+ 1 ,. . . , WL

which, together with wi in Be, satisfy (4.7) regardless of the choice of Bt, for any f < (A1 -1,

with Be 0 if L < 2.

Proof: By triangle inequality, we have

seJ 0o -f m Mi* 1 I ~ f ___

M 3 / 2 obM w0 W m,i L 2
m=1 i=1 m=1

and

L M'i L v'_
Ym w m,i -2

m=e+1 i=1 M=f+1
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By the feasibility assumption on w+ 1 , ... , WL, we want

1 L

V12 : 2 -2
m=1 m=f+1

Since the Ym can be ordered as in (2.55), it is sufficient that

S+ /+1 < (L - t) or f < -_1.
/12 2 2 2

Remark: For the two-regular order-one factorization, approximately half of the order-one

PU building blocks Wm(z) can be arbitrarily chosen without violating the two-regular fea-

sibility, where (2.55) is assumed on the -ym's.

Procedures for Obtaining Feasible Solutions to Two-Regular PUFBs

Degree-One Factorization Case (4.6)

Since Vk, k = [,f..., F1 -1, can be arbitrary as Theorem 4.4 guarantees, consider k > [$1.
Having determined v1 , v 2, ... , v_1, we have to choose vk such that

N

VOk + E V0  m = gk, (4.12)
m=k+1

where
k-1

gk = -- zVE Vmm - sM- 3/ 2eJogobM

m=1

is known, as v1 , v 2 , ... , Vk1 have been chosen. Eqn. (4.12) specifies the feasibility condition

on Vk in terms of a triangle with two undetermined sides [the two terms on the LHS of

(4.12)]. For Vk to be two-regularly feasible, these two undetermined sides, together with the

given side gk, must form a triangle or a closed loop.

With this geometric perspective, feasible Vk can be determined as follows. To simplify
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- N

Sk

Figure 4-1: Geometry for imposing two degrees of regularity, the case where the dis-

tance between Sk and S', 119J, is large enough such that Sk Z S . In this case, yk is

the maximum angle of deviation that a feasible f3 k can make with g, and is given by

_ o' (flgkfl + 1-N-)
;k = COS-k 41k)

notations, define 3m _ V'Vm'v, and (4.12) becomes

N

m=k+1

We will see that the /m are vectors consisting of the lifting multipliers of the PU building

blocks (Sec. 4.4). By Lemma 4.4, we have I/#mll < 1/2 for all m. Therefore, the first

undetermined side or feasible /3 k is contained within a hyper-sphere Sk c RM1 of radius

1/2, and the other undetermined side is contained within another hyper-sphere Sk c RM- of

radius (N - k)/2. Figure 4-1 depicts Sk and Sk centered at the starting and the ending points

of vector g,, respectively. Depending on the relative sizes of Sk and Sk, two possibilities are in

order: If Sk is completely contained in Sk, 3k and thus Vk can be chosen in an unconstrained

fashion. This is the case if I1gke is small enough. Otherwise, 3k has to be chosen out of the

shaded area in Figure 4-1 so as to satisfy (4.12). In this case, it is clear from the geometry
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that the angle of deviation, k, that any feasible 3" makes with gk is upper-bounded by

k Cos g + 1 -(N- k) 2

For any feasible angle k E [0, ;5k], the length of )k satisfies

- (N -- k)2_ 4 2 sin2 <

O gk y cosp V - IIk 1/2

At any rate, the intersection of the two hyper-spheres Sk and S' is the collection of all

feasible 8k. Having chosen Vk, we repeat the same procedure to find Vk+1, and so on and so

forth.

Order-One Factorization Case (4.7)

The above procedure can be extended to this case by replacing 0"' with E7- 3m ,' with the

norm bound || ''il < VY/ 2 presented in Lemma 4.6. The radii of the hyper-spheres

St and Sj therefore become " and (L-f)V5; , respectively. The intersection of Sf and Sj is2 2

the set of feasible vector sums Z7j=1j)fe.

4.3 Regular Linear-Phase PUFBs Revisited

As linear-phase PUFBs (LPPUFB) are a special class of PUFBs, this section aims to show

how the above general theory on regular PUFBs specializes under the linear phase (LP)

assumption, and as a by-product, to derive a simplified dyadic-based representation for

LPPUFBs with approximately 50% reduction in the number of free parameters. The number

of channels M > 4 is assumed to be even in this section.

Recall that an M-channel LPPUFB of order L can always be factored as follows [41,121]

E(z) = GL(z)GL-1(z) ... G 1 (z)E L (4.13)
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where Gm(z) = FrQA(z)Q is the PU linear-phase building block, and El = LoQi, with

Um OM/2]
FM = ,I

-OM/2 Vm _

IM/21

--- ,/

A(z) =IM/2

-OM/2

OM/2 IM/2 OM/2

z-11M/2_ n _0M/2 JM/2-

The Urn and Vm are M/2 x M/2 unitary. In [52], the authors show that Un for m > 0 can

be set to I without affecting the completeness of the structure in (4.13).

4.3.1 LPPUFB in Standard Order-One Form (2.53)

Obviously, each LP building block Gmn(z) is of order one. Therefore, one can express it in

terms of the order-one PU building block Wm(z).

M/2 omitted for notation simplicity)

It can be shown that (with subscripts

GL(z)= UL

L0

=I+

QA(z)Q
VL

( 1-1)12

I -ULV

LU I

- WL(z) UL 0

0 VL

where the order-one PU building block WL(z) is given by

WL(Z) = I+ (Z -- 1)
I -ULVL

-VLU I
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The trailing factor diag(UL, VL) is absorbed by GL-l(z) so that

GL(Z)GL-1(z) = WL(z) [UL

= WL(z)
0

= WL(Z)WL-1(

0 I GL-1(z)
VL

0
QA(z)Q

YL-1_

Z)UL-1 0

L0 VL-1

where Um A ULUL-1 . . .Um and Yrm A VLVL-1 . .. V are unitary, and Wrn(z) is given

by

Wrn(Z) = I +
(I z-5mY

( z 1- 1)i
2 --Y MUT I

(4.14)

We can carry out the same procedure until arriving at

(4.15)

This alternative factorization (4.15) of the LPPUFB is considered to be the order-one fac-

torization in its "standard" form (2.53).

4.3.2 Some Observations

Two observations are in order based on the standard order-one form (4.15) derived above.

Firstly, for each order-one PU building block Wmn(z) as given in (4.14), the choice of the

orthogonal1 parameter matrix wm is not unique, but one can always make the following

'We consider real-valued filters in this section.
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choice

WM= . (4.16)

We will see that this choice results in a significant simplification of the two-regular condi-

tion (4.7), and achieves a reduced number of free parameters for the LPPUFB. Secondly, the

standard form (4.15) provides a new parameterization of LPPUFBs by defining

Uo = Uo, Vo = Vo, and

Ym= MIm m 1,2, ...,IL.

Namely, there are in total L +2 free parameter matrices of size M/2 x M/2. This is less than

2L +2 as in (4.13) and is the same number as the reduced-parameter structure for LPPUFBs

established in [52]. Note that starting with a set of (original) parameter matrices Um and

V, as in (4.13), one can always obtain a corresponding smaller set of matrices Um and Vm.

Hence, the completeness of the structure is not affected by the proposed parameterization.

4.3.3 Specialization of Two-Regular Condition (4.7)

With the proposed choice of the M x : orthogonal parameter matrix wn for Wm(z):

1ra - T (.7
wm= [I -VT] (4.17)

the second two-regular condition (4.7) in Corollary 4.2 simplifies significantly, resulting in

L

SM3/2 w M wM = -EobM, (4.18)
m=1

as wm = 0 for all i > 1 and for all m = 1, .. ., L, where the phase term e-iOO becomes ±1 in

the real case and has been absorbed into the sign parameter s. The above condition can be
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further simplified as

SM3/2 L

2 ZVmeo = EobM, (4.19)
n=1

due to LP and (4.16), where to denotes the lower M/2 rows of Eo, and it is understood that

e o E RM/ 2 This is a condition on the 0th columns of Vm's, which is a simpler geometric

condition to impose.

Proof: We will first show that the first M/2 - 1 equations in (4.18) are automatically

satisfied due to the LP assumption. Therefore, (4.19) and (4.18) are equivalent.

In the LHS of (4.18), the first M/2 - 1 elements are identically zero due to (4.17). For

the RHS, note that

EO UO 0 1 [io UJ]

L0 So j v/ o -$0iJ

Therefore, by recognizing bM = bT bT + (f) 1 ] and bm + Jbm = (t - 1) 1 ,

we have

1 O UoJ bm_
Eobm =

=v/_ [Q roz±~~ I7 =m [&(H)1M]
L Y -YJ b + )2 --

U bm + Jbm + il m

v/2 o (b m - Jb m - Al1 x

where a= M . As the LPPUFB is two-regular, U 0 1m = Oeo, where eo E RM/ 2 and ao

± M/2 [92], which establishes that the first M/2 - 1 elements in the RHS of (4.18) are

identically zero as well.

In this way, we have obtained an alternative characterization of structurally regular

LPPUFBs [92] using dyadic-based structures, with an equivalent but simpler geometric con-

dition (4.19) to impose. Note that based on (4.19), many properties in [92] such as the
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minimum length can also be derived, and the design procedure can be fully utilized subject

to suitable modifications.

4.4 Regular M-channel Lifting Structures

Recall that the M-channel lifting factorization proposed in Chapter 3 allows for efficient,

reversible, and possibly multiplierless implementations of perfect reconstruction filter banks

and their corresponding M-band wavelet transforms, even under finite precision and/or

nonlinear liftings [25]. In the design process, the lifting-based parameterization enjoys faster

convergence than the Givens rotation-based counterpart [25, 27]. Here, we will first revisit

the M-channel lifting factorizations of the PU building blocks encountered so far, including

a parallel implementation of Wm(z) based on Vm(z), which will be employed to obtain

the M-channel lifting factorization of Wm (z). Then, the properties of the associated lifting

multipliers will be derived which are important to the analysis of the proposed lifting factor-

izations. This is followed by the imposition of structural regularity in the context of lifting

factorizations, and it will become clear that the proposed M-channel lifting factorization

provides a natural parameterization of the problem in question.

4.4.1 Degree-One Paraunitary Building Block Vm(z)

Recall that the degree-one paraunitary building block

Vm(Z) = I - VmVt + Z_1 VmV
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Figure 4-2: The M-channel lifting factorization of V(z), drawn for M = 5 and r = 2.

is a unit-norm vector, can be lifting-factorized as

1

1

-#0 ... - ;7 1 z- 1

1

1

1

-aml

1

m

-aMM1

1

1

Om

M1

(4.20)

where the lifting multipliers aT v'*/v'* and /3" A v 'v"* for some r E {0, 1,. .. , M - 1

with v"' f 0. As we can see, the factorization is not unique unless the choice of r is. Figure 4-

2 shows one lifting factorization of V,(z) for M = 5, The factorization requires 4(M - 1)
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lifting steps and only one delay element to implement, and thus is minimal in the McMillan

sense. It is also minimal because exactly 2(M - 1) design variables (or M - 1 for the real

case) are needed. The 0j' are related to a' according to

a*
M-m1 (4.21)

1 + |
i=O,ihr

to ensure paraunitariness. Reversible, possibly integer, implementation of Vm(z) is readily

available under the lifting structure, as in [22,31,66,91].

4.4.2 Order-One Paraunitary Building Block Wm(z)

Although the order-one building block Wm(z) is related to and can be implemented by

cascading the degree-one PU building blocks as in (2.57), we note another implementation

of Wm(z) which consists of degree-one PU building blocks in parallel: as a consequence of

the unitary parameter matrix wm of Wm(z), we have from (2.52) and (2.56) that

'Ym

Wm(Z)=1 + (z-1 - 1) Wm,iwij

=-(Ym - 1)I + I + (z 1 - 1)Wm,iW'j. (4.22)
i=1i

AVMi (z)

This parallel form (4.22) reveals the degree--ym nature of Wm(z)-a minimum of -ym degree-

one PU building blocks Vm,i(z) are needed to implement it, and (4.22) is thus minimal.

Figure 4-3 depicts this parallel structure. As a result of (4.22), the M-channel lifting factor-

ization of W,(z) can be readily obtained by applying (4.20) and the corresponding lifting

structure in Figure 4-2.
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------ --------------------m
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vM),2 (Z) m

m~z)

Figure 4-3: A parallel implementation of the order-one PU building block Wm(z) = I -

wmwk + Z~ 1WmW[ of degree 7Y [see (2.57)], 1 < -ym < M.

4.4.3 Householder Matrix H

Recall that the Householder matrix

be lifting-factorized as follows:

H with parameter pn =

1
- - -2pm_ 1 -1 -2p i - 2 - p

1

~1

where the lifting multipliers a! = pT"*/p * and pT = pmp'* for some r E {O, 1, .. , M - 1}

with pm # 0. Again, aim and pT satisfy (4.21), with the substitutions aT = UT and i3 =p

as H is unitary. An example 5-channel lifting factorization of H is given in Figure 4-4.
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H

Figure 4-4: The M-channel lifting factorization of Householder matrix H, drawn for M = 5
and r = 2.

4.4.4 Properties of Lifting Structures

For notation simplicity, we will consider the lifting factorizations (4.20) with r = 0 for the

degree-one PU building block Vm(z), and (4.23) with r = m for the Householder matrix

H[pm}. Extension to other values of r is straightforward. Necessary and sufficient conditions

of regularity on the lifting multipliers of the order-one factorization (2.53) will also be derived.

Mapping Between Lifting Multipliers

For Vm(z), consider the vectors consisting of the lifting multipliers a' and 0j':

a m A rn

#MA [/

]Tam ... a_

]T
2p . .. OZ _- .

(4.24)

(4.25)

It turns out that the vector vm*Vm in (4.6) is exactly 8m defined above. One can show that

am and 3m are related by

m

am

I1+ I|amII 2  or

=V |m I-2om*,

(4.26)

(4.27)
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with

(Vi2 _ 4f/mjj2) or (4.28)

(1 + l|am2)-l (4.29)

as a result of paraunitariness. As we have seen in (4.8) of Lemma 4.4, 3 m is a bounded

vector:

< 1/2.

On the other hand, am is unconstrained:

1M--11
licemII 2  I 1m12 I - 1 > 0.

|VM" 12 lt| -

As for the order-one building block Wm(z) with p(wm) = 7 > ; 1, one can similarly

define lifting multipliers a m j and 3m' for i = 1, ... , ym, and they satisfy the aforemen-

tioned properties in addition to some others (see Sec. 4.4.4 below). Furthermore, the vector

W" Wm,i in (4.7) is exactly j3m"

For the Householder matrix Hpm], the same comments apply with am, 3 m, and vm"

replaced by a m , p m, and pm, respectively, with

[m 0-M+ I - - M-1 and (4.30)

T

p PM Pm+1 M-1 '(4-31)

Uniqueness Issue

Given Vm(z), its unit-norm parameter vector vm is unique modulo a phase: for any # E R,

both vm and e0vm correspond to the same Vm(z); on the other hand, the proposed lifting

multipliers am and 3 i" are strictly unique given Vm(z). Similar comments apply to the case

of the (degree-0) Householder matrix H[pm].
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Conditions for Order-One Lifting Structure

Recall that the rank-7ym parameter matrix wm of the order-one PU building block Wm(z) is

unitary. This imposes some conditions on the M-channel lifting factorization derived from

the parallel form (4.22). Let wm,i be the ith column of win. One can write

(wWM,) Wm,i = (4.32)

based on the definition (4.25). Now, the unitary property of wm implies that

(j"")tfm"0 = - 0 0 (4.33)

for all 1 < i j < ym. Conversely, if (,8 i) t /3 MJ < 0 or equivalently (ami)t am = 1

one has wtwm,j = 0. To ensure unitary parameter matrix wi, this order-one condition

need be imposed on the lifting parameterizations of Wm(z) derived from either (4.22) or

(2.57); mutual orthogonality translated into the lifting domain becomes an "obtuse-angle"

condition on the corresponding lifting vectors 3 m, (and acm,).

The following lemma summarizes a fundamental inequality for the order-one lifting fac-

torization.

Lemma 4.7. Given an M-channel order-one PU building block Wm(z) with p(wm) = 7m,

the associated 7y lifting vectors { G C CM1 i=1,..., yr} satisfy

Z m' < . (4.34)2

Proof: This can be shown by induction on 7m. For -ym = 1, the statement is true since

|10 m,1 1 v/I/2. Assume it is also true for 7ym = n > 1, i.e.,

2
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Now, for ym = n + 1, we have

n+1 2 2

m,i _ m,n+1 + m,i

i=1 i=1

n 2n

1m,n+1i2+ Z ,i 2R m,n+ 3mi

<- + n+2- (3,n+l) t )3nI n + (4.35)

due to the "obtuse-angle" condition (4.33) on the n + 1 lifting vectors. U

Remark: As the order-one PU building block imposes the "obtuse-angle" condition on

the lifting vectors '', the norm of their sum has a tighter upper bound ( ,Ym/ 2) than the

usual triangle inequality (7ym/ 2 ).

4.4.5 One-Regular Lifting Structure

Suppose we parameterize the matrix E0 by Householder matrices as in (4.1):

Eo = D H[PM- 2] ... H[po].

where the Pm are unit-norm vectors and have the form (2.47). Then Lemma 4.3 furnishes

one degree of regularity of the PUFB by setting p0 I1i-s ej'7 and p= S , where s

can be either 1 or -1. Translating this into the lifting parameterization of H[po] results in

the following one-regular lifting structure.

Theorem 4.6 (One-Regular Lifting Structure). Consider a PUFB in either the degree-

one factorization (2.51) or the order-one factorization (2.53), with the unitary matrix E0

parameterized as in (4.1). For i = 1, 2,..., M - 1, let or and p9 be the lifting multipliers of

H[po] as shown in (4.23) for r = 0. Then the PUFB is one-regular if and only if the lifting
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multipliers are such that

= (1-svM)-1 (4.36)

0 = -s(2vM)l (4.37)

for i= 1, 2,.. ., M - 1.

Proof: This is straightforward given Lemma 4.3 and the definitions of UP and p9 in

Sec. 4.4.3.

This theorem shows that no matter how the lifting multipliers in Vm(z), Wm(z), and

H[pmi], m' > 0, are quantized, the PUFB remains one-regular as long as (4.36) and (4.37)

are satisfied.

4.4.6 Two-Regular Lifting Structures

Recalling the definition of the lifting multipliers O37 = vnv"* with r = 0, we see that the

M-channel lifting factorization is a natural way of parameterizing the problem of imposing

(at least) two degrees of regularity: In terms of the vectors 3 m defined in (4.25), the second

condition for two-regularity (4.6) in Theorem 4.2 is conveniently written as

N

S = -sM-31 2e-jOOEobm (4.38)
M=1

for the degree-one factorization, and the condition (4.7) in Corollary 4.2 becomes

L 7 m
Z Z 3 -sM- 3/ 26 oEobm (4.39)

m=1 i=1

for the order-one factorization. The corresponding geometric conditions (Theorems 4.4 and

4.5) are simply

1. /31, /32, up to 0 [N/21 -1 can be arbitrarily chosen without violating the closed-loop

condition for two-regularity (4.38) associated with degree-one factorization.
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2. Q1'i, 13 2,i, up to )rt/2--1,i can be arbitrarily chosen without violating the closed-loop

condition for two-regularity (4.39) associated with order-one factorization.

Obviously, the proposed M-channel lifting factorization has a physical interpretation in this

regularity context. We summarize the results for two-regular lifting structures with the

following theorem.

Theorem 4.7 (Two-Regular Lifting Structures). Consider a PUFB as in (2.53) or

(2.51). Let the unitary matrix E0 be parameterized by the one-regular lifting structure as in

Theorem 4.6. Then, the PUFB is two-regular with or without length constraint if and only

if the lifting multipliers satisfy (4.39) or (4.38), respectively.

Proof: This is again straightforward given Theorem 4.2 and Corollary 4.2. U

4.5 Design Examples of Regular PUFBs

In this section, we implement the proposed theory of regular PUFBs. Based on the regular

structures, the resulting filter banks are structurally guaranteed to be paraunitary (hence

perfect reconstruction) and regular, regardless of the choice of free parameters in the struc-

tures. These free parameters or degrees of freedom can be chosen to be the lifting multipliers

c4 and a' (alternatively, #3i and pmf). Numerical experience suggests that such a choice

leads to faster convergence than the Givens rotation-based parameterization. Once a partic-

ular parameterization of the regular structures is chosen, optimal regular PUFBs are then

obtained by unconstrained optimization [13] for design criteria such as stopband energy

M-1

= Y j I Hi ew)I12dwCstop = 0 H(n'|d
i=O

and coding gain
G1.2

G = 10 logio M1 X IM
(Io |Xil2
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although many other design criteria are also possible [1221. For stopband energy Cstop)

Qi represents the stopband of filter Hi(z), while for coding gain G, an AR(1) process with

unit variance o = 1 and correlation coefficient of 0.95 is assumed; o represents the signal

variance of the ith subband, and |1fill is the 2-norm of synthesis filter F(z). Our goal is to

minimize Cstop and to maximize G. Together, Cstop and G form the objective function to

be minimized:

CA(u) = (1 - A)Cstop(u) + A(-G(u)), 0 < A < 1,

where u denotes the free parameters (ai and o7i) of the structures.

As with any practical filter design problems, CA(u) is in general a nonlinear function of

u, which implies that the choice of initial u can be crucial. Fortunately, with u being the

lifting multipliers, an initial guess around zero often leads to a good solution, as evidenced

by numerical experience. This can be further combined with the observation that, for small

A ? 0, the minimizer of CA(u) is rather insensitive to the choice of initial u. One possi-

bility to exploit this property is to formulate the design of regular PUFBs as a sequence of

optimization problems, starting with small A:

For k = 1, 2,. . ., let { Ak} be a strictly monotonically (slowly) increasing sequence

upper bounded by 1 with A 1  0, and form a corresponding sequence of opti-

mization problems

Pk : min Ck (u).
U

For each k, let uk A arg min CAk (u) be the solution to problem Pk. Note that uk can serve

as a good initializer for Pk+,, as {Ak} is slowly increased. Hence, starting with u' 0  0 and

A' 1  0, one can initialize Pk+1 with uk to obtain uk+ and so forth, until a good balance

between stopband energy and coding gain is achieved. This has been found effective in the

following design examples.
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4.5.1 One-Regular PUFB

4 x 8 PUFB-Minimum Degree Case

This example is a real-valued one-regular four-channel PUFB of degree-one, with length-eight

filters. The polyphase matrix E(z) = Vi(z) Eo is parameterized using the lifting structure

as follows:

[1
all1

E(z) a

3l

1
1

1
0

0

L r 3

-al

-1La3

1 1
1 i

1 1

1 11
T

. (4.40)

1" -1 -2pi -2p 1 ?##

1 1 1 )
1 2 j1 1 [ 2

ilL 1 ~J
-1 -20 -2p -2p 1

1 L1 -o

1 -1 -2pl 2p' 1

1 1 4

- 22

1-1 -2p 2 1
2

-O3

To impose regularity of degree one, of, o0, and co are chosen according to the two

possibilities (s = ±1) presented in Theorem 4.6. Table 4.1 consists of the resulting lifting

multipliers aT and o', where the algorithm proposed in Chapter 7 has been employed

to generate these binary numbers [31]. The frequency response of the PUFB is shown in

Figure 4-5 for s = +1 with coding gain 8.1079dB and Cstop = 0.3971. The Sobolev

smoothness is .9146. As a comparison, the coding gains of 4-pt DCT and 4-channel LOT

[74] are 7.5701 and 7.9259dB, respectively.
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S = +1
of -1 a' 337/2048 a' -161/512

0 - 1 7/64 cl 15/128

1_ -1 2 489/512 al 11/256

s = -1

go 1/3 4' -43/64 ia' 161/512

U2 1/3 a' -101/128 4a 2  15/128

of 1/3 2c 7/128 aj -11/256

Table 4.1: The design variables for the 4 x 8 PUFBs with the minimum degree. The resulting
FB is structurally one-regular as a result of the predetermined of, o and a'. The coding
gains are 8.1079 and 8.1075dB, respectively.

8 x 24 PUFB

In this example, a one-regular eight-channel PUFB (M = 8) with order two (L = 2) is

designed; i.e., two order-one PU building blocks Wm(z) are involved [see Eqn. (2.53)]. The

ranks of the parameter matrices wm of Wm(z) are chosen to be p(wi) = p(w 2) = M/2 = 4.

Such a choice is necessary for a fair comparison with linear-phase PUFBs (to be compared in

Sec. 4.6), and also ensures the symmetric delay property [101]. The sign parameter s = +1

is used. Figure 4-6 shows the resulting design with coding gain 9.4894dB and stopband

energy 0.0876. The one-regular property is confirmed by Figure 4-6(b) which shows that

there is at least one zero at the aliasing frequencies of Ho(eiw), wk - 2itk (k = 1,. . . , 7). The

corresponding wavelet basis functions are depicted in Figure 4-6(c), with Sobolev smoothness

.9889.

4.5.2 Two-Regular PUFB

Figure 4-7 shows the design of a two-regular 8 x 24 PUFB with two order-one PU building

blocks Wm (z) involved [see Eqn. (2.53)]. Again, the ranks of the parameter matrices of

Wm(z) are chosen to be p(wi) = p(w 2) = 4 for the same reasons stated above, with the

sign parameter s = +1 used. The frequency magnitude responses of the resulting filters are
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1-Regular, 4x8 PUFB, CG=8.1079dB, C stop=0.3971
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Figure 4-5: Analysis filters and their frequency magnitude responses of the 4-channel PUFB
in Table 4.1 with s = +1. (a) frequency response and basis functions, (b) zeros of Ho(z), (c)
the corresponding wavelet basis with at least one vanishing moment; sma. = .915.

shown in Figure 4-7(a). The zeros of Ho(z) are plotted in Figure 4-7(b), and we observe that

Ho(eiw) has double zeros at each aliasing frequency, confirming the PUFB is two-regular. The

coding gain of this PUFB is 9.4349dB, and the stopband energy is 0.0780. The corresponding

wavelet basis functions are depicted in Figure 4-7(c), with Sobolev smoothness 1.2964.

Linear-Phase PUFBs

The proposed characterization of LPPUFB using dyadic-based structures is used here to

design regular LPPUFBs. The first example is a two-regular 8 x 32 LPPUFB. The coding

gain is 9.45dB with stopband energy 0.1580. The result is shown in Figure 4-8. As a

comparison, the two-regular 8 x 32 LPPUFB in [92] has coding gain 9.28dB and stopband

energy 0.3468.

As another example, we consider the design of an 8 x 40 LPPUFB with two degrees of
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1-Regular, 8x24 PUFB, CG=9.4894dB, C stop=0.0876
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Figure 4-6: Analysis filters and their frequency magnitude responses of the one-regular 8 x 24

PUFB with s +1. (a) frequency response and basis functions, (b) zeros of Ho(z), (c) the

corresponding wavelet basis with one vanishing moment; smax = .989.

regularity. The coding gain is 9.50dB with stopband energy 0.0750. The result is shown in

Figure 4-9. As a comparison, a two-regular 8 x 40 LPPUFB based on [92] has coding gain

9.43dB and stopband energy 0.1480.

In both designs, the two-regular property can be confirmed by the multiplicity of zeros of

the resulting filters Ho(z), located at the aliasing frequencies wm = 2 m = 1, 2,..., M-1.

4.6 Application to Lossy Image Compression

In this section, the above design examples are evaluated in a transform-based coder. In

particular, the case of image compression is considered. Similarly to the JPEG image

compression standard [97], each input image is block-transformed using the designed M-

channel regular filter banks. Each block of transform coefficients is then quantized, zigzag

138

*1

0.5 1-1 -0. 0
Real Part

(b)



2-Regular, 8x24 PUFB, CG=9.4349dB, C0
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Figure 4-7: Analysis filters and their frequency magnitude responses of the two-regular 8 x 24
PUFB with s = +1. (a) frequency response and basis functions, (b) zeros of Ho(z), (c) the

corresponding wavelet basis with two vanishing moments; sma = 1.30.

scanned (runlength coding), and Huffman coded. For this purpose, we use the convenient

UICODER [123] with the following transforms:

* 8 x 8 DCT [100]

* 8 x 16 LOT [74]

* 8 x 24 regular PULPs (LPv1, LPv2) [92]

* 8 x 24 regular PUFBs (PUv1, PUv2) of Sections 4.5.1 and 4.5.2

Their properties are summarized in Table 4.2. Note that the proposed PUFB designs are the

most general with PULP (GenLOT) as a special case, and thus achieve the highest objective

performance in terms of coding gain and stopband energy among the transforms considered.
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2-Regular, 8x32 PULP, CG=9.4498dB, C =0.1580stop
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Figure 4-8: The two-regular 8 x 32 LPPUFB. sma=1.3378.

The following test images are used in the compression experiments: they are the standard

512 x 512 8-bit grayscale Barbara, Goidhill, and Lena [61]. Figure 4-10 shows the rate-

distortion curves at various compression ratios, with the PSNRs of the reconstructed images

given in Table 4.3 for the six transforms considered. As the current designs (PUvi and

PUv2) are the most general PUFBs, they almost always result in higher PSNRs than their

linear-phase counterparts (LPv1 and LPv2) [92], with an exception for the image Goidhill

at 8:1 compression using the one-regular PUFBs. Figure 4-11 provides a comparison of

the visual quality of the various reconstructed Barbara images. It is noticeable that the

compressed images obtained by using PUvi and PUv2 have fewer aliasing artifacts in the

texture regions and that PUvi and PUv2 result in smoother approximation (less blocky) in

the smooth regions than those obtained by using LPv1 and LPv2, respectively.

4.7 Concluding Remarks

We have presented the theory, design, and structures of the most general PUFBs with up

to two degrees of regularity, for any number of channels M > 2. The phase responses

of the filters are not necessarily constrained. Both dyadic-based and M-channel lifting

140



2-Regular, 8x40 PULP, CG=9.5016dB, C =0.0750stop~
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(a) frequency responses and the filters (b) zeros of Ho(z)

Figure 4-9: The two-regular 8 x 40 LPPUFB. sma, = 1.5803.

structures are considered and the corresponding regular structures are proposed, whereby

the M-channel lifting factorization provides a natural and convenient parameterization of the

problem of imposing regularity, as well as improved design efficiency. The resulting PUFBs

are guaranteed to be regular as the regularity conditions are structurally imposed, and thus

regular PUFBs that are optimal with respect to prescribed design criteria can be found

by unconstrained optimization. Depending on whether order-one or degree-one structures

are used, regular PUFBs with or without length constraint are readily obtained. Design

examples have been presented and evaluated using a transform-based image coder, and they

are found to outperform previously published PUFBs in the literature.
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Table 4.2: Objective Properties of the PUFBs Used in Block-based Lossy Image Compres-
sion Experiments: G=coding gain, Cstop=stopband energy, smax=Sobolev smoothness.
LPvn=n-Regular PULP in [92]; PUvi and PUv2 are presented in Sec. 4.5.1 and Sec. 4.5.2,
respectively.

8x8 8x16 8x24 8x24 8x24 8x24

DCT LOT LPv1 LPv2 PUvI PUv2

Reg.K 1 1 1 2 1 2

G (dB) 8.83 9.22 9.36 9.33 9.49 9.43

Cstop 3.09 .211 .133 .374 .088 .078

Smax .500 .709 .866 1.33 .989 1.30

0 20 40 60 80
Compression Ratio

100 120 140

Figure 4-10: PSNR versus compression ratio for the 512 x 512 8-bit grayscale test images
Barbara, Goldhill, and Lena. A JPEG-like block-based lossy compression scheme is used
with the transforms.
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Table 4.3: Objective compression performance-PSNR in dB based on chosen transforms.
LPvn are the n-Regular PULP in
Sec. 4.5.2.

[92]; PUvi and PUv2 are designed in Sec. 4.5.1 and

Barbara PSNR(dB)
Comp. 8x8 8x16 8x24 8x24 8x24 8x24
ratio DCT LOT LPv1 LPv2 PUv1 PUv2
8:1 35.38 36.49 37.05 36.66 37.22 37.22
16:1 30.24 31.83 32.23 31.81 32.50 32.48
32:1 26.42 27.86 28.18 27.90 28.53 28.41
64:1 23.77 24.88 25.11 25.00 25.43 25.33

100:1 22.37 23.02 23.32 23.36 23.57 23.47
128:1 21.60 22.03 22.29 22.35 22.49 22.43

Lena PSNR(dB)
Comp. 8x8 8x16 8x24 8x24 8x24 8x24
ratio DCT LOT LPv1 LPv2 PUvi PUv2
8:1 38.83 38.96 39.29 39.18 39.34 39.33
16:1 35.51 35.79 36.31 36.12 36.41 36.42
32:1 32.08 32.66 33.07 32.76 33.24 33.22
64:1 28.91 29.60 29.94 29.65 30.16 30.16

100:1 26.83 27.62 27.88 27.68 28.18 28.12
128:1 25.60 26.35 26.74 26.62 26.97 26.88

Goldhill PSNR(dB)
Comp. 8x8 8x16 8x24 8x24 8x24 8x24
ratio DCT LOT LPv1 LPv2 PUvi PUv2
8:1 35.29 35.63 35.77 35.64 35.72 35.74
16:1 31.97 32.36 32.49 32.37 32.49 32.46
32:1 29.31 29.76 29.87 29.72 29.90 29.86
64:1 27.12 27.56 27.70 27.56 27.72 27.68

100:1 25.68 26.18 26.29 26.21 26.38 26.28
128:1 24.82 25.24 25.38 25.31 25.49 25.37
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Barbara @ 32:1 with PUvI

PUv1 PUv2

I P1 LPv2

Figure 4-11: Compression results at 32:1 for visual comparison. The original image and a

zoomed-in patch are shown in the first column. The reconstructed images and their zoomed-

in patches using one- and two-regular 8 x 24 PUFBs are shown in the second and the

third columns, respectively. Notably, the current design PUvI produces a much smoother

reconstruction than LPv1.
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Chapter 5

A Class of Structurally Regular

Biorthogonal Filter Banks

As is with paraunitary filter banks, dyadic-based structures can be used to parameterize

and implement a certain class of useful and important biorthogonal filter banks (BOFBs).

Extending the regularity imposition on PUFBs, we consider its biorthogonal equivalence

in this chapter. We first revisit a minimal structure of BOFBs using order-one dyadic-

based building blocks, by which BOFBs with length constraint can be designed. A special

non-singular matrix parameterization is proposed which structurally guarantees at least two

degrees of regularity, where the Householder transform is found to play an important role.

As with the paraunitary case, we also specialize the framework of general biorthogonal

filter banks with regularity to the case where the filters are symmetric or linear-phase (LP),

resulting in dyadic-based generalized lapped biorthogonal transform or GLBT, for which a

simplified parameterization is naturally obtained in fewer parameters. With the proposed

theory, regular BOFBs are designed and evaluated in a transform-based image codec, and

they are found to provide better objective performance and improve perceptual quality of the

decompressed images, with reduced blocking artifacts and better preserved texture details.
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5.1 Introduction

Recently, M-channel filter banks have found several applications in signal processing [3,

19, 72, 108, 139]. Biorthogonal filter banks (BOFBs), in particular, have been employed

as a transform coder in image compression applications where their coding performances

have shown to be a significant improvement over other traditional transforms [93,119]. In

addition to its frequency selectivity and coding gain, an optimized BOFB for the purpose

of image coding usually has two other properties imposed: (i) linear phase (symmetry and

anti-symmetry of the filters' impulse responses) and (ii) regularity. In [119], a modular

structure for parameterizing BOFBs with linear phase is presented, in which linear phase

and perfect reconstruction (PR) properties are structurally imposed. It is a modified version

of that proposed for paraunitary filter banks (PUFBs) [41]. In [93], the structure is further

extended in order to additionally impose regularity on the transform.

Regularity is fundamental to the filter bank theory and is closely related to the smooth-

ness of the corresponding wavelet basis [108]. Recall that an M-channel filter bank is said to

be (Ka, K)-regular if the analysis and synthesis lowpass filters Ho(z) and Fo(z) have a zero of

multiplicity Ka and K, respectively, at the Mth roots of unity ei 2,m/m for m = 1, .... M-1.

This is equivalent to the conditions (2.42a) and (2.42b) on the polyphase matrices, stating

that the multiplicity of zeros at DC of the analysis (synthesis) bandpass/highpass filters

is equal to that of the synthesis (analysis) lowpass filter [93, 155]. Regular filter banks

are desirable in many applications such as smooth signal interpolation and data compres-

sion [3,19, 72,108,139].

In this chapter, we consider the class of causal FIR M-channel biorthogonal filter banks

of order L spanned by (2.58),

E(z) = WL(z) .. . Wj(z)Eo, Eo non-singular (5.1)

which have an FIR inverse. Each Wm(z) is the first-order biorthogonal (dyadic-based)
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building block given by (2.59):

WM(Z) = I - UmVit + Z- 1 UmVi (5.2)

where the M x 7ym parameter matrices Um and Vm satisfy

VPUm =

1

0

0

0

x

1

0

0

x

x

1

0

x

. . x

. . x
. .

(5.3)

YmxYm

for some integer 1 < -y_ < M, where x indicates possibly nonzero elements. This is a

generalization of the paraunitary order-one factorization given in [52] where Um = Vrn, and

has been used for factoring the BOLT [132].

Remarks:

1. Since p(VtUm) = 7ym, the McMillan degree of Wm(z) as in (5.2) is 7m.

2. The construction in (5.1) completely spans all causal FIR BOFBs having FIR inverses,

up to a factor unimodular in z- 1 [132]. The spanned analysis filters have filter lengths

no greater than M(L + 1), and the McMillan degree of E(z) ranges from L to ML

where L is the order of the FB.

3. A causal Type-II synthesis polyphase matrix R(z) can be

R(z) = z-LEOlW-11(z). . . WZ1 (z). (5.4)

As a result of the possibly nonzero off-diagonal elements in (5.3), the synthesis bank

can have filter lengths different from M(L + 1). In fact, the lengths of the synthesis

filters are bounded by M(p + 1) from above, where p = _1L m is the McMillan
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degree of E(z). The choice Am = results in equal filter lengths for the analysis

and synthesis banks.

5.2 A Class of Regular Biorthogonal Filter Banks

As in the paraunitary case, we will show how we can structurally impose regularity onto

the standard dyadic form (5.1) for a class of biorthogonal filter banks. However, unlike the

paraunitary case, the analysis and synthesis banks are no longer constrained to be time-

reversal of each other. They can be significantly different, e.g., having different numbers of

zeros at the aliasing frequencies. Therefore, we will use an ordered pair (Ka, K,) to denote

the degree of regularity of a BOFB.

Consider a (Ka, K8 )-regular BOFB with both Ka > 1 and K, > 1. It is necessary that

(Section 2.4)

RT(zm)JeM(z)=1 = E T1M = d0e0  (Ka - 1) (5.5a)

and

E(zM)eM(z)l = Eo1m = coe 0  (Ks > 1) (5.5b)

where em(z) = 1 z- 1 ... z-(M-1) ] is the delay chain. These conditions imply some

constraints on the 0th rows of E0 and EJ , as follows:

Lemma 5.1. The conditions EJ-1M = doe 0 and E01M = coe 0 corresponding to Ka 1

and K, > 1, respectively, imply that the 0th rows of E0 and EJ- consist of identical entries,

respectively.
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Proof: Suppose EolM = coeo. As EoEo 1 = I, it must be true that the 0th column of

Eo' be equal to (1/co)1M, which establishes that the 0th row of E-T consists of identical

entries 1/co. The other condition can be similarly shown and is omitted. U

Corollary 5.1. If Ka > 1 and K, > 1, the constants co and do are related by

1/co = do/M or codo = M. (5.6)

Next, we will discuss how to parameterize (1, 1)-, (1, 2)-, and (2, 1)-regular BOFBs based

on the aforementioned properties of Eo.

5.2.1 (1, 1)-Regular BOFBs

As pointed out above, the 0th rows of EO and E -T must have identical entries if Ka, K, > 1.

Since the Oth row of Eo is (co/M)1T, post-multiplying Eo by the Householder matrix R[1M]

as defined in Definition 2.3 results in

S .. 0 1O 0 ... 0

x x ... x £i 1 0
EoR[1m] -(5.7)

x x ... x £ML 1 1 0

L D

for some (lifting) multipliers Ci and some non-singular matrix Eo of dimension (M - 1) x

(M - 1). Note that the 0th column of the product EoR[1M] is in general not parallel to eo

as EO is not necessarily orthogonal.

Using the above decomposition, any non-singular EO with identical entries (= co/M) in

the 0th row assumes the following structure

Eo = LDR[lm] (5.8)

which is shown in Figure 5-1. It is straightforward to show that the condition (5.5a) on EO T
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is automatically satisfied, even though we have started from constraining the 0th row of Eo.

In particular,

doeo = Eo Tj1M = L-TD-TR[m]1m = L-TD-T |1ilM eo = VML-TD~Teo (5.9)

where we have used the property of R[1M] (Definition 2.3) for simplification. Plugging in

the definitions of L and D gives

v1ML-T D-T eo = eo,
Co

implying that

codo = M (5.10)

which has also been established in Corollary 5.1.

It remains to ensure EolM = coeo as in (5.5b):

coeo = Eo1M = LDR[1m]1m = LD MiAeo = coLeo co

VM-1_i

Therefore, choosing L = I on top of the structure (5.8) constitutes the necessary conditions

on EO for Ka, K, > 1. We have thus proved the following result:

Theorem 5.1 ((1, 1)-Regular BOFB). An M-channel BOFB as in (5.1) and (5.4) is

(1, 1)-regular if and only if the non-singular matrix EO takes the form

Co OT
EO = /M _ R[l], some CO ' 0

L0 Eoj

where R[Im] is the Householder matrix as defined in Definition 2.3 and EO is (M - 1) x

(M - 1) non-singular. The constant do as in (5.5a) is such that codo = M.

Remarks: The non-singular matrix EO is not further constrained and can be parameterized
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Figure 5-1: Structure for parameterizing EO satisfying Ka ; 1 (5.5a).

using the SVD- or QR-based approach as discussed in Chapter 2. An alternative approach to

parameterizing such EO was suggested in [93], which involves a certain permutation matrix

(unknown a priori); our Householder-based approach avoids such an undetermined permu-

tation matrix.

5.2.2 (1,2)-Regular BOFBs

Assume the analysis and synthesis lowpass filters Ho(z) and Fo(z) are already one-regular as

in the previous section. We now present how the second degree of regularity can be imposed

on Fo(z). As shown in Theorem 2.2, this is equivalent to the property that the bandpass

and highpass analysis filters Hj(z) have a double zero at DC (z = 1), i = 1, 2,.. , M - 1. In

terms of the analysis polyphase matrix E(z), this is

c1

-E(zM)em(z) - [j some c, 0

on top of the (1, 1)-regularity. Substituting (5.1) for E(z) gives

cleo = -- E(zM) 1 M + E(1) d eM(z)
dz Z=1 z=1

L

= -M E LU1mVtEolM - EobM
m=1
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where bM = [0 1 2 ... M - 1T . The following theorem summarizes the structural

conditions for (1, 2)-regularity.

Theorem 5.2 ((1,2)-Regular BOFB). An M-channel BOFB as in (5.1) and (5.4) is

(1, 2)-regular if and only if it is (1, 1)-regular as in Theorem 5.1 and

L

-coM pm - EobM =cleo, ci # 0 (5.11a)
m=1

where pm = l4mVeo and bM [0 1 2 ... M-l]. Eqn. (5.11a) further simplifies to

L

EOkM = -coM E Pm  (5.11b)
M=1

where p [ PM km R[1M bM k , and Eo is as defined in Theo-

rem 5.1.

Parameterization of Non-Singular Matrices With Constrained Rows

In the design process, given all the pm, one needs to parameterize t 0 so as to satisfy (5.11b).

The parameterization technique for (1, 1)-regular BOFBs can be modified for this purpose.

Eqn. (5.11b) has the general form

Ab = c (5.12)

where b, c E C' are given, and we are to parameterize the n x n non-singular matrix A

so as to satisfy Ab = c. We want to convert (5.12) to an equivalent one whose right-hand

side is one of the unit vectors ej, so we can infer the constraint on the inverse of a suitable

matrix. We choose eo and pre-multiply (5.12) by the Householder matrix R[c] to obtain

R[c]Ab = |c|I eo
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which implies that the Oth column of (R[c]A)- 1 is -, since R[c]A is non-singular. There-

fore, the key to parameterizing A is to start with its inverse: pre-multiplying (R[c]A)- 1 by

R[b] gives

b ... X Ibil 0 ... 0 1 pi ... [tn1

0 x... x 0 1
R[b]A-'R[c] -

0 x ... x 0 1

U-1

or equivalently,
C OT

A = R[c]U IbI R[b] (5.13)
0 Ao

where Ao is any (n - 1) x (n - 1) non-singular matrix.

Lemma 5.2 (Row-Constrained Parameterization). Let b, c c C" be given. Any n x n

non-singular matrix A satisfying Ab = c assumes the general form (5.13).

Remarks: The free design parameters are embedded in AO and the pi. AO can be param-

eterized using the SVD- or QR-based approach as discussed in Chapter 2. An alternative

method for parameterizing A can be found in [93], which involves an unknown permutation

matrix. As a comparison, our Householder-based approach is permutation-free.

5.2.3 (2, 1)-Regular BOFBs

Again, we assume the analysis and synthesis lowpass filters Ho(z) and Fo(z) are already

one-regular. For (2, 1)-regularity, we need to impose the second degree of regularity onto

the analysis lowpass filter Ho(z), which is equivalent to the requirement that the bandpass

'In the design process, finding the optimal permutation is a discrete optimization and is much more
difficult compared to continuous optimizations. When combined with the remaining continuous problem,
the undetermined permutation makes the filter bank design a mixed optimization problem, which is even
harder.
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and highpass synthesis filters F (z) have a double zero at DC (z = 1), i = 1, 2, . . , M - 1.

Namely, we need to impose additionally

dT
d-R (zM)JeM(z)

dz Z=1

di
0

= . ,some d, #4 0

0

on top of the (1, 1)-regularity. Substituting the anti-causal version2 of (5.4) for R(z) gives

d
dieo = dRT(zM) Jim

dz z=1
L

+ RT(1)J d em(z)
z=1

= M (UmVf)TEO T 1 M - EOTJJbM
M=1

where bm = 0 1 2 ... M - 1T and we have used the identity3

W 1(Z) = I - UmV + zUVmt = Wm(Z- 1 ).

We summarize the necessary and sufficient conditions for (2, 1)-regularity by the following

theorem.

Theorem 5.3 ((2, 1)-Regular BOFB). An M-channel BOFB as in (5.1) and (5.4) is

(2, 1)-regular if and only if it is (1, 1)-regular as in Theorem 5.1 and

M2LZqm - EO TJbm = dieo, di # 0
m=1

(5.16a)

where qn = ( nmk)T eo and bM = [0 1 2 ... M-l . Eqn. (5.16a) further simplifies

2Namely, R(z) without the Z-L term. This simplifies calculation and is done without loss of generality,
amounting to redefining the nonzero regularity constant di.

3In this chapter, we assume Am = I for simplicity, resulting in equal-length analysis and synthesis banks.
See (5.3) and the discussions following it.
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ET - =M 2 
L

m=1

where qm A [q0 T, hM A R[1M]JbM =h ET, , and EO is as defined in Theo-

rem 5.1.

Remark: Again, E-T in (5.16b) can be parameterized as in Lemma 5.2. In the design process,

one chooses the qm or Wm(z) first, m = 1,2, ... , L, and let EO be determined accordingly

using Lemma 5.2. The result is (2, 1)-regular.

5.3 Linear-Phase Biorthogonal Filter Banks Revisited

Recall that an M-channel (M even) linear-phase biorthogonal filter bank (BOLP) of order

L can be factored as follows [41,119]

E(z) = GL(z)GLL.(z) . . .G(z)E 'P (5.17)

where Gm(z) = JmWA(z)W is the BOLP building block, and the initial non-singular

matrix EO = F0 iW, with

Um OM/2

OM/2 Vm

1 IM/2

[ IM/2

IM/2

~IM/2J

OM/2 1
Z--1M/2 j

and I=
IM/2 OM/2

OM/2 JM/2 J

The Um and Vm are M/2 x M/2 non-singular. Figure 5-2 shows the lattice structure of an

eight-channel BOLP of order L.
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Figure 5-2: Lattice structure for biorthogonal LP lapped transform.

5.3.1 BOLP in Standard Dyadic Form (5.1)

By construction, each FIR LP building block Gm(z) is causal of order one and has an anti-

causal inverse. Namely, it is a BOLT [1321, and it follows that one can always express Gm(z)

in terms of the first-order BO building block Wm(z), with a suitable choice of parameter

matrices Urn and Vm (this is in fact a rather deep result [132]). In particular, one can show

that (with subscripts M/2 dropped for simplicity)

GL(z) L +(z1-1) [ ~ (z-1-1) [ - ] +F
GL L L

(z~-1) I -ULV-L
= I+ 2 1  } FL A WL(Z)FL, (5.18)

1 2 -VLU-1 I

where the first-order BO building block WL(z) is given by

WL(Z) = 1 KVI -ULVL'

-VLU-' I
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The trailing factor 'L is absorbed by GL-1(z) so that

GL(z)GL-1(z) = WL(z) LUL 0 GL-1(z) = WL(z)
0 VL i

= WL (z)WL_1(z) [ - 1
0

UL-1 0

0 VL]

0

VL1

where the relation in (5.18) has been employed in the last equality with Ur

and Ym A VLVL-1 ... Vrn, and W,(z) is given by

SULUL-1 ... Um

-U5VM]

(5.19)

We can carry out the same procedure until arriving at

[PoOl
E(z) = WL(z) ... W1(z) IWI, (5.20)

L0 VO

Eo

which is in the standard dyadic form (5.1).

5.3.2 LP-Propagating Standard Dyadic Structure

Consider the first-order BO building block as in (5.19). The corresponding parameter ma-

trices Urn and Vm can be chosen to be

UM VSm,
-Vm, M

I

(5.21a)

(5.21b)-(VrnUj Y1
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for any -y, x 7mr non-singular matrix Sm. Note that for the LP case, y, - ! and A_ _ I

for all m. Along with the initial non-singular matrix Eo = diag{Uo, Vo} iWi, the choice in

(5.21) guarantees that the standard dyadic form (5.1) preserves the linear phase property.

5.3.3 Degrees of Freedom

The standard dyadic form (5.1) provides a new parameterization of BOLP by defining

Uo = o, Vo = Vo, and

Ym -VrnMU , m = 1,2, ... , L,

and forming the parameter matrices according to

Urn- = ,] = [I 91]. (5.22)

Namely, there are in total L + 2 non-singular matrices Uo and Vi of size M/2 x M/2,

consisting of free parameter. This is less than 2L + 2 as in (5.17) and is as efficient as

the reduced-parameter structure for BOLPs established in [52, 94]. Note that starting with

a set of (original) parameter matrices Um and Vm as in (5.17), one can always obtain a

corresponding smaller set of matrices Uo and Vm. Hence, the completeness of the structure

is not affected by the proposed parameterization.

Theorem 5.4. The standard dyadic form (5.1) spans all M-band GLBTs (M even) if it is

parameterized by non-singular matrices Uo and Vi of size L x L in such a way that2 2

Eo = diag{ o, Vo} I'ij f[ o ] (5.23)

and the parameter matrices Um and V, of Wm(z) are as given in (5.22) in terms of V..
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5.4 Regular Linear-Phase Biorthogonal Filter Banks

As we can now parameterize any GLBT using the standard dyadic form (5.1), the regularity

conditions on the general dyadic-based BO structure without the LP constraint can be

applied. In particular, we will see how they simplify under the LP assumption.

Suppose the synthesis bank R(z) is at least one-regular. It follows that Eo1M = coeo for

some co -f 0. Substituting (5.23) gives

coeo }]fj1 V2
voJ -O 1 0

or jeO= UoIm, implying the 0th row of t-T has equal entries. See Lemma 5.1. Similarly,vf2- 2

if the analysis bank E(z) is at least one-regular, one arrives at do eo UOT. The

technique employed in Sec. 5.2 applies here.

Now, suppose the synthesis bank R(z) is at least two-regular. Plugging (5.22) into (5.11a)

results in

coM L eo

2 E -
m=1 L Vmeo

where eo E RM/ 2 .

- Eobm = cl [
Now using (5.23) and noting that bM = [

bm + Jbm = ( - 1) 1 m, we have
2 2 2T2_

1
EobM=- [PO bm + Jbm

YO(Jbm - bm

+ 11M
-2

2 coeo

x

which indicates that the first ! equations in (5.24) are automatically satisfied, and (5.24)
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eo

0
(5.24)

T

andb T + (M) 1TM 2 M
2 2 1



reduces to

Lb 

,Vmeo = coM 9 (5.25)
M=1

which is a condition on the 0th columns of the Ym. In essence, we have obtained an alter-

native characterization of structurally regular synthesis bank using dyadic-based structures,

with an equivalent but simpler condition (5.25) to impose (c.f. [93, Cond. A0 2]). One can

similarly derive structure conditions for the analysis bank which are simpler than those in

[93].

5.5 Examples of Regular Biorthogonal Filter Banks

In this section, the proposed theories are applied for regular BOFB designs. Based on the

regular structures, the resulting filter banks are structurally guaranteed to be biorthogonal

and regular, regardless of the choice of free parameters in the structures. Because regularity

is structurally imposed, the optimal regular BOFB can be designed using unconstrained

optimization [13], so as to minimize stopband energy Cstop and maximize coding gain CG,

for which an AR(1) model with correlation coefficient 0.95 is assumed for the input.

5.5.1 Example 1: (1, 1)-Regular, 8 x 16 BOFB

In this example, a (1, 1)-regular, 8-channel, 16-tap BOFB is designed according to The-

orem 5.1. Related parameters are: L = 1, -y = 4, and A 1 = I for simplicity. Each

non-singular matrix is parameterized using the QR factorization [107]. Figure 5-3 shows the

resulting design with coding gain 9.62 dB. This is within 0.1% range of the theoretically

optimal 9.63 dB for 8 x 16 BOFB as derived in [1], which is also very close to the optimal

9.69 dB obtained from (2.14) assuming ideal brick-wall filters.
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(1,1)-Reg, analysis 8x16 BOFB, CG=9.6226dB, Cstop=0.2590
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(1,1)-Reg, synthesis 8x16 BOFB, CG=9.6226dB, Cstop=0.2533
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(b) Synthesis bank: smax = 0.9891.

Figure 5-3: (1,1)-regular 8 x 16 BOFB: impulse and frequency responses, along with zero
plots of Ho(z) and Fo(z), and the wavelet bases.
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5.5.2 Example 2: (1,2)-Regular, 8 x 16 BOFB

Using Thoerem 5.2, we design a (1, 2)-regular BOFB of eight channels (M = 8) and length

16 (L = 1), with 7y1 = 4 and A 1 = I. Figure 5-4 shows the resulting design with coding

gain 9.6031dB. Observe the double zeros of Fo(z) at the aliasing frequencies, implying a

two-regular synthesis bank. The synthesis basis is thus smoother than the analysis basis.

5.5.3 Example 3: (1,2)-Regular, 4 x 8 BOFB

Using Thoerem 5.2, we design a (1, 2)-regular BOFB of four channels (M = 4) and length

8 (L = 1), with 7y = 2 and A 1 = I. Figure 5-5 shows the resulting design with coding

gain 8.6371dB. Observe the double zeros of Fo(z) at the aliasing frequencies, implying a

two-regular synthesis bank. The synthesis basis is thus smoother than the analysis basis.

5.5.4 Example 4: (1, 1)-Regular, 8 x 24 BOFB

In this example, a (1, 1)-regular, 8-channel, 24-tap BOFB is designed according to Theo-

rem 5.1. Related parameters are: L = 2, 7y1 =72 = 4, and A1 = A 2 = I, with each

non-singular matrix parameterized using the QR factorization. Figure 5-6 shows the result-

ing design with coding gain 9.6414dB.

5.5.5 Example 5: (1,2)-Regular, 8 x 24 BOFB

Using Thoerem 5.2, we design a (1, 2)-regular BOFB of eight channels (M = 8) and length

24 (L = 2), with 7y1 = _Y2 = 4 and A 1 = A 2 = I. Figure 5-7 shows the resulting design with

coding gain 9.6367dB. Observe the double zeros of Fo(z) at the aliasing frequencies, implying

a two-regular synthesis bank. The synthesis basis is thus smoother than the analysis basis.

5.5.6 Example 6: (1,2)-Regular, 8 x 32 BOFB

Using Thoerem 5.2, we design a (1, 2)-regular BOFB of eight channels (M = 8) and length

32 (L = 3), with -ym = 4 and Am = I, m = 1, 2, 3. Figure 5-8 shows the resulting design with

162



(1,2)-Reg, analysis 8x16 BOFB, CG=9.6031dB, C stop=0.3412
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(b) Synthesis bank: smaX = 1.6664.

Figure 5-4: (1,2)-regular 8x16 BOFB: impulse and frequency responses, along with zero
plots of Ho(z) and Fo(z), and the wavelet bases.
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(1,2)-Reg, analysis 4x8 BOFB, CG=8.6370dB, Cstop=0.1877
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(b) Synthesis bank: smax = 1.7500.

Figure 5-5: (1,2)-regular 4 x 8 BOFB: impulse and frequency responses, along with zero plots

of Ho(z) and Fo(z), and the wavelet bases.
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(1,1)-Reg, analysis 8x24 BOFB, CG=9.6414dB, Cstop=0.1976
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(1,1)-Reg, synthesis 8x24 BOFB, CG=9.6414dB, Cstop=0.1920
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Figure 5-6: (1,1)-regular 8x24 BOFB: impulse and frequency responses, along with zero
plots of Ho(z) and Fo(z), and the wavelet bases.
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(1,2)-Reg, analysis 8x24 BOFB, CG=9.6367dB, Cstop=0.1538
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coding gain 9.6403dB. Observe the double zeros of Fo(z) at the aliasing frequencies, implying

a two-regular synthesis bank. The synthesis basis is thus smoother than the analysis basis.

5.6 Application to Data Compression

In this section, the regular BOFBs obtained in the previous section are evaluated by a

transform-based image coder [40, 147] with its block diagram shown in Figure 5-9. The

transform coefficients of the input signal are first computed, representing the coordinate

of the signal with respect to the transform basis functions4 . Examples of the transform

stage include the discrete wavelet trasforms (DWT), Karhunen Loeve Transform (KLT), the

discrete cosine transform (DCT, used in JPEG/MPEG/H.263+, etc.), the Walsh Hadamard

transform (WHT), M-channel PRFB, etc. A good transform is such that the signal energy

is concentrated in a few transform coefficients, so-called energy compaction.

After the transform, the coefficients are subject to quantization, using the optimal bit

allocation determined by the spectral estimator. This step achieves (lossy) compression by

reducing the dynamic range of the transform coefficients. The quantized coefficients are then

entropy-coded, e.g., Huffman and arithmetic coders, to achieve further (lossless) compression.

The quantizer and spectral estimator are usually embedded in the particular choice of the

coefficient encoding algorithm, including wavelet difference reduction (e.g. [148]), JPEG, and

embedded zerotree coder (e.g. [104]).

In the following experiment, test images considered include 512 x 512 8-bit grayscale

Lena, Barbara, Goldhill, and three fingerprints. To have a fair comparison of the various

filter banks, we fix the encoding algorithm in the experiment. In particular, we choose the

set partitioning in hierarchical trees (SPIHT) [104] algorithm for efficient encoding of the

transform coefficients.
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(1,2)-Reg, analysis 8x32 BOFB, CG=9.6403dB, C stop=0.1623
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Figure 5-8: (1,2)-regular 8x32 BOFB: impulse and frequency responses, along with zero

plots of Ho(z) and Fo(z), and the wavelet bases.
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Coefficient Encoding Algorithm
e.g. WDR, JPEG, SPIHT

Figure 5-9: Transform-based image coder. Examples of the transform stage include DWT,
DCT, M-channel PRFB, etc. Common encoding algorithms include wavelet difference re-

duction (e.g. [148]), JPEG, and embedded zerotree coder (e.g. [104]).

5.6.1 Performance Summary

The objective properties of the filter banks used in the image coding experiment are sum-

marized in Table 5.1, including the degree of regularity, coding gain, stopband energy, and

the Sobolev smoothness index, Smax, of the basis functions. Ideally, we wish to have smooth

synthesis bases (large Smax), high coding gain, and small stopband energy. Except for cod-

ing gain, all the properties take the form of an ordered pair for biorthogonal filter banks,

corresponding to the analysis and synthesis banks. As the analysis banks are designed

to maximize energy compaction whereas the synthesis banks for smooth reconstruction, it

should be noted that the Sobolev index for the synthesis banks is larger than that of the

analysis banks, especially so when K, = 2 as compared to K, = 1. Furthermore, due to the

increased design flexibility, the BOFBs can achieve comparable performance at fewer filter

taps, and they have a smoother synthesis basis than their PU counterparts, which results in

reconstructions of better visual quality as will be seen below.

The objective coding results (PSNR) are listed in Table 5.2 for Barbara, Lena, and

Goldhill, whereas those for the fingerprints are listed in Table 5.3. The image Barbara is rich

in textures, and the use of M-channel filter banks consistently outperforms the state-of-the-

art 9/7-based SPIHT codec for which M = 2. This is because the conventional two-channel

wavelet transforms fail to provide enough frequency resolution and hence over-smooth the

details. In Figure 5-11, the strips of the tablecloth and the fine textures on the pants

are smoothed out by Daubechies 9/7 wavelet, whereas they are much better preserved by
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8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
DCT LOT LPv1 LPv2 PUvI PUv2 BOvIl BOv12 BOvil BOvl2

Reg. K 1 1 1 2 1 2 (1,1) (1,2) (1,1) (1,2)

G (dB) 8.83 9.22 9.36 9.33 9.49 9.43 9.62 9.60 9.64 9.64

Cstop 3.09 .211 .133 .374 .088 .078 .259 .341 .198 .154

.253 .338 .192 .154

Smax .500 .709 .866 1.33 .989 1.30 .381 .297 .473 .501
.989 1.67 .997 1.72

Table 5.1: Objective properties of the regular perfect reconstruction filter banks used
in transform-based image coding experiments: G=coding gain, Cstop=stopband energy,
smax=Sobolev smoothness. LPvn=n-Regular PULP in [92]; PUvI and PUv2 are presented
in Sec. 4.5.1 and Sec. 4.5.2, respectively. BOvnn,'s are the corresponding eight-channel
designs presented in the previous section. For coding gain with M = 8, GKLT = 8.85 dB,
Gbrick-wall= 9.69 dB.

the other transforms considered, except for DCT which exhibits highly blocking artifacts.

Furthermore, the biorthogonal filter banks preserve the texture details even better than the

PU counterparts.

For Lena, Daubechies 9/7 wavelet results in the highest PSNR, except at 16:1 compression

for which 8 x 16 BOv1I is the best. This is because Lena contains a lot of low-frequency,

smooth regions and the conventional Daubechies 9/7 wavelet already does a good job in term

of objective coding performance. However, the designed regular biorthogonal filter banks are

able to provide better visual quality.

Visual comparisons of Goldhill are shown in Figure 5-13. Though they have very similar

PSNRs, again the designed regular biorthogonal filter banks preserve the textures much

better than the Daubechies 9/7 wavelet. One can observe how the details of the roof are

completed smoothed out by the Daubechies 9/7 wavelet, while they are better preserved by

the designed regular filter banks.

We also apply the transforms to the three fingerprint images labeled fpl, fp2, and fp3 as

shown in Figure 5-10. From Table 5.3 and the rate-distortion curves shown in Figure 5-14,

we observe that the designed (1,1)- and (1,2)-regular biorthogonal filter banks consistently
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Barb PSNR(dB) for encoding scheme: SPIHT
Comp. SPIHT 8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
ratio Db9/7 DCT LOT LPv1 LPv2 PUvI PUv2 BOvIl BOvl2 BOv11 BOv12

8:1 36.44 36.25 37.40 37.89 37.43 38.02 38.01 37.82 37.59 37.79 37.84
16:1 31.44 31.08 32.73 33.09 32.62 33.37 33.33 33.00 32.74 33.03 33.11
32:1 27.63 27.27 28.80 29.06 28.71 29.42 29.32 28.96 28.79 29.11 29.15
64:1 24.90 24.57 25.68 25.92 25.75 26.25 26.15 25.81 25.67 25.94 25.98
100:1 23.81 23.41 24.32 24.59 24.49 24.86 24.80 24.45 24.32 24.58 24.63
128:1 23.42 22.61 23.32 23.67 23.67 23.87 23.84 23.74 23.65 23.87 23.86

Lena PSNR(dB) for encoding scheme: SPIHT
Comp. SPIHT 8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
ratio Db9/7 DCT LOT LPv1 LPv2 PUvi PUv2 BOv11 BOvl2 BOv1I BOv12
8:1 40.26 39.73 39.89 40.17 40.02 40.20 40.20 40.22 40.06 40.18 40.16
16:1 37.17 36.28 36.63 37.04 36.79 37.14 37.11 37.18 36.99 37.13 37.10
32:1 34.15 32.80 33.46 33.84 33.48 34.00 33.98 34.02 33.81 33.98 33.93
64:1 31.20 29.53 30.31 30.63 30.28 30.81 30.79 30.80 30.58 30.80 30.73
100:1 29.47 27.57 28.35 28.68 28.42 28.87 28.85 28.86 28.69 28.88 28.88
128:1 28.51 26.71 27.44 27.74 27.53 27.90 27.85 27.84 27.63 27.89 27.82

Gold PSNR(dB) for encoding scheme: SPIHT
Comp. SPIHT 8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
ratio Db9/7 DCT LOT LPv1 LPv2 PUvi PUv2 BOv11 BOv12 BOv11 BOv12
8:1 36.52 36.23 36.60 36.71 36.57 36.63 36.64 36.66 36.54 36.60 36.58
16:1 33.11 32.74 33.17 33.27 33.13 33.25 33.23 33.33 33.19 33.27 33.26
32:1 30.53 30.06 30.56 30.64 30.49 30.69 30.65 30.66 30.53 30.65 30.63
64:1 28.43 27.85 28.30 28.40 28.27 28.46 28.43 28.42 28.27 28.41 28.37
100:1 27.38 26.54 27.02 27.10 27.00 27.22 27.14 27.34 27.21 27.32 27.29
128:1 26.76 25.90 26.40 26.47 26.38 26.60 26.53 26.57 26.42 26.57 26.52

Table 5.2: Objective coding performance using the various transforms with two levels of
decomposition in the lowpass band.

outperform the FBI/WSQ fingerprint compression specification [48] by 2-6 dB in PSNR and

the latest still image compression standard, JPEG2000, by a significant margin.

5.7 Conclusion

Using a dyadic-based structure which is minimal, we have established the framework for

structurally regular BOFBs with length constraint. By specializing this to filters with linear

phase (LP), we have identified the connection between the dyadic-based structure and the
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Figure 5-10: Enlarged portions of original Barbara, Lena, Goldhill (Left column), and three
fingerprints fpl, fp2, and fp3 (Right column).
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Figure 5-11: Enlarged portions of Barbara at 32:1 compression using Daubechies 9/7 wavelet,
8 x 8 DCT, 8 x 24 PUvI and PUv2, 8 x 16 and 8 x 24 BOFBv12.
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Figure 5-12: Enlarged portions of Lena at 64:1 compression using Daubechies 9/7 wavelet,

8 x 8 DCT, 8 x 24 PUvI and PUv2, 8 x 16 and 8 x 24 BOFBv12.
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Figure 5-13: Enlarged portions of Goldhill at 32:1 compression using Daubechies 9/7 wavelet,
8 x 8 DCT, 8 x 24 PUvI and PUv2, 8 x 16 and 8 x 24 BOFBv12.
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Fp1 PSNR(dB) for encoding scheme: SPIHT
Comp. Daub 8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
ratio 9/7 DCT LOT LPv1 LPv2 PUv1 PUv2 BOv11 BOv12 BOv1I BOv12

8:1 39.83 39.85 40.44 40.71 40.57 40.80 40.74 40.74 40.58 40.75 40.76
9:1 39.19 39.08 39.75 40.01 39.88 40.11 40.04 40.04 39.89 40.05 40.06

10:1 38.51 38.23 38.89 39.18 39.04 39.29 39.22 39.30 39.14 39.31 39.33
11:1 37.77 37.38 38.02 38.29 38.15 38.40 38.33 38.27 38.15 38.26 38.29
13:1 36.90 36.52 37.10 37.38 37.23 37.50 37.42 37.37 37.24 37.41 37.41
16:1 35.96 35.47 36.14 36.41 36.25 36.53 36.46 36.41 36.29 36.44 36.46
20:1 34.92 34.18 34.90 35.11 34.95 35.21 35.15 35.25 35.11 35.27 35.29

Fp2 PSNR(dB) for encoding scheme: SPIHT
Comp. Daub 8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
ratio 9/7 DCT LOT LPv1 LPv2 PUvi PUv2 BOv1I BOvl2 BOv11 BOv12

8:1 35.14 34.67 35.76 36.10 35.91 36.32 36.19 36.21 36.04 36.21 36.26
9:1 34.42 33.89 35.04 35.38 35.16 35.60 35.49 35.42 35.25 35.42 35.47
10:1 33.66 32.98 34.23 34.54 34.34 34.77 34.65 34.62 34.46 34.63 34.69
11:1 32.89 31.98 33.30 33.55 33.39 33.80 33.67 33.72 33.53 33.73 33.80
13:1 31.95 31.03 32.29 32.52 32.30 32.81 32.68 32.65 32.46 32.68 32.74
16:1 30.89 29.88 31.25 31.45 31.20 31.69 31.58 31.50 31.34 31.57 31.59
20:1 29.79 28.51 29.94 30.12 29.85 30.43 30.28 30.21 30.03 30.29 30.34

Fp3 PSNR(dB) for encoding scheme: SPIHT
Comp. Daub 8x8 8x16 8x24 8x24 8x24 8x24 8x16 8x16 8x24 8x24
ratio 9/7 DCT LOT LPv1 LPv2 PUvi PUv2 BOv11 BOv2 BOvIl BOv12
8:1 38.00 37.44 38.38 38.78 38.65 38.93 38.81 39.01 38.84 38.99 39.01
9:1 37.34 36.66 37.53 37.83 37.70 37.98 37.86 38.14 37.96 38.09 38.11
10:1 36.53 35.88 36.74 37.03 36.89 37.17 37.05 37.17 36.97 37.12 37.12
11:1 35.70 34.98 35.93 36.22 36.08 36.35 36.23 36.34 36.15 36.30 36.32
13:1 34.83 33.92 34.98 35.27 35.11 35.42 35.30 35.43 35.25 35.40 35.43
16:1 33.85 32.77 33.88 34.15 33.94 34.28 34.18 34.28 34.11 34.27 34.30
20:1 32.72 31.46 32.61 32.84 32.62 33.01 32.86 32.98 32.79 32.98 32.98

Table 5.3: Objective coding performance using the various transforms with two levels of
decomposition in the lowpass band.
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Figure 5-14: Fingerprint compression performance.
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LP-propagating lattice structure commonly used for designing the GLBT, and regularity

conditions on the LP-propagating dyadic-based structure are presented. As a by-product,

we obtain a simplified representation of the GLBT with fewer parameters. A few regular

biorthogonal filter banks are designed using the proposed theories, and are evaluated in a

transform-based image codec. As their smooth basis functions achieve a finer frequency

resolution than two-channel wavelets, these regular M-channel filter banks have been found

to result in superior compression performance, both objectively (higher PSNR) and subjec-

tively (better visual quality). Our experiments show that both JPEG2000 and FBI/WSQ

standards are outperformed.
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Chapter 6

Paraunitary Filter Bank Completion

This chapter presents the complete parameterizations of the class of M-channel parauni-

tary filter banks (PUFBs) having a prescribed admissible scaling filter Ho(z). We propose

a novel order-one factorization of the M x 1 lossless polyphase vector of Ho(z) to facilitate

the completion of PUFBs with a certain length, and consequently to relax the constraint on

McMillan degree of the completed PUFBs inherent in the literature, which has impaired the

performance of the completed filter banks. The relaxation of the constraint on McMillan

degree lends itself well to completion of linear-phase PUFBs: If additionally the PUFB-

admissible scaling filter Ho(z) has linear phase and a LPPUFB is sought, the proposed

approach can be specialized to obtain a complete parameterization such that the resulting

M - 1 bandpass/highpass filters H2(z) and Ho(z) form a LPPUFB. Furthermore, the pro-

posed completion technique can serve as a tool for improved filter bank design. PUFBs with

better performance are obtained.

6.1 Introduction

Recently, M-channel maximally decimated filter banks have found several applications in

signal processing, data compression, and smooth approximation, etc. [19, 72, 108, 113, 139].

As shown in Figure 6-1, for i = 0, . . . , M - 1, Hi(z) and F (z) denote the analysis and

179



x[n] H0 (z) fM F0 (z)x[n]

HM(z) M fM F(z) - E) R)
H (z) tM F I(z) M z-z-[n

(a) M-channel filter bank (b) the polyphase representation

Figure 6-1: M-channel perfect reconstruction filter bank.

synthesis filters, respectively, where the low-pass filters H0 (z) and F0 (z) are also referred

to as the scaling filters, as they govern the M-band dilation equations for the underlying

multiresolution analysis (MRA) of the Hilbert space. These filters are related to the polyphase

representation through

[ Ho(z) .E. . HM-) [ -. zlM ]ET(zM)
fFo(z) ... FM )] 

1 - --1  RM

where E(z) and R(z) are the type-I and type-II polyphase matrices, respectively. Perfect

reconstruction (PR) requires that E(z) be non-singular for all z, so that the analysis filters

Hi(z) can be jointly inverted by the synthesis filters Fi(z). Paraunitary filter banks (PUFB)

are an important class for which E(z) is unitary on the unit circle; as a result, signal energy

is preserved, and Fi(z) can be found from H(z) by inspection [129]. If all the filters H(z)

have symmetry/antisymmetry in their impulse responses, the resulting filter bank is termed

linear-phase [41, 119].

Recall that for an M-channel filter bank E(z) of order L, the filters Hu(z) in general have

lengths M(L + 1). However, a PUFB of length M(L + 1) can have degree ranging from

L to ML. Gao et al. have recently proposed order-one factorization for designing PUFBs

with length constraint [52] as summarized in Lemma 2.2, where order-one PU building block

Wm(z) is involved.

Filter bank completion is to address the following issue: given partial information in
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terms of the (admissible) scaling filter Ho(z) of a perfect reconstruction filter bank, how do

we come up with a representation that characterizes all possible solutions? Note that this is

not an issue for M = 2, as one filter determines the remaining three (assume paraunitariness)

[108]. However, for M > 2, there are much more degrees of freedom, and the choice of one

filter does not determine the other choices. Therefore, filter bank completion is significant

in that it ensures the best possible solution is obtainable out of the structure used.

To complete a PUFB from its scaling filter Ho(z), two methods based on degree-one

factorization (Lemma 2.1) were proposed: the one in [134] serves as a way to initialize the

parameters in designing a PUFB; while the one in [58, 59, 105] requires further specification

of an initial unitary matrix E0 for the method to work; however, how to choose E0 was not

fully addressed. In both cases, the McMillan degree of the completed PUFB is limited by that

of the polyphase vector of Ho(z), and thus the optimal performance of the PUFB given the

filter Ho(z) may not be obtained. In fact, our work was partly motivated by this difficulty.

One might attempt the M-channel lifting-based completion technique proposed in Chapter 3

to resolve this degree constraint; however, since lifting steps are biorthogonal in nature, the

method may not directly carry through to the paraunitary case. Our work resulted partly

from our attempt to specialize the lifting-based biorthogonal completion.

In this chapter, we propose a novel order-one factorization of a causal lossless polyphase

vector to address the above issues. We will demonstrate how to factor a polyphase vector

into a product of order-one PU building blocks Wm(z) so as to complete PUFBs without

the conventional constraint on McMillan degree. At the same time, we have the option

of completing linear-phase PUFBs (LPPUFB) if so desired. Furthermore, the proposed

framework complements the filter design method in [58]. PUFB design based on order-one

completion is also discussed and design examples are presented.

In the following, the McMillan degree and the order of E(z) are denoted by deg(E(z))

and ord(E(z)), respectively.
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6.2 Prior Arts on PUFB Completion

6.2.1 PUFB Admissibility

Let Ho(z) be the scaling filter of some M-channel PUFB. It is necessary and sufficient that

the vector of its M polyphase components

p(z) = [ Ho,o(z) Ho,1 (z) ... Ho,m_1 (z) I (6.1)

be paraunitary (See Chapter 2 for the tilde notation used below):

M-1

~(Z) P(Z) = Z: lo',dZ) Ho',dZ) = C2, some c > 0.
i=O

Therefore, a filter Ho(z) is PUFB-admissible if and only if the vector of its polyphase com-

ponents (6.1) is paraunitary. Without loss of generality, we will consider normalized PUFBs

for which c = 1.

6.2.2 Degree-One Factorization of M x 1 Lossless FIR Systems

Recall that an M-channel degree-one paraunitary building block Vm(z) - I - VmV +

Z-lvmvt is parameterized by a unit-norm M-vector vm E CM. This is an FIR system with

an FIR inverse given by Vm(z) = I - vmvt + zvmvt. With Vm(z), any degree-N FIR

M x 1 causal lossless transfer function p(z) can be uniquely factorized as [129,134]

p(z) = VN(z) ... VI(z) Po (6.2)

for some PU building blocks Vm(z) and M x 1 unitary po = p(l).

6.2.3 Degree-One Completion of PUFBs

Below, the special Householder matrix R[-] defined in Definition 2.3 will be very useful.
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Given p(z) as in (6.1) and (6.2), we have

p(z) = eC0"VN(z) ... V1(z)R[po]eo (6.3)

using the Householder matrix R[po]. By augmenting the column vector eo as follows, we

can now complete the degree-N PUFB E(z) having p(z) as the polyphase vector of the

prescribed scaling filter Ho(z):

ET (z) = e'OoVN(z) . .. V1(z)R[po] [ ] . (6.4)
L0 E)

We refer to (6.4) as degree-one completion of E(z) as degree-one PU building blocks are

involved. The (M - 1) x (M - 1) unitary matrix E contains all the degrees of freedom, and

can be parameterized by Householder matrices or by planar rotations [85,129]. The parau-

nitariness of E(z) is guaranteed since all the components involved are unitary/paraunitary.

Limitation Imposed by (6.4)

However, the degree-one completion of E(z) in (6.4) is degree-constrained in that it spans

only the set of PUFBs of the same degree as p(z), with pT(z) being the 0th row of E(z).

Namely, the completed E(z) is constrained in such a way that

deg(E(z)) = ord(E(z)) = deg(p(z)).

In general, deg(E(z)) should be no less and can be greater than ord(E(z)), and oftentimes

it is desirable to allow for such a possibility. For example, suppose that p(z) of order L

p(z) = ao + aiz-1 +... + aLz

is causal and is the vector of the M polyphase components of a PUFB-admissible linear-

phase filter Ho(z). If E(z) of order L corresponds to a linear-phase PUFB, its degree must

183



be mL [41,129], which is greater than L; however, this is not possible under (6.4). Further-

more, experiments indicate that, given the order of E(z), PUFBs with better performance

are usually obtained by allowing deg(E(z)) > ord(E(z)), as evidenced in Figure 2-18, for

example.

6.3 Improved Technique For Completing General Pa-

raunitary Filter Banks

To relax the degree constraint on E(z) intrinsic in the degree-one completion (6.4), we

propose below an improved technique by which the designer has control over the resulting

McMillan degree of the completed PUFB, with (6.4) as a special case.

This improved technique relies on a more general factorization of an M x 1 lossless FIR

system. In particular, the factorization will use order-one PU building blocks

Wm(Z) = I - WmWt + Z 1 WmWt

parameterized by some M x 7ym unitary parameter matrices wm (satisfying wt wm = I),

where 1 < yim A p(wm) < M. Using order-one PU building blocks to decompose M x M

FIR lossless systems has been reported in [52]. Here, our focus is to derive an order-one

factorization of an M x 1 FIR causal lossless system p(z). As one shall see, the proposed

order-one factorization of p(z) results in "degree elevation:" the nominal degree of p(z) is

pre-elevated so as to accommodate the degree requirement of the resulting E(z).

6.3.1 Order-One Factorization of M x 1 Lossless FIR Systems

Theorem 6.1 (Order-One Factorization of M x 1 Lossless FIR Systems). Given an

M x 1 FIR lossless causal transfer function PL (z) of order L, it can be decomposed into the

'For an M x 1 FIR causal p(z), deg(p(z)) = ord(p(z)).
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following order-one factorization

pL(Z) = WL(Z) ... W1(z) Po (6.5)

for some (non-unique) order-one PU building blocks2

Wm(Z) = I - "mWn + Z WmW, P(Wm) =M

and po = PL (1) -

Proof: By assumption, we can write

PL(z) = ao + alz +... + aLZ-L

for some M x 1 coefficient vectors ak with aL # 0. By losslessness of PL (z), we have ata0 = 0,

implying that ao and aL are perpendicular to each other [129]. The goal is to construct an

order-one building block WL(z) based on this property so that the product of [WL(z)]

and PL(Z)

PL-1(Z) WL(z) pL(z) = (I LW (6.6)
k=O

is causal FIR and lossless with order L - 1, thus achieving order reduction. The trick is to

define the M x 'L unitary parameter matrix WL of L(z) to take the form

WL [ laLil BLIXy(67
I - Mxi L

where BL consists of L - 1 orthonormal columns that are orthogonal to both ao and aL. It

then follows that -itao = 0 and that wTaL aL T ,and thus we have for PL-1(Z)

2We reserve the notation Wm (z) for order-one completion of PUFBs to avoid possible confusion.
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z1 term: wLwLao = WLO 0,

z-L term: (I - WL) aL = aL - aL = 0-

Hence, PL_ 1(z) defined by (6.6) is indeed causal FIR and lossless with order L - 1, and we

can write PL(Z) = WL(Z) pL-1(z). The above order reduction procedure is then repeated

on PL_1(z) to obtain WL-1(z), ... , and so on, until we arrive at (6.5).

As the choice of unitary matrix Bm in the mth step of order reduction is not unique

(depending on Em) unless ?m = 1, so is the order-one factorization (6.5) of pL(z)- 0

Remarks:

1. The matrix BL in (6.7) can be parameterized as follows:

BL = ROL (6.10)

where EL is (M - 2) x (-L - 1) unitary and ROL is such that

I

ao

I

I -

R

=ROL eo

-

In particular, one may choose ROL as follows:

R O[

ROL = R[ao] L R[y]
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where y E CM-i is such that

0
R[ao] aL = L -i ]

Ly

2. Compared to the unique degree-one factorization of PL (z), the extra degrees of freedom

due to the non-uniqueness of (6.5) are captured by the Em. Any choice of Em results

in the same PL(z) - The difference will be at the later stage of PUFB completion,

where the extra degrees of freedom will be exploited for the benefit of the completed

E(z). This is to be discussed next.

3. As Wm(1) = I, the initial unitary vectors po are identical for both degree-one and

order-one factorizations of p(z). However, the intermediate polyphase vectors pe(z)

are not unique, depending on the choice of Bt or Ee. In particular, during the course

of order-one factorization, the coefficient of z-(L-1) of PL-1(z) depends on BL in the

following fashion:

I- L aL + (I - BLB) aL-1-
HaLii - L l

6.3.2 Order-One Completion of PUFBs

Based on the above order-one factorization of p(z) of degree or order L, one can again express

po = p(z) z=1 in terms of the Householder matrix R[po] and the unit vector eo to have

p(z) = e3 0WL(z). . . W 1 (z)R[po]eo. (6.12)

Then the PUFB E(z) having p(z) as the polyphase vector of the scaling filter Ho(z) can be

completed by augmenting the vector eo in (6.12) as follows:

1 eR

E T(z) = ej'OWL (Z) -- . W,1(z)R[po] (6.13)
L0 E)
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where E is (M - 1) x (M - 1) unitary consisting of free parameters. We refer to (6.13) as

order-one completion of E(z) as order-one PU building blocks are involved.

Canonical Representation

Worth noting is the identification

I OT
R[po] - E (6.14)

0 0

between (6.13) and (2.53), which results if we set z = 1 in both (6.13) and (2.53). Notice

that (6.13) is transposed, not in the standard form given by (2.53). Plugging (6.14) in and

transposing (6.13), we have

E(z) = EoWI~z WL~z

= WL (z) ... W(z)Eo

where the mappings are

Wm(z) A EoW _m+1(z)E' (6.15)

Wm A Eo w m+i (6.16)

7m P(Wm) = YL-m+l. (6.17)

We refer to (6.15) as the (canonical) order-one completion of (causal) E(z) of order L, of

which the free parameters are embedded in each Em of Bm as well as in E. This is a complete

parameterization of E(z) having pT(z) as its top row.

Remark: The exact choices of the wm are to be dictated by some performance criterion or

optimization objective associated with E(z).
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6.4 Completing Linear-Phase Paraunitary Filter Banks

It is shown in Chapter 4 (and also in [6]) that the following specialization of the order-one

factorization (2.53) corresponds to M-channel real-coefficient LPPUFBs with M even: for

m = 1, 2, . .. , L, parameterize the M x unitary matrix wm as

Wm = (6.18a)

and the initial unitary matrix EO as

1U0 U0 J
EO = (6.18b)

N2 VO -VOJ

where Uj and Vi are ! x 4! orthonormal.

To ensure linear phase property of the completed PUFB, both (6.18a) and (6.18b) must

be satisfied on top of the order-one completion (6.15). As p(z) is the polyphase vector of

a LPPUFB-admissible scaling filter Ho(z), one can easily show that po A p(z)z=l always

takes the following symmetric form:

I ' = [iigo' iigJ , some io with ||uo|| = 1

which should be the Oth row of EO in (6.18b). Therefore, it is necessary and sufficient that

the unitary sub-matrix Uo of EO satisfy

eeo = (6.19)

in order for the scaling filter of the resulting PUFB to be as prescribed.

Having constrained EO by (6.19), we now proceed to parameterize wm in such a way

that the condition of order-one completion on -WLm+1 in (6.7) holds. As the procedure of
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order-one completion calculates 'L before the others, w, is determined first by (6.16). In

particular, assuming E0 (or U 0 and VO) has been chosen, it must be true from (6.16) that

11 U U0J1Fui [u uo IaLl B0
0j F L j (6 .2 0 )

v[ V0 -VJ a B

WL

where &L has been partitioned into upper and lower M rows as shown. As aL in WL is given,

the 0th columns of U1 and V 1 are fixed:

a0 JaU 1 eo = U 0 ( + (6.21a)

V 1 eo = VO a Ja (6.21b)
||aL|| ||aL1

It remains to ensure that columns of BL are orthogonal to both aL and ao, as is required

by order-one completion of E(z) given pT(z) as the 0th row. The key is to parameterize U1

and Vi appropriately. Observe that any unitary U1 and V1 satisfying (6.21) will guarantee

BIaL = 0 as a result of (6.20). To ensure B'ao = 0, consider augmenting WL with ao and

pre-multiplying by EO:

E0 IFloI I __1 U 1 ui
WL I = (6.22)

IVaoJ v _

where the column vectors ul and vi are given by

U, = U0(aoll + IJa1 ) (6.23a)

a8 JaiVi = V0 . (6.23b)
||aoll ||aoll
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As the LHS of (6.22) is unitary by construction, so is the RHS. Therefore,

T

I 0 i U1 u [U 1 U i (
=I-(6.24)

oT 1 2 V i] V V1 Vi

from which we have

Ufui = -VTv 1  (6.25)

I1ui1| 2 + |Iv11|2 = 2. (6.26)

Since U 1 and V, are unitary, we conclude that ui and v, are unit-norm.

As the 0th columns of U1 and V 1 are fixed as in (6.21), one can show that the top-most

equation in (6.25) is automatically satisfied as a result of (6.21). In particular, it can be

shown that

fa jIaoIe TUU, L [a -e TVTVi.
0 1 ||aL11a 1 0

Therefore, it remains to jointly parameterize U 1 and V 1 in such a way that e UTui =

-eTVTvi for k = 1,2,..., - 1. This can be achieved by first choosing V, subject to

(6.21), and then letting U1 depend on it (or vice versa).

Joint Parameterization of U1 and V1

Suppose V, has been chosen subject to (6.21). Then the RHS of (6.25) is a fixed vector

with unit norm. This takes away a few degrees of freedom from U1, and we are interested

in identifying the remaining degrees of freedom in U 1, for which the Householder matrix is

found to be useful. According to (6.25), one can write

U1 = Ui(-VTv1 ) A U 1 bi.
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By assumption, b, is known and unit-norm, and can be written as b, = R[b1 ] eo. Hence,

Ui = UR[bi] eo,

which implies that the 0th column of UIR[bi] is ui. Applying R[ui] to U 1 R[bi], we arrive

at

R[ui]U1R[bi] =

for some (j -1) x () -1) unitary matrix 4I which consists of all the remaining degrees

of freedom for U 1 given V 1. Therefore, we have shown that U 1 can be parameterized as

U 1 = R[ui] -diag(1, 4)1) - R[b1 ] (6.27)

once V1 has been chosen subject to (6.21). Note that U 1 and V 1 so obtained guarantee that

WL given by

1
WL-= [U0

V0

U0J1

-VoJ

T

U 1

V1I (6.28)

is orthonormal and orthogonal to ao as required, with the 0th column being exactly a.

Order Reduction

So far, we have parameterized the initial unitary matrix E0 and the building block W 1(z)

or WL(z) of the order-one completion of E(z) as in (6.15), while simultaneously imposing

the linear phase property. The obtained WL(z) is then used to reduce the order of p(z)

by one as described in Theorem 6.1 and [26]. In particular, p'(z) 1 WL(Z )p(z) will be

LPPUFB-admissible with order L - 1, and the above procedure is repeated on

p'(z) = a' + a'z-1 + ... + a'_ 1 z(L-1)
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to obtain U 2 and V 2, and so on. Note that once determined in the initial iteration, E0 will

be used throughout the completion of E(z). The result is a complete parameterization of all

LPPUFBs E(z) having pT(z) as its Oth row.

6.5 Completion Examples

6.5.1 General PUFBs

Figure 6-2 shows two completions of PUFBs with an admissible scaling filter Ho(z) taken

from some 8 x 24 GenLOT [41]. Thus, M = 8 and L = 2. The frequency response magnitude

of the PUFB obtained from degree-one completion is shown in Figure 6-2(a) with coding

gain 9.17dB and stopband energy 1.16. Note that the impulse response coefficients of Hj(z),

i > 0, are "concentrated" up front or "minimum-phase," characteristic of the case when

ord(E(z)) = deg(E(z)). On the other hand, the design using the proposed order-one com-

pletion with 71j = Y2 = 4 allows for more flexibility and the result is shown in Figure 6-2(b)

with coding gain 9.32dB and stopband energy 0.14 - the resulting filter coefficients are more

evenly distributed. Obviously, the proposed order-one completion outperforms conventional

degree-one completion.

6.5.2 Linear-Phase PUFBs

We demonstrate the proposed theory of LPPUFB completion by considering an eight-

channel, length-40 LPPUFB-admissible scaling filter Ho(z) which is shown in Figure 6-3(a)

along with the resulting completion. As a comparison, using the same admissible Ho(z), the

completion of a general PUFB is shown in Figure 6-3(b) based on the order-one completion

introduced in Sec. 6.3, with parameters M = 8, L = 4, and 'Tm = M/2 = 4, m = 1, 2, 3, 4. It

is obvious that the proposed PUFB completion does ensure linear phase while guaranteeing

Ho(z) as prescribed.
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8x24 PUFB given H0(z): CG=9.1675dB, Cstop =1.1579
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Figure 6-2: Completions of general PUFBs: (a) Coding gain 9.17dB, stopband energy 1.16.
(b) Coding gain 9.32dB, stopband energy 0.14.

6.6 Completion As Filter Bank Design Technique

As pointed out by Vaidyanathan et al. in [134], filter bank completion can serve to better

initialize part of the design parameters. However, as degree-one completion was used, the

PUFBs that could be completed had the same degree as Ho(z). We demonstrate below how

the proposed order-one completion helps improve PUFB design.

6.6.1 PUFB Design Based On Order-One Completion

The idea behind completion-based design approach is the simplicity of designing a single filter,

say Ho(z), versus a bank of them at a time. The filter Ho(z) so obtained will determine part of

the design variables (through its order-one factorization), which provides a good initialization

for the entire filter bank as Ho(z) is designed to be a good filter.

The approach begins with designing a good Ho(z) using order-one factorization (6.12).

Once a good Ho(z) is obtained, the PUFB can be completed as in (6.13). At this stage, we

allow the parameters related to Ho(z) to be re-optimized, and iterate the above completion

procedure until a good design is obtained.
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8x40 LPPUFB given H0(z): CG=9.4700dB, Cstop=0.0563
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Figure 6-3: Order-one completion of general 8 x 40 PUFB.

In fact, the completion step (6.13) can be decomposed into M - 1 steps corresponding to

completing one filter at a time. Again, the idea is that few filters are easier to design than

the entire filter bank. This procedure is illustrated below by way of an example.

6.6.2 Examples of Completion-Based Design

Four-channel Design

We consider the design of 4 x 32 PUFBs with McMillan degree 14, i.e. Y1 = ... = 7= 2. This

is so chosen because we wish to compare with the cosine-modulated filter banks (CMFB)

[108,129]. Figure 6-4 shows how this completion-based design approach works, starting from

one single filter all the way to completion. Notice that the resulting design can serve to

initialize other (more difficult) designs, for example, PUFBs with equi-ripple responses, as

shown in Figure 6-4(h).

Figure 6-5 compares four design approaches to four-channel PUFBs with length 32 or

order 7: (a) order-one completion, (b) degree-one completion, (c) CMFB, and (d) direct

approach. Note that (a), (c), and (d) are all degree-14 while (b) is only degree-7 (thus the

limited performance of (b)). The proposed completion-based design approach results in the
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best design in terms of stopband energy Cst0p, stopband attenuation Catt and coding gain.

In particular, it outperforms the CMFB by a significant margin in terms of Crtop and Catt.

4 x 32 PUFBs: Performance Comparison

Approach\ Criteria stopband energy stopband attenuation coding gain

Order-one completion-based 4.7e-5 43.7 dB 8.54 dB

Degree-one completion-based 1.5e-3 28.2 dB 8.49 dB

CMFB 6.8e-4 33.3 dB 8.52 dB

Direct 2.4e-3 27.1 dB 8.49 dB

Eight-channel Design

We apply the order-one completion-based approach with

8 x 48 PUFB with McMillan degree 20, which is also the

results are shown in Figure 6-6.

-1 = . .. = y5= 4 to design an

degree of an 8 x 48 CMFB. The

8 x 48 PUFBs: Performance Comparison

Approach\ Criteria stopband energy stopband attenuation coding gain

Order-one completion-based 2.le-3 31.0 dB 9.57 dB

CMFB 6.3e-3 27.8 dB 9.56 dB

Direct 3.5e-2 19.0 dB 9.48 dB

Remark

The completion-based design approach can incorporate filter bank regularity. For example,

one degree of regularity can be imposed onto the constant matrix E0 , by designing one-

regular Ho(z) to begin with. Figures 6-7 and 6-8 show such one-regular designs.

6.7 Concluding Remarks

Complete parameterizations of M-channel PUFBs with a prescribed admissible FIR scaling

filter have been proposed based on a novel order-one factorization of the M x 1 polyphase
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vector of the scaling filter. In particular, the novel order-one factorization has made pos-

sible the completion of PUFBs without degree constraint, resulting in PUFBs with better

performance. An important example is the completion of linear-phase PUFBs - impossible

under conventional degree-one completion. Furthermore, the proposed order-one completion

has been shown to facilitate PUFB design. Examples have been given to demonstrate the

proposed theories.
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Figure 6-4: Example of PUFB design based on order-one completion
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4x32 PUFB, C stop=4.7e-005, Catt=43.7dB, CG=8.54dB 4x32 PUFB, Cstop=1.5e-003, Caft=28.2dB, CG=8.49dB
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Figure 6-5: Three design approaches to 4 x 32 PUFBs with McMillan degree 14, along with

one which is based on degree-one completion and renders only degree 7. Design objective is

to minimize stopband energy Cstop. In the figures, Catt and CG denote stopband attenuation
and coding gain, respectively.
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8x48 PUFB, C stop=2.1e-03,
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Figure 6-6: Comparison of the proposed completion-based approach, the CMFB and the

direct approach for designing 8 x 48 PUFBs, where the design objective is to minimize

stopband energy.
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Figure 6-7: One-regular 4 x 32 PUFB design based on completion.
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Figure 6-8: One-regular 8 x 48 PUFB design based on completion.
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Chapter 7

Low-Power Integer Tranforms via

Multiplierless Approximation with

Adder Constraint

This chapter describes an algorithm for systematically finding a multiplierless approximation

of transforms by replacing floating-point multipliers with VLSI-friendly binary coefficients

of the form k/2'. Assuming the cost of hardware binary shifters is negligible, the total

number of binary adders employed to approximate the transform can be regarded as an

index of complexity. Because the new algorithm is more systematic and faster than trial-

and-error binary approximations with adder constraint, it is a much more efficient design tool.

Furthermore, the algorithm is not limited to a specific transform; various approximations of

the discrete cosine transform (DCT) are presented as examples of its versatility.

7.1 Introduction

Recently there has been increasing interest in approximating a given floating-point trans-

form using only VLSI-friendly binary, multiplierless coefficients of the form k/2' [2,18, 22,

30,66,91,118,152,154]. Because only binary coefficients are needed, the resulting transform
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approximation is multiplierless, and the overall complexity of hardware implementation can

be measured in terms of the total number of adders and/or shifters required in the imple-

mentation.

Usually, a higher complexity can achieve a higher accuracy. Since the cost of a hardware

bit shifter is negligible as compared with that of an adder, the overall complexity can safely

be measured by the total number of adders only. Thus, given a total number of adders as the

design constraint, it is desirable to come up with a good adder allocation among the various

multipliers so that the highest possible accuracy can be achieved. However, little attention

has been paid to this issue.

We propose a new algorithm based on quasi-coordinate descent for systematically find-

ing the multiplierless approximation of a given transform. Specifically, the discrete cosine

transform (DCT) [100] will be used as an example to illustrate how the algorithm works.

Extending this to other transforms is straightforward. Furthermore, the proposed algorithm

will be applied on an efficient, sparse representation of the given transform, in order to

minimize the number of floating-point multipliers. In particular, the lifting factorization

[39,106,117] will be the efficient representation of choice. [106] details how to obtain such a

lifting-like factorization for an N x N non-singular constant matrix.

The chapter is organized as follows: Section 7.2 discusses the minimum-adder repre-

sentation of an integer and the corresponding reducibility issue in terms of adders. These

properties are used in Section 7.3 to derive the proposed algorithm for finding the multiplier-

less approximation of a transform with adder constraint. Two DCT approximation examples

are presented in Section 7.4. Section 7.5 concludes the chapter.

7.2 Minimum-Adder Multiplications

7.2.1 Integers

An integer multiplication is equivalent to bit-shifting the multiplicand to the left by different

numbers of bits and summing up these bit-shifted versions. The total number of shifts and
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adds required can be counted from the binary representation of the integer multiplier. For

example, multiplication by 5 =(101)2 can be implemented by 1 adder and 1 shift. Similarly,

multiplication by 7 = (111)2 can be done using 2 adders and 2 shifts. However, this is not

the minimum number of adders needed to multiply a number by 7, because if we express

7 = 8 - 1 = (1000)2 - (1)2

it is immediately clear that only 1 adder and 1 shift are required. In essence, this involves

the following signed digit representation of numbers [11,54,102].

To begin with, let's first introduce the concept of multiplicative irreducibility in terms of

adders.

Definition 7.1 (Multiplicative Irreducibility). A positive integer multiplier X is said to

be multiplicatively irreducible in terms of adders if the minimum number of adders required

to implement its multiplication is equal to Nx - 1 where Nx is the number of 1's in the

binary representation of X.

As a consequence, the following condition on the binary patterns results.

Fact 7.1. A positive integer X is multiplicatively irreducible if and only if its binary repre-

sentation contains not more than two consecutive l's, and any pairs of two consecutive 1's

are separated by at least two 0's.

The multiplicative irreducibility is important in determining the minimum-adder repre-

sentation of an integer multiplier, as follows.

Fact 7.2 (Minimum-Adder Representation). An integer X can be decomposed into

the following form:

X = A - B,

where A, B E N are multiplicatively irreducible containing NA and NB binary l's, respec-

tively. Furthermore, the minimum number of adders required to implement the multiplica-

tion by X is NA + NB - 1.
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Definition 7.2 (Irreducible Form). Given an integer X, the above minimum-adder rep-

resentation is said to be the irreducible form of X.

Now, to find out the minimum-adder representation of a given integer X, the idea is to

look for both

* n consecutive I's, n > 3, in the binary representation and

" two groups of n consecutive l's, n > 2, separated by only one 0.

For instance, the following number has a group of 3 consecutive l's and two groups of

4-consecutive l's:

4 3 4

X 111100 111 00 1111

= 10000 01000 010000

- 100 00100 0001

-- > 10 adders, 10 shifts

=> 5 adders, 5 shifts

Here is another example:

4 3

X 11110 111

= 11111000

-1

= 10000 0 000

-1001

-- > 6 adders, 6 shifts

=- 5 adders, 5 shifts

-- > 2 adders, 2 shifts

7.2.2 Binary Fractions

A binary fractional multiplier of the form tk/2b, k, b E N, k odd, can also be implemented

using only integer arithmetic. The multiplicand is first multiplied by ±k and the result is

right-shifted by b bits. Therefore, in our set-up, the minimum number of adders required for

implementing a given binary fraction is equal to that for implementing its numerator.
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7.3 Adder-Constrained Multiplierless Approximation

Algorithm

Let T denote the given transform of interest

M (usually floating-point) multipliers Aj, i =

of as being parameterized by these Aj:

whose sparse matrix factorization consists of

1, 2, ... , M. Equivalently, T can be thought

T = T(A, A 2 , . , AM). (7.1)

Usually, such sparse factorizations of T are not unique, and one is preferred whenever all the

)j satisfy I Ai I < 1. These multipliers are usually floating-point numbers. Let [A], denote the

best achievable binary (fractional) approximation of A with only p adders. Specifically, if

ki
[Ailn = i ,)i Z= 1 ,2, .. ,I M,

where bi E N and ki is odd, then the irreducible form of ki contains a total of (ni + 1) binary

1's. Call [A]. the n-adder binary approximation, or n-ABA, of A.

7.3.1 Finding the n-ABA

To compute the n-ABA, [A]n, of some floating-point number A, its binary representation

kb/2b, kb E Z, b E N,

is first calculated with a sufficient precision, namely, with b large enough, depending on the

dynamic range of n. Then based on the irreducible form of jkbl,

I kbl = Ak, - Bkb,
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a positive integer m is determined such that the total number of l's in the binary represen-

tations of integers
[A j and [BkbJ

2m ad 2m

is equal to n + 1. Then the n-ABA of A is given by

[A]n = sgn(A) - "-) 2m (7.2)

7.3.2 Quasi-Coordinate Descent

In (7.1), if all the Ai are replaced by the respective ni-ABA's, [Ai]ni, the resulting transform

T = T ([A 1] 1, [A 2]n2 , . . . , Amnm)

becomes a multiplierless approximation of the original T. In this case, the minimum number

of adders required to implement T, N?, is given by

M

NT = No + ni,
i=1

where No is the number of "basic" adders associated with the particular sparse matrix

factorization structure used to parameterize T. In other words, No is the number of the

adders that remain when all the Ai in T are set to zero, which corresponds to configurations

C9 in Tables 7.1 & 7.2. The significance of No should become clear in Section 7.4 where

sparse factorizations of the DCT are presented.

Now, the goal is to find a good adder allocation, subject to the given signal statistics and

a given value of N?. Two common performance measures defining a good adder allocation

are: (a) the transform coding gain of T and (b) the MSE between the outputs of T and T.

Let <b denote the performance measure, defined over the same parameter space as T.

Then, based on the chosen <1, the proposed algorithm to find the optimal adder allocation

(assuming N? ;> NO) is given as follows:
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1: Initialize all ni= 0

2: for j=1,2,---,(NT-No)

3: for i = 1, 2, ., M

4: pi = '<F ([A1]nl, [A 2 ]n 2 , ' ' [Ai2n] 1, - , [AM]nM)

5: end

6: i = arg mini=1 {pi} or i* = arg maxy, {pi}

7: ni* := ni* +1

8: end

The algorithm begins with a given value of NT, which serves as the adder constraint, with

all the multipliers initialized to zero (ni = 0). Then, in each iteration (indexed by j), the

most "effective" multiplier (A\i) is identified and is assigned one more adder (ni-:= ni* +1)

to increase its accuracy. This is repeated until all the NT adders are exhausted.

Upon termination of the algorithm, the final ni represent the desired adder allocation.

Note that the proposed algorithm completes in a finite number of steps equal to the number

of the excess adders (Nj - No). Also, the choice in Step 6 depends on the performance

measure 4). For example, we wish to minimize the MSE, while maximizing the coding

gain. In essence, given one more adder to the intermediate system at stage j, the deepest

coordinate descent direction is found and the added adder is allocated to the corresponding

multiplier.

7.3.3 Adaptation to Lifting Structures

The lifting structure [39], as shown in Figure 7-1, will be used exclusively in this chapter for

the factorization of the DCT kernel. Now, all the Ai in (7.1) are the lifting multipliers, and

it is immediately clear that if some A2 is zero, the corresponding lifting step and hence the

associated adder will vanish.

To take this into account, the proposed algorithm is modified by initializing all the ni to

-1 and defining [Ai]_ 1 = 0. With these modifications, the lifting-adapted algorithm is then

given below:
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No.
Xj XI

Figure 7-1: The lifting structure, used exclusively in the design examples of the proposed
algorithm, consists of several one-wing butterflies with multipliers A. The adder ( will
effectively vanish if the corresponding Ai or A3 is zero.

1: Initialize all ni = -1

2: f or j=-(M -), ,-1, 0, 1, 2,, (N - No)

3: for i= 1,2,. -. ,M

4 : pi = <D ([A1]nl, [A2]n2, .. . , [Ailnial, - [Am~nm)

5: end
M6: * = arg mini {pi} or i* = arg maxdy {pi}

7: ni* := ni* +

8: end

7.4 Design Examples

In this section, the discrete cosine transform (DCT) is selected to demonstrate how the

proposed algorithm works. A lifting-like factorization of the DCT is considered. Throughout

this section, it is assumed that the input signal to the DCT is an AR(1) process with p = 0.95

and unit variance.

7.4.1 IntDCT

In [30], a Walsh-Hadamard-based factorization of the DCT was used and each of the resulting

rotation angles was lifted. Figure 7-2 illustrates how the DCT kernel is factored in this case:

there are M = 15 multipliers, pi and uj, for1 <i < 10 and I < j < 5. The minimum number

210



x[OJ + V + X[O]

x[1] s a X[1]

- n/8
x[2] + + r8X[2]

x[3]- -+ -X[3I

Hw B 7n/16 B
x[4] w e.. V X[4]

x[51 --. P3 3X[5]

x[6]s -a r8X[6]

xp]73 -n/8 
3'/1

x[71 4 r TX[71

Figure 7-2: The IntDCT parameterized by pi and u3 . H, is the Walsh-Hadamard transform
and B is bit-reversal. No = 24 is the number of the adders that remain when all the pi and
uj are set to zero. Actually, these are the adders internal to Hw.

of adders No = 24, which is the number of the remaining adders when all the pi and uj are

set to zero. Table 7.1 shows the results of the IntDCT-based multiplierless approximations of

the DCT with various adder constraints. The MSE was chosen as the performance measure.

As a comparison, the configuration reported in [30,152] requires 45 adds and 18 shifts with

MSE=1.2e-3, while the MSE of configuration C1 in Table 7.1 is only 8.6e-4. C2 - C8 are

our new designs. Note that configuration C9 is nothing but the Walsh-Hadamard Transform.

The IntDCT has uniform scaling of each subband, which is helpful in applications such as

embedded coding, because no coefficient re-alignment is required.

7.4.2 BinDCT

Figure 7-3 shows the structure of the BinDCT proposed in [66, 118], with No = 18. The

proposed algorithm is also applied to this factorization structure of the DCT, and these

BinDCT-based multiplierless approximations are shown in Table 7.2 with various adder
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Figure 7-3: The BinDCT parameterized by pi and
that remain when all the pi and uz are set to zero.

uj. No = 18 is the number of the adders

constraints. The MSE was used as the performance measure. Our algorithm results in a

better MSE performance (C2 - C8) than was reported in [66, Table II] at the same adder

constraints (except C1 for which the MSE was 1.le-5 as reported in [66, Table II]), which

confirms the effectiveness of our algorithm.

In both examples, one can observe that the MSE decreases monotonically with the increased

number of adders. Our new designs in Tables 7.1 and 7.2 yield lower MSE as compared with

previous solutions presented in [30,66].

7.5 Conclusions

A quasi-coordinate descent algorithm has been presented for systematically finding, with

adder constraint, a multiplierless approximation of transforms. Based on a particular sparse

matrix factorization used, the given transform is parameterized by a few (floating-point)

multipliers in terms of which a performance measure is formed, and the proposed algorithm
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finds the binary approximations of the (floating-point) multipliers using only a finite number

of evaluations and comparisons of the performance measure, and therefore good approxima-

tions are readily available even in the case where exhaustive search becomes intractible.

When necessary, the resulting binary approximations may serve as the initial conditions for

other more sophisticated approximation algorithms. Because the new algorithm is more

systematic and faster than trial-and-error adder-constrained binary approximations, it man-

ifests itself as a more efficient design tool. Furthermore, the algorithm is not limited to a

specific transform; various multiplierless approximations of the DCT have been presented to

demonstrate its versatility.
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Table 7.1: Proposed multiplierless approximations of the DCT based on the IntDCT struc-
ture, with various adder constraints. CI has better MSE performance than was previously
published at the same adder constraint. C2 C8 are our new designs.

Floating-pt CI C2 C3 C4 C5 C6 C7 C8 C9

PI .1989123 1/8 1/8 1/8 0 0 0 0 0 0
u1  -. 3826834 -3/8 -1/4 -1/4 -1/4 -1/4 -1/4 0 0 0
P2 .1989123 1/8 0 0 0 0 0 0 0 0
P3 -. 6681786 -5/8 -5/8 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 0
U2 .9238795 1 1 1 1 1 1 1 0 0
4 -. 6681786 -5/8 -5/8 -5/8 -5/8 -1/2 -1/2 -1/2 -1/2 0

P5 -.6681786 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 0 0
U3 .9238795 1 1 1 1 1 1 0 0 0

P6 -. 6681786 -5/8 -1/2 -1/2 -1/2 -1/2 -1/2 0 0 0
P7 -. 8206787 -13/16 -13/16 -3/4 -3/4 -3/4 -3/4 -3/4 -1/2 0
U4 .9807852 1 1 1 1 1 1 1 0 0

P8 -.8206787 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 0
P9 -.3033466 -1/4 -1/4 -1/4 -1/4 0 0 0 0 0
U5 .5555702 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0 0
Pio -. 3033466 -1/4 -1/4 -1/4 -1/4 -1/4 0 0 0 0

Shifts - 9 6 4 3 2 2 2 0 0
Adds - 45 42 40 39 37 36 33 28 24
MSE - 8.6e-4 1.7e-3 2.5e-3 3.0e-3 6.0e-3 8.5e-3 1.9e-2 8.4e-2 1.6e-1
CG - 8.735 8.680 8.586 8.571 8.334 8.021 7.829 6.936 7.946

Table 7.2: Proposed multiplierless approximations of the DCT based on the BinDCT struc-
ture, with various adder constraints. The MSE performance (C2 - C8) is better than that
previously published at the same adder constraints, except for C1.

Floating-pt C1 C2 C3 C4 C5 C6 C7 C8 C9

Pi .4142135 13/32 13/32 13/32 3/8 3/8 3/8 1/4 1/4 0
Ui .3535533 11/32 5/16 5/16 5/16 5/16 1/4 1/4 0 0
P2 .6681786 21/32 21/32 21/32 5/8 5/8 5/8 1/2 1/2 0
U2 .4619397 15/32 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0
P3 .1989123 3/16 3/16 3/16 3/16 3/16 3/16 1/8 0 0
U3 .1913417 3/16 3/16 1/8 1/8 1/8 1/8 0 0 0

4 .4142135 13/32 13/32 13/32 13/32 3/8 3/8 3/8 1/4 0
U4 .7071067 11/16 11/16 11/16 11/16 11/16 5/8 1/2 1/2 0
P5 .4142135 13/32 13/32 13/32 13/32 13/32 3/8 3/8 1/4 0

Shifts - 25 23 22 20 19 16 11 7 1
Adds - 42 40 39 37 36 33 28 24 18
MSE - 1.3e-5 3.0e-5 4.0e-5 8.4e-5 1.2e-4 3.3e-4 1.4e-3 4.2e-3 2.9e-2
CG - 8.824 8.820 8.819 8.815 8.813 8.795 8.701 8.556 7.920
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Chapter 8

Conclusion and Future Work

8.1 Summary

In this thesis, we have focused on the factorization aspects of a perfect reconstruction filter

bank, including M-channel lifting factorization and the factorizations using dyadic-based

structures. Completing the factorization given the scaling filter Ho(z) is also studied and is

shown to improve on the frequency selectivity and energy compaction of the filter bank.

The M-channel lifting factorization allows for fast, in-place, reversible, and possibly in-

teger implementations of any perfect reconstruction filter bank. A systematic approach to

computing the lifting factors was described. The algorithm is complete in the sense that

every perfect reconstruction filter bank can be so decomposed, and that any lifting fac-

torization corresponds to a perfect reconstruction filter bank. It is found that the lifting

structures can be used for the benefit of imposing regularity, which is an important property

and relates to the smoothness of the wavelet basis and its approximation accuracy. Lifting

solutions of special filter banks are obtained, including paraunitary, unimodular, a class of

biorthogonal filter banks, the DCT, etc., providing a robust, possibly multiplierless, imple-

mentation option that enforces perfect reconstruction even under finite precision. For this

purpose, the proposed Monic Euclidean algorithm always ensures unity diagonal scaling of

all the lifting factors, which allows reversibility under finite precision. For optimal integer
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implementation under the lifting context, an algorithm for optimally approximating the filter

bank using only integer arithmetic is proposed. This algorithm complements the M-channel

lifting factorization for multiplierless implementations and approximations.

Of particular interest is the structural imposition of regularity onto factorizations based

on the dyadic form uvf. Theories of structural regularity were developed that guarantee

the resulting filter banks possess the desired degree of regularity, regardless of the choice of

free parameters in the filter bank structure. As regularity is robustly enforced, we can use

unconstrained optimizations to efficiently design regular filter banks subject to desired per-

formance criteria such as stopband energy and coding gain. High-performance regular filter

banks were obtained with improved frequency selectivity and superior coding gain within

0.1% of the optimum. As our designs focus on greater energy compaction, smoother recon-

structions and the ability to preserve texture details, the benchmarks conducted on image

compression applications show clear improvements in perceptual and objective performance,

while existing designs in the literature either over-smooth the texture regions of the image or

exhibit blocking artifacts to some extent. Remarkably, our regular filter banks outperform

JPEG2000 and the FBI/WSQ standard for fingerprint compression.

The linear phase aspect of dyadic-based structures was studied as well. We showed how

they can be specialized to ensure phase linearity of the system. This also leads naturally to

a simplified parameterization of the resulting linear-phase filter banks, using only approx-

imately 50% of the original parameters while spanning the same design space. The result

is efficiency in design and implementation of linear-phase filter banks using dyadic-based

structures.

We have also considered the problem of multi-channel filter bank completion given

only the scaling filter. M-channel lifting factorization is effective in completing M-channel

biorthogonal filter banks; a B-spline example was given. On the other hand, we proposed a

novel order-one factorization which allows greater design flexibility, resulting in an improved

completion scheme for paraunitary filter banks. It enables the designer to allocate more

degrees of freedom for expressing the scaling filter, and thus improves upon the conventional
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degree-constrained counterpart. A special version of the proposed order-one factorization

guarantees PUFB completion with linear phase, which is not possible for the conventional

approach. Improved frequency selectivity and energy compaction over existing state of the

art methods are demonstrated. Note that the technique can be applied in a dual setting to

transmultiplexer design to achieve higher-rate data transmission subject to a fixed error rate

and transmission power.

8.2 Future Directions

We note below some possible future directions:

Complex-valued wavelets and filter banks By allowing the filters to be complex-valued,

one can obtain more design flexibility. For example, a study by Gao et al. [53] shows

that orthogonality and filter symmetry can be simultaneously achieved for two-channel

complex-valued filter banks, which is known to be impossible for two-channel real-

valued filter banks except trivial cases. Complex-valued filter banks can benefit ap-

plications such as synthetic aperture radar (SAR), communications, medical imaging,

etc. where the signals are complex-valued in nature.

Improved lifting scheme with reduced approximation error In [55], a "vectorized"

version of lifting is proposed for a special class of filter banks whose polyphase matrices

are constant and block-diagonal of the form E(z) = diag{T, T-1 } where T is non-

singular. The conventional two-channel lifting result is then generalized to this case to

obtain
T -I 0 I -T 0 I

E(z)= T- T- ] I I T-1

For integer approximations with reduced error, the innovation here is to round to

integers the matrix multiplication results of T-1 , -T and T- coming from the three

"vectorized" lifting steps. Namely, we do not lift each individual T- and -T. In this

way, the number of rounding operations is reduced, and so is the integer approximation
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error (due to rounding). The Modified DCT (MDCT) is such an example which is

discussed in detail in [55]. It would be interesting to develop similar techniques for

arbitrary filter banks to improve the accuracy of their integer approximations.

Characterization of unimodular filter banks Recall that a unimodular filter bank is

one whose polyphase matrix has a constant determinant, having no z dependency. The

theoretical minimum system delay, M - 1, of an M-channel filter banks is achieved

by unimodular filter banks, irrespective of the filter lengths. This is essential for real-

time applications which require low latency of signal processing. Furthermore, another

(theoretical) significance of unimodular matrices is that the entire space of biorthog-

onal filter banks can be completely parameterized as a cascade of paraunitary and

unimodular systems [128,132], although it is nontrivial to characterize all unimodular

matrices [128,132].

Note that the lifting steps are unimodular in nature, with determinants ±1. Therefore,

it would be interesting to construct a class of useful unimodular filter banks using the

lifting structures.

Numerical applications Two-channel wavelet-based hierarchical approaches have been

successfully applied to numerical solutions of PDE, by providing an efficient scheme

for incremental solution refinement. Extending this idea, M-band wavelets would pro-

vide a more flexible refinement scheme. However, the scaling functions may not have

a closed-form expression for the benefit of numerical solutions of PDE. The M-band

B-spline filter banks based on the proposed filter bank completion technique feature

closed-form expressions of the resulting M-band wavelet basis. It would be of prac-

tical interest and importance to study how a suitably constructed M-band B-spline

filter bank influences the numerical solution of PDE, exploiting the greater flexibility

in solution refinement.
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