898 research outputs found

    Evolution engine technology in exhaust gas recirculation for heavy-duty diesel engine

    Get PDF
    In this present year, engineers have been researching and inventing to get the optimum of less emission in every vehicle for a better environmental friendly. Diesel engines are known reusing of the exhaust gas in order to reduce the exhaust emissions such as NOx that contribute high factors in the pollution. In this paper, we have conducted a study that EGR instalment in the vehicle can be good as it helps to prevent highly amount of toxic gas formation, which NOx level can be lowered. But applying the EGR it can lead to more cooling and more space which will affect in terms of the costing. Throughout the research, fuelling in the engine affects the EGR producing less emission. Other than that, it contributes to the less of performance efficiency when vehicle load is less

    MATLAB

    Get PDF
    Conventionally, the simulation of power engineering applications can be a challenge for both undergraduate and postgraduate students. For the easy implementation of several kinds of power structure and control structures of power engineering applications, simulators such as MATLAB/(Simulink and coding) are necessary, especially for students, to develop and test various circuits and controllers in all branches of the field of power engineering. This book presents three different applications of MATLAB in the power system domain. The book includes chapters that show how to simulate and work with MATLAB software for MATLAB professional applications of power systems. Moreover, this book presents techniques to simulate power matters easily using the related toolbox existing in MATLAB/Simulink

    Modelling and optimisation of solar voltaic system using fuzzy logic

    Get PDF
    There is considerable increase in residential solar grid connected installations with many advantages offered by solar energy. As more solar panels are connected to grid, the Solar Inverter between solar panels and grid have to perform at optimum levels. Modern Inverters consist of DC-DC Converter and DC-AC Inverter. One problem associated with Inverter design is voltage fluctuation, this defect lies in the DC-DC converter Maximum power tracking (MPPT) algorithms responsible for extracting maximum power from the solar panels. The defect is due to large sampling number required for conventional MPPT algorithm. This thesis has proposed a new MPPT algorithm based on Mamdani Fuzzy logic. In research we use 5 parameter one diode model for solar cell modelling. The P-V/I-V characteristics curve is generated. The P-V characteristics curves sectioned and input membership and output membership functions is created. And unique fuzzy rules is used to optimize fuzzy controller output. Mamdani Fuzzy logic algorithm is compared to traditional PI controller hill climbing method. When small sampling number is used hill climbing method response is slow and good at tracking. When big sampling number is used hill climbing method response is fast and not good at tracking. The voltage also fluctuates when sampling number is big. Fuzzy logic provides a compromised solution with best response time and moderate tracking accuracy compared to hill climbing method. Fuzzy Logic based DC-DC converter together with PLL and Recursive Discrete Fourier Transform (RDFT) DC-AC inverter synchronization algorithm is employed and simulated in matlab. The MPPT simulation is conducted for a realistic 2.5KW solar panels in a 8 x 2 Matrix. In addition the MPPT algorithm is analyzed to see if it performs under power quality and voltage level tolerance of utility grid requirements. The Fuzzy Logic MPPT is excellent at tracking power. When temperature is fixed and irradiance is varied, the maximum tracking error is 5.2% in all scenarios with one exception. When irradiance is fixed and temperature varied, the maximum tracking error is 1.98%. Furthermore the Fuzzy Logic MPPT meets the power quality and voltage level tolerance requirements of utility grid for irradiance over 600 W/m2. Power quality and voltage level tolerance requirements for irradiance under 600 W/m2 is not critical as this is outside twilight conditions. Out of all the Synchronization algorithm identified in this Thesis, RDFT achieves synchronization very quickly and in addition it suppresses harmonics and noise. The possibility of future study to extend MPPT is also briefly discussed. The extension of future study is using Takagi-Sugeno fuzzy logic. Takagi-Sugeno uses more sophisticated inference and rule evaluation mathematics

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards

    Fast‐converging robust PR‐P controller designed by using symmetrical pole placement method for current control of interleaved buck converter‐based PV emulator

    Get PDF
    In this study, the interleaved buck converter-based photovoltaic (PV) emulator current control is presented. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management, which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancelation in the presence of parameter uncertainties. The resonant path of the controller (PR) with a constant proportional unity gain is designed considering the changing dynamics of a notch filter by pole placement method (adding mutually complementary poles to the notch transfer function) at PWM switching frequency. The proportional gain path (P) of the controller is used to determine the compatibility of the controller with parameter uncertainty of the phases and designed by utilizing loop-shaping method. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multiphase converters is achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. In addition to these, the proposed unconventional design process of the controller reduces the computational complexity and provides cost-effectiveness and simple implementation. Moreover, implementing of auxiliary resistor-capacitor (RC) circuits parallel with the inductors to sense the current in each phase removes the need for current measurement sensors that contribute to overall cost of the system

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Study of a High-Efficient Wide-Bandgap DC-DC Power Converter for Solar Power Integration

    Get PDF
    This research focuses on the design and analysis of a Boost cascaded Buck-Boost (BoCBB) power converter with super high efficiency in electric power conversion. The BoCBB power converter is based on emerging wide-bandgap silicon-carbide (SiC) MOSFETs and Schottky diodes, which have only 1/6 times of power loss in traditional silicon power semiconductor devices. The BoCBB power converter can be widely applied in solar harvesting for the National Aeronautics and Space Administration (NASA), military bases and electric utilities, as well as high-power DC motor drives for the electric vehicles, robotics, and manufacturing and product lines. This research analyzed the topology and energy efficiency of a 3-kW BoCBB power converter. The energy efficiency of the SiC-based BoCBB power converter was calculated under various switching frequencies (20-kHz – 100-kHz) and was first tested by a simulation study of solar power integration in a 400-Vdc distribution microgrid in Matlab/Simulink environment. The design of 50-kHz in switching frequency revealed to be optimal in overall system performance. This conclusion was further verified by experimental tests. The experimental tests demonstrated a high efficiency of above 97% in power conversion. In order to improve the power quality of the BoCBB power converter for time-varying solar radiation, a novel sliding-window-combined (SWC) hysteresis control technique was proposed and preliminarily verified by a simulation study to enhance transients of a power grid

    Modeling of Buck Converter Models in MPPT using PID and FLC

    Get PDF
    PV has become universal for power utility applications in comparison to conventional technologies when it comes to economic competitiveness. As the efficiency of solar PV panel is low, it becomes mandatory to extract maximum power from the PV panel at any given period of time. Maximum Power and efficiency in Photovoltaics can be improved by Maximum Power Point tracking even under distributed temperature and irradiance functions. The paper attempts to compare two different Buck converter models based on predictive control. The two converter models using State space differential equation and direct component in MATLAB/SIMULINK are optimized through PID and FLC to obtain increased gain and desired converter output. A PV system connected with Buck converter using an intelligent controller (FLC) for extracting maximum power at different environmental conditions is proposed and the results are compared with conventional PID controller

    A Comparison Between CCCV and VC Strategy for the Control of Battery Storage System in PV installation

    Get PDF
    To meet demand with unpredictable daily and seasonal variations, the power grid faces significant hurdles in transmission and distribution. Electrical Energy Storage (EES), in which energy is stored in a specific state, depending on the technology utilized, and is converted to electrical energy, is acknowledged as a technology involved with significant potential for solving these difficulties. This paper deals with the modeling and control of a renewable energy production system based on solar panel. To improve the performance of the investigated power generation system, a lithium-ion battery storage system and bidirectional converter are associated to a solar panel that is unable to compensate for rapid variations in load power demand. In this situation, to meet load power demand, a rule-based energy management algorithm is used to share energy between the grid and the energy production system. Furthermore, two solutions are developed and compared: VC (Variable Current) and CC-CV (Constant Current Constant Voltage). The VC approach is used in conjunction with an energy management and protection system, whereas the CC-CV method is used in conjunction with an artificial neural network (ANN). The simulation results show that the VC control strategy give greater energy performance and installation stability compared to the CC-CV strategy, but not improved safety and protection of lithium-ion batteries

    Current-Sensorless Control Strategy for the MPPT of a PV Cell:An Energy-Based Approach

    Get PDF
    A novel energy-based modelling and control strategy is developed and implemented to solve the maximum power point tracking problem when a photovoltaic cell array is connected to consumption loads. A mathematical model that contains key characteristic parameters of an energy converter stage connected to a photovoltaic cell array is proposed and recast using the port-Hamiltonian framework. The system consists of input-output power port pairs and storage and dissipating elements. Then, a current-sensorless control loop for a maximum power point tracking is designed, acting over the energy converter stage and following an interconnection and damping assignment passivity-based strategy. The performance of the proposed strategy is compared to a (classical) sliding mode control law. Our energy-based strategy is implemented in a hardware platform with a sampling rate of 122 Hz, resulting in lower dynamic power consumption compared to other maximum power point tracking control strategies. Numerical simulations and experimental results validate the performance of the proposed energy-based modelling and the novel control law approach
    • 

    corecore