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Abstract

Arbitrary sample rate conversion (ASRC) denotes techniques for changing the sampling rate of
discrete-time sequences by arbitrary, potentially time-varying ratios. ASRC is utilized in many
applications of digital signal processing.

In this thesis, the application of ASRC methods to wave field synthesis (WFS), a concept for
high-quality, spatially correct sound reproduction, is considered. ASRC algorithms may improve
the sound quality of moving sound objects significantly. However, the large number of simul-
taneous ASRC operations in a typical WFS rendering system inhibits the use of sophisticated
ASRC algorithms in most cases.

To address this problem, several contributions are proposed in the present work. The compu-
tational complexity for WFS is significantly reduced by introducing an algorithm partitioning
that enables an efficient reuse of intermediate results. This permits the application of high-
quality resampling algorithms with an overall complexity comparable to the use of most basic
conventional algorithms. However, this partitioning also poses new requirements to ASRC algo-
rithms and requires trade-offs between different performance measures such as computational
complexity, storage requirements, or memory bandwidth.

To improve algorithms and implementation structures for ASRC, several objectives are
pursued in this thesis. First, analytical representations for the continuous frequency response of
several classes of ASRC structures are introduced. In particular, concise closed-form expressions
are derived for Lagrange interpolation, the modified Farrow structure, and structures combining
integer-ratio oversampling and continuous-time resampling functions. These representations
enable insight into the behavior of the respective structure and are directly applicable to design
methods.

A second focus is placed on purposeful coefficient design for these structures, in particular
methods that yield optimal results with respect to a selectable error norm and optional design
constraints. In contrast to existing approaches, such optimal design methods are proposed
also for two-stage ASRC structures consisting of integer oversampling and continuous-time
resampling functions. For this class of structures, a set of specifically adapted continuous-time
resampling functions is introduced that yield gradual, significant performance improvements
when used in conjunction with the proposed overall optimization method.

The variety of implementation structures, each exhibiting several design parameters to be
determined, forms a main impediment for the selection of an ASRC algorithm suitable for a
given application. For this reason, performance analysis and comparison of different ASRC
algorithms forms a third major objective. Analyses are performed to determine the influence
of specific design parameters on the achievable quality. Furthermore, the required resources to
attain a given design quality are investigated with respect to different performance measures.

In this way, the results of this thesis are not limited to wave field synthesis, but are likely to be
applicable to a wide class of applications of arbitrary sample rate conversion.

ix
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Zusammenfassung

Verfahren zur unbeschränkten Abtastratenwandlung (arbitrary sample rate conversion, ASRC)
ermöglichen die Änderung der Abtastrate zeitdiskreter Signale um beliebige, zeitvariante Ver-
hältnisse. ASRC wird in vielen Anwendungen digitaler Signalverarbeitung eingesetzt.

In dieser Arbeit wird die Verwendung von ASRC-Verfahren in der Wellenfeldsynthese (WFS),
einem Verfahren zur hochqualitativen, räumlich korrekten Audio-Wiedergabe, untersucht.
Durch ASRC-Algorithmen kann die Wiedergabequalität bewegter Schallquellen in WFS deutlich
verbessert werden. Durch die hohe Zahl der in einem WFS-Wiedergabesystem benötigten
simultanen ASRC-Operationen ist eine direkte Anwendung hochwertiger Algorithmen jedoch
meist nicht möglich.

Zur Lösung dieses Problems werden verschiedene Beiträge vorgestellt. Die Komplexität der
WFS-Signalverarbeitung wird durch eine geeignete Partitionierung der ASRC-Algorithmen signi-
fikant reduziert, welche eine effiziente Wiederverwendung von Zwischenergebnissen ermöglicht.
Dies erlaubt den Einsatz hochqualitativer Algorithmen zur Abtastratenwandlung mit einer Kom-
plexität, die mit der Anwendung einfacher konventioneller ASRC-Algorithmen vergleichbar
ist. Dieses Partitionierungsschema stellt jedoch auch zusätzliche Anforderungen an ASRC-Al-
gorithmen und erfordert Abwägungen zwischen Performance-Maßen wie der algorithmischen
Komplexität, Speicherbedarf oder -bandbreite.

Zur Verbesserung von Algorithmen und Implementierungsstrukturen für ASRC werden
verschiedene Maßnahmen vorgeschlagen. Zum Einen werden geschlossene, analytische Beschrei-
bungen für den kontinuierlichen Frequenzgang verschiedener Klassen von ASRC-Strukturen
eingeführt. Insbesondere für Lagrange-Interpolatoren, die modifizierte Farrow-Struktur sowie
Kombinationen aus Überabtastung und zeitkontinuierlichen Resampling-Funktionen werden
kompakte Darstellungen hergeleitet, die sowohl Aufschluss über das Verhalten dieser Filter
geben als auch eine direkte Verwendung in Design-Methoden ermöglichen.

Einen zweiten Schwerpunkt bildet das Koeffizientendesign für diese Strukturen, insbesondere
zum optimalen Entwurf bezüglich einer gewählten Fehlernorm und optionaler Entwurfsbe-
dingungen und -restriktionen. Im Gegensatz zu bisherigen Ansätzen werden solche optimalen
Entwurfsmethoden auch für mehrstufige ASRC-Strukturen, welche ganzzahlige Überabtastung
mit zeitkontinuierlichen Resampling-Funktionen verbinden, vorgestellt. Für diese Klasse von
Strukturen wird eine Reihe angepasster Resampling-Funktionen vorgeschlagen, welche in Ver-
bindung mit den entwickelten optimalen Entwurfsmethoden signifikante Qualitätssteigerungen
ermöglichen.

Die Vielzahl von ASRC-Strukturen sowie deren Design-Parameter bildet eine Hauptschwie-
rigkeit bei der Auswahl eines für eine gegebene Anwendung geeigneten Verfahrens. Evaluation
und Performance-Vergleiche bilden daher einen dritten Schwerpunkt. Dazu wird zum Einen der
Einfluss verschiedener Entwurfsparameter auf die erzielbare Qualität von ASRC-Algorithmen
untersucht. Zum Anderen wird der benötigte Aufwand bezüglich verschiedener Performance-
Metriken in Abhängigkeit von Design-Qualität dargestellt.

Auf diese Weise sind die Ergebnisse dieser Arbeit nicht auf WFS beschränkt, sondern sind in
einer Vielzahl von Anwendungen unbeschränkter Abtastratenwandlung nutzbar.

xi
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H (N )c (jω) Continuous frequency response of a Lagrange interpolator of order N
hc (t ) Continuous-time impulse response of a combined anti-aliasing/anti-imaging filter
Hd i g (e

jω) Discrete-time prefilter of ASRC structures based on oversampling

H
�

e jω, D
�

Frequency response of a fractional delay element

bH �e jω, D
�

Frequency response of the ideal fractional delay element

eH (k)(e jω) Ideal discrete-time differentiator of order k
bh(n, D) Impulse response of the ideal fractional delay element
Hi nt (jω) Continuous-time resampling filter of ASRC structures based on oversampling
h(k ,µ) Filter coefficients of FIR resampling functions
H (ω) Noncausal frequency response of a linear-phase FIR filter
H (ω) WFS pre-equalization filter for monopole secondary sources
H (ω,µ) Noncausal discrete-time frequency response of the modified Farrow structure
bHr (jΩ) Frequency response of ideal reconstruction filter for D/C conversion
bhr (t ) Impulse response of ideal reconstruction filter for D/C conversion
H (x) Unit step function (or Heaviside step function)
K(e jω′ , e jω) Bi-frequency system function
k[m, n] Discrete-time Green’s function
lk (t ) Lagrange polynomial
L Integer upsampling ratio in rational or integer-rate sample rate conversion
M Integer downsampling ratio in rational or integer-rate sample rate conversion
mod Modulo operation
Px Average signal power of a discrete-time signal
Qm(x,ω) WFS driving function including synthesis operator synthesis operator for a point

source and secondary monopole sources
R Sample rate conversion ratio
R∗ Multiplication rate for an ASRC system
R+ Addition rate for an ASRC system
Rt ot al Total instruction rate for an ASRC system
round(·) Round operation, round to the nearest integer
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Chapter 1

Introduction

This thesis deals with two subjects — arbitrary sample rate conversion and wave field synthesis.
While the former is a general problem of digital signal processing, the latter is a spatial sound
reproduction concept. Why should it make sense to handle these distinct problems, one of pure
and one of applied research, in a single treatise? In the author’s opinion, both subjects benefit
from this combination.

Wave field synthesis (WFS) is a sound reproduction concept that aims at synthesizing physically
correct wave fields of complex auditory scenes consisting of multiple sound sources using a
typically large number of loudspeakers. This enables superior localization properties over an
extended listening area. Among other advantages, the ability to reproduce moving sound sources
realistically forms a distinguishing feature of WFS. Practical sound reproduction is performed
by applying so-called WFS operators and is generally implemented as a discrete-time signal
processing system. At the signal processing level, the WFS operators essentially calculate delay
and scale parameters for each combination of sound sources and loudspeakers and apply these
parameters to discrete-time source signals. Due to the large number of simultaneous operations,
WFS rendering is a computationally complex task. In case of moving sound sources, the scale
and delay parameters are time-varying, resulting in a further increase of the computational
requirements.

Arbitrary sample rate conversion (ASRC) refers to converting a discrete-time sequence to
another sequence with a different sampling rate. Opposed to other approaches to sample rate
conversion, ASRC enables arbitrary conversion ratios. Furthermore, most methods allow
this ratio to be changed dynamically. To do so, ASRC algorithms require the capability to
approximate the value of a signal represented by a discrete-time sequence at arbitrary points in
time, that is, at any position between input samples. Numerous algorithms and implementation
structures have been proposed for ASRC which differ in quality and the computational cost
required.

So, why does it make sense to consider these distinct topics in combination? The most
apparent reason is that WFS is an application of ASRC. As will be shown later, the time-varying
delay operation in a WFS system is most appropriately modeled by an ASRC process. It is
important to note, however, that this interpretation applies only to the way the time-varying
delays are modeled internally. From the external point of view, WFS signal processing forms a
single-rate discrete-time system that does not perform an explicit change of the audio sampling
rate.

In any case, WFS is a very demanding application of ASRC techniques for two primary
reasons. First, it requires the simultaneous application of different, continuously time-varying
conversion ratios, covering both sample rate increases and decreases.

Second and more important, the large number of simultaneous ASRC operations in a typical

1
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2 Chapter 1 Introduction

WFS rendering system imposes very strict requirements on the computational complexity
of the algorithms. To reach this objective, several measures are taken in this work. First,
strong emphasis is placed on efficient ASRC algorithms and implementation structures. Design
methods for these structures that yield optimal filter coefficients with respect to a given design
specification form a second objective.

Notwithstanding these improvements in efficiency, the large number of simultaneous ASRC
operations in a WFS rendering system inhibits the application of conventional algorithms in
most cases. For this reason, a processing structure is proposed that integrates several widely-used
classes of ASRC algorithms into the signal flow of a WFS rendering system, resulting in a
significant reduction of the computational effort. Obviously, such complexity reductions are
possible only if WFS and ASRC techniques are considered in combination.

Finally, the application to a demanding, practical signal processing problem emphasizes
performance aspects that are relevant to actual, real-world hardware platforms. While this thesis
does not presume a particular target architecture, a set of abstract performance measures is
proposed to assess the appropriateness of ASRC algorithms for different hardware platforms.

However, these improvements are not limited to WFS, but are likely to be applicable to a
wide range of signal processing problems incorporating sample rate conversion. The utility of
efficient implementation structures and methods for optimal coefficient design is self-evident.
Furthermore, extensive performance investigations and trade-off analyses enable the assessment
of various ASRC algorithms with respect to different performance metrics. In this way, a main
intention of this work is to aid an engineer in selecting an ASRC algorithm that is optimally
suited for a given target architecture and meets the requirements of an application with minimal
effort.

1.1 Outline and Contributions
The remainder of this thesis is structured as follows:

Chapter 2 provides a brief characterization of WFS. The signal processing tasks in a WFS signal
processing system are described, emphasizing the central role of time-varying delay operations.
Moreover, features and implications of moving sound sources in WFS are characterized.

In Chapter 3, existing approaches to arbitrary-valued delay operations on discrete-time signals
are reviewed. Starting from the conversion between continuous-time and discrete-time signals,
two approaches to arbitrary delay operations are characterized: Variable fractional delay (VFD)
filtering and arbitrary sample rate conversion (ASRC). For these approaches, the most important
design methods and implementation structures are reviewed. Particular emphasis is put on a
uniform representation for both approaches, thus allowing implementation structures and design
methods to be described consistently. Moreover, the computational efficiency of the different
implementation structures forms a main focus.

The application of time-varying delay algorithms to WFS is considered in Chapter 4. It
is shown why ASRC is more appropriate to model this delay operation. Signal processing
structures are proposed which enable the use of high-quality ASRC algorithms while mitigating
the growth of the computational complexity. Baseband aliasing artifacts are an additional issue
in the application of time-variant delays to WFS. Section 4.4 discusses conditions that require an
explicit handling of this problem, and proposes a resource-efficient solution.
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1.1 Outline and Contributions 3

Several improvements to ASRC algorithms and implementation structures are developed and
analyzed in Chapter 5. First, closed-form expressions for the continuous frequency response of
two widely-used structures, namely the modified Farrow structure and the Lagrange interpolator,
are derived for arbitrary orders. Based on these derivations, a flexible framework for coefficient
design subject to a selectable error norm and flexible optional design specifications is presented.
Two-stage structures consisting of integer-ratio oversampling and continuous-time resampling
functions are considered in Sections 5.4 to 5.6. Starting from the widely-used structure based on
oversampling and Lagrange interpolation, it is shown that the performance can be improved by
design methods that take the frequency response of the overall structure into account. At the
same time, this optimization scheme enables optimal coefficient design with respect to a specified
error norm and optional constraints. Further improvements to this structure are achieved by
replacing Lagrange interpolation by more appropriate resampling filters. In Section 5.6, design
techniques for the joint optimization of the oversampling component and the continuous-time
resampling filter are investigated.

Chapter 6 is concerned with performance analysis and comparisons of the implementation
structures considered in this thesis. In the first part, the performance of the different structures
is analyzed as a function of several design parameters and specifications. In the second part,
trade-off analyses are performed with respect to different performance metrics, thus enabling a
purposeful selection of ASRC algorithms appropriate for a given application.

Chapter 7 concludes this thesis by summarizing the main results and points out possible
directions of future research.
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Chapter 2

Motivation: Wave Field Synthesis

Wave field synthesis (WFS) is a sound reproduction concept that enables excellent localization
over an extended listening area. Unlike many other spatial sound reproduction techniques,
it aims at a physically correct synthesis of a desired wave field. Typically, WFS is based on a
large number of loudspeakers, which are referred to as secondary sources. They are organized
in planar or linear arrays enclosing the listening area. WFS is generally implemented using
discrete-time signal processing. It is capable of reproducing complex auditory scenes consisting
of numerous acoustic objects, which are typically denoted as primary or virtual sources.

The concept of WFS has been initially proposed at the Delft University of Technology in
the late 1980s and in the 1990s, starting with several publications, e.g. [Ber88, BdVV93], and
further investigated in a series of dissertations, including [Vog93, Sta97,Ver97, Son00,Hul04].
Since then, WFS has developed into an area of active research, conducted at numerous research
institutions and in several research projects, e.g. [SPB01]. Nowadays, a large number of WFS
installations are in use, from research setups to commercial applications in theme parks, cinemas
or open-air live reproduction systems [BBS04a, dV09].

2.1 Theory of WFS
The present thesis does not attempt to provide an in-depth review of the theoretical foundations
of WFS. Instead, only the general ideas and the concepts relevant to WFS signal processing
are introduced. For more information, the reader is referred to the original publications, the
dissertations mentioned above, and the recent overviews [SRA08, dV09].

Conceptually, WFS is based upon the Kirchhoff-Helmholtz integral equation

P (x,ω) =
1

4π

∫

S

∂

∂ n
G(x|xs ,ω)P (xs ,ω)−G(x|xs ,ω)

∂

∂ n
P (xs ,ω)d S . (2.1)

This representation theorem states that the acoustic pressure P (x,ω) for an angular frequency
ω at any point x within a source-free volume V is determined by the acoustic pressure and
the particle velocity at the surface S enclosing V . The pressure at a point xs on the surface S
is denoted by P (xs ,ω). The directional derivative ∂

∂ n P (xs ,ω) is proportional to the normal
component of the particle velocity with respect to the inward pointing surface normal n at
the point xs . The underlying geometry is shown in Figure 2.1. In this representation, Ψ(x,ω)
represents a distribution of acoustic sources outside of V .

The term G
�
x|xs ,ω

�
denotes a Green’s function, that is, an elementary solution of the

inhomogeneous wave equation governing the propagation of sound. It can be considered as the

5
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6 Chapter 2 Motivation: Wave Field Synthesis

n

Ψ(x,ω)

xs

x

S

V

r

Figure 2.1: Geometry underlying the Kirchhoff-Helmholtz integral theorem. Ψ(x,ω) denotes a
source distribution outside the source-free volume V .

pressure field of an ideal monopole source driven by a harmonic signal with a single frequencyω.
In this way, the Green’s function represents the transfer function of a monopole source located
at xs to the receiver position x. In case of WFS, free-field propagation is generally assumed.
While there are several degrees of freedom in the choice of a Green’s function, the most simple
frequency-domain representation is given by

G(x|xs ,ω) =
e−jωc r

r
with r = |x− xs | , (2.2)

where r is the Euclidean distance between x and xs . c denotes the speed of sound. In an identical
fashion, the transfer function of an elementary dipole source is expressed using the directional
derivative ∂

∂ n G(x|xs ,ω).
The Kirchhoff-Helmholtz integral can also be used as a conceptual basis for sound reproduc-

tion. For this purpose, continuous distributions of monopole and dipole sources, which are
referred to as secondary sources, are placed on the surface S enclosing V . The dipoles are aligned
to the inward pointing normal vector n of the surface. They are driven by the acoustic pressure
P (xs ,ω) of the wave field of a primary source distribution Ψ(x,ω). Likewise, the elementary
monopoles are controlled by the directional derivate ∂

∂ n P (xs ,ω) of the sound pressure, corre-
sponding to the normal component of the particle velocity. In this way, the secondary sources
reproduce the pressure field of a primary source distribution Ψ(x,ω) inside the source-free
volume V . This is the basic idea underlying wave field synthesis.

For practical sound reproduction, a series of simplifications is applied, which require additional
conditions to hold and generally introduce reproduction errors. The main simplification steps
are:
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Restriction to monopole or dipole sources By imposing free-field conditions and restricting
the surface S to a plane of infinite extent, the Kirchhoff-Helmholtz integral can be stated as a
Rayleigh integral of either type I (2.3a) or II (2.3b). These representations require distributions
of only monopole or dipole sources, respectively

P (x,ω) =
1

2π

∫

S

− ∂

∂ n
P (xs ,ω)

e−jωc r

r
d S (2.3a)

P (x,ω) =
1

2π

∫

S

P (xs ,ω)
1+ jωc r

r
cos(φ)

e−jωc r

r
d S . (2.3b)

In (2.3b), φ denotes the angle between n and the vector x−xs . In addition to the restrictions
noted above, the surface S emanates a mirrored wave field on the outside of the volume V . In
contrast, synthesis based on the Kirchhoff-Helmholtz integral results in a cancellation of the
radiation of the secondary monopole and dipole sources outside V .

Restriction to linear secondary source distributions For most applications, planar 2-
dimensional distributions of secondary sources are unfeasible due to architectural or economical
considerations. Therefore, they are typically reduced to a horizontal array of either monopole
or dipole sources, which are driven by so-called 2 1

2 -D synthesis operators [Sta97,Ver97]. For this
purpose, the infinite plane S is partitioned into vertical slices of infinitesimal width. Subsequently,
the sound field of each slice is approximated by a single elementary source located in the
horizontal plane of the secondary source distribution. This derivation makes use of the so-called
stationary phase approximation (e.g. [Ble84]), a tool for the approximate integration of certain
types of oscillatory integrals of the form (2.3).

The transformation into a linear distribution of secondary sources gives rise to several re-
strictions and errors. First, correct reproduction is restricted to sound sources and listeners
both situated in the horizontal plane of the loudspeaker array. Second, the approximation is
sufficiently exact only if the distances of both the source and the receiver point to the secondary
source distribution are large compared to the wavelength λ= 2πc

ω
[SA10]. Finally, the amplitude

of the synthesized wave field is correct only at the so-called receiver line, a line or curve in the
reproduction plane that can be chosen freely within certain limits.

Discretization of the secondary source distribution For practical sound reproduction,
the continuous distribution of secondary sources is replaced by arrays of discrete loudspeakers
with finite spacing. As a consequence, the wave field cannot be reproduced correctly above a
given signal frequency that is determined by the distance between adjacent secondary sources.
This effect is closely related to aliasing artifacts caused by a discrete sampling of continuous-
time signals. For this reason, this artifact is termed spatial aliasing. Above the spatial aliasing
frequency, magnitude deviations and sound colorations occur that may fluctuate rapidly as a
function of both the source and the listener position.

Finite secondary source distributions Finally, the secondary source distributions, which
were assumed infinite so far, are truncated to a finite extent in realizable setups. This may cause
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8 Chapter 2 Motivation: Wave Field Synthesis

amplitude errors and additional wave fronts emanating from the end points of the array. The
latter artifacts are often termed diffraction effects [Sta97] due to their resemblance with the
diffraction of acoustic waves at edges.

Additional errors of realizable secondary source distributions In practical applications,
several additional sources of errors are introduced. For instance, the linear arrays are typically
replaced by loudspeaker configurations enclosing the listening area, which often also contain
gaps. Moreover, the characteristics of the secondary speakers typically deviate from the assumed
ideal monopole or dipole characteristics.

For most of the problems described in this section, techniques have been proposed to reduce
the audible artifacts. However, these improvements are often applicable only to a limited set of
loudspeaker geometries or source positions.

2.2 WFS Synthesis Operators
The driving signals for the discrete secondary sources are obtained by applying so-called synthesis
operators to the signal of the acoustic object (the virtual sound source or primary source) to be
reproduced. The synthesis operator is specific to the type of the virtual source and incorporates
properties such as the source position.

In typical WFS reproduction systems, synthesis operators are implemented for elementary
source characteristics such as monopoles, i.e., point sources, or plane waves. Extensions have
been proposed to generalize the synthesis operator to arbitrary directivity characteristics [Cor07,
AS07], but these developments are yet on a theoretical level that does not allow an immediate
application to arbitrary source characteristics or arbitrary time-domain signals.

As an example, the driving function of a monopole source outside the listening area for an
arbitrary receiver contour R is given by

Qm(xs ,ω) = S(ω)
︸ ︷︷ ︸

Source signal

È
jω

2πc

È
∆r

r +∆r

1p
r

cosφe−jωc r

︸ ︷︷ ︸
Synthesis operator

(2.4)

with r = |xΨ− xs |, ∆r = |xs − xR| .
The corresponding geometry is shown in Figure 2.2. The receiver point xR is formed by the
intersection of the line through the source position xΨ and the position of the secondary source
xs with the receiver contour R. φ is the angle between this line and the normal vector n of the
secondary source at xs .

The driving function (2.4) consists of several components that represent distinct functionalities.
While S(ω) constitutes the frequency-domain characteristics of the source signal, the term

H (ω) =

È
jω

2πc
(2.5)

denotes a filtering operation that is independent of the position of the virtual source. It is referred
to as WFS pre-equalization filter in [SA10]. For monopole secondary sources, it represents a
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2.3 Signal Processing for WFS 9

xΨ

Secondary sources Receiver contour

xs

r

∆r

xR

φ
n

Figure 2.2: Geometry for the WFS synthesis operators with arbitrary receiver contour R.

lowpass filter with a constant slope of 3 dB/octave, while it forms a highpass with a magnitude
increase of 3 dB/octave in case of dipole secondary sources. The term

a =

È
∆r

r +∆r

1p
r

cosφ (2.6)

denotes an amplitude factor that depends on the positions of the primary and secondary sources
and the receiver point. Finally, e−jωc r represents a time delay

τ =
|xΨ− xs |

c
, (2.7)

which is proportional to the distance between the virtual and the secondary source.

2.3 Signal Processing for WFS
In WFS reproduction systems, the transformations represented by the synthesis operators are
generally implemented by means of discrete-time signal processing. Mainly due to the typically
large number of loudspeakers and the benefits of complex auditory scenes consisting of multiple
virtual sources, signal processing for WFS is a computationally expensive task.

However, research on WFS is predominantly focused on theoretical models, such as the syn-
thesis operators for single virtual sources and their influence on the properties of the synthesized
wave field. The corresponding signal processing is handled very scarcely in literature. Brief
characterizations are found, for instance, in [Sta97, Ver97, Jan97].

Real-time WFS reproduction systems typically operate in the time domain. An inverse Fourier
transform of the synthesis operator (2.4) yields the time-domain signal component y (m)n (t ) for a
secondary source n obtained from the source signal xm(t ) of a single virtual source denoted by
the index m

y (m)n (t ) = amn · xm(t ) ∗ h(t ) ∗δ �t −τmn
�

. (2.8)
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10 Chapter 2 Motivation: Wave Field Synthesis

Here, ∗ denotes the continuous convolution operator. In the following, ∗ will be used for both
continuous and discrete convolution, because the distinction is generally clear from the context.
In (2.8), h(t ) is the continuous-time impulse response of the pre-equalization filter H (ω) (2.5),
and δ(t −τmn) represents a continuous-time delay by the delay value τmn . The coefficients amn
and τmn represent the amplitude and delay coefficients as defined in (2.6) and (2.7), respectively,
for the combination of a virtual source m and a secondary speaker n. These coefficients are
referred to as WFS coefficients in the following.

The loudspeaker driving signal is formed by superimposing the signal components y (m)n (t ) of
all virtual sources

yn(t ) =
M∑

m=0

y (m)n (t ) . (2.9)

In a discrete-time signal processing system with sampling frequency fs , the signals as well as the
convolution operators are replaced by their discrete-time counterparts, resulting in

yn[k] =
∑
m=0

amn · xm[k] ∗ h[k] ∗δ[k −τmn fs] . (2.10)

The discrete-time delay operation δ[k − τmn fs] is used here in a symbolic way. Implications
and actual implementations of this delay operator will be investigated later.

Consequently, the signal processing algorithm for WFS consists of several distinct operations:

• The calculation of the scale and delay coefficients amn and τmn is defined by the synthesis
operator (2.4). Because the properties of a virtual source such as the position xs may
vary over time, these calculations must be repeated periodically or on demand. However,
these properties of a virtual source change relatively slowly in general. Therefore, it is
sufficient to calculate the WFS coefficients with update rates much lower than the sampling
frequency of the system [Jan97,Ver97]. In general, the application of simple interpolation
techniques is sufficient to ensure smooth trajectories between parameter updates.

• The WFS pre-equalization filter H (ω) (2.5) is generally implemented as a discrete-time
IIR or FIR filter. In a conventional WFS system, the filter response is independent of
the secondary speaker as well as of the properties of the sound source. Therefore, it is
sufficient to perform this operation only once for each input signal xm[k]. Alternatively,
this equalization can be applied to the accumulated output signals, which proves sensible
in some implementations. For instance, this filter characteristic might be integrated into a
loudspeaker-specific equalization filter.

• The delay term δ[k −τmn fs] is applied to each combination of primary and secondary
sources. In a discrete-time system, this operation is conveniently modeled by a variable-
length delay line (e.g. [Roc00, Zöl02, Smi10a]) for each source signal xm[k]. This delay
line must enable multiple accesses for the computation of all signal components y (m)n [k].
The required storage capacity of these delay lines is mainly determined by the maximally
allowed distance between a primary and a secondary source.

• Similar to the delay operator, the scaling coefficient amn is applied to each combination of
primary and secondary sources. For this reason, these operations are combined in most
implementations. This combination will be denoted as scale&delay in the following.
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a0Nδ[k−τ0N ]

x1[k]

H (ω)

x0[k]

y0[k] y1[k]

Delay line 0

Delay line M

a00δ[k−τ00]

Delay line 1H (ω)

xM[k]

yN[k]

H (ω)

a10δ[k−τ10]

aM 0δ[k−τM 0]

a11δ[k−τ11]
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y (1)N [k]

y (M )N [k]

y (0)N [k]

a1Nδ[k−τ1N ]

Figure 2.3: WFS signal processing system (adapted from [Sta97]).

• The scale&delay operation must be performed at the audio sampling frequency of the
system. Moreover, the number of required simultaneous operations is given by the product
of the numbers of primary and secondary sources. For these reasons, the scale&delay
operation is typically the most critical part in a real-time WFS reproduction system.
For instance, the effort for this operation accounts for more than 60 % of the complete
computational load in an efficient WFS rendering system, even if no interpolation of WFS
coefficients is performed and all delays are implemented as integer-valued index shifts.
Techniques to reduce the number of scale&delay operations by excluding component
signals that do not contribute to the desired wave field have been proposed, for instance,
in [Ver97]. However, the number of active loudspeakers for a given primary source is
typically reduced only to a constant fraction. Thus, the asymptotic number of operations
O(M N ) for a system with M primary and N secondary sources remains unchanged.
Moreover, a constant computational complexity with good worst-case behavior is more
important for real-time rendering systems than good performance in the best or average
case.

• The accumulation of the signal components for each loudspeaker signal combines the
results of the scale&delay operations. It is typically tightly integrated into this part of the
algorithm, for instance by the use of multiply-and-accumulate functionalities provided by
most DSP or general-purpose hardware architectures. For this reason, it is sensible not to
consider this operation separately, but to regard it as a part of the scale&delay operation
instead.

Figure 2.3 depicts the general signal flow of the audio signal processing component in a WFS
reproduction system. This scheme is based on [Sta97], but the variable delay lines and the
arbitrary delay line accesses by the scale&delay operators are shown explicitly.

2.4 Moving Sound Sources
The ability to reproduce moving sound sources is beneficial for many applications of spatial sound
reproduction, for instance in movie theatres, theme parks, live performances, and immersive
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12 Chapter 2 Motivation: Wave Field Synthesis

virtual-reality applications [Boo01a, Spo04, BBS04b].
From the conceptual point of view, WFS is well suited for the synthesis of moving sound

objects. On the one hand, the abilities to synthesize virtual sound sources at arbitrary positions
and to reproduce complex auditory scenes form a sound technological basis. On the other
hand, the excellent localization properties over an extensive listening area without requiring
headphones or tracking techniques makes WFS an advantageous reproduction technology for
moving sources, especially for larger audiences.

2.4.1 The Doppler Effect
The Doppler shift or Doppler effect is probably the most characteristic property of a moving
sound source. Depending on the speed of the sound source and/or the listener with respect to
the medium, the perceived frequency of a sound signal is altered [Str00, Zöl02, SSAB02, Smi10a].
Intuitively speaking, this effect is caused by the contraction or dilation of the acoustic wave
fronts due to the varying traveling time of the sound. For a monochromatic sound source with
signal frequency fs r c , the perceived frequency at the listener position is given by

fr ec =
c + vr ec

c − vs r c
fs r c , (2.11)

where vs r c and vr ec denote the scalar velocities of the source and the receiver with respect to the
propagation medium.

In a WFS reproduction system, the movement of a virtual source causes an effect that resembles
the natural Doppler effect. As a result of the movement, the distances between the primary
source and the secondary sources change, resulting in dynamically changing delay term τmn
(2.7) of the driving function (2.4). Conceptually, these changing delays are equivalent to the
varying traveling times causing the natural Doppler effect. In this way, the wave fields emitted by
the secondary sources exhibit a frequency shift, and the effect perceived at the listener position
resembles the sound of the moving primary source.

It is noted that, while physically correct, the Doppler effect is not necessarily desirable in sound
reproduction systems. For instance, while acoustic scenes consisting of moving instruments
or voices can be used advantageously in many applications, the effect of the accompanying
time-variant Doppler shift is often distracting, especially for tonal content. However, for sound
reproduction concepts such as WFS that use time delays systematically, the effects caused by
changes of these delays cannot be suppressed trivially. In any case, a correct synthesis of the
Doppler effect appears to be a sensible starting point to control and alter this effect of WFS
rendering purposefully.

2.4.2 Artifacts of Moving Sound Sources
Despite the conceptual benefits, the synthesis of moving virtual sources causes several distinct
audio artifacts in realizable WFS reproduction systems. Analyses of these errors have been
performed in [FGKS07, AS08]. Therefore, they are characterized here in brief form only.

First, the artifacts associated with the synthesis of static, non-moving sound sources described
in Section 2.1, such as spatial aliasing, amplitude errors, or diffraction effects, apply to moving
sound objects as well. Moreover, as most of these artifacts depend on the position of the virtual
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Figure 2.4: Doppler shift in the driving function of a secondary source for a directly approaching
primary source.

source, these errors fluctuate over time for moving sound sources. In most cases, such time-
variant artifacts are more noticeable or disturbing than steady, constant deviations. For instance,
the amplitude errors and colorations caused by spatial aliasing fluctuate rapidly for moving
sound objects.

In addition to these errors originating in the synthesis of static sound sources, several artifacts
are specific to moving sound sources.

Systematic deviation of the Doppler shift In the conventional time-domain driving func-
tion (2.8), the calculation of the time delay τmn (2.7) is based on the current position of the
virtual sound source xΨ. However, for natural moving sources, the travel time of the sound event
as well as the position of emission differ from these values due to the movement during this
travel time. The actual travel time is commonly referred to as retarded time τ(t ) [Str98, Str00], a
notion widely used in the field of electrodynamics [Jac02]. In the general case, the retarded time
is determined by an algebraic equation involving the time-variant source position xΨ(t )

cτ(t ) = |xs − xΨ(t −τ(t ))| . (2.12)

Analytic solutions to this equation exist only for specific source trajectories such as linear
paths. However, it is assumed that for sufficiently regular source movements, which can be
approximated for instance by piecewise linear or polynomial segments, the retarded time can be
determined to an acceptable accuracy with moderate computational effort.

As the retarded time depends on the coordinates of the moving source, neglecting this effect
alters the Doppler shifts synthesized by the secondary sound sources. However, for moderate
velocities, this error is relatively small. It is notable that the calculation of the traveling time
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Figure 2.5: The Doppler shifts of a natural moving sound source and of the secondary source
signals for a uniform movement parallel to a linear array. Source velocity |v|= 20 m/s,
secondary speaker distance∆x = 0.2m.

based on the current source position corresponds to a Doppler shift

fr ec =
c + v

c
fs r c ,

which is a special case of (2.11) for a receiver moving with velocity v while the source is static
with respect to the propagation medium [SSAB02].

In Figure 2.4, the ratio between the emitted and the received frequency is shown as a function
of the velocity v for a virtual source directly approaching a secondary source. This movement
constitutes the worst-case deviation from the retarded time for a given source velocity.

It is observed that the difference between the conventional driving signal and an adopted
synthesis operator that incorporates the retarded time is relatively small. For this reason, it
is questionable whether this artifact is important in practical WFS systems. In particular, in
most scenarios that make purposeful use of moving sound sources, the qualitative impression
of the Doppler effect is more important than a quantitatively correct frequency shift. On the
other hand, because the retarded time affects the driving signals of the secondary sources, it is
important to investigate and assess its influence on the reproduced sound field, which is formed
by the superposition of a large number of secondary sources.

Spectral Artifacts In actual reproduction scenarios as well as in numerical simulations, an
effect has been observed that manifests as a broadening or spread of the Doppler-shifted spectrum
of the primary sound source. This artifact is often perceived as a beat [Grä07,FGKS07]. The
magnitude of the effect increases with the velocity of the virtual sound source and decreases
with increasing distance between the primary and secondary sources. The perceived frequencies
coincide approximately with the frequency-shifted individual driving signals of the secondary
sources.
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The distinct Doppler shifts of the secondary sources are illustrated in Figure 2.5 for a source
movement parallel to a linear loudspeaker array.

It has been observed in [FGKS07] that the spectrum of the synthesized wave field resembles
the combination of the distinct Doppler shifts of the secondary sources. Therefore, it has been
conjectured that the superposition of the secondary wave fields differs from the wave field of the
primary source due to restrictions and simplifications introduced in the derivation of the WFS
synthesis operators.

However, this effect has not been investigated analytically so far. In [AS08], an alternative
interpretation of the perceived artifacts has been stated, attributing these effects to diffraction
artifacts due to the finite extent of the secondary source array.

In any case, a precise quantitative analysis of this effect, both in acoustic measurements and
in simulations, bears several practical as well as theoretical difficulties. For instance, artifacts
of static WFS reproduction, such as diffraction effects, influences of the reproduction room, or
spatial aliasing, are also present and influence the obtained data. Second, to create a pronounced
effect, the source velocity is required to be relatively high and to last for a sufficiently long time.
Therefore, the array of secondary sources must be very long in order to get a meaningful wave
field over this period of time without introducing diffraction artifacts.

Finally, as the process is time-variant, the resulting spectrum has to be examined using
time-frequency analysis techniques [Coh95, Smi10b]. Due to the uncertainty principle of
time-frequency analysis, a trade-off between time and frequency resolution has to be found.
Furthermore, the numerous parameters involved in the time-frequency analysis, for instance the
window function or the amount of overlap, influence the correctness and the expressiveness of
the results.

Signal Processing Artifacts For practical WFS reproduction systems, the effects of the
time-variant properties of moving sound sources on the discrete-time implementation must be
taken into account. Here, the discrete-time approximation of the delay operator δ[k−τmn fs ] in
(2.10) turns out to be of paramount importance. A direct discrete-time implementation based
on rounding the delay to the nearest integer multiple of the sampling period results in severely
audible artifacts, which are described as “sputtering” in [Ver97, Jan97]. Thus, sophisticated
discrete-time algorithms are required to synthesize arbitrary delay values.

In the context of general signal processing and audio applications, the time-variant delay
operation is equivalent to the application of variable-length delay lines. Writes and/or reads
to such structures require sophisticated interpolation techniques for acceptable audio quality
[Dat97, Roc00, Zöl02, Smi10a].

2.5 Objective: High-Quality Algorithms for Variable
Delays for WFS

In this chapter, it became apparent that the delay operator as part of the scale&delay operation is
most performance-critical for WFS rendering systems due to the large number of simultaneous
operations. Thus, the cost of high-quality algorithms to synthesize discrete-time sequences with
time-varying delays is often prohibitive.
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Therefore, in order to develop efficient signal processing algorithms for WFS, the main
objectives pursued in this thesis are as follows: First, an appropriate model for the delay operation
in WFS signal processing has to be determined. Second, the selection of suitable algorithms and
implementation structures and the corresponding design techniques are of prime importance.
Third, improvements to these algorithms are investigated, as they directly influence the quality
and the computational complexity of WFS reproduction systems. Finally, it is necessary to
integrate these algorithms into the signal processing scheme for WFS in an efficient way.

It should be emphasized that the necessity for applying arbitrary delay values is principally
induced by the reproduction of moving sound sources. For static sound sources, rounding
or truncating the delay value to the next integer multiple of the sampling period causes a
slight deviation in the synthesis operator (2.4). The effect of this difference is similar to small
displacements of the secondary speakers with respect to the actual coordinates xs used in
the synthesis operator. For instance, the maximum delay error in a reproduction system with
sampling frequency fs = 48KHz caused by rounding to the nearest unit sample delay corresponds
to a displacement of about 3.5 mm in the normal direction of a secondary source. According
to [SM07], such small variations are unlikely to produce noticeable effects. An analysis of WFS
reproduction with static sound sources and fractional-sample delay algorithms [AGS10], which
also includes subjective listening tests, supports this assessment.

The artifacts due to signal processing are only one of several inaccuracies in the reproduction
of moving sound sources using WFS. Therefore, the algorithms developed here solve only one
problem associated with the reproduction of dynamic auditory scenes. Moreover, it is possible
that the advances are partly masked by other artifacts. However, most of the other errors are of
conceptual nature, or their solution would require a disproportionate effort such as planar, dense
loudspeaker distributions. In contrast, the errors related to signal processing can be alleviated by
algorithmic means and thus in a cost-efficient manner.
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Chapter 3

State of the Art: Delaying Discrete-Time
Sequences

3.1 Introduction

As pointed out in the preceding chapter, delaying discrete-time signals by arbitrary, time-varying
delay values is one of the central signal processing operations in a WFS reproduction system.
This operation is an area of extensive research in the field of digital signal processing. It becomes
apparent that there are two essential approaches to this delay operation: Fractional delay (FD)
filtering and arbitrary sample rate conversion (ASRC). In this chapter, the research in these areas
is reviewed.

Conceptually, applying an arbitrary-valued delay on a discrete-time signal is appropriately
modeled as the reconstruction of a continuous-time signal from a bandlimited discrete-time se-
quence followed by a sampling process. Consequently, this operation is often termed bandlimited
interpolation [Smi11, Smi10a]. Therefore, the basic principles of sampling and reconstructing
continuous-time signals are reviewed in Section 3.2. However, it is important to note that,
although the delay operation conceptually involves continuous-time signals, it is generally
implemented as a purely discrete-time system.

In Section 3.3, the fractional delay filtering approach to arbitrary delays is reviewed. To this
end, its definition, applications, error measures and properties are summarized. In the same
style, arbitrary sampling rate conversion is characterized in Section 3.4.

Despite the conceptual differences between these approaches, both are generally implemented
as discrete-time filtering processes, which are described in Section 3.5. Here, a common notation,
namely the use of basepoint sets and the intersample position, is emphasized. On the one
hand, this enables a uniform characterization of numerous algorithms. On the other hand, this
notation clarifies several general properties of ASRC and FD algorithms.

Based on this description, algorithms and implementation structures are reviewed in Section
3.6. It becomes apparent that, notwithstanding the differences between FD and ASRC, the
implementation structures are identical in most cases. In contrast, coefficient design for these
structures is different for both approaches. Therefore, design methods are reviewed in Sections
3.7 and 3.8, respectively.

The FD and ASRC approaches to arbitrary delay operations on discrete-time signals are
compared in Section 3.9, both from the analytical viewpoint and from practical design and
application considerations.

17
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To

C/DD/C

n mt

y[m]x[n] xc(t )

x[n] xc(t ) y[m]

Ti

Figure 3.1: Reconstruction and resampling of continuous-time signals as conceptual model for
delaying discrete-time sequences.

3.2 Sampling and Reconstruction of Continuous-Time
Signals

Conceptually, delaying a discrete-time signal can be modeled by a conversion into a continuous-
time signal followed by a continuous-to-discrete-time conversion. Moreover, the most important
effects that occur in practical, discrete-time implementations of time-varying delay algorithms
are best described in terms of this hybrid continuous/discrete-time representation. Because
the theory of sampling and reconstruction of continuous-time signals is treated in detail in
numerous monographs on general digital signal processing and multirate systems (e.g. [OSB99,
CR83, Hen02]), only the notation and the basic concepts are introduced here.

The signal flow of an arbitrary delay operation by reconstruction and sampling is depicted in
Figure 3.1. A discrete-time sequence x[n] with sampling frequency fi or, equivalently, sampling
period Ti , is converted to a continuous-time signal xc (t ) by means of a discrete-to-continuous-
time converter D/C. The signal is resampled by a continuous-to-discrete-time conversion C/D at
a set of desired output instants, resulting in the sequence y[m]. In this model, the output instants
are symbolized by the period To of the output sample clock. Depending on the application, this
output sample clock might represent different operations. For sample rate conversion operations,
To differs from Ti in general. For delay operations, the output instants are determined by the
times associated with the input samples minus a given delay value.

In the following, models for the C/D and D/C conversion processes are described. It is worth
noting that the order of representation is reversed compared to the sequence in which these
operations appear in the signal flow of the delay operation. There are two main reasons for this
decision. First, starting from sampling introduces the concepts in a more natural way and is
consistent with most treatises on the subject. Second and more important, the properties of the
continuous-time signal xc (t ) form the main focus of attention. Therefore, is is reasonable to
start from this continuous-time representation.

Furthermore, it is worth emphasizing that a discrete-time sequence is not required to be
generated by a sampling process [OSB99]. Thus, a continuous-time signal corresponding to this
sequence does not necessarily exist. However, operations such as arbitrary delay or resampling
require an unambiguous representation for signal values between sampling instants. In this way,
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Figure 3.2: Conversion of a continuous-time signal to a discrete-time sequence.

the representation based on sampling and reconstruction of bandlimited continuous-time signals
is an appropriate way to model these operations.

3.2.1 Continuous-to-Discrete-Time Conversion
The transformation of a continuous-time signal xc (t ) to a discrete-time sequence x[n] with
sampling frequency fs is modeled as a two-step process: In the first step, the function is converted
to a modulated pulse train, while in the second step, these pulses are taken as the elements of the
discrete-time sequence. The signals involved in this process are depicted in Figure 3.2.

Figure 3.2a shows a continuous-time signal xc (t ). Modulation, that is multiplication, with
a Dirac impulse train s(t ) with period Ts =

1
fs

yields the pulse amplitude modulated (PAM)
signal xs (t ) [CR83]. Here, Ts and fs denote the sampling period and the sampling frequency,
respectively. The periodic impulse train s(t ) is defined as

s(t ) =
∞∑

n=−∞
δ(t − nTs ), (3.1)

where δ(t ) denotes the continuous-time Dirac impulse. The Dirac impulse is a distribution
or generalized function that can be defined, for instance, as the limit of a delta sequence or as a
measure. Informally, the Dirac impulse δ(t ) forms an infinitesimally narrow impulse with area
1 concentrated at t = 0. This is embodied by the defining property [Bra00]

∞∫

−∞
f (t )δ(t )d t = f (0) . (3.2)
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However, this formula must be interpreted in a symbolic way only, because it does not represent
a proper integral either in the Riemann or in the Lebesgue sense. Applying a shift to the
argument of δ(t ) results in the so-called sifting property of the Dirac impulse [Bra00, OSB99]

f (τ) =

∞∫

−∞
f (t )δ(t −τ)d t . (3.3)

That is, the function value f (τ) for an arbitrary argument τ can be determined using an
appropriately shifted Dirac impulse. The impulse train s (t ) and the pulse-modulated signal xs (t )
are depicted in Figures 3.2b and 3.2c, respectively. The pulse amplitude modulated signal xs (t ) is
expressed as

xs (t ) = xc (t )s(t ) (3.4a)

= xc (t )
∞∑

n=−∞
δ(t − nTs ) (3.4b)

=
∞∑

n=−∞
xc (nTs )δ(t − nTs ) . (3.4c)

Formally, the sample value x[n] is determined from the area of the impulse of xs (t ) at t = nTs

x[n] = lim
ε→0

nTs+ε∫

nTs−ε
xc (t )s(t )d t . (3.5)

According to the sifting property of the Dirac impulse (3.3), it follows that

x[n] = xc (nTs ), (3.6)

that is, the discrete-time sequence is determined by the values of the continuous signal at the
sampling instants.

To analyze the frequency-domain properties of the sampling process, a continuous-time
Fourier transform is applied to xs (t ). The Fourier transform operator and the inverse Fourier
transform for angular frequency variables are defined as

F (Ω) = F { f (t )}=
∞∫

−∞
f (t )e−jΩt dΩ (3.7a)

f (t ) =F−1 {F (Ω)}= 1

2π

∞∫

−∞
F (Ω)e jΩt d t . (3.7b)

The continuous-time Fourier transform S(jΩ) =F {s(t )} of the Dirac impulse train s (t ) is also
a periodic impulse train

S(jΩ) =
∞∑

n=−∞
δ

�
Ω− k

2π

Ts

�
=Ωs

∞∑
n=−∞

δ(Ω− kΩs ) . (3.8)
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Here, Ωs denotes the angular sampling frequency

Ωs = 2π fs =
2π

Ts
. (3.9)

Modulating, that is multiplying, the input signal xc (t ) with the Dirac impulse train s(t ) in the
time domain according to (3.4) corresponds to a convolution of the Fourier transforms Xc (jΩ)
and S(jΩ)

Xs (jΩ) =
1

2π
Xc (jΩ) ∗ S(jΩ), (3.10)

where ∗ denotes the continuous convolution operator

f (x) ∗ g (x) =

∞∫

−∞
f (τ)g (x −τ)dτ . (3.11)

The scaling factor 1
2π in (3.10) results from the use of angular frequency variables in the Fourier

transform operator (3.7a). Applying (3.8) to (3.10) yields

Xs (jΩ) =
1

Ts

∞∑
l=−∞

Xc
�
j[Ω− lΩs]

�
. (3.12)

That is, the Fourier transform of Xs (jΩ) consists of an infinite number of replications of Xc (jΩ)
scaled by 1/Ts and shifted by multiples of the period Ωs .

An alternative form for Xs (jΩ) is obtained by applying the continuous Fourier transform
operator (3.7a) to the time-domain definition of xs (t ) (3.4c) utilizing the relation to the samples
x[n] (3.6)

Xs (jΩ) =F
( ∞∑
−∞

xc (nTs )δ(t − nTs )

)

=
∞∑
−∞

xc (nTs )e
−jΩTs n (3.13a)

=
∞∑
−∞

x[n]e−jΩTs n . (3.13b)

The frequency-domain properties of the discrete-time sequence x[n] are described by its discrete-
time Fourier transform (DTFT) X (e jω). The transform pair of the DTFT is

X (e jω) = DTFT{x[n]} =
∞∑

n=−∞
x[n]e−jωn (3.14a)

x[n] = DTFT−1
¦

X (e jω)
©
=

1

2π

π∫

−π
X (e jω)e jωn dω . (3.14b)
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Here,ω denotes the normalized angular frequency

ω = 2π
Ω

Ωs
=ΩTs . (3.15)

The discrete-time Fourier transform of the sequence x[n] is obtained by formal application
of the discrete-time Fourier transform operator (3.14a)

X (e jω) =
∞∑

n=−∞
x[n]e−jωn . (3.16)

Comparing (3.16) to (3.13b) shows that X (e jω) is identical to Xs (jΩ) if the normalized angular
frequency variableω equals ΩTs

X (e jω) = Xs (jΩ)|ω=ΩTs
=Xs

�
j
ω

Ts

�
. (3.17)

Applying (3.12) to (3.17) results in

X (e jω) =
1

Ts

∞∑
l=−∞

Xc

�
j

�
ω

Ts
− l

2π

Ts

��
. (3.18)

Thus, the discrete-time Fourier transform X (e jω) consists of replications of the Fourier transform
of xc (t ) spaced in frequency with period Ωs = 2π/Ts . This explicit relation reveals a necessary
condition that must hold if x[n] shall represent the continuous signal xc (t ) uniquely. This
requirement is embodied in the Nyquist sampling theorem [Sha49, Jer77,Uns00,Mei02,OSB99]:

If a function f (t ) contains no frequencies higher than W cps [cycles per seconds,
i.e. Hertz (Hz)], it is completely determined by giving its ordinates at a series of
points spaced 1/2W apart.

A variety of different names exists for this theorem due to its numerous inventors, including
Whittaker, Nyquist, Shannon and Kotel’nikov. For a discussion, see [Mei02, p. 326]. Here, the
naming from [OSB99] is adopted.

Formally, this condition is expressed as

Xc (jΩ) = 0 for |Ω| ≥ Ωs

2
. (3.19)

If (3.19) is fulfilled, the discrete-time Fourier transform X
�

e jω
�

(3.18) simplifies to

X (e jω) =
1

Ts
Xc (jΩ) =

1

Ts
Xc

�
j
ω

Ts

�
. (3.20)

The sampling theorem can be illustrated using the Fourier transform of the pulse amplitude
modulated signal Xs (jΩ) (3.12). Figure 3.3a shows the Fourier transform of a continuous signal
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Figure 3.3: Frequency-domain interpretation of the sampling process.

that is bandlimited to ΩN , where ΩN is commonly referred to as the Nyquist frequency [OSB99]
that is defined by

Xc (jΩ) = 0 for |Ω| ≥ΩN . (3.21)

The Fourier transform of a periodic impulse train with sampling frequency Ωs is shown in
Figure 3.3b. Figures 3.3c and 3.3d depict the pulse amplitude modulated signals for two different
sampling frequencies. In 3.3c, the sampling theorem holds, that is Ωs > 2ΩN . Consequently,
the spectral replications of Xc (jΩ) do not overlap. In contrast, ΩN exceeds half the sampling fre-
quency in Figure 3.3d. Therefore, consecutive replications of Xc (jΩ) overlap. This phenomenon
is commonly denoted as aliasing or spectral foldover. In this way, different frequency compo-
nents of the input signal are mapped or aliased to the same frequency in the pulse amplitude
modulated signal and consequently to the discrete-time sequence x[n]. Because different signal
components mapped to the same frequency are indistinguishable, aliasing cannot be compen-
sated by subsequent analog or discrete-time signal processing. Thus, aliasing is an irreversible
process [Hen02].

So, in order to prevent aliasing, the input signal to the continuous-to-discrete-time conversion
must be bandlimited to Ωs/2. If the signal xc (t ) does not meet this requirement inherently, a
continuous-time prefilter or anti-aliasing filter Haa(jΩ) [OSB99] is commonly applied, resulting
in the signal flow graph shown in Figure 3.4. The input signal is filtered by an anti-aliasing filter
with impulse response haa(t ), yielding the bandlimited signal xa(t ) which is used as input into
the C/D converter. The ideal anti-aliasing filter bHaa(jΩ) is a continuous-time lowpass filter with

haa(t ) C/D

Ts

xc(t ) xaa(t ) n[x]

Figure 3.4: Continuous-to-discrete-time conversion with explicit anti-aliasing filter.
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1
2Ωs

Xc(jΩ)

0 Ω−1
2Ωs

(a) Bandlimited continuous-time signal corresponding to
X (e jω)

Ω

Xs(jΩ)

−3
2Ωs −Ωs −1

2Ωs 0 1
2Ωs

Ωs
3
2Ωs

(b) Pulse amplitude modulated signal Xs (jΩ)

0

Ts

Ω−1
2Ωs

bHr (jΩ)

1
2Ωs

(c) Ideal reconstruction filter bHr (jΩ)

Xr (jΩ)

−Ωs −1
2Ωs

1
2Ωs Ωs Ω3

2Ωs0−3
2Ωs

(d) Reconstructed continuous-time signal Xr (jΩ)

Figure 3.5: Frequency-domain interpretation of the reconstruction of a continuous-time signal
from a discrete sequence.

cutoff frequency Ωs/2

bHaa(jΩ) =

(
1 , |Ω|< Ωs

2
0 , |Ω| ≥ Ωs

2

. (3.22)

3.2.2 Reconstructing a Continuous-Time Signal from a Discrete
Sequence

Alike sampling, reconstruction of a continuous-time signal from a discrete sequence is modeled
as a two-step process. First, the sequence is transformed to a pulse modulated continuous-time
signal. Subsequent filtering with a reconstruction filter yields the reconstructed continuous-time
signal xr (t ). In Figure 3.5, the reconstruction process is depicted in the frequency domain.

Modulating the sequence x[n] with an impulse train s (t ) (3.1) yields a continuous-time pulse
amplitude modulated signal xs (t ) as introduced in (3.4)

xs (t ) =
∞∑

n=−∞
x[n]δ

�
t − nTs

�
(3.23a)

=
∞∑

n=−∞
xc (nTs )δ

�
t − nTs

�
. (3.23b)

For the latter form (3.23b), it is assumed that x[n] corresponds unambiguously to a continuous-
time signal xc (t ) sampled with Ts , implying that the Nyquist criterion (3.19) is fulfilled. As
stated above, it is not required in general that a discrete-time sequence has been obtained by
sampling a bandlimited function. However, the Nyquist condition with respect to the output
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sampling frequency forms a necessary condition for an exact and unambiguous reconstruction
of a continuous-time signal from a discrete-time sequence.

Figure 3.5a shows the spectrum of a bandlimited signal xc (t ) corresponding to the sequence
x[n]. The Fourier transform Xs (jΩ) of the pulse amplitude modulated signal (3.12)

Xs (jΩ) =
1

Ts

∞∑
l=−∞

Xc
�
j[Ω− lΩs]

�
(3.24)

consists of an infinite number of spectral replications or images of Xc (jΩ) as depicted in Figure
3.5b. To recover the signal Xc (jΩ), all replications except the one centered at Ω = 0 have to
be removed. This process is modeled by filtering Xs (jΩ) with a continuous-time lowpass filter
Hr (jΩ), which is commonly referred to as the reconstruction filter. The frequency response of
the ideal reconstruction filter bHr (jΩ), making no assumptions about the frequency contents of
Xc (jΩ) further than the Nyquist criterion, is an ideal lowpass with cutoff frequency Ωs/2

bHr (jΩ) =

(
Ts , |Ω|< Ωs

2
0 , |Ω| ≥ Ωs

2

. (3.25)

The passband gain of Ts = 2π/Ωs [OSB99] compensates the amplitude scaling in the PAM
signal (3.24), which is a consequence of the frequency normalization performed in the sampling
process. Applying the ideal reconstruction filter to xs (t ) yields the reconstructed signal xr (t )
with Fourier transform

Xr (jΩ) = bHr (jΩ)
1

Ts

∞∑
l=−∞

Xc
�
j
�
Ω− lΩs

��
(3.26a)

=Xc (jΩ) = X
�

e jω
����
ω= 2πΩ

Ωs

. (3.26b)

In this way, the spectrum of the reconstructed signal is identical to the spectrum of the bandlim-
ited continuous-time signal Xc (jω) represented by the discrete-time Fourier transform X (e jω) of
the sequence x[n]. This operation is illustrated in Figure 3.5d.

In the time domain, ideal reconstruction implies that the reconstructed signal is identical to
the bandlimited signal xc (t )

xr (t ) = xc (t ) . (3.27)

The frequency-domain filtering operation (3.26a) corresponds to a convolution with the impulse
response of the ideal reconstruction filter bhr (t )

bhr (t ) =F−1
¦ bHr (jΩ)

©
(3.28a)

=
1

2π

Ωs
2∫

− Ωs
2

Ts e
jΩt dΩ withΩs =

2π

Ts
(3.28b)
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−4Ts −2Ts 0Ts 2Ts 4Ts

− 1
4

0

1
4

1
2

3
4

1

t

bhr (t )

(a) Impulse response of the ideal reconstruction filter

−2Ts−1Ts 0Ts 1Ts 2Ts 3Ts 4Ts 5Ts

t

xr (t )

(b) Reconstructed signal

Figure 3.6: Reconstruction of a continuous-time signal from a discrete-time sequence.

=
sin
�
π
Ts

t
�

π
Ts

t
(3.28c)

= sinc

�
π

Ts
t
�

. (3.28d)

Here, sinc (·) denotes the unnormalized Sinc or cardinal sine function [GS90]

sinc (x) =

(
sin x

x , x 6= 0
1, x = 0

. (3.29)

Thus, filtering with the ideal reconstruction filter bhr (t ) yields

xr (t ) = xs (t ) ∗bhr (t ) (3.30a)

=

∞∫

−∞
xc (τ)δ

�
τ− nTs

�bhr (t −τ)dτ (3.30b)

=
∞∑

n=−∞
x[n]bhr (t − nTs ) . (3.30c)

In this way, ideal reconstruction at an arbitrary time t corresponds to a discrete convolution
of the sequence x[n] with a discrete sequence obtained by sampling the continuous impulse
response bhr (t ) at the instants t−nTs . Figure 3.6a depicts the ideal reconstruction filter. Likewise,
reconstruction as a superposition of shifted and scaled sinc functions is illustrated in Figure 3.6b.

The reconstruction formula (3.30) has been first stated by E. T. Whittaker in 1915 [Whi15,
Whi29] and is commonly denoted as the cardinal series or the cardinal interpolation formula

xr (t ) =
∞∑

n=−∞
x[n]bhr (t − nTs ) (3.31a)
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=
∞∑

n=−∞
x[n]

sin
�
π
Ts

�
t − nTS

��

π
Ts

�
t − nTS

� . (3.31b)

The cardinal series (3.31b) has a number of interesting properties. First, bhr (t ) is an analytic
function [Sch46a]. In particular, it is infinitely differentiable and has an unbounded support.
Second, since

bhr (t ) =

(
1 , t = 0
0 , t =±Ts ,±2Ts ,±3Ts , . . .

, (3.32)

the interpolation function is exact at the sampling instants. That is, it fulfills

xr (nTs ) = x[n] for n ∈Z , (3.33)

which is commonly referred to as the interpolation condition.

On the other hand, bhr (t ) dampens out proportionally to 1/t as t approaches ±∞. As stated
in [Sch46a], “however, its excessively slow rate of damping, for increasing x, makes the classical
cardinal series [...] inadequate for numerical purposes”.

Apart from this property, the cardinal series is not applicable for practical implementations
of resampling, as it involves an infinite number of operations and cannot be implemented in
causal form by introducing a finite delay. Moreover, it is not bounded-input-bounded-output
(BIBO) stable as the sampled sinc function is not absolutely summable [Väl95a]. For these
reason, only approximations of the ideal reconstruction filter are used in actual implementations.
These approximations typically introduce errors into the reconstruction process which fall into
different categories. First, the passband region of the reconstruction filter might be subject to
deviations. Second, phase errors are potentially introduced. However, this class of errors can be
avoided by reconstruction filters with symmetric impulse responses, which are made causal by a
finite shift. Insufficient attenuation of the spectral replications of Xs (jΩ) in the stopband region
of the reconstruction filter Hr (jΩ) (3.25) forms the third class of errors, which are commonly
referred to as imaging errors.

3.2.3 Discussion

In this section, the processes of sampling and reconstructing continuous-time signals have been
reviewed. Apart from idealized, abstract operations such as modulation with impulse trains, two
continuous-time filters form the core of these operations. Their characteristics affect the errors
of sampling and reconstruction directly. The anti-aliasing filter Haa(jΩ) is required to limit the
bandwidth of the continuous-time input signal such that the Nyquist criterion is fulfilled in the
C/D conversion. Defects in the characteristics of this filter give rise to aliasing artifacts in the
sampled sequence, which cannot be corrected by subsequent operations. The reconstruction or
anti-imaging filter Hr (jΩ) is required to suppress the signal images that result from the conversion
of a discrete-time sequence into a continuous-time signal. Incomplete attenuation of these images
results in imaging artifacts.
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3.3 Fractional Delay Filtering
Fractional Delay (FD) filtering denotes the process of delaying a discrete-time sequence by an
arbitrary amount of time [LVKL96,KPPV07]. Delaying a sequence by an integer multiple of
the sample period of the discrete-time systems can be performed by shifting the index of the
sequence and is therefore an exact operation that does not require arithmetic operations. In
contrast, delay values that correspond to time values between the sampling times of the input
sequence require sophisticated algorithms.

FD filtering is utilized in many applications of signal processing, e.g. timing recovery in digital
modems [EGH93], digital differentiators [Tse05], software-defined radio [DJR10, CY03] or
comb filter design [PT98].

In the field of audio signal processing, applications of FD filtering include digital audio effects
[Dat97, Zöl02], physical sound synthesis [Väl95a, Smi10a, VPEK06] or sound reproduction
systems [Str00, FGKS07].

Additionally, FD filtering techniques are frequently used for sample rate conversion, e.g.
[Har97, TKC94]. However, it should be emphasized that, although FD filtering and SRC are
closely related, they also exhibit fundamental differences. These requirements of sample rate
conversion systems are described in Section 3.4, and the distinctions will be pointed out in more
detail in Section 3.9.

3.3.1 Definition
A fractional delay (FD) filter transforms a discrete-time sequence x[n] into a discrete-time
sequence y[n, D] which approximates x[n] delayed by a time delay D given in samples. In
general, D is not an integer number.

Fractional delay filtering is best defined in the framework of sampling and reconstruction of
discrete-time signals described in Section 3.2. For a given sampling frequency fs or sampling
period Ts = 1/ fs , the sequence x[n] corresponds to a continuous-time signal xc (t ). If xc (t ) is
bandlimited to the cutoff frequency fc = fs/2 = 1/(2Ts ) or equivalently Ωc = Ωs/2 = π/Ts ,
the Nyquist criterion (3.19) holds, and thus xc (t ) is uniquely defined by the samples x[n]. In
this case, the sequence y[n, D] can be obtained exactly and uniquely by reconstructing the
continuous-time signal xc (t ) followed by evaluation at the desired output instants.

y[n, D] = xc
�

nTs −τ
�

(3.34a)

= xc
�

nTs −DTs
�

(3.34b)

Here τ =DTs denotes the time delay (in seconds) corresponding to the sample delay D . Appli-
cation of the reconstruction formula (3.31) to (3.34) yields

y[n, D] = xc
�
[n−D]Ts

�
(3.35a)

=
∞∑

l=−∞
x[l ] sinc

�
π

Ts
[n−D − l ]Ts

�
(3.35b)

=
∞∑

l=−∞
x[l ] sinc (π [n− l −D]) (3.35c)
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=
∞∑

l=−∞
x[n− l ] sinc (π [l −D]) (3.35d)

= x[n] ∗bh(n, D) . (3.35e)

The equivalence between (3.35c) and (3.35d) is a consequence of the commutativity of the discrete
convolution operation [Bra00, OSB99]

f ∗ g = g ∗ f (3.36a)
∞∑

m=−∞
f [m]g[n−m] =

∞∑
m=−∞

f [n−m]g[m] . (3.36b)

In this way, the ideal fractional delay operation corresponds to a discrete convolution with the
impulse response of the ideal fractional delay filter bh(n, D)

bh(n, D) = sinc (π (n−D)) (3.37)

which is obtained by shifting and sampling the ideal reconstruction filter bhr (t ) (3.28) for a
sampling period normalized to Ts = 1. From the representation (3.35d), it is apparent that a
fractional delay operation is generally implemented as a discrete-time filter.

The frequency response of the ideal FD element follows from the frequency-domain represen-
tation of a time shift

bH �e jω, D
�
= DTFT

nbh(n, D)
o
= e−jωD . (3.38)

3.3.2 Performance Measures for Realizable FD filters
As argued in Section 3.2.2, system responses based on the ideal reconstruction filter bhr (t ) (3.28)
are not realizable and thus not applicable for practical implementations. Consequently, an
approximation of the response of the ideal FD element by a realizable filter structure invariably
introduces approximation errors. To assess these inaccuracies, several performance measures are
in use. The expressiveness of these measures depends on the application. For a more elaborate
discussion, see [LVKL96].

The complex error function is defined as the difference between the complex frequency
responses of the FD filter H (e jω, D) and the ideal FD element [Väl95a, LVKL96]

E(e jω, D) =H (e jω, D)− bH (e jω, D) (3.39a)

=H (e jω, D)− e−jωD . (3.39b)

As for general discrete-time filters, the frequency response of a FD element can be partitioned
into a magnitude response |H (e jω, D)| and a phase response Θ(ω)

H (e jω, D) = |H (e jω, D)|Θ(ω) . (3.40)

The magnitude response bH (e jω, D) of the ideal FD element is 1, that is, it represents an allpass
system ��� bH �e jω, D

����= 1 . (3.41)
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The phase response of discrete-time filter is the phase angle of the complex frequency response
[OSB99, Smi10b]

Θ(ω) =ÞH
�

e jω, D
�

. (3.42)

In the strict sense, the phase angle of H (e jω, D) is restricted to the interval (−π,π]. For this
reason, Θ(ω) is used to denote the continuous [OSB99] or unwrapped phase [Smi10b] which is
a continuous function of frequency. The phase response of the ideal FD filter is

bΘ(ω) =Þe−jωD (3.43a)
=−Dω . (3.43b)

Consequently, the ideal phase response is a linear function of the frequency, and thus bH (e jω, D)
forms a linear-phase system.

Because the utility of the phase response measure for FD filters is often limited [LVKL96],
two other measures are used to describe the phase behavior of a system: the phase delay τp (ω)
and the group delay τg (ω)

τp (ω) =−
Θ(ω)

ω
(3.44)

τg (ω) =−
d

dω
Θ(ω) . (3.45)

For the ideal FD element, group and phase delay are given by

bτp (ω) =D (3.46a)

bτg (ω) =D . (3.46b)

In this way, bτp (ω) and bτg (ω) are identical and independent of frequency, which is a direct

consequence of the linear-phase property of bH �e jω, D
�

. Moreover, they equal the desired
fractional delay value D .

In contrast, realizable FD filters do not exhibit linear-phase behavior except for particular
values of D. While IIR filters generally exhibit a nonlinear phase, FIR FD filters may attain
linear phase only if the delay is an integer number of samples or if the delay lies halfway between
two integers [Sar93, OSB99].

The different performance measures are shown in Figure 3.7 for an exemplary FD filter based
on Lagrange interpolation of order N = 3. It is observed that the error typically depends on the
delay parameter D, and that the response of the ideal FD is assumed only for specific values of
D .

3.3.3 Synthesizing Arbitrary Delay Values
In its original form, a FD filter is designed for a single, specific delay value D. However, many
applications require different delays to be synthesized, which might be changed at run time.
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Figure 3.7: Performance measures for VFD filters. Example based on Lagrange interpolation,
order N = 3.

Algorithms that enable such variable delays are commonly denoted as variable fractional delay
(VFD) filters.

A first step to handle arbitrary delay values is to partition the delay D into an integer delay
Di nt and a fractional delay value d

D =Di nt + d with dmi n ≤ d ≤ dmax . (3.47)

This transformation is necessary because VFD filters provide optimal quality only within a
fixed interval [dmi n , dmax] of the delay value (e.g. [EGH93, Väl95a,LVKL96]). By partitioning
the delay value according to (3.47), the VFD structure is always operated within this optimal
range. At the same time, the VFD element must accept delay values only within a fixed, typically
unit-sized range.

Despite their names, Di nt and d do not necessarily represent the integer and fractional part
of D. In fact, several fractional delay ranges are in use (see, among others, [Väl95a, LVKL96,
VS96b, Den05])

0≤d ≤ 1 (3.48a)
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−1

2
≤d ≤ 1

2
(3.48b)

N − 1

2
≤d ≤ N + 1

2
, (3.48c)

where N denotes the filter order of the VFD structure. For each of these choices, the integer
part is determined such that (3.47) holds. It is noted that the fractional delay ranges (3.48) are
deliberately defined as closed intervals. In this way, (3.47) becomes ambiguous at the end points
of the interval. Resolving this ambiguity is left to the implementation, because it does not
influence the analysis of a VFD element.

The fractional delay range affects the selection of the samples x[n] involved in the calculation
of a particular output sample y[n, D]. It also impacts the properties of a VFD structure. A
uniform characterization of different fractional delay ranges, based on the notion of basepoint
sets, has been performed in [Fra08] for VFD filtering algorithms based on Lagrange interpolation.
In Section 3.5, this characterization is presented for the more general class of discrete-time
resampling filters which includes VFD structures.

To facilitate arbitrary delay values within the fractional delay interval, three basic strategies
are in use:

Storing a Set of Precomputed Coefficient Sets One way to enable variable FD filters is to
store a set of FD filter coefficients designed for a dense grid of delay values in the fractional
delay interval (3.48). At run time, the fractional delay value d is used for a table lookup,
either using truncation or a nearest-neighbor selection, to determine the filter coefficients
to be used in the FD filter. Research on the influence of the grid density is mainly focused
on continuously changing fractional delay values and is consequently targeted at sampling
rate conversion algorithms [VLSR00, DH98]. For fractional delay filters, the number of
quantization steps must be chosen according to the admissible delay error, which depends
on the application. If P denotes the number of stored coefficient sets for a unit-sized
fractional delay interval, then the maximum delay error∆Dmax , which is the difference
between the desired and the synthesized delay, is given by

∆Dmax =

(
1

2P , for nearest-neighbor selection
1
P , for selection by truncation

. (3.49)

It is noted that this limit does not account for the errors of realizable FD filters, but
assumes that the stored coefficients represent ideal FD elements.
On modern processor architectures or hardware realizations, the memory required for
storing the filter coefficients is only one of the drawbacks of this implementation. On
such platforms, the efficiency is also reduced by the required memory bandwidth and the
latency caused by lookup and loading of the filter coefficients.
Finally, several algorithms (e.g. [Har97]) have been proposed that perform interpolation
between stored coefficients. However, it is difficult to categorize these algorithms. Typi-
cally, they exhibit features of different classes of algorithms, for instance structures based
on oversampling or variable digital filters.

Explicit Calculation of the Filter Coefficients A second way to enable arbitrary delay val-
ues is to use FD filters whose coefficients are calculated during the run time of the system
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using explicit, efficient formulas. In most cases, these filters are derived from numerical
interpolation or approximation formulas such as Lagrange or spline interpolation, or
represent simple IIR allpass designs such as Thiran filters [Thi71]. Because the calculation
of the filter coefficients is separated from the actual filtering, it can be performed at a rate
lower than the sampling frequency. This allows cost-efficient implementations if the delay
value changes relatively seldom.

Variable Digital Filter Structures Variable Digital Filters (VDF) are discrete-time systems
for filtering that are controlled by an additional control parameter. The term “variable
digital filter” has been first coined in [SW70, SH82], although these works are mainly
focused on filters with adjustable magnitude characteristics. A comprehensive overview of
VDF is given in [SK97]. In the context of FD filtering, the use of variable filter structures
has been introduced in [Far88], resulting in the so-called Farrow structure, which is used
synonymously for VFD filtering based on variable digital filters.

Variable digital filter structures combine the calculation of the filter coefficients and the
actual filtering into a single operation. In this way, VDF structures enable arbitrary delay
values that might change arbitrarily often, that is, at every sampling instant, without
increasing the computational effort.

3.3.4 Properties of Variable Fractional Delay Filters
In this section, some properties that are used to characterize variable fractional delay filters are
introduced.

The Interpolation Condition In the context of sampling and reconstruction, the interpola-
tion condition has been stated in (3.33). It represents the ability of a system to exactly reproduce
the signal value at sampling instants. For FD filtering, this condition is expressed by

y[n, D] = x[n−D] for D ∈N (3.50)

that is, a fractional delay corresponding to an integer number of samples yields the same result as
an index shift in the input sequence x[n].

Several algorithms for FD filtering inherently fulfill the interpolation condition, for instance
Lagrange interpolation (Section 3.6.3) or cardinal spline interpolation (Section 3.6.4.4). The
design methods of some other variable FD filtering methods can be augmented by additional
constraints to force the interpolation condition to be fulfilled.

Ultimately, the necessity of the interpolation condition depends on the application. If there
are no stringent reasons to fulfill this constraint, the degrees of freedom in filter design that are
required to meet the interpolation condition might be used advantageously to decrease the error
with respect to a given metric over the whole fractional interval.

Errors Due to Delay Changes The change of the delay value during the run time of the
system may result in different classes of errors.

• Since an instantaneous change of the delay value corresponds to a jump within the input
waveform, such changes generally result in discontinuities of the output waveform. Strictly
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speaking, this is not an error because it complies with the definition of FD filtering.
However, for many applications, this effect is not desirable. For instance, in audio
applications, discontinuities are highly audible due to their broad spectrum. For this
reason, several methods have been proposed to mitigate the effects of delay changes.
In [Väl95a], the segmentation of the delay change into a multitude of smaller changes is
proposed while [Smi10a] suggests a crossfade between two signals delayed by the old and
the new delay value, respectively. However, these methods generally require additional
computational resources and often introduce additional errors, for instance comb filtering
effects in case of a crossfade.

• If the filtering structure contains internal states that depend on previous filter coefficients,
then a change of the delay value causes the FD filter to use intermediate values computed
for a different delay value. This class of errors is termed transient errors [Väl95a]. In
general, FD elements based on IIR structures are prone to this error, because IIR filters
utilize past output samples. However, specific algorithms for FIR-based FD structures
also exhibit transient errors if intermediate results dependent on the fractional delay value
are stored internally. As in case of discontinuities, methods to decrease transient errors
have been proposed (see, e.g. [Väl95a]). Again, these methods generally require additional
computational effort and control logic.

3.3.5 Discrete-Time Structures for Fractional Delay Filters
In this section, it became clear that FD elements are generally implemented as discrete-time
filtering processes. Actually, they are in general based on standard structures for discrete-time
filtering, namely finite impulse response (FIR) or infinite impulse response (IIR) structures.

The advantages and disadvantages of these filters stated in the context of general DSP applica-
tions, e.g. [Sar93, OSB99], generally apply to FD filtering as well. Furthermore, some additional
criteria specific to FD filtering have to be considered [LVKL96, Väl95a].

FIR filters enable a good approximation of the phase response. They are inherently stable, and
the sensitivity to roundoff errors is generally low and does not cause instability [Sar93,OSB99].
Moreover, a number of very efficient design methods exists for FIR FD filters that enable the
computation of the filter coefficients during the run time of the system. In addition, FIR filters
do not contain internal states that depend on prior outputs of the system. This has two important
implications. First, the data storage required for a FIR filter, that is, delay elements to hold past
input samples, can be shared among multiple filters. Second, the filter characteristics can be
changed during the run time of the system without introducing transient errors.

On the downside, FIR FD filters cannot provide exact allpass behavior for arbitrary delay
values, thus invariantly causing amplitude errors with respect to the frequency response of the
ideal FD filter (3.38). Moreover, FIR filters generally require a substantial higher filter order
than an IIR filter to approximate a given design specification with a prescribed tolerance. As a
direct implication, the implementation delay of a FIR filter is significantly higher than that of a
comparable IIR filter.

In contrast, IIR FD filters can be implemented as allpass filters, thus representing the amplitude
response of the ideal FD element exactly. On the contrary, the phase behavior of IIR filters is
more difficult to control than in case of FIR filters. IIR filters are potentially subject to instability.
They are more sensitive to finite wordlengths and roundoff errors, which may result in limit
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SRC
y[m] = y(mTo)x[n] = x(nTi)

Figure 3.8: General representation of a sample rate conversion system.

cycles. They are very few IIR FD filter design methods that enable an explicit calculation of
the filter coefficients, Thiran filters [Thi71] being the most simple and most important filter
class [LVKL96, Väl95a]. Finally, as IIR filters are recursive filters, they require past outputs
to be stored. This complicates the control effort, especially if a large number of simultaneous
filter operations is performed. Moreover, if the filter characteristics are changed during the run
time of the system, the filter output depends on the previous filter coefficients, thus potentially
causing transient phenomena. While methods to eliminate or attenuate such transients have
been proposed (see e.g. [Väl95a]), these solutions are typically limited to a finite rate of discrete
changes and require additional computational resources.

The main focus of this work is on arbitrary, time-varying delays that change the delay value
relatively often or are continuously time-variant, and on efficient algorithms with predictable,
preferably constant load. Subsuming the above characteristics, it becomes clear that FIR filters
are far better suited to fulfill these requirements. For this reason, only VFD filters based on FIR
structures, that is, finite discrete-time convolutions, are considered in the following.

3.4 Arbitrary Sample Rate Conversion
Sample rate conversion is a different approach to determine the value of a discrete-time sequence
at arbitrary points in time. It denotes the transformation of a discrete-time sequence with a given
sampling frequency to a discrete-time sequence having a different sampling frequency [CR81].
The general signal flow of a sampling rate conversion system is shown in Figure 3.8 [CR83,
Hen02, Eva00b]: A discrete-time sequence x[n] = x(nTi ) sampled with the input sampling
period Ti or, correspondingly, angular sampling frequency Ωi is transformed into a discrete-time
sequence y[m] = y(mTo) sampled with the output period To or angular sampling frequency Ωo .
The notations x(nTi ) and y(mTo) are common in the field of SRC, e.g. [Eva00b, Eva03, Hen02],
to indicate that the sequences correspond to the sampling periods Ti and To , respectively. At
the same time, this notation emphasizes the relation between the bandlimited continuous-time
signals x(t ) and y(t ) and their sampled discrete-time representations. The sampling periods and
frequencies are related by

Ωi =
2π

Ti
= 2π fi (3.51a)

Ωo =
2π

To
= 2π fo , (3.51b)

where fi and fo represent the ordinary sampling frequencies. It is noted that this general
model of sample rate version assumes fixed input and output sampling frequencies, although
this restriction might be loosened to support slowly time-varying input and output sampling
rates [Eva00b, Eva03].
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Reconstruction

Ti

x(nTi) hr (t ) xc(t )
C/D

To

y(mTo)

Sampling

xa(t )
haa(t )D/C

xs(t )

Figure 3.9: Sample rate conversion modeled by analog resampling.

The ratio between the between output and input sampling frequency is referred to as the
conversion ratio or the SRC factor (e.g. [BLR03, LR03])

R=
Ωo

Ωi
=

Ti

To
. (3.52)

3.4.1 Sample Rate Conversion as an Analog Resampling Process
Sample rate conversion can be conceptually modeled as an analog resampling process: The
sequence x(nTi ) is transformed to a continuous-time signal xc (t ) followed by resampling at the
output rate To to obtain the sequence y(mTo). The unique representation of a continuous-time
signal by its discrete-time representation determined by the Nyquist criterion (3.19) forms the
conceptual basis for this process.

The signal flow of the resampling process is shown in Figure 3.9. Frequency domain represen-
tations of the signals involved in this process are depicted in Figure 3.10.

The discrete-time Fourier transform X (e jω) of the sequence x(nTi ) is shown in Figure 3.10a.
The D/C conversion operation transforms x(nTi ) into a pulse-modulated continuous-time signal
xs (t ). The associated spectrum Xs (jΩ) is formed by periodic replications of X (e jω) shifted by
multiples ofΩi as shown in Figure 3.10b. The spectral replications apart from the baseband of the
signal in the interval (−Ωi

2 , Ωi
2 ) are termed signal images. To gain the reconstructed continuous-

time signal xc (t ), these images have to be removed using a continuous-time reconstruction or
anti-imaging filter hr (t ). The ideal reconstruction filter is a lowpass with cutoff frequency Ωi

2
(3.25). Realizable anti-imaging filters generally introduce errors in the passband of the signals as
well as incompletely attenuated images. The latter errors are commonly termed image components
(see, e.g., [HF00]). They are depicted in Figure 3.10c.

In order to prevent aliasing in the subsequent sampling operation, the signal has to be band-
limited to fulfill the Nyquist criterion (3.19) with respect to the output sampling frequency Ωo .
Therefore, a continuous-time anti-aliasing lowpass filter haa(t ) is utilized to yield the bandlim-
ited signal xa(t ). The corresponding spectrum Xa(jΩ) is shown in Figure 3.10d. Due to the
nonideal characteristics of realizable filters, this operation also introduces passband errors as well
as an incomplete suppression of frequencies above the cutoff frequency Ωo

2 which are termed
aliasing components in analogy to the reconstruction of continuous-time signals. Finally, the
continuous-to-discrete-time conversion C/D transforms xa(t ) into a discrete-time sequence by
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3π ω

X (e jω)

π 2π
(a) Discrete-time input sequence

3
2Ωi

1
2Ωi Ωi

Xs (jΩ)

Ω
(b) Pulse-modulated input signal

1
2Ωi Ω

Imaging components

Xc(jΩ)

(c) Reconstructed continuous-time signal

Aliasing components

Xa(jΩ)

Ω1
2Ωo

(d) Bandlimited continuous-time signal

Y (e jω)

3ππ 2π ω

(e) Discrete-time output sequence

Figure 3.10: Frequency-domain representations of the signals involved in an analog resampling
process.

mapping all spectral replications of Xa(jω) shifted by integer multiples of Ωo into each period of
the 2π-periodic spectrum Y (e jω) as depicted in 3.10e.

Within this work, less emphasis is placed on the passband errors caused by the filters hr (t ) and
ha(t ), because it is assumed that the passband response of a filter in a discrete-time processing
system can be generally designed to meet a desired tolerance. This argument will be justified by
the evaluations in Chapter 6 which show that the allowed passband tolerance has relatively little
impact on the overall quality and computational complexity of an ASRC algorithm.

Implications from the analog resampling model It can be seen that there are two principal
error sources in a sample rate conversion modeled by an analog resampling process: aliasing
and imaging. The causes and effects of these errors are explained by the respective models for
sampling and reconstruction of continuous-time signals described in Section 3.2. However,
because SRC results in a discrete-time signal, both aliasing and imaging components are mapped,
i.e. aliased, into the output signal. Nonetheless, it is important to distinguish these errors.
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Aliasing due to incompletely suppressed signal images This error occurs irrespective of
the conversion rate. It will be referred to as imaging in the following.

Aliasing due to imperfect bandwidth limitation This class of errors represents the map-
ping of components of the baseband of the input signal into the output sequence. It is
denoted baseband aliasing or simply aliasing in the following. Aliasing errors may occur
only in case of sample rate reductions, that is, conversion ratios R< 1. In this case, deficien-
cies in the anti-aliasing filter haa(t ) result in incompletely attenuated signal components
above Ωo/2, which are aliased into the discrete-time signal y(mTo). Equivalently, it can be
stated that an anti-aliasing filter haa(t ) is required only if the conversion ratio is less than 1.

Because both the reconstruction filter hr (t ) and the anti-aliasing filter haa(t ) are continuous-
time lowpass filters, they can be combined into a single continuous-time filter hc (t ). The ideal
frequency impulse and responses of this filter are given by

bhc (t ) = bhr (t ) ∗bhaa(t ) (3.53a)
bHc (jΩ) = bHr (jΩ) bHaa(jΩ)

=

(
Ti , |Ω|<Ωc

0, |Ω| ≥Ωc
withΩc =min

�Ωi

2
,
Ωo

2

�
. (3.53b)

In this way, the cutoff frequency Ωc of hc (t ) depends on the conversion ratio R=Ωo/Ωi (3.52).
In case of an increase of the sample rate, the cutoff frequency is determined by the input sampling
rate Ωi , while for sample rate reductions, the filter response is controlled by the output frequency
Ωo

Ωc =

(
Ωi
2 , R< 1
Ωo
2 , R≤ 1

. (3.54)

As a consequence, sample rate conversion is a qualitatively different process depending on
whether the sample rate is increased or decreased.

3.4.2 Rational Sample Rate Conversion
Rational sample rate conversion is applicable if the resampling ratio R is expressible by a ratio of
integers L and M

R=
Ωo

Ωi
=

L

M
(3.55)

The motivation to review rational SRC within this work is threefold. First, most algorithms
for ASRC evolved from rational SRC, and ASRC is often considered as an extension of rational
sample rate conversion. Second, both approaches perform discrete-time signal processing to
alter the sampling rate of a signal, and the principal operations and errors in these processes are
related. Finally, elements of rational SRC often serve as building blocks for ASRC algorithms.

Rational sample rate conversion is an established and widely-used field of digital signal process-
ing. It is often also referred to as multirate signal processing. For more information on this area,
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L
Sample rate expander Lowpass filter Sample rate compressor

w(k Ti
L ) v(k Ti

L )x[n] = x(nTi ) y[m] = y(mTo)
H (e jω) M

Figure 3.11: Signal flow diagram of a rational sample rate converter.

x[n] w[k]
L

(a) Block representation

k

w[k]

x[0]
x[1]

x[2]

x[3]

0 1 2 3 4 5 6 7 8 9 10

(b) Time-domain behavior

W
�
e jω
�

π 2π ω

X
�
e jω
�

π 2π ω

(c) Input and output spectra

Figure 3.12: Sample rate expander.

see for instance [BBC76, CR81, CR83, Vai92]. Systems for integer-ratio sample rate increases or
decreases can be considered as special cases of rational sample rate conversion by setting M = 1
or L= 1, respectively.

A primary advantage of rational sample rate conversion is that it can be modeled purely by
discrete-time linear, periodically time variant signals and systems. A system for implementing a
rational sample rate change is depicted in Figure 3.11, consisting of a sample rate expander, a
discrete-time lowpass filter H

�
e jω
�

and a sample rate compressor.

A sample rate expander is represented in block diagrams by the symbol shown in Figure
3.12a. It increases the sample rate of the signal by an integer factor L by inserting L− 1 zeros
between successive samples of x[n]. Formally, this behavior is defined by the linear time-variant
operation

w[k] =

(
x[ k

L] , k = 0,±L,±2L, . . .
0 , otherwise

. (3.56)

The resulting sequence is shown in Figure 3.12b. In the frequency domain, this operation
corresponds to a compression of the frequency variable by a factor of L. Consequently, each
period of the 2π-periodic discrete spectrum W (e jω) contains L replications of the discrete-time
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y[m]v[k]
M

(a) Block representation

m
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v[0]
v[M ]

v[2M ]

v[3M ]

0 1 2 3

(b) Time-domain behavior

ω

Y
�
e jω
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π 2π ω

V
�
e jω
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π/L π 2π

(c) Input and output spectra

Figure 3.13: Sample rate compressor.

spectrum X (e jω)

W
�

e jω
�
=X

�
e jωL

�
. (3.57)

The input and output spectra are illustrated in Figure 3.12c. The L− 1 replications or images of
the original spectrum have to be removed by a subsequent discrete-time filter.

A sample rate compressor, represented by the schematic shown in Figure 3.13a, reduces the
sampling rate by a factor M by discarding M −1 samples out of M values of the input signal v[k]
as depicted in Figure 3.13b

y[m] = v[M m] . (3.58)

This corresponds to an expansion of the discrete-time spectrum of V (e jω) by a factor of M .
Thus, M shifted replicas of V (e jω) contribute to each period of the discrete spectrum Y (e jω).

Y
�

e jω
�
=

1

M

M−1∑
m=0

V
�

e jω−2πm
M

�
(3.59)

To avoid overlap, that is aliasing, between these shifted replicas, the spectrum V (e jω)must be
bandlimited such that subsequent copies do not overlap. This case is illustrated in Figure 3.13c.

According to this characterization, the discrete-time lowpass filter H
�

e jω
�

has two distinct
purposes: Removal of the signal images associated with the sample rate expansion and a limitation
of the bandwidth prior to sample rate reduction to avoid aliasing. While both aspects can be
implemented in a single filter, the determination of the cutoff frequency of the filter depends on
the conversion ratio. The ideal filter specification is given by [CR83]

bH �e jω
�
=

(
L, |ω|<min

�
π
L , πM

�
0, otherwise

. (3.60)
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This filter specification is in accordance with the design specification of the combined continuous-
time anti-imaging/anti-aliasing filter of the SRC model based on analog resampling (3.53b),
although H (e jω) is a purely discrete-time filter. In case of an overall increase of the sample rate
(conversion ratio R> 1), the cutoff frequency is determined by the upsampling ratio L, while
for an overall sample rate reduction (R< 1), the filter specification is controlled by M .

It is noted that the passband gain of L in (3.60) maintains the frequency normalization inherent
to a sampled signal representation (3.20) after the sampling rate is changed. However, the sample
rate decrease by M does not require such an adjustment. As observed in (3.59), the required
scaling is integrated into the operation of the sample rate compressor [CR83, OSB99].

In summary, while rational SRC is based on purely discrete-time algorithms, the basic sources
of errors, aliasing and imaging, are identical to the processes of sampling and reconstruction as
well as to ASRC problems.

3.4.2.1 Polyphase Implementations for Rational SRC

As shown in the previous section, rational SRC is defined in terms of sample rate expanders,
compressors, and digital filters. However, for efficient implementations, sophisticated structures
such as polyphase networks or commutator models are used instead of these building blocks.
We introduce some basic concepts of polyphase filtering here for two reasons: First, integer- or
rational-ratio SRC is part of numerous FD or ASRC algorithms. Second, several concepts of
ASRC are best described and understood in terms of polyphase filtering, even if the implemen-
tation does not contain rational SRC. Only a brief characterization of polyphase techniques is
provided here. For a more comprehensive treatment, the reader is referred to the cited references
on multirate signal processing or [Hen02].

The basic idea for an efficient implementation of a 1-to-L sample rate increase is that the
filtering operation by H (e jω) includes a large fraction of multiplications by zero due to the zeros
inserted into the input signal of the filter by the sample rate expander. Therefore, only a small
number of impulse response coefficients h[n] of H (e jω) are actually used in the computation of
a particular output value y[m]. For this reason, the impulse response h[n], which is commonly
referred to as the prototype filter of the SRC system, can be partitioned into subsets that contribute
to an output sample y[m]. As rational SRC generally forms linear periodically time-variant
systems, these subsets repeat periodically. Within this work, only FIR filters are considered for
H (e jω) due to their beneficial properties for this application (see, e.g. [SR73, CR83]). In this
case, there are L finite subsets which are referred to as polyphase filters or polyphase branches

hl [n] = h[nL+ l ] for l = 0,1, . . . , L− 1; n = 0,1, . . . ,Q − 1 . (3.61)

Here, Q denotes the length of the polyphase filters. For notational convenience, it is assumed
that the length of the prototype filter, N + 1, is an integer multiple of the upsampling ratio L.
This can be ensured without loss of generality by zero-padding h[n] appropriately. Thus, Q is
determined by

Q =
N + 1

L
. (3.62)

Utilizing the polyphase representation, the calculation of an output sample can be formulated as
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m
x[n] h0[n]

hL−1[n]

h1[n]
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(a) 1-to-L sample rate increase

x[n]

y[m]

h1[n]

h0[n]

hM−1[n]

n

(b) M -to-1 sample rate decrease

Figure 3.14: Commutator structures for integer-ratio sample rate converters.

a convolution

y[m] =
Q−1∑
k=0

hm mod L[k]x
��m

L

�
− k
�

, (3.63)

where mod denotes the modulo operation [GKP06]

z = x mod y ⇐⇒ z = n · x + y and n ∈Z . (3.64)

This operation is conveniently modeled or implemented using a commutator model as shown
in Figure 3.14a. The input signal x[n] is filtered in parallel by the L polyphase branches. The
rotating commutator selects one of these outputs for each output sample y[m]. In this way, the
polyphase branches operate at the low input frequency Ωi .

For an integer-ratio sample rate decrease, the observation that M − 1 out of M filtered values
v[k] are discarded by the compressor can be utilized for efficient implementation. In terms of
filtering, for each sample of the intermediate signal v[k], only a fraction of the products in the
discrete convolution v[k] = w[k] ∗ h[n] contributes to the final output y[m]. As in case of
integer sample rate increases, the prototype filter can be partitioned into a set of polyphase filters
hm[n]

hm[n] = h[nM +m] for m = 0,1, . . . , M − 1; n = 0,1, . . . ,Q − 1 with Q =
N + 1

M
, (3.65)

assuming that the prototype filter length is an integral multiple of M . Thus, the computation of
an output sample results is performed as

y[m] =
M−1∑
l=0

Q−1∑
k=0

hl [k]x [(m− k)M + l ] . (3.66)

Again, this operation is conveniently represented by a commutator model as shown in Figure
3.14b. The rotating commutator distributes the input samples to the M polyphase branches that
consequently operate at the low output sampling frequency Ωo =Ωi/M . The output samples
y[m] are formed by summing the outputs of the polyphase branches.
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3.4.2.2 Use of the Term Interpolation

The term “interpolation” is used ubiquitously in DSP, in particular in the fields of FD filtering
and sample rate conversion, often with indistinct or contradicting meanings. In this way, it is a
common source of misconceptions.

In the fields of approximation theory and numerical analysis, interpolation refers to the
construction of a function f (x) from a set of data points {(xi , yi )}, i = 0,1, . . . ,N that coincides
exactly with the function values at the abscissas of these points [CL00, Pow91, PTVF92, Mei02]

f
�

xi
�
= yi for i = 0,1, . . . ,N . (3.67)

Equation (3.67) is commonly referred to as the interpolation condition, which has been stated in
(3.33) in the context of sampling and reconstruction.

In this way, interpolation is clearly distinct from approximation, which is also defined as the
construction of a function from a set of function values, but does not require the approximating
function to pass through these points. In [Sch46a], interpolation and approximation are denoted
as ordinary and smoothing interpolation formulae, respectively.

In rational SRC, the term interpolation is used for a sample rate change where the sampling
frequency is increased, e.g. fo > fi [CR81, CR83]. Likewise, a reduction of the sample rate is
termed decimation. Although the interpolation condition (3.67) is noted as a possible condition
in the filter design specification for sample rate increases, it is not considered as an obligatory
requirement [CR83]. In the literature on FD filtering and ASRC, the term interpolation often
does not imply the interpolation condition (e.g. [EGH93,LVKL96,Ves99,VS07]). Therefore,
the described operation would be better characterized as approximation.

On the other hand, the adherence to the interpolation condition is not mandatory for a wide
range of signal processing applications, see e.g. [EGH93]. Instead of forcing the error to zero on
a finite set of points, an approximation error that is minimal with respect to a given norm over
the complete approximation interval is more desirable for most applications.

For these reasons, we restrict the use of the term interpolation to systems that conform
to the interpolation condition. Digital filters that approximate the signal between samples
of a discrete-time sequence will be termed resampling filter in the following. Likewise, in the
context of integer-ratio or rational SRC, the term “sample rate increase” will be used instead of
interpolation.

3.4.2.3 Limitations of Rational Sample Rate Conversion

Despite its many uses, rational SRC shows a number of shortcomings that reduce its applicability
for various problems:

• If the numerator and denominator terms of the conversion ratio R= L
M are large coprime

integers, then rational SRC becomes impractical. Such conversion ratios are often denoted
as incommensurate, e.g. in [CR83, LVKL96]. Although the computational effort does
not necessarily increase in such cases, memory requirements, control effort and the
requirements on the prototype filter design often become limiting factors. In literature,
the distinction is often drawn between rational and irrational conversion ratios, for
instance in [Ram84, Gar93, SR96, Eva00b, Hen02]. However, in the author’s opinion, this
classification is moot, because for implementations of SRC on digital hardware, conversion
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ratios are invariably expressed as rational numbers. However, rational SRC is appropriate
only if the conversion ratio R is representable as a ratio of integer numbers L and M of
moderate size.

• Because the conversion ratio R influences the design of the discrete-time filter H (e jω), a
rational SRC system can be used only for a single, fixed ratio. Therefore, processing systems
utilizing different conversion ratios need additional memory for multiple coefficient sets,
and possibly require control logic to switch between different conversion ratios.

• Interfacing between asynchronous systems, which are not synchronized to a common
clock, results in time-varying conversion ratios that may assume arbitrary values within a
given interval. Due to the restriction to a single ratio or a fixed set of conversion ratios,
rational SRC is not suited for this class of applications.

3.4.3 Advantages and Applications of Arbitrary Sample Rate
Conversion

Arbitrary sample rate conversion aims at overcoming most deficiencies of rational SRC. First, it
enables arbitrary conversion ratios and is not limited to ratios expressible by moderately sized
values L and M . Moreover, the effort in terms of memory requirements, control effort, and
computational costs is largely independent of the precise conversion ratio. Second, as the design
of ASRC systems is irrespective of a particular conversion rate, variable ratios are supported.
This can be used either to reduce memory requirements for applications that utilize a fixed
set of conversion ratios, or to enable continuously varying ratios, for instance for interfacing
asynchronous systems, e.g. [LK81b, Gar93].

It is important to note that the independence of the conversion ratio typically attributed to
ASRC is limited by one fundamental distinction. As argued in Section 3.4.1 and manifested
in the ideal anti-aliasing/anti-imaging filter bHc (jΩ) (3.53), arbitrary sample rate conversion is a
qualitatively different process depending on whether the conversion ratio R is larger or smaller
than unity. While for sample rate increases, the characteristics of bHc (jΩ) are constant, they
depend on R in case of sample rate decreases.

Seemingly for this reason, ASRC algorithms are often limited to sample rate increases and are,
for instance, termed interpolation filters (e.g. [VS96a,VS07]). Here, “interpolation” has to be
interpreted in the sense used in multirate signal processing (see Section 3.4.2.2).

In general, ASRC systems that facilitate increasing and decreasing sampling rates either utilize
different implementation structures [HF00,Hen02,BVSR02,KG08], or switch between different
operation modes, e.g. [LPW82, SG84].

Within this work, emphasis is placed on ASRC systems for sample rate increases for two
reasons. First, as will be shown in Chapter 4, only this class of algorithms is suitable for efficient
signal processing techniques for WFS. Second, structures and filter designs for sample rate
decreases can be typically obtained by transforming systems for increasing the sampling rate.

Applications of arbitrary sample rate conversion include:

Timing recovery in digital modems [Gar93,EGH93,VS96a] In a digital modem, the sym-
bols of the incoming signal must be synchronized to the clock of the digital processing
system. Thus, the ability to interface asynchronous systems is the decisive advantage of
ASRC in this application.
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Software defined radio [HF00, Hen02, AS06] To support a growing number of mobile com-
munication standards, functionality such as demodulation, which is traditionally imple-
mented in the analog domain, is shifted toward software realization in the discrete-time
domain. Here, sample rate conversion forms a major part of the computational effort.
ASRC methods are preferred over rational or integer SRC algorithms due to complexity
and memory requirements. Moreover, ASRC is capable of handling different conversion
ratios to support different carrier frequencies without additional memory requirements.

Sample rate conversion for digital audio [LK81a,LPW82,SG84,CDPS91,AK93,RLF00]
In digital audio, a multitude of digital audio sampling frequencies, for instance 48 or
96 KHz for professional applications and 44.1 KHz for consumer electronics, is in use.
Therefore, high-quality sample rate conversion techniques are required both for mastering
digital media and for realtime transmission. In many cases, the numerator and denominator
of the conversion ratio are relatively large coprime numbers. For example, the rational
conversion ratio for a transformation from 48 KHz to 44.1 KHz is L/M = 147/160.
Consequently, a direct application of rational SRC requires long prototype filters and
either a very high intermediate frequency or a sophisticated multistage implementation
at the cost of a complex control logic. Using ASRC, both control effort and coefficient
storage can be reduced significantly. Moreover, many audio applications based on ASRC
techniques also provide synchronization between asynchronous interfaces.

3.4.4 Models for Asynchronous Sample Rate Conversion
Modeling the behavior of an ASRC system is necessary to assess the performance of an algorithm
as well as for purposefully designing such algorithms. However, modeling ASRC algorithms
is more complex than the characterization of purely discrete-time, single-rate systems, such
as digital filters or variable fractional delay structures, for two primary reasons. First, the
coexistence of two different sampling rates Ωi and Ωo inhibits the use of conventional models
for linear time-invariant discrete-time systems. The ability of ASRC systems to handle variable
conversion ratios introduces an additional degree of freedom, putting further demands on the
model. Two basic approaches, either based on discrete-time or continuous-time models, are
described in the following.

3.4.4.1 Discrete-Time Models

In multirate signal processing, bi-frequency system functions (also denoted as bifrequency maps
or bispectrum maps) [Zad50, CR81, AV00, Hen02] are an established tool to describe linear
periodically time-variant systems such as rational sample rate converters. The bi-frequency
system function K(e jω′ , e jω) defines a mapping from a periodic input spectrum with normalized
angular frequencyω to a periodic output spectrum with frequency variableω′ corresponding
to a potentially different sampling frequency

K
�

e jω′ , e jω
�
=

1

2π

∞∑
m=−∞

∞∑
n=−∞

k[m, n]e−jω′me jωn . (3.68)

This system function is not restricted to one-to-one mappings between input and output frequen-
cies, but may also represent one-to-many, many-to-one, or many-to-many mappings between
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frequencies. In discrete-time sample rate conversion, such sophisticated mappings result from
imaging or aliasing artifacts. The function k[m, n] in (3.68) denotes the discrete-time Green’s
function of the system,1 which describes the response of the system at time m for a unit impulse
applied at input sampling time n

y[m] =
∞∑

n=−∞
k[m, n]x[n] . (3.69)

Thus, k[m, n] is distinct from the time-varying impulse response h[m, n] corresponding to the
convolution

y[m] =
∞∑

n=−∞
h[m, n]x[m− n] , (3.70)

but are related by
h[m, n] = k[m, m− n] . (3.71)

In contrast to the impulse response h[m, n], the discrete-time Green’s function is also applicable
if the input and output sampling rates of the systems are different.

Using the bi-frequency system function (3.68), the output spectrum of the system is deter-
mined by

Y
�

e jω′
�
=

π∫

−π
K
�

e jω′ , e jω
�

X
�

e jω
�

dω . (3.72)

However, this system transmission function is a practical tool only if the Green’s function
k[m, n] or, equivalently, the time-varying impulse response h[m, n] are at least periodically
time-variant functions. For sample rate conversion systems, this condition is equivalent to a
rational conversion ratio R. In this case, each input frequency ω maps only to a finite set of
output frequenciesω′. An example for a bi-frequency mapping for a rational conversion ratio
R= 4/5 is shown in Figure 3.15.

Discrete-time approaches for modeling ASRC algorithms, although limited to rational con-
version ratios, have been proposed in [BLR03], [LR03], [LBR04]. In [LR03], an alternative to
bi-frequency maps based on the combination of sampled continuous-time impulse responses is
presented. [BLR03] considers discrete-time models for polynomial-based ASRC algorithms for
fixed, rational conversion ratios, and derives its relation to conventional multirate structures.
This analogy is also discussed in [Hen02]. Discrete-time models for ASRC algorithms utilizing a
large upsampling ratio L to create a dense grid of intermediate samples are compared to continu-
ous-time models in [LBR04], concluding that discrete-time models can be used to approximate
continuous-time models in most applications of SRC.

In summary, the restrictions to fixed and rational conversion ratios are the most severe
limitations of discrete-time models for ASRC algorithms.

1Conceptually, the discrete-time Green’s function is closely related to the Green’s function G
�
x|xs ,ω

�
for acoustic

wave propagation used in Section 2.1. While the latter describes the response at position x caused by an elementary
acoustic source with frequency ω at position xs , k[m, n]models the system response at time index m to an unit
impulse, that is, an elementary excitation, at time n.
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Figure 3.15: Bi-frequency system response for rational sample rate conversion with ratio R= 4/5.
ASRC system based on Lagrange interpolation, order N = 3.

D/C
x(nTi) xs(t ) xc(t ) y(mTo)

Ti To

hc (t )

Figure 3.16: Hybrid analog/digital model for arbitrary sample rate conversion.

3.4.5 Continuous-Time Description: The Hybrid Analog/Digital
Model

Unlike discrete-time descriptions, continuous-time models are based on the analog resampling
interpretation of ASRC described in Section 3.4.1. This interpretation is widely used in ASRC
and is commonly referred to as the hybrid analog/digital model [Gar93, VS96b,Ves99, GBLR04,
VS07]. A block diagram of this model is shown in Figure 3.16.

An ideal D/C converter transforms the discrete-time input sequence x(nTi ) into a pulse train
xs (t ) according to (3.4c). The continuous-time filter hc (t ) serves as a combined anti-aliasing/anti-
imaging filter according to (3.53). Subsequent sampling with period To yields the discrete-time
output sequence y(mTo).

The most important advantage of the hybrid analog/digital model is that the behavior of
the ASRC system is completely determined by the continuous-time impulse response hc (t ) or,
equivalently, its continuous-time frequency response Hc (jΩ)

Hc (jΩ) =F {hc (t )} . (3.73)

In Figure 3.17, the continuous-time impulse and frequency responses of a typical ASRC system
are shown. The continuous-time filter hc (t ) approximates the ideal filter characteristic of an ana-
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Figure 3.17: Continuous-time impulse and frequency responses of an ASRC system.

log resampler (3.53), that is, an ideal lowpass filter with cutoff frequency Ωc =min(Ωi/2,Ωo/2)

bHc (jΩ) =

(
Ti , |Ω|<min

�Ωi
2 , Ωo

2

�
0 , |Ω| ≥min

�Ωi
2 , Ωo

2

� .

where the passband magnitude of Ti results from the characteristics of the ideal reconstruction
filter (3.25).

In this way, the principal sources of errors for sample rate conversion stated in Section 3.4.1,
namely aliasing, imaging and passband deviations, can be assessed directly by comparison to the
ideal frequency response.

As a second advantage, the hybrid analog/digital model is applicable to most ASRC methods.
In particular, this applies to methods that can be represented by a continuous-time impulse
response hc (t ), which holds for the vast majority of existing algorithms.

Finally, analysis using the hybrid analog/digital model is independent of the conversion ratio
R. Examination of the continuous frequency response enables an evaluation of passband errors
as well as aliasing and imaging components without evaluating the frequency response for a
particular R.

However, the utility of the hybrid analog/digital model is affected by the qualitative dis-
tinction between increasing and decreasing conversion ratio explained in Section 3.4.3. For
nondecreasing conversion ratios, that is Ωo ≥ Ωi , the characteristics of bHc (jω) are constant.
Thus, the performance can be analyzed irrespective of a particular conversion ratio R. In con-
trast, for decreasing ratios, the cutoff frequency of bHc (jω) is a function of R. Consequently, the
conversion ratio has to be accounted for in the analysis. Nonetheless, this is not a limitation of
the hybrid analog/digital model, but results from intrinsic properties of SRC systems.

As stated above, this work largely focuses on algorithms for nondecreasing sampling rates.
Therefore, a single continuous-time impulse or frequency response is appropriate to characterize
an ASRC algorithm irrespective of a particular conversion ratio.
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It is remarkable that the idea of characterizing a practical interpolation or approximation
algorithm by means of a single, continuous function of compact support predates digital signal
processing significantly. To the author’s knowledge, this concept was first used by I.J. Schoenberg
in the landmark series of papers that introduced spline functions [Sch46a]. For a historical
view, see, for instance, [Mei02]. In turn, Schoenberg refers to the cardinal interpolation formula
(3.31b) introduced in [Whi15, Whi29] as an example of an interpolation method based on a
continuous function, but deems it inappropriate for practical purposes due to its slow damping.
Moreover, Schoenberg introduces the use of the Fourier transform of this defining function,
which is referred to as the characteristic function of the interpolation formula, and expresses
properties of the interpolation method in terms of this Fourier transform.

Despite the continuous-time description, ASRC algorithms are generally implemented on
digital architectures by means of discrete-time signal processing. For this purpose, the continuous
representation is evaluated only at a finite set of points that are determined by the output sampling
time. This approach is equivalent to sampling the continuous-time impulse response hc (t ). The
sampled values are utilized in a discrete-time filtering process. In the vast majority of methods,
the sampled impulse response contains only a finite number of nonzero values. Therefore, on
the most basic level, most ASRC algorithms are based on finite discrete convolutions.

3.5 Arbitrary Delay Operations as Discrete-Time Filtering
Processes

As pointed out in the preceding sections, the basic operation of both VFD filtering and ASRC is
the determination of signal values at arbitrary positions between the samples of a given discrete-
time sequence. Moreover, we have shown that for both applications, the signal processing
operation is best implemented as a discrete-time convolution of finite length.

In order to describe different algorithms for VFD filtering and ASRC in a uniform way, a
common notation is introduced in this section. The notion of basepoint sets enables a coherent
description of different algorithms and different indexing schemes used in literature. In addition,
common operations such as the determination of the intersample position and the input samples
to be used for resampling can be represented consistently.

A central difference between FD and ASRC is the orientation of variables to denote the
positions of output samples. In FD filtering, a fractional delay value d , which has a reverse
orientation with respect to the time variable t , is utilized. In ASRC applications, the intersample
position µ denotes the location of an output value in relation to the input samples x[n]. The
quantity µ has the same orientation as the time axis. To enable a common notation, the
intersample position µ is used consistently throughout this work. However, this choice does not
limit the generality of the representation. Section 3.5.2 describes transformations between the
notations for FD filtering and ASRC.
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3.5.1 Uniform Notation Using Basepoint Sets
In its most general form, resampling by means of a finite discrete-time convolution is represented
by [EGH93, VS07]

y(t ) =
N2∑

k=N1

x[n− k]h(k ,µ) . (3.74)

The index limits N1 and N2 affect the samples x[n] involved in the discrete convolution. More-
over, they determine the order of the resampling filter N =N2−N1.

The integer-valued sample index n and the intersample position µ are functions of the output
time t . A common choice for these terms is

t = (n+µ)Ti with n ∈N . (3.75)

This calculation normalizes the intersample position µwith respect to the input sampling period
Ti = 1/ fi . Thus, the filter coefficients h(k ,µ) are independent of the sampling frequency.

The quality of resampling depends on the location of the intersample position with respect to
the samples used in the convolution. In general, n has to be chosen such that the output instant
t lies in the central interval of the involved samples [EGH93]. As a consequence, the choices
for N1, N2 and the calculation of n and µ are tightly interrelated. For each choice, there is a
unit-length interval for µ that corresponds to the region of optimal resampling quality

µmi n ≤µ≤µmax with µmax −µmi n = 1 . (3.76)

As argued in Section 3.3.3 for the case of FD filtering, a closed interval is used here without loss
of generality, while resolving the ambiguity at the end points of the interval is left to the actual
implementation.

Due to the degrees of freedom in the specification of N1, N2, n and µ, several specialized forms
of the convolution (3.74) are in use. In

y(t ) =
N∑

k=0

x[n− k]h(k ,µ) , (3.77)

the indices are natural numbers k = 0,1, . . . ,N . In this case, n and µ are given by

n = round

�
t

Ti
+

N

2

�
(3.78a)

µ=
t

Ti
− n . (3.78b)

Thus, µ falls within the optimal range

−N + 1

2
≤µ≤−N − 1

2
(3.79)
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This form is widely used for FD filtering [LVKL96, Väl95a]. The corresponding interval for the
fractional delay part d is

N − 1

2
≤ d ≤ N + 1

2
. (3.80)

Another common form of (3.74) is used, among others, in [VS96a, VS07]

y(t ) =

N−1
2∑

k=− N+1
2

x[n− k]h(k ,µ) with (3.81a)

n =
�

t

Ti

�
(3.81b)

µ=
t

Ti
− n . (3.81c)

Consequently, the intersample position interval is given by

0≤µ≤ 1 . (3.81d)

Note that the limits in the summation (3.81) differ from the original references, since N denotes
the filter length there, as opposed to the filter order N used here consistently. In any case, this
formulation is restricted to odd orders N , because the sample indices of x[n − k] would not
denote integer numbers for N even.

Such restrictions as well as the different notations in use complicate the analysis and the
comparison of algorithms that are expressed in different forms. For this reason, a unified
description based on the notation of a basepoint set is emphasized here. The term basepoint set is
chosen in the style of [EGH93]. This notation has been introduced and has been elaborately
applied by the author in the analysis of Lagrange FD filters in [Fra08].

The basepoints of a resampling algorithm, denoted {tk}, is a set of N + 1 real numbers
that denote the time values, i.e. abscissas, of the discrete samples x[n− k] with respect to the
intersample position, as shown in Figure 3.18. The basepoints form a decreasing sequence with
unit distance

{tk}= t0, t1, . . . , tN (3.82a)
tk = t0− k for 0≤ k ≤N . (3.82b)

So, the basepoints are normalized to the input sampling period Ti . The decreasing order is
different to the basepoint set notation used for FD filtering [Fra08], where the basepoints bk
form an increasing sequence. This distinction is due to the converse orientations of the fractional
delay value d and the intersample position µ.

Using the notation of basepoint sets, the discrete convolution is stated with the index range
N1 = 0 and N2 =N

y(t ) =
N∑

k=0

x[n− k]h(k ,µ) , (3.83)



i
i

“main_report” — 2012/1/30 — 9:09 — page 52 — #72 i
i

i
i

i
i

52 Chapter 3 State of the Art: Delaying Discrete-Time Sequences
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Figure 3.18: Basepoint set notation for resampling based on a finite discrete convolution.

that is, similar to the form (3.77). However, the use of basepoint sets decouples the optimal range
of the intersample position (3.76) from the choice of the index range. In this way, the restriction
of µ to the central interval of the basepoint set results in

µmi n =
t0+ tn − 1

2
and µmax =

t0+ tn + 1

2
. (3.84)

The sample index n is calculated as

n = round

�
t

Ti
+

N

2

�
. (3.85)

As a notable consequence, the determination of the samples involved in the convolution is
irrespective of the particular basepoint set in use and depends only on the order N . This follows
from the restriction of the intersample position to the central interval of the basepoint set. The
intersample position is calculated as

µ=
t

Ti
+ t0− round

�
t

Ti
+

N

2

�
(3.86a)

=
t

Ti
+ t0− n . (3.86b)

In this way, the simple identity t = (n+µ)Ti (3.75) does no longer hold. Instead, this notation
enables arbitrary time offsets associated with the samples x[n− k].

The convolution sum with index variables k = 0, . . . ,N (3.77) is characterized by the basepoint
set

{tk}= 0,−1, . . . ,−N (3.87a)
tk =−k for 0≤ k ≤N . (3.87b)

Likewise, the filtering operation (3.81) is expressed by

{tk}= N+1
2 , N−1

2 , . . . ,−N−1
2 (3.88a)
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tk =
N + 1

2
− k for 0≤ k ≤N . (3.88b)

It is notable that the use of basepoints resolves the restriction to odd orders that is inherent to
(3.81).

Besides the unified notation for the discrete convolution, the basepoint set formalism is
especially useful for algorithms that use the time values associated with the samples x[n− k]
to compute the filter coefficients h(k ,µ). Methods originating in numerical interpolation
or approximation techniques such as Lagrange or spline interpolation are examples of such
algorithms. In these cases, the choice of the basepoint set potentially affects the efficiency of
these methods.

Basepoint sets that are symmetric with respect to zero form a particularly important class,
which is given by

{tk}=
N

2
,

N

2
− 1, . . . ,−N

2
(3.89a)

tk =
N

2
− k for 0≤ k ≤N , (3.89b)

resulting in the symmetry condition

tN−k =−tk for 0≤ k ≤N . (3.89c)

Following from (3.84), the intersample position range is also symmetric with respect to zero

− 1
2 ≤µ≤ 1

2 . (3.89d)

Symmetric basepoint sets show a number of advantageous properties, for instance coefficient
symmetries in the calculation of the discrete filter taps h(k ,µ) that potentially result in more
efficient algorithms. The impact of basepoint symmetries is investigated in detail in [Fra08]
for the case of Lagrange interpolation. Nonetheless, these principles apply to other classes of
resampling filters as well. This will become apparent in Section 3.6.

3.5.2 Application to Fractional Delay Filtering
As stated above, the conversion between the notation based on an ASRC process and the
formulation of a FD filter is straightforward.

According to (3.34), the output sequence y[m, D] of a FD filter approximates the recon-
structed continuous-time signal xc (t ) delayed by a value of DTi , where Ti denotes the sampling
frequency used in the reconstruction of xc (t ) from a sequence x[n].

y[m, D] = xc
�
[m−D]Ti

�
. (3.90)

Substituting xc (t ) with the discrete filtering operation of a resampling algorithm (3.83) yields

y[m, D] =
N∑

k=0

x[n− k]h(k ,µ) . (3.91)
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Applying t = [m−D]Ti to (3.85) and (3.86) results in explicit expressions for n and µ

n = round

�
(m−D)Ti

Ti
+

N

2

�

= m− round
�

D − N

2

�
(3.92a)

µ=
(m−D)Ti

Ti
+ t0− n

= m−D + t0−
�

m− round
�

D − N

2

��

= round
�

D − N

2

�
+ t0−D . (3.92b)

In this way, the determination of the intersample position µ and the sample index n for a FD
filter is expressed in the formalism of a resampling process for arbitrary basepoint sets.

However, it is possible to transform these relations into a form more related to FD filtering.
The difference between the indices n and m represents the integer part Di nt of the FD element
(3.47)

Di nt = m− n (3.93a)

= round
�

D − N

2

�
. (3.93b)

Therefore, FD filtering based on a finite discrete convolution can be expressed by

y[m, D] =
N∑

k=0

x[m−Di nt − k]h(k ,µ) (3.94a)

=
N∑

k=0

x[m−Di nt − k]h(k , d ) , (3.94b)

where h(k , d ) denotes the filter coefficients of a FIR FD filter for a fractional delay value d . To
relate h(k , d ) to the filter coefficients h(k ,µ), a substitution of (3.47) into (3.86) yields

d = t0−µ ⇐⇒ µ= t0− d . (3.95)

3.5.3 Representation as Continuous-Time Impulse Response Function
Aside from notational issues such as the choice of the basepoints or the intersample position
range, resampling based on a discrete convolution formula (3.83) is mainly characterized by the
filter coefficients

h(k ,µ) for µmi n ≤µ≤µmax and k = 0,1, . . . ,N .

Alternatively, a resampling filter can be represented by a single continuous-time function, the
continuous-time impulse response hc (t ). The benefits of this representation are twofold.
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µmi n−t0 µmax−t0=
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µmi n−t2

µmax−tN−1
=
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+ t0) h(1, t
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+ t1) h(N , t

Ti
+ tN )· · · · · ·

t
Ti

hc (t )

Figure 3.19: Continuous-time impulse response hc (t ) constructed from a resampling function
based on a finite discrete-time convolution.

First, the convolution sum (3.83) can be stated compactly as

y(t ) =
N∑

k=0

x[n− k]hc
�
[µ− tk]Ti

�
, (3.96)

where the discrete filter coefficients h(k ,µ) are obtained by sampling hc (t ) [VS96a,HF00,Hen02,
VS07].

The form used here builds upon the notation of basepoint sets and is therefore independent of
a particular index range or the intersample position interval. The minus sign in the argument of
hc (t ) is a direct consequence of this notation, because the basepoints form a decreasing sequence.

Second and more important, the construction of a continuous impulse response enables a
direct application of the hybrid analog/digital model introduced in Section 3.4.5 to analyze the
properties of the resampling function.

If the discrete convolution process (3.96) is finite, then hc (t ) is compactly supported. The
impulse response hc (t ) is constructed by combining the filter coefficients h(k ,µ) according to

hc (t ) =





h
�

k , t
Ti
+ tk

�
, (µmi n − tk )Ti ≤ t < (µmax − tk )Ti

0, otherwise
for k = 0,1, . . . ,N . (3.97)

It is observed that the argument of the filter coefficients h(k ,µ) is normalized to the input
sampling period Ti . The construction of hc (t ) from the functions h(k ,µ) is depicted in Figure
3.19.

Conversely, the coefficients of the discrete filter h(k ,µ) are obtained from the continuous
impulse response as

h(k ,µ) = hc ([µ− tk]Ti ) for k = 0,1, . . . ,N . (3.98)

Because hc (t ) is constructed from N + 1 segments of length (µmax −µmi n)Ti = Ti each, its
support is compact and of length (N+1)Ti . The start and end values of the first and last segment,
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respectively, can be determined by utilizing the optimal range of the intersample interval (3.84)

�
µmi n − t0

�
Ti =

� t0+tN−1
2 − t0

�
Ti =

� t0+t0−N−1
2 − t0

�
Ti =−N+1

2 Ti (3.99a)
�
µmax − tN

�
Ti =

� t0+tN+1
2 − tN

�
Ti =

� tN+tN+N+1
2 − tN

�
Ti =

N+1
2 Ti . (3.99b)

In this way, the impulse response hc (t ) is nonzero only in the interval [−N+1
2 Ti ,

N+1
2 Ti]. That

is, its support is symmetric with respect to zero regardless of the basepoint set used

hc (t ) = 0 for |t |> N + 1

2
Ti . (3.100)

Again, this identity follows from the restriction of the intersample range to the central interval
of the basepoint set.

3.5.4 Impulse Response Symmetries
As shown above, the support of hc (t ) is always symmetric, provided that the intersample position
is chosen according to the optimal range (3.84).

However, there are several reasons to use continuous-time impulse responses that are symmet-
ric with respect to zero, e.g. [VS96a, VS07]

hc (t ) = hc (−t ) for t ∈R . (3.101)

First, a parametric description of hc (t ) requires fewer coefficients, thus resulting in more efficient
design and analysis methods. Second, the symmetry often permits more efficient implementa-
tions.

Finally, due to the properties of a Fourier transform of real-valued and even-symmetric
functions, the continuous-time frequency response Hc (jΩ) is also real-valued and symmetric.
This results in two primary advantages. First, design and analysis in the frequency domain can
be performed in the domain of the real numbers and only on one half of the real axis compared
to the complex-valued representation for arbitrary impulse responses. Second, as manifested in
the real-valued frequency response, the reconstruction of the continuous-time signal xc (t ) using
a symmetric impulse response does not introduce phase distortions.2

Conversely, there are very few reasons to use non-symmetric impulse responses. In ordinary
discrete-time filter design, the main intention of design specifications with nonlinear phase
is to reduce the group delay or the phase delay of the filter. However, in case of resampling
filters, the delay of the filter is determined by the optimal intersample position range (3.84) and
is not induced by symmetry conditions imposed on hc (t ). Consequently, the motivation for
discrete-time filters with reduced delay does not apply to continuous-time resampling filters.

In summary, resampling functions based on symmetric impulse responses are advantageous
with no apparent drawbacks. In addition, symmetry with respect to zero eases design and analysis
due to its real-valued and symmetric frequency response. For this reason, such symmetric impulse
responses are used predominantly in the following.

2Note that this characterization does not include the resampling step of the hybrid analog/digital model, which
may introduce additional phase distortions. For the subtleties of describing the phase response of SRC systems,
see [Väl95a, Section 3.3.9].
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3.5.5 Causality of Resampling Filters
As shown above, the quality of a resampling filter depends on the location of the intersample
position µ with respect to the basepoints of the samples involved in the discrete convolution.
In particular, optimal performance is achieved only if µ resides in the central interval of the
basepoint set. This requirement is incorporated in the determination of the intersample position
µ and the sample index n according to (3.85) and (3.86).

However, in order to enable causal implementations, these interrelations impose a further
constraint on the sampling instants t = mTo of the output signal.

It is assumed that the index k denotes the most recent sample of the input signal x[k] = x(kTi ),
corresponding to the sampling time kTi . Therefore, in order to ensure causality in the filtering
operation (3.83), the sample index n, corresponding to the most recent sample used in the
convolution sum, must fulfill

n ≤ k . (3.102)

Inserting the formula for the sample index (3.85) yields the largest admissible sampling instant as
a function of the most recent input sample k

t ≤
�

k − N − 1

2

�
Ti . (3.103)

In this way, the output sequence y[m] = y(mTo) of a causal resampling process is delayed by at
least (N −1)/2 samples with respect to the input sequence x[k] = x(kTi ). This delay is typically
referred to as the implementation delay or the implementation latency of the system. It is worth
emphasizing that the delay value of (N − 1)/2 input sampling periods is independent of the
basepoint set and of any symmetry conditions, but follows solely from the restriction of the
intersample position range to the central interval of the basepoint set (3.84).

For FD filtering, the requirement (3.103) can be implemented in two possible ways. First,
equivalent to resampling, the nominal delay value D can be biased by the constant implementa-
tion delay of (N − 1)/2 samples. An alternative solution is to subtract the implementation delay
from the nominal delay value D . This modification is already embodied in the determination of
the integer part of the fractional delay value Di nt (3.93). In terms of this variable, the requirement
of causality translates to

Di nt ≥ 0 . (3.104)

Application of (3.93b) yields the minimum delay value that can be synthesized by a causal FD
element of order N operating in the optimal intersample position range

D ≥ N − 1

2
. (3.105)

3.5.6 Summary
In this section, a unified description for the discrete-time filtering process underlying most VFD
and ASRC algorithms has been introduced. For this reason, the definition of several notations
such as basepoint sets, the calculation of the intersample position, and the discrete-time sample
indices involved in the convolution sum formed a major part. As an immediate benefit, these
representations enable FD filtering and ASRC to be described in a uniform way.
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However, the results of this section go beyond the scope of purely notational issues. The
notion of basepoint sets proves to be beneficial in providing a uniform notation for the different
specialized forms of the convolution sum and provides insight into the distinctions and special
requirements of these forms. Moreover, this formalism enables several properties of discrete
resampling filters to be characterized in general form. Examples include the optimal intersample
position range, the implementation delay, or the benefits of resampling filters with symmetric
continuous impulse responses.

3.6 Algorithms and Implementation Structures
In the Sections 3.3 and 3.4, variable fractional delay filtering and arbitrary sample rate conversion
have been characterized as two different approaches for delaying discrete-time sequences by
arbitrary values. Despite the differences between these approaches, the algorithms and imple-
mentation structures used for both approaches are identical in most cases. In this section, the
most widely-used implementation structures are characterized.

3.6.1 The Farrow Structure
The Farrow structure, proposed in [Far88], is a variable digital filter structure that is widely
used both in VFD filtering and ASRC applications. It is based on a FIR filter with coefficients
h(n,µ) that can be varied by means of a control variable. In case of the Farrow structure, the
intersample position µ is used as control variable, and the filter coefficients form a polynomial
of µ

h(n,µ) =
M∑

m=0

cmnµ
m for n = 0,1, . . . ,N . (3.106)

Here, N denotes the order of the FIR filter, M is the order of the polynomial, and cmn are the
coefficients of the polynomials h(n,µ). The coefficients cmn are compactly represented as a
coefficient matrix C of dimension (M + 1)× (N + 1)

C =




c00 c01 · · · c0N
c10 c11 · · · c1N
...

...
. . .

...
cM 0 cM 1 · · · cM N




. (3.107)

The transfer function H (z,µ) is given by

H (z,µ) =
N∑

n=0

h(n,µ)z−n (3.108a)

=
N∑

n=0

 
M∑

m=0

cmnµ
m

!
z−n . (3.108b)
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Exchanging the order of summation yields

H (z,µ) =
M∑

m=0

 
N∑

n=0

cmn z−n

!
µm (3.109a)

=
M∑

m=0

Cm(z)µ
m (3.109b)

with Cm(z) =
N∑

n=0

cmn z−n for m = 0,1, . . . ,N . (3.109c)

Here, Cm(z) denotes a set of M + 1 FIR filters that are commonly referred to as the subfilters of
the Farrow structure. The discrete-time frequency response of the filter structure is obtained by
evaluating H (z,µ) on the unit circle

H
�

e jω,µ
�
=

M∑
m=0

Cm

�
e jω
�
µm . (3.110)

Continuous-Time Impulse Response As stated in (3.106), the filter coefficients h(k ,µ) are
represented by polynomials

h(k ,µ) =
M∑

m=0

cmnµ
m for n = 0,1, . . . ,N .

Consequently, the continuous impulse response hc (t ) of the Farrow structure according to (3.97)
is a piecewise polynomial function

hc (t ) =





M∑
m=0

cmn

�
t

Ti
+ tn

�m

, (µmi n − tn)Ti ≤ t < (µmax − tn)Ti

0, otherwise
for n = 0,1, . . . ,N .

(3.111)

Introducing basis functions for piecewise polynomials that are zero outside a given interval

f (m,µ) =

(
µm , µmi n ≤µ<µmax

0, otherwise
(3.112)

enables a compact representation of hc (t )

hc (t ) =
N∑

n=0

M∑
m=0

cmn f
�

m,
t

Ti
+ tn

�
(3.113)

The basis functions f (m,µ) are defined in the style of [VS96b,VS07] but are not identical. In
the mentioned reference, the time t is used as input argument and is transformed internally.
In contrast, the basis function (3.112) uses the intersample position normalized to the input
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Operation Additions Multiplications Total

FIR filtering (M + 1)N (M + 1)(N + 1) (M + 1)(2N + 1)
Horner’s scheme M M 2M
Total M N +M +N M N + 2M +N + 1 2M N + 3M + 2N + 1

Table 3.1: Computational effort for the Farrow structure to compute one output sample.

sampling period as argument. In addition, the basepoint set notation enables arbitrary forms of
the convolution sum (3.96) as motivated in Section 3.5. The class of resampling filters defined by
a piecewise polynomial continuous impulse response is commonly denoted as polynomial-based
interpolation filters [VS96a,Ves99,VS07]. It is important to distinguish this class from polyno-
mial interpolation, such as Lagrange interpolation, which is based on fitting a polynomial to a set
of discrete points. While polynomial interpolation can be generally stated as a polynomial-based
interpolation filter, the converse does not hold. Consequently, polynomial-based interpolation
filters and thus the Farrow structure can be used to implement a more general class of resampling
filters, including polynomial interpolation as a subset.

Computational effort Using the Farrow structure, the calculation of one output sample
requires the evaluation of M + 1 FIR filters of order N and the evaluation of a polynomial of
order M , which is efficiently performed using Horner’s scheme. The computational costs are
summarized in Table 3.1. A block diagram for the implementation of the Farrow structure is
depicted in Figure 3.20.

z−1

µ

C0(z)CM (z) C1(z)

x[n]

y[n]

z−1

z−1

z−1 z−1

z−1

z−1 z−1

z−1

Figure 3.20: The Farrow structure.

3.6.2 The Modified Farrow Structure
A modification to the Farrow structure that reduces the computational complexity has been
proposed in [VS96a]. This structure is commonly denoted the modified Farrow structure.
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Although it has been initially proposed in the field of ASRC, this structure can be applied to FD
filtering as well. The main idea underlying this structure is to enforce coefficient symmetries in
the subfilters Cm(z) to enable more efficient realizations of these filters.

3.6.2.1 Original Form of the Modified Farrow Structure

In the original representation of this structure [VS96a,Ves99,VS07], a convolution sum of the
form (3.81) is used

y(t ) =

N−1
2∑

k=− N+1
2

x[n− k]hc
�
[µ+ k]Ti

�
with 0≤µ< 1 . (3.114)

Imposing symmetry conditions on the subfilters Cm(z)makes the continuous impulse response
hc (t ) symmetric with respect to zero. For this purpose, two measures are taken. First, the control
variable of the variable digital filter is made symmetric with respect to 0. Because the intersample
position µ is used as control variable in the original Farrow structure, a transformation is
introduced in [VS96a]

µ′ =
2t

Ti
− 1= 2µ− 1 . (3.115)

In this way, the range of the control variable is transformed from 0 ≤ µ < 1 to −1 ≤ µ′ < 1.
This corresponds to the use of a modified basis function for the description of the piecewise
polynomial impulse response hc (t ) (3.113)

f ′(m,µ) =

(
(2µ− 1)m , 0≤µ< 1
0, otherwise

. (3.116)

The apostrophe is introduced here to distinguish between the basis functions for the original and
the modified Farrow structure. In this way, the continuous impulse response for the modified
Farrow structure results in

hc (t ) =

N−1
2∑

n=− N+1
2

M∑
m=0

c ′mn f ′ (m,µ− n) , (3.117)

where c ′mn , 0 ≤ m ≤ M ,−N+1
2 ≤ n ≤ N−1

2 denote the elements of the coefficient matrix
C ′ = {c ′mn} of dimension (M + 1)× (N + 1).

The second measure to ensure the symmetry of the impulse response hc (t ) is to impose
symmetry and antisymmetry constraints on the elements c ′mn

c ′m(−n) =





c ′m(n−1), m even

−c ′m(n−1), m odd
= (−1)m c ′m(n−1) for − N + 1

2
≤ n ≤ N − 1

2
. (3.118)
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In the original derivation [VS96a] and following works by these authors, the modified Farrow
structure has been considered for odd filter orders N only. The even-order case has been
investigated in [GBLR04,BGR04]. However, the discrete convolution sum used for the modified
Farrow structure (3.114) is not applicable to even filter orders. Therefore, specific adaptations
are required for the index range of the convolution as well as for the calculation of the sample
index n and the intersample position µ.

3.6.2.2 Representation Using Symmetric Basepoint Sets

The representation of the modified Farrow structure described above requires an explicit trans-
formation of the intersample range and thus complicates analysis and comparison to other
resampling filters based on piecewise polynomial impulse responses. Furthermore, it is difficult
to generalize this description to arbitrary, that is even and odd, orders of N . Using the notation
of basepoint sets introduced in Section 3.5, it is possible to overcome these deficiencies.

The symmetric basepoint set defined in (3.89)

{tn}=
N

2
,

N

2
− 1, . . . ,−N

2

corresponds to a symmetric range of the intersample position − 1
2 ≤µ< 1

2 . Consequently, the
control variable is a unit-sized interval as in case of the original Farrow structure. Therefore,
it fulfills the required symmetry condition without an explicit transformation. Moreover,
this symmetry holds for even and odd values of N . Using this basepoint set, the modified
Farrow structure can be seen as a special case of the original Farrow structure that fulfills certain
coefficient symmetries, but is compatible otherwise. For this reason, the apostrophe is omitted
from the coefficient matrix C = {cmn} in order to distinguish it from C ′ = {c ′mn} (3.117).

The elements cmn are related to the coefficients c ′mn of the original form of the modified
Farrow structure by

cmn = 2m c ′
m(n− N+1

2 )
for 0≤ m ≤M and 0≤ n ≤N . (3.119)

This transformation accounts for the particular range of the index variable n in the represen-
tation (3.117) as well as for the translation of the control variable (3.115). It is noted that this
transformation differs from the relation stated in [VS00, VS07] which describes the transforma-
tion between the original Farrow structure with an intersample range 0≤µ< 1 and the filter
coefficients c ′mn .

In the symmetric basepoint form, the symmetry constraints of the modified Farrow structure
(3.118) are represented by

cm(N−m) = (−1)m cmn =

(
cmn , N even
−cmn , N odd

for 0≤ m ≤M and 0≤ n ≤N (3.120a)

Moreover, for even orders N , condition (3.120a) implies

c
m N

2
= 0 for N even and m odd . (3.120b)
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3.6.2.3 Discrete Frequency Response

As a result of the symmetry conditions (3.120), the subfilters Cm(z) of the modified Farrow
structure form linear-phase FIR filters. Specifically, for even m, Cm(z) is of type I for even N
and of type II for N odd. Likewise, for odd polynomial orders m, Cm(z) has type III or IV for
even or odd filter orders N , respectively. The condition (3.120b) coincides with the zero-valued
central tap of a type III linear-phase filter.

For linear phase filters, alternative representations for the discrete frequency response

H (e jω) =
N∑

n=0

c[n]e−jω

exist [MP73, Sar93, OSB99]. A form suitable for the representation of the modified Farrow
structure is

H (e jω) = e−jω N
2

N ′∑
n=0

b[n] trig (n,ω) , (3.121a)

where the trigonometric function trig(n,ω) is defined by

trig (n,ω) =





1, for type I, n = 0
2cos (nω) , for type I, n > 0
2cos

�
[n+ 1

2]ω
�

, for type II
2j sin (nω) , for type III
2j sin

�
[n+ 1

2]ω
�

, for type IV

. (3.121b)

The coefficients b[n] are related to the filter coefficients c[n] by

b[n] = c[N ′− n] for n = 0,1, . . . ,N ′ (3.122a)

c[n] =





b[N ′− n], 0≤ n ≤N ′

b[N ′−N + n] , N ′+ 1≤ n ≤N for type I and II
−b[N ′−N + n] , N ′+ 1≤ n ≤N for type III and IV

, (3.122b)

where N ′ determines the index range of b[n]

N ′ =
�N

2

�
=

(
N
2 , for type I and III (N even)
N−1

2 , for type II and IV (N odd)
. (3.123)

This representation is similar to those found in standard signal processing texts, e.g. [Sar93,
OSB99], but some modifications have been applied to make them more suitable for the modified
Farrow structure. First, the range of the summation index n = 0,1, . . . ,N ′ is made identical
for type I and III filters and for type II and IV filters, respectively. In this way, the expression
b[0] sin (0ω), which is invariably zero, is included in the expression for type III filters. However,
this term has no practical impact because the filter coefficient c[N

2 ] corresponding to b[0] is
restricted to zero by the antisymmetry conditions of type III linear-phase filters in any case.
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Second, the constant phase shift of π for type III and IV filters is included as leading term j in the
definition of the function trig(n,ω) (3.121b). In this way, the summation in (3.121a) does not
denote the zero-phase part of the frequency response, as, for instance, in [PB87, Sar93]. Instead,
the leading term e−jω N

2 represents only the pure delay common to all types of causal linear-phase
filters or, equivalently, the linear part of a system with generalized linear phase [OSB99].

Nonetheless, it is sensible to introduce the noncausal frequency response H (ω) of a linear-
phase FIR filter

H
�

e jω
�
= e−jω N

2 H (ω) with (3.124)

H (ω) =
N ′∑

n=0

b[n] trig (n,ω) . (3.125)

As argued above, H (ω) has to be distinguished from the zero-phase frequency response, although
its notation is adopted from [Sar93].

Using this representation, the discrete frequency response of the modified Farrow structure is
compactly expressed as

H (e jω,µ) = e−jω N
2

M∑
m=0

Cm(ω)µ
m with (3.126a)

Cm (ω) =
N ′∑

n=0

bmn trig(m, n,ω) , (3.126b)

where Cm(ω) denotes the noncausal frequency response of the linear-phase subfilter Cm(z). The
function trig(n,ω) is extended by an additional argument for the polynomial order m

trig (m, n,ω) =





1, for N even, m even, n = 0
2cos (nω) , for N even, m even, n > 0
2cos

�
[n+ 1

2]ω
�

, for N odd, m even
2j sin (nω) , for N even, m odd
2j sin

�
[n+ 1

2]ω
�

, for N odd, m odd

. (3.127)

Additionally, it is sensible to introduce the noncausal frequency response H (ω,µ) of the modified
Farrow structure that excludes the implementation delay of N/2 samples

H (ω,µ) =
M∑

m=0

Cm(ω)µ
m . (3.128)

It is related to H (e jω,µ) by
H (e jω,µ) = e−jω N

2 H (ω,µ) .

Due to the coefficient symmetries (3.120), the discrete frequency response of the modified
Farrow structure is determined by the elements bmn of a matrix B

B = {bmn} with 0≤ m ≤M and 0≤ n ≤N ′ , (3.129)
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h[N−2
2 ]

x[n]

h[1]

z−1 z−1

z−1z−1

h[0]

z−1

z−1

y[n]

h[N
2 ]

(a) Type I

−

x[n]

y[n]

h[1]

z−1 z−1

z−1z−1

z−1

h[0] h[N−1
2 ]

− −

(b) Type IV

Figure 3.21: Efficient direct-form structures for linear-phase FIR filters.

where the order N ′ is defined by (3.123). The elements of B are related to the entries cmn of the
Farrow coefficient matrix C by

bmn = cm(N ′−n) for 0≤ m ≤M , 0≤ n ≤N ′ (3.130a)

cmn =

(
bm(N ′−n) , 0≤ n ≤N ′

(−1)m bm(N−N ′+n) , N ′+ 1≤ n ≤N
for 0≤ m ≤M . (3.130b)

The antisymmetry condition for odd-order subfilters (3.120b) implies

bm0 = 0 for N even and m odd . (3.130c)

3.6.2.4 Continuous Impulse Response

The continuous impulse response of the modified Farrow structure is obtained by imposing
the coefficient symmetries (3.120) on the impulse response hc (t ) of the conventional Farrow
structure (3.113). For the original form of the modified Farrow structure, an adapted form for
hc (t ) has been proposed in [VS96a,VS07]. By constructing modified basis functions from the
basis functions f ′(m,µ) (3.116)

g ′(m, n, t ) =




(−1)m

�
2
h

t
Ti
+ n+ 1

i
− 1
�m

, −(n+ 1)Ti ≤ t <−nTi�h
2 t

Ti
− n
i
− 1
�m

, nTi ≤ t < (n+ 1)Ti

0 , otherwise

(3.131a)

= (−1)m f ′
�

m, t
Ti
+ n+ 1

�
+ f ′

�
m, t

Ti
− n
�

, (3.131b)

the impulse response hc (t ) can be expressed as

hc (t ) =

N−1
2∑

n=0

M∑
m=0

c ′mn g ′ (m, n, t ) . (3.132)

In this representation, only the elements c ′mn , 0≤ n ≤ N−1
2 , 0≤ m ≤M of the coefficient matrix

C ′ are utilized.
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Filter type Additions Multiplications Total

General FIR N N + 1 2N + 1
Type I N 1

2 N + 1 3
2 N + 1

Type II N 1
2 N + 1

2
3
2 N + 1

2
Type III N − 1 1

2 N 3
2 N − 1

Type IV N 1
2 N + 1

2
3
2 N + 1

2

Table 3.2: Computational effort for linear-phase FIR filters.

z−1

C0(z)

µ

x[n]

y[n]

CM (z) C1(z)

z−1

z−1

z−1

z−1 z−1

z−1

z−1

z−1

z−1 z−1

z−1

z−1 z−1 z−1

z−1z−1

z−1

Figure 3.22: Modified Farrow structure for an odd filter order N . The subfilters Cm(z) are
linear-phase FIR filters of type II and IV for even and odd m, respectively.

3.6.2.5 Computational Effort

The symmetry relations fulfilled by the coefficients of linear-phase filters permit more efficient
implementations compared to general FIR filters, essentially halving the number of required
multiplications [OSB99]. Moreover, optimizations due to zero coefficient values are applicable
in some cases. In Figure 3.21, implementation structures for type I and IV filter are shown
exemplarily. Table 3.2 lists the operation counts compared to general FIR filters.

Applying these filter implementations enables efficient realizations of the modified Farrow
structure. As an example, an implementation structure for N odd is shown in Figure 3.22. The
operation counts for modified Farrow structures of arbitrary orders are summarized in Table
3.3. These performance figures do not assume coefficient symmetries or special values such as 0
or 1 in addition to the conditions (3.120).

3.6.3 Lagrange Interpolation
Lagrange interpolation is widely used in signal processing to determine signal values between
discrete samples. It is applied both to FD filtering (see, among many others, [LVKL96,Väl95a,
Smi10a, KPPV07]) and to sample rate conversion [SR73, EGH93, TKC94]. As a primary
advantage, the coefficients of Lagrange interpolation filters can be calculated using explicit
formulas. In this way, it is well suited for applications where the intersample position changes at
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Operation Order N Additions Multiplications

FIR filters odd (M + 1)N (M + 1)N+1
2

even (M + 1)(N − 1)+ dM+1
2 e (M + 1)N

2 + dM+1
2 e

Horner’s scheme M M

Total odd (M + 1)N +M (M + 1)N+1
2 +M

even (M + 1)(N − 1)+ dM+1
2 e+M (M + 1)N

2 + dM+1
2 e+M

Table 3.3: Computational effort for the modified Farrow structure to compute one output
sample.

run time. As a second main advantage, the quality of Lagrange interpolators is very good at low
frequencies, thus making it an ideal choice for audio applications such as physical modeling of
musical instruments. If bandwidth of the signal is large, the quality of Lagrange interpolation
deteriorates. However, for such applications, Lagrange interpolation may be used as a building
block for more sophisticated algorithms. These structures are introduced in more detail in
Section 3.6.5.

This section describes properties and implementation structures for Lagrange interpolation.
Due to its widespread use, both directly and in combination with other techniques, the compu-
tational complexity of Lagrange interpolation is of major importance. Therefore, emphasis is
put on the performance measures of a large number of implementation structures. The material
presented in this section is mainly based on the article [Fra08].

3.6.3.1 Definition

Lagrange interpolation is one form of polynomial interpolation, a widely used method in
numerical analysis. Given a set of function values xn at N + 1 distinct abscissas tn , a unique
polynomial of order N is constructed that passes through the points (tn , xn), n = 0,1, . . . ,N .
Evaluation of this polynomial enables interpolation at arbitrary values t in the range [t0, tN ].
Due to the uniqueness of the interpolating polynomial, the results of different methods may
differ only because of numerical inaccuracies.

Lagrange interpolation is a specific form of polynomial interpolation that is based on the
evaluation of Lagrange polynomials [BT04]. However, in the field of signal processing, Lagrange
interpolation and polynomial interpolation are often used synonymously. In the following, this
definition will be adopted, and the term Lagrange interpolation will be used for all implementa-
tions that perform polynomial interpolation.

The Lagrange polynomials are defined as

lk (t ) =

∏N
i=0,i 6=k (t − ti )∏N

i=0,i 6=k (tk − ti )
for k = 0,1, . . . ,N . (3.133)

Interpolation based on these polynomials takes the form

y(t ) =
N∑

k=0

lk (t )x(tk ) . (3.134)
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Consequently, Lagrange interpolation can be readily expressed as a discrete-time FIR filtering
operation according to (3.83). In this way, the Lagrange polynomials lk (t ) form the filter
coefficients h(k ,µ), while the basepoints tk and the discrete samples x[n− k] form the abscissas
and ordinates of the data points determining the interpolation polynomial

y(t ) =
N∑

n=0

x[n− k]h(k ,µ) with (3.135a)

h(k ,µ) =

∏N
l=0,l 6=k (µ− tl )∏N
l=0,l 6=k (tk − tl )

for k = 0,1, . . . ,N . (3.135b)

3.6.3.2 Properties of Lagrange Interpolators

The Interpolation Condition According to the definition of polynomial interpolation, La-
grange interpolation inherently fulfills the interpolation condition (3.33) at the data points used
in the construction of the interpolating polynomial. In the notation of basepoint sets, this
condition is expressed as

y(tk ) = x[n− k] for k = 0,1, . . . ,N . (3.136)

This condition is equivalent to

h(n, tk ) =

(
1, k = n
0, k 6= n

. (3.137)

The interpolation condition can be used to derive the Lagrange polynomials (3.135b), see,
e.g. [Rut76, Väl95a, Fra08].

Maximal Flatness The property of maximal flatness implies that the approximation error
of a discrete filter of order N as well as its first N derivatives are zero at a predefined frequency
ω0 [Her92, Sar93, SAS04]. In order to obtain real-valued filter coefficients,ω0 may be chosen
either asω0 = 0 orω0 =π. For practical interpolators,ω0 = 0 is typically used [Her92,Väl95a],
corresponding to good quality at low frequencies.

The coefficients h(n,µ) can be derived using the condition of maximal flatness. In [Väl95a],
this has been performed for FD filtering using the natural numbers as basepoint set (3.87). Here,
we provide a derivation that holds for arbitrary basepoint sets.

The condition for maximal flatness is formally stated as

0=
d k

dωk

�
H (e jω,µ)− bH (e jω,µ)

����
ω=0

for k = 0,1, . . . ,N (3.138a)

0=
d k

dωk


 N∑

n=0

h(n,µ)e jωtn − e jωµ



�����
ω=0

for k = 0,1, . . . ,N . . (3.138b)

Note that no minus signs are present in the exponents in (3.138b) due to the use of the basepoints
tn and the intersample position µ, respectively. Differentiations and evaluation atω0 = 0 results
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in

N∑
n=0

h(n,µ)(jtn)
k − (jµ)k = 0 for k = 0,1, . . . ,N (3.139a)

N∑
n=0

h(n,µ)t k
n =µ

k for k = 0,1, . . . ,N . (3.139b)

The equations for the k = 0,1, . . . ,N can be combined into a matrix equation



t 0
0 t 0

1 . . . t 0
N

t 1
0 t 1

1 . . . t 1
N

...
...

. . .
...

t N
0 t 0

N . . . t N
N



·




h(0,µ)
h(1,µ)

...
h(N ,µ)



=




µ0

µ1

...
µN




. (3.140)

The matrix in (3.140) has the special structure of a Vandermonde matrix [Rut76,Rus89,PTVF92].
Since the basepoints tk are distinct, it is guaranteed to be uniquely solvable. Moreover, due to its
special structure, the solution of this matrix equation can be stated in explicit form

h(n,µ) =

∏N
k=0,k 6=n(µ− tk )∏N
k=0,k 6=n(tn − tk )

for n = 0,1, . . . ,N .

In this way, the coefficients obtained from enforcing the property of maximal flatness are identical
to the Lagrange polynomials (3.135b) resulting from the interpolation condition [MDRK93,
Väl95a]. Consequently, resampling filters designed with respect to a maximal flatness criterion
are identical to Lagrange interpolators.

Other notable properties of Lagrange interpolation are its equivalence to the sinc interpolator
windowed by a binomial window [KW96,DM99,DM00]. The property of passivity [Väl95a,
Smi10a], states that the magnitude response does not exceed unity when operated within the
optimal intersample position interval. This characteristic is of especial value in applications
where resampling algorithms are used in closed loops, because reliable bounds for the feedback
gain can be utilized to ensure the stability of the system.

Numerical Properties Because the results of polynomial interpolation are uniquely deter-
mined by the interpolating polynomial passing through the samples x[n], different implementa-
tions may vary only due to numerical errors. In the field of signal processing, no results on the
numerical accuracy of different implementation structures have been published so far.

In numerical analysis, numerical issues of polynomial interpolation in general and the La-
grange form in particular have been investigated extensively. The primary reasons of numerical
errors are Runges phenomenon, that is, the tendency of the interpolating polynomial to oscillate
between data points as the order N increases, and errors due to the accumulation of roundoff
errors [BT04,Hig04]. In particular, equidistant basepoint locations, as generally used in signal
processing applications, are characterized as prone to Runges phenomenon. Moreover, the
Lagrange form of polynomial interpolation is shown to be sensitive to roundoff errors unless
specialized forms of the Lagrange polynomials are used.
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However, these results are not directly applicable to digital signal processing, which is con-
cerned with bandlimited, equidistantly sampled signals and performs interpolation only in the
central interval of the basepoint set. A numerical analysis that accounts for these properties is
beyond the scope of this work.

3.6.3.3 Complexity Measures for Implementation Structures

To provide a meaningful comparison between different algorithms, a set of metrics has to be
defined.

The number of additions and multiplications to compute one output sample is used as the
primary measure for the computational complexity. For this purpose, calculation of the filter
coefficients h(n,µ) and the actual filtering operation are combined to yield a single set of
operation counts.

This corresponds to a mode of operation where the control variable µ potentially changes for
every output sample. While for some applications, especially for FD filtering, a separation of
these two steps might prove beneficial, it would hinder a uniform comparison because several
implementation structures combine these steps into a single, inseparable operation. Moreover,
an evaluation scenario where the intersample position changes with every output sample is
well-suited for ASRC as well as for FD applications with continuously changing delays.

On modern superscalar or parallel architectures or for hardware platforms such as FPGA or
VLSI architectures, the number of arithmetic operations is not sufficient to assess the suitability
of an algorithm for implementation. For this reason, the depth of the algorithm, that is, the
minimum number of sequential operations on an ideal parallel architecture [Ble96] is introduced
as an additional performance measure. The depth does not only assess the performance on explic-
itly parallel platforms, but also for instruction level parallelism features of most contemporary
processor architectures such as pipelining, superscalar execution or VLIW (very large instruction
word) instruction sets.

The minimum number of sequential steps of an algorithm is also a measure for the degree of
data dependency within an algorithm. If there are many dependencies, i.e., the depth is large,
instruction-level parallelism cannot be utilized efficiently. This becomes evident, for instance,
as pipeline stalls or, in case of superscalar or VLIW architectures, poor utilization of processor
resources.

For the calculation of the depth, operations with more than two operands are modeled as
balanced binary trees. In this way, an operation with N operands has a depth of dlog2(N )e.

3.6.3.4 Implementations based on the Evaluation of Lagrange Polynomials

Direct evaluation of the Lagrange polynomials (3.135b) is widely used for performing Lagrange
interpolation in signal processing [Väl95a, LVKL96, KPPV07].

In most implementations, a number of minor performance optimizations are applied [Väl95a,
Str00]. The denominator of the Lagrange polynomial is precalculated as a scaling coefficient

ck = 1/
N∏

l=0,l 6=k

(tk − tl ) for k = 0,1, . . . ,N . (3.141a)
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The N + 1 distinct differences of the numerator terms are computed once to be reused in the
calculation of different coefficients h(k ,µ)

dk =µ− tk for k = 0,1, . . . ,N . (3.141b)

Using these quantities, calculation of the coefficients and filtering is performed as follows:

pk =
N∏

l=0,l 6=k

dl for k = 0,1, . . . ,N (3.141c)

h(k ,µ) = ck pk for k = 0,1, . . . ,N (3.141d)

y(t ) =
N∑

k=0

h(k ,µ)x[n− k] . (3.141e)

Including the filtering operation, computing one output sample requires 2N + 1 additions
and N 2 + 2N + 1 multiplications. The depth of the associated implementation structure is
2dlog2(N )e+ 2. In [Väl95a, VH07], an optimization based on the reuse of two-term products
dn dn+1, n = 0,1, . . . ,N − 1 has been proposed. It reduces the number of operations to calculate
the coefficients h(n,µ) to less than N 2+N operations.

3.6.3.5 Methods Based on Barycentric Lagrange Interpolation

In [Her92], an explicit formula for the coefficients of maximally flat FD filters has been derived.
For Lagrange interpolation, which is a special case of a maximally flat FD filter withω0 = 0, the
filter coefficients h(n) are determined as

h(n) =βĥ(n) for n = 0,1, . . . ,N (3.142a)

ĥ(n) =

(
δ(n− d ), d integer
−1n N !

n!(N−n)!
1

d−n , otherwise
(3.142b)

β=

(
1, d integer
(−1)N

N !

∏N
k=0(d − k), otherwise

. (3.142c)

Here, δ(n) denotes the discrete-time impulse function, and N is the order of interpolation.
The term β is efficiently computed as

β=
1

∑N
n=0 ĥ(n)

. (3.143)

In the general case, that is, if d is not an integral value, 3N + 1 additions, 2N + 2 multiplications,
and N + 2 divisions are necessary for calculating the filter coefficients and evaluating one output
sample. Additionally, testing whether d is an integer requires at least one comparison. The
depth of the structure is 2dlog2(N + 1)e+ 4.

Introducing weighting variables

wn = (−1)n
N !

n!(N − n)!
, (3.144)
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enables (3.142a) to be written as

h(n) =
wn

n−d∑N
n=0

wn
n−d

. (3.145)

Thus, the FD filtering operation can be expressed as

y[n, d] =

∑N
k=0

wk
k−d x[n− k]
∑N

k=0
wk

k−d

. (3.146)

In the field of numerical analysis, (3.146) is known as the barycentric form of Lagrange interpo-
lation (sometimes denoted as the second or true form of the barycentric formula) [Rut76,BT04].
Barycentric Lagrange interpolation exhibits a number of favorable numerical properties. For
instance, the complexity is linear with respect to the order for fixed basepoint sets, as in case of
equidistantly sampled discrete-time signals. Additionally, the barycentric formula is numerically
more stable than the classical Lagrange formulation, if optimal, non-equidistant basepoint sets
are used [Hig04]. Nevertheless, as stated above, these numerical properties cannot be applied
directly to the interpolation of equidistantly sampled, bandlimited signals.

In [HV08], a similar algorithm, termed division-based method, is described

h(n) = cn

∏N
n=0(d − n)

d − n
, (3.147)

where cn denotes the scaling coefficient (3.141a). FD filtering based on formula (3.147) is
equivalent to the first form of the barycentric interpolation formula [Rut76].

Using the notation of basepoint sets, resampling by means of barycentric Lagrange interpola-
tion is expressed as

y(t ) =





x[n− k], µ= tk , k ∈ 0,1, . . . ,N∑N
k=0

ωk
µ−tk

x[n−k]
∑N

k=0
ωk
µ−tk

, otherwise
withωk =

N∏
l=0,l 6=k

(tk − tl ). (3.148)

Both forms of barycentric Lagrange interpolation require a relatively low number of op-
erations which is linear in N . Nevertheless, there is a number of drawbacks that limit their
applicability, especially for signal processing applications.

First, on most processor architectures, especially on DSP platforms, divide operations are
significantly slower than e.g., additions or multiplications. However, as argued in [HV08],
efficient methods to approximate divisions can be applied.

Second, a comparison is required to test whether the intersample position coincides with a
basepoint. In this case, the algorithm must take a different branch to avoid a division by zero.
This conditional execution is likely to degrade the computational efficiency on many CPU
architectures, especially on modern architectures with long execution pipelines. Moreover, it
complicates parallel processing on SIMD (Single Instruction, Multiple Data) architectures.

It is notable that, for floating-point arithmetic, the barycentric interpolation formula remains
stable if the intersample position is close to a basepoint tk , resulting in a division by a very
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small value. Although a denominator that converges to zero causes numerical problems in most
cases, the special structure of the barycentric formula prevents divergence or loss of precision
in the floating-point representation [Hen79,BT04,Hig04]. Therefore, an exact floating-point
comparison can be used to determine whether d is integer.

3.6.3.6 The Farrow Structure for Lagrange Interpolation

Because the filter coefficients h(n,µ) are polynomials, Lagrange interpolation falls into the class
of polynomial-based interpolation filters. Therefore, it can be implemented using the Farrow
structure characterized in Section 3.6.1. This implementation structure has been proposed
for Lagrange interpolation by many authors, including [EGH93, Väl95a, Den07a]. Because a
Lagrange interpolator of polynomial order N consists of N + 1 coefficients h(n,µ), the order
of the subfilters Cm(z) coincides with the polynomial order. Thus, the coefficient matrix is a
square (N + 1)× (N + 1)matrix.

The elements of the coefficient matrix C (3.107) can be determined from the Vandermonde
matrix equation (3.140). In [Väl95a], this derivation is performed for FD filtering applications
with a basepoint set corresponding to the natural numbers (3.87). Several methods have been
proposed to adapt this coefficient matrix to other intersample position ranges such as 0≤µ< 1
or − 1

2 ≤µ< 1
2 [Väl95b,Väl95a,Den07b]. These methods use the coefficient matrix obtained

for the natural numbers as basepoints and apply a matrix transformation to account for the shift
of the intersample position range. In [Den09], numerical issues in applying this transformation
are characterized and a numerically stable solution is proposed.

Here, a formula for the coefficient matrix is presented for arbitrary basepoint sets. This
method is based on the interpolation condition (3.137)

h(n, tk ) =

(
1, k = n
0, k 6= n

(3.149)

and the representation of the filter coefficients (3.106)

h(n,µ) =
M∑

m=0

cmnµ
m for n = 0,1, . . . ,N . (3.150)

Stating the interpolation condition (3.149) for all n = 0,1, . . . ,N and all basepoints tk , k =
0,1, . . . ,N , results in a matrix equation

C ·V T = I , (3.151)

where C denotes the coefficient matrix C (3.107), I is a (N + 1)× (N + 1) identity matrix, and
V T is the transpose of the Vandermonde matrix introduced in (3.140)

V T =




t 0
0 t 1

0 · · · t N
0

t 0
1 t 1

1 · · · t N
1

...
...

. . .
...

t 0
N t 1

N · · · t N
N




. (3.152)
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y[n]

C7(z) C4(z) C1(z)C6(z) C5(z) C3(z) C2(z) C0(z)

x[n]

µ2

µ4

µ

Figure 3.23: Farrow structure implementation for polynomial order M = 7 using Estrin’s scheme
for polynomial evaluation.

From the definition of the inverse matrix A−1 ·A= I , the coefficient matrix C follows directly

C = (V T )−1 . (3.153)

The existence and uniqueness of the solution is ensured because the basepoints tk are distinct.

Computational Effort For the Farrow structure applied to Lagrange interpolation, the com-
putational effort follows from the performance figures of Table 3.1, with the polynomial order M
being equal to the filter order N . In this way, N 2+2N additions and N 2+3N+1 multiplications
are required to compute one output sample. The depth of the structure is 2N+

�
log2(N + 1)

�
+1,

that is, linear with respect to the interpolation order. This unfavorable property results from the
sequential operation of Horner’s scheme that combines the outputs of the subfilters.

However, there are alternatives to Horner’s scheme that enable the parallel evaluation of
polynomials at the expense of a slightly increased operation count, see, e.g. [AS89,Mul97,Knu98].
For instance, Estrin’s scheme enables the evaluation of a polynomial of order N with a depth of
2dlog2(N + 1)e steps at the cost of blog2(N )c additional multiplications to compute the powers
µ2k

, k = 1, . . . ,blog2(N )c.
In this way, the depth of the Farrow structure is reduced to 3dlog2(N+1)e+1, and the number

of multiplications is increased to N 2+ 3N + blog2(N )c+ 1 per sample. In Figure 3.23, a Farrow
structure of polynomial order M = 7 based on Estrin’s scheme is shown.

3.6.3.7 The Modified Farrow Structure for Lagrange Interpolation

As stated in Section 3.6.2, symmetry relations in the coefficient matrix C can be utilized to
implement the Farrow structure more efficiently. It has been shown that these symmetries
correspond to a symmetric range of the control variable of the variable digital filter. In the
original form of the modified Farrow structure [VS96a], this symmetric range is obtained by a
transformation of the intersample position µ.

However, as derived in Section 3.5, a symmetric intersample position range− 1
2 ≤µ< 1

2 is also
achieved if a symmetric basepoint set (3.89) is utilized. In this case, solving the matrix equation
(3.153) yields a coefficient matrix C that fulfills the symmetry conditions (3.120). Consequently,
Lagrange interpolation can be implemented by means of the modified Farrow structure if a
symmetric basepoint set is used.
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Computational Effort Basically, the number of additions and multiplications follows from
the complexity of the modified Farrow structure displayed in Table 3.3 for M =N . However,
for even orders N , the matrix exhibits a characteristic structure that can be utilized for a further
reduction of the arithmetic complexity. As an example, the coefficient matrix for N = 4 is given
by

C =




0 0 1 0 0
1
12 − 2

3 0 2
3 − 1

12− 1
24

2
3 − 5

4
2
3 − 1

24− 1
12

1
6 0 − 1

6
1
12

1
24 − 1

6
1
4 − 1

6
1
24




.

It is observed that the subfilter Co(z) consists of a single unity-valued central tap c0(N/2) = 1
and is zero otherwise. This special structure results from the interpolation condition (3.137)
applied to the parametric description of the filter coefficients of the Farrow structure (3.106).
The zero-valued central taps for odd m follow from the symmetry conditions for the modified
Farrow structure (3.120b). For these reasons, the number of additions and multiplications is
reduced to N 2 +N and 1/2N 2 + 3/2N , respectively. For odd orders N , the coefficient matrix
does not exhibit particular patterns compared to a general modified Farrow structure. Thus, the
number of additions and multiplications for odd N amounts to N 2+ 2N and 1/2N 2+ 2N + 1/2,
respectively.

The depth of the implementation structure is identical to the original Farrow structure, that
is, 2N + dlog2(N + 1)e+ 1. Likewise, the comments on reducing the depth by using parallel
algorithms for the evaluation of a polynomial apply unaltered.

3.6.3.8 Farrow Implementation Structure for Lagrange Interpolation [Väl95b] for
Lagrange interpolation

In [Väl95b], a transformation for the Farrow coefficient matrix for Lagrange interpolation has
been proposed that enables a more efficient implementation. For N even, this transformation
results in an intersample position range − 1

2 ≤µ< 1
2 . Thus, the resulting structure is identical to

the modified Farrow structure as described above. For odd N , the intersample position range is
0≤µ< 1, and the structure of C is more complex. As an example, the coefficient matrix for
N = 5 reads

C =




0 0 0 1 0 0
1
30 − 1

4 1 − 1
3 − 1

2
1
20

0 − 1
24

2
3 − 5

4
2
3 − 1

24− 1
24

7
24 − 7

12
5
12 − 1

24 − 1
24

0 1
24 − 1

6
1
4 − 1

6
1
24

1
120 − 1

24
1
12 − 1

12
1
24 − 1

120




.

First, the coefficients for m = 0 are zero except for cm(N+1)/2 = 1. Second, for higher even orders
of m, the subfilter coefficient fulfill

cmn =

(
0, n = 0
cm(N−[n−1]), n = 1,2, . . . ,N

.
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z−1

1
2

−1

z−1x[n]

d

y[n]

z−1

1
N

−N + 1

− − −

Figure 3.24: Modular linear-time implementation structure for Lagrange interpolation [TD97]
for fractional delay filtering.

Consequently, the subfilters Cm(z) can be implemented as type I linear-phase filter of order
N − 1 for m even, m ≥ 2. For m odd, no specific symmetry relations hold.

Computational Effort For N even, the structure and thus the computational cost is identical
to the modified Farrow structure, thus the numbers of additions and multiplications are given
by N 2+N and 1/2N 2+ 3/2N , respectively. For N odd, the computational costs result from the
structure of the coefficient matrix described above. N 2+1/2N+1/2 additions and 3/4N 2+2N+1/4
multiplications are required to compute one output sample if N is odd.

The depth of the structure is identical to the original and the modified Farrow structure.

3.6.3.9 Implementation Structures based on Newton’s Interpolation Formula

In [DT96, TD97], an implementation structure on the power series expansion of a Lagrange
interpolation filter has been proposed. This structure is derived in the context of FD filtering.
The interpolation filter HN (z, d ) of order N

HN (z, d ) =
N∑

n=0

d (d − 1) · · · (d − [N − 1])

n!

�
z−1− 1

�−n
(3.154a)

can be stated in recursive form

HN (z, d ) =





1, N = 0

HN−1(z, d )+
d (d − 1) · · · (d − [N − 1])

k!
(z−1− 1)−N , N > 0

. (3.154b)

From this recursive representation, a modular implementation structure is derived by applying
Horner’s scheme to a polynomial consisting of powers of (z−1− 1)−1. The resulting structure is
shown in Figure 3.24. An identical structure has been proposed in [Can07].

Equivalence to Newton’s Interpolation Formula In [LR09], the equivalence of this struc-
ture to Newton interpolation has been shown. Newton interpolation is an alternative form of
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N − 1

z−1z−1

H&S H&SH&S

z−1

H&S

y[n]

x[n]
1
3

1
2

1
N

− − −

µ

1

Figure 3.25: Modular linear-time structure for Lagrange interpolation for time-variant intersam-
ple positions [LR09].

polynomial interpolation, and thus functionally equivalent to Lagrange interpolation, [Rut76,
WR66]. For equidistant sequences x[n], it is given by

f (n+µ) =
N∑

k=0

1

k!
∇k x[n]

k−1∏
l=0

(µ+ l ) , (3.155)

where∇k denotes the backward difference operator of order k

∇k f (x) =

(
f (x) , k = 0
∇k−1 f (x)−∇k−1 f (x − 1) , k ≥ 1

. (3.156)

It is easy to observe that the structure of Figure 3.24 implements Newton’s interpolation formula.
The components 1− z−1 represent backward difference operators, and cascades of these blocks
implement backward differences of higher orders.

Computational Effort A single module consists of one delay element, three additions and
two multiplications. In the first block, some operations are omitted as they represent trivial
operations. In this way, computation of one output sample requires 3N − 1 additions and
2N − 1 multiplications. The depth of the structure is 2N − 1, because the blocks of the modular
implementation have to be processed sequentially.

Discussion Despite this very low instruction count, this structure shows a number of deficien-
cies that severely limits its application for general-purpose FD and ASRC applications. First, the
linear depth of 2N − 1 hinders efficient parallel implementation or increases the latency of the
system. Second, the state of the algorithm, represented by the values of the delay elements z−1,
depends on the current fractional delay value d or the intersample position µ in case of ASRC
applications. In this way, the output samples depend on previous intersample positions, leading
to transients if the fractional part d is changed.

Modification for Time-Variant Intersample Positions Motivated by this deficiency, a
modification of this structure, also based on Newton interpolation, has been proposed in [LR09].
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y(n)

c0

−b0

c1 c4c3c2

z−1 z−1 z−1 z−1

−b4−b3−b2−b1

x(n)

d

Figure 3.26: Linear-complexity implementation structure for Lagrange interpolation (Order
N = 4).

Basically, the dependence on previous intersample positions is avoided by factoring the
operations dependent on µ (or d ) out of the delay-line-like structure containing the backward
differences. The resulting structure is shown in Figure 3.25. A basically identical structure for
FD filtering has been proposed independently in [CD10].

The H&S (hold and sample) elements decouple the processing for each input sample from the
processing of an output value. Consequently, they are required only in case of ASRC algorithms
where these operations occur asynchronously. For FD filters, that is, synchronous discrete-time
systems, they can be replaced by simple lines.

The number of instructions is identical to the original form. However, the depth is increased
to 4N − 1, since the calculation of an output sample is also sequential and has to be performed
after the computation of an input sample is completed.

For FD or ASRC applications that operate on variable-length delay lines with arbitrary access,
both structures based on Newton’s interpolation show an additional disadvantage. Irrespective of
its dependency on the intersample position, the state contained in the delay elements z−1 of the
backward differences depends on its position within this delay-line-like structure. Consequently,
an arbitrary access which is required for instance for variable output times or multiple accesses
to the same delay line is not possible.

3.6.3.10 Linear-Complexity Methods based on Lagrange Polynomials

An algorithm requiring a linear number of operations that is based on the evaluation of the
Lagrange polynomials (3.135b) has been proposed in [MKT97]. Compared to the direct evalua-
tion of these polynomials as described in Section 3.6.3.4, this complexity reduction is achieved
by a systematic reuse of partial results that occur in the calculation of the product terms pk (µ)
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(3.141c)

pk (µ) =
∏

l=0,l 6=k

�
µ− tl

�
k = 0,1, . . . ,N (3.157a)

= fk · rk k = 0,1, . . . ,N , (3.157b)

where the variables fk and rk are referred to as forward partial products and reverse partial products,
respectively. They are defined as

fk =
k−1∏
l=0

�
µ− tl

�
=

k−1∏
l=0

dl (3.158a)

rk =
N∏

l=k+1

�
µ− tl

�
=

N∏
l=k+1

dl , (3.158b)

where dl denotes the difference terms (3.141b). Based on these intermediate values, an algorithm
for the computation of the filter coefficients h(k ,µ) is constructed

f0 = 1 (3.159a)
fk = fk−1dk−1 for k = 1, . . . ,N (3.159b)

rN = 1 (3.159c)
rk = rn+1dk+1 for k =N − 1, . . . , 0 (3.159d)
pk = fk rk for k = 0, . . . ,N (3.159e)

h(k ,µ) = ck pk for k = 0, . . . ,N , (3.159f)

where the scaling coefficients ck are given by (3.141a). An implementation structure for this
algorithm, including the discrete filtering, is shown in Figure 3.26. Basically the same algorithm
has been proposed independently in [Str00].

Computational Effort Including the filtering operation, computing one output sample re-
quires 2N + 1 additions and 5N − 1 multiply operations. Thus, the asymptotic complexity is
O(N ), that is, linear with respect to the filter order. In contrast to the linear-complexity algo-
rithms shown in Sections 3.6.3.5 and 3.6.3.9, this algorithm is suitable for general-purpose appli-
cations with time-varying intersample positions and does not require operations such as divisions
or conditional execution. The depth of the implementation structure is N + dlog2(N + 1)e+ 2,
that is, O(N ). This relatively large value is due to the sequential evaluation of the forward and
reverse partial products (3.159b) and (3.159d) that is also observed in Figure 3.26.

3.6.3.11 A Parallel Linear-Complexity Implementation Structure

The linear-time implementation presented in the preceding section is highly sequential, thus
limiting its efficiency on many hardware platforms. For this reason, we present a processing
scheme for computing the product terms pk (3.157a) that adopts the reuse of the partial products
but permits a highly parallel computation. This structure has been initially proposed in [Fra08]
and is derived in a formal way in [Fra10]. Here, the structure is introduced in an informal way
only.
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h(k ,µ)

Product stage P (N + 1)

µ Differences

Scaling

FIR filteringx[n] y[n]

dk

pk

(a) General processing scheme

P (M ) P (M2 )

(b) Recursion for P (M ), M even

P (M+1
2 )P (M )

(c) Recursion for P (M ), M odd

(d) Terminating case for P (M ), M = 2

Figure 3.27: Parallel linear-complexity structure for Lagrange interpolation.

A similar algorithm which shares some characteristics with the linear-complexity structure
characterized in Section 3.6.3.10 and some with the structure described here has been proposed
independently in [HV08]. However, the emphasis on parallel evaluation is a unique feature of
the parallel linear-complexity structure.

Derivation Alike the linear-complexity structure described in Section 3.6.3.10, the proposed
parallel structure can be partitioned into distinct stages as shown in Figure 3.27a. After calculat-
ing the difference terms dk (3.141b), the M =N + 1 products pk are computed in the product
stage P (M ). Here, M denotes the number of in- and outputs. Scaling the results of this stage
with the constants ck (3.141a) yields the filter coefficients h(k ,µ) (3.141d), which are used in a
FIR filtering process to compute an output sample y[n].

Thus, the distinction to existing methods lies in the product stage P (M ) that enables a highly
parallel evaluation. For this purpose, the structure P (M ) is defined recursively as shown in Figure
3.27b. Pairs of adjacent inputs are multiplied and used as input for a product stage P (dM/2e) with
dM/2e in- and outputs. The outputs of P (dM/2e) are multiplied with the respective inputs of P (M )
and exchanged pairwise.

If M is odd, then the last input is passed directly to the last input P (dM/2e). Likewise, the last
output of P (dM/2e) is used as the respective output of P (M ) as shown in Figure 3.27c.

Using this recursion, the terminating case for P (M ) with M = 2 is reached after

K(M ) =

(
0 , M ≤ 2�

log2(M )
�− 1 , M > 2

(3.160)
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−t7

c0 c1 c2 c7

−t1 −t4−t0

c3 c4 c5 c6

z−1 z−1 z−1 z−1 z−1 z−1 z−1

y[n]

x[n]

µ

−t2 −t3 −t5 −t6

Figure 3.28: Parallel linear-complexity structure for Lagrange interpolation, order N = 7.

nontrivial stages. P (2) performs an exchange of its two inputs as shown in Figure 3.27d and does
therefore not require arithmetic operations.

The resulting structure for a complete Lagrange interpolation filter is shown in Figure 3.28
for N = 7.

Complexity analysis The number of operations, that is, multiplications, in the product stage
is denoted M p y(M ) and follows from the recursive definition of P (M )

M p y(M ) =





0 , M ≤ 2
3
2 M +M p y

�
M
2

�
, M even

3
2 (M − 1)+M p y

�
M+1

2

�
, M odd

, (3.161)

which can be transformed by mathematical induction into an explicit expression

M p y(M ) =

(
0 , M ≤ 2
3(M − 2) , M < 2

. (3.162)

Combined with the other processing stages, the total number of instructions to compute one
output sample amounts to 2N + 1 additions and 5N − 1 multiplications. Hence, it is identical to
the sequential linear-complexity algorithm described in the preceding section. This confirms
that the product stage is just an alternative way to compute the product terms pk . That is, this
stage performs basically the same operations as the sequential algorithm.

As apparent in Figures 3.27b and 3.27c, each nontrivial stage of the product stage requires two
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y[n]

c0 c1 c2

−t0 −t1 −t2 −t4

c4c3

−t3

z−1 z−1 z−1 z−1x[n]

µ

Figure 3.29: Parallel linear-complexity structure for Lagrange interpolation, order N = 4.

sequential operations. Thus, the depth D(M ) of the product stage P (M ) results in

D(M ) =

(
0 , M ≤ 2
2K(M ) , M > 2

. (3.163)

where K(M ) = dlog2(M )e− 1 (3.160) denotes the number of stages. As a consequence, the depth
of the complete structure including FIR filtering amounts to 3dlog2(N + 1)e+ 1.

A remarkable characteristic of this structure is that the complexity is a linear and thus strictly
monotonic function of the interpolation order N . Although the multiplier structure is derived
by a recursive bisection, its complexity does not degrade if the problem size, that is, the number
of operands M =N + 1, is not a power of two or a highly composite number. This property is
in contrast to most algorithms based on a divide-and-conquer strategy, for instance many FFT
algorithms.

Contrary to divide-and-conquer algorithms, which divide a problem into two or more smaller
subproblems, the proposed multiplier structure transforms a problem into a single subproblem.
This strategy is often referred to as decrease-and-conquer, e.g. [Lev07]. The linear complexity as
well as its straightforward adaptation to arbitrary problem sizes are direct consequences of this
strategy. To illustrate this adaptation, the implementation structure for a Lagrange interpolation
filter of order N = 4, utilizing a multiplier stage with M = 5 inputs, is shown in Figure 3.29.

Complexity Reduction Using Coefficient Symmetries The performance of the proposed
structure can be further improved by exploiting symmetries in the scaling coefficients ck (3.141a)

ck = 1/
N∏

l=0
l 6=k

(tk − tl ) for k = 0,1, . . . ,N .
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−t6

c0

z−1 z−1 z−1 z−1 z−1 z−1 z−1

c3c2c1

−t7 −t1 −t5

x[n]

−t4

µ

−t0 −t2

y[n]

−t3

Figure 3.30: Parallel linear-complexity structure for Lagrange interpolation with reduced scaling
effort, order N = 7.

In [Fra08, Appendix 2], a relation between the coefficients ck and cN−k is derived which holds
for arbitrary basepoint sets

cN−k =

(
ck , N even
−ck , N odd

for k = 0,1, . . . ,N . (3.164)

If the difference terms dk , which form the inputs to the multiplier structure, are grouped
according to this coefficient symmetry, the scaling operation can be shifted before the final
multiplication in the stage P (N +1). The resulting structure is shown in Figure 3.30. In this way,
the scaling effort is reduced to dN+1

2 e operations, resulting in an overall number of 4N+dN+1
2 e−1

multiplications. For odd filter orders N , half of the additions in the FIR filter have to be replaced
by subtractions due to the antisymmetry of (3.164). However, it is assumed that this change can
be incorporated into the FIR filter without additional effort in most applications. The number
of additions as well as the depth of the structure is not affected by this optimization.

3.6.3.12 Performance Comparison

The instruction counts and the depth for the implementation structures considered in this
section are shown in Figure 3.31. The corresponding formulas are summarized in Table 3.4.

With respect to the number of instructions, the algorithms fall into two categories. While
the method based on the evaluation of the Lagrange polynomials and all variants of the Farrow
structure have a complexity of O(N 2), the other methods show a growth linear to the filter order.
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Algorithm Section Label

Classical formula 3.6.3.4
Barycentric formula 3.6.3.5
Farrow Structure 3.6.3.6
Modified Farrow structure 3.6.3.7
Farrow implementation structure 3.6.3.8
Newton’s interpolation formula 3.6.3.9
Sequential linear-complexity structure 3.6.3.10
Parallel linear-complexity structure 3.6.3.11
Parallel linear-complexity structure, reduced scaling effort 3.6.3.11

Figure 3.31: Computational effort of implementation structures for Lagrange interpolation.



i
i

“main_report” — 2012/1/30 — 9:09 — page 85 — #105 i
i

i
i

i
i

3.6 Algorithms and Implementation Structures 85

A
lg

or
ith

m
Se

ct
io

n
N

A
dd

iti
on

s
M

ul
tip

lic
at

io
ns

D
ep

th
R

em
ar

ks

C
la

ss
ic

al
Fo

rm
ul

a
3.

6.
3.

4
2N
+

1
N

2
+

2N
+

1
2dl

og
2(

N
+

1)
e+

2

Ba
ry

ce
nt

ri
c

La
gr

an
ge

In
te

rp
ol

at
io

n
3.

6.
3.

5
3N
+

1
2N
+

2
2dl

og
2(

N
+

1)
e+

4
a

Fa
rr

ow
st

ru
ct

ur
e

3.
6.

3.
6

N
2
+

2N
N

2
+

3N
+

1
2N
+
dlo

g 2(
N
+

1)
e+

1

M
od

ifi
ed

Fa
rr

ow
st

ru
ct

ur
e

3.
6.

3.
7

od
d

N
2
+

2N
1 /

2N
2
+

2N
+

1 /
2

2N
+
dlo

g 2(
N
+

1)
e+

1

ev
en

N
2
+

N
1 /

2N
2
+

3 /
2N

2N
+
dlo

g 2(
N
+

1)
e+

1

Fa
rr

ow
im

pl
em

en
ta

tio
n

st
ru

ct
ur

e
[V

äl
95

b]
3.

6.
3.

8
od

d
N

2
+

1 /
2N
+

1 /
2

3 /
4N

2
+

2N
+

1 /
4

2N
+
dlo

g 2(
N
+

1)
e+

1

ev
en

N
2
+

N
1 /

2N
2
+

3 /
2N

2N
+
dlo

g 2(
N
+

1)
e+

1

N
ew

to
n’

si
nt

er
po

la
tio

n
fo

rm
ul

a
3.

6.
3.

9
3N
−1

2N
−1

2N
+

1

Se
qu

en
tia

ll
in

ea
r-

co
m

pl
ex

ity
st

ru
ct

ur
e

3.
6.

3.
10

2N
+

1
5N
−1

N
+
dlo

g 2(
N
+

1)
e+

2

Pa
ra

lle
ll

in
ea

r-
co

m
pl

ex
ity

st
ru

ct
ur

e
3.

6.
3.

11
2N
+

1
5N
−1

3dl
og

2(
N
+

1)
e+

1

Pa
ra

lle
ll

in
ea

r-
co

m
pl

ex
ity

st
ru

ct
ur

e,
sy

m
m

et
ri

c
3.

6.
3.

11
2N
+

1
4N
+
dN
/2
e−

1
3dl

og
2(

N
+

1)
e+

1

Ta
bl

e
3.

4:
C

om
pl

ex
ity

of
im

pl
em

en
ta

tio
n

st
ru

ct
ur

es
fo

r
La

gr
an

ge
in

te
rp

ol
at

io
n.

a A
dd

iti
on

al
ly

,N
+

1
di

vi
si

on
sa

nd
on

e
co

m
pa

ri
so

n
ar

e
re

qu
ir

ed



i
i

“main_report” — 2012/1/30 — 9:09 — page 86 — #106 i
i

i
i

i
i

86 Chapter 3 State of the Art: Delaying Discrete-Time Sequences

Among these, the methods based on barycentric Lagrange interpolation require special opera-
tions such as divisions or conditional execution, which are costly on many target architectures.
The methods based on Newton’s interpolation formula exhibit an extremely low instruction
count, but are not suited for general-purpose applications such as variable-length delay lines
with arbitrary access. In addition, the large depth value, that is, the number of sequential steps
required on a parallel architecture, makes these algorithms ill-suited for parallel, superscalar
or pipelined architectures. While variants of this algorithm that enable transient-free variable
delays have been proposed recently, these modifications increase the depth of the structures
further. The sequential linear-time algorithm described in Section 3.6.3.10 shows a relatively low
complexity and is suited for general-purpose arbitrary delay operations. However, the depth
linear to the filter deteriorates the efficiency on architectures with explicit or implicit parallelism.
The proposed parallel linear-complexity implementation structure is based on this sequential
algorithm, but overcomes the strong sequential dependencies. Moreover, this algorithm can be
optimized further by exploiting coefficient symmetries, which is not possible for the sequential
linear-complexity algorithm. In this way, this proposed structure forms a sensible choice for
general-purpose applications on many contemporary platforms, including explicitly parallel, but
also superscalar, pipelined, or SIMD architectures.

A key message of this section is that there exist several linear-complexity algorithms for
Lagrange interpolation suitable for general-purpose FD or ASRC applications. Therefore, al-
gorithms with complexity O(N 2), such as all variants of the Farrow structure, should not be
considered as an efficient way to implement Lagrange interpolation even for low or moderate
filter orders. Furthermore, Lagrange interpolators can be implemented more efficiently than
general resampling filters of comparable order. In this way, Lagrange interpolation is an interest-
ing candidate for many VFD and ASRC applications, in particular if it is utilized as a building
block within more sophisticated algorithms.

3.6.4 Splines for Signal Processing
Spline functions are a fundamental tool in numerical analysis and many other applications of
digital computers, for instance computer graphics or computer aided design. The basic purpose
of splines is to interpolate or approximate a sequence of function values by a smooth function
that is composed of piecewise polynomials. Thus, it is well suited for the delay interpolation
problems considered here. The degree of smoothness, which is quantified by the number of
continuous derivatives of the interpolating or approximating function, can be controlled by the
order of the spline function and other parameters of the particular method in use.

The work of Hou and Andrews [HA78] marks the first influential use of splines in signal
processing. Further developments [UAE91, AUE92,UAE93a,UAE93b] proposed spline inter-
polation in the framework of digital filtering. [Uns99] provides an extensive survey of splines
in the context of digital signal processing. However, this research is mainly focused on image
processing, and the use of splines for other signal processing applications has been relatively
limited.

In audio signal processing, use of splines for fractional delay filtering or resampling has been
evaluated for instance in [ZB94] and [WBJ99]. In [LVKL96], splines are considered non-optimal
from the frequency-domain viewpoint. For arbitrary sample rate conversion, spline interpolators
are, among others, investigated in [Eva00b] and [VS07]. Again, they are primarily regarded
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as time-domain interpolation methods that lack frequency-domain properties as required for
general-purpose signal processing applications.

3.6.4.1 Spline Representations of Functions

The concept of splines has been introduced by I.J. Schoenberg [Sch46a,Sch46b] to interpolate or
approximate smooth functions from discrete data. In its most general form, a spline function is
represented by [Sch46a, Uns99]

y(t ) =
∞∑
−∞

c[n]βN (t − n) , (3.165)

where c[n] denotes a set of coefficients and βN (t ) is a basis function of order N .
In this original form, splines are derived for equidistant data points. While subsequent

developments in the field of numerical analysis often focus on arbitrary, possibly coinciding
sampling instants (see, e.g. [Sch73, dB76, Boo01b, Sch07]), the equidistant case (3.165) is most
appropriate for use in discrete-time signal processing, where discrete sequences are typically
associated with equidistantly sampled functions.

In (3.165), the sequence c[n] denotes the spline coefficients (or B-spline coefficients [UAE93a,
Uns99]), which are computed from, but are distinct from, the discrete-time signal x[n] to be
approximated. In this way, spline interpolation or approximation is invariably a two-stage
process: In the first stage, a discrete set of coefficients is calculated, while in the second stage,
these coefficients are used to reconstruct the function at arbitrary instants. However, if the
first stage is left out, and the sample values x[n] are used as spline coefficients instead, the
quality of the resampling process deteriorates. In fact, this omission led to numerous misleading
conclusions about the quality of spline methods for signal processing. In [AUE92, UAE91],
errors due to this misconception are reported in the field of image processing, where omitting
the coefficient calculation step leads to increased image blurring. For audio signal processing,
[ZB94, WBJ99, PVN+10] report a roll-off of the frequency response towards higher frequencies,
which is in fact due to the missing transformation into spline coefficients.

3.6.4.2 Spline Basis Functions

The terms βN (t ) in equation (3.165) are referred to as the basic functions, basic spline functions
[Sch46a], fundamental spline functions [CS66] or B-splines [dB76,Uns99,Mei02]. Because the
use of terms “B-spline” or “B-spline interpolation” apparently led to considerable confusion,
βN (t ) will be referred to as “spline basis function” or “B-spline basis function” exclusively in
the following. Spline basis functions βN (t ) of order N are piecewise polynomial functions
of polynomial order N which are continuous and N − 1 times continuously differentiable.
Being linear combinations of spline basis functions, spline functions according to (3.165) are
consequently also smooth and N − 1 times continuously differentiable.

In [Sch46a], the spline basis functions are introduced as

βN (t ) =
1

N !
δN+1 t N

+ , (3.166)
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where δk denotes the k-th order central difference operator with unit step size [WR66, AS65]

δk f (x) =

(
f (x), k = 0
δk−1 f

�
x + 1

2

�−δk−1 f
�

x − 1
2

�
, k > 0

. (3.167)

It is notable that in this definition, the locations of the function values are not adjusted to integer
displacements f (x + n), n ∈Z of the argument as, for instance, in [AS65]. Therefore, f (x) is
evaluated at integral values of x for k even, but at positions halfway between the integers, that is,
x = n+ 1

2 , n ∈Z, for k odd. The recursive definition (3.167) can be stated in explicit form as

δk f (x) =
k∑

n=0

(−1)n
�k

n

�
f
�

x +
k

2
− n
�

. (3.168)

The term t N
+ of equation (3.166) denotes the one-sided power function [Uns99] or truncated

power basis [Boo01b]

xn
+ =

(
xn , x ≥ 0
0, x < 0

(3.169a)

=H (x) xn , (3.169b)

where the latter form utilizes the Heaviside step function or unit step function H (x) [Bra00]

H (x) =





0, x < 0
1
2 , x = 0
1, x > 0

. (3.170)

Applying the explicit form of the central difference operator (3.168) to (3.166) yields an explicit
expression for the B-spline basis function of order N [Uns99]

βN (t ) =
1

N !

N+1∑
n=0

(−1)N
�N + 1

n

��
t +

N

2
− n
�N

+
. (3.171)

The spline basis functions for N = 0, . . . , 3 are shown in Figure 3.32. It is noted that βN (t )
represent the central or symmetric spline basis functions because they are symmetric with
respect to t = 0. While other definitions, such as causal splines that are non-zero only for
t ≥ 0 (e.g. [Sch73,BTU01]), are used in literature, symmetric B-spline basis functions are used
exclusively in this work. In this way, the advantageous properties of resampling functions with
symmetric impulse responses described in Section 3.5.4 apply.

Symmetric spline basis functions exhibit several noteworthy properties. They are real func-
tions and are nonnegative on the complete real axis. Moreover, they have compact support.
In particular, they are non-zero only in the interval [−N+1

2 , N+1
2 ]. Moreover, as the functions

βN (t ) are N − 1 times continuously differentiable, they belong to the class

βN (t ) ∈C N−1, (3.172)
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Figure 3.32: Symmetric spline basis functions for orders N = 0, . . . , 3.

where C k denotes the class of functions that are k times differentiable with a continuous k-th
derivative (e.g. [Pow91]). This follows from xN

+ ∈C N−1 and the linearity of the central difference
operator [Nør24]. Moreover, the N -th derivative ofβN (t ) is discontinuous only at the junctions
between the polynomial segments, which are commonly referred to as the knots of the spline
(e.g. [Sch73, UAE91, Uns99]). For symmetric B-splines, the knots are located at

t = n− N + 1

2
for n = 0,1, . . . ,N + 1 , (3.173)

that is, they lie on integer values of t for odd N while they reside halfway between the integers
for even N .

As observed in Figure 3.32a, the spline basis function of order 0 is a unit rectangle function,
which is defined as [Bra00]

Π(x) =





1, |x|< 1
2

1
2 , |x|= 1

2
0, |x|> 1

2

(3.174a)

or, equivalently, using the unit step function (3.170)

=H
�

x + 1
2

�−H
�

x − 1
2

�
. (3.174b)

Here, H (x) denotes the Heaviside step function (3.170). The continuous Fourier transform of
Π(t ) is given by

F {Π(t )}= sinc
�ω

2

�
. (3.175)

Thus, the frequency response of β0(t ) is explicitly expressed as

B0(ω) =F ¦β0(t )
©
= sinc

�ω
2

�
, (3.176)

where sinc(x) denotes the unnormalized Sinc function (3.29). For higher orders,βN (t ) is formed
by repeated convolution of β0(t ) [HA78, Hec86, Uns99]

βN (t ) = Π(t ) ∗Π(t ) ∗ · · · ∗Π(t )︸ ︷︷ ︸
N+1

(3.177a)
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Figure 3.33: Continuous frequency responses of spline basis functions, orders N = 0, . . . , 3.

=βN−1(t ) ∗Π(t ) (3.177b)

=

∞∫

−∞
βN−1(t −τ)Π(τ)dτ (3.177c)

=

1
2∫

− 1
2

βN−1(t −τ)dτ . (3.177d)

Because convolution in the time domain corresponds to multiplication in the frequency domain,
the Fourier transform of βN (t ) for arbitrary orders N follows from (3.177)

BN (ω) =F ¦βN (t )
©
= sinc

�ω
2

�N+1
. (3.178)

In Figure 3.33, the frequency responses of spline basis functions of orders N = 0, . . . , 3 are shown.
It is observed that the asymptotic image attenuation increases monotonically with the order N .
For example, for N = 3, it is significantly higher than for a Lagrange interpolator of the same
order. On the other hand, the passband roll-off of spline basis functions is larger than that of
Lagrange interpolation and increases for larger orders.

It is remarkable that the transform-domain properties of spline basis functions played a central
role in the development of spline interpolation and approximation [Sch46a, Sch46b]. Although
the generic mathematical framework developed there does not have a direct interpretation in
terms of a frequency response, the Fourier transform of a continuous function describing an
interpolation or approximation method is termed the characteristic function of this method.
This name has been chosen in analogy to the concept of characteristic functions in probability
theory.



i
i

“main_report” — 2012/1/30 — 9:09 — page 91 — #111 i
i

i
i

i
i

3.6 Algorithms and Implementation Structures 91

3.6.4.3 B-Spline Interpolation and Approximation as a Discrete-Time Filtering
Process

Because the spline basis functions are compactly supported, interpolation or approximation
based on a spline representation can be formulated as a discrete-time FIR filtering operation.
Using the notation of basepoint sets, equation (3.165) is stated as a discrete-time convolution
according to (3.96),3

y(t ) =
N∑

k=0

c[n− k]βN �µ− tk
�

. (3.179)

The use of symmetric B-spline basis functions βN (t ) implies a symmetric basepoint set (3.89).
Consequently, the sample index n and the intersample position µ are calculated according to
(3.85) and (3.86)

n = round

�
t

Ti
+

N

2

�
and µ=

t

Ti
+

N

2
− n .

3.6.4.4 Cardinal Spline Interpolation

As observed from the general form of spline interpolation or approximation (3.165)

y(t ) =
∞∑
−∞

c[n]βN (t − n),

the first step in applying a spline interpolation or approximation method consists of determining
the spline coefficients c[n]. To gain an interpolating spline curve that passes through the samples
of the input sequence x[n], the interpolation condition (3.33)

y(nTi ) = x[n] for n ∈Z
must be enforced in the calculation of the coefficients c[n]. Methods that yield interpolating
spline curves are denoted cardinal spline interpolation [Sch69, Sch73, Mei02]. This term has been
chosen with reference to the cardinal interpolation function (3.31) proposed in [Whi15, Whi29].
Alternatively, the term B-spline interpolation is often used to denote interpolation methods
based on splines, for instance [HA78, UAE91, Uns99]. However, in order to distinguish clearly
between B-spline basis functions and interpolation methods based on these functions, the term
“cardinal spline interpolation” is used exclusively in the following.

In numerical analysis, the spline coefficients c[n] are calculated by solving a system of linear
equations that enforces the interpolation condition for all data points as well as a suitable
behavior at the end points of the interpolation range (e.g. [Pow91, BSMM06]). Due to its
banded and symmetric matrix structure, efficient algorithms for solving this linear system
exist. However, this approach is considered as ill-suited for the majority of signal processing
applications. Most likely, this is due to the memory requirements proportional to the signal
length and the inappropriateness for causal, real-time processing.

3Note that, in contrast to (3.96), the sampling period is normalized to Ti = 1 here.
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In [GCB90,UAE91,UAE93a], an approach to calculate the spline coefficients by discrete-time
filtering is developed

c[n] = (b N )−1[n] ∗ x[n] , (3.180)

where ∗ denotes discrete convolution. The discrete sequence (b N )−1[n] is the impulse response
of a discrete-time filter that is formed by inverting the transfer function obtained from sampling
the B-spline basis function βN (t ) at the locations of the data points. For details, the reader is
referred to the above references or [Uns99]. The transfer function corresponding to (b N )−1[n]
is rational and noncausal, but can be separated into a causal and an anticausal part.

In this way, the coefficients c[n] for a finite sequence x[n] are calculated by a recursive
(IIR) filtering operation followed by a recursive filter that runs backward on the signal. Some
additional calculations ensure sensible start values for the recursions. This algorithm is widely
used in image processing and related fields.

However, for general signal processing applications that perform causal processing and operate
on signals of conceptually infinite length, this approach is not applicable due to the anticausal
recursive filtering required. For causal implementations or approximations of cardinal spline
interpolation, references in literature are very scarce. Proposed solutions are the application of
a FIR filter to compensate the magnitude error caused by the spline basis functions [ZB94] or
linear-phase FIR approximations of the noncausal IIR prefilter [ESCA96, VS07].

While cardinal spline interpolation is efficiently implemented as a finite discrete-time convolu-
tion process (3.179) preceded by the calculation of the spline coefficients c[n], this two-stage
process complicates an analysis of the method. It is therefore advantageous to combine the
two stages into a single continuous-time resampling function. This representation, denoted
ηN (t ), is commonly referred to as cardinal spline representation [UAE93a] or cardinal spline
basis functions [Uns99]. Using this function, cardinal spline interpolation is expressed by the
convolution

y(t ) =
∞∑

n=−∞
x[n]ηN (t ) , (3.181)

where the basis functions of cardinal spline interpolation ηN (t ) are defined by

ηN (t ) =
∞∑

n=−∞
(b N )−1[n]βN (t − n) . (3.182)

In this way, η(t ) is formed as a continuous-time convolution of the spline basis function βN (t )
and a pulse-modulated signal determined by the samples (b N )−1[n].

In [Sch73], equation (3.181) is referred to as the cardinal Lagrange interpolation formula. The
reference to Lagrange interpolation is due to the fact that the samples x[n] are directly used
in the interpolation formula alike in the Lagrange form of polynomial interpolation (3.134)
(see [Sch46a]).

The impulse response ηN (t ) is depicted in Figure 3.34a for order N = 3. Since the prefilter
(BN )−1(z) is recursive and noncausal, η(t ) does not have compact support. In this way, η(t )
resembles the impulse response of the cardinal interpolation formula (3.30). However, the
impulse response of cardinal spline interpolation converges to zero much more rapidly for
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Figure 3.34: Continuous impulse and frequency response of cardinal spline interpolation of
order N = 3.

increasing |t | than the cardinal interpolation formula. In [Sch73], it is stated that the cardinal
spline representation decays exponentially, that is, for each order N , positive constants AN and
αN exist such that

|η(t )|<AN e−αN |t | . (3.183)

Applied to practical implementations of cardinal spline interpolation, equation (3.183) implies
that the coefficients of the discrete impulse response (b N )−1[n] decrease rapidly as |n| increases.
Thus, truncation artifacts are less severe than in case of cardinal sinc interpolation if the im-
pulse response is windowed or truncated. Additionally, the fast convergence of (b N )−1[n]
suggests that the prefilter (BN )−1(z) can be approximated by a relatively short FIR filter without
compromising the resampling quality.

On the other hand, the cardinal spline representation converges to the cardinal interpolation
formula as the order N goes to infinity. This convergence is pointwise and holds for every Lp

norm both in the time and the frequency domain [Sch74, AUE92].
The continuous frequency response of the cardinal spline interpolator of order N = 3 is

shown in Figure 3.34b. In comparison to a Lagrange interpolator of the same order, cardinal
spline interpolation exhibits superior image attenuation in the stopband as well as a less severe
roll-off toward high frequencies in the passband.

3.6.4.5 Efficient Evaluation of B-Spline Basis Functions

Despite the various applications of splines, dedicated algorithms and implementation structures
did not gain particular attention in the field of discrete-time signal processing. Typically, splines
basis functions are regarded as piecewise polynomial resampling functions [BTU99, BTU01,
VS07].

In the field of numerical analysis, the de Boor algorithm [dB72, Boo01b] and algorithms
based on the explicit calculation of the B-spline basis functions [Cox78] are typically used.
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h(k ,µ)L hd i g[k]
x[n] y[m]

Continuous resampling filterInteger-ratio SRC

Figure 3.35: Implementation structure based on integer-ratio sample rate increase and a continu-
ous resampling function.

While these methods show unconditional numerical stability [Cox72, Cox78], the ability to
handle arbitrary sample positions (knots) with possibly coinciding knots plays a major role
in the design and analysis of these algorithms. However, these features are not relevant for
discrete-time signal processing on equidistant sequences. According to [Cox78], both algorithms
require about 3/2N 2+O(N ) “long operations”, which correspond to multiplications or divisions,
and a proportional number of additions or subtractions. While several optimizations are
applicable for equidistant sequences, such as the replacement of divisions by scaling factors,
straightforward adaptations of these algorithms do not yield performance gains over polynomial-
based interpolation filters.

For this reason, symmetric piecewise polynomial functions, which are realized by the modified
Farrow structure, are considered as efficient implementations for symmetric B-spline basis
functions in the following. Thus, the computational effort follows from Table 3.3 with the
polynomial order set equal to the filter order, that is, M =N .

3.6.5 Implementation Structures Incorporating Integer-Ratio
Oversampling

Structures incorporating an integer-ratio sample increase are widely used both in FD filtering
and ASRC. The signal flow of a discrete-time implementation of this structure is shown in
Figure 3.35. A system for integer-rate sample rate increase, consisting of a sample rate expander
and a discrete-time anti-imaging filter hd i g [k] as characterized in Section 3.4.2, is followed by a
continuous-time resampling function implemented as a finite, discrete convolution with variable
coefficients h(k ,µ).

The integer-rate sample rate increase is typically implemented by means of efficient polyphase
structures [BBC76, CR83], and the anti-imaging filter is usually designed as a lowpass filter
according to the design specification (3.60). In most cases, h(k ,µ) is a fixed resampling function
with explicitly computable coefficients. Lagrange interpolation is often used in this role, mainly
due to the good passband performance and the adherence to the interpolation condition. More-
over, this choice enables the use of the efficient implementation structures illustrated in Section
3.6.3 for the continuous-time resampling filter.

The widespread use of this structure has different reasons for FD filtering and ASRC. In
fractional delay filtering, the main intention is to achieve good performance over a wide frequency
range, which is costly to implement using single-stage structures based on fixed continuous-time
resampling functions [MKK94, Her04, HJ05].

For arbitrary sample rate conversion, there are several reasons. First, ASRC evolved as an
extension or generalization of rational SRC. In this way, structures incorporating oversampling
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enable the large number of design methods and implementation structures for integer-ratio to
be used. Second, the use of oversampling overcomes the limitations of the majority of fixed
continuous resampling filters, namely poor passband performance for wideband signals and
limited image attenuation [Hen02,VS07]. Conversely, in comparison with ASRC algorithms
purely based on rational SRC, the use of sophisticated continuous-time resampling filters enables
a significant reduction of the required oversampling ratio, coefficient memory and control
effort [LPW82, Ram84].

3.6.6 The Generalized Farrow Structure
A modification to the Farrow structure that is referred to as the Generalized Farrow structure has
been initially proposed in [Ram98]. It is similar to the Farrow structure, but features a set of L
different coefficient sets for the subfilters Cm(z) (3.109c). These coefficient sets are denoted as

C [l ] = {c [l ]mn} for l = 0,1, . . . , L− 1 (3.184)

in the following. The generalized Farrow structure is depicted in Figure 3.36a.
Based on the intersample position µ, an integer index l , 0 ≤ l < L and a transformed

intersample position µ∗ are computed

l = b(µ−µmi n)Lc (3.185a)
µ∗ = (µ−µmi n)L− l +µ∗mi n

= frac
�
[µ−µmi n]L

�
+µ∗mi n . (3.185b)

Here, the function frac(x) denotes the fractional part of the argument x (e.g. [GKP06])

frac(x) = x −bxc . (3.186)

Consequently, the transformed intersample positionµ∗ lies in the unit-sized intersample position
range

µ∗mi n ≤µ≤µ∗max withµ∗max −µ∗mi n = 1 . (3.187)

The index l is used to select the coefficient set for the Farrow structure. So, an output value is
calculated as

y(t ) =
M∑

m=0

 
N∑

k=0

c [l ]
mk

x[n− k]

!
(µ∗)m . (3.188)

3.6.6.1 Relation to Multirate Structures

The derivation of the generalized Farrow structure was motivated by resampling filters based
on integer-rate oversampling and continuous-time resampling functions [Ram98]. Indeed,
the selection of a coefficient set can be conveniently described by a commutator model, a
representation commonly used in rational SRC (see, e.g., Section 3.4.2.1). The resulting structure
is shown in Figure 3.36b. It consists of L Farrow structures, represented by the transfer functions

H [l ](z,µ∗) =
M∑

m=0

 
N∑

n=0

c [l ]mn z−n

!
(µ∗)m for l = 0,1, . . . , L− 1 , (3.189)
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Figure 3.36: Generalized Farrow structure.

each parameterized by a coefficient set C [l ]. These Farrow structures use the transformed
intersample position µ∗ as control variable. Depending on the index variable l , the output y[m]
is selected from one of these structures.

In [Hen02], the generalized Farrow structure is characterized as “storing more than one
polyphase component” of the continuous impulse response characterizing the piecewise polyno-
mial resampling filter. Conversely, the conventional Farrow structure is described as “computing
all coefficients from one polyphase component”.

3.6.6.2 Continuous-Time Impulse Response

As a modification of the Farrow structure, resampling based on the generalized Farrow structure
can be expressed as a finite convolution (3.83)

y(t ) =
N∑

k=0

x[n− k]h(k ,µ) . (3.190)

Because the generalized Farrow structure consists of L coefficient sets C [l ] that are selected based
on the intersample position, the discrete filter coefficients h(n,µ) are piecewise polynomial
functions consisting of L polynomial pieces of order M . They can be expressed as

h(n,µ) = h[l ]
�

n, frac
�
[µ−µmi n]L

�
+µ∗mi n

�
if µmi n +

l
L ≤µ≤µmi n +

l+1
L (3.191a)

where h[l ] (n,µ∗) denotes a single polynomial piece

h[l ] (n,µ∗) =
M∑

m=0

c [l ]mn (µ
∗)m . (3.191b)

Introducing basis functions f [l ](m,µ) in the style of f (m,µ) (3.112)

f [l ](m,µ) =

(�
frac

�
[µ−µmi n]L

�
+µ∗mi n

�m
, µ∗mi n +

l
L ≤µ≤µ∗mi n +

l+1
L

0 , otherwise
, (3.192a)
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Figure 3.37: Continuous impulse response hc (t ) of the generalized Farrow structure for L= 2.

the filter coefficients h(n,µ) can be expressed as

h(n,µ) =
L−1∑
l=0

M∑
m=0

c [l ]mn f [l ](m,µ) . (3.192b)

Consequently, the continuous-time impulse response hc (t ) is compactly represented by (3.113)

hc (t ) =
N∑

n=0

L−1∑
l=0

M∑
m=0

c [l ]mn f [l ]
�

m, t
Ti
+ tn

�
. (3.193)

In this way, hc (t ) consists of the interleaved polynomial pieces of the L Farrow structures, each
scaled to the length Ti

L as shown in Figure 3.37.
It is worth noting that, even if hc (t ) is symmetric with respect to zero, the polynomial pieces

corresponding to a particular coefficient set C [l ] do not exhibit such a symmetry in general. This
behavior is related to polyphase implementations in rational SRC, where symmetry relations
in the prototype filter are not retained in the polyphase branches which are obtained by de-
interleaving the prototype.

3.6.7 The Transposed Farrow Structure
The implementation structures considered so far approximated the frequency response of an
ideal resampling filter with a fixed cutoff frequency

bHc (jΩ) =

(
Ti , |Ω|< Ωi

2
0 , |Ω| ≥ Ωi

2

. (3.194)

Consequently, these structures are not applicable to sample rate reductions, because in this case,
the required cutoff frequency (3.54) depends on the output sampling rate to avoid baseband
aliasing.

The transposed Farrow structure [HF00, Hen02, BVSR02] is an efficient implementation
structure for sample rate reductions with variable conversion ratios R≤ 1.

Formally, the transformed Farrow structure is obtained by transposing the original Farrow
structures using network theoretic transformations as described, for instance, in [CR83]. The
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Figure 3.38: Transposed Farrow structure.

resulting structure is shown in Figure 3.38. In the transposed signal flow graph, the direction
of all signals is reversed. Summations are replaced by branching operations and vice versa. The
delay elements z−1 in the original Farrow structure are replaced by integrate-and-dump elements,
denoted as “I&D”. These elements accumulate the discrete-time input signals and are reinitialized
to zero by the reset port. For the transposed Farrow structure, this reset is triggered by the
output sampling clock To .

Internally, this operation corresponds to evaluating, that is sampling, the continuous-time
impulse response hc (t )with the output sampling period To . In contrast, the conventional Farrow
structure and its variants use the input period Ti to sample hc (t ).

In this way, the characteristics of the anti-aliasing/anti-imaging filter Hc (jω) are functions of
the output sampling frequency, as required for variable-ratio sample rate decreases. In [HF00],
the behavior of this structure is described as “the transfer zeros are clustered about the aliasing
components at integer multiples of 1

To
and thus, attenuate the aliasing components”.

The transposed Farrow structure is not suited for sample rate increases. In this case, the
structure does not provide sufficient image attenuation, because the cutoff frequency increases
linearly with the output sampling frequency. Moreover, the computational effort to compute
one output sample depends on the conversion ratio, because the number of samples of hc (t )
evaluated for a single output value depends on To . As in case of the original Farrow structure, a
generalized version consisting of multiple coefficient sets has been proposed [HF00, KG08].

It is worthwhile to note that the concept of sampling a continuous-time impulse response
with the output sampling frequency is not unique to the transposed Farrow structure, but has
been proposed much earlier. In [SG84], a sample rate conversion algorithm is described that is
capable of both sample rate increases and decreases based on a single continuous-time impulse
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response stored in parametric form.
While the impulse response is limited to a windowed sinc function approximated by a piecewise

linear function, this algorithm features two distinct modes which are switched depending on the
conversion ratio. In case of a sample rate reduction, the impulse response is sampled with the
output sampling rate, resulting in the variable-cutoff anti-aliasing filter required for this case. In
this way, this algorithm exhibits the features attributed to the transposed Farrow structure. At
the same time, it enables sample rate increases by using the input sampling period to evaluate the
continuous-time impulse response.

3.7 Design Methods for Variable Fractional Delay Filters
In the preceding section, numerous algorithms and implementation structures for interpolating
or approximating the value of a discrete-time sequence at arbitrary output instants have been
described. Most of these structures are applicable to variable fractional delay filtering. For the
majority of these structures, a set of coefficients has to be determined by means of sophisticated
design methods. These design methods are specific to VFD filtering. In this section, we provide
a concise review of existing design methods. In contrast to other surveys on FD filtering, most
notably [LVKL96], only the design of structures supporting variable delay values is considered
here.

3.7.1 Design Methods for the Farrow Structure and its Variants
As described in Section 3.6.1, the Farrow structure, including modifications such as the modified
Farrow structure, are variable digital filters. That is, the behavior of these filter structures is
adjusted by a control variable. For FD filtering, the fractional delay d or a quantity derived from
this value, typically by a linear transformation, is used as control variable.

The purpose of coefficient design for the Farrow structure is to determine the coefficients cmn
such that the frequency response H (e jω, d ) approximates the frequency response of the ideal
fractional delay element bH (e jω, d ) (3.38)

bH (e jω, d ) = e−jωd .

For the purpose of a uniform characterization as motivated in Section 3.5, the intersample
position µ is used as control variable instead of d in the following. Because these quantities are
uniquely related according to equation (3.95), the ideal frequency response as a function of the
intersample position is represented by

bH �e jω,µ
�
= e jωµ = bH �e jω,−d

�
. (3.195)

It is noted that this conceptual representation does not include the implementation delay to
enable a causal implementation, nor does it consider the role of different basepoint sets.

The approximation error of a VFD filter is a complex-valued function which is defined as the
difference between the actual and the desired frequency response

E(ω,µ) =H
�

e−jω,µ
�− bH �e−jω,µ

�
. (3.196)
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In general form, the objective of optimal filter design is to minimize the norm of the approxima-
tion error over a given approximation region X

minimize
{cmn}

Ep = ‖E(ω,µ)‖p , (3.197)

where ‖·‖p denotes the Lp -norm (see, e.g. [Pow91])

‖ f (x)‖p =



∫

X

| f (x)|p d x




1
p

. (3.198)

For filter design, the L2 (least squares) norm ‖·‖2 and the L∞ (Chebyshev or minimax) norm
‖·‖∞ are most widely used

‖ f (x)‖2 =

√√√√
∫

X

| f (x)|2 d x (3.199a)

‖ f (x)‖∞ =max
X
| f (x)| . (3.199b)

For VFD design, the approximation region is two-dimensional, that is, a bounded subset of R2,
because the frequency response (3.195) depends both on the normalized angular frequencyω
and the intersample position µ

X = {(ω,µ) ∈X |0≤ω ≤ωc ∧µmi n ≤µ≤µmax} . (3.200)

The cutoff frequencyωc denotes the highest frequency of interest in the discrete-time signal.

3.7.1.1 Weighted Least Squares Design

Application of the L2 norm, that is, setting p = 2 in (3.197), results in a least-squares approxima-
tion problem

minimize
{cmn}

E2 =
∫

X

���H �e−jω,µ
�− bH �e−jω,µ

����2 dωdµ . (3.201)

Actually, this formula represents the minimization of the squared error norm, which is com-
monly referred to as the “integrated squared error” [Väl95a] or the “total squared error” [AS98].
However, the obtained solution also minimizes the L2 norm because the square function is
monotonically increasing for positive arguments. This design specification has been applied in
the initial proposal of the Farrow structure [Far88].

A design method based on a weighted least squares criterion (WLS) has been proposed
in [TCHR97]. WLS extends the least squares norm by weighting the error function (3.196) with
a strictly nonnegative function W (ω,µ), resulting in

minimize
{cmn}

Ew l s =
∫

X

�
W (ω,µ)

���H �e−jω,µ
�− bH �e−jω,µ

����
�2

dωdµ with (3.202)

W (ω,µ)> 0 for (ω,µ) ∈X .
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In contrast to the original formulation, this representation includes the weighting function
within the square term. This modification allows a uniform representation of the weighted
error irrespective of the norm Lp used, as argued in [Sar93]. The design method in [TCHR97]
discretizes both the frequency axis and the intersample position range into a dense grid of
frequencies. In this way, the integral

Ew l s =

µmax∫

µmi n

ωc∫

0

�
W (µ,ω)

���H �e−jω,µ
�− bH �e−jω,µ

����
�2

dωdµ (3.203)

is replaced by a discrete summation

Ew l s =
∑
µ∈C

∑
ω∈F

�
W (µ,ω)

���H �e−jω,µ
�− bH �e−jω,µ

����
�2

(3.204)

with discretization grids C and F for the intersample position and the frequency variable,
respectively. This intuitive discretization approach corresponds to numerical integration using
the rectangle rule. However, it is valid only for equidistant grids, because the distance between
grid points is not considered. The discretized weighting function W (ω,µ) is specified as the
product of two functions W (µ) and W (ω) that describe independent weights for the intersample
position and frequency range, respectively.

W (µ,ω) =W (µ)W (ω) forµ ∈C andω ∈ F . (3.205)

This type of weighting is referred to as separable weighting function and enables the least squares
problem to be solved more efficiently. Although separable weighting functions limit the space
of possible weightings, this kind of specification is commonly considered as sufficient for VFD
filter design [LD99].

In the derivation of WLS methods for the Farrow structure, e.g. [TCHR97], relatively much
work is devoted to transforming the two-dimensional, complex-valued approximation problem
into the normal equation form of a least squares problem [BSMM06, Pow91], a matrix equation
that can be directly solved as a system of linear equations. Furthermore, because the matrices
involved in the approximation problem are prone to ill-conditioning, much effort is put into
transforming the optimization problem into a form more suitable for numerical computation.
However, ill-conditioning issues are intrinsic to weighted least squares filter design problems,
since they result from the use of transition bands (don’t care-regions) in the design specification
(see e.g. [PB87, Sar93, Bur95, LVKL96]).

Further modifications to the WLS design method have been proposed in [LD99, Den01].
Here, the discretization of the frequency and intersample position axis is replaced by closed-form
expressions of the involved integrals or, in one case, application of a numerical integration
method. This algorithm also uses separable weighting functions W (µ) and W (ω), specified as
piecewise linear functions of a continuous variable. The main advantage of this algorithm is a
significant reduction of the computational effort for coefficient design, combined with slight
improvements of the design error.

Typically, sophisticated adjustments of the weighting function W (µ,ω) are limited to iterative
improvements of the design error with respect to objectives different from pure least-squares
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criteria. One common objective is to reduce the maximum error similar to a L∞ design or a
peak-constrained least-squares design [AS98]. In this way, WLS is often applied in the style of
iterative weighted least squares design, e.g. [LLCY92, BBS94].

3.7.1.2 Weighted Least Squares Design for Symmetric Subfilters

As shown in Section 3.6.2, the use of linear-phase subfilters Cm(z) with even or odd coefficient
symmetries enables more efficient implementations such as the modified Farrow structure. For
FD filtering, such structures have been proposed in [Tse04, Den04, DL06]. Aside from more
efficient implementations, these symmetry conditions bear also advantages for the filter design
process. The improvements are based on the symmetry of the frequency response of the ideal
FD element for symmetric intersample position ranges

bH �e jω,−µ�= bH ∗ �e jω,µ
�

. (3.206)

Here, x∗ denotes the complex conjugate of x. Imposing the coefficient symmetries (3.120) for
the modified Farrow results in the same conjugate symmetry for the frequency response of the
actual VFD filter

H
�

e jω,−µ�=H ∗
�

e jω,µ
�

. (3.207)

Consequently, the system response is determined by one half of the intersample position interval,
for instance 0≤µ≤ 1

2 . So, the design objective for WLS design can be stated as

Ew l s =

1
2∫

0

ωc∫

0

�
W (µ,ω)

���H �e−jω,µ
�− bH �e−jω,µ

����
�2

dωdµ . (3.208)

In this way, the design problem for the modified Farrow structure for FD filtering is less complex
than for the conventional Farrow structure in two ways. First, the number of independent
coefficients is approximately halved due to the imposed symmetries. Second, the size of the
approximation region is reduced to 50 %. In case of discretized design methods, the number
of required grid points is reduced by a factor of two while maintaining the same grid density.
Both aspects reduce the size of the optimization problem and are likely to alleviate potential
numerical conditioning issues.

3.7.1.3 Designs Based on a Weighted Chebyshev Norm

A method for design variable digital filters with respect to a weighted L∞ norm has been proposed
in [TYCT04]. The method is based on semidefinite programming, a method for constrained
optimization that forms a subset of convex optimization [BV04]. Variable fractional delay
filters are included as a design example. For weighted minimax design, the design specification
is obtained from (3.197) by applying the L∞ norm and incorporating a weighting function
W (ω,µ)

minimize
{cmn}

E∞ = max
0≤ω≤ωc

µmi n≤µ≤µmax

W (ω,µ)
���H �e−jω,µ

�− bH �e−jω,µ
���� . (3.209)
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For optimization, the passband [0,ωc] and the intersample position range [µmi n ,µmax] are
discretized into grids {ωi} and {µi}, respectively. The discretized weighting function W (ω,µ) is
not required to be separable as in case of the WLS designs. In any case, the number of constraints
in the optimization problem increases as the product of the grid sizes. Thus, the primary
advantage of separable weighting functions in case of WLS designs cannot be brought to bear for
this L∞ design method.

The method proposed in [TYCT04] does not consider coefficient symmetries, since this
condition is not applicable to the general class of variable digital filters targeted. The frequency
responses H

�
e jω,µ

�
and bH �e jω,µ

�
are modeled as variable, but causal FIR filters. As noted in

the context of complex-valued minimax FIR filter design [ACL93, KM99], this design specifica-
tion is prone to ill-conditioning. Therefore, it appears sensible to partition these filters into a
common pure delay term e−jωN/2 and a noncausal part in order to improve the conditioning of
the design problem.

3.7.1.4 Designs Based on Digital Differentiators

A common approach to designing the subfilters Cm(z) is to use approximations of discrete-time
differentiators (e.g. [Har97,VHSR98,Tse02,PT03, JL03]). Expressing the frequency response of
the ideal fractional delay filter

bH �e jω,µ
�
= e jωµ

as a Maclaurin series, that is, a Taylor series evaluated at µ= 0, results in

bH �e jω,µ
�
=
∞∑

k=0

1

k!
(jω)kµk . (3.210)

It is noted that, resulting from the use of the intersample position µ instead of the fractional
delay value d , the coefficients of the expansion do not contain an alternating term (−1)k as
typically found in derivations for FD filters, e.g. [Tse02, Fra08].

The frequency response of an ideal noncausal discrete-time differentiator of order k is given
by [DRK93]

eH (k)(e jω) = (jω)k . (3.211)

Consequently, bH �e jω,µ
�

can be stated as

bH (e jω,µ) =
∞∑

k=0

1

k!
eH (k)(e jω)µk . (3.212)

In this way, the ideal fractional delay element is expressed as a sum of discrete-time differentiators
weighted by monomials of µ. Truncation of the series (3.212) thus results in the frequency
response of a Farrow structure. In [JL03], error bounds for the complex error, the phase error,
and the phase delay error of the Farrow structure based on this truncated Taylor expansion are
derived.

However, the relation between the Taylor series expansion and ideal differentiators does
not imply that the subfilters of the Farrow structure are required to approximate discrete-time
differentiators. Conversely, it has been shown in [DN04, DL06] that the rate of convergence of
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the Taylor series to the ideal fractional delay is relatively slow. Thus, the VFD filters gained from
this design method are not necessarily optimal with respect to a given error measure. Farrow
structures for Lagrange interpolation, which are optimal with respect to the criterion of maximal
flatness form a notable exception. In this case, it has been shown [SAS04,Den07a,Fra08] that
the subfilters Cm(z) represent maximally flat differentiators of order m scaled by 1/m!.

3.7.1.5 Filter Designs Incorporating Phase Delay Specifications

A design method that incorporates phase delay specifications has been developed in [VS96b,
VS97,VS00]. Although adapted to FD filtering, this design is based on the original derivation
of the modified Farrow structure [VS96a] (Section 3.6.2.1), utilizing a symmetric piecewise
polynomial continuous impulse response hc (t ).

The design specification is given by

minimize
{cmn}

δp = max
0≤ω≤ωc

µmi n≤µ≤µmax

���τp (ω,µ)− bτp (ω,µ)
��� (3.213a)

subject to max
0≤ω≤ωc

µmi n≤µ≤µmax

||H ((ω,µ)| − 1| ≤ δwo r s t . (3.213b)

That is, the objective is to minimize the maximum error of the phase delay τp (ω,µ) while
keeping the amplitude error within a prescribed limit δwo r s t . Here, τp (ω,µ) denotes the phase
delay of the noncausal interpolation filter as a function of the intersample position. The ideal
phase delay follows from (3.46a)

bτp (ω,µ) =−Þ
bH (ω,µ)

ω
=−µ , (3.214)

where bH (ω,µ) denotes the noncausal frequency response of the ideal FD element.
As an extension of this problem, the interpolation condition (3.33) is included as an optional

constraint. That is, the frequency is restricted to unity for intersample positions µ that corre-
spond to locations of the samples x[n]. For N odd, this condition must be fulfilled for µ=± 1

2 .
This constraint binds some degrees of freedom for the filter coefficients cmn . The remaining
degrees of freedom are utilized to minimize the objective function (3.213). Because this problem
involves the phase delay and thus the unwrapped phase of the complex argument H (ω,µ),
neither linearity nor convexity properties hold.

In [VS96b, VS97], this problem is solved using an algorithm for constrained minimax opti-
mization [DV77].

As a notable result, this approach states a lower limit for the achievable maximum amplitude
error |H (e jω,µ)| − | bH (e jω,µ)| for a frequency range [0,ωc]. This quantity is used to specify
an appropriate error bound δwo r s t for the constraint (3.213b). Since the formulation of the
modified Farrow structure used in [VS96b] is restricted to odd subfilter orders N , the worst
case amplitude error occurs for a half-sample delay, i.e. µ= 0, corresponding to µ′ = 1

2 in the
formulation (3.115). In this way, δwo r s t is obtained by designing a linear-phase filter of order N
that approximates a half-sample delay in the frequency range [0,ωc].
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Hi nt (e
jω, d ) y[n, d]2

Oversampling L= 2

x[n] 2

d · 2

Hd i g (e
jω)

(a) Basic processing scheme

H (e)
d i g
(e jω)

y[n, d]x[n]

H (o)
d i g
(e jω)

d · 2

H (e)i nt (e
jω, d )

H (o)i nt (e
jω, d )

(b) Efficient implementation structure

Figure 3.39: Wideband fractional delay element according to [MKK94].

3.7.2 Design for FD Filters Incorporating Integer-Ratio Oversampling

In the context of FD filtering, the use of structures involving oversampling apparently has been
first proposed in [MKK94]. The basic processing scheme of this structure is depicted in Figure
3.39a. In the proposed filter structure, the oversampling ratio L is fixed to 2. The primary
purpose of this structure is described as to increase the usable bandwidth of the filter without
an excessive increase in the order of the variable fractional delay filter Hi nt (e

jω, d ), which is
implemented as a Lagrange interpolator. According to [MKK94], the performance gain results
from the relaxed requirements on the Lagrange interpolation filter. This interpolator has to
comply with the design specifications only for half the bandwidth of the input signal. The
anti-imaging filter Hd i g (e

jω) is designed as a halfband filter using a windowing method.

An efficient implementation structure for this system is shown in Figure 3.39b. This structure
operates at the nominal sampling frequency of the FD filter, that is, it is implemented as a
single-rate structure. The decomposition of the filters Hd i g (e

jω) and Hi nt (e
jω, d ) into filters

containing the even and odd coefficients represents polyphase decompositions as described
in Section 3.4.2. The resulting polyphase filters are denoted by the superscripts (e) and (o),
respectively. This transformation eliminates the need for explicit sample rate expander or
compressor functionalities, and the output sequence is formed by summing the outputs of the
two polyphase branches.

It is noted that the multiplication by 2 at the output of the structure that is represented by a
separate processing stage in [MKK94, Her04, HJ05] is not included here. As argued in [CR83],
the required gain L= 2 is part of the filter specification for the anti-imaging filter Hd i g (e

jω) of a
sample rate increase and is trivially integrated into this filter.

The performance of the two-stage approach is further analyzed in [Her04], stating a reduced
computational effort if a halfband filter is used as anti-imaging filter Hd i g (e

jω). However, the
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approach described there focuses on Lagrange interpolation filters using the Farrow structure.
Thus, the results are not comparable to approaches that use efficient implementations for
Lagrange interpolation as characterized in Section 3.6.3. In [HJ05], a technique is proposed
to jointly optimize the filters Hd i g (e

jω) and the subfilters of a Farrow structure implementing
Hi nt (e

jω, d ). Conceptually, the obtained structure is identical to the generalized Farrow structure
(see Section 3.6.6), albeit applied to FD filtering and limited to an oversampling ratio L = 2.
Moreover, an iterative optimization is proposed to optimize the length of the subfilters Cm(z)
separately, similar to the procedure described in [JL03]. The computational effort of this method
is characterized as superior to both single-stage FD filters based on the Farrow structures and
the two-stage approach based on separately optimized subfilters. However, the optimization
procedure is not described in sufficient detail to reproduce these results.

3.8 Design Methods for Arbitrary Sample Rate Conversion
Although the implementation structures for ASRC are identical to those used for VFD filters in
most cases, the associated design methods are profoundly distinct. The most essential reason
is that VFD filters are purely discrete-time structures, while ASRC filters for arbitrary ratios
are conveniently modeled as a continuous-time system. A second distinction arises from the
historical development of ASRC, which partly evolved as an extension of rational-ratio SRC, and
is partly based on interpolation or approximation techniques not initially developed in the field
of DSP. For this reason, systematic design methods, which yield optimal parameterizations for a
given specification, are less common than in other branches of DSP, for instance filter design.
This applies in particular to systems that are composed of different components, e.g. cascades of
rational-factor SRC and continuous-time resampling functions.

This section introduces design specifications and reviews existing approaches to coefficient
design for ASRC implementation structures.

3.8.1 Design Objectives
Because ASRC is appropriately modeled by the hybrid analog/digital model, the design objec-
tives are consequently expressed in the continuous-time domain or in the continuous Fourier
transform domain. The ideal frequency of the continuous-time anti-imaging/anti-aliasing filter
(3.53) of the hybrid analog/digital model

bHc (jΩ) =

(
Ti , |Ω|<min

�Ωi
2 , Ωo

2

�
0 , |Ω| ≥min

�Ωi
2 , Ωo

2

� (3.215a)

=

(
Ti , |Ω|<Ωc

0 , |Ω| ≥Ωc
withΩc =min

�Ωi
2 , Ωo

2

�
(3.215b)

has been introduced in Section 3.4.5. As argued there, systems for increasing and for decreasing
the sampling rate differ qualitatively. In this section, only design methods for systems that do
not decrease the sampling rate are considered. This restriction is in accordance with the majority
of texts considering coefficient design for ASRC, e.g. [Ves99, Eva00b, VS07] and is motivated by
the following reasons:
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First, in the sample rate reduction case, the desired frequency response becomes a function of
the cutoff frequency (3.215b). Consequently, the design is dependent on the conversion ratio R
for most implementation structures, which contradicts the desirable property of ASRC systems
to support variable conversion ratios.

Second, for most implementation structures, the designs obtained for sample rate increases
can also be utilized for sample rate decreases by using the corresponding transposed structures,
for instance the transposed Farrow structure (Section 3.6.7).

Finally, as will be shown in the following chapter, structures for sample rate reductions are
not suitable for WFS signal processing.

With the restriction to nondecreasing conversion ratios, the ideal continuous frequency
response simplifies to

bHc (jΩ) =

(
Ti , |Ω|< Ωi

2
0 , |Ω| ≥ Ωi

2

. (3.216)

Using the angular frequencyω normalized with respect to the input sampling period

ω =
2π f

fi
= 2π f Ti =ΩTi , (3.217)

the ideal frequency response (3.216) can be stated as

bHc (jω) =

(
Ti , |ω|<π
0 , |ω| ≥π . (3.218)

The passband amplitude of Ti stems from the frequency response of the ideal reconstruction filter
(3.25). For the practical design of ASRC algorithms, this scaling has no impact. In accordance
with the reasons stated in [VS07], the normalization Ti = 1 is used in actual design methods as
well as in the presented frequency responses.

As explained in Section 3.5.4, resampling filters with real-valued, symmetric impulse responses
exhibit convincing advantages. For this reason, they are used almost exclusively in ASRC.
Consequently, the continuous frequency response is also a real function that is symmetric with
respect toω = 0. Therefore, it suffices to approximate the desired frequency response over the
region of positive frequenciesω ∈ [0,∞) only.

The ideal frequency response (3.218) is not realizable by a causal filter. Moreover, a direct
approximation of this specification by a finite-length filter typically leads to unacceptable errors
in the frequency response, resulting from Gibbs phenomenon. For this reason, alternative design
objectives are specified, which typically introduce transition regions or don’t-care bands, that is,
frequency intervals in which the frequency response is of no interest. In this way, the positive
frequency axis is partitioned into disjoint regions: the passband Xp , the stopband region Xs , and
one or multiple transition bands, which are denoted by φ. Consequently, the desired frequency
response can be stated as

bHc (jω) =

(
1 , |ω| ∈Xp

0 , |ω| ∈Xs
. (3.219)
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Xp Xsφ

3π 4π ωπ 2πωc

|Hc (jω)|

2π−ωc

(a) Uniform stopband

Xp φXs Xsφ

|Hc (jω)|

3π 4ππ 2πωc 2π−ωc ω2π+ωc 4π−ωc

(b) Nonuniform stopband

Figure 3.40: Approximation region specifications for ASRC design. Xp is the passband, Xs

denotes stopbands and φ are the transition bands.

which specifies the desired frequency response in the approximation region

X =Xp ∪Xs . (3.220)

For SRC applications, these regions are determined by the highest frequency of interest in the
input signal,ωc [CR83], resulting in a passband edgeωp and stopband a edgeωs

ωp =ωc (3.221a)

ωs = 2π−ωc . (3.221b)

Using these edge frequencies, the passband region Xp is given by

Xp =
�

0,ωp

�
. (3.222)

Likewise, the primary transition region φ between passband and stopband edge is the open
interval

φ=
�
ωp ,ωs

�
. (3.223)

Since the continuous Fourier transform of the input signal X (jω) consists of periodic repli-
cations of the discrete-time spectrum X (e jω), the don’t-care bands of the input signal are also
replicated periodically. For this reason, two different specifications for the stopband region
Xs exist: uniform and nonuniform stopbands. A uniform stopband specification consists of a
single stopband that spans the complete frequency interval of aboveωp , corresponding to the
specification of desired frequency response

bHc (jω) =

(
1, |ω| ≤ωp

0, |ω| ≥ωs
. (3.224)

In contrast, in a nonuniform stopband specification, the spectral replications of the don’t-care
region of the input signal (ωp ,π] are also included in the transition region φ, resulting in

bHc (jω) =

(
1, |ω| ≤ωp

0, 2kπ−ωp ≤ |ω| ≤ 2kπ+ωp for k =±1,±2, . . .
. (3.225)
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Design specification Passband Xp Stopband Xs Transition regions φ

Ideal lowpass [0,π/2) [π/2,∞) —
Uniform stopband [0,ωc] [2π−ωc ,∞) (ωc , 2π−ωc )

Nonuniform stopband [0,ωc]
∞⋃

k=1

[2kπ−ωc , 2kπ+ωc]
∞⋃

k=1

(2[k − 1]π+ωc , 2kπ−ωc )

Table 3.5: Passband, stopband and transition regions for design specifications for ASRC. The
operator ∪ denotes a set union.

These approximation regions are schematically depicted in Figure 3.40, and the corresponding
passband, stopband and transition regions are summarized in Table 3.5.

The choice of the stopband specification ultimately depends on the application: If the energy
of the input signal in the don’t-care region (ωc ,π], is negligible, then a nonuniform stopband
specification (3.225) is sufficient. Otherwise, a uniform stopband (3.224) is required to attenuate
the spectral replications of these signal components that would alias into the discrete-time output
signal [Eva00b, VS07]. However, the potential performance gain from utilizing additional
transition bands is very limited in most cases, except for narrowband input spectra. This
behavior is in accordance with the observations reported in the field of rational SRC [CR83].
However, using the same reasoning as in case of rational SRC, the frequency response Hc (jω)
must provide sufficient attenuation within the transition regions to avoid artifacts due to the
amplification of noise, for instance introduced in preceding processing stages.

Error measures As in case of VFD filters and in general filter design problems, the L2 norm
(3.199a) and the L∞ (3.199b) norm are the most widely used norms for optimal design of
resampling filters. Typically, a strictly positive weighting function W (ω) is included in the
design specifications

E2 =
∫

X

�
W (ω)

���Hc (jω)− bHc (jω)
���
�2

dω (3.226a)

E∞ =max
ω∈X

W (ω)
���Hc (jω)− bHc (jω)

��� , (3.226b)

where X denotes the approximation region according to Table 3.5. Strictly speaking, equation
(3.226a) represents the weighted squared error as discussed in Section 3.7, and minimization of
E2 results in a weighted least squares design. For L2 designs, the weighting function is typically
adjusted to control the error in specific intervals of the approximation region, for instance to
limit the peak deviation.

In contrast, for L∞ designs, W (ω) is primarily used to achieve a desired ratio between the
maximum passband and stopband error (e.g. [VS07]). As in case of general discrete-time filter
design, approximation with respect to the L∞ norm is conveniently described by a tolerance
scheme as depicted in Figure 3.41 that defines the maximum permissible passband and stopband
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1+δp

1

|Hc (jω)| Xp φXs Xsφ

δs

1−δp

ωωp ωs

Figure 3.41: Approximation scheme for ASRC filters using passband and stopband error toler-
ances.

errors δp and δs

δp = max
ω∈Xp

|Hc (jω)− bHc (jω)| (3.227a)

δs =max
ω∈Xs

|Hc (jω)− bHc (jω)| . (3.227b)

Other measures directly related to the maximum passband and stopband error are the maximum
passband variance and the minimum stopband attenuation [Sar93]

Ap = 20 log10

 
1+δp

1−δp

!
[in dB] (3.228a)

As =−20 log10

�
δs
�

[in dB] . (3.228b)

To achieve a desired ratio between the maximum passband and stopband error in L∞ designs,
a weighting function is typically used which assumes constant values W (Xp ) and W (Xs ) in the
passband and the stopband regions

W (Xp )

W (Xs )
=
δs

δp
. (3.229)

This specification is identical to the use of weighting functions in the minimax design of discrete-
time FIR filters [PM72a, Sar93, OSB99].

It is important to emphasize that in ASRC design, the approximation region X is conceptually
of infinite extent. In contrast, the frequency response of a discrete-time filter is periodic with
respect to the frequency variable. Consequently, discrete-time filter design methods operate on a
single period of the frequency response only. This distinction influences both design methods
and the analysis of ASRC filters.

Numerical approximation techniques are generally based on functions defined on fixed inter-
vals [Pow91], regardless whether a discretization is performed. For this reason, ASRC design
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methods based on approximating the desired frequency response must introduce a finite upper
limitωu p for the approximation region. Thus a finite uniform stopband region is given by

Xs = [2π−ωc ,ωu p] . (3.230)

Likewise, the nonuniform stopband region specified in Table 3.5 is altered to

Xs =



∞⋃

k=1

[2kπ−ωc , 2kπ+ωc]


∩ [2π−ωc ,ωu p] , (3.231)

where ∩ denotes set intersection.
However, the basis functions underlying all implementation structures for ASRC considered

in this work exhibit an attenuation towards higher frequencies. Consequently, an upper limit for
the approximation region can be generally found such that the quality of the designed filter is
not degraded by the choice ofωu p . This upper frequency limit depends on the method in use
and its design parameters, and it has to be determined heuristically. Thus, a validation of the
obtained filter coefficients and possible iterations of the design process is inevitable in general.

The other problem comprises the error norms used to assess the quality of a design, which
are also defined on the unbounded approximation region X . For the L∞ norm, the observed
damping of the basis functions ensures that the maximum error computed over a subset of X
with a sufficiently large upper limit ωu p is identical to the maximum error over the infinite
region X . For the L2 norm, the numerically obtained norm depends on the chosen upper limit
ωu p . Therefore, it is necessary to state the upper frequency limit that is used in the numerical
calculation of the L2 error. However, similar to the L∞ norm, the error due to a finite upper
integration boundary is negligible in most cases ifωu p is chosen sufficiently large, because of
the attenuation of the basis functions of Hc (jω) toward high frequencies.

Additional Frequency- or Time-Domain Conditions In addition to the frequency-domain-
oriented error norms, it is often beneficial to specify additional conditions or constraints to be
included in the design specification. In the literature on the design of discrete-time FIR filters,
several constraints on the frequency response, such as peak error constraints [SLB96,Eva00b]
or flatness constraints [Her71, Vai84] have been proposed. As these conditions can be typically
stated as linear inequalities or equalities, they can be incorporated into most design methods based
on optimization frameworks such as linear programming [Rab72,Sar93] or convex optimization
(for an extensive survey, see e.g. [Dav10]).

Frequency-domain conditions can be used to control the filter magnitude at particular points
or intervals of the pass- or stopband or to limit the amplification in the transition regions.

For resampling filters, a number of sophisticated conditions based on properties of the
continuous impulse response hc (t ) have been proposed [Eva00b, VS07], including the following:

Interpolation condition The interpolation condition, introduced in Section 3.2.2, denotes
the property of the resampling filter to reproduce the signal at input sampling locations
exactly. In terms of the continuous impulse response, this condition is represented by

hc (t ) =

(
1 , t = 0
0 , t = kTi

for k =±1,±2, . . . . (3.232)
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Continuity The condition of continuity indicates whether the continuous-time impulse re-
sponse hc (t ) is a continuous function. This can be formally stated as hc (t ) ∈ C 0, where
C 0 denotes the space of continuous functions (see Section 3.6.4.2). Since hc (t ) is typically
a piecewise function composed of continuous basis function, this condition requires the
adjacent pieces of hc (t ) to attain identical values at the junction points. This condition can
be often stated as a set of linear equations.

Differentiability As an extension to continuity, also denoted as regularity (e.g. [Mei02,BTU03]),
this condition requires hc (t ) to be k times continuously differentiable. In this way, hc (t )
belongs to the differentiability class C k . For k = 0, this condition is identical to continuity.

The benefit of these conditions generally depends on the application. However, the impact of
these constraints on quality measures relevant to signal processing appears to be rather limited.
For instance, the number of continuous derivatives is considered an important property in the
field of mathematical interpolation formulas [Gre44, Sch46a]. Consequently, this condition
has often been adopted in signal processing, e.g. [Key81]. However, in [BTU01, BTU03],
it is conjectured that there is no stringent interrelation between regularity and quality for
approximation applications, that is, the kind of applications most relevant to signal processing.

3.8.2 Design for the Modified Farrow Structure
As discussed in Section 3.6, the Farrow structure and its several variants are an efficient means to
implement resampling filters based on finite, piecewise polynomial impulse responses. For this
reason, ASRC systems based on these structures are often termed polynomial-based interpolation
filters [VS96a, Ves99, VS07]. The restriction to real-valued, symmetric impulse responses, which
has been motivated in Section 3.5.4, results in coefficient symmetries according to (3.120) if
the intersample position range is chosen appropriately. Consequently, ASRC systems based on
piecewise polynomial impulse responses can be generally implemented by the modified Farrow
structure, thus combining the advantageous impulse response symmetries with the increased
computational efficiency offered by this structure.

The general design objective for ASRC structures based on piecewise polynomial resampling
filters is to determine the coefficient bmn of the coefficient matrix B (3.129) parameterizing the
modified Farrow structure. In general, the design methods fall into three distinct classes: Designs
based on numerical interpolation or approximation methods, and optimization with respect to
either time- or frequency-domain criteria.

3.8.2.1 Numerical Interpolation or Approximation Methods

The majority of numerical methods to interpolate or approximate a continuous function from a
discrete set of data points is based on the evaluation of polynomials (see e.g. [Mei02]). Notable
examples include all forms of polynomial interpolation (e.g. Lagrange, Hermite or Newton
interpolation), osculatory interpolation [Gre44, Sch46a], spline basis functions [Sch46a,Uns99],
or specialized kernels such as the interpolation formula proposed by Keys [Key81]. Moreover,
they typically exhibit symmetric impulse responses. Consequently, all these methods can
be implemented by the modified Farrow structure, and the polynomial coefficients bmn are
generally obtained without conceptual difficulties.
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Due to their origin in the approximation or interpolation of functions, these methods are often
referred to as time-domain interpolation methods (e.g. [Ves99, VS07]), as they are considered
to be designed with respect to the domain of the original independent variable only. However,
this is not entirely true, because many numerical interpolation formulas, for instance Lagrange
or spline interpolation, have well-defined frequency-domain characteristics. For Lagrange
interpolators, these properties will be discussed in detail in Section 5.3. Notwithstanding, the
frequency-domain performance is most often inferior to that of a Farrow structure specifically
designed to maximize this objective.

Though all methods mentioned here can be readily implemented by the modified Farrow
structure, this is not necessarily the most efficient means. For instance, as shown in Section
3.6.3, sophisticated structures for Lagrange interpolation outperform implementations based on
the modified Farrow structure even for low interpolation orders.

In any case, the use of numerical interpolation or approximation formulas does not require
sophisticated coefficient design beyond the selection of an appropriate method and the determi-
nation the interpolation order.

3.8.2.2 Time-Domain Approximation

Another approach to coefficient design for the modified Farrow structure operates directly in
the time domain. The design objective is to approximate the desired continuous-time impulse
response bhc (t ) of a resampling filter by a realizable piecewise polynomial function hc (t ) such
that the approximation error becomes minimal with respect to an appropriate norm. This kind
of design methods is described in detail in [Eva00a, Eva00b]. These designs are characterized by
a set of different choices to be made.

The first distinction is concerned with the desired impulse response bhc (t ) to be approximated.
In the most direct approach, the cardinal sinc interpolation formula (3.28), corresponding to a
resampling filter specification with no transition region, is utilized. However, approximating
this function by a piecewise polynomial of finite support causes severe truncation errors due
to the slow damping of the sinc function. These errors result in frequency-domain magnitude
deviations due to the Gibbs phenomenon in the same way as in case of FD filtering (see e.g.
[CMT94, LVKL96, Väl95a]).

One way to alleviate this problem is to taper bhc (t ) by a window function. The use of a Kaiser
window is proposed in [SG84, Smi11], albeit this approach uses multiple polynomial segments
for each filter coefficient h(k ,µ), thus resembling the generalized Farrow structure (Section
3.6.6).

In [Eva00a,Eva00b], the desired impulse response is specified as the ideal impulse response of
a lowpass filter with a spline transition band [BSG92, Bur95]

bh (s p l i ne)
c (t ) =Asinc (ω0 t ) sinc

�4ωt

2 p

�p

withω0 =
ωp +ωs

2
and4ω =ωs −ωp , (3.233)

where ωp and ωs denote the passband and stopband edges of the desired frequency response.
A is a constant amplitude scaling factor and p denotes the spline order of the transition band
specification. In this way, the bandwidth of approximation is reduced. At the same time, the
impulse response becomes a smooth function, thus considerably reducing Gibbs phenomenon.
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The desired impulse response bh (s p l i ne)
c (t ) inherently fulfills the interpolation condition (3.32).

In the context of FD filtering, an equivalent approach utilizing least-squares approximation with
smooth transition bands is described in [LVKL96].

The approximating function hc (t ) forms a second choice. In [Eva00a, Eva00b], either single
polynomials or piecewise polynomials are considered. However, the use of a single polynomial
only reduces the number of coefficients to be stored, but requires the same number of operations
to evaluate the filter coefficients h(k ,µ) compared to a piecewise polynomial representation. On
the other hand, resampling filters based on a single polynomial show inferior approximation
quality, because the corresponding filter design problem offers significantly less degrees of
freedom compared to an impulse response based on piecewise polynomials.

The objective function for the approximation constitutes a third design choice. In [Eva00b],
the L2 and the L∞ norm are considered, and the interpolation condition (3.32) is incorporated
as an additional, optional design constraint. The error analysis performed therein describes a
number of severe limitations of this time-domain approach. For L2 designs, the error tends
to be dominated by the truncation error as the order of the piecewise polynomials increases.
Consequently, a lower limit for the L2 error dependent on the impulse response length is
conjectured. Thus, it is necessary to find a sensible compromise between the truncation error
and the approximation error within the finite support of hc (t ). Such a trade-off can be achieved
by an appropriate choice for the desired impulse response bhc (t ). If the desired frequency response
representation based on spline transition bands (3.233) is used, then a viable solution is found by
adjusting the spline order p.

An optimization procedure with respect to the L∞ norm has been proposed by the same
author [Eva00b]. It exhibits basically the same properties as the L2 designs, but is prone to
numerical instability due to ill-conditioning of the involved matrices.

3.8.2.3 Frequency-Domain Approximation

Designing the coefficients for the modified Farrow structures in the frequency domain offers
several advantages compared to methods based on the time domain. First, in DSP applications,
the frequency-domain characteristics of a system are typically more meaningful than pure time-
domain criteria. Second, as the primary artifacts of ASRC systems, namely aliasing and imaging,
are best described by the spectral properties of the resampler, a frequency-domain approximation
enables a purposeful control of these errors. In any case, the frequency-domain description
does not preclude time-domain specifications, because such conditions are typically handled by
appropriate design methods.

A frequency-domain description for polynomial-based resampling filters and corresponding
design methods based have been proposed in [Ves99, VS07]. This derivation is based on the
original formulation of the modified Farrow structure (3.117) described in Section 3.6.2.1. This
description uses a particular form of the convolution sum and a transformation of the intersample
position range 0≤µ< 1. Moreover, it is restricted to odd subfilter orders N .

Utilizing the symmetry conditions for the modified Farrow structure (3.118), the impulse
response can be stated in an alternate form using modified basis functions g ′(m, n, t )

hc (t ) =
M∑

m=0

N−1
2∑

n=0

c ′mn g ′(m, n, t ) with (3.234a)
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g ′(m, n, t ) = (−1)m f ′
�

m,
t

Ti
+ n+ 1

�
+ f ′

�
m,

t

Ti
− n
�

(3.234b)

=




(−1)m

�h
2 t

Ti
+ n
i
− 1
�m

, −(n+ 1)Ti ≤ t <−nTi�h
2 t

Ti
− n
i
− 1
�m

, nTi ≤ t < (n+ 1)Ti

0, otherwise

. (3.234c)

Application of the continuous-time Fourier transform to the basis functions g ′(m, n, t ) yields

G′(m, n,ω) =
1

Ti
F �g ′(m, n, t )

	

=





2cos
��

n+ 1
2

�
ω
��
(−1)

m
2 m!Φ(m,ω)+ sinc

�
ω
2

��
, m even

2sin
��

n+ 1
2

�
ω
�
(−1)

m+1
2 m!Φ(m,ω) , m odd

, (3.235)

where the function Φ(m,ω) is defined as

Φ(m,ω) =
b(m−1)/2c∑

k=0

�ω
2

�2k−m (−1)k

(2k)!




sin
�
ω
2

�
ω
2

−
cos
�
ω
2

�

2k + 1


 . (3.236)

It is noted that this representation uses the normalized angular frequencyω (3.217) in contrast
to the ordinary frequency variable f utilized in the original derivation. As a consequence of this
normalization, the amplitude scaling due to the input sampling period Ti is also included in the
basis functions (3.235).

In this way, the continuous frequency response of the modified Farrow structure can be stated
as

Hc (jω) = Ti

M∑
m=0

N−1
2∑

n=0

c ′mnG′(m, n,ω) . (3.237)

However, the representation of Φ(m,ω) (3.236) is undefined for ω = 0 and is numerically
unstable if |ω| is small. For this reason, a formula based on Maclaurin series expansions of the
sine and cosine terms is stated in [VS07]

Φ(m,ω) =
b m−1

2 c∑
k=0

∞∑
l=b m−1

2 c+1

�ω
2

�2(k+l )−m (−1)k+l 2(k − l )

(2k + 1)!(2l + 1)!
. (3.238)

For evaluation, the infinite summation has to be replaced by an appropriate finite upper limit.
Using this approximation for low frequencies decreases numerical errors. However, as the
summation contains negative powers ofω, this approximation is still undefined forω = 0 and
numerical cancellation is likely to occur for very small arguments due to the alternating signs of
the addends.

Because the frequency response is linear with respect to the filter coefficients c ′mn , many
efficient optimization techniques are directly applicable. In [Ves99,VS07], weighted least-squares
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and minimax optimization design methods are proposed. Both optimization methods utilize a
discrete grid of frequencies spanning both the passband and the stopband of the approximation
region (3.220). Additional time domain conditions, specifically the interpolation condition,
the continuity of the impulse response hc (t ) and a continuous first derivative of hc (t ), are
introduced in [VS07]. For that purpose, the optimization problem is transformed into a different
unconstrained least squares or minimax problem, respectively. The transformed problem has a
reduced number of variables that determine the coefficients c ′mn uniquely.

An alternative frequency-domain description for the original form of the modified Farrow
structure (3.117) has been proposed in [Ves00]. Starting from a discrete representation of hc (t )
obtained by sampling the continuous impulse response with a sampling frequency K/Ti , K ∈N,
approaching the limit K→∞ yields an expression for Hc (jω)

Hc (jω) = e−jωN/2Ti

M∑
m=0

Cm(ω)Wm(ω) . (3.239a)

Here, Cm(ω) denotes the zero-phase discrete-time frequency response of the Farrow subfilters
Cm(z). Wm(ω) is a weighting function associated with each polynomial order m

Cm(ω) =

(
2
∑(N−1)/2

n=0 c ′mn cos
��

n+ 1
2

�
ω
�

, m even

2
∑(N−1)/2

n=0 c ′mn sin
��

n+ 1
2

�
ω
�

, m odd
(3.239b)

Wm(ω) =




∑m

k=0

�m
k

� sin(ω/2+kπ/2)
(ω/2)k+1 , m even

∑m
k=0

�m
k

� cos(ω/2+kπ/2)
−(ω/2)k+1 , m odd

. (3.239c)

This representation establishes a connection between the discrete-time frequency responses of
the subfilters Cm(z), represented by the corresponding zero-phase response Cm(ω), and the
continuous-time frequency response Hc (jω). That is, neglecting scaling and the implementation
delay to ensure causality, Hc (jω) is formed by combining the periodic frequency responses of
the subfilters Cm(z) weighted by a nonperiodic function Wm(ω).

This representation also clarifies the properties of continuous frequency responses obtained
from symmetric impulse responses as characterized in Section 3.8.1. Apart from the imple-
mentation delay e−jωN/2, Hc (jω) is a real function. Moreover, it is observed that the weighting
functions Wm(ω) are even or odd functions for m even or odd, respectively. Since the zero-phase
frequency responses of the subfilters Cm(ω) have the same parity, it follows from (3.239a) that
Hc (jω) is an even, i.e. symmetric, function.

3.8.3 Design of ASRC Systems Incorporating Rational SRC

As depicted in Figure 3.42, ASRC systems incorporating integer-ratio SRC consist of two distinct
components, the discrete-time prefilter Hd i g (e

jω) and the continuous-time resampling function
Hi nt (jω). Thus, coefficient design has to be performed for these two components. In existing
approaches, these components are typically considered and designed independently.
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Y
�
e jω
�

L Hi nt (jω)Hd i g

�
e jω
�

X
�
e jω
�

Figure 3.42: ASRC structure based on integer-ratio sample rate increase and a continuous resam-
pling function, frequency-domain representation.

3.8.3.1 Design of the Discrete-Time Anti-Imaging Filter

If the components are designed independently, the discrete-time prefilter Hd i g (e
jω) forms an

anti-imaging filter of an integer-ratio sample rate converter with oversampling ratio L. Thus, the
ideal frequency response follows from (3.60)

bHd i g

�
e jω
�
=

(
L , |ω|< π

L
0 , otherwise

. (3.240)

Design specifications for practical anti-imaging filters as well as corresponding design methods
are described in detail in standard texts on rational sample rate conversion, for instance [SR73,
CR81, CR83].

As stated in Section 3.4.2, FIR filters are preferable for most SRC applications. For rational
SRC, standard FIR design methods based on window or equiripple design methods as well as
special designs such as halfband filters are widely used.

In [Eva00b], the design of discrete-time anti-imaging filters for use in ASRC systems is investi-
gated. The design methods in this work include frequency-domain least-squares approximation,
peak-constrained least squares, and the design of L-th band filters. Nonetheless, the objective
functions are identical to the filter specifications for conventional, rational SRC.

3.8.3.2 Design of the Continuous-Time Resampling Filter

In most approaches to ASRC incorporating integer-ratio oversampling, classical interpola-
tion or approximation methods from numerical analysis are used as continuous-time resam-
pling functions (e.g. [LPW82,Ram84]). Evaluations of the performance of various numerical
interpolation formulas, including Lagrange interpolation, Hermite or osculatory interpola-
tion [Gre44, Sch46a], and B-spline basis functions in combination with oversampling have been
performed in [ZB94, WBJ99]. These investigations suggest that the passband performance of
Hermite and osculatory interpolation is superior to the other methods at the cost of a degraded
image attenuation. In contrast, the stopband performance of B-spline functions exceeds that of
Lagrange interpolation, but requires a compensation in the passband.

The design of continuous-time functions with respect to time- or frequency-domain conditions
is considered in [Eva00a, Eva00b]. Therein, the continuous-time resampling functions are
modeled either as single polynomials or as piecewise polynomial functions. The time-domain
optimization techniques for these classes of resampling functions have already been characterized
in Section 3.8.2.2, because they are independent of the presence of oversampling.
[Eva00b, Eva03] also considers the design of Hi nt (jω) with respect to least-squares and

minimax frequency-domain objectives. However, the design specification of Hi nt (jω) does not
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consider the oversampled nature of the input signal. Thus, the design is identical to piecewise
polynomial resampling functions considered in Section 3.8.2.

In this way, the characteristics of the overall structure, for instance the frequency scaling
due to oversampling or the role the discrete-time prefilter, are not utilized in the design of
Hi nt (jω). While [Eva00b] suggests to adapt the characteristics of the continuous-time resampling
function in order to correct passband deviations caused by the prefilter Hd i g (e

jω), neither design
methods nor examples are given. In any case, the practical utility of this approach appears rather
limited, because the continuous-time resampling function is typically the most costly part in
an ASRC system [BTU99, BTU01]. Consequently, compensation of the passband response
can be implemented more efficiently in the discrete-time prefilter than in the continuous-time
resampling function.

In summary, the design methods proposed so far consider Hd i g (e
jω) and Hi nt (jω) as indepen-

dent entities. While allowing the use of well-established design techniques for both components,
this approach has two main shortcomings. First, the independent designs do not take the partic-
ular characteristics of the respective other component into account. Second, the partitioning
into independent design problems prohibits purposeful optimization methods to determine the
optimal parameterization for a given error norm and additional design specification.

3.9 Comparison and Relations between FD Filtering and
ASRC

In this chapter, FD filtering and ASRC have been characterized as two related, but distinct
approaches to delay discrete-time sequences by arbitrary time values. It is therefore worthwhile
to compare these approaches both from a conceptual perspective and from a practical point of
view concerned with design and application issues.

Handling of Delay Changes FD filtering is a purely discrete-time filtering operation. While
VFD filters enable changes of the delay value, only discrete changes are considered. As charac-
terized in Section 3.3.3, these changes give rise to two potential effects: transients and signal
discontinuities. Transients occur only for IIR FD filters or if the implementation structure uses
intermediate results that are based on past delay values.

The discontinuities result from the discrete change of the filter characteristic and are therefore
inherent to the FD approach. Because such artifacts are highly audible, remedies such as a
sequence of small, gradual changes [Väl95a] or a crossfade between two signals delayed by the
old and new value [Smi10a] have been proposed. However, these techniques generally require
additional resources. Moreover, while minimizing the audible effects due to the discontinuities,
these algorithms do not alter the discrete nature of parameter changes.

In contrast, ASRC systems generally utilize a different intersample position, corresponding
to the fractional delay value of VFD system, for each processed output sample. Thus, the
requirement to handle varying delay values is intrinsic to ASRC algorithms. In particular, the
support of arbitrary, slowly time-varying conversion ratios has been characterized in Section
3.4.3 as a distinguishing feature of ASRC. Applied to delaying discrete-time sequences, this ability
corresponds to the handling of delay trajectories that are continuous, smooth functions of time.
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Analytical Relations A formal relationship between FD filtering and ASRC can be established
by relating the respective system responses. Such a connection, expressing the discrete-time
frequency response H (e jω,µ) of a VFD filter in terms of the continuous-time frequency response
Hc (jΩ), has been first published in [VS96b].

As stated in Section 3.5.3, VFD as well as ASRC systems implemented as finite discrete convo-
lutions are conveniently expressed by a single continuous-time function hc (t ). In case of ASRC,
hc (t ) forms the continuous-time impulse response of the resampler. For VFD applications, the
discrete sequence of filter coefficients h(k ,µ) is obtained from hc (t ) by shifting and sampling
(3.98)

h(k ,µ) = hc
��
µ− tk

�
Ti
�

.

This sampling operation can be expressed by modulating hc (t +µTi ) by a continuous-time
impulse train s(t ) (3.1) with period Ti .

h(k ,µ) = s(t )hc (t +µTi ) . (3.241)

Applying a continuous Fourier transform yields

H (jΩ,µ) =
1

2π
S(jΩ) ∗F {hc (t )} (3.242a)

=
1

Ti

∞∑
k=−∞

δ
�
Ω− kΩi

� ∗�e−jΩµHc (jΩ)
�

(3.242b)

=
1

Ti

∞∑
k=−∞

e−j(Ω−kΩi )µHc
�
j
�
Ω− kΩi

��
. (3.242c)

Here, S(jΩ) denotes the Fourier transform of the impulse train s (t ) defined by (3.8). The discrete
frequency response is obtained by normalizing the angular frequency to the input sampling
period Ti

H (e jω,µ) = H (jΩ,µ)|Ω=ωTi

(3.243a)

=
1

Ti

∞∑
k=−∞

e−j(ω−2πk)µHc

�
ω

Ti
− 2π

Ti
k
�

. (3.243b)

Thus, the discrete-time frequency response of the VFD filtering structure is formed as a superpo-
sition of periodic repetitions of Hc (jΩ), each subject to an individual phase shift depending on
the intersample position.

Several useful conclusions can be drawn from this representation. First, it is obvious that an
ideal ASRC filter implies an ideal FD element, because all signal images except for k = 0 vanish.
For realizable filter structures, equation (3.243) clarifies how the principal errors of ASRC
systems, that is, passband deviations and signal images, result in errors of the corresponding FD
element. In particular, incompletely attenuated images in Hc (jω) are aliased into the discrete-
time frequency response H (e jω,µ). Consequently, a good performance in the ASRC sense
implies good quality with respect to FD criteria. However, the converse is not necessarily true.

Finally, the interpretation as an ASRC system enables a separation of qualitatively different
errors of a VFD filter. The error corresponding to the central image of Hc (jΩ), that is, for
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k = 0, represents a pure amplitude deviation independent of the intersample position µ. In
contrast, the errors due to incompletely attenuated signal images, i.e. k =±1,±2, . . ., fluctuate as
a function of the intersample position and introduce phase errors. This separation is beneficial
since constant, static inaccuracies are often less severe than varying errors. Moreover, a static
amplitude deviation can often be compensated in the overall signal flow of a processing system.
In this way, the interpretation as an ASRC system could potentially be used for the design of
VFD structures.

Design Aspects In the Sections 3.7 and 3.8, numerous design criteria and methods for VFD
filters and ASRC systems have been described. Generally, design of VFD filters is a complex-
valued two-dimensional approximation problem with a bounded approximation region spanned
by the periodic frequency variable ω and a unit-sized interval of the fractional delay value or
the intersample position. Utilizing symmetry relations of the filter halves the number of design
parameters as well as the size of the approximation region.

In contrast, ASRC design problems translate to one-dimensional design problems with the
frequency variable Ω (or its normalized representationω) as independent variable. While the
approximation range for Ω is infinite in theory, finite limits are sufficient in practice. Moreover,
as symmetric system responses are assumed in all relevant ASRC designs in use, the approxi-
mation problem is real-valued. Like in case of VFD design, this choice halves the size of the
approximation region and the number of free parameters.

As evident from these characterizations, ASRC design problems are typically solved more
efficiently and are less susceptible to numerical inaccuracies than comparable VFD designs.
First, the description as a real-valued optimization problem is more straightforward and more
efficient to solve. Second and more important, the size of the optimization problem is typically
much smaller for ASRC. In particular, if the approximation region is discretized, the two-
dimensional grid for VFD designs results in a very large number of discrete points, requiring more
computational resources for optimization and potentially increasing numerical conditioning
problems.

3.10 Conclusions
In this chapter, the problem of delaying discrete-time sequences by arbitrary values has been
reviewed and systematized. Two main approaches are common in DSP: Variable fractional
delay filtering (VFD) and sample rate conversion, with arbitrary sample rate conversion (ASRC)
as its most general form. Although both approaches base on the concepts of sampling and
reconstructing bandlimited signals, they also show significant distinctions. While VFD is a
discrete-time filtering process that can be controlled by an additional delay parameter, ASRC is
best modeled as a continuous-time process.

Despite these conceptual differences, both approaches are typically implemented as discrete-
time convolution processes. Consequently, they can be described within a uniform framework,
easing comparison and enabling a common representation of algorithms. Actually, the algo-
rithms and implementation structures used to implement both approaches are identical in
most cases. In contrast, the design methods to parameterize these structures are profoundly
different for ASRC and VFD. These distinctions comprise design objectives, the form of the
approximation problem, and the design procedures in use.
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Analytical relations show that a good performance in the ASRC sense implies good quality
with respect to VFD error measures. However, the way delay changes are handled appears to
be the most important distinction between both approaches. While, from a conceptual point
of view, VFD enables only discrete changes of the delay parameter, the ability to reproduce
continuously time-varying delays is intrinsic to arbitrary sample rate conversion.



i
i

“main_report” — 2012/1/30 — 9:09 — page 122 — #142 i
i

i
i

i
i



i
i

“main_report” — 2012/1/30 — 9:09 — page 123 — #143 i
i

i
i

i
i

Chapter 4

Signal Processing for Wave Field Synthesis

4.1 Introduction
In Chapter 2, delaying and scaling of discrete-time signals has been identified as a major signal
processing operation in a WFS reproduction system. Chapter 3 introduced two models to
describe arbitrary delay operations on discrete-time signals as well as a number of algorithms
and implementation structures for this operation.

In order to develop an efficient signal processing system for WFS, several questions remain to
be solved. In Section 4.2, it is argued why arbitrary sample rate conversion is more appropriate
than variable fractional delay filtering to characterize the delay operations in a WFS system.

Complexity issues of WFS signal processing systems are discussed in Section 4.3. To mitigate
the excessive complexity growth for real-world reproduction systems, a processing scheme that
can be used with several efficient implementation structures for ASRC is proposed.

Section 4.4 investigates potential aliasing artifacts due to time-variant delays. It discusses
conditions that require an explicit handling of this problem. For cases that require sophisticated
anti-aliasing functionality, a solution is proposed that utilizes the efficient processing scheme
proposed in Section 4.3 and causes only a moderately increased complexity.

4.2 An Appropriate Model for the Delay Operation
As characterized in the preceding chapter, two different models to describe time-variant delay
operations on discrete-time sequences are predominantly used: variable fractional delay filtering
(VFD) and arbitrary sample rate conversion (ASRC). It is therefore necessary to determine and
justify which model is more appropriate for WFS signal processing.

For the reasons explained in Section 2.5, the necessity for a dedicated handling of time-variant
delays arises from the reproduction of moving sound sources. The movement of the sound
sources results in a time-variant distance between the source and each loudspeaker. Thus, the
delay value calculated by the WFS operator is continuously time-varying.

As argued in Section 3.9, VFD filters do not consider the effects of continuous changes to
the delay value. In contrast, the handling of continuously varying intersample positions is an
intrinsic requirement of sample rate conversion systems, in particular ASRC.

On the other hand, virtual sound sources in WFS typically represent physical real-world
objects which move with a bounded acceleration. That is, the source velocity has a limited rate
of change. Consequently, the rate of change of the corresponding WFS delays is also bounded.
In this way, the delay operation is appropriately modeled by a slowly time-varying sample rate
conversion process. As described in Section 3.4.3, the support of such slowly time-varying
conversion ratios is a distinguishing feature of ASRC algorithms.

123
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From the physical point of view, the primary effect of a moving sound source is the Doppler
effect (Section 2.4.1), resulting in a shift of the frequency contents at a stationary receiver
position. In a discrete-time signal, this frequency shift is equivalent to a change of the sampling
periods underlying the involved discrete-time sequences. In this way, ASRC forms a discrete-time
approximation of the Doppler shift that models the perceived effect of this physical process
directly.

On the other hand, the performance metrics used for VFD filters are also meaningful for WFS
reproduction systems. For instance, magnitude and phase distortion of loudspeaker driving
signals should be confined within reasonable bounds for stationary virtual sources. Therefore,
it is interesting to consider how much the performance metrics for VFD deteriorate if the
time-variant delay algorithms for WFS are designed according to ASRC criteria. As shown in
Section 3.9, the error metrics for VFD and ASRC are related. In particular, the performance
metrics for ASRC determine the response in the VFD sense completely, while the opposite is
not necessarily true. As a consequence, good performance with respect to ASRC design criteria
implies reasonable quality according to VFD error measures.

It should be noted that algorithms designed in the VFD or ASRC sense are not completely
different, but exhibit only specific distinctions. It is therefore an interesting idea to combine
criteria of both models into a single design specification. While such approaches are outside the
scope of the present work, they form a promising starting for future research, in particular when
combined with quality criteria for audio applications.

In summary, this section pointed out several reasons why the time-variant delays required for
WFS should be modeled as an ASRC problem rather than an application of variable FD filtering.
In addition, this choice does not imply a significant loss of quality with respect to other design
criteria.

It should be reemphasized that modeling the time-variant delay operation as an ASRC process
does not change the general structure of WFS signal processing. It affects only the way in which
loudspeaker signals are calculated from the delay-line structures containing the signals of virtual
sound sources. From an external perspective, WFS rendering is invariably implemented as a
single-rate discrete-time signal processing system.

4.3 Reduction of the Computational Complexity
As motivated in Section 2.3, scaling and delaying of discrete-time signals is typically the most
performance-critical operation in a realtime WFS rendering system. In particular, the number of
simultaneous delay operations is proportional both to the number of virtual sources and the
number of loudspeakers. Because this product is typically quite large, the associated compu-
tational complexity prohibits the use of conventional high-quality ASRC algorithms in most
cases.

4.3.1 Utilizing the Structure of WFS Signal Processing
One way to overcome the excessive complexity growth caused by the application of high-quality
resampling algorithms is to take advantage of the structure of a WFS signal processing system.

Although the number of simultaneous delay operations is large, these operations are not
completely independent. For instance, a large number of loudspeaker signal components are
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µ

Preprocessing Evaluation Postprocessing y[n]x[n]

Figure 4.1: Proposed partitioning scheme for ASRC algorithms.

obtained from the signal of each virtual source. Likewise, each loudspeaker signal is formed as a
linear combination of a multitude of scaled and delayed signals.

This structure can be utilized to reduce the overall computational complexity. To this end,
operations that do not have to be performed for each combination of a virtual source and a
loudspeaker are factored out of the ASRC algorithm. In this way, the WFS signal processing
structure is partitioned into several distinct components. This partitioning scheme has been
initially proposed in the context of WFS in [FBR08].

To put it another way, the reduction of the computational effort stems from considering
the WFS signal processing structure as a multiple-input multiple-output (MIMO) system (see,
e.g. [Vai92]) instead of a set of individual scale and delay operations.

4.3.2 Proposed Algorithm Partitioning
The proposed partitioning of the scale&delay operation for WFS is shown in Figure 4.1. The
roles and requirements of the different stages are as follows:

Preprocessing The preprocessing stage transforms the input sequence x[n] into a stream of
intermediate data. The intention of this stage is to perform operations on the input data
that allow the subsequent parts of the ASRC algorithm to operate more efficiently. The
main requirement for this stage is that the performed operations are independent of the
actual intersample position µ, and consequently of the resampling ratio R.

Evaluation This stage operates on the intermediate data produced by the preprocessing stage
and generates outputs that depend on the intersample position µ. For this reason, this
operation has to be performed for each combination of primary and secondary sources.

Postprocessing The postprocessing stage may apply additional transformations to the output
values generated by the evaluation stage. As in case of the preprocessing stage, these
operations must be independent of the output instants.

For a particular ASRC algorithm, it is not necessary that all stages actually perform nontrivial
operations. For instance, many algorithms do not require an explicit postprocessing stage.

Integrating this partitioning scheme into the signal processing structure for WFS shown in
Chapter 2, Figure 2.3, results in the adapted processing structure depicted in Figure 4.2.

The preprocessing stage is performed once for the signal of each virtual source, xm[k]. The
result of this operation is stored in a component termed intermediate data for each component m.
While the source signals are written into a digital delay line in the original processing structure,
the intermediate data values are not required to represent past input samples for the proposed
partitioning scheme. In any case, the intermediate data components exhibit key features of
delay lines, namely a multiple, arbitrary access to its contents based on the integer part of
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eval (a10,τ10)
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Intermediate
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eval (a11,τ11)

xM[k]
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Preprocessing 1

Preprocessing 0

Preprocessing M
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Figure 4.2: Proposed signal processing structure for WFS.

the desired delay value. The evaluation stage is performed for each combination of a virtual
source and a loudspeaker signal. This is represented by the components eval

�
amn ,τmn

�
, which

combine the delay operation with the amplitude scaling by amn . After accumulating the signal
components according to the loudspeaker indices n, the postprocessing stage is performed for
each loudspeaker signal.

It is noted that the WFS equalization filter H (ω) (2.5) present in Figure 2.3 is not explicitly
shown in the proposed processing scheme. Instead, it is assumed that this filtering operation
is incorporated either into the pre- or the postprocessing stage. The appropriate location for
this operation can be determined based on several criteria. First, depending on the numbers
of sources and loudspeakers, the computational effort might be lower if H (ω) is implemented
either in the pre- or in the postprocessing stage. Second, the spectral equalization might be
combined with the processing performed in one of these stages, resulting in a reduced overall
complexity. Finally, if dedicated spectral correction filters are used that incorporate either source-
or loudspeaker-dependent characteristics (e.g. [ARB04,SA10]), the variable equalization filters
must be applied to either the source or the loudspeaker signals.

As motivated above, the main intention of this structure is to decrease the computational
complexity of the overall algorithm. For this purpose, the performance of the evaluation stage is
of utmost importance. By introducing pre- and postprocessing stages which might be relatively
costly in terms of computational complexity, a significant reduction in the overall complexity is
gained if these operations permit a more efficient implementation of the evaluation stage.

4.3.3 Suitability of ASRC Implementation Structures
In Section 3.6, numerous implementation structures for ASRC have been described. In the
following, it is investigated how well these structures can be integrated into the proposed
partitioning scheme. The main criterion is whether a relevant portion of the algorithm can be
transposed to either the pre- or the postprocessing stage, resulting in a reduced complexity of the
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evaluation stage.
For reasons that will be explained in detail in Section 4.4, implementation structures for

sample rate reductions, such as the transposed Farrow structure, are not considered here.

Methods with Explicitly Calculated Filter Coefficients Several resampling algorithms,
for instance Lagrange interpolation (Section 3.6.3) or methods based on splines (Section 3.6.4),
compute the discrete-time coefficients h(n,µ) of the resampling filter based on explicit formulas.
As stated there, these computations depend on the intersample position µ and constitute a major
part of the complexity of the algorithms. For this reason, no major processing task independent
of the intersample position can be transposed into either the pre- or postprocessing stage. Thus,
this class of implementation structures is not suited for the proposed partitioning scheme.

Methods based on Oversampling and Continuous-Time Resampling Functions Meth-
ods incorporating integer-ratio oversampling as described in Section 3.6.5 consist of two cascaded
components: A discrete-time sample rate increase and a continuous-time resampling function
controlled by the intersample position µ. Therefore, this class of structures fits into the proposed
partitioning scheme in a natural way. The integer sample rate increase constitutes the prepro-
cessing stage, whereas the continuous-time resampling function represents the evaluation stage.
Consequently, the storage components for intermediate data according to Figure 4.1 represent
arbitrary-access delay lines containing oversampled representations of the source signals xm[k].
Thus, the amount of intermediate data is increased by the oversampling ratio L compared to
storage size of the delay line in the original processing scheme. This implementation structure
does not require a dedicated postprocessing stage.

Methods Based on the Farrow Structure As shown in Section 3.6.1, all variants of the
Farrow structure, including the modified and the generalized form, are based on the evaluation
of a set of M + 1 FIR filters, the so-called subfilters Cm(z). The actual intersample position is
incorporated only in the evaluation of a polynomial that uses the outputs of the subfilters as
coefficients.

Therefore, the Farrow structure can be readily integrated into the proposed partitioning
scheme. For this purpose, the preprocessing stage consists of the evaluation of the subfilters
Cm(z). For each input sample, the preprocessed data comprise the M + 1 output values of the
subfilters. These values are stored in the intermediate data structure, a delay-line-like structure
enabling arbitrary access based on the integer part of the required sample delay. The evaluation
stage consists of the evaluation of the polynomial for the current value of µ.

Consequently, the storage required by the proposed partitioning scheme is M + 1 times
the amount of memory required by a conventional WFS implementation structure. As in
case of structures based on oversampling, this implementation does not require a nontrivial
postprocessing stage.

4.3.4 Performance Comparison
To demonstrate the potential performance gains of the proposed algorithm partitioning, different
implementation structures are compared in a scenario resembling a realistic WFS reproduction
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Figure 4.3: Quality of ASRC algorithms used in the performance comparison.

system. Here, a system consisting of N = 256 speakers operating at a sampling frequency of
48KHz is considered. This setup corresponds roughly to a small to medium-sized movie theater.

Three different algorithms are compared. Cubic Lagrange interpolation, that is, of order
N = 3, represents a resampling algorithm based on explicitly calculated filter coefficients.
As stated above, this class of structures cannot gain a performance improvement from the
proposed partitioning scheme. Cubic Lagrange interpolation is widely used in audio applications
(e.g. [LVKL96,WBJ99]). Moreover, it often represents the most basic algorithm that provides
acceptable audio quality because of the relatively severe errors of linear interpolation.

The second candidate comprises integer-ratio oversampling with ratio L = 4 and a cubic
Lagrange interpolator of order Nd i g = 3 as continuous-time resampling function. This algo-
rithm is denoted as Oversampling+Lagrange (O+L). The prototype filter of the oversampling
component is of order Nd i g = 127. It is designed with respect to a L∞ criterion with cutoff
frequency fc = 20KHz.

A resampling algorithm based on the modified Farrow structure with orders M = 5, N = 31,
and the same cutoff frequency designed according to the L∞ norm forms the third candidate.

To compare the resampling quality of these algorithms, the continuous frequency responses
Hc (jω) are shown in Figure 4.3a. It is observed that the Lagrange interpolator exhibits a
noticeable roll-off in the passband as well as a limited attenuation of passband images with a
worst-case stopband error of -29.7 dB. In contrast, the Oversampling+Lagrange algorithm has
very good image attenuation, but shows a pronounced signal image around ω = 8π = 2πL,
resulting in a maximum stopband error of about -56.4 dB. In contrast, the stopband error of
the Farrow structure shows equiripple behavior over wide parts of the stopband region with a
maximum error of -85.9 dB.

As a second performance measure, the THD+N (total harmonic noise+distortion) is utilized.
The THD+N measure represents the ratio between the power of the signal error and the power
of the signal. This measure is closely related to the signal-to-noise ratio (SNR), which is defined
as the ratio between the desired signal and noise. The use of the THD+N measure in resampling
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Algorithm Preprocessing Evaluation Total operations Memory size Memory bandwidth

operations per operations operations per data values per memory accesses per
input sample output sample output sample input sample output sample

Lagrange — 19 19 1 4
O+L 252 19 ≈ 20 4 4
Farrow 282 10 ≈ 11.1 6 6

Table 4.1: Computational effort for the partitioning scheme for WFS. Number of instructions/-
data values for computing one output sample.

applications is motivated in [Str00]. For a finite-length time-domain signal, it is calculated as

THD+N=
Pe

Px
, (4.1)

wherePx denotes the average signal power of a discrete-time signal x[n] (e.g. [Smi07])

Px =
1

N

N−1∑
n=0

|x[n]|2 . (4.2)

Likewise, Pe denotes the average power of the error signal e[n], that is, the difference to the
desired, undistorted signal bx[n]

e[n] = x[n]− bx[n] . (4.3)

In Figure 4.3b, the THD+N measures of the tested algorithms are shown as a function of the
signal frequency of a virtual sound source. This source moves away from a stationary secondary
source with a velocity v = 1

5π c ≈ 21.6 m/s. This irrational value results in a relatively dense
spectrum of the noise. However, additional tests have shown that the noise power is relatively
insensitive to the source velocity, that is, the conversion ratio.

As expected, the performance of the Lagrange interpolator is superior for low frequencies, but
deteriorates relatively quickly as the input frequency increases. The Oversampling+Lagrange
algorithm has an approximately constant error up to about 10 KHz, followed by a moderate
increase up to the chosen cutoff frequency fc = 20KHz. In contrast, the THD+N of the Farrow
structure is nearly constant in the whole passband interval of the design specification.

The computational effort of the different algorithms within the proposed partitioning scheme
is shown in Table 4.1. The performance figures represent the effort to compute a single output
sample. It is noted that the effort is independent of the conversion ratio, because the WFS signal
processing structure forms a synchronous single-rate system from an external point of view.

As stated above, no explicit preprocessing stage is utilized in case of Lagrange interpolation.
Therefore, the total effort per output sample is identical to the cost of the evaluation stage and
amounts to 19 operations.

In contrast, the Oversampling+Lagrange algorithm and the Farrow structure perform an
explicit preprocessing stage, consuming 252 and 258 instructions per input sample, respectively.
The evaluation stage for the Oversampling+Lagrange structure is identical to the Lagrange
interpolator. The evaluation part of the Farrow structure requires only 2M = 10 instructions.



i
i

“main_report” — 2012/1/30 — 9:09 — page 130 — #150 i
i

i
i

i
i

130 Chapter 4 Signal Processing for Wave Field Synthesis

For the total complexity, the effort for the preprocessing stage is distributed over the N = 256
output samples. In this way, the complexity of the preprocessing is almost negligible, and
the instruction counts amount to about 20 and 11.1 instructions, respectively. In case of the
Oversampling+Lagrange algorithm, the effort is only slightly larger than the conventional
Lagrange interpolator, while it is significantly lower for the Farrow structure. In this way, the
proposed partitioning scheme enables a significantly higher resampling quality basically at the
cost of the most basic conventional algorithms.

In the two rightmost columns of Table 4.1, the memory requirements of the different al-
gorithms are shown. While the memory bandwidth per output sample remains constant or
increases only moderately, the storage capacity of the algorithms with an explicit preprocessing
stage is significantly larger than for the conventional Lagrange interpolator. Consequently, the
proposed partitioning scheme might be regarded as a space-time trade-off. By using additional
memory to store partial results, it enables reductions of the computational complexity by en-
abling an efficient reuse of intermediate data. Therefore, the utility of a particular algorithm
depends on the characteristics of a target architecture. Depending on whether the available
storage capacity or the memory bandwidth are scarce, different algorithms might prove superior.

4.4 Baseband Aliasing in WFS Signal Processing

4.4.1 Problem
As described in Section 3.4, algorithms for increasing and decreasing the sample rate are concep-
tually different. This distinction follows from the continuous frequency response of the ideal
resampling filter (3.53)

cHc (jΩ) =

(
Ti , |Ω|<min

�Ωi
2 , Ωo

2

�
0 , |Ω| ≥min

�Ωi
2 , Ωo

2

� . (4.4)

For a sample rate increase (Ωo >Ωi ), the cutoff frequency of cHc (jΩ) is independent of the output
frequency, while it depends on this rate for sample rate reductions (Ωo <Ωi ). In the latter case, a
lowpass filter with variable cutoff frequency is required to avoid aliasing, i.e. spectral foldover,
of the baseband of the input signal into the baseband of the resampled signal. As motivated in
Section 3.4, this type of aliasing is referred to as baseband aliasing to distinguish it from aliasing
effects due to incompletely attenuated images.

The distinction between increasing and decreasing conversion ratios poses a conceptual
problem for the application of ASRC algorithms in WFS. Because the need for sample rate
conversion arises from moving sound sources, both sample rate increases and decreases must be
supported. A source moving away from a secondary source corresponds to sample rate increase,
i.e. a conversion ratio R > 1, which manifests itself in a decrease of the perceived frequency.
Conversely, a source movement towards a secondary source implies a conversion ratio R< 1.

In practical WFS rendering systems, arbitrary increasing and decreasing conversion ratios
may be required simultaneously. In Figure 4.4, a virtual source moving parallel to a linear array
of secondary sources is depicted. For some secondary sources, such as xs0, the distance to the
virtual sources is increasing, implying a conversion ratio R> 1. At the same time, the distance
to other secondary sources, e.g. xs6 or xs10, is decreasing, corresponding to a ratio R< 1.
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Figure 4.4: Different conversion ratios caused by the relative velocities with respect to the
secondary sources.

4.4.2 Applicability of Existing Algorithms
The distinction between the sample rate increase case and the sample rate decreases case repre-
sented by the ideal frequency response (4.4) puts stringent requirements on algorithms used in
WFS signal processing.

First, the vast majority of ASRC algorithms is limited to either sample rate increases or
decreases. As an example, the transposed Farrow structure (Section 3.6.7) enables sample
rate decreases by variable ratios, but is not suited for increasing the sample rate. Algorithms
supporting increasing and decreasing sample rates, for instance [LK81a,LPW82,SG84], generally
exhibit different modes for up- and downsampling. For applications with a large number of
simultaneous ASRC operations such as WFS, such a conditional execution implies a more
complex control logic.

This distinction also becomes apparent in implementations of variable-length delay lines
proposed, for instance, in [Roc00, SSAB02]. If the conversion ratio is less than unity, then an
interpolation operation has to be performed while writing to the delay line. The concept of
such an interpolating write is related to the idea of deinterpolation (e.g. [Väl95a]), which enables
the insertion of input samples at arbitrary instants into delay lines with a fixed sampling grid.
However, deinterpolation has been proposed in a framework for digital waveguide modeling,
that is, essentially single-rate systems. It is therefore not directly related to aliasing effects in
SRC applications. Notwithstanding this difference, the interpolating write operation clarifies a
major difference between algorithms for sample rate increases and decreases by flexible ratios
[HF00,Hen02] (see also Section 3.6.7): While a sample rate increase corresponds to sampling a
continuous impulse response hc (t ) with the constant input sampling period Ti , decreasing the
sampling rate corresponds to sampling hc (t ) with the output period To .

Second, the algorithm partitioning scheme proposed in Section 4.3 places additional restric-
tions on the ASRC algorithms. The most stringent requirement is that the preprocessing stage
must not depend on the intersample position or, equivalently, the conversion ratio. This condi-
tion inhibits the use of the transposed Farrow structure, because this algorithm does not possess
a preprocessing stage independent of the conversion ratio. At the same time, algorithms based
on oversampling and Lagrange interpolation or the Farrow structure are not applicable because
they do not prevent baseband aliasing in case of sample rate decreases.

Finally, the concept of variable delay lines with interpolating writes illustrates a further
implication of algorithms for sample rate decreases. If the ASRC algorithm operates on a
delay-line like structure as in case of WFS, then the contents of the delay line depends on the
conversion ratio if R< 1. Consequently, the contained signal cannot be reused by multiple read
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operations with different conversion ratios. Thus, this class of algorithms cannot be used within
the conventional processing structure for WFS shown in Figure 2.3, which uses a single delay
line for each virtual source.

In summary, ASRC algorithms supporting decreasing conversion ratios cannot be integrated
into WFS signal processing algorithms in a reasonable way. The lack of a preprocessing stage
and of a data representation for preprocessed input signals, both independent of the conversion
ratio, forms the main impediment.

4.4.3 Relevance for Practical Reproduction Systems
As shown above, the necessity to synthesize arbitrary sample rate decreases poses a conceptual
difficulty for the use of ASRC algorithms within WFS. However, it is worthwhile to assess the
impact of baseband aliasing artifacts in practical WFS rendering systems. In this section, condi-
tions are determined under which WFS signal processing algorithms designed for nondecreasing
conversion ratios may cause audible aliasing errors.

The main influencing factors for baseband aliasing errors in WFS are the maximum allowed
source velocity, corresponding to a worst-case resampling ratio Rmi n , and the cutoff frequency
ωc of the input signal. The role of the cutoff frequency in SRC systems is described for instance
in [CR83]. Its application to ASRC design is shown in Section 3.8.1. However, its role in
WFS, especially for the assessment of baseband aliasing artifacts, requires a more sophisticated
examination.

The perceived Doppler shift for a stationary listener is a special case of (2.11)

ωr ec =
c

c − v
ωs r c . (4.5)

Here, the source and receiver frequencies are given as normalized angular frequencies with
respect to a common sampling frequency.

To model the Doppler shift as a sample rate conversion, ωs r c and ωr ec are considered as
representations of a single frequency Ω that are normalized to the sampling frequencies Ωi and
Ωo , respectively

Ω=
Ωi

2π
ωs r c (4.6a)

=
Ωo

2π
ωr ec =

Ωo

2π

c

c − v
ωs r c . (4.6b)

Thus, the conversion ratio is given by

R=
Ωo

Ωi
=

c − v

c
. (4.7a)

Conversely, the Doppler shift can be expressed in terms of the conversion ratio as

ωr ec =
1

R
ωs r c . (4.7b)
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It should be noted that (4.5) represents the true Doppler shift of a moving source. However,
the analysis performed here is also applicable to WFS operators that neglect the notion of
retarded time as described in Section 2.4. In this case, the conversion ratio R must be adapted
appropriately.

The minimum conversion ratio Rmi n that may occur in a WFS reproduction system is
determined by the maximum source velocity vmax

Rmi n =
c − vmax

c
. (4.8)

This limit represents the worst-case scenario for baseband aliasing and corresponds to a virtual
sound source xΨ moving towards a secondary source xs with velocity vmax .

In general, baseband aliasing occurs if components of the spectrum X
�

e jω
�

of the source
signal are translated into normalized frequencies exceeding π, which are aliased into the baseband
of the output signal during resampling. As described in [CR83], two different conditions for
baseband aliasing are widely used.

In the first case, aliasing is not allowed into the whole frequency interval ω ∈ [0,π). If the
cutoff frequencyωc denotes the highest frequency component in X

�
e jω
�

, then this condition
can be stated as

1

Rmi n
ωc <π . (4.9a)

Using (4.8), the maximum admissible source velocity that does not cause baseband aliasing is
related to the cutoff frequencyωc by

vmax < c
�

1− ωc

π

�
. (4.9b)

An alternative definition of baseband aliasing prohibits aliasing only into the frequency band of
interest [0,ωc], but permits frequency components to be folded into the transition band (ωc ,π)
of the output signal Y

�
e jω
�

. In this case, the condition to prevent aliasing reads

1

Rmi n
ωc < 2π−ωc . (4.10a)

Similar to (4.9b), the maximum admissible source velocity can be stated as

vmax < c
2(π−ω)
2π−ω . (4.10b)

For notational convenience, it is assumed that the highest frequency of interest of the output
signal is identical to that of the input signal. This choice appears sensible for audio applications,
whereωc is typically related to the human hearing range. However, (4.10) can be extended to
arbitrary combinations of cutoff frequencies without conceptual difficulty.

Naturally, the output signal is no longer bandlimited toωc if the conversion ratio falls below
unity. The consequences of this behavior depend on the application. In some cases, the frequency



i
i

“main_report” — 2012/1/30 — 9:09 — page 134 — #154 i
i

i
i

i
i

134 Chapter 4 Signal Processing for Wave Field Synthesis

ωc/π 0.5 0.6 0.7 0.8 0.9 1

fc for fi = 48KHz [KHz] 12 14.4 16.8 19.2 21.6 24
fc for fi = 44.1KHz [KHz] 11.03 13.23 15.44 17.64 19.85 22.05

No aliasing [m/s] 170 136 102 68 34 0
Transition band aliasing [m/s] 226.67 194.29 156.92 113.33 61.82 0

Table 4.2: Maximum admissible source velocity vmax in m/s to prevent baseband aliasing as a
function of the cutoff frequencyωc . Sound velocity: c = 340 m/s.

contents in the transition band (ωc ,π] can be ignored. In other applications, these aliasing
components must be removed, for instance if subsequent signal processing components rely on
explicit transition regions. In this case, the algorithm partitioning proposed in Section 4.3.2
can be utilized in a beneficial way. If the lowpass filter is implemented in the postprocessing
stage of the processing scheme according to Figure 4.1, the output signals can be bandlimited to
a user-defined cutoff frequency with relatively low impact on the overall computational effort.

In Table 4.2, the admissible source velocities are tabulated as a function of the cutoff fre-
quency. It is apparent that for bandwidths typically used in audio applications (for example,
fc ∈ [16KHz,20KHz]), the allowed velocities are relatively high compared to the source speeds
typically used in WFS reproductions. In these cases, ASRC algorithms for sample rate increases
can be applied without introducing perceptible aliasing errors. Consequently, baseband aliasing
does not pose a practical problem in most applications of WFS.

4.4.4 Processing Structure to Prevent Baseband Aliasing
As stated in the preceding section, baseband aliasing does not actually result in audible artifacts for
source velocities and signal bandwidths occurring in most applications. However, it is possible
that in special circumstances, in particular if very high velocities are required in combination
with wideband signals, baseband aliasing may become an issue. Therefore, a processing structure
is proposed that prevents baseband aliasing for a moderate increase of the computational effort.

As shown above, the width of the transition region (ωc ,π], determined by the cutoff fre-
quency ωc , is the key influencing variable for the maximum admissible source velocity vmax .
Therefore, a natural approach to increase vmax is to enlarge this transition region. This can
be accomplished by increasing the sampling rate of the input signal, performing the ASRC
computation at the higher sampling rate and decreasing the sample rate in the output signal
again.

This processing structure can be integrated into the partitioning scheme proposed in Section
4.3. In this way, all ASRC algorithms that fit into this scheme are applicable. As illustrated in
Figure 4.5, a sample rate increase by the fixed ratio R f i x is put in front of the ASRC algorithm,
while the output of this structure is converted back to the original sampling frequency using a
fixed sample rate decrease with ratio 1/R f i x . In this way, the processing rate of all stages of the
internal ASRC algorithm is increased by the factor R f i x . The systems for the fixed sample rate
increases and decreases can be combined with the pre- and postprocessing stage of the internal
ASRC algorithms. Thus, these operations are performed only once for each input and output
signal, respectively. In this way, the computational effort for the fixed-ratio SRC is relatively
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R f i x · fo

PreprocessingPreprocessingx[n] Postprocessing
x∗[k]

Postprocessing∗Preprocessing∗

EvaluationR f i x y[n]R f i xy∗[k]

Figure 4.5: Proposed processing scheme to prevent baseband aliasing.

small compared to the overall complexity. Instead, the increase of the computational effort is
mainly caused by the increased rate of computation for the evaluation stage, which is scaled by
the ratio R f i x .

As stated above, the improvement of this processing structure results from widening the
transition region or, equivalently, from the reduction of the cutoff frequencyωc . For an input
signal x[n] with normalized cutoff frequencyωc , the normalized cutoff frequency of the signal
x∗[k] after sample rate conversion by ratio R f i x is reduced to

ω∗c =
1

R f i x
ωc . (4.11)

Applying this adapted cutoff frequency to (4.9b) and (4.10b) yields expressions for the maximum
allowed source velocity in the modified processing structure

vmax =





c
�

1− ωc
R f i xπ

�
, no aliasing allowed

c
1− ωc

R f i xπ

1− ωc
2R f i xπ

, transition band aliasing allowed
. (4.12)

In Figure 4.6, the maximum admissible source velocities are displayed as a function of ωc
and the fixed SRC ratio R f i x . The case R f i x = 1 corresponds to the conventional WFS signal
processing structure without explicit prevention of baseband aliasing. It is seen that for a given
ωc , the admissible source velocity increases considerably even for a relatively small sample rate
increase R f i x .

As a numerical example, consider the design specifications ωc = 0.9π and vmax = 150 m/s

for a WFS reproduction system. According to (4.9b) and (4.10b), the conventional signal
processing structure yields maximum source velocities vmax = 34 m/s if aliasing is prohibited or
vmax ≈ 61.8 m/s if aliasing in the transition region is acceptable. To fulfill the design specification
vmax = 150 m/s, (4.9b) and (4.10b) are solved for the fixed resampling ratio, yielding R f i x ≈ 1.61
and R f i x ≈ 1.26 for the different aliasing conditions, respectively. As the overall computational
load of the WFS signal processing structure is roughly proportional to the resampling ratio R f i x ,
aliasing prevention for these stringent design specifications can be implemented with an increase
in complexity of about 61 % or 26 %, respectively.

It is worth emphasizing that the proposed processing structure for the prevention of baseband
aliasing is distinct from ASRC algorithms utilizing fixed-ratio oversampling as described in
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(a) No aliasing allowed
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(b) Transition band aliasing allowed

Figure 4.6: Maximum admissible source velocity in the processing scheme to prevent baseband
aliasing.

Section 4.3.3. In conventional ASRC systems, the continuous-time resampling filter Hi nt (jω)
operates at the output sampling rate, and a separate sample rate decrease is not required at
the output. Instead, in the structure proposed here, the continuous-time resampling function,
corresponding to the evaluation stage of the partitioning, deliberately operates at a higher rate to
increase the width of the transition band, consequently preventing aliasing into the baseband
of the original signal. Thus, a separate sample rate decrease is necessary at the output of the
system. However, this operation replaces the lowpass filtering with an arbitrary, variable cutoff
frequency required in an ASRC algorithm for sample rate decrease by a fixed, rational SRC
component that is executed only once for each loudspeaker signal.

4.5 Conclusions
In this chapter, efficient discrete-time structures for the audio signal processing within WFS
reproduction systems have been considered. It turned out that scaling and delaying of audio
signals is the most demanding signal processing operation, both in terms of the computational
complexity and in its effect on the perceived quality of moving sound sources. It has been argued
why this delay operation is best modeled as a time-variant arbitrary sample rate conversion
operation.

However, due to the large number of simultaneous scale and delay operations in a typical WFS
reproduction system, direct application of high-quality ASRC algorithms causes an excessive
increase of the computational effort that is not feasible for most rendering systems. However, it
is possible to exploit the structure of a WFS signal processing system to reduce the complexity
of the delay operations significantly. For that purpose, a partitioning scheme for resampling
algorithms is proposed that enables an efficient reuse of intermediate data.

It is shown that two important classes of efficient resampling algorithms, namely methods
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based on the Farrow structure and algorithms incorporating integer-ratio oversampling, fit well
into to this partitioning scheme. In this way, the proposed processing scheme enables the use of
high-quality resampling algorithms basically at the cost of most basic methods for digital delay.

Because the time-variant delays in a WFS signal processing systems arise from arbitrarily
moving sound sources, resampling algorithms must handle arbitrary increases and decreases
of the sampling frequency. As shown in Chapter 2, these cases require conceptually different
algorithms.

It turns out that conventional algorithms for decreasing the sample rate cannot be incorporated
into efficient signal processing schemes for WFS reasonably. While decreasing sampling ratios
potentially result in baseband aliasing artifacts, it is shown that this effect does not cause
perceptible errors for the majority of use cases of WFS. For the remaining cases, a processing
structure compatible with the proposed algorithm partitioning is developed that enables nearly
arbitrary maximum source velocities and signal bandwidths. This modification increases the
overall computational effort only moderately.

Notwithstanding the complexity reduction due to the proposed processing schemes, efficient
ASRC algorithms remain a crucial component for WFS rendering systems. Additionally, the
efficient processing structures proposed in this chapter pose new requirements and design
objectives for ASRC algorithms. First, the suitability for the proposed algorithm partitioning
forms a key requirement. Second, since the proposed processing schemes basically represent
space-time trade-offs, additional metrics for the computational effort, such as storage size or
memory bandwidth requirements, become increasingly important.
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Chapter 5

Improvements to ASRC algorithms

5.1 Introduction

The importance and the widespread use of algorithms for arbitrary sampling rate conversion
have been motivated in Section 3.4. Its application to WFS signal processing has been described
in Chapter 4. For these reasons, algorithms that meet prescribed performance characteristics
with minimal computational complexity are of great importance.

Existing research on ASRC algorithms most often focuses on implementation structures.
However, the vast majority of algorithms requires a set of design parameters, such as filter
orders, polynomial orders or oversampling ratios, to be specified. These decisions influence
the performance and the computational complexity of the structures. Moreover, most ASRC
structures exhibit a set of coefficients. Sophisticated design methods, resembling methods for
discrete-time filter design, are required to determine these coefficients.

In order to compare different algorithms for ASRC, implementation structures cannot be
assessed apart from design methods that yield suitable, preferably optimal coefficients for these
structures with respect to a given design specification.

Often, ASRC algorithms consist of several building blocks, as in case of structures consisting of
oversampling and continuous-time resampling filters. These components are typically considered
independently, thus complicating design and analysis of the overall structure.

Generally, the advancements proposed in this chapter fall into two interrelated categories.
First, analytical descriptions for the continuous frequency response of several classes of ASRC
algorithms are derived. These expressions are directly applicable to design methods, but they
also provide a better understanding of these algorithms.

The second focus is on design for these structures, targeting at methods that yield optimal
quality with respect to selectable error norms. In addition, emphasis is put on flexible methods
that enable the incorporation of additional requirements and constraints into the design process.
Such flexible specifications facilitate the synthesis of ASRC designs that are specifically matched
to the requirements of an application. For ASRC structures that consist of multiple components,
it is investigated under which conditions such purposeful, optimal designs are achievable.

The improvements proposed in this chapter primarily target algorithms for sample rate
increases. At the one hand, this restriction is justified by the application, as the efficient
structures for WFS signal processing require this class of algorithms. On the other hand, most
coefficient design methods are also applicable to sample rate decreases if the corresponding
transposed form of the implementation structure is used.

139
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5.2 A Unified Frequency Response for Symmetric
Polynomial-Based Resampling Functions

Symmetric piecewise polynomial functions constitute a very general class of resampling filters.
Therefore, analytic expressions for the frequency response of this class of functions are useful for
a large number of ASRC algorithms. Moreover, as symmetric piecewise polynomial functions
are efficiently implemented by the modified Farrow structure, exact representations of this
frequency response are directly applicable to design methods for this implementation structure.

In Section 3.8.2, closed-form expressions for the continuous frequency response of the modified
Farrow structure have been presented which were originally proposed in [Ves99, Ves00, VS07].
However, these representations exhibit several limitations. First, the derivations proposed so
far are limited to odd subfilter orders. Moreover, they are undefined or prone to numerical
instabilities for specific frequency arguments, for instance in the vicinity of zero. Finally, the
complex structure of the existing representations complicates an intuitive interpretation of the
properties of this class of resampling filters.

For these reasons, an alternative derivation is presented here. Emphasis is put on a uniform
representation that holds for both even and odd subfilter orders. This derivation results in a
concise form that is well-defined on the whole frequency axis and enables efficient and stable
evaluation.

5.2.1 Derivation
As shown in Section 3.6.1, the continuous frequency response of piecewise polynomial basis
functions is conveniently expressed as a linear combination of basis functions f (m,µ) (3.112)

hc (t ) =
M∑

m=0

N∑
n=0

cmn f
�

m, t
Ti
+ tn

�
with (5.1)

f (m,µ) =

(
µm , −µmi n ≤µ<µmax

0 , otherwise
.

The translation by a basepoint value tn is conveniently expressed as

f
�

m,µ+ tn
�
=

(
(µ+ tn)

m , −µmi n − tn ≤µ<µmax − tn

0 , otherwise
. (5.2)

Due to the symmetry relations between the elements of the coefficient matrix cmn (3.120a),
the continuous impulse response hc (t ) (5.1) can be expressed using the (M+1)×(N ′+1) elements
of the matrix B (3.129) and a set of modified basis functions g (m, n,µ)

hc (t ) =
M∑

m=0

N ′∑
n=0

bmn g
�

m, n, t
Ti

�
. (5.3)

The modified index limit N ′ has been defined in (3.123). The modified basis functions g (m, n,µ)
are similar to those introduced in [Ves99, VS07], which are denoted as g ′(m, n, t ) (3.234c) in
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Section 3.8.2. However, the form used here is suitable for arbitrary orders irrespective of the
parity of N , and does not require a transformation of the intersample position µ.

To determine these basis functions, three distinct cases must be considered. The first case
applies if the order N is odd, or if N is even and n > 0. Then g (m, n,µ) consists of two
polynomial pieces f (m,µ) that are symmetric with respect to zero.

g (m, n,µ) = f
�

m,µ+ tN ′−n
�
+(−1)m f

�
m,µ+ tN−N ′+n

�
(5.4a)

=




(µ+ tN ′−n)

m , µmi n − tN ′−n ≤µ<µmax − tN ′−n

(−1)m(µ+ tN−N ′+n)
m , µmi n − tN−N ′+n ≤µ<µmax − tN−N ′+n

0 , otherwise
. (5.4b)

Using the definition of the symmetric basepoint set (3.89) and the associated intersample position
range (3.89d), (5.4b) can be specialized to even and odd subfilter orders N . For odd N , that is
N ′ = N−1

2 , g (m, n,µ) can be simplified to

g (m, n,µ) =




(µ+ n+ 1

2 )
m , −n− 1≤µ<−n

(−1)m(µ− n− 1
2 )

m , n ≤µ< n+ 1
0 , otherwise

for N odd . (5.5a)

This basis function is depicted for even and odd polynomial orders m in the Figures 5.1a and
5.1b. Likewise, for even N , N ′ = N

2 , it follows

g (m, n,µ) =




(µ+ n)m , −n− 1

2 ≤µ<−n+ 1
2

(−1)m(µ− n)m , n− 1
2 ≤µ< n+ 1

2
0 , otherwise

for N even and n > 0 . (5.5b)

This case is illustrated in Figures 5.1c and 5.1d for even and odd m, respectively.
The second case holds if the filter order N is even, n = 0, and m is an even number. Then,

g (m, n,µ) consists of a single polynomial piece that is symmetric with respect to µ= 0.

g (m, 0,µ) = f (m,µ+ tN ′)

=

(
µm , − 1

2 ≤µ< 1
2

0 , otherwise
for N even and m even . (5.5c)

This case is shown in Figure 5.1e.
The third case applies if N is even, n = 0, and m is odd. Because the corresponding coefficient

bm0 is constrained to zero (3.130c), this basis function does not contribute to hc (t ). It is therefore
set to zero by definition as represented in Figure 5.1f

g (m, 0,µ) = 0 for N even and m odd . (5.5d)

In this way, the continuous impulse response of the symmetric piecewise polynomial resampling
functions of arbitrary orders can be described using the basis functions (5.5a) to (5.5d).
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−n−1 −n n n+1

(a) N odd, m even

−n−1 −n n n+1

(b) N odd, m odd

−n−1
2 −n+1

2 n−1
2 n+1

2

(c) N even, n > 0, m even

−n−1
2 −n+1

2 n−1
2 n+1

2

(d) N even, n > 0, m odd

− 1
2

1
2

(e) N even, n = 0, m even

− 1
2

1
2

(f ) N even, n = 0, m odd

Figure 5.1: Modified basis functions g (m, n,µ) of symmetric piecewise polynomial resampling
functions.

Because the impulse response hc (t ) (5.3) is linear with respect to the basis functions g (m, n,µ),
the continuous frequency response Hc (jω) is a linear combination of the continuous Fourier
transform of these basis functions.

Hc (jω) =F {hc (t )}

=
M∑

m=0

N ′∑
n=0

bmnF
n

g
�

m, n, t
Ti

�o
(5.6a)

= Ti

M∑
m=0

N ′∑
n=0

bmnG(m, n,ω) with (5.6b)

G(m, n,ω) =F {g (m, n,µ)} . (5.6c)

As motivated in Section 3.8, the frequency variableω is normalized to the input sampling period,
that isω =ΩTi (3.217), for notational convenience.

To obtain the continuous frequency responses G(m, n,ω), the definition of the continuous
Fourier transform (3.7a) is applied. For odd N , the Fourier transform of g (m, n,µ) (5.5a) is
given by

G(m, n,ω) =

∞∫

−∞
g (m, n,µ)e−jωµ dµ (5.7a)

=

−n∫

−n−1

(µ+ n+ 1
2 )

me−jωµ dµ+

n+1∫

n

(−1)m(µ− n− 1
2 )

me−jωµ dµ . (5.7b)

Substituting the variable µ in the two integrals by

µ1 =µ+
�

n+ 1
2

�
µ=µ1−

�
n+ 1

2

�
dµ1 = dµ



i
i

“main_report” — 2012/1/30 — 9:09 — page 143 — #163 i
i

i
i

i
i

5.2 A Unified Frequency Response for Polynomial-Based Resampling Functions 143

µ2 =µ−
�

n+ 1
2

�
µ=µ2+

�
n+ 1

2

�
dµ2 = dµ

yields

G(m, n,ω) =

1
2∫

− 1
2

µm
1 e
−jω

�
µ1−

�
n+ 1

2

��
dµ1+

1
2∫

− 1
2

(−1)mµm
2 e
−jω

�
µ2+

�
n+ 1

2

��
dµ2 (5.8a)

= e
j
�

n+ 1
2

�
ω

1
2∫

− 1
2

µm
1 e−jωµ1 dµ1+(−1)me

−j
�

n+ 1
2

�
ω

1
2∫

− 1
2

µm
2 e−jωµ2 dµ2 . (5.8b)

Because the integral expressions in (5.8b) are equivalent, the variables µ1 and µ2 are substituted
by µ again. Moving the terms which are independent of the integration variable out of the
integrals results in

G(m, n,ω) =
�

e
j
�

n+ 1
2

�
ω
+(−1)me

−j
�

n+ 1
2

�
ω
� 1

2∫

− 1
2

µme−jωµ dµ (5.9)

Applying the relations between exponential and trigonometric functions

cos(x) =
e jx + e−jx

2
(5.10a)

sin(x) =
e jx − e−jx

2j
, (5.10b)

equation (5.9) can be expressed as a combination of two functions Ψ(m, n,ω) and Φ(m,ω)

G(m, n,ω) = Ψ(m, n,ω)Φ(m,ω) with (5.11a)

Φ(m,ω) =

1
2∫

− 1
2

µme−jωµ dµ (5.11b)

Ψ(m, n,ω) =

(
2cos

��
n+ 1

2

�
ω
�

, m even
2j sin

��
n+ 1

2

�
ω
�

, m even
for N odd . (5.11c)

For even N , n > 0, the Fourier transform of the basis function g (m, n,µ) (5.5b) is given by

G(m, n,ω) =

−n+ 1
2∫

−n− 1
2

(µ+ n)me−jωµ dµ+

n+ 1
2∫

n− 1
2

(−1)m(µ− n)me−jωµ dµ . (5.12a)



i
i

“main_report” — 2012/1/30 — 9:09 — page 144 — #164 i
i

i
i

i
i

144 Chapter 5 Improvements to ASRC algorithms

Using manipulations identical to odd-order case above, G(m, n,ω) can be written as

G(m, n,ω) =
�

e jω +(−1)me−jω
�

1
2∫

− 1
2

µme−jωµ dµ (5.12b)

=Ψ(m, n,ω)Φ(m,ω) with (5.12c)

Ψ(m, n,ω) =

(
2cos (nω) , m even
2j sin (nω) , m odd

f o r N odd and n > 0 , (5.12d)

where the function Φ(m, w) is identical to (5.11b).
For even N , n = 0, m even, the basis function (5.5c) consists of a single polynomial piece

centered with respect to µ= 0. Its Fourier transform is given by

G(m, 0,ω) =

1
2∫

− 1
2

µme−jωµ dµ , (5.13)

which is expressed in the form of (5.11c) and (5.12d) as

G(m, 0,ω) = Φ(m,ω)Ψ(m, 0,ω) with (5.14a)
Ψ(m, 0, w) = 1 for N even , n = 0 and m even . (5.14b)

Finally, for N even, n = 0, m odd,

G(m, 0,ω) = 0 for N even , n = 0 and m odd (5.15)

follows directly from (5.5d).
The different variants of the basis function G(m, n,ω), (5.11c), (5.12d), (5.14b), and (5.15) can

be combined into a single expression

G(m, n,ω) = Ψ(m, n,ω)Φ(m,ω) with (5.16a)

Ψ(m, n,ω) =





1 , N even, n = 0, m even
0 , N even, n = 0, m odd
2cos(nω) , N even, n > 0, m even
2j sin (nω) , N even, n > 0, m odd
2cos

��
n+ 1

2

�
ω
�

, N odd, m even
2j sin(

�
n+ 1

2

�
ω) , N odd, m odd

. (5.16b)

Because the scaling function Φ(m,ω) is independent of the coefficient index n, Hc (jω) (5.6b)
can be expressed as

Hc (jω) = Ti

M∑
m=0

N ′∑
n=0

bmnΦ(m,ω)Ψ(m, n,ω)
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= Ti

M∑
m=0

Φ(m,ω)
N ′∑

n=0

bmnΨ(m, n,ω) . (5.17)

By comparing (5.17) to the discrete-time frequency response of the modified Farrow structure
(3.126), it becomes apparent that the inner summation represents the non-causal discrete-time
frequency response of the subfilters of the Farrow structure, Cm(ω) (3.126b). Thus, Hc (jω) is
compactly represented by

Hc (jω) = Ti

M∑
m=0

Φ(m,ω)Cm (ω) . (5.18)

Consequently, the continuous frequency response of the modified Farrow structure is a superpo-
sition of the discrete-time (and thus periodic) frequency responses of the subfilters Cm(z), each
weighted by a non-periodic scaling function Φ(m,ω). A similar relation between Hc (jω) and
the discrete frequency responses Cm(ω) has been first pointed out in [Ves00], but this derivation
is limited to odd subfilter orders N .

It is observed that Ψ(m, n,ω) (5.16b) is a real and even function for even m. Conversely, it is
odd and purely imaginary if m is odd.

5.2.2 A Closed-Form Expression for the Scaling Function Φ(m,ω)
To obtain an explicit expression for the scaling function Φ(m,ω), the definite integral

Φ(m,ω) =

1
2∫

− 1
2

µme−jωµ dµ (5.19)

can be expressed by windowing µe−jωµ with a unit rectangle (3.174) and integrating the resulting
function over the whole real line

Φ(m,ω) =

∞∫

−∞
Π(µ)µme−jωµ dµ . (5.20)

According to the definition of the Fourier integral (3.7a), equation (5.20) is the continuous
Fourier transform of the function Π(µ)µm

Φ(m,ω) =F {Π(µ)µm} . (5.21)

Utilizing the functional relationship [BSMM06]

F {t m f (t )}= jm dm

dωmF { f (t )} , (5.22)

which is the dual of the derivative theorem of the continuous Fourier transform [Bra00,Smi10b],
and the transform pair for the unit rectangle function (3.175)

F {Π(t )}= sinc
�ω

2

�
,
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Φ(m,ω) is finally expressed in explicit form by

Φ(m,ω) = jm dm

dωm sinc
�ω

2

�
. (5.23)

This representation makes several properties of the scaling function Φ(m,ω) apparent. First, as
sinc(x) is continuous and infinitely differentiable, the functions Φ(m,ω) are continuous and are
defined on the whole real line for all m ≥ 0. Second, Φ(m,ω) are real-valued functions for m
even, while they are purely imaginary for m odd. Third, they are even functions for m even and
odd functions if m is odd. That is because sinc(x) is an even function, and the derivative of an
even function is odd, while the derivative of an odd function is even.

Combined with the characteristics of Ψ(m, n,ω) (5.16b), it follows that the basis functions
G(m, n, w) = Φ(m,ω)Ψ(m, n,ω) are real and even irrespective of m and n. This confirms the
characterization of Hc (jω) as a real and even function, which follows from the real-valued and
symmetric nature of hc (t ) [Bra00].

Consequently, the basis functions G(m, n,ω) can be expressed using real-valued functions,
denoted Ψr (m, n,ω) and Φr (m,ω). This is achieved by transposing the imaginary unit j from
Ψ(m, n,ω) to Φ(m,ω) for odd m, resulting in

G(m, n,ω) = Φr (m,ω)Ψr (m, n,ω) wi t h (5.24a)

Φr (m,ω) = (−1)
lm

2

m dm

dωm sinc
�ω

2

�
(5.24b)

Ψr (m, n,ω) =





1 , N even, n = 0, m even
0 , N even, n = 0, m odd
2cos(nω) , N even, n > 0, m even
2sin (nω) , N even, n > 0, m odd
2cos

��
n+ 1

2

�
ω
�

, N odd, m even
2sin(

�
n+ 1

2

�
ω) , N odd, m odd

. (5.24c)

The real-valued functions Φr (m,ω) and Ψr (m, n,ω) are related to their complex-valued coun-
terparts by

Φr (m,ω) =

(
Φ(m,ω) , m even
jΦ(m,ω) , m odd

Ψr (m, n,ω) =

(
Ψ(m, n,ω) , m even
−jΨ(m, n,ω) , m odd

. (5.25)

That is, the functions are identical for m even, while they are related by phase shifts of j and
−j for odd orders m. The real-valued form is particularly useful for coefficient design methods,
because the system can be modeled purely by real quantities. On the downside, the real-valued
expressions do not reflect the relation to the discrete-time frequency responses of the Farrow
subfilters Cm (ω), where the constant phase shift of π/2 forms an essential property of the filters
for m odd.

In Figure 5.2, Φr (m,ω) is depicted for the first four values of m.
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(a) Φr (0,ω)
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(b) Φr (1,ω)
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ω

(d) Φr (3,ω)

Figure 5.2: Scaling function Φr (m,ω) of the modified Farrow structure, polynomial orders
m = 0, . . . , 3.

5.2.3 Stable and Efficient Evaluation of the Scaling Functions Φ(m,ω)
and Φr (m,ω)

Although (5.23) is a compact, expressive and unambiguous representation of the scaling functions
Φ(m,ω) and Φr (m,ω), it cannot be used for direct evaluation due to the derivatives involved.
To obtain an explicit formula, the general Leibniz rule [BSMM06, AS65] or Leibniz identity,
which generalizes the product rule of differentiation to arbitrary orders

dn

dxn [g (x) · h(x)] =
n∑

k=0

�n

k

� dk

dxk
g (x) · dn−k

dxn−k
h(x) , (5.26)

is utilized. For this purpose, the function sinc(ω/2) is partitioned into factors g (ω) and h(ω)

g (ω) = sin
�w

2

�
(5.27a)

h(ω) = 2ω−1 . (5.27b)
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The derivatives of the factors g (ω) and h(ω) are given by

dn

dωn g (ω) =





1
2n sin

�
ω
2

�
, n mod 4= 0

1
2n cos

�
ω
2

�
, n mod 4= 1

− 1
2n sin

�
ω
2

�
, n mod 4= 2

− 1
2n cos

�
ω
2

�
, n mod 4= 3

=
1

2n sin
�ω

2
+ n

π

2

�
(5.28a)

dn

dωn h(ω) = 2(−1)n n!w−(n+1) (5.28b)

Applying (5.26) to (5.23) yields

Φ(m,ω) = jm2
m∑

k=0

�m

k

� 1

2k
sin
�ω

2
+ k

π

2

� (−1)m−k (m− k)!

ωm−k+1
. (5.29)

This representation is similar to the weighting function proposed in [Ves00], but the form
derived here provides a uniform description for even and odd m, and it is valid for arbitrary
subfilters N . In contrast, the expression of [Ves00] is restricted to Farrow structures with odd
filter orders.

Although (5.29) is a continuously differentiable function on the whole real line for all m with
the exceptionω = 0, the summation consists of large values of alternating sign for small absolute
values of w. Thus, a numerical evaluation might be subject to instability or increased errors for
such arguments. In [VS07], an identical behavior has been observed for the weighting function
Φ(m, f ) (3.236) shown in Section 3.8.2. Consequently, a formula based on the power series
expansions of the sine and cosine terms (3.238) has been proposed by these authors. However,
this formula is still indeterminate forω = 0 and does not rule out numerical cancellation issues.

In contrast, based on the representation of Φ(m,ω) as a derivative (5.23), a compact power
series representation is derived here that overcomes these deficiencies. Starting from the power
series representation of the sine function (e.g. [BSMM06, Kno96])

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

=
∞∑

k=0

ak xn with ak =




(−1)

k+1
2

k! , k odd
0 , k even

,

the power series representation of Φ(0,ω) results in

Φ(0,ω) = sinc
�ω

2

�
= 1− w2

24
+

w4

1920
− w6

322560
+

w8

92897280
− · · · (5.30a)

=
∞∑

k=0

akω
k with ak =




(−1)

k
2

(k+1)!2k , k even

0 , m odd
. (5.30b)
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Generalizing the derivative of a power series [Kno96]

d

dx
f (x) =

∞∑
k=0

ak+1xk

=
∞∑

k=0

a′k xk with a′k = (k + 1)ak+1

to derivatives of arbitrary orders yields

dn

dxn

∞∑
k=0

ak xk =
∞∑

k=0

ak+n(k + n)!xk (5.31a)

=
∞∑

k=0

a(n)
k

xk with a(n)
k
= ak+n(k + 1)n , (5.31b)

where xn denotes the rising factorial [GKP06]

xn = x(x + 1) · · · (x + n− 1)︸ ︷︷ ︸
n

=
(x + n− 1)!

(x − 1)!
. (5.32)

Application of (5.31) to the power series expansion of Φ(0,ω) (5.30) yields

Φ(m,ω) = jm
∞∑

k=0

a(m)
k
ωk with (5.33a)

a(m)
k
=




(−1)

k+m
2 (k+1)m

2k+m (k+m+1)!
, k +m even

0 , k +m odd
(5.33b)

The power series expansion (5.33) differs from the expression (3.238) given in [VS07] in several
aspects: First, because (3.238) is based on the power series expansions of the individual sine and
cosine components, it utilizes a nested summation that is more prone to numerical cancellation
than the single summation used in the proposed formula. Second, (3.238) contains negative
powers of the frequency variable, thus making the formula indeterminate atω= 0. Likewise,
small absolute values ofω cause large terms of alternating sign, which again bears the potential
for numerical cancellation. In contrast, the proposed equation contains only positive powers
ofω. Thus the resulting function is smooth on the whole real line, while the addends of (5.33)
are convergent for ω → 0. Finally, the series expansion (5.33) provides a convenient way to
determine the value Φ(m, 0):

Φ(m, 0) = jm c (m)0 = jm





(−1)
m
2

2m (m+1)! 1
m , m even

0 , m odd
(5.34a)

=

(
1

2m (m+1) , m even

0 , m odd
. (5.34b)
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m 0 1 2 3 4 5 6 7 8 9 10
Φ(m, 0) 1 0 1

12 0 1
80 0 1

448 0 1
2304 0 1

11264

Table 5.1: Values of the scaling function Φ(m,ω) forω = 0, m = 0,1, . . . , 10.

In Table 5.1, Φ(m, 0) is shown for some small values of m. It is noted that these values are identical
for the real-valued variant Φr (m, 0) due to the identity (5.25), because Φ(m, 0) is nonzero only
for even m.

5.2.4 Application to Design Methods
As expressed by (5.17), the continuous frequency response of the modified Farrow structure is
linear with respect to the elements bmn of the coefficient matrix B . Therefore, optimization
methods such as linear programming or weighted least squares minimization can be applied
directly, similar to their use in discrete-time FIR filter design (e.g. [Sar93, OSB99]). However,
due to the continuous-time nature of Hc (jω), the approximation region X is of infinite extent as
described in Section 3.8. This distinction affects design methods for ASRC in two ways.

First, for practical coefficient design methods, a finite upper bound ωu p for the stopband
approximation region has to be determined. A bound that is chosen larger than necessary only
results in an increased design time and potential numerical errors due to the increased number
of grid points. In contrast, if the bound is set to a too small value, the designed system exhibits
significant error components aboveωu p , thus degrading the validity of the design. Nevertheless,
in case of the modified Farrow structure, the selection of an appropriate approximation region
is straightforward in practice. Empirical tests suggest that the required upper bound ωu p

depends primarily on the polynomial order M and increases monotonically with respect to
this parameter. In any way, in accordance with the general design process for digital filters
(e.g. [Sar93]), the obtained filter coefficients should be validated on a different, typically larger
and denser frequency grid. In this way, an improper upper bound is detected and corrected
without difficulty.

The discretization of the frequency variable forms the second distinction to discrete-time filter
design. In the latter field, several design methods that do not require an explicit discretization
have been proposed, including the Parks-McClellan algorithm [PM72b, PM72a,OSB99, KM99],
optimization based on semi-infinite programming [Pot97] or linear matrix inequality formu-
lations [DLS02, Dav10]. However, these design methods are generally tightly bound to the
representation of the filter to be optimized, in particular the basis functions and the approxi-
mation region used. For these reasons, they cannot be adapted to the design of ASRC systems
straightforwardly. On the other hand, design methods based on discrete frequency grids are
widely used, e.g. in FIR filter design methods based on linear programming [Rab72, Sar93].
At the same time, advances in numerical optimization allow the use of very dense discretiza-
tion grids without excessively increased design times. For this reason, methods based on an
explicit discretization of the approximation region are used exclusively in the following. This
choice is in accordance with the design methods for the modified Farrow structure proposed
in [Ves99, VS07].

In this way, the approximation region X is represented by X, a set of K+1 discrete frequencies
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X = {ω1,ω1, . . . ,ωK}=Xp ∪Xs with (5.35a)

X p = {ωp0,ωp1, . . . ,ωpKp
} (5.35b)

X s = {ωs0,ωs1, . . . ,ωsKs
} (5.35c)

K =Kp +Ks + 1 , (5.35d)

comprising the discretized passband and stopband regions X p and X s . These grids consist of
Kp + 1 and Ks + 1 discrete frequencies, respectively. The discretized stopband grid X s may
approximate uniform (3.225) as well as nonuniform stopband specifications (3.225).

The discretized continuous frequency response Hc is a vector of size K + 1

Hc[k] =Hc
�
jωk
�

for k = 0,1, . . . ,K (5.36)

and is determined by the matrix equation

Hc =G ·b (5.37)

comprising the discrete transfer matrix G and the coefficient vector b. The vector b is formed
by transposing and concatenating the rows of the coefficient vector B (3.129)

b=
�

b00 · · · b0N ′ b10 · · · b1N ′ · · · bM 0 · · · bM N ′
�′ . (5.38)

For even orders N , the zero-valued elements resulting from the condition (3.130c) are excluded.
Thus, the size of b is determined by

Ncoe f f s =

(
(N+1)

2 (M + 1) , N odd
N
2 (M + 1)+

 
M+1

2

£
, Neven

. (5.39)

The discretized transfer matrix G is of dimension (K + 1)×Ncoe f f s

G =




G(0,0,ω0) · · · G(0,N ′,ω0) · · · G(M , 0,ω0) · · · G(M ,N ′,ω0)
G(0,0,ω1) · · · G(0,N ′,ω1) · · · G(M , 0,ω1) · · · G(M ,N ′,ω1)

...
. . .

...
. . .

...
. . .

...
G(0,0,ωK ) · · · G(0,N ′,ωK ) · · · G(M , 0,ωK ) · · · G(M ,N ′,ωK )




. (5.40)

Each row k represents the frequency response for a discrete frequency ωk , while column l
contains the transfer functions G(m, n,ωk ) (5.16) corresponding to the l -th element of the
coefficient vector b[l ] = bmn . In discretized form, the desired frequency response bHc (jω) is
represented by

bHc[k] = bHc (jωk ) =

(
1 , ωk ∈Xp

0 , ωk ∈Xs
for k = 0,1, . . . ,K . (5.41)

As argued in Section 3.8.1, the magnitude Ti of the ideal anti-imaging/anti-aliasing filter (3.215)
is omitted here deliberately, corresponding to a normalization of the input sampling period to
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ω0 ω1 ω2 ω3 ω4 ω5 ωK

(a) Extended rectangle rule, equidistant grid

ω0ω1 ω2 ω3ω4 ω5 ωK

(b) Extended trapezoidal rule, arbitrary grid

Figure 5.3: Numerical integration schemes to approximate the integral weighted squared error
for weighted least squares design.

Ti = 1. The weighting vector W is formed by sampling the weighting function W (ω) at the grid
frequenciesωk

W[k] =W (ωk ) for k = 0,1, . . . ,K . (5.42)

The frequency response (5.37) can be used in standard optimization methods in a straightfor-
ward way. For weighted least squares design, as introduced in Section 3.8.2, discretization yields
the objective function

minimize
b

K∑
k=0

�
W[k]s[k]

���Hc[k]− bHc[k]
���
�2

. (5.43)

Here, the vector s[k] denotes an additional weighting to incorporate the influence of the
discretization grid. In several approaches to WLS design, e.g. [Sar93, VS07], such a weighting is
not used, resulting in two principal effects. First, the sum in (5.43) does not approximate the
weighted squared error E2 (3.226a), but a number proportional to this measure that depends on
the number of grid points. Second, this choice effectively implies equidistant grids. The use of
dedicated weightings enables to overcome these problems. A constant weighting for equidistant
grids

s[k] =
1

h
with h =ωk −ωk−1 (5.44)

corresponds to an approximation of the integral (3.226a) by numerical integration with an
extended or composite rectangle rule as shown in Figure 5.3a. More sophisticated weighting
vectors s[k] enable non-equidistant grids as well as more accurate approximations of the integral.
For instance,

s[k] =





1
2 (ω0+ω1) , k = 0
1
2

�
ωk+1−ωk−1

�
, 1≤ k ≤K − 1

1
2

�
ωK−1+ωK

�
, k =K

(5.45)

represents the use of the extended trapezoidal rule with non-uniform intervals [PTVF92,Sch97],
thus facilitating arbitrary discretization grids. This case is depicted in Figure 5.3b.

Using this representation, the solution to the optimization problem (5.43) is given by

b=
�
GT

W GW

�−1
GW

bHW with (5.46a)
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GW =




W[0]s[0]G[0,0] W[0]s[0]G[0,1] · · · W[0]s[0]G[0,N ′]
W[1]s[1]G[1,0] W[1]s[1]G[1,1] · · · W[1]s[1]G[1,N ′]

...
...

. . .
...

W[K]s[K]G[0,K] W[K]s[K]G[K , 1] · · · W[K]s[K]G[K ,N ′]




(5.46b)

bHW =
�

W[0]s[0] bHc[0] W[1]s[1] bHc[1] · · · W[K]s[K] bHc[K]
�

, (5.46c)

where GW denotes the transfer matrix G scaled by the weighting function W (ω) and the
integration weights s[k] for the discrete frequenciesωk ∈X.

For weighted Chebyshev (minimax) approximation, the discretized design objective is

minimize
b

δ∞ =



W[k]

�
G[k]b[k]− bHc[k]

�


∞ , (5.47)

where ‖x‖∞ denotes the maximum or infinity vector norm

‖x‖∞ =max (|x0|, |x1|, . . . , |xN |) . (5.48)

For filter design problems, the objective function is typically transformed into the standard form
of linear programming [Rab72, Sar93]

minimize
b

δ∞ subject to Gb− 1

W
δ ≤ bHc (5.49a)

−Gb− 1

W
δ ≤ − bHc , (5.49b)

where 1/W denotes the piecewise reciprocal of W. The problem (5.49) can be solved using
standard methods for linear programming.

Disciplined Convex Programming Least squares and linear programming problems are
subsets of convex optimization problems [BV04], a wide class of mathematical optimization
problems that can be stated in the form

minimize
x

f (x) (5.50a)

subject to gi (x)≤ 0 i = 0,1, . . . , ng (5.50b)

h j (x) = 0 j = 0,1, . . . , nh . (5.50c)

Here, f (x) is the objective function to be minimized, and gi (x) and h j (x) denote potentially
empty sets of inequality and equality constraints, respectively. f (x) and gi (x), i = 0,1, . . . , ng
are required to be convex functions, while the equality constraints h j (x), j = 0,1, . . . , nh must be
affine. The formulation as a convex optimization problem enables a uniform representation of
the ASRC design problems (5.43) and (5.49). At the same time, it allows the use of sophisticated
numerical methods for convex optimization which have progressed significantly in the recent
years.

A particularly useful methodology for modeling and solving convex optimization problems
has been introduced as disciplined convex programming [Gra04,GB08]. Instead of forcing the user
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to specify or transform the optimization problem into a standard form for convex optimization,
the problem can be stated in an intuitive way using sets of predefined and extensible atoms and
rules. The framework of disciplined convex programming checks the problem for adherence to
convexity and affinity constraints. It performs transformations into a form suitable for standard
numerical convex optimization methods, and solves the problem by calling an appropriate
solution algorithm. Implementations of disciplined convex programming are available, for
instance CVXMOD1 for use with the Python programming language or CVX2 for MATLAB.

As an example, the weighted least-squares design specification (5.46a) is formulated in CVX as
follows:

cvx_beg in
v a r i a b l e b ( Ncoe f f s )

minimize ( norm ( W . ( G b − bHc ) , 2 ) ) ;
cvx_end

Here, norm( ·, 2 ) denotes the L2-norm. In contrast, the minimax objective function (5.47)
translates to

cvx_beg in
v a r i a b l e b ( Ncoe f f s )

minimize ( max ( abs ( W . ( G b − bHc ) ) ) ) ;
cvx_end

or, by directly stating the L∞ norm as norm( ·, Inf)

cvx_beg in
v a r i a b l e b ( Ncoe f f s )

minimize ( norm ( W . ( G b − bHc ) , Inf ) ) ;
cvx_end

These examples show that standard design objectives can be stated in the disciplined convex
programming framework in a compact and expressive manner. However, the main advantage of
this framework is the ability to include additional conditions and constraints in an extensible
and intuitive way. For instance, if the worst-case stopband error shall be minimized with respect
to a fixed maximum passband error δp , the resulting CVX program is formulated as

cvx_beg in
v a r i a b l e b ( Ncoe f f s )

minimize ( norm ( W(X s ) . ( G(X s ) b − bHc (X s ) ) , Inf ) ) ;
s u b j e c t to abs ( G(X p ) b − bHc (X p )) <= δp ones ( Kp +1 , 1 ) ;

cvx_end

where W(X p ), G(X s ), . . . represent the partition of the given vector or matrix corresponding to
the passband grid X p or stopband grid X s , respectively. If the stopband error shall be minimized
with respect to a weighted least squares criterion subject to a fixed maximum passband error,

1http://cvxmod.net, retrieved 2011-03-21
2http://cvxr.com/cvx/, retrieved 2011-03-21

http://cvxmod.net
http://cvxr.com/cvx/


i
i

“main_report” — 2012/1/30 — 9:09 — page 155 — #175 i
i

i
i

i
i

5.2 A Unified Frequency Response for Polynomial-Based Resampling Functions 155

changing the norm in the above program to norm( ·, 2 ) is sufficient. Thus, design objectives in
the style of peak-constrained least square filter design [SLB96, AS98, Dav10] are easily achieved.

As stated in Section 3.8, many design specifications that are expressible as conditions in the
time or the frequency domain are frequently used in ASRC design. For example, this includes
the interpolation condition and continuity or regularity constraints. Such constraints typically
decrease the degree of freedom of the design. With disciplined convex programming, such
constraints can be added as equality conditions and take the form

Ceqb= ceq , (5.51)

where Ceq is a matrix of dimension (n j ×Ncoe f f s ) and ceq is a vector of length n j forming the
right hand side of the linear system. As in (5.50), n j is the number of scalar equality constraints.

The Interpolation Condition The linear constraints used to specify the interpolation condi-
tion (3.232) differ between even and odd subfilter orders. For N even, fixed values are explicitly
determined for a subset of coefficients

b0n =

(
1 , n = 0
0 , n = 1, . . . ,N ′

. (5.52)

For odd N , the interpolation condition results in a system of linear equations

M∑
m=0

bm0

�
−1

2

�m

= 1 (5.53a)

M∑
m=0

bmn

�1

2

�m

= 0 for n = 0,1 . . .N ′ . (5.53b)

Moreover, for even orders N , the interpolation condition requires hc (t ) to be continuous.

Continuity The continuity of the continuous-time impulse response can be formulated as a
set of linear equality constraints that restrict the values of the polynomial pieces h(n,µ) (3.98)
of hc (t ) at the junction points

h(0,µmi n) = 0 (5.54a)
h(n,µmax ) = h(n+ 1,µmi n) for n = 0,1, . . . ,N − 1 (5.54b)
h(N ,µmax ) = 0 (5.54c)

For symmetric piecewise polynomial basis functions, these conditions can be specified as a linear
system utilizing the definition of the modified basis functions g (m, n,µ) of the impulse response
(5.3)

M∑
m=0

bm0

�1

2

�m

−
M∑

m=0

bm0

�
−1

2

�m

= 0 for N even (5.55a)

M∑
m=0

bmn

�1

2

�m

−
M∑

m=0

bm(n+1)

�
−1

2

�m

= 0 for n = 0,1, . . . ,N ′− 1 (5.55b)
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M∑
m=0

bmN ′

�1

2

�m

= 0 . (5.55c)

Regularity The condition of regularity, that is the number of continuous derivatives of hc (t ),
can be considered as an extension of continuity. Continuity corresponds to regularity of order 0,
while regularity of order k implies regularity of all orders less than k, including continuity. In
terms of hc (t ), this condition is expressed by

dl

dµl
h(0,µmi n) = 0 for l = 0,1, . . . , k (5.56a)

dl

dµl
h(n,µmax ) =

dl

dµl
h(n+ 1,µmi n) for n = 0,1, . . . ,N − 1 and l = 0,1, . . . , k (5.56b)

dl

dµl
h(N ,µmax ) = 0 for l = 0,1, . . . , k (5.56c)

Applied to the parametric representation of symmetric piecewise polynomial basis functions,
these conditions are stated as

M−l∑
m=0

m l b(m+l )n

�1

2

�m

−
M∑

m=0

m l b(m+l )(n+1)

�
−1

2

�m

= 0 for n = 0,1, . . . ,N ′− 1 (5.57a)

M∑
m=0

m l bmN ′

�1

2

�m

= 0 (5.57b)

and, additionally,

M−l∑
m=0

m l bm0

�1

2

�m

−
M∑

m=0

m l bm0

�
−1

2

�m

= 0 for N even . (5.57c)

These equality conditions must hold for all orders l = 0,1, . . . , k, with x l denoting the rising
factorial defined in (5.32).

The interpolation condition, continuity and regularity constraints are readily transformed
and combined into a linear equation system in matrix form according to (5.51). This constraint
can be directly incorporated in a CVX program.

cvx_beg in
v a r i a b l e b ( Ncoe f f s ) ;

minimize ( norm ( W ( X s ) . ( G(X s ) b − bHc ) ( X s ) ) , Inf ) ) ;
s u b j e c t to abs ( G(X p ) b − bHc ( X p ) ) <= δp ones ( Kp +1 , 1 ) ;
s u b j e c t to Ceq b == ceq ;

cvx_end
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0π 2π 4π 6π 8π
−80 dB

−60 dB

−40 dB

−20 dB

0 dB

ω

|Hc (jω)|
L∞ design
L2 design

(a) Frequency response

0π 0.2π 0.4π 0.6π 0.8π
0.995

1

1.005

ω

Hc (jω)

(b) Passband detail

4π 4.5π 5π 5.5π
−70 dB

−60 dB

−50 dB

ω

|Hc (jω)|

(c) Stopband detail

Figure 5.4: Continuous-time frequency response of the modified Farrow structure designed
according to the L2 and L∞ norms. Orders M = 3 and N = 15, cutoff frequency
ωc = 0.75π, uniform error weighting, uniform stopbands.

In [VS07], a fixed set of constraints, namely the interpolation condition, impulse response
continuity and a combination of these constraints, have been implemented for odd orders N .
For each constraint, this implementation performs a specific transformation on the coefficient
set {bmn}, reducing the number of free variables to be optimized. In contrast, the approach
presented here does not reduce the dimension of the design problem. However, the intuitive
specification of the conditions and the ability to combine arbitrary sets of constraints with a
selectable error norm results in a very flexible design method.

To illustrate the design framework for the modified Farrow structure, the continuous fre-
quency responses for an ASRC system with orders M = 3, N = 15 and cutoff frequency
ωc = 0.75π designed with respect to the L2 and L∞ norms is shown in Figure 5.4. For both
designs, a constant weighting function W (ω) = 1 and an upper limit for the optimization grid
ωu p = 7π have been used. The L∞ design exhibits approximately equiripple behavior in the
stopband up to about 4π and is dampened towards higher frequencies. The stopband error of
the system designed in the L2 sense is considerably lower than in case of the L∞ design for most
of X s and overshoots the stopband error of the latter design only in the region around 5π, that
is, the second image of the passband.

For the filter orders and conditions considered in [VS07], the obtained coefficient sets as well
as the resulting filter quality are very similar to the designs gained by the proposed approach.
This supports the conjecture that the optimum design quality for the modified Farrow structure
is limited by intrinsic characteristics of this structure rather than by the use of a particular basis
function or optimization method. This supposition is further examined in Chapter 6, which
also presents a variety of design examples.
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5.2.5 Conclusions
Compared to existing approaches, the proposed representation of the continuous frequency
response of symmetric piecewise polynomial resampling filters holds for arbitrary orders and
has a concise structure that enables stable and efficient evaluation. Even more important, it
enables analytical insight into the characteristics of this class of functions, which are efficiently
implemented by the modified Farrow structure. In particular, the relation to the discrete-time
frequency responses of the subfilters Cm(z) and the role of the scaling functions Φ(m,ω) are
analyzed. Built upon the descriptions developed in this section, a design framework based on the
disciplined convex programming methodology is proposed. It enables flexible, optimal design of
the parameters of the modified Farrow structure with respect to a variety of design objectives
and constraints.

5.3 A Closed Form for the Continuous Frequency
Response of Lagrange Interpolators

5.3.1 Introduction
Lagrange interpolation, as characterized in Section 3.6.3, is widely used in arbitrary sample
rate conversion. Despite this widespread application, analytical expressions for the system
response are rarely found in the literature on SRC. In most cases, the characterization is limited
to qualitative statements of the form “the zeros of the system function tend to be clustered
about those frequencies [integer multiples of 2πTi]” [SR73,Hen02]. Quantitative statements
are restricted to the lowest interpolation orders. For instance, a Lagrange interpolator of order
N = 0 corresponds to a zero-order hold element. Its frequency response, denoted H (0)c (jω) here,
is given by

H (0)c (jω) =
sin ω

2
ω
2

= sinc
�ω

2

�
(5.58)

for instance, in [AK93, Har97, OSB99].
For linear interpolation, that is Lagrange interpolation of order N = 1, the frequency response

H (1)c (jω) is derived, e.g., in [EGH93, Har97, Smi10a]

H (1)c (jω) = sinc
�ω

2

�2
. (5.59)

In this section, a concise expression for H (N )c (jω) of arbitrary orders N is presented that
enables efficient and numerically stable evaluation as well as insight into the characteristics of
Lagrange interpolators. This derivation is mainly based on [FB09a].

5.3.2 Lagrange Interpolation as Symmetric Polynomial-Based
Resampling Filters

As described in Section 3.6.3.1, the filter coefficients h(n,µ) of a Lagrange interpolator are
formed by the Lagrange polynomials, that is, polynomials of order N . Therefore, Lagrange
interpolators are contained in the class of polynomial-based resampling filters.
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Moreover, if the basepoint set {tn} (3.82), and thus the intersample position range, is chosen
symmetric with respect to zero, the coefficient matrix C of the polynomial-based interpolation
filter exhibits the coefficient symmetries (3.120). Consequently, the continuous impulse response
hc (t ) is symmetric with respect to zero. In other words, the resulting resampling filter can be
implemented by the modified Farrow structure as described in Section 3.6.2. It is important
to note that the restriction to symmetric basepoint sets does not limit the generality of the
frequency response derived here. On the contrary, the system response of Lagrange interpolation
is independent of a particular basepoint set, but depends only on the relative position of the
intersample position variable µ with respect to the basepoints. The symmetric basepoint set
utilized here shows some advantages in the derivation of H (N )c (jω). Nonetheless, the resulting
frequency response holds for Lagrange interpolators irrespective of the basepoint set used, as
long as the intersample position variable falls into the optimal range as defined by (3.84).

5.3.3 Derivation
For Lagrange interpolation, the Farrow coefficient matrix C is defined by (3.153), where the
basepoints tn are chosen according to the definition of the symmetric basepoint set (3.89). Apply-
ing these coefficients to the continuous frequency response of a symmetric piecewise polynomial
resampling function (5.18) yields an analytical representation for H (N )c (jω). However, the expres-
siveness of this formula is severely limited, as the number of addends grows quadratically with
respect to the interpolation order N . Such a representation is given, for instance, in [Eva00b].

Evaluating and simplifying H (N )c (jω) for some low orders N reveals that the frequency re-
sponses can be represented in a concise form that exhibits a characteristic structure. In Table 5.2,
H (N )c (jω) is shown for N = 0,1, . . . , 10.

It appears that the general structure underlying H (N )c (jω) has the form

H (N )c (jω) = sinc
�ω

2

�N+1


1+

b N
2 c∑

i=1

ciω
2i


 , (5.60)

where sinc(x) denotes the unnormalized cardinal sine function as defined in (3.29), while the
coefficients ci depend only on the order N . It is noted that the magnitude scaling of Ti in (5.18)
is omitted here as motivated in Section 3.8.1, corresponding to a normalization of the input
sampling period with Ti = 1.

It is most notable that this structure, as well as the formulas for N = 0, . . . , 3, has been
proposed by I. J. Schoenberg in the landmark series of papers that introduced spline functions
[Sch46a, Sch46b].

In Section 3.6.4.2, the function

BN (ω) = sinc
�ω

2

�N+1

=F ¦βN (t )
©

has been introduced as the Fourier transform of a spline basis function βN (t ) of order N . This
confirms a strong interrelation between Lagrange interpolation and splines, which has been
pointed out by several authors, e.g. [Sch46a, BTU01].
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N H (N )c (jω)

0 sinc
�
ω
2

�

1 sinc
�
ω
2

�2

2
�

1+ 1
8ω

2
�

sinc
�
ω
2

�3

3
�

1+ 1
6ω

2
�

sinc
�
ω
2

�4

4
�

1+ 5
24ω

2+ 3
128ω

4
�

sinc
�
ω
2

�5

5
�

1+ 1
4ω

2+ 1
30ω

4
�

sinc
�
ω
2

�6

6
�

1+ 7
24ω

2+ 259
5760ω

4+ 5
1024ω

6
�

sinc
�
ω
2

�7

7
�

1+ 1
3ω

2+ 7
120ω

4+ 1
140ω

6
�

sinc
�
ω
2

�8

8
�

1+ 3
8ω

2+ 47
640ω

4+ 3229
322560ω

6+ 35
32768ω

8
�

sinc
�
ω
2

�9

9
�

1+ 5
12ω

2+ 13
144ω

4+ 41
3024ω

6+ 1
630ω

8
�

sinc
�
ω
2

�10

10
�

1+ 11
24ω

2+ 209
1920ω

4+ 17281
967680ω

6+ 117469
51609600ω

8+ 63
262144ω

10
�

sinc
�
ω
2

�11

Table 5.2: Continuous frequency responses of Lagrange interpolators for interpolation orders
N = 0,1, . . . , 10.

The conjectured form of the continuous frequency response H (N )c (jω) (5.60) implies the
continuous impulse response

h (N )c (t ) =β
N (t )+

b N
2 c∑

i=1

(−1)i ci

d2i

dt 2i
βN (t ) , (5.61)

which is obtained using the Fourier transform pair for time-domain derivatives (5.22). That is,
the conjectured impulse response h (N )c (t ) is a linear combination of a spline basis function of
order N and its even-order derivatives. The derivatives of βN (t ) are conveniently obtained from
the central difference form (3.166), resulting in

dn

dt nβ
N (t ) =

1

(N − n)!
δN+1 t N−n

+ for n = 0, . . . ,N , (5.62)

where δk denotes the central difference operator (3.167). Thus, the impulse response of the
assumed response H (N )c (jω) is represented by

h (N )c (t ) =
1

N !
δN+1 t N

+ +
b N

2 c∑
i=1

(−1)i ci

1

(N − 2i)!
δN+1 t N−2i

+ . (5.63)

In the following, it is shown that the formulas (5.60) and (5.63) hold for Lagrange interpolators
of arbitrary order, and an explicit expression for the constants ci is derived.
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Because the relationships between time- and frequency-domain characteristics are well-estab-
lished in the theory of spline functions, it is beneficial to express the continuous impulse response
of Lagrange interpolation in a form similar to spline basis functions. In [Sch46a], the impulse
response of a Lagrange interpolator is represented in form of a central difference operator

h (N )c (t ) =
1

N !
δN+1x[N]+ , (5.64)

exhibiting the same structure as a spline basis function in central difference form (3.166). Here,
x[n] denotes the one-sided or truncated central factorial

x[n]+ =

(
x[n] , x ≥ 0
0 , x < 0

(5.65a)

=H (x)x[n] , (5.65b)

where H (x) denotes the Heaviside unit step function (3.170). The central factorial x[n] is defined
as [Sch46a]

x[n] =
�

x − N−1
2

��
x − N−3

2

� · · ·�x + N−3
2

��
x + N−1

2

�
︸ ︷︷ ︸

n

(5.66a)

=
N∏

i=1

�
x − N+1

2 + i
�

(5.66b)

=





N
2∏

i=1

 
x2− (2i − 1)2

4

!
, N even

x

N−1
2∏

i=1

�
x2− i2

�
, N odd

. (5.66c)

It is important to note that the above definition differs from other definitions found in the
mathematical literature, e.g. [BSSV89], for even orders N .

The formula (5.64) is introduced in [Sch46a] in an informal manner without proof or further
references. For this reason, a derivation has been provided in the appendix of [FB09a].

To relate (5.64) to the central difference form of a spline basis function (3.166), it is transformed
into a representation based on one-sided power functions (3.169). In a first step, the one-sided
central factorial is expressed as a one-sided falling factorial

x[n]+ =

(�
x + N−1

2

�N
, x ≥ 0

0 , x < 0
. (5.67)

using the falling factorial function xn [GKP06, AS65]

xn = x(x − 1) · · · (x − n+ 1)︸ ︷︷ ︸
n

=
n−1∏
l=0

(x − l ) . (5.68)
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Because the falling factorials form the generating function for the signed Stirling numbers of the
first kind S (m)N [GKP06, AS65]

xN =
N∑

m=0

S (m)N x m , (5.69)

the one-sided central factorial (5.65) can be written as

x[N] =





N∑
m=0

S (m)N

�
x + N−1

2

�m
, x ≥ 0

0 , x < 0
(5.70a)

=
N∑

m=0

S (m)N

�
x + N−1

2

�m

+
. (5.70b)

Utilizing the binomial theorem and reordering the summations with respect to powers of x
yields

x[N]+ =
N∑

m=0

S (m)N

m∑
i=0

 �m

i

��N − 1

2

�i

x m−i
+

!
(5.71a)

=
N∑

n=0

xN−n
+

N∑
m=N−n

S (m)N

� m

N − n

��N − 1

2

�n−N+m

. (5.71b)

Interchanging the order of the summations and substituting the index variable m by k =N −m
enables x[N] to be expressed as a polynomial of a one-sided power function with coefficients an

x[N]+ =
N∑

n=0

 
n∑

k=0

S (N−k)
N

�N − k

N − n

��N − 1

2

�n−k
!

xN−n
+ (5.72a)

=
N∑

n=0

an xN−n
+ with (5.72b)

an =
n∑

k=0

S (N−k)
N

�N − k

N − n

��N − 1

2

�n−k

. (5.72c)

In this way, the central difference form of the impulse response of Lagrange interpolators (5.64)
can be expressed using one-sided power functions, utilizing the linearity of the central difference
operator [Nør24]

h (N )c (t ) =
1

N !
δN+1

N∑
n=0

an t N−n
+ (5.73a)

=
1

N !

N∑
n=0

anδ
N+1 t N−n

+ . (5.73b)



i
i

“main_report” — 2012/1/30 — 9:09 — page 163 — #183 i
i

i
i

i
i

5.3 A Closed Form for the Continuous Frequency Response of Lagrange Interpolators 163

The constants an fulfill several properties. First, since S (N )N = 1 [AS65, GKP06], it follows that

a0 = S (N )N

�N

N

��N − 1

2

�0

= 1 . (5.74a)

Second, the central factorial t [N] consists of even powers of t only if N is even, and of odd
powers only if N is odd. This follows immediately from the definition (5.66c). Inspection of
(5.73) shows that

an = 0 for n odd . (5.74b)

Comparing (5.73), combined with the stated properties of the constants an , to the conjectured
form of the continuous impulse response h (N )c (t ) (5.63) confirms the proposed structure of the
continuous frequency (5.60)

H (N )c (jω) = sinc
�ω

2

�N+1


1+

b N
2 c∑

i=1

ciω
2i




and provides an explicit expression for the constants ci

ci = (−1)i
(N − 2i)!

N !
a2i

= (−1)i
(N − 2i)!

N !

2i∑
k=0

SN−k
N

�N − k

N − 2i

��N − 1

2

�2i−k

for i = 0, . . . ,
�

N
2

�
. (5.75)

5.3.4 Alternative Derivations
The above proof provides a self-sufficient derivation of H (N )c (jω) for arbitrary orders and gives
explicit expressions for the constants ci . However, several other approaches to represent this
frequency response have been proposed, which will be summarized in the following.

As noted above, the general structure of H (N )c (jω) (5.60) was known to I.J. Schoenberg in his
papers introducing spline interpolation. In [Sch46a], explicit formulas for H (N )c (jω) are given
for the orders N = 0, . . . , 3. In [Sch46b, Lemma 6], it is stated that the basis function Γk ,µ(x),
corresponding to the continuous impulse response hc (t ),

Γk ,µ (x) =
1

2π

∞∫

−∞

�
2sin(u/2)

u

�n
1+ γ (k)2 u2+ · · ·+ γ (k)2µ−2u2µ−2

o
e ju x d u (5.76)

is identical to the k-point central interpolation formula, that is, Lagrange interpolation of order
N = k − 1 with a basepoint set centered around x = 0. Here, the index limit µ is given by
µ =

�
k−1

2

�
=
�

N
2

�
. As the integral in (5.76) represents an inverse Fourier transform in the
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frequency variable u, its structure is indeed identical to (5.60). Moreover, it is proved that the
interpolation condition (3.67) is equivalent to the frequency domain condition

∞∑
k=−∞

Hc (j[ω+ 2πk])≡ 1 forω ∈R . (5.77)

Inserting the general structure of H (N )c (jω) (5.60) into the interpolation condition (5.77) yields
an expression for the coefficients ci [Sch46b, BTU01]

∞∑
i=0

ciω
i =
�

w/2

sin(ω/2)

�N+1

, (5.78)

that is, the constants ci are determined by the Maclaurin series expansion of the function

f (ω) =
�

w/2

sin(ω/2)

�N+1

. (5.79)

The series coefficients can be generated from the series expansion (x/ sin(x))k , which are tabu-
lated in [Nør24] for low orders k.

An approach to relate time- and frequency-domain characteristics of interpolation and ap-
proximation methods originates from a paper by Strang and Fix [SF73], which is concerned
with the analysis of the finite element method. This approach is motivated from approximation
theory. For this reason, it is somewhat different from the filtering processes considered here,
which focus on calculating the value of a function at arbitrary points from a set of function
values. Instead, the Strang and Fix theory considers the determination of a function u(x) as a
linear combination from a space of functions

u(x) =
∑

k

c[k]φk (x) (5.80)

such that the approximation error becomes minimal with respect to a given norm ‖·‖p

minimize
c[k]

‖u(x)− f (x)‖p . (5.81)

The basis functions φk (x) generally have a finite support. They are generated by shifting a single
function φ(x) by an integer value k [SF73, BTU01]

φk (x) =φ(x − k) . (5.82)

In this way, (5.80) can be stated as

u(x) =
∑

k

c[k]φ(x − k) . (5.83)

This representation matches the discrete filtering process (3.96) based on a continuous-time
impulse response hc (t ) very closely.



i
i

“main_report” — 2012/1/30 — 9:09 — page 165 — #185 i
i

i
i

i
i

5.3 A Closed Form for the Continuous Frequency Response of Lagrange Interpolators 165

An important concept in approximation theory is the approximation order of a kernel φ(x).
For a space of functions f (x) that meets certain requirements such as smoothness, which are
inherently fulfilled by the bandlimited functions considered here, the approximation order L is
defined by

‖u(x)− f (x)‖p ≤ c ×T L×‖ f (x)‖p for T → 0 . (5.84)

Here, T is the sampling period and c is a finite real number. That is, a method is of approximation
order L if the error decreases at least proportional to T L when the sampling period approaches
zero.

The approximation order depends only on the function φ(x). In [SF73], a set of equivalent
conditions is stated, which are commonly referred to as the Strang and Fix conditions [Boo90,
BTU01, Mei02, BTU03]:

• The method has an approximation order of L, i.e. it fulfills (5.84).
• The Fourier transform of φ(x), denoted Φ(ω), has zeros of order L at all integer multiples

of 2π, that is

Φ(0) 6= 0 (5.85a)

Φ(l )(2πk) = 0 l = 0,1, . . . , L− 1and k ∈Z , (5.85b)

where Φ(l )(ω) denotes the l -th derivative of Φ(ω) with respect toω.
• Any monomial of the form xn of orders up to L− 1 can be reproduced exactly. That is,

coefficients c[n, k] exist such that
∑

k

c[n, k]φ(x − k) = xn for n = 0,1, . . . , L− 1 (5.86)

holds exactly. Because any polynomial of order L−1 can be stated as a linear combination
of these monomials, this condition implies that a method has approximation order L if
and only if it is capable of reproducing all polynomials of order up to L− 1.

• The first L discrete moments are constants, that is, a set of constants µn ∈R exists such
that ∑

k

(x − k)nφ(x − k) =µn for n = 0,1, . . . , L− 1 . (5.87)

In signal processing, the application of the Strang and Fix conditions was pioneered by
[BU99,BTU01,BTU03]. However, mainly due to their application in image processing, these
references have a strong emphasis on the L2 norm. In [BTU01], it is shown that the class of
interpolation kernels of approximation order L with respect to the L2 norm is a subset of the
vector space formed by the time-domain derivatives of the spline basis functions of order L− 1

φ(t ) =
L−1∑
n=0

γn

dn

dt nβ
L−1(t − a) . (5.88)

For the resampling functions considered here, the displacement a is zero due to the symmetry
of the continuous impulse response hc (t ). For the same reason, the coefficients γn are nonzero
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(a) Even orders
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(b) Odd orders

Figure 5.5: Continuous frequency response of Lagrange interpolation filters for orders N =
0,1, . . . , 9. The graphs are grouped into even and odd orders N due to their qualitative
differences.

only for even n. The most obvious member of this class is the spline basis function of order
L− 1, corresponding to the parameter set γ0 = 1, γn = 0 for n = 1, . . . , L− 1.

By definition, N -th order Lagrange interpolation reproduces a polynomial of order N exactly.
It is therefore a member of the vector space spanned by (5.88). Hence, this representation poses
an alternative way to confirm the general structure of the frequency response (5.60). In [BTU01],
the coefficients γn are determined by imposing the frequency-domain interpolation condition
(5.77) on (5.88) similar to [Sch46b], consequently resulting in an equivalent expression.

Several remarkable conclusions follow from (5.88). First, all resampling functions with support
L and approximation order L with respect to the L2 norm are piecewise polynomial functions.
Thus, the widespread use of piecewise polynomials in interpolation and SRC is justified not only
by their computational efficiency, but also by the approximation power of this class of functions.
Second, the minimum support of any resampling functions of approximation order L is L,
and all functions exhibiting this property are described by (5.88). For this reason, this class of
functions has been termed maximal-order interpolation of minimal support (MOMS) in [BTU01].

5.3.5 Discussion
Besides its utility for the stable and efficient evaluation of H (N )c (jω), the proposed closed-form
expression enables an exact characterization of several properties of Lagrange interpolation.

In the literature on sample rate conversion, the zero locations of H (N )c (jω) are typically
described only in a qualitative way using statements as “the zeroes of the system function tend
to be clustered about those frequencies [integer multiples of 2π/Ti]” [SR73, HF00, Hen02].
However, with the proposed formula, it becomes apparent that H (N )c (jω) has zeros of order
N + 1 exactly at the locations ω = 2πk, k = ±1,±2, . . .. This result is also evident from the
Strang and Fix conditions introduced above. Moreover, as the coefficients ci are strictly positive
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D/CL hd i g[k] hi nt (t )x(nTi ) xc (t ) y(mTo)

Figure 5.6: Hybrid analog/digital model of an ASRC system based on integer-ratio oversampling
and Lagrange interpolation.

and the polynomial of (5.60) contains only even powers, Hc (jω) has no additional real zeros.
The limited image attenuation of Lagrange interpolators is also described only qualitatively in

most references, e.g. [Hen02]. Inspection of (5.60) shows that the attenuation towards higher
frequencies is of order O(ω−1) or O(ω−2) for N even or odd, respectively. Thus, the asymptotic
image attenuation does not increase systematically as the order of interpolation rises. In addition,
this asymptotic attenuation confirms the qualitative differences between even- and odd-order
interpolation, which have been stated by numerous authors, e.g. [Väl95a, SR73, EGH93],
analytically.

The continuous frequency responses for some low interpolation orders are shown in Figure
5.5, also illustrating the qualitative differences due to the parity of N . While the stopband
attenuation is inferior for N even, the passband response is significantly more flat in this case.
This behavior is similar to that of the amplitude response of fractional delay filters based on
Lagrange interpolation [Väl95a, Smi10a].

5.4 Overall Optimization of Oversampling+Lagrange
Structures

As characterized in Section 3.6.5, structures based on integer-ratio sample rate conversion and a
continuous-time resampling filter operating on the oversampled input are widely used in ASRC.
Nonetheless, design for these structures is basically confined to the design of conventional
integer-ratio SRC and the use of fixed continuous-time resampling filters as described in Section
3.8.3. As stated there, Lagrange interpolators are a very common choice for the continuous-time
resampling filter in this combination. The resulting structure is denoted Oversampling+Lagrange
in the following.

The resulting structure is a cascade of two components that are typically designed indepen-
dently, thus prohibiting a systematic design procedure based on a set of design objectives and
constraints. Moreover, the obtained designs are generally not optimal with respect to a prescribed
error norm such as the weighted least squares or the Chebyshev norm.

To overcome these deficiencies, an overall optimization scheme for this class of resampling
filters is presented. This method has been initially proposed in [FB09b]. Starting from a closed-
form frequency domain description which is based on the continuous frequency response of
Lagrange interpolation derived in the preceding section, the design objective is formulated and
solved as a convex optimization problem.

5.4.1 Closed-Form Description
The general structure of the system has been described in Section 3.6.5. Its representation in
the hybrid analog/digital model (e.g. [Eva00b, Eva03]) is shown in Figure 5.6. The continuous



i
i

“main_report” — 2012/1/30 — 9:09 — page 168 — #188 i
i

i
i

i
i

168 Chapter 5 Improvements to ASRC algorithms
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Figure 5.7: Continuous frequency response of a ASRC system based on oversampling and La-
grange interpolation. Oversampling ratio L = 4, Lagrange interpolation order
Ni nt = 3, discrete-time filter order Nd i g = 95 designed according to L∞ norm, cutoff
frequencyωc = 0.75π.

frequency response of this system is represented by

Hc (jω) =
1

L
Hd i g

�
e

jω
L

�
Hi nt

�
jω

L

�
, (5.89)

where Hd i g (e
jω) is the discrete-time frequency response of the anti-imaging filter of the integer

SRC system and Hi nt (jω) denotes the continuous-time frequency response of the Lagrange
interpolator. As in the preceding sections, the input sampling frequency is normalized to Ti = 1,
thus no magnitude scaling is necessary in (5.89). Likewise, ω denotes the angular frequency
normalized to Ti = 1. In this way, the continuous frequency response is formed by the cascade
of the filters Hd i g (e

jω) and Hi nt (jω), while the oversampling ratio L results in a scaling of the
frequency variable. The magnitude scaling of 1

L originates from the frequency response of the
sample rate expander as described in Section 3.4.2.

The continuous frequency of a typical ASRC system based on this structure is shown in
Figure 5.7. Here, the contributions of the cascaded filters to the system response Hc (jω) become
apparent. The discrete-time and thus periodic anti-imaging filter Hd i g (e

jω) attenuates the images
in the intervals [(2kL+ 1)π, (2[k + 1]L− 1)π], k = 0,±1,±2, . . .. In contrast, the non-periodic
frequency response Hi nt (jω) of the Lagrange interpolator dampens the spectral replications of
the passband of Hd i g (e

jω), which are centered around integer multiples of 2πL.
In most applications of rational SRC [SR73, CR83] as well as in ASRC (e.g. [Eva00b]), linear-

phase FIR filters are strongly preferred for the discrete-time anti-imaging filter Hd i g (e
jω). The

main reasons are its exact linear phase and the existence of efficient polyphase realizations.
Therefore, linear-phase FIR filters are considered here exclusively.

A convenient representation for the frequency response of linear-phase filters has been intro-
duced in Section 3.6.2, which partitions the frequency response into a pure delay term and a
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non-causal frequency response H (ω).

Hd i g (e
jω) = e−j N

2 ωHd i g (ω) with (5.90a)

Hd i g (ω) =
N ′d i g∑
n=0

b[n] trig(n,ω) where N ′d i g =
�N

2

�
. (5.90b)

(3.121). As argued in Section 3.5.5, the delay term is typically compensated by an implementation
delay to ensure causality. So, only the non-causal frequency response Hd i g (ω) is considered in
the following. For use in integer-ratio SRC, only even-symmetric linear-phase FIR filters, that is,
of type I or II, are of interest. Thus, Hd i g (ω) also represents the zero-phase frequency response
of Hd i g (e

jω), and the basis function trig(n,ω) simplifies to

trig(n,ω) =





1 , Nd i g even , n = 0
2cos (nω) , Nd i g even , n > 0
2cos

��
n+ 1

2

�
ω
�

, Nd i g odd
, (5.90c)

where Nd i g denotes the order of the discrete-time prefilter Hd i g (e
jω).

A closed-form expression for the continuous-time frequency response of Lagrange interpola-
tion has been introduced in Section 5.3. Applying this description and (5.90) to (5.89) yields a
closed-form expression for the continuous-time frequency response of the structure based on
oversampling and Lagrange interpolation.

Hc (jω) =
N ′d i g∑
n=0

b[n]Go(n,ω) with (5.91a)

Go(n,ω) =
1

L
trig
�

n,
ω

L

�

1+

j
Ni nt

2

k
∑
i=1

ci

�ω
L

�2i


 sinc

�ω
2L

�Ni nt+1
, (5.91b)

where the functions Go(n,ω) form the basis functions of the continuous frequency response.
Ni nt denotes the order of the continuous-time resampling function Hi nt (jω), that is, the order
of the Lagrange interpolator.

5.4.2 Optimization problem
The frequency response Hc (jω) is linear with respect to the coefficients b[n]. Consequently,
numerous efficient design methods are applicable. Within this work, we focus on methods based
on convex optimization as motivated in Section 5.2.4. As in case of the modified Farrow structure,
the design is performed on a discretized version of Hc (jω). So, the considerations concerning
the discretization grid apply here, too. However, due to the periodicity of Hd i g (e

jω) and the
attenuation of Hi nt (jω) towards higher frequencies, it can be shown that an upper boundωu p =
2πL for the approximation region is sufficient. For optimization with respect to the L∞ norm,
this identity holds exactly. In contrast, as argued in Section 5.2.4, a numerical approximation of
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the L2 error depends on the upper limit of the discretization grid. Nonetheless, the differences
between designs based on the minimum admissible frequency limit and other admissible values
are negligible because of the attenuation caused by Hi nt (jω) for high frequencies.

Using a discrete grid of frequencies X (5.35) approximating either a uniform or a nonuniform
stopband specification, the discretized frequency response is given by

Hc =Gob with (5.92a)

Go =




Go(0,ω0) Go(1,ω0) · · · Go(N
′,ω0)

Go(0,ω1) Go(1,ω1) · · · Go(N
′,ω1)

...
...

. . .
...

Go(0,ωK ) Go(1,ωK ) · · · Go(N
′,ωK )




and (5.92b)

b=
�

b[0] b[1] · · · b[N ′d i g ]
�

. (5.92c)

Optimization with respect to the L∞ norm is formulated in a CVX program

cvx_beg in
v a r i a b l e b ( N ′d i g + 1 ) ;

minimize ( norm ( W . ( Go b−bHc ) , Inf ) ;
cvx_end

where W is a vector of weights (5.42) and bHc (5.41) denotes the discretized desired frequency
response. As in case of the modified Farrow structure, optimization with respect to a weighted
least squares criterion is achieved by replacing the norm function with norm(·, 2). Other design
objectives, such as minimizing the stopband error norm for a given maximum passband error
δp , or minimizing the passband error for a fixed stopband error limit δs , are applied as described
in Section 5.2.4.

In contrast, the specification of conditions related to time-domain properties of the continuous-
time impulse response hc (t ) is different from design methods for the modified Farrow structure.
The properties of continuity and regularity are determined by the Lagrange interpolator and
cannot be controlled by design specifications for the discrete-time prefilter. Following the
characterization of Lagrange interpolators in Section 5.3.5, the impulse response hc (t ) of the
complete system is continuous and of regularity order 0 for N odd, That is, it has no continuous
derivative. For N even, hc (t ) is not continuous.

Because Lagrange interpolation inherently fulfills the interpolation condition, the adherence
to this condition depends on the ability of the discrete-time filter Hd i g (e

jω) to reproduce input
samples exactly. Formally, this requires the zeroth polyphase branch of Hd i g (e

jω) to form a
discrete-time Dirac impulse sequence [CR83]. For the linear-phase FIR filters considered here,
this requirement cannot be fulfilled exactly for type II filters, that is, Nd i g odd. In contrast, the
interpolation condition can be trivially enforced for discrete-time anti-imaging filters of even
order Nd i g by restricting the coefficients b[n] such that the zeroth polyphase branch forms a
symmetric unit impulse sequence.
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Figure 5.8: Design example for proposed overall optimization scheme for Oversampling+La-
grange structures, L∞ design. Parameters L= 4, Nd i g = 95, Ni nt = 3, ωc = 0.75π,
W (X ) = 1. Comparison to conventional design.

5.4.3 Results
In Figure 5.8, the continuous frequency response of a structure designed with the proposed
overall optimization scheme is compared to a conventional design with an equiripple lowpass
design for Hd i g (e

jω). It is observed that the maximum passband error is decreased to about
47.7 %, while the minimum stopband attenuation improves by about 4.03 dB.

This example also illustrates the causes for this performance improvement. In the stopband,
the performance gain basically results from an increased attenuation of Hc (jω) in the intervals
(2π[nL−1]+ωc , 2πnL−ωc )∪ (2πnL+ωc , 2π[nL+1]−ωc ), n =±1,±2, . . .. These regions
correspond to the images of the transition band of Hd i g (e

jω). In the passband, the frequency
response of the conventional design shows a damping towards higher frequencies that is char-
acteristic to Lagrange interpolation. In contrast, the proposed design method is capable of
compensating this error and achieves an optimal passband performance with respect to the given
design specification. In the considered example, the constant weighting function results in equal
maximum passband and stopband errors.

Table 5.3 shows Oversampling+Lagrange designs with variations in the parameters L, Nd i g ,
Ni nt forωc = 0.75π. It is observed that the proposed method increases the minimum stopband
attenuation As in virtually all cases. The stopband attenuation is a monotonic function of the
prefilter order Nd i g for fixed values of L and Ni nt , but the magnitude of the improvement over
the conventional design depends on the parameters used. If the filter order Nd i g is relatively
small for a given oversampling ratio L and Lagrange interpolation order Ni nt , the achievable
performance is dominated by the limited image rejection of the discrete-time anti-imaging filter,
and thus the improvement is negligible. On the other hand, if the order of the prefilter is very
large, the achievable performance is restricted by the limited image attenuation of the Lagrange
interpolator in the frequency intervals corresponding to the passband images of Hd i g (e

jω). This
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Parameters Conventional design Proposed design Improvement

L Ni nt Nd i g δ (conv)
p A(conv)

s δ (o pt )
p A(o pt )

s

δ
(o pt )
p

δ(conv)
p

A(o pt )
s −A(conv)

s

4 3 63 2.12 · 10−3 57.86dB 1.05 · 10−3 59.54dB 49.65 % 1.68dB
4 3 95 1.79 · 10−3 57.34dB 8.53 · 10−4 61.38dB 47.72 % 4.03dB
4 3 127 1.78 · 10−3 56.97dB 7.85 · 10−4 62.10dB 44.16 % 5.13dB
4 3 128 1.78 · 10−3 56.97dB 7.83 · 10−4 62.13dB 44.05 % 5.16dB
4 3 191 1.78 · 10−3 56.53dB 7.33 · 10−4 62.69dB 41.28 % 6.16dB
4 3 255 1.78 · 10−3 60.02dB 7.16 · 10−4 62.90dB 40.30 % 2.88dB
4 4 255 7.54 · 10−5 64.95dB 3.81 · 10−4 68.37dB 505.90 % 3.43dB
4 5 255 1.24 · 10−4 80.98dB 5.86 · 10−5 84.65dB 47.16 % 3.67dB
4 6 255 5.66 · 10−6 83.80dB 3.24 · 10−5 89.80dB 571.83 % 6.00dB
4 7 255 9.16 · 10−6 96.93dB 5.52 · 10−6 105.16dB 60.29 % 8.23dB
2 5 255 6.63 · 10−3 47.94dB 3.22 · 10−3 49.84dB 48.63 % 1.90dB
3 5 255 6.66 · 10−4 59.71dB 3.02 · 10−4 70.40dB 45.37 % 10.69dB
4 5 255 1.24 · 10−4 80.98dB 5.86 · 10−5 84.65dB 47.16 % 3.67dB
6 5 255 1.13 · 10−5 97.01dB 6.74 · 10−6 103.44dB 59.72 % 6.43dB

Table 5.3: Design experiments for Oversampling+Lagrange structures, L∞ design. Comparison
between conventional design and the proposed overall optimization scheme. Fixed
parameters: ωc = 0.75π, W (X ) = 1.

implies a practical upper bound on the achievable quality for a given combination of L and Ni nt
that cannot be surpassed by a further increase of Nd i g . In contrast, for the conventional design,
the stopband error does not decrease monotonically as the filter order Nd i g increases.

In most design examples, also the passband error decreases compared to the conventional
design. However, for Ni nt even, that is, in the examples with Ni nt = 4 or Ni nt = 6 for L= 4 and
Nd i g = 255, δp increases, which is indicated by a ratio δ (o pt )

p /δ (conv)
p exceeding 100 %. However,

the good passband quality of the conventional design originates in the superior passband response
of even-order Lagrange interpolation (see Section 5.3.5). In contrast, the increased error for the
proposed design method is caused by the design objective W (ω) = 1, which enforces an equal
weighting between passband and stopband error. In fact, this equality between δp and δs holds
for all design examples. This property again demonstrates the ability of the proposed method to
yield designs that are optimal with respect to an arbitrary set of design specifications. With the
conventional approach, such a purposeful design is not possible.

The design example of Figure 5.8 is repeated with respect to the L2 norm with uniform
weighting. The resulting continuous frequency response is depicted in Figure 5.9. The discrete-
time prefilter for the conventional design used for comparison has been obtained using a least-
squares lowpass design with uniform error weighting.

Compared to the conventional design, the L2 norm is decreased to 20.4 % for the passband
error L2(Xp ) and to 69.9 % for the stopband error L2(Xs ). Moreover, it is observed that both the
maximum passband and stopband errors are decreased compared to the conventional L2 design.

Table 5.4 shows a set of design experiment for L2 design, using the parameter variations of
Table 5.3. The upper limitωu p for the approximation region X is set to 2πL both for the design
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Figure 5.9: Design example for proposed overall optimization scheme for Oversampling+La-
grange structures, L2 design. Parameters L = 4, Nd i g = 95, Ni nt = 3, ωc = 0.75π,
W (X ) = 1, upper frequency limitωu p = 2πL. Comparison to conventional design.

and for the calculation of the stopband error norm L2(Xs ).
As in case of the minimax design specification, the L2 stopband error generally decreases com-

pared to the conventional design method. Likewise, the passband error is decreased considerably
for Ni nt odd, while it remains approximately constant or increases for even orders of Lagrange
interpolation. As in case of the L∞ norm, this behavior is due to the uniform error weighting in
use.

5.4.4 Summary
A design method that performs an overall optimization of Oversampling+Lagrange structures
with respect to selectable error norms has been proposed. While an improvement compared
to conventionally designed structures is achieved for virtually all design specification, the main
advantage of this method is the ability to perform a purposeful design that is optimal with respect
to a given design specification and optionally adheres to a set of design constraints.

5.5 Optimization of ASRC Structures Based on
Oversampling and Fixed Resampling Functions

The preceding section has shown that the performance of ASRC algorithms based on over-
sampling and Lagrange interpolation can be improved by design methods for the discrete-time
prefilter Hd i g (e

jω) that take the overall frequency response of the structure into account. How-
ever, it also revealed shortcomings of the Oversampling+Lagrange structure. In particular,
the limited attenuation of the continuous-time resampling filter Hi nt (jω) in the passband im-
age regions of Hd i g (e

jω) constitutes an upper bound for the achievable stopband attenuation.
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Parameters Conventional design Proposed design Improvement

L Ni nt Nd i g L(conv)
2 (Xp ) L(conv)

2 (Xs ) L(o pt )
2 (Xp ) L(o pt )

2 (Xs )
L(o pt )

2 (Xp )

L(conv)
2 (Xp )

L(o pt )
2 (Xs )

L(conv)
2 (Xs )

4 3 63 9.64 · 10−4 1.15 · 10−3 4.13 · 10−4 1.13 · 10−3 42.83 % 98.06 %
4 3 95 9.15 · 10−4 1.15 · 10−3 1.86 · 10−4 8.05 · 10−4 20.36 % 69.88 %
4 3 127 9.15 · 10−4 1.17 · 10−3 9.13 · 10−5 6.56 · 10−4 9.98 % 56.26 %
4 3 128 9.15 · 10−4 1.16 · 10−3 8.35 · 10−5 6.50 · 10−4 9.12 % 56.12 %
4 3 191 9.15 · 10−4 9.46 · 10−4 6.80 · 10−5 5.27 · 10−4 7.43 % 55.69 %
4 3 255 9.15 · 10−4 7.19 · 10−4 5.80 · 10−5 4.76 · 10−4 6.34 % 66.15 %
4 4 255 3.23 · 10−5 3.96 · 10−4 3.08 · 10−5 2.47 · 10−4 95.32 % 62.38 %
4 5 255 5.33 · 10−5 6.13 · 10−5 4.84 · 10−6 3.79 · 10−5 9.09 % 61.84 %
4 6 255 2.12 · 10−6 3.54 · 10−5 3.38 · 10−6 2.07 · 10−5 159.80 % 58.54 %
4 7 255 3.43 · 10−6 6.00 · 10−6 5.00 · 10−7 3.64 · 10−6 14.56 % 60.58 %
2 5 255 2.92 · 10−3 2.98 · 10−3 1.38 · 10−4 1.64 · 10−3 4.72 % 55.21 %
3 5 255 2.88 · 10−4 3.09 · 10−4 1.54 · 10−5 1.75 · 10−4 5.36 % 56.53 %
4 5 255 5.33 · 10−5 6.13 · 10−5 4.84 · 10−6 3.79 · 10−5 9.09 % 61.84 %
6 5 255 4.82 · 10−6 1.03 · 10−5 9.71 · 10−7 5.45 · 10−6 20.15 % 53.11 %

Table 5.4: Design experiments for Oversampling+Lagrange structures, L2 design. Comparison
between conventional design and the proposed overall optimization scheme. Fixed
parameters: ωc = 0.75π, W (X ) = 1,ωu p = 2πL.

This limited stopband attenuation of Lagrange interpolation has been noted by several authors
(e.g. [SR73, Hen02]) and has been characterized in Section 5.3.5.

On the other hand, the favorable properties Lagrange interpolation possibly do not yield
an advantage in ASRC systems, especially in combination with oversampled signals. First,
the strict adherence to the interpolation condition is of minor importance in many signal
processing applications. Second, the relatively flat frequency response of Lagrange interpolation
in the passband is not required here, since the passband of the resulting system is formed from
a fraction of the passband of the Lagrange interpolator only. In this way, the properties of
Lagrange interpolation are likely to bind some degrees of freedom in the specification of the
continuous resampling function without significant benefit.

On the contrary, many deficiencies of the continuous resampling function Hi nt (jω), especially
in the passband region, can be rectified by choosing an appropriate prefiltering function. In
a way, this reasoning resembles a concept proposed for interpolation in the field of image
processing [BTU99,BTU01]: Instead of requiring the interpolation kernel, corresponding to
the continuous resampling function Hi nt (jω), to interpolate the input sequence x[n] exactly, an
interpolation kernel is sought that improves the quality of interpolation for some sequence c[n]
that is generated from x[n]. The generation of c[n] can be considered as a filtering operation
without loss of generality. Although the original formulation of this approach does not involve
oversampling, while the adherence to the interpolation condition is of less importance in ASRC
applications, the basic idea is identical. Instead of requiring the continuous-time resampling
filter Hi nt (jω) to yield an optimal performance for an ideally oversampled input sequence, a
resampling filter is utilized that improves the overall quality of the system for a specifically
matched oversampled sequence generated from this input signal x[n] by discrete-time filtering.
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The overall optimization scheme proposed in the preceding section can be used with arbitrary
choices for Hi nt (jω), enabling the design of the discrete-time prefilter optimally suited to this
resampling filter for a selectable design objective.

5.5.1 B-Spline Basis Functions
As shown in Section 5.3, the continuous frequency response Lagrange interpolation has the
general structure

H (N )c (jω) = sinc
�ω

2

�N+1


1+

d N
2 e∑

i=0

ciω
2i




= BN (ω)


1+

d N
2 e∑

i=0

ciω
2i


 .

That is, H (N )c (jω) is formed by the Fourier transform of the B-spline basis function of order N
(3.178) scaled by a polynomial inω. As argued above, this polynomial causes the limited image
attenuation of order O(ω−1) and O(ω−2) for N even and odd, respectively.

It is therefore an intuitive choice to omit this polynomial and to use a spline basis function
βN (t ) as continuous-time resampling filter Hi nt (jω). In this way, the frequency response
Hi nt (jω) has an asymptotic image attenuation of O(ω−(N+1)). The resulting structure is referred
to as Oversampling+B-spline in the following.

The use of B-splines for ASRC in combination with oversampling has been considered by
several authors, e.g. [ZB94,WBJ99,Eva00b,Ves99,VS07]. As pointed out in Section 3.6.4, the
application of spline basis functions invariably requires a prior filtering operation, either to
ensure the adherence to the interpolation condition or to compensate the attenuation towards
higher frequencies in approximation applications. In the mentioned references, this requirement
is accounted for in varying degrees and handled by different measures. In [WBJ99], the relatively
severe passband attenuation is noted and the use of a compensation filter is suggested. Discrete
inverse B-splines, resulting in cardinal spline interpolation [UAE91,Uns99], are used in [Eva00b],
while the application of causal FIR filters to approximate these discrete inverse B-spline filters is
proposed in [ZB94,Ves99,VS07]. However, neither of these proposals appear to consider the
effects of oversampling on the requirements of the compensation filter.

In contrast to these approaches, the proposed overall optimization scheme shows three
major advantages. First, the prefiltering operation for spline approximation is integrated into
the discrete-time filter Hd i g (e

jω), thus saving an additional processing stage and potentially
reducing the computational effort and/or the implementation latency. Second, due to the overall
optimization approach, the prefiltering operation is adapted to the design specification, that is,
the oversampling ratio L and the cutoff frequencyωc . Finally, as in case of the proposed design
method for Oversampling+Lagrange structures, the resulting system is optimal with respect to a
given norm and additional design constraints specified.

The design method is only a slight adaptation to the overall optimization scheme proposed in
Section 5.4.2. In the basis function Go(n,ω), (5.91b), the term representing the continuous-time
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Figure 5.10: Design example for Oversampling+B-spline structure. Parameters L= 4, Ni nt = 3,
Nd i g = 95, ωc = 0.75π. Design with overall optimization scheme, L∞ norm,
W (X ) = 1. Comparison to Oversampling+Lagrange design.

resampling function Hi nt (jω) is replaced by the continuous-time frequency response of the
B-spline basis function (3.178), yielding

Go(n,ω) =
1

L
trig
�

n,
ω

L

�
sinc

�ω
2L

�Ni nt+1
. (5.93)

The resulting discrete transfer matrix Go (5.92b) can be used to formulate the optimization
problem, which is solved as described in Section 5.4.

As in case of Oversampling+Lagrange structures, the continuity and regularity of the overall
system follows from the respective properties of the continuous-time resampling filter. Thus,
the continuous impulse response hc (t ) for Oversampling+B-spline structures is of class C N−1.
That is, it is continuous for N ≥ 1 and has N − 1 continuous derivatives.

To impose the interpolation condition, an underdetermined system of linear equations in the
coefficients b[n] of Hd i g (e

jω) must be incorporated into the design as an additional equality
constraint. However, identical to Lagrange interpolation, exact compliance to the interpolation
condition is possible only for even Nd i g . For Nd i g odd, the transfer zero at ω = π for type II
linear-phase filters violates this condition.

To illustrate the advantages of the Oversampling+B-spline structure, the design example of
the preceding section is adapted to this resampling function. The resulting continuous frequency
response is depicted in Figure 5.10. The stopband attenuation of this design is 75.43 dB, which is
an improvement of about 14.05 dB compared to the optimized Oversampling+Lagrange design
with the same parameters. Due to the uniform weighting used, the passband error is decreased by
the same ratio. As intended, the performance improvement is primarily gained by the improved
image attenuation of the B-spline basis function compared to a Lagrange interpolator of the same
order. Moreover, the passband detail shows how the magnitude roll-off, which is characteristic
to B-spline basis functions, is compensated by the discrete-time filter Hd i g (e

jω).
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Parameters Oversampling+Lagrange Oversampling+B-spline Improvement

L Ni nt Nd i g δ (l )p A(l )s δ (s)p A(s)s

δ(s)p

δ(l )p

A(s)s −A(l )p

4 3 63 1.05 · 10−3 59.54dB 3.38 · 10−4 69.43dB 32.03 % 9.89dB
4 3 95 8.54 · 10−4 61.38dB 1.69 · 10−4 75.43dB 19.83 % 14.05dB
4 3 127 7.85 · 10−4 62.10dB 1.46 · 10−4 76.71dB 18.62 % 14.60dB
4 3 128 7.83 · 10−4 62.13dB 1.46 · 10−4 76.71dB 18.66 % 14.58dB
4 3 191 7.34 · 10−4 62.69dB 1.31 · 10−4 77.68dB 17.79 % 14.99dB
4 3 255 7.17 · 10−4 62.90dB 1.25 · 10−4 78.11dB 17.40 % 15.21dB
4 4 255 3.82 · 10−4 68.37dB 1.45 · 10−5 96.79dB 3.79 % 28.41dB
4 5 255 5.86 · 10−5 84.65dB 1.76 · 10−6 115.11dB 3.00 % 30.46dB
4 6 255 3.24 · 10−5 89.80dB 2.27 · 10−7 132.87dB 0.70 % 43.07dB
4 7 255 5.53 · 10−6 105.16dB 4.70 · 10−8 148.05dB 0.85 % 42.89dB
2 5 255 3.22 · 10−3 49.84dB 1.60 · 10−4 75.94dB 4.95 % 26.10dB
3 5 255 3.02 · 10−4 70.40dB 1.03 · 10−5 99.78dB 3.40 % 29.37dB
4 5 255 5.86 · 10−5 84.65dB 1.76 · 10−6 115.11dB 3.00 % 30.46dB
6 5 255 6.74 · 10−6 103.43dB 2.05 · 10−7 133.81dB 3.05 % 30.37dB

Table 5.5: Design experiments for Oversampling+B-spline structures. Design with overall opti-
mization scheme and L∞ norm. Comparison to optimized Oversampling+Lagrange
design. Fixed parameters: ωc = 0.75π, W (X ) = 1.

In Table 5.5, the design experiments performed for the Oversampling+Lagrange structure in
Table 5.3 are repeated for the Oversampling+B-spline structure. It shows that a performance
improvement is consistently gained compared to optimized Oversampling+Lagrange structures
with the same parameters.

5.5.2 Optimal MOMS Functions

Although the use of B-spline basis functions enables a significant performance gain compared
to Lagrange interpolators, it remains questionable whether the resulting structures are optimal.
In particular, because the stopband error is typically dominated by the first passband image,
the asymptotic image attenuation O(ω−[N+1]) of B-spline basis functions, corresponding to a
regularity order of N − 1, appears overly restrictive.

A conceptually similar argument is found in [BTU01], albeit the criteria of optimality
considered there are profoundly different. In Section 5.3.4, resampling functions with support
L and approximation order L has been introduced as the class of maximal-order interpolation
of minimal support (MOMS) functions. Among these, the interpolation kernel minimizing the
asymptotic constant c with respect to the L2 norm is sought (5.84)

‖u(x)− f (x)‖2 ≤ c ×T L×‖ f (x)‖2 for T → 0 .

As argued in Section 5.3.4, MOMS interpolation kernels are of the form (5.88), corresponding
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Figure 5.11: Continuous frequency response of O-MOMS functions [BTU01] compared to
B-spline basis functions.

to a continuous frequency response

Hc (jω) = sinc
�ω

2

�N+1 N∑
n=0

jnγnω
n . (5.94)

Closed-form expressions for the coefficients γn that minimize the constant c are derived in
[BTU01]. The resulting resampling filters are consequently termed optimal MOMS or O-MOMS.

In Figure 5.11, the frequency responses of O-MOMS functions of orders N = 2 and N = 3 are
compared to B-spline basis functions of the same order. It is observed that the attenuation in the
region aroundω = 2π, that is, at the location of the first passband image, is increased compared
to the spline basis function. On the other hand, the attenuation of higher-order images as well as
the rate of decay towards higher frequencies is lower than in case of spline basis functions.

A design example utilizing an O-MOMS interpolation kernel and the proposed overall
optimization scheme is shown in Figure 5.12. Compared to the design based on spline basis
functions, the minimum stopband attenuation As is further increased by about 10.4 dB to
85.82 dB. The maximum passband error is decreased by the same ratio. The frequency responses
show that the improvement basically results from an increased stopband attenuation of Hi nt (jω)
in the region of the first passband image of Hd i g (e

jω).
In Table 5.6, the design variations considered in the previous sections are repeated for Over-

sampling+O-MOMS structures and compared to systems utilizing B-spline basis functions. It
can be seen that a performance improvement is gained for all considered designs. However, as
illustrated by the first three examples, a substantial improvement is achieved only if the order
Nd i g of the discrete-time prefilter Hd i g (e

jω) exceeds a certain limit. Otherwise, the performance
of the overall system is restricted by the stopband rejection of Hd i g (e

jω) rather than by the
image attenuation of Hi nt (jω).

Despite the evident performance gains compared to Lagrange or B-spline interpolation kernels,
it is important to reemphasize that the optimality criteria for O-MOMS functions are quite
different from those relevant for resampling applications. First, the derivation of O-MOMS
is tightly bound to the L2 norm, while other norms such as L∞ are important for ASRC
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Figure 5.12: Design example for Oversampling+O-MOMS structure. Parameters L= 4, Ni nt =
3, Nd i g = 95, ωc = 0.75π. Design with overall optimization scheme, L∞ norm,
W (X ) = 1. Comparison to Oversampling+B-spline design.

applications as well. Second, the approximation order and the corresponding asymptotic constant
c (5.84) are not directly related to performance measures used in ASRC filters, such as the
passband deviation or the minimum stopband attenuation. Finally, oversampled input signals
are not considered in [BTU01].

5.5.3 Fixed Resampling Functions with Optimized Image Band
Attenuation (OIB)

As noted above, the resampling functions considered so far are not especially adapted to the
characteristics of ASRC systems incorporating oversampling. However, it is possible to design
continuous-time resampling functions that are specifically matched to this role.

Advantageous properties of resampling filters based on symmetric piecewise polynomial
functions have been pointed out in Section 3.5, and the preceding sections further confirmed
this argument. For this reason, the continuous-time resampling functions considered here
are restricted to this class, which is equivalent to the class of resampling filters that can be
implemented by the modified Farrow structure. Moreover, the order of the polynomial pieces is
constrained to equal the subfilter order N of the Farrow structure, that is M =N =Ni nt , in the
following. While this restriction is arbitrary to some extent, there are also objective reasons that
support this choice. First, all specialized resampling functions considered so far, namely Lagrange
interpolators, spline basis functions and O-MOMS functions, fulfill this equality M =N . An
identical choice enables a direct comparison to these resampling filters. Second, as manifested in
the concept of MOMS interpolation kernels (see Section 5.3.4), all resampling functions that
maximize the approximation order in the L2 sense for a given filter order Ni nt are piecewise
polynomial functions with M =N . This justifies the special role of this class of functions.

In the preceding sections, it became apparent that the image attenuation of Hi nt (jω) in the
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Parameters Oversampling+B-spline Oversampling+O-MOMS Improvement

L Ni nt Nd i g δ (s)p A(s)s δ (o)p A(o)s

δ(o)p

δ(s)p

A(o)s −A(s)s

4 3 63 3.38 · 10−4 69.43dB 3.35 · 10−4 69.49dB 99.31 % 0.06dB
4 3 95 1.69 · 10−4 75.43dB 5.12 · 10−5 85.82dB 30.24 % 10.39dB
4 3 127 1.46 · 10−4 76.71dB 4.04 · 10−5 87.87dB 27.63 % 11.17dB
4 3 128 1.46 · 10−4 76.71dB 4.02 · 10−5 87.93dB 27.48 % 11.22dB
4 3 191 1.31 · 10−4 77.68dB 3.32 · 10−5 89.59dB 25.41 % 11.90dB
4 3 255 1.25 · 10−4 78.11dB 3.08 · 10−5 90.27dB 24.68 % 12.16dB
4 4 255 1.45 · 10−5 96.79dB 2.81 · 10−6 111.05dB 19.40 % 14.26dB
4 5 255 1.76 · 10−6 115.11dB 3.23 · 10−7 129.81dB 18.39 % 14.71dB
4 6 255 2.27 · 10−7 132.87dB 4.06 · 10−8 147.89dB 17.84 % 15.02dB
4 7 255 4.70 · 10−8 148.05dB 4.17 · 10−8 154.23dB 88.58 % 6.18dB
2 5 255 1.60 · 10−4 75.94dB 5.14 · 10−5 85.78dB 32.22 % 9.84dB
3 5 255 1.03 · 10−5 99.78dB 2.32 · 10−6 112.68dB 22.63 % 12.90dB
4 5 255 1.76 · 10−6 115.11dB 3.23 · 10−7 129.81dB 18.39 % 14.71dB
6 5 255 2.05 · 10−7 133.81dB 3.19 · 10−8 149.93dB 15.52 % 16.12dB

Table 5.6: Design experiments for Oversampling+O-MOMS structures. Design with overall
optimization scheme and L∞ norm. Comparison to Oversampling+B-spline design.
Fixed parameters: ωc = 0.75π, W (X ) = 1.

frequency regions [2πk −ωc/L, 2πk +ωc/L], k = ±1,±2, . . ., is of paramount importance
for the achievable performance of an ASRC system incorporating oversampling. Therefore,
the design goal for the continuous-time resampling filter is to maximize the attenuation in the
passband image regions of the discrete-time prefilter Hd i g (e

jω). For this reason, this design
is referred to as optimized image bands (OIB) in the following. Consequently, the resulting
structures are termed Oversampling+OIB.

In contrast to image band errors, magnitude response errors in the passband region |ω|<ωc/L
of Hi nt (jω) can be corrected within certain limits by a suitable modification of the discrete-
time prefilter. Thus, it appears at the first glance that Hi nt (jω) can be designed based on the
stopband specification only. However, a large magnitude of Hd i g (e

jω) at a passband frequency
to compensate a deviation caused by Hi nt (jω) will also cause amplification at corresponding
image frequencies, thus decreasing the stopband attenuation of the whole system. Therefore, it
is necessary to place sensible conditions on the passband response of Hi nt (jω) to prevent such
degenerate solutions. At the same time, the constraints should not be too strict. Otherwise,
the passband specifications would prevent the design method from achieving a good stopband
attenuation. A sensible choice is to specify a maximum passband error δp , resulting in a
constrained optimization problem.

The design process for the Oversampling+OIB structure consists of two steps. First, the
continuous-time resampling filter is designed as a modified Farrow structure. In the second
step, the frequency response of the obtained filter is used to design the discrete-time prefilter
Hd i g (e

jω) applying the overall optimization scheme introduced in Section 5.4.
The primary design goal for the continuous-time resampling filter Hi nt (jω) is to maximize
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the attenuation in the image regions of the passband of Hd i g (e
jω). This requirement can be

stated using an adaptation of the nonuniform stopband specification shown in Table 3.5

Xs =
∞⋃

k=1

[πk −ωc/L, 2πk +ωc/L] . (5.95)

In this way, optimization of Hi nt (jω) according to the OIB criterion is stated as a design problem
for the modified Farrow structure as described in Section 5.2.4, utilizing a nonuniform stopband
specification subject to a fixed passband error constraint.

cvx_beg in
v a r i a b l e bi nt ( Ncoe f f s ) ;

minimize ( norm ( G(X s ) bi nt − bHc (X s ) , Inf ) ;
s u b j e c t to abs ( G(X p ) bi nt − bHc (X p ) ) <= δp ;

cvx_end

Here G(X p ) and G(X s ) refer to the partitions of the discrete transfer matrix G (5.40) corre-
sponding to the discrete passband and stopband frequency grids, respectively. bi nt denotes the
coefficient vector (5.38) of the modified Farrow structure that parameterizes Hi nt (jω).

Numerical test have shown that the obtained filters are relatively insensitive to the choice of
the passband error limit. Thus, this value can be chosen relatively large, e.g. δp = 0.5, because
the passband error is compensated in the subsequent design of the discrete-time filter Hd i g (e

jω).
Notwithstanding, it proves useful to normalize the coefficients of Hi nt (jω), for instance by
restricting the static gain of the filter to unity

b′i nt =
1

Hi nt (0)
bi nt .

Among other advantages, this normalization eases a direct comparison to other resampling
functions. It is noted that the above passband constraints are not unique, neither do they ensure
an optimal quality of the overall ASRC system. However, the fixed passband error specification
yields good results for a large variety of designs.

In Figure 5.13, the frequency response Hi nt (jω)maximizing the image band attenuation for
Ni nt = 5, M = 5, L = 4, ωc = 0.75π is shown. In comparison with Lagrange interpolation,
spline basis functions, and an O-MOMS kernel of the same order, the region of high image
attenuation is broadened significantly and spans the complete region of the passband images of
Hd i g (e

jω), thus conforming to the design objective. On the other hand, the passband error is
moderate and comparable to the O-MOMS function.

The second step comprises the design of the coefficients b[k] of the discrete-time prefilter
Hd i g (e

jω). The overall frequency response of the Oversampling+OIB structure follows from
(5.91a)

Hc (jω) =
N ′d i g∑
k=0

b[k]Go(k ,ω) with (5.96a)
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−200 dB

−160 dB

−120 dB

−80 dB

−40 dB

0 dB

2πL−ωc 2πL+ωc

ω

|Hi nt (j
ω
L )|

Lagrange
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Figure 5.13: Frequency response of optimized image band attenuation (OIB) filter. Design
parameters: Ni nt = 5, M = 5, L= 4,ωc = 0.75π. Comparison to other resampling
functions.

Go(k ,ω) =
1

L
trig(k ,

ω

L
)

Ni nt∑
m=0

N ′i nt∑
n=0

bmnG
�

m, n,
ω

L

�
, (5.96b)

with G(m, n,ω) denoting the basis functions (5.16) of the modified Farrow structure. Likewise,
bmn are the coefficients of the parameter vector bi nt (5.38), and the index limit N ′i nt is given by
(3.123). Using this representation, the overall optimization scheme introduced in Section 5.4 can
be applied straightforwardly.

In Figure 5.14, the design example of the previous sections is repeated for the Oversam-
pling+OIB structure. Compared to the Oversampling+O-MOMS design, the stopband error is
decreased by a further 3.28 dB. In Table 5.7, the design examples used throughout this section are
repeated for OIB resampling filters and compared to the results based on O-MOMS functions.
The design quality is improved for nearly all parameter variations. However, for small prefilter
orders such as Nd i g = 63, the design error cannot be decreased further since it is dominated by
the limited image attenuation of Hd i g (e

jω).
For higher prefilter orders a different problem may occur. For instance, in the design example

with L= 4, Ni nt = 7 and Nd i g = 255, the stopband attenuation of the OIB design is decreased by
3.40 dB compared to the corresponding O-MOMS design. An analysis shows that the stopband
attenuation of the OIB resampling filter in the passband image regions of Hd i g (e

jω) is vastly
better than the O-MOMS function. However, the overall performance is dominated by the
attenuation in the frequency intervals corresponding to the images of the transition band of
Hd i g (e

jω). In these regions, the magnitude of the continuous-time filter Hi nt (jω) cannot be
sufficiently attenuated by means of a prefilter Hd i g (e

jω) designed for this purpose.
This example reveals an inherent limitation of the proposed overall optimization scheme based

on a fixed resampling filter. In the design of the continuous-time resampling function Hi nt (jω), it
is assumed that limitations of this component are ideally compensated by the prefilter Hd i g (e

jω).
However, if Hd i g (e

jω) fails to achieve this compensation, the performance of the overall structure
may become inferior to a more conventional design.
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Figure 5.14: Design example for Oversampling+OIB structure. Parameters L = 4, Ni nt = 3,
Nd i g = 95, ωc = 0.75π. Design with overall optimization scheme, L∞ norm,
W (X ) = 1. Comparison to Oversampling+O-MOMS design.

It is worth emphasizing that this problem cannot be resolved by changing the design spec-
ification for Hi nt (jω). For instance, if the transition band images of Hd i g (e

jω) are added to
the stopband specification for Hi nt (jω), the performance of the overall ASRC structure is no
longer limited by the frequency response in these regions. However, this modification decreases
the minimum stopband attenuation of the continuous-time resampling filter, consequently
decreasing the achieved quality for the majority of designs.

5.6 Overall Optimization of Modified Farrow Structures
with Oversampled Input

In the preceding sections, an overall optimization scheme for ASRC structures based on oversam-
pling and fixed continuous-time resampling functions has been investigated. It became clear that
the adaptation of the discrete-time prefilter to the characteristics of the resampling filter Hi nt (jω)
enables significant performance improvements over a conventional design of these components.
However, although some of the fixed resampling filters were designed to anticipate the behavior
of the respective other component, the design processes are performed independently. Thus,
the filters are not specifically matched to the actual characteristics of their counterparts. It
is therefore worthwhile to consider design methods that enable a joint optimization of both
components, preferably resulting in globally optimal solutions.

As pointed out in Section 5.5.3, symmetric piecewise polynomial resampling functions, which
can be implemented by the modified Farrow structure, form a reasonable and general model for
the continuous-time resampling function. Such ASRC structures based on integer-ratio oversam-
pling and symmetric piecewise polynomial basis functions are denoted as Oversampling+Farrow
in the following.
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Parameters Oversampling+O-MOMS Oversampling+OIB Improvement

L Ni nt Nd i g δ (o)p A(o)s δ (oi b )
p A(oi b )

s

δ(oi b )
p

δ(o)p

A(oi b )
s −A(o)s

4 3 63 3.35 · 10−4 69.49dB 3.36 · 10−4 69.48dB 100.05 % 0.00dB
4 3 95 5.12 · 10−5 85.81dB 3.51 · 10−5 89.10dB 68.61 % 3.28dB
4 3 127 4.04 · 10−5 87.87dB 2.46 · 10−5 92.16dB 61.01 % 4.29dB
4 3 128 4.02 · 10−5 87.91dB 2.44 · 10−5 92.25dB 60.81 % 4.34dB
4 3 191 3.34 · 10−5 89.55dB 1.79 · 10−5 95.08dB 53.72 % 5.53dB
4 3 255 3.11 · 10−5 90.25dB 1.48 · 10−5 95.65dB 47.53 % 5.40dB
4 4 255 2.43 · 10−6 110.34dB 6.30 · 10−7 124.03dB 25.89 % 13.69dB
4 5 255 3.23 · 10−7 129.58dB 4.85 · 10−8 146.27dB 15.00 % 16.69dB
4 6 255 4.10 · 10−8 147.88dB 3.17 · 10−8 149.51dB 77.32 % 1.62dB
4 7 255 3.27 · 10−8 153.98dB 2.77 · 10−8 150.57dB 84.52 % −3.40dB
2 5 255 5.18 · 10−5 85.76dB 1.42 · 10−6 115.13dB 2.73 % 29.37dB
3 5 255 2.02 · 10−6 112.03dB 1.93 · 10−7 134.42dB 9.53 % 22.39dB
4 5 255 3.23 · 10−7 129.58dB 4.85 · 10−8 146.27dB 15.00 % 16.69dB
6 5 255 3.24 · 10−8 149.93dB 1.27 · 10−8 157.76dB 39.28 % 7.83dB

Table 5.7: Design experiments for Oversampling+OIB structures. Design with overall optimiza-
tion scheme and L∞ norm. Comparison to optimized Oversampling+O-MOMS
design. Fixed parameters: ωc = 0.75π, W (X ) = 1.

5.6.1 Optimization Problem
For this class of continuous-time resampling functions, the frequency response Hi nt (jω) is
determined by (5.6b) and is parameterized by a set of coefficients bmn (3.130), corresponding
to the elements of the coefficient matrix B of a modified Farrow structure. In this way, the
overall frequency response of the Oversampling+Farrow structure is identical to that of an
Oversampling+OIB design (5.96)

Hc (jω) =
N ′d i g∑
k=0

b[k]
1

L
trig
�

k ,
ω

L

� M∑
m=0

N ′∑
n=0

bmnG (m, n,ω) . (5.97)

Here, trig(n,ω) (5.90c) and G(m, n,ω) (5.16) denote the basis functions of the discrete-time
prefilter and of the modified Farrow structure, respectively.

It is apparent that the coefficients b[k] of the discrete-time prefilter and those of the contin-
uous-time resampling function, bmn are combined in a multiplicative way. Consequently, the
optimization problem resulting from (5.97) is non-convex and cannot be transformed into a
convex problem straightforwardly. Indeed, the exclusion of expressions containing products of
optimization variables forms a basic principle of convex optimization [Gra04, GB08, WBV98].

Two basic consequences follow from this characteristic. First, the large knowledge base of
algorithms for convex optimization, which enable even large-scale problems to be solved with
acceptable costs, cannot be used. Second, it is undecidable in general whether a solution obtained
from a non-convex optimization method is globally optimal or represents only a local optimum.
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y[m]

µ
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L

(a) Original structure

C ∗1 (z)

y[m]

µ

C ∗0 (z)

Lx[n] C ∗M (z)

(b) Transformed structure

Figure 5.15: Transformation of the Oversampling+Farrow structure into a more general, convex
structure.

5.6.2 Upper Performance Limit
Because a direct global optimization is apparently not feasible, it is desirable to obtain realistic
estimates of the maximally achievable performance. Indeed, such an upper limit can be deter-
mined by a transformation of the structure. In Figure 5.15a, an ASRC system consisting of
oversampling and a modified Farrow structure with subfilters responses Cm(z) is shown. Because
both Hd i g (z) and the subfilters Cm(z) are discrete-time linear-phase filters, they can be combined
into M + 1 discrete-time linear-phase filters C ∗m(z) of order N ∗ =Ni nt +Nd i g . Their noncausal
frequency response is determined by

C ∗m(ω) =Hd i g (ω)Cm(ω) for m = 0, . . . , M (5.98a)

=
N ∗′∑
n=0

b ∗mn trig(m, n,ω) with N ∗
′
=
�Ni nt +Nd i g

2

�
, (5.98b)

where trig(m, n,ω) denote the trigonometric basis functions of symmetric piecewise polynomial
functions (3.127). The coefficients b ∗mn are related to the coefficients b[k] and bmn by a discrete-
time convolution. Based on these subfilter responses, the continuous frequency response of the
complete structure follows from (5.18)

Hc (jω) =
Ti

L

M∑
m=0

Φ(m,
ω

L
)C ∗m

�ω
L

�
. (5.99)

The scaling factor 1
L that is applied both to the magnitude and the frequency variableω follows

from the sampling rate expansion (see Section 3.4.2). Aside from this scaling, (5.99) represents
the frequency response of a symmetric piecewise polynomial resampling filter. Therefore, the
design methods for the modified Farrow structure described in Section 5.2.4 can be applied
directly. Because these corresponding design problems are convex, these methods yield globally
optimal results.

The class of ASRC systems represented by (5.99) is more general than the class of Oversam-
pling+Farrow structures and includes the latter class as a subset. For this reason, the optimal
objective value for the oversampled Farrow structure based on the subfilters C ∗m(z) forms an
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(a) Subfilters in commutator form
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Figure 5.16: Equivalence between the transformed structure for Oversampling+Farrow and the
generalized Farrow structure.

upper bound for the performance of the corresponding Oversampling+Farrow structure that is
not necessarily reached by any element of this subclass.

5.6.3 Relation to the Generalized Farrow Structure
Although the structure shown in Figure 5.15b resulted from a transformation of an Oversam-
pling+Farrow structure, it is actually identical to the generalized Farrow structure described
in Section 3.6.6. This equivalence can be shown using network transformations and polyphase
decompositions as used in the theory of multirate systems, e.g. [CR83, Vai92].

In the transformed structure according to Figure 5.15b, the sample rate expander can be
transposed into each subfilter branch without altering the behavior of the system. In this
way, each subfilter branch represents a system for a 1-to-L sample rate increase as described in
Section 3.4.2. These branches can be represented in commutator form based on a polyphase
decomposition of the filters C ∗m(z). The corresponding system is shown in Figure 5.16a. The
polyphase filters C [l ]m (z), l = 0,1, . . . , L− 1 are related to the subfilters C ∗m(z) by

C [l ]m (z) =

N∗+1
L −1∑
n=0

c∗m(nL+l )z
−n with C ∗m(z) =

N ∗∑
n=0

c∗mn z−l . (5.100)

It is assumed that the length of the filters C ∗m(z), i.e. N ∗+ 1, is an integer multiple of L, which
can be guaranteed by an appropriate zero padding without loss of generality.
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The relative order between the commutators and the polynomial evaluation can be inter-
changed using network identities, resulting in the system depicted in Figure 5.16b. Here, the
transformed structure is represented by L parallel Farrow structures. An output sample y[m]
is selected from one of these structures depending on an index l which is determined by the
intersample position. This structure is identical to the commutator form of the generalized
Farrow structure shown in Figure 3.36b of Section 3.6.6. In this way, the proposed structure
obtained by transforming an Oversampling+Farrow structure is equivalent to the generalized
Farrow structure, where the subfilters C [l ]m (z) are formed by polyphase decomposition of the
subfilters C ∗m(z).

This close relation between the generalized Farrow structure and Oversampling+Farrow
systems gives rise to several interesting conclusions. First, it must be noted that this relation
does not come unexpectedly, as the generalized Farrow structure has been initially proposed
in the context of structures involving oversampling [Ram98]. Second, the generalized Farrow
structure can be considered as an Oversampling+Farrow structure where the functionality of
the discrete-time filter Hd i g (z), that is, the attenuation of the signal images caused by the sample
rate expander, is incorporated into each subfilter C ∗m(z). It appears worthwhile to investigate
whether this additional degree of freedom, that is, to have an individually designed anti-imaging
filter for each subfilter branch, results in a significantly improved resampling quality compared
to conventional Oversampling+Farrow structures.

Finally, this equivalence can be used to perform coefficient design for the generalized Farrow
structure. Design methods for this structure are not covered extensively in literature. However,
by combining the filters C [l ]m (z) into the subfilters C ∗m(z), the frequency response of the general-
ized Farrow structure is equivalent to that of a Farrow structure subject to a scaled frequency axis.
If the continuous impulse response of the generalized Farrow structure fulfills the symmetry
condition motivated in Section 3.5.4, then the continuous frequency response is given by (5.99).
In this case, the efficient design methods for the modified Farrow structure are directly applicable
to the generalized Farrow structure.

5.6.4 Iterative Optimization Procedure
While the relation to the generalized Farrow structure establishes an upper performance limit, it
does not provide a means to design the filter coefficients for an Oversampling+Farrow structure.
A practical approach to this non-convex design problem is to optimize the components of this
structure iteratively. Such methods have been applied, for instance, in [VS07] or, in the context
of VFD filters, in [JL03].

In each iteration, the coefficient vectors parameterizing Hd i g (e
jω) and Hi nt (jω) are designed

sequentially using the proposed overall optimization scheme. For each design problem, the
transfer matrix of the respective other component is determined using the most recent coefficient
set for this filter. This algorithm is best illustrated by a pseudocode listing formulated in CVX.

bi nt = < i n i t i a l va lue >;
while not ( t e r m i n a t e )

Hi nt = Gi nt bi nt ;
cvx_beg in

v a r i a b l e bd i g ( Nd i g + 1 )
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minimize ( norm ( W . Hi nt . ( Gd i g bd i g−bHc , Inf ) ;
s u b j e c t to <c o n s t r a i n t s >;

cvx_end
Hd i g = Gd i g bd i g ;
cvx_beg in

v a r i a b l e bi nt ( Ncoe f f s )

minimize ( norm ( W . Hd i g . ( Gi nt bi nt−bHc , Inf ) ;
s u b j e c t to <c o n s t r a i n t s >;

cvx_end
end

Here, Gd i g denotes the discrete transfer matrix for the prefilter Hd i g (z) (5.92b), and bd i g
represents the corresponding coefficient vector. The transfer matrix Gi nt for the continuous-
time resampling function Hi nt (jω) follows from the matrix for the modified Farrow structure
(5.40), but is adapted to account for the frequency scaling due to the oversampled input

Gi nt =
1

L




G(0,0, ω0
L ) · · · G(0,N ′, ω0

L ) · · · G(M , 0, ω0
L ) · · · G(M ,N ′, ω0

L )
G(0,0, ω1

L ) · · · G(0,N ′, ω1
L ) · · · G(M , 0, ω1

L ) · · · G(M ,N ′, ω1
L )

...
. . .

...
. . .

...
. . .

...
G(0,0, ωK

L ) · · · G(0,N ′, ωK
L ) · · · G(M , 0, ωK

L ) · · · G(M ,N ′, ωK
L )




.

Likewise, bi nt = {bmn} (5.38) represents the coefficient vector for Hi nt (jω).
The termination condition can be specified in several ways. One possibility is to set a fixed

number of iterations. Alternatively, the algorithm can be controlled by conditions on the
obtained solutions. For instance, the termination might be triggered if the change of the
coefficient vectors between successive iterations falls below a predefined margin, indicating the
convergence of the algorithm.

As with general non-convex optimization problems, the quality of the solution depends on
the initial parameter vector provided to the solution algorithms. There are two principal ways
to determine this initial solution. First, the algorithm may start with an initial value for bi nt as
shown in the above algorithm. For instance, any of the fixed resampling filters characterized
in the preceding sections can be used to determine these coefficients. Second, the algorithm
may start from an initial coefficient set for the prefilter Hd i g (z). In this case, the ordering of
the design problems within the main loop of the algorithm must be interchanged. The initial
coefficient vector bd i g can be obtained by a conventional lowpass filter design for a rational
sample rate converter.

5.6.5 Results and Discussion
To assess the improvements achieved by the joint optimization scheme, the iterative design
method is applied to the example employed in the preceding sections. The optimization starts
from an initial solution for the continuous-time resampling function. Specifically, the initial
coefficients bi nt are determined according to the optimized image band (OIB) design proposed
in Section 5.5.3. The iterative optimization process is performed for ten iterations and shows a
monotonically decreasing and converging design error. As seen in Figure 5.17, the minimum
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Figure 5.17: Design example for Oversampling+Farrow structure. Parameters L= 4, Ni nt = 3,
Nd i g = 95,ωc = 0.75π. Joint design with iterative optimization scheme, L∞ norm,
W (X ) = 1. OIB design as initial value for Hi nt (jω). Comparison to Oversam-
pling+OIB design.

stopband attenuation As is increased to 93.42 dB, which is an improvement of about 5.14 dB
compared to a design using a fixed OIB resampling filter, which represents the best solution so
far.

In the stopband detail shown in Figure 5.17c, it is observed that this improvement basically
results from an increased attenuation in the images of the transition regions of Hd i g (e

jω). In
particular, the frequency range 6.75π<ω < 7.25π represents the first transition band image of
Hd i g (e

jω). As argued in Section 5.5.3, the attenuation in this region limits the performance of
the whole structure in case of a fixed OIB resampling filter. In contrast, the proposed iterative
optimization increases the attenuation in this region by adjusting the frequency responses of
both filters. Evidently, this adaptation is possible only if Hd i g (e

jω) and Hi nt (jω) are jointly
optimized. This affirms the usefulness of the iterative optimization procedure.

The upper limit for the achievable performance, obtained from a design for the corresponding
generalized Farrow structure as described above, amounts to As = 93.97dB. Thus, the stopband
attenuation of the coefficients obtained from the iterative joint optimization procedure is very
close to the theoretical upper performance bound.

For further performance assessment, the iterative optimization procedure is applied to the
design examples used throughout this chapter. In Table 5.8, the achieved minimum stopband
attenuation is presented for different initial solutions. In addition, this table shows the stopband
attenuation for conventional Oversampling+Lagrange designs as well as for the overall optimiza-
tion scheme with fixed resampling functions as proposed in the preceding sections. For this
reason, Table 5.8 also summarizes the performance improvements for ASRC structures based on
oversampling that have been proposed in this chapter.

It is observed that for virtually all parameter combinations and initial solutions, the iterative
optimization scheme gains an improved design quality compared to the respective starting value.
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191
56.53

62.69
77.68

89.58
94.49

77.65
76.13

89.90
94.91

96.55
97.19

4
3

255
60.02

62.89
78.10

90.26
95.32

74.64
77.66

91.62
97.76

97.35
97.70

a, b

4
4

191
60.58

68.02
95.95

109.62
120.11

90.64
77.76

111.48
119.71

128.15
129.31

4
5

191
75.55

83.84
113.51

127.75
139.84

108.97
108.10

125.87
146.79

149.54
157.19

4
6

191
79.45

88.71
130.65

144.51
145.14

119.47
93.15

154.91
155.03

152.31
172.13

a

4
7

191
93.97

103.56
146.77

159.95
150.71

134.30
119.10

160.84
161.34

161.65
178.74

2
5

191
47.08

49.79
75.66

85.31
113.61

74.08
76.66

94.96
100.87

122.22
126.59

3
5

191
64.91

70.06
98.94

111.51
130.37

99.59
95.23

116.15
133.33

139.50
145.35

4
5

191
75.55

83.84
113.51

127.75
139.84

108.97
108.10

125.87
146.79

149.54
157.19

6
5

191
97.37

101.16
128.08

128.11
128.11

124.15
108.75

128.08
128.11

128.11
130.10
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Moreover, the performance of the jointly optimized designs depends strongly on the quality of
the initial solution. Generally, a good performance of the initial solution implies a good quality
of the design generated by the iterative optimization scheme. Thus, the design process for the
Oversampling+Farrow structure benefits from the fixed resampling functions introduced in
Section 5.5. In most cases, the OIB design results in the best quality, which correlates to its good
performance when used as a fixed resampling filter. However, there are exceptions to this rule.
For the parameter combinations L= 4, Ni nt = 3, Nd i g = 255 or L= 4, Ni nt = 6, Nd i g = 191,
the performance of the jointly optimized system starting from an O-MOMS function exceeds
that of a design starting from an OIB filter. Basically, this behavior emphasizes the non-global
nature of the non-convex iterative optimization scheme.

The theoretical performance bound for these design examples, obtained from the correspond-
ing generalized Farrow structure, is shown in the rightmost column of Table 5.8. It can be seen
that in most cases, the best designs obtained by the joint optimization scheme come very close
to this theoretical optimum. In particular, this applies to the design examples with stopband
attenuations up to about 130 dB, which appear to be most relevant for practical application.
Again, it should be reemphasized that this upper bound corresponds to a more general structure
and is not necessarily reached by any element of the class of Oversampling+Farrow structures
considered.

Furthermore, it has to be noted that the performance figures are obtained from numerical
optimization methods and thus exhibit only a finite precision. For instance, in the design
example L = 4, Ni nt = 3, Nd i g = 255, the stopband attenuation for the O-MOMS design
marginally exceeds the upper performance bound by 0.06dB. Analyses show that this seeming
contradiction is a result of numerical effects, mainly due to the discretization of the frequency
variable. So, the most likely interpretation of this result is that the iterative design procedure
starting from the O-MOMS solution reaches the upper performance bound within the accuracy
of the numerical optimization method.

As a byproduct, these investigations enable a performance comparison between Oversam-
pling+Farrow structures and the generalized Farrow structure. As stated above, the quality
achieved by an Oversampling+Farrow structure with oversampling ratio L and filter orders
Nd i g and Ni nt is typically only slightly inferior to that of a generalized Farrow structure with
L parallel Farrow coefficient sets with orders M = Ni nt and N = Nd i g +Ni nt . Consequently,
it appears unlikely that the additional effort in terms of instructions, coefficient storage and
control logic required by the generalized Farrow structure pays off compared to a properly
designed Oversampling+Farrow structure.

5.7 Conclusions
In this chapter, several improvements to ASRC algorithms and implementation structures have
been proposed. A main focus has been placed on analytic descriptions for the continuous
frequency response for these structures. Specifically, concise formulas for symmetric piecewise
polynomial functions, which can be implemented by the modified Farrow structure, as well as for
Lagrange interpolation and for systems based on oversampling and continuous-time resampling
functions have been derived. These representations do not only facilitate design and analysis, but
also enable insight into the characteristics of the corresponding structures.
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192 Chapter 5 Improvements to ASRC algorithms

A second focus is on coefficient design for these structures. In particular, purposeful design
methods that enable globally optimal performance with respect to a selectable error norm and
optional, additional design constraints are targeted. It is demonstrated that the framework of
convex optimization is well-suited to fulfill these requirements and provides an efficient means
to solve the corresponding optimization problems.

ASRC structures consisting of integer-ratio oversampling and continuous-time resampling
functions such as Lagrange interpolation consist of two separate components, which are typically
designed independently. Based on the frequency response of the complete system, an overall
optimization scheme is proposed that enables performance improvements for virtually all design
parameters. However, the ability to perform purposeful, optimal coefficient design with respect
to a prescribed design specification is the main advancement of this optimization scheme.

However, it becomes obvious that widely used resampling functions such as Lagrange inter-
polation show severe shortcomings when used in combination with oversampling. A set of
fixed resampling filters, ranging from spline basis functions to specifically designed filters, is
investigated. In conjunction with the proposed overall optimization scheme, these functions
enable a significant performance improvement for ASRC systems incorporating oversampling.

Oversampling+Farrow structures, consisting of oversampling and a fully parameterizable
modified Farrow structure, form a very general class of ASRC algorithms that allow for high
performance. However, the corresponding coefficient design problem is non-convex. Thus, it
cannot be directly solved efficiently or in a globally optimal way. Two approaches are proposed
to tackle this problem. First, an optimization scheme is investigated that approximates the
non-convex optimization problem by iteratively designing the two components in an alternating
fashion. It is shown that this method yields significant performance improvements over designs
with fixed resampling functions. However, the achieved performance strongly depends on the
quality of the initial design used as starting value for the iterative design. In this way, the fixed
resampling functions developed in this chapter can also be used advantageously for the more
general class of Oversampling+Farrow structures. Second, a transformation of this structure
enables an upper performance limit to be obtained. It is shown that the designs obtained from
the iterative optimization method come very close to this theoretical performance limit for most
of the design examples if the optimization is started from suitable initial solutions.
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Chapter 6

Evaluation

6.1 Introduction
In the preceding chapters, different implementation structures for ASRC systems as well as
several improvements to these structures have been proposed. However, partly due to this
multitude of algorithms, it is difficult to select a structure that is optimally suited for a given
application. The numerous design parameters offered by most implementation structures further
complicate this choice.

This chapter aims at providing practical guidance for choosing an appropriate implementation
structure and the corresponding design parameters such that a given design objective is satisfied
with minimal computational cost. For that purpose, two kinds of analyses are performed.
In Section 6.3, the influence of various design parameters and objectives on the achievable
quality of ASRC structures, namely the modified Farrow structure and structures incorporating
oversampling, is examined. Section 6.4 investigates the minimum computational cost of different
implementation structures as a function of the desired resampling quality. In combination, these
analyses facilitate the selection of an implementation structure suitable for a given application.

The performance analyses performed in this chapter are applicable to general-purpose ARSC
applications. However, specific properties of the signal processing algorithms for WFS, namely
operations on arbitrary-access structures for input data or the generation of a multitude of
resampled signals from a single input signal, are supported by the computational model used
in the performance analysis. In this way, the results are directly applicable to the WFS signal
processing structures proposed in Chapter 4.

6.2 Computational Model for Performance Analysis
As argued earlier, its flexibility, for instance the support of variable conversion ratios, forms one
of the main advantages of ASRC. This flexibility, however, also puts specific demands on the
methods for performance analysis in order to be applicable for a wide range of applications. For
this reason, the approach used in this chapter, including assumptions and limitations, is described
in the following.

6.2.1 Evaluation Scenario
The ability of ASRC to provide conversion by variable ratios influences the performance analysis
in several ways. First, the continuous frequency response Hc (jω) is used for the characterization
of the resampling quality due to its independence of the conversion ratio. However, as argued
in Section 3.4.5, this independence holds only if the sample rate does not decrease. Therefore,

193
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the performance evaluations performed here are effectively restricted to conversion ratios
R ≥ 1. While it is possible to extend the analysis to sample rate decreases, for instance by
using transposed structures, this is outside the scope and the intended applications of this work.
Finally, the conversion ratio affects the computational cost of the implementation structures.
This interrelation is reflected in the metrics for the computational effort introduced in the next
section.

Due to the exceedingly large number of combinations of design objectives and parameters,
an exhaustive exploration of the design space is infeasible. While an effort is made to provide
a general overview of the impact of these variables, most of the parameter variations aim at
design specifications suitable for general resampling applications in digital audio. In particular, a
minimum stopband attenuation of about 90 . . . 120dB, as established e.g. in [LK81a,Lag82,ZB94]
as well as normalized angular cutoff frequencies in the range [0.75π, 0.9π], covering audio
signal bandwidths in the range 18 . . . 20KHz for common audio sampling frequencies such as
fs = 44.1KHz or fs = 48KHz, are targeted. Moreover, fixed tolerances for the passband error,
which are sensible for many audio applications, are investigated.

6.2.2 Metrics for the Computational Effort
Arithmetic Complexity As customary in digital signal processing, the number of arithmetic
operations is the primary measure for the computational cost of an ASRC implementation
structure. As noted above, the computational effort of SRC algorithms depends both on the
input and the output sampling frequency. Therefore, the addition rate R+ and the multiplication
rate R∗ are introduced as the number of respective operations per seconds in the style of
[CR81, CR83]

R+ =N+i fi +N+o fo (6.1a)

R∗ =N ∗i fi +N ∗o fo . (6.1b)

Here, N+i , N ∗i , N+o and N ∗o represent the number of additions or multiplications per input or
output sample, respectively. Likewise, fi and fo denote the input and output sampling frequencies.
Based on these measures, the total instruction rate (measured in arithmetic operations per second)
is established as

Rt ot al = R++R∗ =Ni fi +No fo , (6.2)

where Ni =N+i +N ∗i and No =N+o +N ∗o denote the number or arithmetic operations per input
or output sample, respectively. The dependence on the input and output sampling frequency
is adapted from [VS07], where the term multiplication rate is introduced as the number of
operations per input sample and is given in the form Ni +β ·No ,β= fo/ fi being the conversion
ratio (3.52).

Because the computational efforts to process input or output samples are represented separately,
the performance measures (6.1) are easily adapted to cases where a single input signal is used to
create n individually resampled output signals. In this case, the addition, multiplication and
instruction rates are given by

R+ =N+i fi +N+o fo n (6.3a)
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R∗ =N ∗i fi + n ·N ∗o fo (6.3b)

Rt ot al =
�

N+i +N ∗i
�

fi +
�

N+o +N ∗o
�

n · fo . (6.3c)

In this way, the results are directly applicable to the algorithm partitioning scheme for WFS
proposed in Section 4.3.

However, on real hardware platforms, the number of operations is not the only measure
relevant to actual algorithm performance. While the performance of an algorithm typically
depends on the characteristics of the specific platform as well as on the implementation, several
abstract performance measures that are independent of a particular target platform are defined
here.

Data Memory Requirements In the model described above, the processing of input samples
is decoupled from the calculation of required output samples. Consequently, apart from storage
for intermediate results of arithmetic operations or state vectors of digital filters, data memory is
required to store the results of the processing of input samples. The amount of memory depends
on the algorithm.

This view is compatible with the signal processing schemes for WFS developed in Section
4.3. There, the results of the preprocessing stage, which operates on the input signal, are stored
in a delay-line-like structure enabling arbitrary access. The size of this data structure depends
linearly on the size of the preprocessed data for each input sample and dominates the memory
requirements for WFS signal processing in most applications. As stated there, the proposed
algorithm partitioning might be considered as a space-time trade-off that gains a significant
reduction in complexity by increasing the memory requirements for the delay line by a bounded
factor. However, on some target platforms, for instance DSP or FPGA architectures, memory
size might prove to be a limiting parameter. For this reason, the data memory requirements,
expressed as number of values to be stored per input sample, are included as a measure for the
computational complexity. It may be utilized, for instance, for trade-off analyses with respect to
other parameters such as the resampling quality or the arithmetic complexity.

Memory Bandwidth per Output Sample In addition the data memory size, the bandwidth
required to access this memory affects the performance of an algorithm in several ways. First, the
amount of data required for the calculation of each output sample typically affects the number of
memory load operations, thus increasing the number of instructions required. Second, memory
bandwidth may prove a limiting factor on numerous target architectures.

Here, the analysis is constrained to the memory accesses required for the calculation of output
samples. This restriction is justified mainly by three reasons. First, the memory bandwidth used
in storing the results of the processing of the input samples is proportional to the size of the
intermediate data. Therefore, this metric is already covered by the data memory requirements
measure introduced above. Second, the processing of the input signal typically consists of
filtering operations that operate on local data and coefficient memory. The costs of operations
on these memories depend highly on the target platform and specific implementation details. It
is therefore difficult to include these accesses in a platform-independent performance measure.

Third, the bandwidth required for the output computation is most important for applications
such as WFS. On the one hand, the delay-line-like structure holding the processed input samples
is often stored in other levels of the memory hierarchy, for instance in external RAM memory in
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case of DSP architectures. Therefore, these memory accesses might prove particularly costly, and
bandwidth restrictions of the architecture may limit the overall performance. On the other hand,
if multiple output signals are generated from each preprocessed input signal, then the memory
accesses for computing the output samples are likely to dominate the bandwidth requirements of
the complete algorithm.

The memory bandwidth is given as the number of data values that is accessed in the computa-
tion of a single output sample.

Implementation Latency Virtually all ASRC algorithms are internally based on discrete-time
filtering. Therefore, they generally introduce an implementation delay to allow the filters to be
implemented in causal form. The amount of delay depends on the algorithms and the design
parameters used.

Ultimately, the latency requirements are determined by the application. For instance, imple-
mentation delays are critical in live scenarios or if the ASRC algorithm is contained in a feedback
loop. For other applications, such as the reproduction of recorded audio scenes, this delay is
often negligible or is easily compensated in other parts of the signal processing system.

To assess the suitability for a particular application and to enable trade-offs against other
design objectives, the implementation delay is included in the analysis. It is typically given as a
number of samples.

6.3 Performance Analysis

Most implementation structures for ASRC offer several design parameters such as filter orders or
oversampling ratios. In addition, methods for purposeful coefficient design for these structures
typically permit a multitude of design specifications, such as error norms, the cutoff frequency,
or specific passband or stopband error specifications, to be determined. In this section, several
investigations are performed to quantify the effects of these parameters and specifications on the
achievable design quality.

Of the several implementation structures characterized in Section 3.6, the modified Farrow
structure and structures incorporating oversampling and polynomial-based resampling filters
are investigated in detail. This restriction is justified by the following reasons: First, resampling
functions with explicitly calculated filter coefficients such as Lagrange or spline interpolators
typically fail to achieve acceptable resampling quality for wideband signals with respect to
objective error norms unless they are combined with oversampling.

The transposed Farrow structure is applicable only for sample rate reductions and thus outside
the scope of the evaluations performed here. As shown in Section 5.6.3, the performance of
the generalized Farrow structure is most often only slightly superior to that of an Oversam-
pling+Farrow structure with significantly lower complexity. Among the remaining variants
of the Farrow structure, only the modified Farrow structure is considered here due to the
reduced computational effort and its advantageous impulse response symmetry. For the same
reasons, structures incorporating oversampling are confined to those with symmetric piecewise
polynomial resampling filters.
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Figure 6.1: Minimum stopband attenuation of the modified Farrow structure as function of M
and N . Design specifications: L∞ design, W (X ) = 1, uniform stopband,ωc = 0.75π.

6.3.1 Modified Farrow Structure
6.3.1.1 Role of the Orders M and N

The design parameters for the modified Farrow structure are the subfilter order N and the
polynomial order M (3.109). In Figure 6.1, the achievable minimum stopband attenuation As
(3.228b) is shown for N = 1, . . . , 72 and M = 1, . . . , 7. The coefficient design is performed with
respect to the L∞ norm using a constant weighting function W (X ) = 1. A cutoff frequency of
ωc = 0.75π and a uniform stopband specification (3.224) are utilized.

It is observed that for each polynomial order, the trajectory of the stopband attenuation
consists of three distinct parts. For small values of N , As increases monotonically with an
approximately constant slope with respect to the logarithmic scale of this error measure. It is
apparent that this slope is very similar for all polynomial orders M . For large values of N , the
optimum stopband attenuation is approximately constant and does not increase further. This
asymptotic stopband error increases with the order M . A transition region is located between
these parts. In this region, the stopband error behaves less deterministic and typically exhibits
an oscillation between successive subfilter orders. It is observed that for odd polynomial orders
M , the performance increase from an even to an odd N is more pronounced, while As increases
more slowly or even decreases if N changes from an odd to an even value. Likewise, for M even,
the performance improvement is more distinctive if N changes from an odd to an even value
than in the converse case. The filter orders N corresponding to this transition region depend on
the polynomial order M . In general, the transition region is shifted toward higher values of N as
M increases.

From these observations, a guideline for selecting M and N can be derived. First, the polyno-
mial order M should be chosen as the smallest value that meets the required stopband attenuation
for large values of N . In general, choosing a larger value for M does not pay off, because it does



i
i

“main_report” — 2012/1/30 — 9:09 — page 198 — #218 i
i

i
i

i
i

198 Chapter 6 Evaluation

0 10 20 30 40 50 60 70
0 dB

20 dB

40 dB

60 dB

80 dB

100 dB

120 dB

140 dB

N

As M = 7
M = 6
M = 5
M = 4
M = 3
M = 2
M = 1

Figure 6.2: Minimum stopband attenuation of the modified Farrow structure as function of M
and N . Design specifications: L∞ design, W (X ) = 1, uniform stopband,ωc = 0.9π.

not reduce the required subfilter order N . Second, the order N should be chosen within the
transition region or slightly above this interval, because larger values of N no not result in a
further improvement of the approximation error. Finally, the parity of N should match that
of the polynomial order M to benefit from the oscillations of the stopband error within the
transition region.

6.3.1.2 Influence of the Cutoff Frequency

In Figure 6.2, the dependency of the minimum stopband attenuation As on M and N is shown
for a cutoff frequency wc = 0.9π, while the other parameters are identical to those used for
Figure 6.1. Apparently, the qualitative behavior is unchanged, but two quantitative changes
are observed. First, the asymptotic stopband attenuation for large N is moderately decreased
compared toωc = 0.75π for all M . Second, the slope of the performance improvement for low
values of N is smaller than in the aforementioned case. Consequently, the transition region is
shifted to larger values of N if the cutoff frequency is increased.

To further examine the impact of the cutoff frequency ωc on the stopband attenuation,
two investigations have been performed. First, to approximate the asymptotic performance,
coefficient sets with very large filter orders (N = 95) have been designed in the minimax sense
for several cutoff frequencies in the interval [0.5π, 0.9π]. The resulting values of the stopband
attenuation are shown in Figure 6.3. This figure shows that the decrease of As as a function of
ωc is similar for all polynomial orders M and is relatively moderate.

It is instructive to compare these observations to design rules for FIR filters. An approximate
relationship between the passband error δp , the stopband error δs , the transition band width
and the filter order for linear-phase FIR filters designed with respect to the L∞ norm has been
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Figure 6.3: Asymptotic minimum stopband attenuation of the modified Farrow structure as
function of M and ωc . Design specifications: L∞ design, W (ω) = 1, uniform
stopband, N = 95.

established in [HRC73, Kai74, CR83]. A simplified formula is given in [Kai74, Sar93]

N ≈
−20 log10

�Æ
δpδs

�− 13
14.6
2π ∆ω

, (6.4)

where ∆ω = ωs −ωp denotes the transition band width given as an angular frequency. In
minimax filter design, the desired ratio between passband and stopband error is typically enforced
by a piecewise constant weighting function with passband and stopband weights W (Xp ) and
W (Xs ) according to (3.229)

W (Xp )

W (Xs )
=
δs

δp
.

In this case, the stopband error and, equivalently, the minimum stopband attenuation As are
approximated by functions of N and∆ω

20 log10δs ≈−
14.6

2π
∆ωN − 20 log10

√√√√W (Xs )

W (Xp )
− 13 (6.5a)

As ≈
14.6

2π
∆ωN + 20 log10

√√√√W (Xs )

W (Xp )
+ 13 . (6.5b)

That is, for FIR filters, the minimum stopband attenuation As – a logarithmic function of
stopband error – is an approximately linear function of both the filter order N and the transition
band width∆ω. For example, if the width of the transition band is halved, then the minimum
stopband attenuation is also approximately halved.
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Figure 6.4: Minimum stopband attenuation of the modified Farrow structure as function of N
andωc . Design specifications: L∞ design, W (X ) = 1, uniform stopband, M = 6.

For ASRC systems, the width of the transition band (3.223) is given by∆ω = 2(π−ωc ). As
illustrated in Figure 6.3, the decrease of As is much lower. For example, the transition band
width is halved when the cutoff frequency is increased from 0.5π to 0.75π. In this case, the
decrease of the minimum stopband attenuation is about 19 % for M = 3 and 18 % for M = 6,
compared to approximately 50 % expected for a FIR filter design.

The second investigation aims at characterizing the increase of the minimum stopband at-
tenuation As for small values of N , that is, in the slope region of the quality trajectory. This
slope also determines the location of the transition region. The trajectory of the minimum
stopband attenuation As is shown in Figure 6.4 for a fixed polynomial order M = 6 and several
values ofωc . In Section 6.3.1.1, it has been observed that this slope is nearly independent of the
polynomial order M . However, its behavior is easier to analyze for higher values of M , as the
slope region is larger.

Apparently, As forms an approximately linear function of N in this region irrespective of the
cutoff frequency. However, the slope of this function decreases asωc increases. To quantify this
behavior, a linear regression has been performed to approximate As by a linear function

As (N ) =As (0)+∆As N . (6.6)

The results of this regression are displayed in Table 6.1. It can be seen that for increasing cutoff
frequenciesωc , corresponding to a decreasing transition band widths∆ω, the proportionality
factor∆As decreases significantly. At the same time, the offset term As (0) exhibits a relatively
slow decrease. To analyze these results, a comparison with the design relationships for minimax
lowpass FIR filters again proves instructive. Using the approximate formula for the minimum
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M = 6 M = 7
ωc ∆ω As (0) [dB] ∆As [dB] ∆AS

∆ω [dB] As (0) [dB] ∆As [dB] ∆AS
∆ω [dB]

0.50π 1.0π 16.10 7.59 2.42 16.14 7.66 2.43
0.55π 0.9π 15.78 6.72 2.38 15.47 6.82 2.42
0.60π 0.8π 15.13 5.95 2.37 14.71 6.05 2.41
0.65π 0.7π 14.28 5.22 2.37 14.08 5.27 2.40
0.70π 0.6π 13.26 4.53 2.40 13.67 4.49 2.38
0.75π 0.5π 12.65 3.77 2.40 13.06 3.73 2.38
0.80π 0.4π 12.06 3.02 2.41 12.67 2.97 2.36
0.85π 0.3π 11.37 2.27 2.41 12.05 2.23 2.37
0.90π 0.2π 10.83 1.51 2.41 11.49 1.49 2.36

Sample mean x 2.40 2.39
Sample standard 0.0186 0.0238

deviation s

Table 6.1: Relation between minimum stopband attenuation As and cutoff frequency/transition
band widths for the modified Farrow structure in the slope region of the quality
trajectory.

stopband attenuation of FIR filters (6.5b), the increase∆As is determined by

∆As =As (N + 1)−As (N )

≈ 14.6

2π
∆ω (6.7a)

≈ 2.34∆ω , (6.7b)

that is, As (N ) is an approximately linear with respect to N for FIR filters, which is consistent
with the conjectured behavior for the modified Farrow structure (6.6). Moreover,∆As in (6.7a)
is proportional to the transition band width ∆ω with the proportionality constant given in
(6.7b). To compare this relationship to the behavior of the modified Farrow structure, the values
∆As for different cutoff frequencies in Table 6.1 are divided by the respective transition band
width. The results are shown in the column “∆As/∆ω”. It is observed that this ratio is very
similar for all values ofωc . Its sample mean and sample standard deviation are given by x = 2.396
and s = 0.0197, respectively.

From this observation, it appears that in the slope region of the performance trajectory,
the achievable stopband attenuation of the modified Farrow structure resembles the behavior
of a linear-phase lowpass filter relatively closely. In particular, the increase of the stopband
attenuation ∆As is approximately proportional to the transition band width ∆ω in both
cases. Although the mean of the proportionality constant x = 2.396 comes relatively close
to the constant value 2.34 derived for FIR filters (6.7b), this seeming coincidence should not
be overrated in the author’s opinion. Considering the conceptual differences between the
continuous-time frequency response of the Farrow structure and the discrete-time frequency
response of a FIR filter, more research is needed to quantify the interrelations between these
filters.

This investigation has been repeated for polynomial order M = 7, and the results are shown
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Figure 6.5: Minimum stopband attenuation of the modified Farrow structure as function of the
passband error δp . Design specifications: L∞ design, W (X ) = 1, uniform stopbands,
ωc = 0.75π, M = 6.

in the right part of Table 6.1. It can be observed that the values for the proportionality factor
(sample mean x = 2.389, sample standard deviation s = 0.0238) are very similar to the results for
M = 6.

6.3.1.3 Fixed Passband Error Specifications

In the previous investigations, the design error was weighted uniformly. However, in many
applications, it is sensible to use distinct specifications for the passband and stopband error. For
instance, in audio applications it is often advantageous to maximize the stopband attenuation for
a given maximum passband ripple.

In Figure 6.5, the achievable stopband error is shown as a function of the subfilter order
for several choices of a fixed passband error limit δp . A design with uniform error weighting
δp = δs as described above is included for comparison. Missing points in the quality function,
especially for tight passband error limits, represent designs that failed to achieve the required
error limit due to infeasibility of the corresponding optimization problem.

It is observed that the asymptotic stopband attenuation for large N is similar for all choices of
δp . Likewise, the slopes in the region of approximately linear increase of As are of comparable
magnitude. However, the offset where this slope region starts is shifted toward higher values
of N as the admissible passband error decreases. In contrast, the slope for the uniform error
weighting δp = δs is significantly lower than for the designs using fixed passband errors.

Again, it is worthwhile to compare this behavior to the design relationships for FIR filters.
According to (6.4), the passband and stopband error show an approximately inverse relation
for minimax FIR filter design. Solving this approximate relation for a fixed passband error δp
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results in

As ≈ 2
14.6

2π
∆ω+ 20 log10δp + 26 . (6.8)

That is, for FIR filters, a fixed passband error limit δp results in a constant offset for the
minimum stopband attenuation. In contrast, the proportionality factor determining the effect
of the filter order N on As is independent of this limit. However, in comparison to a design
based on a weighted error specification (6.5b), this proportionality factor is twice as large.

Applied to the modified Farrow structure, it becomes apparent that this approximate design
relation matches the qualitative behavior in the slope region of the minimum stopband atten-
uation relatively well. However, for decreasing passband error limits, the slope of the quality
trajectory decreases moderately, which is not modeled by the expression (6.8).

Notwithstanding this quantitative deviation, this analogy to the behavior of linear-phase FIR
filters clarifies the role of passband error specifications in the design of the modified Farrow
structure. The qualitative similarity in the slope region of the quality trajectory suggests that
the adherence to a passband error specification is connected to the properties of the subfilters
Cm(z), which are linear-phase filters in case of the modified Farrow structure In contrast, the
upper limit for the achievable minimum stopband attenuation (or, equivalently, the bound for
the maximum stopband error δs ) is virtually independent of a passband error specification. This
emphasizes the preeminent role of the stopband error metric for this class of ASRC filters.

Summarizing, these observations show that fixed passband error limits can be readily incor-
porated into design methods for the modified Farrow structure. Depending on other design
parameters, such design specifications may enable to meet the requirements of an application
with reduced computational complexity. However, the achievable improvements are tightly
limited in most cases. For instance, it is unlikely that the polynomial order M , which is the most
influential parameter for the computational effort, can be reduced due to a relaxed passband
error specification.

6.3.1.4 Nonuniform Stopband Specifications

Both uniform and nonuniform stopband specifications, as defined in Section 3.8.1, are used in
ASRC design. While nonuniform stopbands require the input signal to be bandlimited to the
cutoff frequencyωc , the use of multiple transition regions offers additional degrees of freedom
that potentially result in an improved performance. In Figure 6.6, the achievable minimum
stopband attenuation is shown as a function of M and N for a L∞ design with uniform error
weighting. It is observed that the general behavior of both designs is relatively similar. In
particular, the dependency on the subfilter order in the slope region is nearly identical. Likewise,
the asymptotic stopband attenuation for large values of N appears to be independent of the
stopband specification. However, the transition between these regions is different. As described
above, designs with respect to a uniform stopband specification show a pronounced transition
region with fluctuations between successive subfilter orders as well as a region where the stopband
error converges to its asymptotic limit. In contrast, the transition between the linear increase and
the region determined by the upper limit of As is nearly immediate for nonuniform stopband
designs.

To illustrate the differences between both specifications, design examples for M = 6, N = 40
are shown in Figure 6.7. It is seen that the continuous frequency responses are markedly different.
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Figure 6.6: Minimum stopband attenuation of the modified Farrow structure for uniform and
nonuniform stopbands. Design specifications: L∞ design, W (X ) = 1, uniform
stopband,ωc = 0.75π.

While the design with uniform stopband region exhibits an approximately equiripple error over
wide regions of Xs , the stopband error resulting from the nonuniform design specification is
typically lower, but exhibits a significant magnitude in the don’t care regions of the design
specification. However, because the maximum error of the nonuniform stopband design is
determined by the frequency response error at the edges of the multiple stopband regions,
the achieved minimum stopband attenuation is relatively similar for both design specifications
(114.8 dB for nonuniform stopbands and 111.8 dB for uniform stopbands).

In summary, the potential performance gains from using nonuniform stopbands are tightly
limited in most cases, and the same stopband attenuation is typically achieved by a uniform
stopband design, possibly at the expense of a slightly increased subfilter order. It is therefore
questionable for most applications whether the small potential performance gains pay off
compared to the risks due to insufficient attenuation in the transition bands.

6.3.1.5 Weighted Least Squares Designs

So far, the performance evaluations have been performed with respect to the L∞ norm. To assess
the influence of the error norm used in the design process, the evaluation of the design error is
repeated for the L2 norm. In Figure 6.8, the L2 error δ2, which is the square root of the weighted
squared error E2 (3.226a)

δ2 =
Æ

E2 =

√√√√
∫

X

�
W (ω)

���Hc (jω)− bHc (jω)
���
�2

dω , (6.9)

is displayed as a function of M and N for designs with respect to the L2 norm. The optimization
is performed for an uniform stopband specification, a constant weighting function W (X ) = 1,
and a cutoff frequencyωc = 0.75π. The error δ2 is obtained by numerical integration with an
upper frequency limitωu p = 32π.
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Figure 6.7: Design example for the modified Farrow structure with uniform and nonuniform
stopbands. Design specifications: L∞ design, uniform error weighting W (X ) = 1,
ωc = 0.75π, M = 6, N = 40.

Apart from the different semantics of the error metrics and the inverted orientation of δ2
compared to the stopband attenuation As , it is observed that the qualitative behavior of the L2
error is very similar that of the L∞ designs shown in Figure 6.1. The distinct regions of the
error trajectory reported in Section 6.3.1.1 are clearly found in the behavior of the L2 error.
Specifically, the region of approximately linear decrease of the error (measured on a logarithmic
scale), the lower error limit for large subfilter orders N depending on the polynomial order
M , and the form of the transition regions closely resemble their counterparts in the L∞ design
experiments.

These observations suggest that the performance characteristics of the modified Farrow
structure investigated in this section are not specific either to L∞ designs or to particular error
measures such as the minimum stopband attenuation. In contrast, they very likely reflect a
general property of this class of ASRC systems. In particular, the rather strict dependency of
achievable design error on the polynomial order M is not characteristic to the L∞ norm, but
holds for designs with respect to other error measures as well.

6.3.1.6 Metrics for the Computational Effort

The modified Farrow structure consists of two distinct parts: the bank of subfilters Cm(z)
and the Horner scheme for polynomial evaluation. This partitioning is also reflected in the
performance metrics for this structure. While the subfilters Cm(z) operate on the sequence
of input samples, the Horner scheme is evaluated for each output sample. Consequently, the
addition and multiplication rates follow from the instruction counts stated in Section 3.6.2.

R+ =

(
(M + 1)N fi +M fo , N odd�
(M + 1)(N − 1)+

 
M+1

2

£�
fi +M fo , N even

(6.10a)
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Figure 6.8: L2 error of the modified Farrow structure as function of M and N . Design specifica-
tions: L2 design, W (X ) = 1, uniform stopband,ωc = 0.75π.

R∗ =

(
(M + 1)N+1

2 fi +M fo , odd�
(M + 1)N2 +

 
M+1

2

£�
fi +M fo , N even

. (6.10b)

The output values of the subfilters Cm(z) form the results of the processing of input samples.
Consequently, the data memory requirements amount to M+1 values per input sample. Likewise,
the memory bandwidth required for computing one output samples is M +1, because a complete
set of subfilter outputs is required to evaluate the polynomial of order M .

The implementation delay basically results from the delay required to implement the subfilters
Cm(z) in causal form, which is N/2 samples. However, this value is also affected by the range of
the intersample position variable µ. Thus, the implementation delay follows from the causality
requirements derived in 3.5.5 and amounts to

Di m p l =
N − 1

2
.

6.3.1.7 Conclusions

In this section, the effect of different parameters and design specifications on the achievable
resampling quality of the modified Farrow structure has been investigated. The preeminent roles
of the polynomial order M and the stopband error forms the most important observation. The
polynomial order M effectively establishes a lower limit on the stopband error that cannot be
improved significantly if the subfilter order N is further increased or if other design specifications
are relaxed. In contrast, the effects of other design specifications, such as the cutoff frequency,
passband error constraints or the form of the stopband region, can be controlled to a large extent
by an appropriate choice for the subfilter order N .
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Figure 6.9: Minimum stopband attenuation of ASRC structures using oversampling as function
of Nd i g and Ni nt . Design specifications: L∞ design, W (X ) = 1, uniform stopband,
Hi nt (jω) according to OIB design,ωc = 0.75π, L= 4.

The distinctive role of the polynomial order also affects the performance metrics for the
modified Farrow structure significantly. The number of instructions is strongly influenced
by the number of subfilters and the order of the polynomial to be evaluated, which are both
determined by M . Moreover, both the storage requirements per input sample and the memory
bandwidth per computed output sample depend directly on the polynomial order.

6.3.2 Structures Incorporating Integer-Ratio Oversampling
The main design parameters for ASRC structures based on oversampling are the oversampling
ratio L, the order Nd i g of the discrete-time prefilter and the characteristics of the continuous-
time resampling filter Hi nt (jω). For the reasons stated in Section 5.5, only symmetric piecewise
polynomial resampling functions with polynomial order M =Ni nt are considered here. This
class of resampling filters includes widely-used functions such as Lagrange interpolators, spline
basis functions or MOMS interpolation kernels. In most design experiments, the optimized
image band attenuation (OIB) design proposed in Section 5.5.3 is utilized, because it enables the
best resampling performance of all fixed resampling functions in the majority of designs.

For performance evaluation, only discrete-time prefilters Hd i g (e
jω) designed with the overall

optimization scheme introduced in Section 5.4 are considered. This choice is motivated by the
ability to provide optimal designs with respect to a flexible set of specifications.

6.3.2.1 Role of the Orders Nd i g and Ni nt and the Oversampling Ratio L

In Figure 6.9, the minimum stopband attenuation As for a minimax design with uniform error
weighting is shown as a function of the filter orders Nd i g and Ni nt for a fixed oversampling ratio
L= 4 and cutoff frequencyωc = 0.75π. For this investigation, Hi nt (jω) is designed with respect
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Figure 6.10: Minimum stopband attenuation of ASRC structures using oversampling as function
of Nd i g and L. Design specifications: L∞ design, W (X ) = 1, uniform stopband,
Hi nt (jω) according to OIB design,ωc = 0.75π, Ni nt = 4.

to the optimized image band (OIB) criterion introduced in Section 5.5.3. However, as will be
shown later in Section 6.3.2.3, the qualitative behavior for other classes of resampling filters is
identical.

It is observed that the trajectory of As consists of several distinct regions for each Ni nt ,
resembling the behavior of the modified Farrow structure observed, for instance, in Figure 6.1.
For low prefilter orders, the increase of the stopband attenuation is approximately linear (on the
logarithmic scale underlying As ) and independent of the order Ni nt . For higher values of Nd i g ,
the achievable stopband attenuation increases only slowly and apparently approaches an upper
limit.

This qualitative behavior is in accordance with the roles of the two components Hd i g (e
jω)

and Hi nt (jω) characterized in Section 5.4. For low prefilter orders, the quality is limited by
image suppression capabilities of Hd i g (e

jω). In the asymptotic limit, that is, for large values of
Nd i g , the image attenuation of Hi nt (jω) in the passband image regions of Hd i g (e

jω) becomes
the limiting factor. In between, if the image attenuation capability of Hd i g (e

jω) is sufficiently
large, the overall performance is governed by the adaptation of the discrete-time prefilter to
the frequency response Hi nt (jω). Specifically, this comprises the compensation of passband
errors and the shaping of the transition regions of Hd i g (e

jω). For this reason, the increase of the
achievable quality in this intermediate region is relatively slow.

It is observed that for each value of Ni nt , there is an effective upper limit on the achievable
stopband attenuation. The quality improvement for successive values of Ni nt becomes smaller as
this order increases.

The achievable stopband attenuation as a function of the upsampling ratio L and the prefilter
order Nd i g is shown in Figure 6.10 for a fixed order Ni nt = 4 of Hi nt (jω). As in the previous
design example, the performance trajectory consists of three distinct regions. For high prefilter
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orders Nd i g , the achievable stopband attenuation is nearly constant. This asymptotic error
limit increases with the oversampling ratio L, but the improvement between successive values
of L diminishes. Before this asymptotic limit is reached, the performance trajectory exhibits a
transition region as characterized in the previous design experiment. For relatively low prefilter
orders, the increase of As is approximately linear. The slope within this region depends on the
oversampling ratio L and decreases as this ratio increases. Consequently, the transition region is
shifted towards higher values of Nd i g for higher oversampling ratios.

The different slopes for low values Nd i g are explainable from the characteristics of the prefilter
Hd i g (e

jω). As in rational SRC, the primary role of this filter is to provide lowpass filtering
with a cutoff frequency ofωc/L and a transition band in the interval (ωc/L, (2π−ωc )/L) (see
e.g. [CR83]). That is, the transition band width is

∆ω =
2(π−ωc )

L
. (6.11)

According to equation (6.5b), the minimum stopband attenuation for a linear-phase lowpass
filter is an approximately linear function with a slope proportional to ∆ω. Applying the
uniform weighting function W (Xp ) =W (Xs ) = 1 used in the design experiments results in the
approximation

As ≈ 14.6
π−ωc

πL
+ 13 . (6.12)

In Figure 6.10, it is observed that this approximation matches the actual stopband attenuation in
the slope region of the performance trajectories well.

6.3.2.2 Influence of the Cutoff Frequency

The dependency between the cutoff frequency ωc and the minimum stopband attenuation is
investigated in Figure 6.11 for a fixed upsampling ratio L = 4 and resampling order Ni nt = 4.
It can be seen that the slope in the region of linear increase decreases as the cutoff frequency
attains higher values. As in case of varying upsampling ratios, this behavior is well matched by
the approximation (6.12).

It is observed that the maximum achievable stopband attenuation decreases rather slowly
if the cutoff frequency is increased. This behavior is similar to the behavior of the modified
Farrow structure described in Section 6.3.1.2. However, the prefilter order Nd i g to reach such
attenuation values increases considerably.

6.3.2.3 Influence of the Continuous-Time Resampling Function

The effect of the characteristics of the continuous-time resampling filter Hi nt (jω) is examined
for fixed parameter settings L = 4, Ni nt = 4 and ωc = 0.75π. The results are illustrated in
Figure 6.12. For low prefilter orders, that is, in the region of linearly increasing As , the stopband
attenuation is virtually independent of the characteristics of Hi nt (jω). In contrast, the point of
transition where the trajectory departs from the region of approximately linear increase depends
on the properties of the continuous-time resampling function. In general, the sophisticated
designs proposed in this work enable significantly higher stopband attenuations for a given order
Ni nt than, for instance, conventional Lagrange interpolators.
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Figure 6.11: Minimum stopband attenuation of ASRC structures using oversampling as function
of Nd i g and cutoff frequency ωc . Design specifications: L∞ design, W (X ) = 1,
uniform stopband, Hi nt (jω) according to OIB design, L= 4, Ni nt = 4.

6.3.2.4 Fixed Passband Error Specifications

The influence of different ratios between passband and stopband error is depicted in Figure
6.13, where the minimum stopband attenuation is shown for a set of fixed passband error
specifications.

The perceived effect is similar to that of the modified Farrow structure described in Section
6.3.1.3. The asymptotic performance for large values of Nd i g shows a relatively slow decrease for
increasingly strict passband specifications. In the region of approximately linear increasing As ,
the slope of the functions is relatively similar, while the fixed passband error causes an offset to
this function. Applying the transition band width (6.11) to the design relation for FIR filters
(6.8) results in the approximation

As ≈
29.2(π−ωc )

πL
+ 20 log10δp + 26 . (6.13)

In Figure 6.13, it is seen that these linear approximations match the actual performance trajec-
tories relatively well. However, as in case of the modified Farrow structure, the actual slope
decreases as δp attains very small values.

According to (6.8), the slope of As for a fixed passband error is twice as large as for a design
with a weighted error specification. To check this hypothesis, the actual performance trajectory
for a design with uniform weighting is included in Figure 6.13, where it is denoted by δp = δs .
Apparently, its slope is significantly lower than for the designs with fixed passband error limits.
Moreover, it matches the linear approximation (6.12) relatively well.
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Figure 6.12: Minimum stopband attenuation of ASRC structures using oversampling for different
resampling filters Hi nt (jω). Design specifications: L∞ design, W (X ) = 1, uniform
stopband,ωc = 0.75π, L= 4, Ni nt = 4.

6.3.2.5 Nonuniform Stopband Specifications

In Figure 6.14, the effect of uniform and nonuniform stopband specifications on the achievable
stopband attenuation are shown for an example design with L = 4, ωc = 0.75π and uniform
error weighting. As in most previous design experiments, an OIB design objective is used for
the continuous-time resampling function Hi nt (jω). It can be observed that for nonuniform
stopbands, the minimum stopband attenuation is slightly lower than that of a comparable design
with a uniform stopband, but the differences diminish relatively quickly in most cases as the
prefilter order Nd i g increases.

Moreover, it can be seen that for nonuniform stopbands, the transition between the region of
linear increase and the flat behavior for large values of Nd i g is almost immediate. This behavior
is readily explained by the role of the transition band of Hd i g (e

jω) described earlier in this
section. Basically, the performance of both designs differs for intermediate values of Nd i g , that is,
between the region of approximately linear performance increase and the constant error bound
for large prefilter orders.

For uniform stopbands, the achievable attenuation in this region is determined by the adap-
tation of Hd i g (e

jω) in the transition band image regions of this filter. In contrast, these image
bands are excluded in a nonuniform stopband specification. Thus, the performance trajectories
change abruptly from the region where the performance is dominated by the stopband rejection
of the discrete-time prefilter to the asymptotic error imposed by the minimum image attenuation
of Hi nt (jω).

Consequently, for nonuniform stopband specifications, the primary objective of the proposed
overall optimization scheme for Hd i g (e

jω) is to compensate passband deviations caused by
Hi nt (jω). Thus, the achievable improvements of this design method are more limited than in
case of uniform stopbands.
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Figure 6.13: Minimum stopband attenuation of ASRC structures using oversampling as function
of the passband error δp . Design specifications: L∞ design, uniform stopband,
ωc = 0.75π, L= 4, Ni nt = 4.

6.3.2.6 Weighted Least Squares Designs

In Figure 6.15, the weighted least squares error δ2 is depicted as a function of the orders M
and N . The designs have been performed with respect to the L2 norm with constant error
weighting W (X ) = 1, a uniform stopband specification and cutoff frequency ωc = 0.75π.
As in case of the modified Farrow structure, the qualitative behavior of the approximation
error is very similar to the L∞ error for minimax designs considered in Section 6.3.1.5. In
particular, the region of linearly decreasing error (with respect to a logarithmic scale) as well as
the performance limitation depending on the resampling filter order Ni nt are clearly represented
in the error functions. Moreover, the prefilter orders where the performance trajectories change
from a uniform increase to an approximately constant behavior is relatively similar for L∞
and L2 designs. This observation supports the conjecture that, as in case of the modified
Farrow structure, the qualitative behavior of the performance is intrinsic to the implementation
structure. That is, this behavior is not specific to a particular design method or error norm.

For Ni nt = 6, the error function contains some values where the design error increases
non-systematically. Very likely, these outliers are caused by numerical ill-conditioning in the
least-squares optimization. It is noted that the absolute design error of the optimization problems
in question is very small, so small perturbations in the numerical optimization are likely to result
in considerable relative errors. Moreover, ill-conditioning for large problem sizes is a known
problem of WLS filter design with transition bands, e.g. [BBS94, LVKL96, LD99].

6.3.2.7 Metrics for the Computational Effort

The computational costs reflect the two components of ASRC systems based on oversampling
and continuous-time resampling functions. The computation for the discrete-time sample rate
conversion process is performed for each input sample. As integer-ratio SRC is efficiently
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Figure 6.14: Minimum stopband attenuation of ASRC structures using oversampling for uniform
and nonuniform stopbands. Design specifications: L∞ design, W (X ) = 1, Hi nt (jω)
according to OIB design,ωc = 0.75π, L= 4.

performed by polyphase filtering (see Section 3.4.2 or [BBC76, CR81, CR83]), this amounts
to the evaluation of L FIR filters of length (Nd i g + 1)/L. It is assumed that the discrete-time
prefilter Hd i g (e

jω) is zero-padded such that the length Nd i g + 1 is an integral multiple of L. As
the polyphase components do not exhibit coefficient symmetries in general, the numbers of
instructions for each input sample are given by

N+i =Nd i g + 1− L (6.14a)

N ∗i =Nd i g + 1 (6.14b)

Ni = 2Nd i g + 2− L . (6.14c)

The number of operations per output sample depends on the structure of the continuous-
time resampling function Hi nt (jω). In general, the functions considered in this work can be
implemented as modified Farrow structures of order M =N =Ni nt . In this case, the instruction
counts follow from the complexity figures of Section 3.6.2

N+o =

(
N 2

i nt +
3
2 Ni nt , Ni nt even

N 2
i nt + 2Ni nt , Ni nt odd

(6.15a)

N ∗o =

(
1
2 N 2

i nt + 2Ni nt + 1 , Ni nt even
1
2 N 2

i nt + 2Ni nt +
1
2 , Ni nt odd

(6.15b)

No =

(
3
2 N 2

i nt +
7
2 Ni nt + 1 , Ni nt even

3
2 N 2

i nt + 4Ni nt +
1
2 , Ni nt odd .

(6.15c)

However, if Lagrange interpolation is utilized, more efficient implementation structures than
the modified Farrow structure exist as argued in Section 3.6.3. Using the advantageous linear-
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Figure 6.15: L2 error of ASRC structures using oversampling as function of Nd i g and Ni nt .
Design specifications: L2 design, W (X ) = 1, uniform stopband, Hi nt (jω) according
to OIB design,ωc = 0.75π, L= 4.

complexity structure proposed in Section 3.6.3.11, the instruction counts amount to

N+o = 2Ni nt − 1 (6.16a)

N ∗o = 3Ni nt +
�Ni nt + 1

2

�
+ 1 (6.16b)

No = 6Ni nt +
�Ni nt + 1

2

�
. (6.16c)

The storage required for each input sample amounts to L data values that are generated by
the integer-ratio SRC process. The memory access bandwidth is determined by the number of
values accessed by the continuous-time resampling kernel. Thus, it amounts to Ni nt + 1 values
per output sample.

The implementation latency of this algorithm is the sum of the implementation delays of the
components Hd i g (e

jω) and Hi nt (jω). A linear-phase prefilter Hd i g (e
jω), introduces a delay of

Nd i g/2 samples. Because the resampling filters Hi nt (jω) considered here are symmetric piecewise
polynomial filters, the implementation delay of this component amounts to (Ni nt −1)/2 samples
as explained in Section 6.3.1.6. However, as both components conceptually operate on a L-fold
increased sampling frequency, the corresponding values are scaled by 1/L. In combination, the
total implementation latency of this structure is given by

Di m p l =
Nd i g +Ni nt − 1

2L
. (6.17)
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6.3.2.8 Conclusions

The analyses performed in this section show that the different design parameters and objectives
have distinctive effects on the achievable quality of systems incorporating integer-ratio oversam-
pling. First of all, as for the modified Farrow structure, the maximum stopband error δs , or
equivalently the minimum stopband attenuation As , is identified as the most important design
objective. The design objective for the continuous-time resampling function Hi nt (jω) and the
order of this component as well as the oversampling ratio L determine the achievable quality
of the structure. The choice of the order Nd i g of the discrete-time prefilter depends on these
variables. Below a specific limit determined by Ni nt and L as well as the cutoff frequencyωc and
optionally fixed passband error constraints, the stopband attenuation is an approximately linear
function of Nd i g . Above this limit, a further increase of the prefilter order does not improve the
design quality significantly. Apart from this dependency, the influence of the cutoff frequency,
fixed passband error requirements or nonuniform stopband specifications on the maximally
achievable design quality are relatively mild. Conversely, the effects of these objectives on the
design quality can be controlled by the order of the discrete-time prefilter for the most part.

6.4 Trade-offs between Quality and Computational Effort
In the preceding section, the impact of a multitude of design parameters and objectives on the
achievable quality of the different implementation structures for ASRC has been investigated.
However, the selection of an algorithm that is optimally suited for an application and a given
target platform remains a difficult task that offers numerous degrees of freedom. To aid in this
process, the computational resources required by the different implementation structures are
examined and compared in this section.

The basic idea underlying this analysis is to compare the performance metrics defined in
Section 6.2.2 for different implementation structures as a function of a design objective. In the
preceding section, it became apparent that the stopband error, represented by the minimum
stopband attenuation As , has a particular importance compared to other design specifications.
Moreover, the required stopband attenuation typically has a significant impact on the compu-
tational complexity of an ASRC method. For these reasons, As is used as the primary design
objective in the trade-off analyses.

The general procedure for the analysis is as follows: Coefficient designs are performed for
an extensive set of combinations of design parameters, and the quality of the obtained ASRC
filters is evaluated. For the modified Farrow structure, the design paremeters M and N are
varied in the ranges M = 1,2, . . . , 7 and N = 1,2 . . . , 72. Likewise, for structures incorporating
integer-ratio oversampling, the respective parameter ranges are L= 2,3, . . . , 6, Ni nt = 1,2, . . . , 7
and Nd i g = 5,10, . . . , 255.

A set of design objectives for the required minimum stopband attenuation is formed as an
equidistant grid As = 40,45, . . . , 125dB. For each specification, the ASRC designs that fulfill this
objective are selected, and the metrics for the computational effort for these designs are evaluated.
Among these performance numbers, the minimum value denotes the minimum computational
cost to fulfill the prescribed performance goal. It forms a single value in the trade-off function
between quality and computational cost.

Because an exhaustive investigation is infeasible, several design specifications are set to fixed
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(b) Multi-channel case n = 256

Figure 6.16: Minimal arithmetic complexity as a function of the minimum stopband attenuation
for different ASRC implementation structures.

values. In particular, the design is performed with respect to the L∞ norm with uniform
passband and stopband error weightings, a uniform stopband specification and a cutoff frequency
ωc = 0.75π. Strictly speaking, the trade-off functions are applicable only to these parameter
settings. However, it is very probable that the qualitative behavior of the cost functions is similar
for other design specifications. This expectation is supported by the analyses performed in
Section 6.3.

6.4.1 Arithmetic Complexity
As stated in Section 6.2.2, the arithmetic complexity of an ASRC algorithm is influenced by the
conversion ratio R. For multichannel applications such as WFS, the effort also depends on the
number of simultaneously computed output signals for a given input signal. To get meaningful
performance figures despite these multiple degrees of freedom, two cases are considered here.
In both examples, the total instruction rate Rt ot al (6.3c) is shown for sampling frequencies
fi = fo = 1. This choice is well suited for applications such as WFS that require continuously
time-varying delays that change relatively slowly.

In Figure 6.16a, the total instruction rate Rt ot al for a single output signal, that is n = 1, is
shown for different implementation structures and design methods. It can be seen that the
arithmetic complexity of the Oversampling+Lagrange structure designed with the overall op-
timization scheme proposed in Section 5.4 and the modified Farrow structure show similar
behavior. The Oversampling+B-spline structure is comparably to these two structures up to
medium values of As , but requires fewer instructions if the minimum stopband attenuation is
high. In contrast, the Oversampling+OIB structure and the Oversampling+Farrow structure
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Figure 6.17: Minimum memory requirements for different ASRC implementation structures.

with iteratively optimized coefficients require a lower computational effort than the aforemen-
tioned structures for virtually all tested values of As . It is particularly notable that the efficient
linear-complexity implementation structures for Lagrange interpolators do not result in a better
performance of the Oversampling+Lagrange structure compared to other algorithms based on
oversampling.

The same analysis is repeated in Figure 6.16b for a scenario where n = 256 output samples
are computed for each input sample. This case resembles the application example of a WFS
system with 256 loudspeaker channels introduced in Section 4.3.4. As argued there, the overall
complexity is dominated by the effort to compute the output samples. Consequently, as the
calculation of an output sample reduces to the evaluation of a polynomial in case of the modified
Farrow structure, this structure shows a significantly lower instruction rate than the algorithms
incorporating oversampling.

It is worth noting that in this use case, the complexity of the Oversampling+B-spline structure
is higher than that of Oversampling+Lagrange. In contrast to the single-channel case, the
reduced complexity of Lagrange interpolation results in a performance advantage if the overall
effort is dominated by the computational costs for evaluating the resampling filter Hi nt (jω).
However, the efficiency of the Oversampling+Lagrange structure is inferior to structures using
more sophisticated resampling functions, although the cost for evaluating these functions is
comparable to that of a B-spline function of identical order.

6.4.2 Storage Requirements and Memory Bandwidth
For implementation on actual hardware, a performance evaluation purely based on the number
of instructions is typically not sufficient. Performance metrics related to memory requirements
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may prove decisive on many target architectures. The performance of an implementation
structure with respect to such metrics might differ significantly from its arithmetic complexity.

As an example, a Farrow structure of order M = 6 is required to reach a stopband attenuation
of about 95dB for a cutoff frequency ωc = 0.75π (see, for instance, Figure 6.1). Thus, the
evaluation of one output sample requires only 2M = 12 instructions, but M + 1= 7 values have
to be stored for each input sample, and the memory bandwidth required for the evaluation is
also M + 1= 7 values per output sample. In contrast, a structure based on oversampling with a
jointly optimized resampling function with L= 4 and Ni nt = 3 attains the same quality with 26
instructions per output sample, but with a memory requirement of L= 4 values per input sample
and a memory bandwidths of Ni nt + 1= 4 accesses per output sample. For many applications
and target platforms, the latter implementation structure is actually more appropriate due to
limited storage capacity or the costs of memory accesses. In the same way, an evaluation based on
the number of instructions favors structures with high oversampling ratios which are impractical
for most applications due to excessive memory requirements.

For this reason, the trade-off analyses are repeated for the memory and bandwidth performance
metrics introduced in Section 6.2. The graphs are shown in Figure 6.17. It is notable that
these performance measures are independent of the output rate n, as they refer either to one
input or to one output sample. As expected from the above argument, both the minimum
memory requirements and the minimum bandwidths required by the Farrow structure are
higher than those of the structures based on oversampling. For this class of structures, the
memory requirements are determined by the oversampling ratio L, while the access bandwidth
follows from the order Ni nt of the resampling function Hi nt (jω). Thus, the performance gains
of the designs proposed in Sections 5.5 and 5.6 result in significant reductions of the memory
and bandwidth metrics compared to Oversampling+Lagrange structures.

6.4.3 Implementation Latency
The minimal implementation latency to reach a given stopband attenuation is displayed in Figure
6.18 for different ASRC implementation structures. It is observed that the dependency between
the logarithmic measure As and the latency is approximately linear for all considered algorithms.
Moreover, the required latencies are similar for all algorithms, while the modified Farrow
structure typically gains a slight advantage. However, it is worth noting that the profoundly
different nature of structures incorporating oversampling, namely the additional discrete-time
prefilter and the operation on oversampled signals, does not have a more distinct effect on the
overall latency.

Moreover, it is notable that the characteristic of the resampling function Hi nt (jω) in structures
incorporating oversampling has no significant impact on the minimum latency. Considering the
results of Section 6.3.2.3, this implies that the increased maximum stopband attenuation offered
by the more sophisticated resamplers do not have an effect if the objective is to minimize the
implementation latency. On the other hand, this observation indicates that the advantageous
performance characteristics of the optimized resampling filters proposed in this work can be
used without increasing the latency.

In summary, these observations suggest that the latency requirements of an application have
no decisive impact on the selection of an appropriate algorithm, because the latency required to
achieve a desired performance level is very similar for all considered methods.
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Figure 6.18: Minimum implementation latency for different ASRC implementation structures.

6.5 Conclusions
To assess the performance of the ASRC implementation structures considered in this thesis,
design experiments for a large set of design parameters and objectives were performed in this
chapter. In the first part, the effect of different parameter choices and design criteria on the
achievable performance has been investigated. It turns out that the minimum stopband attenu-
ation plays an outstanding role among the different quality measures. While other objectives
or constraints are typically incorporated with relatively little impact on the computational
effort, the required stopband attenuation has a direct and significant effect on the computational
complexity.

In the second part, the computational resources required by the different implementation struc-
ture to reach a given design quality are investigated. With respect to the arithmetic complexity,
Oversampling+OIB and Oversampling+Farrow structures are most efficient for single-chan-
nel applications. However, if a large number of output samples is computed for each input
sample, the modified Farrow structure is significantly more efficient than algorithms based on
oversampling.

However, this advantageous complexity of the modified Farrow structure is gained at the
expense of rather large performance metrics for storage and memory bandwidth. It is shown
that structures based on oversampling and sophisticated resampling functions offer vastly better
performance with respect to these memory-related metrics.

Ultimately, the choice of a suitable algorithm depends on the properties of the hardware
platform. The cost analyses performed in this chapter enable trade-offs between different
performance aspects. In this way, they assist in the selection of an implementation structure that
is appropriate for a given application and target architecture.
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Chapter 7

Conclusions and Future Research

7.1 Summary
In this thesis, algorithms for arbitrary sample rate conversion (ASRC) and their application to
wave field synthesis are investigated.

As argued in Chapter 2, the application of arbitrary, time-variant delays to discrete-time signals
is one of the main signal processing tasks in practical real-time WFS reproduction systems. This
operation is therefore of utmost importance for the computational cost of the complete system.

In Chapter 3, two models to describe this delay operation, variable fractional delay filtering
(VFD) and arbitrary sample rate conversion (ASRC), are characterized. Corresponding design
methods as well as implementation structures are reviewed. Particular emphasis is placed on
a uniform notation, both for VFD and ASRC and for the representation of algorithms. This
enables a comparison between different algorithms and brings out a number of similarities and
equivalences as well as several general rules, such as the role of the basepoint set in utilizing
symmetry relations. A second focus is placed on the computational complexity of different
algorithms. For the case of Lagrange interpolation, numerous implementation structures
are compared, and an efficient linear-complexity structure that performs favorably on modern
superscalar, pipelined or explicitly parallel architectures is proposed. The VFD and ASRC models
are compared, and ASRC turns out to be the more general approach to describe continuously
time-variant delay operations.

Partly based on this insight, and in parts motivated by the specific requirements of WFS, it is
reasoned in Chapter 4 why ASRC is the more appropriate approach to describe and implement
the delay operations in a WFS signal processing system. To handle the complexity growth arising
from the large number of simultaneous ASRC operations, a partitioning scheme for ASRC
algorithms is proposed. This scheme takes the specific structure of a WFS signal processing
system into account to reduce the overall computational complexity considerably. Conditions
required by ASRC algorithms to comply to this partitioning scheme are stated. It is shown that
several of the efficient algorithms described in Section 3.6 fit well into this structure.

Moving sound sources in WFS may result in both sample rate increases and decreases. Fur-
thermore, the signal processing system is required to switch between these cases at arbitrary
points in time and on a per-loudspeaker basis. While there is a general distinction between ASRC
algorithms for increasing and decreasing the sample rate, the main problem for WFS is that
algorithms for reducing the sampling rate cannot be integrated into the proposed partitioning
scheme in an efficient way. However, it is demonstrated that this restriction does not pose an
actual problem for the vast majority of WFS applications. For the remaining cases, a signal
processing structure is outlined that enables arbitrary conversion ratios down to a configurable
lower limit, necessitating only a moderate increase of the computational complexity.

221
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Chapter 5 proposes several improvements to ASRC algorithms. Concise analytical descrip-
tions for the continuous frequency responses of the modified Farrow structure and Lagrange
interpolation are derived in Sections 5.2 and 5.3, respectively. In contrast to existing approaches,
these expressions hold for arbitrary orders and enable insight into the characteristics of the
respective structure. At the same time, they facilitate efficient and stable evaluation, which can
be directly utilized in coefficient design and in the analysis of algorithms.

Coefficient design methods are described for the modified Farrow structure and for ASRC
systems incorporating integer-ratio oversampling. Within this work, the main interest is on
design methods that are optimal with respect to a given design specification, that is, an error
norm and an optional set of constraints. A conforming design method is proposed for the
widely-used Oversampling+Lagrange structure consisting of integer-ratio oversampling and
Lagrange interpolation. Taking the frequency response of the overall system into account enables
a reduction of the error norm as well as flexible, additional design specifications.

However, it turns out that the characteristics of Lagrange interpolation are not particularly
well-suited for combination with oversampling. A set of alternative resampling functions to
replace the Lagrange interpolator is proposed in Section 5.5. In conjunction with the proposed
overall optimization scheme, these resampling filters enable gradual, significant performance im-
provements over Oversampling+Lagrange algorithms. In this way, the efficient implementation
structures for Lagrange interpolation described in Section 3.6.3 appear to be the one of the few
benefits of Lagrange interpolators when used in combination with oversampling.

Pushing this development to the extreme results in an ASRC structure consisting of over-
sampling and a freely parameterizable polynomial-based resampling function, termed Oversam-
pling+Farrow. The design problem for this structure is non-convex. Thus, it can be solved
neither globally optimal nor efficiently. Nonetheless, it is demonstrated that an iterative design
method that optimizes the coefficients of both components alternately yields very good results
if the initial solutions are chosen carefully. In this way, the fixed resampling functions proposed
in Section 5.5 can be utilized advantageously for this more general class of ASRC filters. To
assess the performance of these jointly optimized systems, a transformation is proposed that
converts an Oversampling+Farrow algorithm into the so-called generalized Farrow structure,
which is linear with respect to its coefficients. In this way, an upper bound for the performance
of the Oversampling+Farrow structure is obtained. It is observed that for most practical design
specifications, the performance of the Oversampling+Farrow structure comes very close to this
theoretical upper limit.

In Chapter 6, the algorithms and implementation structures considered in this thesis are
compared and analyzed with special emphasis on the arithmetic complexity and other perfor-
mance metrics relevant to the appropriateness for a specific target platform. In addition to
the dependency of the design objective on parameters such as the filter length or the order of
the resampling functions, the effect of influencing variables such as the cutoff frequency of
the input signal, fixed passband or stopband error bounds, or the use of nonuniform stopband
specifications are considered. The results obtained are typically quite characteristic and can be
used to state guidelines for choosing optimal design parameters for a given specification.

On the other hand, it becomes evident that the choice of an appropriate algorithm depends
strongly on the characteristics of the target architecture. For applications such as WFS, where
the number of processed output samples is large compared to the number of input samples, the
modified Farrow structure is very efficient in terms of the instruction count. However, if criteria
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such as storage requirements or memory bandwidth are considered, other algorithms such as in-
teger-factor oversampling and jointly optimized resampling functions are often preferable. These
results justify the trade-off analyses with respect to different performance metrics performed in
this chapter. Moreover, they provide practical guidance on selecting an algorithm appropriate
for a given application and target architecture.

In this way, the results obtained in this thesis are not limited to wave field synthesis, but might
be applied to a broad range of applications of arbitrary sample rate conversion.

7.2 Directions for Future Research
While several improvements to ASRC algorithms have been proposed in this thesis, it also
provides a number of worthwhile starting points for future research. Among these, the following
appear particularly promising.

Analytical Performance Limits for Piecewise-Polynomial Resampling
Functions
The performance analyses for the modified Farrow structures in Section 6.3.1 have shown several
distinctive characteristics. While the achievable stopband performance mainly depends on the
subfilter order M , it is relatively insensitive to design parameters such as the subfilter order,
the cutoff frequency, or fixed passband error specifications. These observations suggest that a
fixed limit for the stopband attenuation exists for each subfilter order. Therefore, it appears
worthwhile to determine good estimates and to derive analytical error bounds. It is assumed
that the analytical descriptions of the modified Farrow structure derived in Section 5.2, in
particular the expression for the scaling function Φ(m,ω) (5.23), provide a suitable basis for
these investigations.

Globally Optimal Design of Oversampling+Farrow Structures
As stated in Section 5.6, the objective function for the coefficient design of Oversampling+Farrow
structures is non-convex, thus prohibiting the use of global, efficient optimization methods.
However, filter design techniques based on convex optimization have seen an impressive devel-
opment in recent years (e.g. [WBV98, Dav10]). Numerous examples show that filter design
problems which are non-convex in their original formulation can be often transformed into
convex optimization problems. On the other hand, it has been shown that the class of Over-
sampling+Farrow structures is a subset of the class of generalized Farrow structures, which are
linear with respect to their coefficients. For these reasons, it appears promising to investigate
whether the design problem for the Oversampling+Farrow structure can be stated a convex,
possibly nonlinear or constrained, optimization problem.

Efficient Implementation Structures for Fixed Resampling Functions
for Use with Oversampling
Section 5.5 demonstrated that, compared to other piecewise-polynomial resampling kernels, La-
grange interpolators are not optimally suited for ASRC algorithms incorporating oversampling.
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On the other hand, as described in Section 3.6.3, efficient linear-complexity implementation
structures exist for Lagrange interpolation. In contrast, general piecewise-polynomial typically
show an asymptotic complexity of O(M N ). Therefore, it is interesting to explore whether
there are subsets of the class of piecewise polynomial function that can be implemented more
efficiently than the general case while providing better stopband attenuation than Lagrange
interpolation.

Design Criteria for Resampling Filters for Audio Applications
Within this thesis, the design specifications for ASRC algorithms were generally formed by
objective criteria such as the norm of the frequency response error, optionally combined with
time-domain constraints. These objectives are in accordance with most literature on SRC for
audio applications, e.g. [LK81a, AK93]. In contrast, experiments have shown that the perceived
audio quality does not necessarily coincide with these norms (see also [Ros93]).

Therefore, it appears worthwhile to investigate influencing factors for the perceived quality of
ASRC algorithms in audio applications. The continuity or regularity of the continuous impulse
response forms one starting point for this research. While strong discontinuities apparently
result in audible artifacts, the time-domain continuity and regularity conditions stated in Section
5.2.4 appear too restrictive, as they result in a significant increase of the error norm. Pre-
ringing artifacts of discrete-time filters (e.g. [Maa93]) are another example of time-domain effects.
Moreover, the effect of quality criteria for VFD filters on the perceived quality of resampling
filters forms a promising starting point.

Turning the obtained quality criteria into conditions and constraints that can be incorpo-
rated in a convex design specification would enable the purposeful design of ASRC structures
specifically suited for audio applications.
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Theses

I Wave Field Synthesis (WFS) is a computationally complex task. In realtime WFS repro-
duction systems, scaling and delaying of audio signals typically requires the majority of
the computational effort.

II Synthesis of moving sound sources gives rise to several additional reproduction artifacts
that do not occur in static WFS scenes. Artifacts due to time-variant delays form a
major source of error. The required algorithms are best modeled as arbitrary sample rate
conversion (ASRC) processes.

III In a WFS reproduction system, the number of time-variant delay operations increases
linearly both with the number of sources and the number of loudspeakers. For this reason,
the computational complexity of ASRC algorithms is of utmost importance. In most
cases, the effort required for conventional high-quality algorithms is prohibitive.

IV The inherently parallel structure of a WFS signal processing system can be used to reduce
the complexity of the delay operation significantly. For this purpose, the ASRC algorithms
are partitioned into distinct stages that enable an efficient reuse of intermediate results.
Several classes of efficient ASRC algorithms fit well into this partitioning scheme.

V Efficient, general-purpose algorithms for Lagrange interpolation can be implemented with
linear complexity, opposed to O(N 2) algorithms as predominantly used. While existing
O(N ) algorithms are either not suited for general-purpose DSP applications or are highly
sequential, a proposed implementation structure is well-suited for parallel, pipelined or
superscalar architectures or for hardware implementation.

VI The performance of ASRC algorithms consisting of integer-ratio oversampling and La-
grange interpolation can be improved by applying an optimization method that takes the
complete structure into account. This optimization technique enables optimal designs
with respect to a selectable error norm and flexible, additional design constraints.

VII The proposed overall optimization scheme is applicable to other continuous-time resam-
pling functions, yielding significant performance improvements compared to Lagrange
interpolators. In particular, the use of resampling functions tailored to this system struc-
ture and the application of iterative joint optimization techniques yields a performance
close to the theoretical upper bound for this structure for most design specifications.
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