591 research outputs found

    The structure and organization of communication processors

    Get PDF

    Active data structures on GPGPUs

    Get PDF
    Active data structures support operations that may affect a large number of elements of an aggregate data structure. They are well suited for extremely fine grain parallel systems, including circuit parallelism. General purpose GPUs were designed to support regular graphics algorithms, but their intermediate level of granularity makes them potentially viable also for active data structures. We consider the characteristics of active data structures and discuss the feasibility of implementing them on GPGPUs. We describe the GPU implementations of two such data structures (ESF arrays and index intervals), assess their performance, and discuss the potential of active data structures as an unconventional programming model that can exploit the capabilities of emerging fine grain architectures such as GPUs

    Graph model analysis of computer structures

    Get PDF
    Graph theory is applicable to the solving of problems in nearly every field of scientific study. The purpose of this thesis is to consider its applications in representing and analyzing digital computers. Fundamental graph theory definitions, the types and the properties of the directed graphs, the matrix representation, and several reduction techniques are discussed. The blocking gate method for diagnosing computer systems is described and applied to the Scientific Control Corporation (SCC) 650 for its fault-diagnosis. Microprogramming has been a significant trend in hardware and software designs of computers. Microprogrammed computers are discussed in comparison to conventional computers. A general scheme utilizing four nodes generates directed graphs for both types of architecture. The directed graphs are studied with respect to the flexibility and cost parameters --Abstract, page ii

    Computer aided design of microprograms

    Get PDF

    Graphical microcode simulator with a reconfigurable datapath

    Get PDF
    Microcode is a symbolic way to simplify control design that allows changing, testing and updating the control unit of processors. By changing the microcode, the same datapath can be used for an entirely different application, such as supporting a completely different instruction set. For these reasons, a majority of control units in modern day processors are microcoded. The object was to investigate and implement a graphical microcode simulator with a reconfigurable datapath and microcode format. By allowing a wide configuration of the datapath, many types of logical processors can be designed and simulated. The resulting implemented simulator is able to fill the void in microprogramming tools since there are no graphical microcode simulators that allow such customization of the datapath. The customization of the datapath goes beyond allowing different files specifying the datapath, it allows the datapath to be created and modified using the graphical interface.This tool is able to be used to design and simulate general-purpose processors and application specific processors through datapath and microcode configurations. In the academic setting, this tool provides easier microcode testing through verification on the instruction level for instructors and provide simulation debugging through code tracing and breakpoints for students

    Memory Utilization for a Dynamically Microprogrammed Computer

    Get PDF
    A Particular, Dynamically Microprogrammed Computer (Proposed by Tucker and Flynn in Commun. of ACM, April 1971) is Considered with Respect to Main Memory and Micro-Memory Utilization. a Dependency is Shown between Memory Utilization and Utilization of the Arithmetic and Logic Unit

    Parallelism through Digital Circuit Design

    Get PDF
    Two ways to exploit chips with a very large number of transistors are multicore processors and programmable logic chips. Some data parallel algorithms can be executed efficiently on ordinary parallel computers, including multicores. A class of data parallel algorithms is identified which have characteristics that make implementation on multiprocessors inefficient, but they are well suited for direct design as digital circuits. This leads to a programming model called circuit parallelism. The characteristics of circuit parallel algorithms are discussed, and a prototype system for supporting them is described

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    Get PDF
    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture

    Application of bit-slice microprocessors to digital correlation in spread spectrum communication systems

    Get PDF
    This thesis describes the application of commercially available microprocessors and other VLSI devices to high-speed real-time digital correlation in spread spectrum and related communication applications. Spread spectrum communications are a wide-band secure communication system that generate a very broad spectral bandwidth signal that is therefore hard to detect in noise. They are capable of rejecting intentional or unintentional jamming, and are insensitive to the multipath and fading that affects conventional high frequency systems. The bandwidth of spread spectrum systems must be large to obtain a significant performance improvement. This means that the sequence rate must be fast and therefore very fast microprocessors will be required when they are used to perform spread spectrum correlation. Since multiplication cannot be performed efficiently by microprocessors considerable work, since 1974, has been published in the literature which is devoted to minimising the requirement of multiplications in digital correlation and other signal processing algorithms. These fast techniques are investigated and implemented using general-purpose microprocessors. The restricted-bandwidth problem in microprocessor-based digital correlator has been discussed. A new implementation is suggested which uses bit-slice devices to maintain the flexibility of microprocessor-based digital correlation without sacrificing speed. This microprocessor-based system has been found to be efficient in implementing the correlation process at the baseband in the digital domain as well as the post-correlation signal processing- demodulation, detection and tracking, especiaJIy for low rate signals. A charge coupled-device is used to obtain spectral density function. An all-digital technique which is programmable for any binary waveform and can be used for achieving initial acquisition and maintaining synchronisation in spread spectrum communications is described. Many of the practical implementation problems are discussed. The receiver performance, which is measured in terms of the acquisition time and the bit-error rate, is also presented and results are obtained which are close to those predicted in the system simulations
    • …
    corecore