
The Computer Aided Design of Microprograms

William Graham Wood

Ph. D.

University of Edinburgh

1979

"--.-

I declare that this thesis was composed by myself

and that the work reported in it is my own.

Abstract

Chapter 1 Introduction 	 1

1.1) Background, Motivation and Goals 	 2
1.2) Outline of MDS - Microprogram Design 	13

System
1.3) Related Work 	 22

Chapter 2 Describing the Processor 	 28

2.1) The Processor Level of Description 	28
2.2) Desirable Properties of a 	 32

Processor Description Language
2.3) MDL - Microprogram Design Language 	44
2.4) Generating a Maximally Parallel 	 52

Representation of the Source
Microprogram

2.5) ANALYSE - A Program to Generate a 	76
Canonical Microprogram from a
Modular Sequential Description

Chapter 3 Defining the Microprogram Level 	 90
Host Machine

3.1) Considerations for Describing 	 91
Microinstruction Formats

3.2) MFM - Microinstruction Format Model 	102

Chapter 4 Generating the Microprogram 	 121

4.1) Packing Micro-operations into 	 122
Microinstruction Words

4.2) Implementing Micro-operations by 	154
Micro-orders in the Defined
Microinstruction Format

4.3) Generating Microprogram Sequencing 	177
Information

Chapter 5 Results, Conclusions and Extensions 	183

5.1) Results - A Worked Example 	 183
5.2) Conclusions 	 190
5.3) Future Extensions 	 201

References

Appendix Listing of MDL Source Microprogram 213
Appendix Canonical 	Microprogram for 	1(a) 217
Appendix MFM Format Description 221
Appendix Output from MICROMAP 226
Appendix Next 	Instruction Information from 241

MICROMAP

Appendix 2 MDL Reference Manual 243

Abstract

The design of the microprogram control for a digital

system is an intricate and error-prone task. This thesis

examines the feasibility of partially automating the

process of microprogram design through translation of a

high level description of the behaviour of a system into a

microprogram in a defined format which will effect that

behaviour. A design suite which performs this function is

described.

Within the suite, the behaviour of a digital system is

expressed in terms of register transfer operations in a

sequential, block-structured description. A maximally

parallel representation of the behaviour is generated

automatically through analysis of the control structure of

the sequential description and the data dependency

relationships defined between the register transfer

operations. The maximally parallel representation takes

the form of a partially ordered graph whose nodes may be

simple, representing the primitive operations of the

description, or composite, representing the control

blocks. The microinstruction format in which control of

the system should be implemented is described in terms of

a model defining the field structure and constituent

control signals of the chosen format. The operations.of

the behavioural description are mapped automatically into

a microprogram of this format in an order determined by

the maximally parallel representation which preserves the

defined behaviour while minimizing the size of the

microprogram generated.

—qi.j.xrr4ti1

The concept of microprogramming was first proposed by

Wilkes [61] in 1951 as a systematic method for

implementing the control unit of a computer. Over the

last fifteen years (since the introduction of the IBM

System/360 125, 571 in 1961) its usage for just that

purpose has become increasingly more common; but the

practice of microprogram design is essentially the same

today as it was fifteen years ago.

This chapter considers the practice of microprogram

design. The first section examines its current status,

reasons why this should be improved upon, and identifies

what can be done to improve it. The product of this

motivation, a system intended to expedite the practice of

microprogram design, is introduced in the second section

and the efforts of others toward related goals are

reviewed in the third.

1

This thesis is concerned with microprogram design,

which hereafter will be held to denote

"The design of the microprogram control of a digital

system dedicated to the implementation of a specified

processor organization and behaviour."

This definition will be qualified and refined

throughout the sections that follow, but will suffice as

stated for the present. The definition does not exclude

the writing of a microprogram to execute on a predefined,

general purpose processor. This simply represents a

restriction, with one less degree of freedom, on the

subject primarily under consideration - which is to

generate an implementation that is tailored in all its

aspects, specifically the microinstruction format, to one

target architecture.

To the systems designer, microprogram design exhibits

some interesting attributes. The most obvious of these is

that it involves parallelism. The primitive operations

which are evoked at the microprogram level are evoked

concurrently - and how best to design systems for a

concurrent implementation is not yet well understood. The

parallelism inherent in microprogramming is different from

2

the parallelism involved in a multi-processor computer

architecture, where the scheduling of operations is

performed dynamically on the basis of which operations are

"ready" to be executed at any given time. The scheduling

of micro-operations in a microprogram entails packing

them, perhaps together, into microinstruction words. This

task must be performed statically at design time. It is

based upon two factors: the ordering between the

microinstructions which must be observed in order to

effect the desired behaviour, and the resources employed

by each. The scheduling of micro-operations is

significant with respect to both the size and the speed of

the resultant microprogram. The scheduling algorithm

itself and the influence of the microinstruction format on

the performance characteristics of the microprogram are

both topics of interest, the latter having been studied

little. Related to it is the question of how, in a

dedicated implementation, the choice of microinstruction

format should be influenced by the "style" of the system

being implemented. That is, what is the most appropriate

microinstruction format in which to effect the control of

a given processor architecture?

These particular questions are not the specific subject

of this research, but are touched on to varying degree in

the text that follows.

It is convenient to attach a label to the class of

3

digital systems for which it is desired to generate a

microprogram controlled implementation. The term

processor will be used for this purpose (as it has been

already without comment), where the immediate connotation

with the instruction set processor of a computer is

intentional (this being the subject to which the concept

of microprogramming was originally applied), but extension

of the scope of the term to encompass a more general set

of systems is encouraged.

Microprogramming exists as one of a hierarchy of

digital system implementation vehicles f521, associated

with conceptual levels at which a digital system may be

represented (see figure 1.1.1). Each level is

characterized by the relative complexity of the data

structures represented and the operations performed on

them, and may be thought of as defining a "soft machine"

on which systems described at that level are conceptually

implemented. The data structures which are defined at the

microprogram level are simple registers and data lines

carrying vectors of bits. The operations performed are

transfers of data between such data structures plus simple

combinatorial functions on the data held by them.

Application System

High Level Programming Language

Assembly Language

Computer Instruction Set

Register Transfer Expressions

Microprogramming

Gate Level Logic

Figure 1.1.1

5

The "soft machine" associated with the microprogram

level may be considered a real, "hard" machine in the

sense that it is defined in terms of resources which are

realizable as available physical components - such as

latches, multiplexors, functional units and physical

interconnexions. This may be contrasted with the purely

conceptual soft machine associated with, for example, a

symbolic mathematical notation. If it were desired to

implement a system conceived in such terms, it would be

necessary either to translate the system description into

a representation for which a realization of the associated

soft machine exists (cf. compilation of a high level

language program to machine code), or else to implement in

terms of already existing machines, a soft machine which

interprets systems described In that notation (of. machine

code by microprogram).

Conceptual representation schema for which soft machine

implementations are available are exceptional: normally it

is necessary to translate one's original conception of a

design, possibly through many intermediary stages, to a

representation with this property. The provision of a

mechanism for the automatic translation of a description

in one representation to an equivalent description in

another representation for which a soft machine

implementation is available (cf. compilation of a high

level language) effectively makes available a soft machine

implementation of the original representation.

[1

In a hierarchical structure, at each level of

representation a system may be described in terms of its

behaviour with respect to the resources defined at that

level. For any level, there may exist many possible

implementations of such a behaviour in terms of the

resources defined at the next lowest level in the

hierarchy. The low level framework of resources is said

to define a host machine which, through ordered execution

of the primitive operations defined at that level,

emulates the operations which comprise the behavioural

description at the higher level, the target machine;

thereby implementing the behaviour. For example, a system

expressed in terms of the statements of a high level

language may be implemented by many different sequences of

machine code instructions.

The philosophy of the top-down, design of systems

reflects this hierarchical structure. A system is

initially described at the highest level of representation

appropriate to the complexity of its natural components

and structure. This description is then successively

refined at lower levels until the system is expressed in a

representation for which direct implementation is

possible, le. for which a realization of the soft machine

so defined is available.

Consistent with the loose notion of processor employed

above, the term processor level will be defined to denote

7

simply that level of representation in which it is

appropriate, regardful of its complexity, to express the

behavioural description of a system to be implemented

under control of microprogram. It is to be hoped that

this expression will stimulate intuitive prejudices

sufficient to bear the reader as far as chapter 2 when the

definition will be put on a sounder footing.

No realization of the soft machine associated with the

processor level of representation is currently available

to designers. Consequently, top-down microprogram design

is not a straightforward exercise; and it is this

observation that provides the major motivation behind the

work reported in this thesis.

Microprogram design, as currently practised, is

normally performed in a single step: through the direct

implementation of the structure and conceptual function of

a processor in terms of the primitive operations at the

microprogram level. That is, the designer devises a

microprogram level organization and microinstruction

format which is appropriate to the system in question and

then directly utilizes the low level operations so defined

to effect a behaviour at the microprogram level which will

implement the function conceived for the processor. The

term "function" is used here as a notion of the behaviour

of the system with respect to its external environment,

its inputs and outputs, only. A processor level

behavioural description of the system may be implicitly

assumed in this process, but rarely is it used explicitly

as an integral part of the design practice.

(Care must be taken here to distinguish between the

programming of a single chip, or small chip set, so-called

microprocessor, eg. Intel 8086, Zilog Z 80 etc. whose

instruction set closely resembles that of a typical

minicomputer and for which ample programming aids are

available, and microprogram design as defined above which

implies the dedicated microprogram level implementation of

some particular processor architecture).

As described, microprogram design is an intricate and

error-prone task. It is little wonder that it tends to be

regarded as a specialist skill.

The reasons for this state of affairs are probably

twofold. The application of microprogramming has

traditionally been in the control of the processing units

of computers (central and peripheral), where every effort

has been made to make microprograms execute as fast as

possible while at the same time endeavouring to minimize

the amount of very expensive control memory required to

store the microprogram. Hence low level design was deemed

mandatory. The second reason, of debatable significarce,

arises from the evolutionary path of microprogramming.

Microprograms were introduced as a replacement for random

logic. As a result they tended to be designed in the same

style as random logic; by designers who did not have a

background in programming and had not yet learned the

lessons that software experience had wrought several years

earlier of the advantages of structured programming and

top-down design.

Indeed the status of microprogram design today may be

seen as closely analogous to the status of computer

programming two machine generations ago: when systems were

growing exceedingly more complex and many more people

wanted to use computers; out of which grew the necessity

for high level programming languages.

In the past, the limited scope for microprogram design

has tolerated the difficulty of this task, and the

specialists have been proficient in practising their

skill. However two factors, both born out of the current

trends toward cheaper and more complex hardware

components, mitigate against continued universal

acceptance of this situation.

First, the availability of cheap hardware components,

in particular bit slice microprocessor integerated circuit

chips and fast memory suitable for use as control store,

has at last made the custom built processor controlled by

microprogram a realistic alternative for the

implementation of many digital system designs. Hence many

more people will have the opportunity to design complete

10

systems integrating hardware and software. But these

people lack the specialist skills of the microprogram

designer. If the potential offered by cheap hardware

components is to be realized, then microprogram design

must be made less difficult.

The second motivation for change arises from the fact

that inicroprograms themselves are growing increasingly,

more complex as more system functions are pushed into

microcode. And just as it proved necessary to adopt high

level programming languages to master the complexity of

large scale software systems, so higher level design jaids,

perhaps sacrificing some implementation efficiency, must

be made available for microprogram design. This is

particularly true for the microprogrammed control of very

large scale integrated (VLSI) systems, where the various

criteria of vast complexity, volume production, and design

time minimization all serve to promote the emphasis on

structured microprogram design as a means of generating

correct inicroprograms within reasonable time scales.

These observations constitute the principal motivating

factors behind the research which this thesis documents.

The primary goal is:

"To facilitate the practice of good microprogram design."

With this overall objective in mind (and a hint of the

11

approach adopted to meet it) the following specific goals

may then be identified:

To separate the tasks of design and implementation at

the processor level.

To use to maximum effect the human designer's skill

by performing automatically as much of the

microprogram design process as is possible and

sensible.

To generate efficient microprograms.

(14) To encourage the production of well structured

microprograms.

To facilitate verification of microprograms.

To facilitate alteration of microprograms.

To facilitate alteration of micro-architectures.

To facilitate experimentation with different

micro-architectures.

To produce a useful and usable microprogram design

aid.

12

In the light of the arguments of the preceding section,

microprogram design may now be viewed as comprising three

separate sub-tasks:

The design of a processor level target machine.

The design of a microprogram level host machine.

The implementation of (1) on (2) through emulation.

It is fundamental to the approach described herein

toward providing a practical aid in each of these three

tasks that the skill of the designer should not be

ignored. On the contrary, it should be exploited to

maximum advantage by relieving the designer of the more

tedious aspects of the task in hand, leaving him to

concentrate on the creative aspects.

One such creative task is the design of the processor

behaviour, where that term denotes an ordered set of

operations on the resources defined at the processor level

which implements the conceptual functional specified for

the processor. It might be possible, given a suitable

specification of the function and organization of the

processor, to generate automatically a behaviour to

13

realize that function; but it is not desirable to do so.

Design essentially involves the selection of one from

an infinite number of alternatives. Despite the advances

being made in the field of artificial intelligence, this

is a task that is performed far more successfully by the

practised human than by any computer program, whose forte

is the evaluation of a large but finite number of

alternatives. It would be impossible to incorporate in a

program all the intuition and experience that the human

designer calls upon in order to shape a design for the

desired balance of the implementation parameters of the

system: speed, size, cost of components etc., and all of

the factors which affect them. In addition, the processor

behaviour in practice is developed in conjunction with the

organization of the processor resources necessary to

support that behaviour. It would be unrealistic to

propose a processor organization without giving thought to

the processor behaviour, and it certainly would not be

practical to generate automatically an organization as

well as a behaviour for a processor to implement a

specified function.

It is much more sensible from a practical point of view

to provide the designer with a suitable representation

medium in which to express the design of a behavioural

description of the processor, rather than trying to do the

design for him.

The same view is taken concerning the design of a

1

microprogram level host machine to implement the processor

behaviour. This is another creative task where the skill

and experience of the designer may be applied to

beneficial effect. Again, the microprogram level

organization of the processor greatly influences the

implementation parameters for the system: the amount of

control store required, the speed of execution of the

microprogram, the cost of necessary components such as

multiplexors, and so on. The designer should be given

total control over the shape of the design and, that shape

having been provided, where possible the body should be

filled in automatically. That is, the designer should

specify the organization of the microprogram level host

machine for the processor and then, in the framework of

that host machine organization, the emulation of the

operations which describe the processor behaviour may be

performed automatically..

What must be described about the microprogram level

host machine? The designer's objective is to generate a

microprogram which implements a defined behaviour. It

does so by Issuing control signals to the microprogram

level components of the system organization, causing each

to effect a simple action; and the composition of these

simple actions realizes a more complex action. The

operations which express the behaviour of the processor

may be seen as complex actions. What must be described in

15

order that the realization of these by the control signals

at the microprogram level might be performed

automatically?

The microprogram level view of a processor may be seen

as comprising two parts. There is the detailed

organization of the physical data path and there is the

control organization which governs the actions executed on

the data path. The latter is of interest for microprogram

design. It reflects the micro-architecture of the

processor: the organization of the system as seen by the

microprogrammer. This is what must be defined in order to

write a microprogram. And it is this which must be

defined in order to make possible the realization of the

operations of the processor level description in terms of

the control signals of the microprogram level host

machine.

MDS - Microprogram Design System - is a suite of three

computer programs and two descriptive models which has

been designed to perform the task outlined above. It

facilitates the expression of a behavioural processor

description and the specification of the control

organization of a microprogram level host machine, and it

automatically generates a microprogram to implement that

processor behaviour according to the constraints of the

specified organization.

MDS is introduced here for the purpose both of setting

16

the scene for the succeeding three chapters which describe

in detail the three major components of the design

process, and of defining a context for the review of the

efforts of others in related fields of endeavour, which is

given in the following section.

The relationship between the components of MDS is

illustrated in figure 1.2.1.

17

Sequential
	

Specification of
Block-Structured
	

Microinstruction
Source Microprogram
	

Format

FORMAT

Maximally Parallel
Representation of
Source Microprogram

r Data Structure
Representing
Microinstruction

1-

I Microprogram in
L Specified Format

Figure 1.2.1

18

In MDS, the processor behaviour (source microprogram)

is represented in a block structured sequential

description expressed in Microprogram Design Language -

MDL. This is translated by the ANALYSE program into a

canonical microprogram: a partial ordering on the

statements of the MDL description which defines a

maximally parallel representation of the processor

behaviour.

The control organization of the microprogram level host

machine on which the processor behaviour is to be

implemented is represented in terms of the

Microinstruction Format Model (MFM). This model defines

the action of the primitive operations at the microprogram

level, the micro-orders, together with their

inter-relationship with respect to the field structure of

the microinstruction words from which they are activated.

Descriptions expressed in the notation associated with MFM

are processed by the FORMAT program and transformed into

data structures suitable for subsequent processing.

The canonical microprogram output by ANALYSE and the

data structure representing the microprogram level control

organization which is output by FORMAT are used as inputs

to the MICROMAP program. MICROMAP generates a

microprogram in the specified format to implement the

described processor behaviour. There are two parts to

this task: for each processor level operation, it must

generate a set of micro-orders supported by the

19

microprogram level host machine which will effect the

action described by that operation. Second, it must

exploit any capability for parallelism in the

microinstruction format by packing operations together

into the same microinstruction word. This must be

performed in such a fashion as to minimize the total

number of microinstruction words in the microprogram while

still preserving the specified behaviour.

MICROMAP's function is rendered practicable by two

factors. First, the microprogram level host machine is

sympathetic to the processor behaviour description. That

is, it is designed expressly t-o implement that processor

behaviour. It contains as the framework of its structure

the processor level components and their logical

interconnexions which are defined by the processor

description. So the micro-orders at the microprogram

level which are relevant to the resources in question are

described in terms of their effect on precisely the same

processor level resources as are referred to in the

behavioural description of the processor.

The second factor is the level of the operations used

to describe the processor behaviour. This is such that

all micro-orders required to emulate each processor level

operation may be activated in parallel, ie. from the same

microinstruction word. Consequently, it is possible for

the mapping function from the processor description to an

equivalent microprogram to be maintained at manageable

20

complexity.

The three components of the microprogram design process

will be discussed in detail in chapters 2, 3 and 14

respectively.

21

Relatively little has been published on the topic of

microprogram design. This reflects the fact that for many

Years the subject has received scant innovative attention.

Hence its current status.

Recently, however, the goal of machine independent

microprogram design has aroused some general interest. De

Witt's work [21] is closest to MDS in conception. He has

designed EMPL, a high level microprogramming language with

a machine independent kernel and the capability for

extension to describe machine dependent features. A

microprogram description expressed in EMPL is translated,

by a compiler specific to the host machine in question, to

a machine dependent intermediate language description.

This is then mapped by a machine independent compiler into

microinstructions as described by a "Control Word Model".

The Control Word Model is more limited in descriptive

power than the Microinstruction Format Model of MDS.

Since the Control Word Model does not directly model the

field structure of the microinstruction format, De Witt's

system is unable to generate actual microcode for the host

machine. It is capable only of producing a listing of the

microprogram In terms of the occupancy of the

microinstructions by intermediate language statements. No

details of an implementation of the work have been

presented.

22

Lewis, Ma and Malik 135, 381 are also endeavouring to

generate microprogrammed emulators in a host machine

independent fashion. This project is ambitious in its

attempt to synthesize a microprogrammed emulation of a

target machine, described in a machine independent

language [39], on a host machine whose description is

represented in a "Macro Expansion Table" and "Field

Description Model". Their approach to microcode

generation is similar to that of Baba [7] and Hodges and

Edwards [30] in essentially "hand compiling" each

intermediate language operation into the appropriate

micro-orders of the host machine as a prelude to

generating microprograms for execution on the host

machine.

The compaction of microprograms through the automatic

packing of micro-operations Into microinstructions of a

defined format is a subject that has commanded substantial

attention [2, 6, 17, 19, 20, 40, 53, 53, 55, 631. 	A

description of the four major algorithms that have been

proposed to perform this task is included In chapter 4 of

this thesis when MDS's treatment of the topic is

described. Mallett [0] has Implemented versions of each

of the major algorithms and has pronounced clearly In

favour of a version of Dasgupta and Tartar's method [20),

although it is not clear from the statistics which he

presents why this method should be preferred to a version

23

of Yau, Schowe and Tsuchiya's method [63]. All the

methods cited above partition the uncompacted microprogram

into strpjht line segments and with two exceptions

confine themselves to compaction within the straight line

segments. The two exceptions are Dasgupta [17] and Tokoro

et al [531, both of whom employ somewhat ad hoc techniques

to optimize over the boundaries of straight line segments.

Dasgupta searches for symmetric pairs of straight line

segments, that is two segments the execution of one of

which is a necessary and sufficient condition for the

execution of the other, and looks for possibilities of

code movement between them. Because of the computational

complexity of the search for these symmetric pairs he is

confined to detecting those which are separated by no more

than one intervening straight line segment. Tokoro et al

extend this notion to various identifiable specific

conditions where compaction may be effected across the

boundaries of straight line segments. It is not clear

from the literature whether the techniques reported in

[53) have been implemented, or are practical.

None of these methods take a global view of compaction

as is performed by MDS through exploitation of the clean

block structure of the MDL language, although the same

principles have been used in the design of optimizing

compilers for high level languages [62].

Very many proposals have been presented for high level

24

microprogramming languages and for hardware description

languages. In [41], Mallett and Lewis survey some of the

issues involved in implementing a high level language for

microprogramming. Lloyd and Van Dam have also produced a

survey paper on the topic [36]. Dasgupta [18] argues

convincingly that high level microprogramming languages

should be capable of expressing low level, machine

dependent features and has proposed a language schema with

this property. The principle is not shared by some other

microprogramming languages that have been proposed, eg.

SIMPL [17] and MPL [24]. Hardware description languages

have been used extensively to describe machine

architectures at various levels and Chu, for one, has

argued their use for microprogram specification [15].

Barbacci summarizes the main classes of such languages in

[8].

ISPS [9] is probably the best known hardware

description language, largely through its use in the

widely reported Computer Family Architecture project [13]

in which it was used to describe several different machine

architectures on to which a defined set of test programs

were mapped (by hand) for simulated execution. The

purpose of this was to compare the suitability of the

various machine architectures for the particular task in

question, a use to which MDS might well be put at the,

microprogram level.

ISPS is also employed in another project of some

25

related significance to MDS. This is the RT-CAD project

at Carnegie-Mellon University [51]. In [42], Nagle

describes an attempt to generate automatically a

microprogram level implementation of a system described at

the register transfer level. His approach is to

synthesize automatically a minimal horizontal

microinstruction format which will support the necessary

control signals required to implement the desired

behaviour on the data path whose description is provided.

This approach is in direct contrast to the philosophy

behind MDS. MDS attempts to assist the designer to the

maximum possible extent, but not to eliminate him. To the

author's knowledge, no implementation of the ideas

suggested In [42] has been produced.

Design, as such, is all about the effective balancing

of conflicting influences to achieve a desired end 	-

product. Very little work has been carried out on the

evaluation of the parameters of microprogram design.

O'Loughlin [145] offers an interesting pragmatic account of

the design trade-offs involved in microprogramming several

of the PD? 11 family of computers. Vanneschi et al have

produced a series of papers [28, 29, 58, 591 in which they

evaluate, on the basis of a model of different types of

microprogram implementation, the trade-offs between

microprogram execution speed and memory size. They also

examine the relationship between different computer

26

architectures and the most appropriate type of

microprogram implementation for controlling them. In

[11], Barr et al report on the utilization of the various

fields of a wide, horizontally structured microinstruction

format; but little else has been published on this topic.

It is to be hoped that MDS will be able to offer a

significant contribution here since it provides the

facility for easy experimentation with different

microprogram level implementations of a processor design.

27

011717

 chapter is concerned with the task of describing a

digital system at the processor level with a view to

generating automatically an implementation of the system

at the microprogram level.

This section seeks to reason the intuitively obvious:

to establish an identity for the "processor level" of

description, which heretofore has been defined simply as

that level of representation in which it is appropriate to

express the design of a digital system to be implemented

at the microprogram level. (The microprogram level is

readily identifiable because It corresponds to a physical

implementation). MDS is an attempt to facilitate top-down

microprogram design; and it was observed in section 1.1

that the process of top-down design entails the selection

of one particular low level implementation of a

description expressed at a higher level out of many

possible such implementations. It therefore seems

reasonable to propose that the level of representation in

which it is most appropriate to express the description of

a processor to be implemented at the microprogram level

should be that level at which all of the essential

28

features of the processor organization may be defined, but

at which a single processor description may be implemented

by many possible microprogram level host machines.

Under the above definition, the following essential

features of a processor organization may be identified.

They fall into three categories:

The directly addressable memory components of the

processor: flip-flops, registers and main memory

elements. At this level, these entities all have a

defined use and, in the case of registers and

flip-flops, a unique name. (The allocation of

registers to names is assumed to have performed

prior to description of the processor).

The functional capability of the processor, le. the

arithmetic and logical operations supported by this

processor architecture.

The data paths interconnecting memory elements and

functional units necessary to perform the desired

transfers and transformations of data. Nothing is

implied about the physical realization of these

resources in this specification. For example,

specifying that there must exist a data path

between two registers does not differentiate

between a dedicated line, a shared bus, or a

devious route through many functional units.

29

The fundamental unit of time at this level of the

systems hierarchy is the processor clock cycle. Each

memory resource may be loaded once only during each clock

cycle (although some may not be loaded on every clock

cycle). The term processor context will be employed to

denote the contents of all of the memory resources of the

processor at the end of a clock cycle. Then the processor

behaviour will be totally defined by an ordered set of

changes of processor context: describing how the contents

of each memory resource should be altered during each

clock cycle. This implies that the behavioural

description of a processor should be represented as a

collection of register transfer expressions to be executed

in a defined order (with some necessary mechanism for

conditional execution on the basis of tested data).

This may be contrasted with possible alternative levels

of representation for describing systems to be implemented

through microprogram control: the higher level

conventional computer machine instruction or assembly

language statement and the lower level micro-order. The

former may specify an operation the execution of which is

performed over several processor cycles, while the latter

controls the flow of data between unstable resources over

a single section of the processor data path. It would be

inappropriate for the purpose of microprogram design to

attempt to describe a processor behaviour in either of

these forms; the first because it is too gross to define

sufficiently an effect on the processor resources and the

second because it is too detailed and utilizes resources

which do not properly belong to the processor level, eg.

multiplexors, decoders and sequencing controllers.

That this one-to-one relationship between the primitive

statements of the processor description and •processor

clock cycles is fundamental to the capability for

effective generation of a microprogram implementation of

the defined processor behaviour will be demonstrated

throughout subsequent sections.

• This chapter proceeds with an examination of the

necessary properties for a language for processor

description.

31

Having determined that the register transfer level is

appropriate for the statements expressing a behavioural

processor description, what other properties should a

processor description language exhibit?

Intelligibility is a requisite common to all forms of

representation. In this context it implies simple syntax,

familiar semantics, mnemonic names, clear sequencing rules

and similar such issues which are well known and have been

expounded often in relation to high level programming

languages.

Of more particular significance with respect to the

intended use of the language are the issues of

parallelism, efficiency of microcode generated, and

suitability of the language for design and specification.

Each of these considerations will be examined in turn.

Parallelism. An inherent property of the microprogram

level view of digital systems is that operations are

executed concurrently. It is therefore to be expected

that languages for describing systems to be implemented at

this level might be influenced by this feature.

The definition of processor behaviour exacted in the

preceding section was a very rigid one. It required the

explicit specification of the clock cycle during which

32

each register transfer operation should be activated.

This may be shown to be an unrealistic imposition for

three reasons.

In the first case, the relative timing of operations is

a relationship which is not properly defined at the

processor level. It is dependent partially on the

availability of sub-processor level resources, such as the

physical realization of logical data paths. For example,

two logically distinct data paths may each be implemented

through a single shared bus, thereby precluding the

concurrent execution of any pair of operations which

utilize these distinct logical resources.

The second reason is that the ruling is too

restrictive, in that it severely limits the scope for

performing optimization in the generation of

microinstructions. By specifying exactly what operations -

each microinstruction should contain, it leaves no room

for the possibility of reducing the size of the

microprogram. This might otherwise be achieved through

packing the operations into microinstruction words in a

different order from that specified. It also may preclude

the selection of a microinstruction format capable of

realizing the same overall behaviour more efficiently in

terms of microprogram space, but not capable of supporting

the specific concurrency of operations demanded.

Third, the professed goal of this project was to ease

the task of microprogram design. If efficient

33

microprograms can be generated without the designer having

to specify the relative synchronization of all the

operations in the processor level description, then we

shall have progressed a significant way toward that goal.

The top-down approach to design generally entails

selecting, from many, one particular low level

implementation of a high level behavioural description.

In prac.tice, where this process is wholly or partially

automated, it becomes necessary that the designer be able

to -intervene and apply some direction to the process of

generating an implementation. Such intervention may be

motivated by interest either in the efficiency or the

correctness on the implementation being generated. It

would be foolish to expect to anticipate all of the

- designer's requirements. Therefore a language for

processor level description of digital systems in this

context must encapsulate the facility for specifying

critical parameters of the microprogram implementation.

In particular, it must be capable of expressing explicit

synchronization between the register transfer operations

of the processor description - just the requirement argued

above that it should not enforce.

Timing relationships between two operations, A and B,

which a language should support would be:

34

A and B should be executed concurrently. 	(A=B)

B should not be executed until A has completed. (A>B)

B should not be executed before A. 	 (A>=B)

Efficiency j microcode generated. Microprograms

provide the low level control of processors, which often

operate as the critical component of other machines. This

implies that microprograms should execute the function

which they are designed to perform as efficiently as

possible. A language for describing systems to be

implemented at the microprogram level must therefore

attempt to facilitate the generation of efficient

microcode.

In general terms, the process of the design and

implementation of a digital system comprises three phases:

the conception of the design, the modelling of the design

in the representation of the system description language

and the translation of that model into an implementation

of the system. Where the implementation is carried out on

a general purpose host machine designed to perform many

functions, such as the instruction set level of a

computer, compromises must be made. In order to generate

efficient code in the implementation, the system

description language (eg. high level programming language)

must constrain the model of the system to being

represented in a limited set of operations: those which

may be reasonably efficiently translated into the host

35

machine instruction set. (There is a high degree of

commonality in the operations performed at the instruction

set level by a wide range of computers).

Microprogram design, as defined in section 1.1, is

different however. The host machine is not general

purpose. It is designed specifically to implement the

digital system in question; and so the system description

language in this case is not obliged to constrain the

behavioural description of the processor to a limited set

of operations reflecting the host machine instruction set.

The system description language has no "knowledge" of the

host machine on which to base such a constraint, since the

host machine is different for each description. The best

strategy that can be adopted in order to ensure an

efficient implementation is for the system description

language to provide a representation in which the

conception of the system may be modelled as closely as

possible. In doing so it will also be closest to the host

machine.

That is, the system description language should be

capable of expressing directly any operation which a

processor architecture might support directly. Doing

otherwise would be the cause of inefficiences in

implementation.

Just as it should not exclude any idiosyncratic

processor operations, for the same reason the system

description language should not exclude any sequencing

36

mechanisms which might be implemented by the host machine.

In particular, it should be capable of supporting

multi-way conditional branching.

These are just two examples of machine dependent

constructs which a processor description language in this

context should support. Ideally, it should be capable of

controlling exactly what microcode will be generated.

The arguments advanced in this section are perhaps more

subjective, and perhaps therefore less critical than in

the preceding sections. These are the properties which

give a language its "flavour" and, in practice, determine

the extent to whiôh it gets used. The two headings are

inter-related, but at the same time may generate

conflicting requirements, the balancing of which depends

on the projected applications for the language.

Suitabilty as g design language concerns what features

make a language attractive to the designer for expressing

the conception of a design, as opposed to rigorously

specifying all of its details. What is sought is a

representation in which the designer finds it easy to

frame his thoughts.

The issues overlap to a degree with those associated

37

with language intelligibility, discussed above. It is

probably true that a procedural language is a more

conducive medium to most designers for expressing a design

than a non-procedural language - particularly if the

designer has a programming background. The provision of

modular control structures in the language: "While" loops

and conditional blocks, is a further merit of the

procedural approach. For a microprogram controlled

system, a description expressed in a procedural language

reflects more faithfully the processor behaviour as

implemented, a microprogram itself being procedural in

conception and execution.

The language should be concise without being

restrictive. It should allow the designer to express his

design in the terms in which it has been conceived, rather

than constraining the representation to a limited set of

constructions built in to the language. This aspect ties

in with the concerns for code generating efficiency of the

language, discussed above. It also argues for simplicity

of syntax and implies a non-declarative language, although

this property might be relinquished for the sake of

precision of specification.

Suitability .Lj System Specification. Many hardware

description languages are designed primarily for the

purpose of providing a vehicle for formal specification of

hardware systems; and, while this function is not the

38

principal requirement of a language for microprogram

design, it still is a very desirable property of any

language. Obviously, the language adopted, whatever its

features, must be capable of expressing all of the

information about a system which is necessary in order to

generate an implementation. To that extent, it will

provide a formal definition of at least part of the

system. But it is intended in this section to distinguish

those features of a language which conduce to the function

of formal system specification.

The single stipulation which encompasses all such

features is that all information apposite to the design be

stated explicitly within the description in a concise

fashion; and the major implication of this policy is that

it argues for a declarative style of language. Each

processor resource should be declared before use and,

ideally, fully qualified - the size of registers, side

effects of functions, width of data paths etc. all should

be explicitly stated. As noted above, this runs contrary

to the "need to know" principle underlying the use of a

language for expressing a design, where much information

remains unstated or implicit within the description.

The balance between the cases advanced for design and

specification considerations is a matter for judgement

based on the relative importance of each in prospective

language applications.

39

To summarize the requirements expressed above, we are

looking for a procedural, register transfer language with

simple syntax and structured sequencing constructs which

supports machine dependent operations and allows explicit

synchronization between statements, but does not enforce

the same. In regard to the emphasis on the language as a

medium for expressing designs, we should prefer that it

not be necessary to pre-declare all entities occurring in

a description.

It will come as no surprise to discover that these

stipulations rule out all so-called hardware description

languages and machine independent microprogramming

languages known to the author (see [8]and [41) for an

overview of these); but, before going ahead to describe

the language implemented, let us review the implications

of this decision.

Assuming a roughly equivalent amount of effort to be

required in each case there are, generally speaking, two

principal reasons why one might adopt an existing language

with all its concomitant restrictions in preferance to

using a language tailored to one's own purpose. These

are:

(2) Familiarity 	Notation

Portability is normally a strong motivation for

40

expressing a system description in a standard notation.

The reason for this is that often there are available a

variety of implementations of the "soft machine" defined

by that standard notation. Target machines described in

the notation may be implemented immediately on a variety

of existing host machines.

But this is not relevant to microprogram design.

Microprogram design, as defined in section 1.1, is

concerned with the design of a host machine, dedicated to

implementing the behaviour defined in the processor

description. The processor itself is a host machine which

may be used to implement a variety of higher level digital

system functions. Portability of descriptions is an issue

to be taken into consideration when one is designing

target machines. It is not meaningful when it is a host

machine which is being designed.

Familiarity is a worthy reason for adopting a standard

notation: familiarity both for the designer in writing the

description and for the reader in understanding it.

However the strength of this argument is weakened in the

context under consideration because there exists no

standard notations for processor level description of

digital systems. A plethora of hardware description

languages have been expounded, but very few have ever been

used outwith the application for which they were

originally generated.

41

The most serious contender for being accepted as a

standard "system description language", by virtue of the

fact that it has been used quite substantially for some

significant, and well-reported research ([10, 51]), is

ISPS [91; and serious consideration has been given to the

possibility of using this language in MDS. If the rather

verbose appearance of descriptions expressed in ISPS was

the only adverse circumstance associated with adopting the

language, then this probably would not have been

sufficient to compensate for the advantages to be gained

from its reasonable familiarity. But it is the crucial

aspects of specification of timing of operations and

capability for generating efficient code which cause ISPS

to be deemed unacceptable. ISPS insists on explicit

definition of the relative synchronization of all

operations contained in a description. Also, it supports

no mechanism for a simple branch in control sequence on

the basis of a tested condition (ie. a GOTO construct). A

simple conditional branch is necessary in some situations

in order to generate the most efficient posssible code -

see figure 2.2.1. It is therefore an essential feature of

a language for microprogram design under the requirement

stated above that the language should be capable of

expressing all sequencing constructs performed by a

processor.

42

(Xi)

C i
\1/

<C2)

L2: (X5

(X3)

(X6)

13: (X7)

--- (Xi)---

if Ci goto Li

---(X2)---

if C2 goto L2

---(X3)---, goto L3

Li: --- (X's.) ---

---(X5)---

---(X6)---

---(X7)---

Figure 2.2.1

Thus the arguments of portability and familiarity are

not sufficiently powerful to prevent the decision that the

most suitable component for MDS would be a language which

is tailored to the purpose of describing systems at the

processor level for automatic implementation at the

microprogram level. The language designed for this

purpose is described in the following section.

43

This section describes the essential features of MDL -

Microprogram Design Language. A reference guide for the

language is given in Appendix 2. A simple example

illustrating the use of MDL is given in figure 2.3.1 at

the end of this section.

A processor description is expressed in MDL as a

sequential list of register transfer type operations,

hereafter referred to as micro-operations (since each will

be realized by part of a single microinstruction), each

optionally preceded by a label.

There is no declaration part to a description. Each

new name encountered as the description is processed Is

assumed to be a processor level operand name associated

with a particular processor memory resource - data

register, control register, or main memory word. Comments

may be inserted between micro-operations at any point in

the description.

A micro-operation may be of one of three types:

control, register transfer, or miscellaneous.

A register transfer type micro-operation is expressed

in the form DEST <- EXPRESSION, where DEST is the name of

a single operand and EXPRESSSION is a list of operands

separated by symbols denoting operators,

44

eg. ACC <- ACC+COUNT.

"<-" is the only operator in the language of any semantic

consequence. It is used to denote the transfer of the

data value generated by the expression on the right of the

arrow to the operand on the left and its significance lies

in the fact that it serves to distinguish when an operand

is used as a source of data and when it is used as a

destination. The necessity for this differentiation is

explained in the following section. The operators used to

separate operands in the •source expression have no

inherent meaning. The meaning of the operations performed

by the processor is global to the context of both

descriptions: of its behaviour and of the sympathetic

specification of a microprogram level implementation of

that behaviour - and is therefore irrelevant.

This applies also to the miscellaneous type

micro-operations. Any statement which is not recognized

as a control type micro-operation and does not contain an

arrow ("<-") is interpreted as a miscellaneous type

micro-operation (not involving the transfer of data into

processor registers), which is accepted as a valid

statement in the language on the assumption that it

corresponds to some particular processor function, eg. in

communication with its external environment.

Register transfer and miscellaneous type

micro-operations are grouped together under the heading of

45

executive micro-operations.

Control type micro-operations serve to regulate the

order of execution of the micro-operations constituting

the strictly sequential procedural description of the

processor. Control constructs provided in the language

are for simple conditional branching, conditional blocks,

looping on a condition and waiting for a condition.

Simple branching is effected by micro-operations of the

form

"If" COND "Goto" LABEL

where COND may be any list of operands separated by

symbols denoting operators or relationships - again no

semantics is assumed; it is expected that the processor

implementation will be capable of generating and testing

whatever function that expression might denote. LABEL is

the name of a label associated with some other statement

in the description (preceding the statement and separated

from it by "::") to which control should be transferred if

the evaluated condition is true.

Multi-way branching (le. a "Case" statement) may be

effected via the same syntax by specifying a COND which

evaluates to an n-tuple and a list of 2n labels as

possible successor statements.

Conditional block constructs are expressed in

micro-operations of the form

"If" COND "Then"

46

followed by a block of statements to be executed only if

COND is evaluated to be true. Following this block, and

separated from it by the statement "Else", may be a block

of statements to be executed only if COND is false.

"Finish" terminates the whole construct.

Conditional loops are bounded by "Loop" and "Repeat"

micro-operations, either (or both) of which may be

qualified by "While" COND. The statements inside the loop

block are executed until COND is evaluated to be false.

Conditional loops may be jumped out of, to the

statement succeeding the relevant "Repeat"

micro-operation, by an "Exit" directive, optionally

accompanied by "If" COND. "Exit" may be suffixed by "_"N,

where N is an integer denoting the number of nested loops

to be jumped out of.

A micro-operation of the form "Wait For" COND is

repeated indefinitely until the expression denoted by COND

becomes true.

Subroutining capability is supported in MDL by the

"Call" LABEL and "Return" micro-operations, each

optionally followed by "If" COND. No assumptions about

details of implementation are inherent in the support of

this capability in the language. The directives are

provided to represent a function performed by many

microprogram controllers and, if they are used within . a

particular description, it is in the assumption that the

chosen implementation will support them - this is checked

47

at the time of generating the implementation.

The control directives associated with conditional

blocks and loops are translated by the ANALYSE program

into simple branch micro-operations to the relevant

successor statements, as will be described fully in the

next section.

It was noted in the preceding section that a language

for describing the behaviour of a processor should support

the explicit specification of three different

synchronization relationships between micro-operations.

To recap, these were:

Equivalence: The two must be activated concurrently.

'Strong Dependency: One must not be activated until

the other has terminated.

Weak Denendency: One must not be activated before

the other is.

MDL syntax supports the explicit synchronization of

these three relationships in two ways.

If A and B are adjacent micro-operations in the

sequential description of a processor, A preceding B, then

a comma, a semi-colon, and a comma and a semi-colon (in

either order) terminating A respectively represent these

three relationships.

48

Alternatively, if A and B are not adjacent, B may be

terminated by a semi-colon followed by a list of integers

enclosed within square brackets. These integers denote

the "distance", in statements, from B to the preceding

micro-operations to which B is related by (2) or (3)

above. The list is in the form of a group of integers

separated by commas for all those statements to which B is

related by strong dependency, followed by a bar character

(' '), followed by another group of integers for the

micro-operations to which B is related by weak dependency.

Thus a statement of the form:

(B) ---- 	;[1, 3 1 21

means that micro-operation B is strongly dependent on the

immediately preceding micro-operation in the description

as well as the one two before that, and it is weakly

dependent on the micro-operation two before itself in the

description.

A similar syntactic construct, introduced here for

completeness, but not explained properly until section

4.1, is used for specifying resources affected by the

action of a micro-operation but not referenced explicitly

in the micro-operation itself. In this case it is a list

of operand names which is included in the square brackets

following A and the bar separates those operands which are

used as destinations from those used as sources.

49

To summarize the main features of MDL; it is an

extremely simple language tailored specifically for

microprogram design. It has few built in features, but

few restrictions as to what may be expressed in it.

Statements are expressed sequentially and the behaviour so

defined is never violated, but the order of the statements

may well be varied in execution. Its modular sequencing

constructs facilitate structured design, while the low

level control devices it provides enable the designer to

exploit machine dependent features whenever required.

Figure 2.3.1 presents a simple MDL microprogram

description illustrating some of the features of the

language. A more comprehensive example is given in

Appendix 1(a).

EVCOUNT<-O

COUNT <-SWITCHES

loop

wait for DATA READY ;LBUFFREGJ

ACC<-BUFFREG&DATAMASK

if ACC = 0 then

COUNT <-COUNT+1,

SAVEOVF

exit if OVF

else

MAR<-ACC

READMEM ;LMDR 1 MAR]

wait for ~MEMBUSY ;LMDR]

ACC<-MDR

call ANAL ;ENEWVAL,WORKREG I ACC]

finish

while NEWVAL > 0 loop

NEWVAL<-NEWVAL-1

wait for IOBUSY;

SEND PULSE

repeat

EVCOUNT<-EVCOUNT+1

repeat

OUTDATA<-EVCOUNT

Fiaure 2.3.1

51

of the Source Microgrggram

It was stipulated in section 2.2 that a language for

describing processors should not enforce the rigid

synchronization of micro-operations. This section is

concerned with how to determine automatically which

micro-operations may safely be activated in parallel.

If the micro-operations constituting a processor

description in MDL are executed in the sequential order in

which they appear in the description, then they may be

thought of as defining a function which acts on the

processor resources and system inputs to alter the

contents of these resources and produce an output. This

may be expressed more formally: in section 2.1 the term

orocessor context was introduced to denote the contents of

all of the memory resources of a processor at the end of a

clock cycle. Then, with the implicit ordering

relationship between the micro-operations defined by the

textual order of the statements, the MDL description of a

processor defines a function

F se q(PrOceSSOr Context x Input Sequence) ->

(Processor Context x Output Sequence).

We seek to discover the conditions determining the set

P0 of all partial orderings between micro-operations

(where the ordering relationship corresponds to order of

52

execution) which defines F, the set of determinate

functions from (Processor Context 	Input Sequence) ->

(Processor Context 	Output Sequence) such that for each

F1 in F, for any initial processor context PC and any

input sequence I, F 1 (PC,I) = F 3q (PCI). 	That is,

intuitively, F 1 has the same overall behaviour
. as F s e q .

In particular, we seek to discover POmin in P0 such that

for any micro-operation M in the description, the number

of ancestors of M under POminis no greater than the

number of ancestors of M under any other PO j in P0. That

is, intuitively, we are looking for the maximally narallel

representation of the processor description which

preserves the determinacy and behaviour of the initial

specification. The term canonical microprogram will be

used to denote the microprogram under this ordering

relationship.

Two type of dependency relationships between

micro-operations may be distinguished, namely control

dependency and data dependency. These will be dealt with

in turn, deferring consideration of conditional blocks and

loops to be returned to later.

Control dependency is concerned with ensuring that the

same (and no other) history of control flow which results

in the execution of a micro-operation in the MDL source

microprogram will also result in the execution of that

53

micro-operation in any other ordering of the

micro-operations with an equivalent behaviour. Enforcing

this condition requires that no branch type

micro-operation may be allowed to precede any non-branch

(executive) type operation when the latter precedes the

former in the MDL description, and that no operation which

succeeds either a branch or a merge (label) in the MDL

description may be allowed to precede the branch or merge

in any other ordering. The two together imply that, for

each executive micro-operation, the relative position of

that operation to the most immediately preceding and most

immediately succeeding branch or label in the MDL

description must be preserved in any other equivalent

ordering.

This Is a sufficient condition for preserving the

defined relationship between a micro-operation and the

pattern of control flow which will result in its

execution. In individual examples, by tracing the control

flow defined by the particular values for the labels and

branches, it may be found that the condition is not always

necessary. For example, if both legs of a branch

subsequently merge, it may be possible that a

micro-operation succeeding the merge in the source

microprogram may be executed prior to the branch - the

pattern of control flow associated with its execution is

the same, but the history is different. (The pattern of

control flow is bounded only by termination of the

54

microprogram. At any given point, it encompasses "future"

control flow as well as history). However, as

demonstrated by Dasgupta [17], the cost of detecting and

exploiting such circumstances is not warranted in a

practical system, particularly when modular control

constructs are available in the source microprogram

language, as will be considered later. Hence (explicit)

labels and branches will always be considered as absolute

barriers to code movement in the following.

These relationships serve to partition the sequential

processor description into disjoint straight line segments

of micro-operations, with the members of each straight

line segment being all those micro-operations whose

execution is dependent on the same control flow history.

The limit of each segment is defined by there being a

label on the following statement or a branch operation as

the final statement. If the final micro-operation of any

straight line segment is a branch operation, then it must

be marked as dependent on all the executive

micro-operations in the segment in order to preserve their

relative orderings as required above. Control dependency

implies that no statement in one straight line segment may

precede any statement in a preceding straight line

segment. This in turn implies that each straight line

segment must remain totally indivisible and the relative

ordering of the straight line segthents defined by the MDL

55

description must be preserved in any equivalent ordering.

A skeletal example of a simple sequential description

divided into straight line segments is illustrated in

figure 2.4.1 below.

Executive

Executive

Branch

Executive

LABEL:: Executive

Executive

LABEL:: Branch

Figure 2.4L1

When considering data dependency, attention need only

be paid to cases of data dependency within each straight

line segment, since the relative ordering of operations in

different segments is totally defined by control

dependency as explained above.

56

Two micro-operations, A and B, are said to be mutually

independent if, for any initial processor context, the

resultant processor context after executing A and B is

always the same, irrespective of the order in which they

are executed.

In determining a partial ordering among the

micro-operations of a description there is no reason to be

concerned with micro-operations which are mutually

independent, since no ordering need be imposed between

them. In order to guarantee to generate the same final

processor context as would result from sequential

execution of the MDL description, it is necessary to

preserve the relative ordering defined by the MDL

description of those micro-operations which are not

mutually independent, ie. of those operations which

generate a different processor context depending on the

order in which they are executed. (Concurrent execution is

equivalent to arbitrarily selecting an ordering and does

not guarantee determinacy when the micro-operations are

not mutually independent).

Such a situation may arise through two possible

circumstances, first noted formally by Bernstein [12):

either when one operation writes to an operan.d which the

other uses as a source of data, or when both attempt to

write to the same operand.

If micro-operation B follows micro-operation A in a

straight line segment and either of the circumstances

57

identified above holds, then B is said to be data

Note that two micro-operations which both use the same

operand as a source of data do not necessarily violate the

conditions for mutual independence. Note also that, by

definition, the destination operand is always considered

to be defined - the action of one operation may not alter

which operands are referenced by the other. For example,

in the expression "Mem(MAR) <- MDR", the destination

operand is defined to be "Mem". "MAR" is designated a

source operand.

These rules for control dependency and data dependency

are the relationships which define POmin, a partial

ordering on the micro-operations of the MDL description

which, it is claimed, produces an equivalent behaviour to

that associated with the sequential ordering defined by

the MDL description. This will be shown by informal proof

of the following theorem.

Theorem 2.4.1 F m i n , the function defined by the partial

ordering POmin is eqivalent to Fseql the function defined

by the sequential ordering of micro-operations in the MDL

description.

Proof (Informal). Consider two micro-operations A and B,

B following A, such that under Fseq B will always be

58

U

executed whenever A is, there being no branch in control

flow between them and B will never be executed without A

having been, there being no merge of control flow between

them. Then the rules for composition of straight line

segments ensure that A and B will always be included in

the same straight line segment. Further, the stipulation

that the relative ordering of straight line segments as

defined by Fseq is preserved under Fmjn and the

association of the labels of the MDL description with

entry points of straig-ht line - segments ensures that flow

of control between straight line segmentsis the same in

Fmi n as if Fs eq .

The proof of the theorem then follows from the proof of

the following lemma:

Lemma 2.4.1 The function defined by PO m i n mon each straight

line segment is equivalent to the function defined by the

sequential execution of that straight line segment.

Proof (Informal). The control dependency of branch type

micro-operations on all of the executive micro-operations

in the same straight line segment ensures that under Fm j n

all micro-operations in a straight line segment are, in

fact, executed. We must show that, for any initial

processor context, any processor context resulting from

execution of the micro-operations in the partially defined

order associated with POmin is the same as that resulting

59

from sequential execution of the micro-operations. Let us

recall the three situations in which micro-operation B

will be data dependent on micro-operation A under POmin

(where A and B are in the same straight line segment, A

preceding B in the sequential description):

A writes to an operand which B also writes to.

A writes to an operand which B reads from.

A reads from an operand which B writes to.

°min will preserve the ordering defined by the

sequential MDS description of any pair of micro-operations

so related. It will impose no relative ordering on any

pair of micro-operations for which none of these

relationships hold. The proof of the lemma will follow

from demonstration that processor context cannot be

affected by the order of execution of any pair of

micro-operations not related by data dependency.

Consider two such micro-operations, A and B, and let

them be executed in both possible orders. The only

operands which can have their values changed as a result

of the execution of A and B, and therefore the only ones

which can show a different value under the different

orderings, are the two written to by A and B. They must

be distinct since otherwise DD(1) would hold. Without

loss of generality, consider one of these operands, say

the one written to by A. The only way that it could show

a different final value under the two orderings of

execution of A and B would be if the data loaded into it

by A was different in each case, ie. if that data had been

changed from its original value. But that would only be

possible if it had been written to by B, which is not

possible if DD(3) does not hold. (At least consistent

behaviour of expressions such as "A <- A + Z" in which the

same operand is used as source and destination is

assumed)

Therefore the two operands written to by A and B must

be the same after each order of execution and, since these

are the only two operands whose values could possibly

change during the execution of the two micro-operations,

the resulting processor context must be the same in both

cases.

Which proves the lemma.

Which proves the theorem.

Lemma 2.14.1 is a particular example of a general

theorem concerning computation schema which states that:

"An Elementary Schema that is Conflict Free is also

Determinate."

This is formally proved in [27].

Figure 2.14.2 illustrates the necessary data dependency

relationships inherent in a straight line segment of

register transfer micro-operations.

61

(1) 	 (14)
(1) LABEL: 	SAVEACC 	<- ACC

(2) ACC 	<- ACC&MASK1 (2)

(3) ACC 	<- ACC+R2
(3)

(14) R3 	<- R2&MASK5<<15

 R2<- R3&MASK2 / 	()
 ACC 	<- SAVEACC I

(6)
 if R2< 0 goto AGAIN

(7)

Figure 2.14.2

As noted in section 2.2, dependency may be strong or

weak. Strong dependency is exhibited between two

micro-operations when the execution of one must precede

the execution of the other, for example when one writes to

an operand used as a source of data by the other. Weak

dependency occurs between two micro-operations where one

must not precede the other, for example the control

dependency of a branch micro-operation on an otherwise

independent executive micro-operation in the same straight

line segment.

There are, however, two situations where the strength

of a dependency relationship cannot be ascertained at the

processor level - it may be different in different

microprogram level implementations. These are:

Destination-Source dependency. In some processor

implementations, the clock cycle is divided up into

sub-cycles with data read out of registers at an earlier

phase than that during which registers are loaded. This

allows two micro-operations, one of which reads from an

operand to which the other subsequently writes data, to be

executed in the same processor cycle, ie. it permits a

weak dependency relationship to exist between them. Where

the processor implementation does not operate in this

manner, the dependency relationship must be strong.

ComDuted data dependency. In many microprogram

level processor implementations, the execution of the

current microinstruction is overlapoed with the fetching

from control store of the next microinstruction. In such

cases, data generated during the execution of the current

microinstruction cannot be used in determining from which

control store address the next microinstruction should be

fetched. Therefore any branch in the flow of control

based on computed data must take place in a subsequent

processor cycle (ie. different microinstruction) from that

in which the data is actually generated. This contrasts

with secuential implementations where the data may be

computed and tested to determine the successor

microinstruction in the same processor cycle.

63

For example, consider the micro-operations:

A <- A + 1

.il A = 0 Roto LABEL

The dependency of the second on the first should be

strong in an overlapped implementation, but weak in a

sequential implementation.

These are two examples of dependency relationships the

strength of which is undecidable at the processor level.

It would be perfectly simple to take a pessimistic

viewpoint and always classify such occurrences as strong

dependency, but one of the specified goals of MDS was to

generate efficient microcode, and so ANALYSE must be made

to allow the possibility of weak dependency in these

situations. How it does so is explained in the following

section.

The minimality of the partial ordering POmin within

straight line segments may now be deduced. It follows

from the readily observable fact that, discounting those

arcs which are redundant through the transitivity of the

dependency relationship, each are in the data dependency

graph - each data dependency relationship between two

micro-operations - is necessary in order to ensure the

desired behaviour and determinacy for the function so

defined..

64

The concept of control dependency was seen to be

necessary in ensuring that each micro-operation in the

source microprogram is executed the same number of times

under any ordering of execution equivalent to that defined

by the sequential MDL description. Labels and branches

define critical Doints in the microprogram which

effectively limit the independence, the "freedom of

movement", of executive type micro-operations. The source

microprogram description was partitioned into straight

line segments delimited by these critical points. These

are equivalence classes of operations which have in common

that their execution depends on the same history of flow

of control through the system.

Each straight line segment thus forms an indivisible

and inviolable entity with a single entry point and a

single exit point, which guarantees the bond between the

component micro-operations.

The groups of micro-operations which constitute a

conditional block or a conditional loop similarly form an

indivisible and inviolable entity: if one micro-operation

of the group is executed then all must be, and no other

may be executed with them. These constructs could be

incorporated into the language simply by treating each

such block as a single straight line segment (two in the

case of the If...Then ... Else construct). This would

exactly replicate the treatment which would be afforded

65

the constructs were they expressed explicitly in terms of

labels and branches in MDL. But it does not take

advantage of the fact that these are modular entities, the

fundamental control constructs of structured programming.

The labels and branches associated with If ... Then ... Else

blocks and conditional While loops are well-behaved, in

the sense that they reflect a well-defined control

structure. If a conditional block or loop is wholly

incorporated into an existing straight line segment then

the essential feature of that straight line segment is

preserved: it still has only one entry point and only one

exit point. This is illustrated in figure 2.4.3

Straight
Line
Segment

--------------- -------

Single
Entry
Point

Modular
Control
Block

Single
Exit
Point

Figure 2.4.3

Incorporating modular control blocks into straight line

segments in this way does not impose unnecessary

restrictions on the independence of the other

micro-operations inside the straight line segment, as

would be the case were a new segment to be created for

each such block.

For example, consider the sequence of MDL microprogram

illustrated in figure 2.4.4. If micro-operation B is

independent of all of the micro-operations inside the

loop, then there would be no difference to the behaviour

of the sequence were B executed before the loop, perhaps

concurrently with A if they are independent.

---(A)---

While COND Loop

---(Li)---

---(L2)---

---(L3)---

Repeat

---(B)---

Figure 2.4.4

67

However, special care must be taken in situations such

as this to preserve the indivisibility and inviolabilty of

the control block. Micro-operations should be allowed to

"migrate" over a control block, but they must be prevented

from "landing" in the block, just as they must be

restrained from migrating outwith the confines of their

own block. The concept of levels of micro-operations

within the canonical microprogram is now introduced to

secure the necessary protection.

For the purpose of determining its data dependency

relationships with the other micro-operations, a modular

control block is treated as a single micro-operation in

the canonical microprogram. It is a block type

micro-operation which at one level assumes the identity of

a single micro-operation, but which is expandable to its

component micro-operations at one level lower. These

component micro-operations, which correspond to the

micro-operations contained in the control block, may

themselves be of block type - this would be the case when

the source microprogram contained nested control blocks -

or they may be orimitive.

Indivisibility and inviolability of control blocks may

now be secured by insisting that data dependency should be

marked only between micro-operations at the same level.

Consider for example, as illustrated in figure 2.4.5, a

loop followed by a primitive micro-operation B which is

data dependent on a primitive micro-operation A inside the

loop. A is at a lower level than B since it lies inside

the loop. Hence it is the block type micro-operation

representing the loop structure, at the same level as B,

that the data dependency of B must be marked upon. This

ensures that B will not be executed until after all of the

components of the loop.

But this rule is not sufficient as it stands, as may be

seen by considering the situation where B above is itself

a component of a loop, not enclosing the loop which

contains A, as illustrated in figure 2.4.6. Now A and B

are at the same level, but, in order to maintain the

desired behaviour, it must be ensured that in such a

situation no constituent of the second loop may be

executed before any constituent of the first loop.

W.

While COND L000 	 While COND Loop

---(A)---

Repeat 	 Repeat Reoeat

---(B)--- 	 While COND LooD

Figure 2.4.5

Repeat

Figure Figure 2.4.6

This is achieved by adherence to the following rule:

Rule 2.4.1 (Multi Level Deoendenoy Rule). The

outermost block containing B but not A is marked as being

dependent on the outermost block containing A but not B.

70

Figure 2.4.7.(a) presents a skeletal example of a block

structured MDL microprogram and figure 2.47.(b) shows a

set of data dependency relationships which might exist

between the primitive micro-operations of 2.L7.(a).

Figure 2.4.7.(c) illustrates the dependency relationships

between micro-operations which result from application of

the Multi Level Dependency Rule to this example. (Each

micro-operation is depicted as a box with the level of the

micro-operation displayed at the top right corner of the

box).

71

---(1)---
(1)

---(2)---

---(3)--- 	 (2)

.j. COND Then 	 A\
(4) 	(3)

/\
---(7)--- 	 (5) 	(6)

Else

(8) 	(7)

_

Fin ish

LooD 	 (11) 	(9) 	(10)

---(10)---

---(11)---
(12) 	(13)

Repeat

---(12)---
Figure 2.4.7..(b)

---(13)---

 Figure 2..4.7.(a)

72

Whole Microprogram

-----1

r (2) 	I
Loop

------------------------------1

(3)_j

Cond block
---------2

Ifblook
3

[-R;.;.- 	[i
;-

[_.:._i

Elseblock

j

[:IEI:i

oop
:::: ----------- IL ---- 2

(9) - j
c::1

[- -(12) _
 i

Figure 2.4.7.(c)

VIX4F,r~PrM4 IsnWvol-Kell 	To= 	 In

73

The whole reason for establishing dependency

relationships between micro-operations is to determine

which micro-operations may be executed concurrently or in

any order and for which a defined order of execution must

be observed. At the microprogram level, the order of

execution will be defined by the order in the microprogram

of the microinstructions into which the micro-operations

are packed. The algorithm used to perform the packing of

the micro-operations of a canonical microprogram will be

described in chapter 4 when it will become more obvious

just how the Multi Level Dependency Rule is used to effect

a behaviour in implementation equivalent to that defined

by the sequential MDL description.

We are now lead back to the question of how, within

this framework, to cope with explicit labels and branches,

perhaps occurring inside modular control blocks? - The

solution to this problem is derived from rational

development of the concept of block type micro-operations

and levels within the microprogram and leads us to discard

the explicit demarcation of straight line segments for a

unified approach to control and data dependency throughout

the whole source microprogram. In essence, each straight

line segment - each critical point - is associated with a

block type micro-operation whose components are all those

micro-operations which succeed the critical point in the

sequential MDL description. These exist at a lower level

74

than the block type micro-operation and so their control

dependency on the critical point is ensured. The details

are explained in the following section.

75

This section explains in detail the-implementation of

the algorithm outlined in the previous section for

generating a maximally parallel representation of an MDL

microprogram. This is performed by ANALYSE - a program

which accepts as input an MDL description of a processor

behaviour and outputs a multi level partially ordered

graph of micro-operations representing the same processor

behaviour.

ANALYSE processes the MDL source microprogram serially,

line by line. Ignoring comments, it classifies each line

as a primitive micro-operation of one of the following

types:

(1) Executive - all register transfer

and miscellaneous micro-operations.

('I) Subroutine Call

As well, as these micro-operation types, it also

generates, where appropriate, additional block type

micro-operations of the following type:

76

(5) Label 	Generated by each explicit label or

branch micro-operation

Svncblock 	Generated for a group of

micro-operations which have been

designated explicitly for concurrent

execution. (see section 2.2)

Loot

	

	 Generated on recognition of "Loop"

directive in current line.

(S) Ifheader 	generated on recognition of "If ... Then"

construct. Composed of Ifblock and

Elseblock type micro-operations - see

(9) and (10) below.

Ifblock 	Generated at same time as Ifheader

micro-operation to contain the

micro-operations in the block associated

with the evaluation to true of the

tested condition.

Elseblock

	

	Generated on recognition of "Else"

directive - contains the

micro-operations to be executed when the

tested condition is false.

77

Notes on the above:

The two levels of block type micro-operations

associated with an "If ... Then...Else" construct are

necessary to ensure both the indivisibility of the

total block and the separation of the Ifblock and

Elseblock parts. Although they are logically

independent, the latter is marked dependent on the

former in order to guarantee consistently valid

implicit succession from the testing of the condition

at the head of the block. This is necessary in order

to generate the correct sequencing information for the

final microprogram - discussed in section 4.3.

The reason for distinguishing between conditional and

unconditional branch type micro-operations is

concerned with the optimization of the microcode as

will be explained in section 4 • 3 •

A "Wait For..." type micro-operation is treated as a

degenerate conditional loop.

ANALYSE maintains a record of the level associated with

the current line being processed and drops down one level

each time it has cause to generate one of the above block

type micro-operations (5)-(10). It keeps track of the

block header micro-operation for each level and marks each

micro-operation processed as a component of the

appropriate block header for that level. It steps up a

level each time it encounters a block terminating

78

directive, namely "Repeat", "Finish", or "Else" ("Else"

causes the termination of an Ifblock and the immediate

initiation of an Elseblock). In fact, it also steps up by

as many levels as there are Label blocks immediately

inside the modular control block appropriate to the

terminator. That is, Label blocks are also 'terminated by

control block terminating directives. Thus consistency of

level of the micro-operations before and after the

enclosing control block is maintained. This is necessary

for dealing with "Exit" statements as will be explained

below.

ANALYSE generates a branch type micro-operation to

replace the conditional statement heading each conditional

block or loop (or at the tail of the loop), reversing the

expressed condition where appropriate (this is the

exception which proves the "no semantics" rule). For

example the statement:

"While A >= 0 Loop"

would be replaced by:

"If A < 0 Goto Label"

where "Label" is a computed index into a label table

calculated on the basis of the value of the current level.

There are two label positions associated with Loop and

Ifheader blocks (see figure 2.5.1): in the former there is

one at the head of the loop jumped back to to repeat the

loop and one beyond the tail of the loop jumped to if the

79

condition at the head is false. For the Ifheader block

there is one beyond the Ifblock (this will be at the start

of the Elseblock if such exists) and one after the

Elseblock which is the destination of a jump round that

block on completion of the Ifblock.

j COND Then
	

if COND goto Li

Else 	 goto L2

Li:

Finish
	

L2:

While COND Loop

Exit If COND 	=

Repeat

L2: if COND goto Li

if COND goto Li

goto L2

Li:

Figure 2.5.1

Explicit labels are also entered into the label table

and branches referring to those labels are converted to

refer to the label table entry. This is for the purpose

of generating the sequencing information which will ensure

correct control flow in the microprogram, as will be

explained in section 4.3.

"Exit" statements (jumps out of loops) are also

converted into branch micro-operations. The label for the

branch destination is that implicitly associated with the

tail of the loop ultimately being exited from, as

illustrated in figure 2.5.1 above. The index for this

label is calculated on the basis of the level of the loop

and this is the value inserted Into the branch

micro-operation with which ANALYSE replaces the Exit

statement.

This initial processing stage completed, ANALYSE now

has each micro-operation in a form suitable for

establishing the dependency relationships which it must be

made to observe.

In order to determine the data dependency relationships

between micro-operations, ANALYSE associates with each

operand It encounters in the processing of the MDL source

microprogram two data items: a pointer to the last

micro-operation to use that operand as the destination of

an expression and a list of all those micro-operations

81

which have used it as a source of data subsequent to its

last having been written to. ANALYSE isolates the

operands referenced in each primitive micro-operation and

determines their usage - destination or source. It is

then able to establish data dependencies on preceding

(primitive) micro-operations according to the rules DD1 to

DD3 (section 2.3) using those data associated with the

operand names, which it updates as it does so.

The complexity of this algorithm is linearly

proportional to the number of micro-operations in the MDL

description input to the program, contrasting with other

proposed methods for detecting the same type of dependency

[55, 401 - outlined in chapter 4 - which compare each

micro-operation with all its predecessors in the straight

line segment: an algorithm of complexity proportional to

the square of the number of micro-operations in the

straight line segment.

On the basis of the data dependency relationships

between primitive micro-operations which it calculates in

this way, together with the block structure of the input

microprogram, ANALYSE applies the Multi Level Dependency

Rule (rule 2.4.1) to generate the correct dependency

relationships to be marked between the appropriate

micro-operations.

At this point we recall the syntactic construct in MDL

introduced without explanation in section 2.2 which

enables explicit specification of the resources which are

affected by the action of a micro-operation, but which may

not be expressed in the micro-operation itself. For

example, in some implementations, the micro-operation

"Read Memory" may implicitly reference a Memory Address

Register (MAR) and a Memory Data Register (MDR). If this

is the case, then no other micro-operations also using

those registers should be classed as independent of the

"Read Memory" micro-operation. For this reason, MDL

allows the designer to specify explicitly the fact that

those operands are referenced by the action of this

micro-operation in the following manner:

Read Memory ; I MDR 1 MAR]

where the vertical bar separates the list of those

operands written to (MDR in this case) from those used

only as data sources (MAR in this case).

This same construction may be used beneficially in

accompaniment with a subroutine "Call" statement, in

effect to specify the parameters of the subroutine. Here,

"parameters" denotes all operands referenced inside the

subroutine body, there being no such concept as scope of

names for operands. If the construction is used in this

way, then ANALYSE treats the statement as an executive

type micro-operation which references the specified

83

operands, and data dependency is marked accordingly. If

it is absent, then the "Call" statement is treated as a

simple conditional branch micro-operation imposing an

absolute barrier to the independence of other

micro-operations. In using this construction, the

designer may be seen as providing some sort of "guarantee"

about the behaviour of the subroutine which ANALYSE

accepts in order to enhance the potential for

optimization.

As described at the end of section 2., control

dependency of all micro-operations on the most immediately

preceding explicit branch or label. must be enforced. This

follows automatically when the Label block type

micro-operation associated with the critical point has not

been terminated at the time at which the subsequent

micro-operation is processed. That is, if that

micro-operation is also inside the control block which

immediately encloses the critical point, since then the

latter will be marked as a component of the former. But

if the critical point is inside a modular control

construct the terminating directive for which precedes the

micro-operation in question, then the latter will not be a

component of the Label block and measures must be taken to

enforce the dependency - no micro-operation must be

allowed to migrate over a control block which contains a

critical point.

84

Control dependency of this nature is checked for in

ANALYSE whenever data dependency is being determined

according to the Multi Level Dependency Rule. If it is

seen that the parent in a data dependency relationship

precedes the critical point (ie. if a critical point

intervenes between a micro-operation and another which is

data dependent on it), then the critical point assumes the

role of parent in the relationship and dependency of the

child is generated according to the Multi Level Dependency

Rule. Any micro-operation which is found not to be data

dependent on any preceding micro-operation is marked as

dependent on the block at the same level as itself which

contains the most immediately preceding critical point

block, if such exists.

To a limited extent, this consideration must also be

applied to "Exit" statements: for any micro-operation

which lies between an Exit micro-operation and its

associated loop tail, the Exit micro-operation acts as a

critical point, limiting the range of movement of that

micro-operation. For micro-operations lying outwith that

range, the Exit micro-operation carries no effect. Figure

2.5.2 illustrates several examples of such situations.

SM

L0OD 	 Loon 	 Loop

• 	 Loon 	 Loop

Exit

• 	 Exit-2 	 Exit-2

• 	Range of X)

-(X)-

Repeat 	 Repeat

Reneat 	 . 	Range of (X) 	Repeat

-(x)-

• 	Not

Rene at 	 Affected

by Exit

Figure 2.5.2

diT1U3Urn

As described in section 2.4, four different dependency

relationships between micro-operations may be

distinguished, viz:

(1) Strong Dependency

() Weak Dependency

(3) Destination-Source Dependency

(Li) Computed Data Dependency

Types (3) and (14) are resolved to either of types (1)

or (2) at implementation time, but ANALYSE must retain the

distinction at this stage. The various situations which

give rise to the several types of dependency relationship

marked by ANALYSE between two micro-operations A and B (A

preceding B) are classified below.

B writes to the same operand that A writes to.

B reads from an operand that A has written to.

B is a Label block type micro-operation. A is a

childless micro-operation at the same level

preceding B.

A Is the conditional branch micro-operation at the

head of a loop or conditional block. B is a

parentless micro-operation inside the block.

A is an Ifblock block type micro-operation. B is

the corresponding Elseblock.

B is a branch micro-operation not data dependent on

A. A is a childless micro-operation preceding .

B is a Subroutine Call micro-operation incorporating

explicit specification of operands which render it

87

data dependent on A.

(3) B is an Ifheader block type micro-operation data

dependent on A on account of a component

micro-operation of B (But not the conditional branch

micro-operation at the head of the block - this

causes a Computed Data Dependency relationship of B

on the parent).

(1) B writes to an operand that A has read from.

(1) B is a conditional branch or subroutine call (or

return) micro-operation which is data dependent on

A.

These then are the relationships constructed by ANALYSE

to realize POmin, the partial ordering defining the

maximally parallel representation of the MDL source

microprogram input to it.

One qualification must be put on the term "maximally

parallel" as used above, however. The canonical

microprogram is the maximally parallel representation of

the source microprogram that may be generated without

tracing the control flow associated with explicit labels

MMI

and branches. Explicit labels and branches serve as

absolute barriers to code movement and effectively

partition the canonical microprogram into disjoint

segments (not straight line segments, because critical

points may occur inside a modular control block). As

noted previously, it could be the case the actual control

structure defined by the explicit labels and branches in a

particular example would permit some code movement between

the segments, but this would not be reflected in the

canonical microprogram for that example. The rewards to

be gained in attempting to detect such situations are far

outweighed by the amount of extra effort that would have

to be invested to do so; particularly when modular control

constructs are available in the microprogram description

language.

With this qualification implicit, the canonical

microprogram generated by ANALYSE is a maximally parallel

representation of the MDL source microprogram description.

ANALYSE outputs a representation of this canonical

microprogram for use as input to MICROMAP, the program

which generates the final implementation of the

microprogram as will be described in chapter LI, .

ME

IsIFUIILp__

This chapter is concerned with describing the control

organization of the microprogram level host machine on

which a processor behaviour will be implemented.

Control organization at the microprogram level is

defined by the microinstruction format of the

implementation, which term is taken here to encompass both

the field structure of microinstructions and the action of

the micro-orders that may be evoked from them.

The first section of this chapter examines the features

of microprogram level control which must be described and

the second introduces a model of microinstruction formats

which has been designed with the automatic generation of

microprograms specifically in mind.

dij

To the author's knowledge, the only previous attempt to

design a formal notation for the description of

microinstructions is De Witt's Control Word Model [221,

noted in section 1.3. Although it is capable of

specifying what operations may be realized from a single

microinstruction word over quite a wide variety of

formats, there are three major reasons why the Control

Word Model is not capable of achieving the objectives of

MDS. Namely:

The model is not complete. It does not provide

sufficient information about the microinstruction

format to permit the automatic generation of

microcode for microinstructions described in the

notation.

It assumes that each micro-operation to be

implemented in the particular microinstruction format

being described may be associated with a unique block

in the description which will realize it. This is

not a valid assumption in all circumstances.

The notation is difficult to use - a description

expressed in the Control Word Model notation does not

reflect the actual format of the microinstruction.

Also, the user is obliged to specify explicitly all

possible microinstruction configurations.

91

In terms of existing notations, one other alternative

exists. That is the encapsulation of the behaviour

associated with a particular microinstruction format

inside the general description of the microprogram level

organization of the system, this being represented in a

standard hardware description language. Although this

approach may be made to convey all of the information that

is necessary for the purposes of microprogram design, it

entails a complicated, detailed description incorporating

much additional information about the organization of the

system which is not relevant to the subject. Consequently

it obscures that which is relevant.

It is the professed goal of this research effort to

construct a tool that will be practical use for the design

of the microprogram control of digital systems. A

fundamental implication of this tenet is that the system

should be easy to use. Hence we seek a notation in which

it is convenient for the microprogram designer to express

that which he wishes to describe - in this case the

microinstruction format for the control of a given

processor design. The absence of an existing notation

with this property compels the design of a new one. This

is the motivation behind MFM - Microinstruction Format

Model - a model of microinstruction formats defining an

associated notation in which descriptions of the control

organization of microprogram level systems may be

expressed.

92

The rest of this section examines the type of features

which a model for this purpose must be capable of

representing. The following section presents the details

of MFM, with an example of its use.

There are two aspects to the description of

microinstruction formats that must be taken account of.

There is the functional aspect: specifying the operations

that may be performed at the microprogram level; and there

is the structural aspect: the organization of the fields

within the microinstruction word. Both are necessary

integral parts of a description for the purpose of

microprogram design; the first in the synthesis of the

specified behaviour for the microprogram level

implementation of the processor; the second in recognizing

resource conflict between micro-operations and in enabling

the generation of complete microcode. A suitable model

should be capable of reflecting both these aspects.

The following properties for a model for describing

microinstruction formats for the purpose of microprogram

design will be assumed as axiomatic and from these will be

derived the properties to be exhibited by MFM and its

associated notation.

(1) The model should be capable of describing completely

a wide diversity of formats - not just "conventional"

or "well behaved" examples.

93

The model should carry sufficient information to

allow generation of complete microcode in the

described format.

The notation should be convenient to use.

Descriptions expressed in the notation should be easy

to understand.

The model should be conducive to the automatic

transformation of descriptions into data structures

suitable for subsequent machine processing.

Two alternative approaches may be taken to the

modelling of a microinstruction format: either a function

based approach or a field based approach. In the former,

all of the micro-operations that a processor may perform

are listed. The particular microinstruction configuration

which realizes each is then calculated explicitly by the

designer and is associated with that micro-operation in

the format description (the "hand compiling" method

mentioned in section 1.3). This exhaustive method may

well lend itself to machine processing, condition (5)

above, but quite clearly violates condition (3), that a

description be easy to write.

In contrast, with a field based model each constituent

field of the microinstruction format is defined in terms

94

of the micro-orders supported by that field. In addition

to providing a simpler description, this model is closer

to the designer's conceptual view of the microinstruction

format and its conformity to the structure of the

microinstruction renders this style of description more

intelligible. These advantages override any extra effort

which might be required (once only) to process

descriptions represented in this model.

The requirement that MFMshould be field based is

therefore deduced.

Typically, the specification of a microinstruction

format as it appears in both the manufacturers' literature

and the technical journals comprises a diagram depicting a

box which represents the microinstruction word, subdivided

into several sections representing the fields. (Or perhaps

several boxes divided into different sections). Lengthy

annotation is attached to each section and the description

is accompanied by numerous footnotes covering

contingencies which are not uniquely associated with a

single field. MFM must be capable of representing all of

the information conveyed in this model, but in a more

formal manner. Identified below are particular features

which must be given express consideration.

Incorporated into these diagrams of the boxes

representing microinstructions is information expressing

95

the length of the microinstruction word and of the fields

contained therein, as well as the position of the fields

within the word.

The depiction of the microinstruction format as many

boxes each of different field structure, as illustrated in

figure 3.1.1, reflects the property exhibited by many

control word organizations of variable format (or two

level encoding) , in which the interpretation of the field

structure of the (rest of the) microinstruction word is

dependent on the value held in a single field common to

all structures. The archetypal example of this feature is

the "Opoode" field of a vertically structured format.

[EEI[IIEIEIEi

[EI[EEI[EEEI[IEI1
0 	2 	 3 	12 	 23

	

rr 	r Special
10 __ Read/Write __ Device---

I ---- E -
0 	2 	 8 	 23

Miscellaneous r
:: 	::i::ci::::::::::

Figure 3.1.1

Sometimes, the well-defined field based structure of a

microinstruction format is violated by the interference of

field interdeoendence (often the cause of the copious

footnotes associated with an informal description),

whereby the action associated with one field may be

predicated upon the value of another, otherwise

independent field. This does not refer to fields whose

97

action involves transferring data determined by another

field, or over a data path determined by another field,

which is the normal course of events, but concerns fields

the actual action of which is affected by the value held

in other fields. This situation may be exemplified by the

microinstruction format of the IBM 360 model 40 (see 1311)

in which the interpretation of the CE field is determined

by the values held in the CH, CN, and CQ fields. The CE

field acts either as an immediate source of data for

loading into one of the registers or else - if the CN

field has the value 15 - it determines the function which

is performed on the stat registers and loaded into the

function register. The microinstruction format of the

Varian 73 central processor [60, 51 also exhibits this

feature extensively.

Another violation of the normal "good behaviour" of

microinstruction formats is presented by the mechanism

known as residual control [49, 31. This breaks the rule

stipulating that the action of a single microinstruction

should be totally defined within a single processor cycle

(discounting actions, such as memory references, the

duration of execution of which lasts longer). It does so

by "setting up" a register during one clock cycle from one

microinstruction word and then using the contents of that

register to determine the action activated by a subsequent

microinstruction word. For example, the Fstore registers

of the Nanodata QM-1 processor E43, 501 implement this

WE

feature, being used among other things to select the

register to be connected to a bus.

Associated with each field in the microinstruction

format is a set of micro-orders. The micro-orders that

are grouped together in one field are mutually exclusive:

only one may be activated from the field at any one time,

and the corresponding control signals are encoded within

the field to reduce the length of the microinstruction

word. This means that each micro-order has associated

with it a value which must be bound to the field to cause

that micro-order to be activated from a particular

microinstruction. Also, each action has an associated

duration. Normally it will be completed inside a single

processor cycle, but some actions, such as memory

references, may be exceptional. In the event of none of

the micro-orders belonging to a field being explicitly

included in the action of a microinstruction word, a value

must still be bound to that field in the microinstruction.

Rather than this being determined arbitrarily, it should

be possible to specify such a default binding explicitly.

In addition to the function of providing control

signals to the p rocessor data paths, part of any

microinstruction format is taken up with the sequencing of

the microprogram itself - in selecting the conditions to

be tested and in deciding from what location the next.

microinstruction should be fetched. Another part of the

microinstruction word is taken up with providing Immediate

data to either the data path or sequencing mechanisms of

the implementation. For the sake of clarity and

consistency, a model which represents all functions of a

microinstruction format in a unified form is to be

preferred.

These then are the major requirements which MFM must be

capable of representing. Before describing the model and

demonstrating how it satisfies these requirements, one

further observation concerning the interDretation of

format descriptions may be made.

In section 2.2, arguments were advanced explaining the

reasons for MDS not attaching any semantic interpretation

to the statements of an MDL microprogram description.

These arguments are applicable to format descriptions

also. In the context of microprogram design, there is no

necessity to associate any connotation of semantic

significance with the actions of the micro-orders

described in a specification of a microinstruction format,

when this is svmoathetic to the high level description of

the system being implemented. The memory elements which

are the sources and destinations of data for all

micro-operations have names which are unique throughout

the processor level description and the microprogram level

description of the system - they are the names of

processor level resources. Exactly the same is true of

the operations performed by the processor. The format

iII

specification defines how the microinstruction word

controls the operations performed by the processor, but it

does not need to define what these operations are. As

long as there is consistency of naming between the two

descriptions of the processor at different levels,

definition of their semantics is unnecessary. When the

format specification is directed specifically toward

implementing the processor defined by the MDL description,

this consistency of naming is maintained naturally.

101

ICIW41C

 general form of a description of a microinstruction

format within the context of MFM is of a list of all of

the constituent fields of the format defined in terms of

the micro-orders belonging to that field - rather like a

Backus Normal Form language specification.

Extensive case studies of a wide variety of

microinstruction formats reveal that five types of field

may be distinguished. Together, these five field types

form a basis on which a field based model of

microinstruction formats may be founded. The five field

types identified are as follows: (where the entities

enclosed in square brackets in the examples are user

defined field names and ':' denotes the definition of the

field name on the left in terms of the expression on the

right. Names not enclosed in square brackets are assumed

to be processor level resource names. The syntax of the

notation will be explained in greater detail below.)

(1) Composite - This type of field is simply a conceptual

grouping together under a single name, for the sake

of clarity, of an ensemble of associated fields.

eg. [ALU_control] := [Opdl] [Opd2] [Op] [SaveCC].

This is not, an essential field type, but enhances the

intelligibility of a format description (of.

102

"Special" and "Miscellaneous" in figure 3.1.1).

Mode Interpretation (Bit Steering) - This type of

field determines the interpretation of the field

structure of the rest of the microinstruction in a

variable format organization.

eg. [Instmode] :: <0>: [ALutype];

<1>: [Condbranch].

The field names on the right of the '::' denote

alternative composite type fields representing the

field structure associated with the two alternative

values for [Instmode].

Select - This type of field, the most common in most

descriptions, defines the micro-orders used to

control the propagation of dataalong the internal

data paths of the processor, typically by issuing the

selector control signals to a multiplexor orgating

data on to a bus. The name of the field will

normally be chosen to be a mnemonic name for the

microprogram level resource, eg. section of data

path, controlled by the field. This name will be

used in the expansion of other fields when the

sections of data path associated with each are

connected.

eg. [ALU_input] :: <0>: Ace;

<1>: [GPReg);

103

<2>: [lOBus];

<3>: [Direct Data].

The micro-orders denote the "value" taken by the

microprogram level resource associated with the field

as a result of the action of the corresponding

control signals.

(14) Execute - This type of field controls the (clock

synchronized) loading of processor registers, the

sequencing of the microprogram, and miscellaneous

actions involved in communicating with the

processor's external environment.

eg. [Load Ace] := <1>: Ace <- [ALU_out].

[Mem control] :: <1>: Read Memory;

<2>: Write Word;

<3>: Write Byte.

(5) Emit - This type of field is used to supply data to

the processor directly from the microinstruction word

for a variety of purposes.

This set of field types is not the only possible basis

for the representation of microinstruction formats. Nor

is it the smallest possible set. The five types

distinguished have been identified as providing both a

reasonable balance of simplicity and clarity in the

104

descriptions, together with sufficient information to

facilitate the interpretation of the described format

which is necessary for subsequent processing. Were the

latter consideration not pertinent, it would not be

necessary to distinguish Select and Execute type fields.

The latter type is just a special case of the former, a

symptom of which is that Execute type fields are never

referenced as part of the expansion of other fields.. This

matter will be explained further in section 14.2.

In order to keep descriptions simple in MFM, and hence

make the model usable, the designer is required to specify

the type of each field defined in the MFM description of a

microinstruction format. The whole microinstruction word

is considered as a single Composite type field and is

specified in terms of Its constituent fields. Thereafter

each field supported In the format is defined by its

expansion, that Is all of the micro-orders belonging to

the field, which are expressed as a combination of literal

terms and other field names.

The general form for the specification of a field is as

follows:

[Fleidname] (Type) <from:to> := Expansion.

The "fieldname" is a user defined Identifier for the field

which normally will be unique within the description,

105

although two distinct Select type fields controlling a

single resource, eg. in gating data on to a bus in an

unencoded format, are permitted to have the same name.

The "type" is one of the five identified above and "from"

and "to" are two integers defining the bit range of this

field within the microinstruction word. The

interpretation of the expansion of the field varies with

the type of the field as follows:

Composite : 	[Subfield_i] [Subfield_2] [Subfield_x].

The expansion here consists simply of that set of

fields grouped under the same heading. These will

themselves be expanded elsewhere in the format

description.

Mode Interpretation := <bindi>: [F1.1] [F1.x];

I,

'I

<bindN>: [FN.1] [FN.x].

The list of fields associated with each binding in

the expansion of a field of this type denotes those

fields enabled for each value of the Mode

Interpretation field, ie. the interpretation put upon

the field structure of the rest of the

microinstruction word in each of the modes of the

format corresponding to the various values of the

106

Mode Interpretation type field. These fields will

all be expanded later in the format description.

Explicit specification of the binding is optional,

with the default being zero initially and incremented

by one after each field list (which are separated by

semi-colons).

Emit 	Low limit : High limit

The expansion for this type of field lists two values

denoting the lower and upper bounds for the integral

number which may be held by the field. The lower

bound may be omitted, in which case zero is assumed.

Select and Execute := <bindi>: Orderl.1, ... ,Orderl.x;

<bindN>: OrderN.1, ... ,OrderN.x.

Associated with each value for each Select and

Execute type field is a list of the micro-orders

evoked by that value for the field. The micro-orders

take the form of a string of literal names and field

names. For the Select type fields, the micro-orders

denote the resources (processor or microprogram

level) that may be "bound" to that field name. For

Execute type fields, the micro-orders specify the

107

actions that may be evoked from that field. The

possibility of more than one micro-order being

associated with a single binding is entertained.

This is a situation which often occurs in practice as

a method of reducing the length of the control word

whenever two actions may always be activated at the

same time as each other. This feature is also used

commonly in MDS as a consequence of the lack of

semantic interpretation put upon operations in MFM

descriptions. It is necessary to specify twice an

expression which involves a binary commutative

operation: once for each order of the operands.

eg. [.ALU_out] (select) := [Opdl]+Acc,

Acc+[Opdl].

Since there is no way of "knowing" in the notation

that these two expressions are the same, "both"

actions must be evoked simultaneously.

There are three further parameters which may be

associated with a field description in the MFM model,

namely Default, Duration and Phase.

Each field definition in the MFM description with which

a binding may be associated may be followed by a

directive, " DEFAULT = X". X is an integer specifying

the value to be bound to the field in the event that no

micro-order belonging to that field is explicitly selected

for activation in a microinstruction word. Zero is

assumed as the default binding for a field when the

directive is not included in the field definition.

The duration of the actions associated with each field

described may be specified by the directive

DURATION = X", where X is the number of processor

cycles taken to complete the actions associated with the

field. If this is omitted (which is the normal case),

then it is assumed that the actions can be completed

inside a single processor cycle.

Similarly, the phase of the processor cycle in which

the micro-orders belonging to a field are activated may be

specified using the directive "' PHASE = X". Zero is

assumed as default value for X. (This feature is not used

in MDS, but is included in the model for completeness).

In addition to the five basic types of field described

above, two further types are included in the model. These

are used in connexion with two of the contingencies

identified in the preceding section.

The first additional type is the Register type which in

effect is a cross between the Select and Execute field

types. It is used to control the loading of a

microprogram level register incorporated within the

processor data path. That is, it controls an internal

part of the data path, just like a Select field, but in

this case the section of data path retains its data

between processor cycles. Hence any transfer of data by a

109

micro-operation from a processor level source register to

a processor level destination register over a data path

including such a register must be split up into actions:

one to load the register with the source data and another

to pass the data on to the destination. The

differentiation between a processor level register and a

microprogram level register is purely conceptual, but the

availability of this feature is extremely useful,

especially when experimenting with different microprogram

level organizations for the implementation of a processor,

when the behavioural description of the processor may

remain invariant. It is of particular usefulness in

modelling residual control, defined in the previous

section, and in overlaDoed implementations (see section

2.14) in which data generated in an arithmetic expression

and then tested to determine branching must be split over

two microinstructions. Register type fields may also be

used like Execute type fields in explicitly loading the

associated register as if it was a processor level

resource. This will be explained further in chapter 14.

Note that the requirement to distinguish Register type

fields exists only through the use of the model for

describing micro-architectures into which a processor

description will be mapped automatically. Were the model

not used for this purpose, then all Register types fields

would simply be classed as Execute type (which itself is

just a special case of Select which need not be

110

distinguished in all contexts).

The second additional field type, the Conjunction type,

strictly speaking is not a field type at all, nor is it

specified in the format definition as such. A dummy field

of this type is generated in the internal representation

of the format whenever a case of field interdeDendence is

encountered: whenever a micro-order is specified whose

activation is dependent on the value of more than one

field (but not where one of the fields is exclusively for

this purpose, of type Mode Interpretation). Field

interdependence may occur within Select, Register or

Execute field types in a format description and is

expressed within the expansion of one of these with a

construction of the form:

%When [Field] = Binding: list of micro-orders

The "field" is the other field involved in activating

the micro-orders, apart from the one in whose expansion

the construction is included. The list of micro-orders is

of the same form as for Select and Execute type fields and

carries the same interpretation as the other micro-orders

of the field in which the Conjuntion field occurs. Like

the notion of multiple actions evoked from the same

control signal, this device is used quite commonly asa

consequence of the absence of semantic interpretation in

the model. For example, one field might be used to

111

control the Carry-in bit to an arithmetic unit. Then the

field which controls the arithmetic operation to be

performed may be considered as implementing two different

functions depending on the value of the Carry field.

Thus: -

[Carry Control] (select) := <0>: Carry in;

<1>: No carry.

[Acc_Add] (execute) := <1>: when [Carry Control] = 1:

Acc<-Acc+[ALU_in]

Acc<-[ALU_in]+Acc;

%when [Carry Control] = 0:

Acc<-Acc+[ALU_in]+1,

Acc<-[ALU_in]+Acc+1.

It is often found to be the case that the

intelligibility of a microinstruction description may be

enhanced by the inclusion of dummy fields. These do not

correspond to any bit positions in the actual

microinstruction word, but may be included in a

description for two alternative reasons. They may be used

to impart information about the action of the

micro-architecture not explicitly conveyed by any of the

real fields - in effect "pretending" to control some

action which in fact is not totally under the control of

the microprogram but is relevant to the microprogram level

description, such as [Seq Op) in figure 3.2.1 (to follow).

112

Alternatively, they may simply be used for notational

convenience, such as [Opdl] and [Opd2] in the same

example.

No field may assume more than one type in the

Microinstruction Format Model. Where such a behaviour

arises in practice, it may be represented in the model as

two fields of different type occupying the same portion of

the microinstruction word, ie. overlaid on top of each

other.

For example:-

[Load Dest] (Execute) <4:4> := <1>:

[Dest Reg] <- [ALU_Result].

[Output Bus] (Select) <:1> := <0>: [Input Bus];

<1>: [ALU_Result].

[Output] (Execute) <5:5> := <1>: Out Reg <-. [Output bus].

A format description need not be unique in MFM. A

particular microinstruction format may be represented in

the model by several different descriptions, each

conveying the same information. For example, the above

example could also be expressed as:

113

[Load Dest] (Execute) <14:4> := <1>:

[Dest Reg] <- [ALU_Result].

[Output] (Execute) <5:5> := <1>:

%When [Load Dest] = 0: Out Reg <- [Input bus].,

%When [Load Dest] = 1: Out Reg <- [ALU_Result].

In order to avoid duplication of effort on the part of

the designer in the description of formats, the Alias

feature is provided in MFM. This facilitates the

generation and use of a library of descriptions of common

microprogrammable components, such as bit slice

microprocessor chips. These descriptions may be included

in the microinstruction format descriptions for processors

in whose implementation the components are incorporated.

It was noted above that the names referred to in the

field expansions of a format description were the names of

processor level resources, specific to the particular

processor being implemented. This implies that some

provision should be made in the notation for mapping the

names used within the description of the library component

to the specific names associated with the given processor

when the Alias feature is used. This is achieved by

issuing the directive "%NAMEALIAS" within the format

description, followed by a list of pairs of names of the

form:

LIBNAME = PROCNAME

LIBNAME is a name occurring in the library component

114

format description and PROCNAME is the corresponding

processor resource name, as referenced in the MDL

processor description. There is a similar requirement in

interfacing the component description with the rest of the

description where fields defined in one part are

referenced from within the other part. This is dealt with

by the "%FIELDPLLIAS 11 directive which, like %NAMEALIAS, is

followed by a list of pairs of names; this time field

names. The first of the pair is the name of the field as

it is referred to. in the library component description and

the second is the name given to that field in the part of

the description specific to the processor.

In order to facilitate the integration of a component

description from a library into a complete

microinstruction description, the component description

must be allowed to be situated anywhere within the

microinstruction word. Provision must therefore be made

for the alteration of the bit range specifications

associated with the fields defined in the component

description. The "%ALIASINDEX=X" directive achieves this.

"X" is an integer which is added to the bit positions of

all the fields defined in the component description.

The scope of the %NAMEALIAS, %FIELDALIAS and

%ALIASINDEX directives, ie. of the format description of

the library component, is terminated by the directive

"%ENDALIAS". Thereafter, further library components may

be included in the description using, if desired, the same

115

names as were used in the previous component.

Chapter 2 referred to the existence of two

implementation dependent parameters which affect the order

in which micro-orders are allowed to be executed. To

recap, these were:

Whether microinstruction fetch and execution is

overlanoed or sequential.

Whether it is possible to write data into a

register at a later phase of the same clock cycle as

that in which data is read out of the register.

In addition to describing the microinstruction format,

an MFM description may specify a value for these two

parameters. This is expressed using the directives

"%SEQUENTIAL", 0 %OVERLAPPED", tt%OUT-AND-IN" and

"%OUT-OR-IN", where in the absence of any explicit

direction, %Sequential and %Out-Or-In are assumed as

default.

A short example illustrating the use of some of the

features of MFM is presented in figure 3.2.1. A more

comprehensive example is given in Appendix 1(c).

116

$ Microinstruction Format for Tucker/Flynn Microcomputer

$ (see [561)

%OUT-AND-IN

%OVERLAPPED

[Instr] (Comp) <0:63> := [Add] [Shift] [Mask] [Output]

[Sequence] [Operands].

[Add] (Comp) <0:2> : 	[Add—mil [Add_in2] [Add_out].

[Add_mi] (Select) <0:0> := <0>: 1;

<1>: [Opd2].

DEFAULT:1

[Add_in2] (Select) <1:1> := <0>: [Opdl];

<1>: Acc.

[Add—out] (Select) <2:2> := <0>: [Add_inl]XOR[Add_in2],

[Add_in21XOR[Add_in1);

<1>: [Add_in1]+[Add_1n2),

[Add_in2)+[Add_ini].

'DEFAULT=l

[Shift] (Comp) <3:11> := [Shift—in] [Direction]

[Numshifts] [End around].

(Shift—in] (select) <3:3> := <0>: [Opd2];

<1>: Acc.

[Direction] (Select) <:4> := <0>: <<;

<1>: >>.

117

[Numshifts] (Emit) <5:10> := 63.

[End around] (select) <11:11> :: <0>: ; $ Null micro-order

<1>: (ea).

[Shift—out] (Select) := [Shift_in][Direction]

[End around][Numshifts],

%When [Numshifts] = 0: [Shift_in]..

[Mask] (Comp) <12:16> := [Maskreg] [Clear].

[Maskreg] (Select) <12:15> := M0;M1;M2;M3;M4;M5;M6;M7;M8;

M9;M10 ;M1 1 ;M12;M13;M1 11;M15.

'DEFAULT = 15

$ M15=X'FFFFFFFF'

[Clear] (Select) <16:16> := <0>: Or;

<1>: Add. $ Clear dest reg?

[Mask_out] (Select) := [Shift_out]&[Maskreg],

%When [Maskreg] = 15: [Shift—out]..

[Output] (Execute) <17:17> := <0>: Acc<-[Add_out],

%When [Clear]=1: [Opdl]<-[Maskout].,

%When [Clear]=0:

[Opdl]<-[Opdl][Mask_out],

[Op1]<_[Mask_out][Opd1].;

<1>: Acc<-[Mask_out],

%When [Clear]=1: [Opdl]<-[Add_out].,

%When [Clear]=O:

[0pd1]<_[Opd1][Add_out],

[Opd1]<-[Add_out][Opd1]..

118

[operands] (Comp) <32:63> := [Regl][Displ][Reg2][Disp2].

ERegi] (Select) <32:35> := R0;R1;R2;R3;R4;R5;R6;R7;R8;

R9;R 10 ;R11;R 12 ;R 13 ;R 1i ;R 15.

[Dispi] (Emit) <36:47> 	4047.

[Reg2] (Select) <48:51> := {[Regl]}. $ same as Regi

[Disp2] (Emit) <52:63> : 	4047.

[Opdl] (Select) := [Displ]([Regl]).

[Opd2] (Select) := EDisp2]([Reg2]).

[Sequence] (Comp) <18:31> := [Cond] [PC—index].

[Cond] (Select) <18:22> := <1>: u/f;

<2>: minus;

<'1>: plus;

<8>: zero;

<16>: o/f.

(PC—index] (Emit)<23:31> : 	-256:255.

[Seqop] (Execute) := if ECond] goto [PC—index], $ (+PC)

%When [Cond]=0: goto [PC—index]..

Figure 3.2.1

119

In MDS, the FORMAT program processes MFM format

descriptions and transforms each into an internal data

structure which reflects the same field based structure as

the MFM model. For each field in the format a record is

generated which specifies its type, duration, phase, bit

range, default binding, and an index into a table which

contains its expansion details expressed as literal terms

and pointers to the records for other fields. The data

structure is presented as input to the MICROMAP program

which generates a microprogram in the defined format.

This is described in the following chapter.

120

Chaoter U - Generating the Microprogram

This chapter discusses the problem of generating an

implementation of a canonical microprogram in

microinstructions of a defined format. How this is

performed by the MICROMAP program on the outputs of

ANALYSE and FORMAT is described.

As observed in section 1.2, there are two major aspects

to this problem: there is the task of exploiting the

capability for parallelism in the microinstruction format

in such a way as to pack the micro-operations together, in

a suitable order, into the fewest number of

microinstruction words; and there is the task of actually

realizing the effect of each micro-operation in terms of

the actions that may be performed in the given

microinstruction format. The first two sections of this

chapter deal with these two topics and the third considers

the issue of maintaining the correct flow of control

between the microinstructions generated.

121

At the processor level, the potential for concurrency

between two micro-operations is determined by two factors:

the control flow which necessarily results in the

execution of each, and the operands referended by each.

These factors are taken into account by ANALYSE in

generating the canonical microprogram for a processor

description. But at the microprogram level, further

factors affect which micro-operations may be activated

concurrently. Just as data dependency results from two

micro-operations referencing the same operand (the same

processor level resource) in an incompatible manner, so

resource contention results from two incompatible attempts

to reference a microprogram level resource; trying to gate

different registers on to a single physical bus for

instance. Microprogram level resources are unstable

memory elements. That is, they do not retain the data

which passes through them. They are used as intermediate

points across which the register transfer actions of the

micro-operations are implemented. Hence the order in

which different micro-operations reference microprogram

level resources is not significant. Resource contention

does not define dependency. It only defines when two

micro-operations may not be activated concurrently.

This section addresses the problem of minimizing the

number of microinstruction words required to implement a

122

specified microprogram behaviour. Given is a source

micropro gram expressed as a sequential list of

micro-operations, together with knowledge of the

microprogram level resources used by each and a list of,

or some means of assessing, the necessary dependency

relationships between the micro-operations. The

requirement is to compact the source microprogram in

ma2ping it into a microprogram in the defined format with

an equivalent behaviour. This is done by Dacking the

micro-operations into microinstruction words in an order

which preserves the dependency relationships between them;

packing mutually comoati.bl micro-operations, those which

do not conflict in their requirement for resources,

together into the same microinstruction.

There may be many possible mappings of the given set of

micro-operations into microinstruction words with the

property that the microprogram so generated implements the

specified behaviour function. Any such mapping the size

of which is not greater than the size of any other such

mapping (where size is taken as the number of

microinstructions constituting the microprogram) is said

to be optimal. An algorithm for packing micro-operations

into microinstruction words which guarantees to produce an

optimal packing is said to be an optimal algorithm.

In [63], Yau et al prove that no packing algorithm .can

be optimal which does not calculate all the implications

on all possible subsequently generated microinstructions

123

of packing a particular micro-operation into a particular

microinstruction word. That is, in effect, in order to

guarantee to generate an optimal packing it is necessary

to generate all possible mappings of micro-operations to

microinstruction words (employing pruning techniques

wherever possible) and to select the best one generated.

De Witt [21] has proved that the complexity of this task

is exponential in the number of micro-operations to be

packed.

The problem of packing micro-operations from straight

line segments into microinstruction words is one that has

commanded substantial attention in the literature in

recent years [2, 6, 17, 19, 20, kO, 53, 54, 55, 631. 	To

the author's knowledge, four different methods, with

several minor variations, have been proposed to tackle the

problem. These four methods are:

(1) Astonas and Plukas [6] present a matrix based

representation for micro-operations. They employ matrix

operations to generate all possible orderings;of

micro-operations complying with the pre-defined dependency

rules and explicitly eliminate all those configurations

not supported by the particular format under consideration

before selecting the best mapping. This proposal is of

purely theoretical interest, since it is too costly to

attempt to put into practice.

124

(2) Yau. Schowe and Tsuchiya [63] report an optimal

algorithmic method for generating all possible mappings of

micro-operations to comDlete microinstruction words

consistent with the ordering and resource contention

constraints imposed on the implementation. A complete

microinstruction is one into which no more

micro-operations may be packed - either because the

microinstruction is "full" or because the dependency and

resource contention relationships between micro-operations

are such that no other micro-operations could be included

in the word without violating these relationships. This

method generates microinstructions sequentially from a

Data Available 	(DAS.) of micro-operations whose parent

micro-operations in the dependency graph representation of

the microprogram have all previously been packed. From

the initial DAS it generates all possible complete

microinstructions and calculates the DAS resulting from

each. These are considered exhaustively in turn as

sources from which the second microinstruction is

generated, and so on. The process is illustrated in

figure 4.1.1

125

C Initial DAS

All Possible
Complete £ 3 	Microinstructions

J from Initial DAS

I ') C')
I 	DAS Resulting

C) C C) from Each

All Possible
Complete

J Microinstructions
from Each DAS

C) C) C) C) C) C) from Each
- DAS Resulting

Figure 4..1.1

Recognizing that this optimal method is too complex for

practical implementation, in the same report they also

present a simplified heuristic version of the algorithm.

Rather than calculating a new DAS from each complete

126

microinstruction generated from the previous DAS, as the

exhaustive algorithm does, this version selects out of the

set of complete microinstructions generated from the DAS a

single one "most likely" to lead to a minimal

microprogram, discarding the rest. The selected

microinstruction is used to produce a single new DAS from

which the next set of complete microinstructions is

generated, from which one is selected, and so on. Figure

4.1.2 illustrates the process.

Determination of the microinstruction to be selected

for inclusion in the microprogram out of the set generated

from the DAS is based upon a weighting factor calculated

for each member of the set. This is the sum of the

weights of all the micro-operations packed into the

microinstruction, where the weight of a micro-operation is

defined to be the number of descendants of that

micro-operation in the microprogram graph, ie. the total

number of micro-operations which cannot be packed before

this one has been. This strategy endeavours to take a

global view of the obvious desire to make each

micro-operation in the source microprogram "available" for

packing as early as possible.

The method is non-optimal, but is considerably less

complex than the optimal version.

127

CInitialDASD
/

r L

c DAS from one with
jçGreatest Weight

All Possible
Complete
Microinstruction
from Initial DAS

\ 	All Possible
Complete
Microinstructions
from that DAS

C 	DAS from one with
Greatest Weight

, 	/ 	
\

etc.

etc.

•

• 	________ Selected
• 	 Microinstruction

• 	- - - - Rejected
Microinstruction

Figure 11.1.2

128

(3) Tsuchiya and Gonzales [55] present a more

optimizing version of an algorithm first described by

Ramamoorthy and Tsuchiya [117] in which they partition the

source microprogram description into early and late

partitions on the basis of control and data dependency

between the micro-operations. The early partition class

for each micro-operation corresponds to the length of the

shortest path on the (conceptual in this case) dependency

graph representation of the microprogram from a start node

to the node representing that micro-operation. This is

the minimum number of microinstructions which must precede

the one into which the micro-operation in question is

packed, assuming an ancestor packed into each of them.

The late partition is calculated as the total number of

classes in the early partition (the depth of the

microprogram) minus the distance of the longest path from

the node representing the micro-operation in question to a

terminal node. This corresponds to the last possible

microinstruction into which that micro-operation could be

packed in a microprogram of minimal size; ie. one whose

size is equal to its depth. Figure 11.1.3 illustrates the

partitioning of a microprogram into early and late

partitions on the basis of dependency between the

micro-operations. Some micro-operations fall into the

same class in both the early and late partitions (marked

with an asterisk in figure 11.1.3). These are the

micro-operations which are part of a path in the

129

dependency graph the length of which is equal to the depth

of the microprogram. Such micro-operations .are referred

to as critical and are packed into microinstructions first

in this algorithm. The late partition and resource

conflict information, which is taken from a matrix of

pairwise relationships between the micro-operations, serve

as heuristic aids in determining the packing of the other

micro-operations. The algorithm as reported appears

somewhat ad hoc in nature. It is not optimal, but "quite

good".

(1) '

(2)

(3)

(5) *

(7)

	

(1) (2) 	(3) I 	(1)

a -----------

	

() 	1 	(14,)

	

(5) 	I (5) (3)

	

(6) (7) 	I 	(6)

(8) 	I (8) (7) (2)

Figure 14.1.3

130

It should be pointed out that in some instances the

matrix of pairwise resource contention relationships

between the micro-operations which this algorithm uses

cannot provide sufficient information to ensure correct

packing. For example, consider the three operations:

RA<-SPO (3)

SPO(4)<-SPO(4)+1

SPE (5) <-RB

as implemented on the Argonne AMP microcomputer [11].

Each of these micro-operations is pairwise independent of

each of the other two, since that machine has two general

purpose buses for transporting data to destination

registers, but the three cannot be implemented together -

as the resource contention matrix used in this packing

method would suggest they could.

(11) Dasuota and Tartar [19] propose an algorithm which

is a refinement of an earlier one presented by Dasgupta

and Jackson [20]. This takes a different approach to (2)

and (3) above in that it selects micro-operations

sequentially from the source microprogram without having

constructed a dependency graph. It assigns each

micro-operation to the earliest possible microinstruction

compatible with its relationships with those earlier

micro-operations which are already packed. It is a simple

131

algorithm which uses no heuristics whatsoever. In

particular, it takes no account of the dependants of each

micro-operation as it is packed and so, as shown by Yau et

al, cannot be optimal.

The two optimal algorithms of (1) and (2) above have

complexity exponential in N, where N is the number of

micro-operations in the straight line segment being

packed. The Dasgupta-Tartar method (D-T) has worst case

complexity proportional to N 2 , this being when each new

micro-operation added to the microprogram must be compared

for contention or dependency with each of the

micro-operations already packed. Its average complexity

is significantly less. The Tsuchiya-Gonzales method (T-G)

always requires in the order of N 2 comparisons to generate

the matrix of resource contention relationships between

the micro-operations and this dominates the complexity of

the actual packing algorithm. The Yau et al heuristic

algorithm (Y-S-T(h)) is considerably more complex than

either D-T or T-G, particularly in the worst case

situation. The average complexity appears to be of the

order of N 2 , although the details of the algorithm are not

described.

From the point of view of practical implementation s the

two optimal methods may be ignored and only D-T, T-G and

Y-S-T(h) need be considered further. D-T is more general

132

than the other two in that it expects poly-phase

implementations of microprograms (where the "time

validity" of each micro-operation is specified with the

micro-operation in the source microprogram) and therefore

handles with ease the situations of destination-source and

computed data dependencies identified in section 2.4. The

descriptions of the other two methods make no specific

mention of timing considerations. T-G assumes that two

micro-operations related by destination-source or computed

data dependencies may be packed together in the same

microinstruction word. Y-S-T(h), on the other hand, rules

that operations related by computed data dependency may be

packed together in the same word, but a micro-operation

dependent on a predecessor through destination-source

dependency must be packed in a subsequent microinstruction

word.

Mallett [40] compares these algorithms in further

detail and has implemented a version of all three. His

results indicate •that, in practice, there is no

significant difference between the algorithms with respect

to the actual number of microinstructions generated, which

is near optimal in each case. This bears out the

conclusions derived from an earlier version of MICHOMAP

concerning the packing of straight line segments of

micro-operations. Straight line segments usually are S

short, more than about six micro-operations in a single

segment being uncommon, and, where not, exhibit a high

133

degree of data dependency between the micro-operations,

thus restricting the scope for parallelism between them.

Each of the algorithms discussed above operates on

straight line segments of microprogram only (discounting

the minor extensions to the D-T algorithm noted in section

1.3). None can be imported directly for use in an

extended context such as required for packing the multiple

level canonical microprogram generated by ANALYSE.

MICROMAP implements a derivation of Yau et al's

heuristic algorithm. This choice has been influenced by

two factors. The first is the observation noted above

that a simple algorithm performs as well in practice as an

optimal one in packing straight line segments. The second

is that generating microinstructions sequentially from

micro-operations selected heuristically, as opposed to

selecting micro-operations sequentially and asigning each

to an appropriate microinstruction word, is better suited

to the goal of preserving the indivisibility and

inviolability of blocks of micro-operations demanded in

section 2.4. (It should be pointed out in passing that

the work on identifying potential parallelism between

micro-operations reported in chapter 2 could not possibly

proceed independently of consideration for the method of

packing the micro-operations. In fact, the policy

decisions to generate a dependency graph representation of

the microprogram as described in chapter 2 and to adopt a

134

packing algorithm in the style described below were

developed conjointly.)

Just as the Yau et al heuristic method is an order of

magnitude simplification on their optimal exhaustive

algorithm, so the algorithm which has been implemented in

MICROMAP is an order of magnitude simplification of the

former. It advances the pruning approach instituted by

Y-S-T(h) one step further to generate only a single

complete microinstruction word from the Data Available Set

at each step in the algorithm. Using the same weighting

factor that Y-S-T(h) uses to select a microinstruction out

of the set generated from the DAS, MICROMAP chooses

micro-operations out of the DAS for inclusion in the

current microinstruction word. Figure 4.1.4 illustrates

the process.

Figure 11.1.5 outlines the algorithm performed by

MICROMAP on the canonical microprogram representation

provided by ANALYSE and the format specification generated

by FORMAT. The basic algorithm for packing out of

straight line segments is described first before

illustrating how it may be extended to deal with the

non-primitive micro-operations of the canonical

microprogram that represent the modular control blocks of

the MDL description.

135

Initial DAS

Single Complete Microinstruction,
Generated by Ordered Selection of

L 	1 Micro-operations from the DAS

,.- - DAS Generated
from it

Single Complete Microinstruction,
r -i Generated by Ordered Selection of
L J Micro-operations from the DAS

D DAS generated
'- ---' from it

etc.

etc.

ri Final
Microinstruction

Figure 11.1. 11

136

CEEED
Start New Word

Put into DAS All Operations
Whose Parents have All
Already been Packed

[Select from DAS most

L Heavily Weighted Operation
I

 I

rDAS Empty

 >CstopD

Try to Pack it into

Current Micro-
instruction Word

Clash 	Success J__

[Defer this 	For Every Child of Packed

I Operation I 	Operation, Decrement Count
L-----of Parents Still to be Packed 1_____________

' 	Is Micro-
instruction

No

 (

Word Complete? Yes

No

Is DAS\es
\ Empty? /

[Restore All Clashed

L Operations to DAS

Figure 4.1.5

137

The first action taken by MICROMAP on reading the

outputs of ANALYSE and FORMAT is to take note of the

parameters defined in the format specification. These

concern whether the implementation supports

micro-operations related by computed data or destination-

source dependency in the same microinstruction word or

whether it enforces strict succession. On the basis of

this, MICROMAP treats as either weak or strong dependants

respectively the lists associated with each

micro-operation of the children related to it by these

dependencies.

MICROMAP maintains a Data Available Set of those

micro-operations all of whose parents in the dependency

graph representation of the microprogram have been packed

already. Initially, the DAS will contain those

micro-operations with no parents in the graph. ANALYSE'S

construction of the dependency graph ensures that all

micro-operations in the DAS at any one time are mutually

independent, so they are all candidates for inclusion in

the current microinstruction word. The microinstruction

format, reflecting as it does the microprogram level

organization of the processor implementation, is the only

limitation on the degree of their coincident placement.

Each micro-operation in the dependency graph is

assigned a weight which is calculated on the basis of-the

number of descendants of that node in the graph, as

explained above. (This is performed by ANALYSE while it

138

assesses dependencies - the calculation of weights for the

micro-operations involves minimal overheads). This weight

is the determining factor in the selection of

micro-operations from the DAS: the most heavily weighted

micro-operation held in the DAS is picked out for packing

into the current microinstruction word. It 'is tested for

resource contention with the other micro-operations

already packed into the word (the mechanism for this will

be described in section 11.2) and, as a result of this

test, is either packed into the current microinstruction

or else deferred for possible inclusion in the next word.

Once a micro-operation has been assigned to a

microinstruction word, it remains there.

When a micro-operation is successfully packed into the

current microinstruction word, all micro-operations which

are related to it by weak dependency are checked to

ascertain whether they might be brought immediately into

the DAS for possible inclusion in the current word. This

would be the case for a particular child if the

micro-operation just packed was the last of its parents to

be packed and the child was related to any other parents

also packed in the current word by weak dependency only.

The children of a micro-operation related by strong

dependency are checked on the completion of the packing of

the microinstruction in which the parent is included.

The selection and attempted packing of micro-operations

continues in this fashion until either there are no longer

139

any micro-operations left in the DAS or it is detected

that the current microinstruction can accommodate no more

micro-operations. A new microinstruction is started when

this happens. The DAS is refilled from two sources: with

all those micro-operations which were unable to find a

place in the previous microinstruction through clashing

over resource contention with micro-operations already

packed; and with those micro-operations newly made

available by the last of their parents being packed in the

previous microinstruction. (Or at least when the

appearance is given of the last of their parents having

just been packed - the duration of each micro-operation,

as defined in the format specification in terms of

processor cycles, is allowed to elapse before the effect

of the packing of the micro-operation is transmitted to

its dependants.)

Microinstructions are generated sequentially in this

manner until all micro-operations in the source

microprogram have been packed.

Before describing the extensions to the algorithm which

allow it to handle the block structured canonical

microprogram output by ANALYSE, it is instructive to

compare its performance in the context of straight line

segments against the other compaction methods which

operate solely in this environment.

The worst case complexity of the algorithm is in the

140

order of N 2 , this being in the situation where all N

micro-operations are potentially concurrent, but all clash

with each other over resource contention. In practice,

the complexity is close to being linearly proportional to

N with deviation from linearity being dependent on the

number of clashes generated in attempted packings. Its

capability to cope with the different possibilities for

the implementation of destination-source and computed data

dependency relationships and its permitting of

user-specified synchronization renders the algorithm

implemented by MICROMAP •in practice at least as general as

the Dasgupta-Tartar method and more so than the Tsuchiya-

Gonzales or Yau et al heuristics methods.

In assessing the relative optimality of the algorithm,

it may be observed that the weighting factor used in

determining the micro-operation to be selected from the

DAS for inclusion in the current microinstruction serves

to promote a "well filled" DAS for future

microinstructions. This decreases the likelihood of

leaving any "holes" in the microinstruction words which

might have been filled by a micro-operation were it

available. The late partition class used by the Tsuchiya-

Gonzales algorithm as a heuristic aid for packing

non-critical micro-operations denotes the length of the

longest path from the micro-operation in question to a

terminal node in the dependency graph. This represents an

approximation to the same weighting factor, but it is not

141

as sensitive since it reflects only one dimension of the

dependency relationship. For instance, T-G would pack a

micro-operation with one child and one grandchild in

preference to another micro-operation with twelve children

but no grandchildren, despite the intuitively obvious fact

that in almost all situations the former is more likely to

leave "holes".

The Dasgupta-Tartar algorithm takes no account of the

dependants of micro-operations when determining whether

one should be placed before another. For two

micro-operations which are mutually independent but in

contention over resources, the relative ordering of their

placement is determined solely by their relative ordering

in the source microprogram; in other words, totally

arbitrarily, affording ample opportunity for loss of

optimality.

The Yau et al heuristic algorithm (Y-S-T(h)) is, a

priori, more likely to produce an optimal packing than

MICROMAP. Each microinstruction which MICROMAP generates

from a given DAS would also be generated from the same DAS

by Y-S-T(h) which has the opportunity of later rejecting

that one and selecting another in preference to it.

Y-S-T(h) will choose a different microinstruction to that

generated by MICROMAP from the same DAS only in the case

where the choice of the most heavily weighted operation,

as selected by the latter, precludes the packing of two or

more subsequent selections whose combined weights are

142

greater than that of the first choice. But empirical

evidence reveals this to be an uncommon situation.

Resource contention between micro-operations implemented

in a horizontally structured microinstruction format

usually is a transitive relationship. For three

potentially concurrent micro-operations, A, B and C, when

A contends with both B and C it is rare for B and C not to

contend. This arises from the fact that a set of

micro-operations often may be partitioned into several

disjoint classes, each associated with a distinct set of

fields in the microinstruction format. No resource

contention is exhibited between micro-operations belonging

to different classes, but there is universal contention

among those micro-operations belonging to the same class.

The only common situation where this rule does not

apply is with a so-called "dippnp1" microinstruction

format [n]. Here the microinstruction may assume one of

several mutually exclusive modes (determined by a Mode

Interpretation type field - see section 3.2) with

horizontal parallelism within each mode. It is then

possible that the selection of the most heavily weighted

micro-operation from the DAS by MICROMAP may define a

choice of mode incompatible with that required by the rest

of the micro-operations in the DAS, thus giving rise to a

poorly filled microinstruction word. Two points about

this situation should be noted, however. The first is

that the choice by Y-S-T(h) of a microinstruction in a

143

different mode from, and with a greater total weight than

that generated by MICROtMAP will prove superior only if it

furnishes to the DAS more micro-operations compatible with

that one initially selected by MICROMAP - otherwise it is

only deferring the necessary generation of that

"unpopular" microinstruction. This particular occurrence

is uncomon precisely because of the categorization of

micro-operations observed above: micro-operations tend to

be dependent on other micro-operations in their own class.

It is probable that in the case under consideration

micro-operations furnished to the DAS will be associated

with the same mode as their parent and the singularity of

the exceptional one will be preserved. The second point

to be noted simply is that Y-S-T(h) is not optimal. There

is no guarantee that a microinstruction which it rejects

may not turn out to lead to a better packing than the one

which it selects. It may therefore be concluded that the

expected difference in optimizing capability between the

algorithm implemented by MICROMAP and Y-S-T(h) is slight -

not enough to justify the increased complexity of the

latter.

Notwithstanding this analysis of the expected

performance of the different packing algorithms, the

observation recorded above should be recollected: in

practice the properties of micro-operations within

straight line segments leave little scope for gainful

144

optimization. Straight line segments tend to be short

and, where not, tend to exhibit a high degree of data

dependency. It is clear that optimization of the packing

of micro-operations from straight line segments into

microinstruction words is not the most critical factor in

determining the efficacy of a microprogram implementation.

Simplicity and generality of the packing algorithm and

congeniality of the design medium then assume enhanced

significance. This evidence reinforces the arguments

advocating an integrated approach to the problem of

microprogram design which provides increased scope for

optimization at the same time as expediting the task of

actually designing the system to be implemented.

The rest of this section describes how MICROMAP handles

the packing of the non-primitive micro-operations

generated by ANALYSE to represent the modular control

blocks of the MDL language. The algorithm is outlined in

figure 4.1.6.

145

CartD

[Select Micro-operation
from DAS at Current Level

[

•

	

Descend 1
	 - - -------

Attempt to Pack

	

One Level] 	 in to Current Word

All Micro-operation s \
Put Components 	 K 	at Current Level
of Block into 	 \ have been Packed?
WAITING List 	 I "- ------------------

at New Level Yes 	 No

Ascend One Level

I -------

eed to Start New Word __C_N - -- -_ -_ -_ -_ -_ -_ -- - - - - - - - - - -_ -_ -_ ~__
Yes 	 No

Set up DAS with Clashed
Micro-operations Plus
Ones Newly Available

Figure 'Ll.b

146

The basic structure of the algorithm remains the same

as described above for the compaction of straight line

segments. A separate Data Available Set and "WAITING"

list is maintained for each level of micro-operation in

the canonical microprogram. The DAS for each level is

employed in the manner as described before: containing

those micro-operations at that level whose parents (if

any) have already been packed. The WAITING list is a list

of the micro-operations at that level which have not yet

been made available for packing. MICROMAP executes

recursively in implementing the algorithm. Conceptually

it packs the single micro-operation which exists at level

zero. This is a block type micro-operation constituting

the complete microprogram. All of the components of the

block are brought into the WAITING list for the level one

lower than the level of the block. When a micro-operation

selected from the DAS at any level is found to be of block

type, the plane of operation of the algorithm descends one

level and all of the block's component micro-operations

are brought into the WAITING list at the lower level.

Packing then proceeds on the micro-operations at that

level. Only when the WAITING list and the DAS at the

current level have been exhausted, ie. all of the

component micro-operations of the block have been packed,

is the level of operation ascended. When this happens -

when all of its components have been packed - the block

type micro-operation itself is considered packed and,

147

where appropriate, its children may be made available for

packing (once the "duration" of each of its components has

elapsed, that is).

This disciplined, hierarchical approach to the packing

of micro-operations follows and preserves the structured

separation of blocks imposed by ANALYSE through

enforcement of the "Multi Level Dependency Rule" (see

section 2.4). This ensures that all components of a block

are packed together and that the pre-defined ordering

between micro-operations at all levels is observed in

implementation.

One further difference between the basic and the

extended algorithms for packing concerns the selection of

micro-operations from the Data Available Set. Primitive

micro-operations are ascribed the same weighting factor

and are selected on this basis, but some policy must be

formulated for deciding between a primitive and a block

type micro-operation in the same DAS. It would be

perfectly possible to ascribe a weight to non-primitive

micro-operations on exactly the same basis as for

primitive micro-operations and to select between them

accordingly, but consideration reveals this strategy not

to be reasonable. Primitive micro-operations are selected

according to weight in an attempt to furnish more

micro-operations into the DAS. The purpose of this

strategy is to afford increased opportunity for the joint

packing of mutually compatible micro-operations in later

148

microinstruction words. But block type micro-operations

are inviolable and so, in general, cannot be packed

jointly with any primitive micro-operations which are not

part of the block. Consider the case of a Loop block type

micro-operation and a primitive micro-operation being the

only two members of a DAS. The components Of the loop

must be packed in separate microinstructions from all

other micro-operations, no matter what else is available

for packing at the same time; whereas the primitive

micro-operation could possibly be packed beside other

primitive micro-operations were there any available. It

therefore makes sense, irrespective of the weight of the

primitive micro-operation, to pack the loop before it in

the hope of furnishing further primitive micro-operations

(the children of the loop) for possible packing with that

one. That is, packing primitive micro-operations before

block type ones will not prevent any "holes" in subsequent

microinstruction words, but vice versa may do.

Inevitably however, this rule is not quite universally

true. Loop blocks have an implicit label associated with

the head of the block and a branch micro-operation at the

tail and so must be packed totally separately from all

micro-operations which are not included, within the loop.

Conditional blocks on the other hand, do not have a label

associated with the head of the block. They have a label

at the tail and a branch as the first micro-operation of

the block. There is no reason why that branch

149

micro-operation should not coexist in the same

microinstruction word as primitive micro-operations which

are not themselves part of the block. (Recall in section

2.5 the observation that data dependency of all but the

initial branch micro-operation at the head of the block on

any preceding micro-operations outside of the block

resulted in the block itself being marked as weakly

dependent on the appropriate parent). it is necessary

therefore to formulate a further policy to be enacted when

a conditional block micro-operation and primitive

micro-operations are available for selection from the same

DAS. No matter what weight is the primitive

micro-operation, it must be remembered that only the first

micro-operation of the block may coexist with primitive

micro-operations outside the block, and so there is

nothing to be gained from packing a primitive

micro-operation at the expense of the conditional block.

The conditional block should be packed - thus perhaps

releasing primitive type children - and as many as

possible of the currently available primitive

micro-operations should be packed along with the initial

branch micro-operation of the block.

This is the policy which MICROMAP implements, but doing

so causes irregularities in the execution of the algorithm

described in figure 4.1.6. Normally, whenever a block

type micro-operation is selected, one level of operation

is descended immediately and all components of the block

150

are packed before further higher level micro-operations

are selected. When a conditional block type

micro-operation is selected, however, after packing the

first of its components - the branch, on which all the

rest of its components are dependent - the algorithm

temporarily returns to the level of the block itself to

try to pack in the same microinstruction any available

primitive micro-operations at that level.

This exemplifies the efforts that have been made in

MICROMAP to optimize packing within the constraints of the

minimal complexity of the algorithm.

Figure 4.1.7 summarizes the policy for selection of

micro-operations from the DAS when it may contain

primitive and non-primitive types. Note that block type

micro-operations which have a label explicitly or

implicitly associated with the head of the block are

selected only at the initiation of a new microinstruction

word (and, similarly, a new microinstruction word is

always started after completion of packing of a block

succeeded by a label - Loop, Ifblock or Elseblock).

151

C Start D

Y!,/Start of 	No
New Word 1,/

Ye,/ABEL bloc"\jo
Available?

	

[Select itJf/ LOOP Block 	.a.......j
Avai able?

r Select Any 1 	CONDITIONALNo

L °'
of Them] 	'B1ock Avai1ab1e/

	

- 	I 	 Pm1r

Select Any
One of Them

Figure 4.1.7

No mention has been made so far of how the coincident

placement of micro-operations explicitly specified for

concurrent execution in the MDL microprogram description

I Micro-operation

L with Heaviest Weight

152

is accomplished. Such micro-operations are included by

ANALYSE in a single block type micro-operation (of type

Syncblock) the normal treatment of which is sufficient to

preserve their indivisibility when packed. But more than

indivisibility must be guaranteed: they must be

indivisible within a single microinstruction word.

Therefore, when a Syncblock type micro-operation is

selected from the DAS - it is treated exactly as a

primitive micro-operation for this purpose - MICROMAP must

pack all the component micro-operations of the block into

the current microinstruction, or else pack none at all.

This requires the use of a duplicate record of the current

microinstruction word. Into this are packed one by one

the component micro-operations of the Syncblock until

either they are all packed, in which case the Syricblock is

deemed packed into the current word., or else one of the

component micro-operations clashes with a micro-operation

already packed into the word, in which case the whole

Syncblook is deferred for attempted packing into a

subsequent microinstruction. (If one of the component

micro-operations of the Syncblock clashes with another

component of the same block then an error is signalled,

since the designer's specification is unachievable).

This concludes the description of how MICROMAP pacIs a

block structured representation of a microprogram into

microinstruction words.

153

Defined Microinstruction Format

This section considers the question of how to generate

the appropriate micro-orders in the specified

microinstruction format which will realize the behaviour

defined by the given register transfer level

micro-operations.

A micro-operation is a primitive action at the

processor level which may be realized by the composition

of primitive actions at the microprogram, level. In MDS,

an MFM format description details the micro-orders which

may be evoked from microinstructions in the chosen format.

It also defines the structural relationship between the

micro-orders, governed by the field organization of the

format. This determines which micro-orders may be evoked

from the same microinstruction word. The problem

investigated here is, given a micro-operation and a

microinstruction format, how to recognize those

micro-orders that may all be evoked from the same

microinstruction whose combined effect is to realize the

action of the micro-operation.

In the preceding two chapters, much emphasis was laid

on the fact that neither the micro-operations described in

MDL nor the micro-orders specified in MFM connote any

particular semantic interpretation in MDS. How then may

154

MICROMAP generate the set of micro-orders to realize a

particular micro-operation? The solution must be

syntactic. It relies on the style of format descriptions

in MFM and the fact that they are tailored to the

implementation of the MDL microprogram in question. This

latter fact permits the processor level resources referred

-to in both descriptions to be attributed the same name in

each.

In an MFM format description, each Select type field is

conceptually associated with a single microprogram level

system resource. Its definition is given as a list of

expressions, in terms of the literal names of processor

level resources and the names of other Select type fields,

which denote the alternative "values" that may be assumed

by that resource. Select type field names themselves are

incorporated into expressions denoting the actions of

micro-orders for other fields when there is a connexion in

the sections of data path associated with each of them.

This style of description is such that the

instantiation of a field name, by substituting the

expression for a micro-order belonging to that field

wherever the former occurs Inside another micro-order

description, results in an expression of the composite

action associated with the combined activation of the two

micro-orders In question. For example, consider the two

field definitions:

155

[ALU_bus] (Select) := <0>: 110_bus];

<1>: B Reg;

<2>: [1mm Data];

<3>: Ace.

[ALU_in] (select) := <0>: LALU_busj&LMaskJ;

<1>: 0.

Then the substitution of the expression "Ace" for

LALU_bus] in the expansion of LALU_in] results in the

expression "Acc&LMask]" for LALU_ini - which is the action

which would result from activating the two micro-orders in

question for the two fields [ALU_busi and [ALU_ini.

Thus, by fully expanding to literal processor level

names, via constituent micro-orders, all field names

occurring in the expression of the action of a

micro-order, it is possible to generate a textual

description of the composite action effected by the

combined activation of the micro-orders selected in the

process.

It remains to be noted that the loading of processor

level registers is controlled by micro-orders belonging to

Execute type fields. So the set of micro-orders which

realizes a particular micro-operation will always contain

a single member of that type. Then the full expansion of

all the field names occurring in a micro-order as

described above, when-the micro-order is of type Execute,

will result in an action which is a complete register

156

transfer expression in terms solely of the processor level

resources of the system.

It follows that the condition stated below is necessary

and sufficient for a particular (ordered) set of

micro-orders in a defined format to realize a given

micro-operation:

Condition 4.2.1 The micro-order of the set is of type

Execute and the expression for that micro-order may

be expanded ultimately to a literal register transfer

expression such that:

The rest of the micro-orders in the set are members

of the fields which are instantiated in the process

of expanding the expression, with the order of

instantiation of the field names corresponding to the

order of the respective micro-orders in the set.

The register transfer expression thus generated

matches exactly the micro-operation itself.

The format description may be envisaged as being

represented by a series of tree structures (a forest), as

illustrated in figure 4.2.1. Two basic.types of node are

defined in the forest: expression nodes and term nodes.

Term type nodes may be divided into two sub-types: literal

and non-literal. In representing the microinstruction

format, expression nodes correspond to micro-orders,

literal term nodes to contiguous sections of literal

157

characters in the micro-order description, and non-literal

term nodes to field names. The tree structure

representation of the microinstruction consists of

alternate layers of expression and term type nodes. The

children of each non-literal term are expression nodes

corresponding to all the micro-orders belonging to that

field. The children for each expression node are are

literal and non-literal term nodes corresponding

respectively to the strings of symbols and field names

comprising the description of the micro-order, in the

order in which they occur in the description. Literal

term nodes have no children. At the root of each of the

trees in the forest is a non-literal term node

corresponding to one of the Execute type fields in the

format description. There are as many trees in the forest

as Execute type fields in the format description. The

leaves of each tree are all literal term nodes. (There is

nothing to prevent the format specification from

containing recursive field definitions, a physical

impossibility which would be modelled as a tree of

infinite depth, but this is detected by MICROMAP as will

be described below.)

158

c:: 	c::

c::c::c::

[EXECUTE type field]

c4::~c:::Jp

r---i field
L...._J name

,.---- literal
string

Figure 4L2.1

	

[]

micro-order

The process of searching for a set of micro-orders to

implement a micro -operation may be seen as a depth first

159

"AND/OR" search L4 111 through the tree structure (selecting

one child from each field node and all children of each

micro-order node) for a set of terminal nodes the

expressions for which may be concatenated to synthesize

the expression of the micro-operation.

This model serves as a framework for the 'approach

adopted by MICROMAP for generating an implementation of a

micro-operation in terms, of the micro-orders of the

defined format. Using the technique of "recursive

descent" 137, 161, it performs a depth first search

through the trees defined by the data structure

representing the microinstruction format passed to it by

FORMAT.

The algorithm, as outlined in figure 4.2.2, basically

consists of two mutually recursive modules: PARSE FIELD

and PARSE ENTRY. PARSE FIELD attempts to match each of

the micro-orders belonging to the field in question with

an initial substring of the micro-operation presented to

it. It performs this by calling PARSE ENTRY on behalf of

each micro-order. If any of the micro-orders are matched

by PARSE ENTRY with an initial substring of the

micro-operation then PARSE FIELD is deemed successful and

returns to its calling point with that final substring of

the micro-operation which has still to be matched with the

micro-orders of the format. This corresponds to the best

of the possibly multiple matchings recorded by its

micro-orders. If no such matching is recorded, then PARSE

160

FIELD returns with failure.

PARSE ENTRY attempts to match the expression for the

micro-order on whose behalf it is called, which consists

of a mixed string of literal characters and field names,

with an initial substring of the micro-operation presented

to it. It first checks for compatibility between the

literal terms of the micro-order and the micro-operation.

If matching is seen to be impossible it immediately

returns with failure. Otherwise, it strips the

micro-operation of the initial substring which has been

matched by the literals of the micro-order preceding the

first field name, and calls PARSE FIELD for the

appropriate field, passing the reduced micro-operation to

it. If PARSE FIELD returns with success, then this

matching continues. (Hence the requirement for matching

micro-orders with only an initial string of the

micro-operation). It continues until the whole

micro-order has been matched with an initial substring of

the micro-operation. If PARSE FIELD fails, then PARSE

ENTRY immediately returns with failure.

161

PARSE FIELD:

for all micro-orders

PARSE ENTRY

return with failure if no successful matchings

else return with success and best match

PARSE ENTRY:

return with failure if literals incompatible

until micro-order completely matched

return with failure if initial literals do not match

strip initial literals from micro-operation

PARSE FIELD (for field name next in expression)

return with failure if PARSE FIELD fails

return with success and reduced micro-operation

Figure 4.2.2

162

During this search through the tree structures of the

microinstruction format, MICROMAP is able to detect any

field which has been defined recursively in terms of

itself. If it does detect this, a warning message is

issued and the search of that branch of the tree is

abandoned.

The algorithm uses each of the Execute type fields of

the format as the root node of successive search trees in

this manner (the micro-orders of these fields must match

the whole micro-operation). The path down the tree which

results In a successful matching of a micro-operation -

the recognition path - identifies the fields, and the

micro-orders belonging to thOse fields, which are involved

in the implementation of that micro-operation, as

illustrated in figure 4.2.3.

By binding the value associated with each of these

micro-orders to the field to which it belongs, it is

possible to begin to generate the actual microcode

required to realize each micro-operation. (MICROMAP

maintains a bit map of the microinstruction word to which

it binds those field values as they are generated.) To do

this completely requires more account to be taken of the

structural relationships between the fields. If a Mode

Interpretation type field governs the structure of thç

microinstruction format, then the involvement of

micro-orders belonging to particular fields might carry

163

further implications about the format structure and hence

about the value that the Mode Interpretation field must

take in order to "authorize" that structure. Similar

factors must be considered when a micro-order involved in

realizing a micro-operation is associated with a

Conjunction construct. In this case a value has to be

bound to more than one field to evoke that micro-order.

The data structure representing the microinstruction

format which is presented by FORMAT to MICROMAP contains

all the structural information about the dependencies of

certain fields on the values of other fields. So MICROMAP

is able to bind the appropriate values to all the affected

fields in such situations, thus reflecting completely the

ramifications of effecting micro-operations with the

particular set of micro-orders which are supported in the

specified microinstruction format.

164

EXECUTE type field

' '-c ----

:

/
/

,

C cj c:

U

1 -1 - 1 c:': r - J cE
-

/

cJ 	 C]] t]
I 	 / 	i

c5 	c:':D c3c±x:
RM

field
name

C literal
-' string

11 micro-order
Figure 4.2.3

As noted above, the recognition path associated with

165

the successful matching of a micro-operation with the

micro-orders of a particular format identifies the values

which should be bound to the relevant fields in order to

select those micro-orders. The physical counterpart to

this is that it identifies the particular usage, by the

micro-operation in question, of the microprogram level

system resource controlled by each field so affected. Any

other micro-operation which required a different

utilization of one such resource would cause a different

value to be bound to the appropriate field.

This observation prompts the insight that, by comparing

the recognition paths for two micro-operations in a

particular microinstruction format, whether or not they

will clash over resource contention is made immediately

clear. That is, if having packed one micro-operation into

a microinstruction word, MICROMAP then attempts to pack

another, then comparison of the value caused to be bound

to each field by the second micro-operation with that

value already bound to it by'the first facilitates the

immediate detection of resource contention. The attempt

to pack the second micro-operation may then be aborted.

Contention for physical system resources is not the

only barrier to the joint inclusion of logically

independent micro-operations in the same microinstruction

word. Their implementations might generate different S and

incompatible format structures in a multiple format

microinstruction, ie. format contention. If this is the

case, then its detection by MICROMAP is performed in a

manner absolutely consistent with the algorithm's

detection of contention for physical resources. Format

contention is manifest in MICROMAP by each micro-operation

involved attempting to cause a different value to be bound

to a Mode Interpretation field.

In this way, MICROMAP is able to check for resource

contention only where necessary: between micro-operations

which are under consideration for packing into the same

microinstruction word. Further, it does this extremely

efficiently: essentially receiving the information "for

nothing" from the micro-operation recognition algorithm as

the latter builds up a bit map for the microinstruction

being generated.

Note that the detection of resource contention by

MICROMAP, as described above, does not prevent any

combination of micro-orders that the microinstruction

format permits. That is, if the microinstruction format

permits the designer to generate illogical combinations of

control signals, then so will MICROMAP. MICROMAP also

provides the designer with the capability to prevent any

combination of control signals that is not desirable.

167

Microinstruction

- Bus

LBus] (Select) <0:0> := <1>: A.

[Bus] (Select) <1:1> := <1>: B.

[Load C] (Execute) <2:2> := <1>: C <- LBusi.

[Load Di (Execute) <3:3> := <1>: D <- [Bus].

Figure 4.2.4

Consider the digital system and associated format

description of figure 4.2.4. There are four registers and

a common bus between them. The gating of data between the

registers and the bus is controlled by an unencoded

microinstruction format. That is, the control signals for

gating registers A and B onto the bus are not mutually

exclusive (note the two fields with the same name). It is

quite possible under this microinstruction format to pack

168

together the two micro-operations "C<-A" and "D<-B",

although the effect will not be as desired if this is

attempted. The designer may prevent this in MDS by

ensuring that only one of the registers is gated on to the

bus at any one time: whenever one is gated on to the bus

then the other is prevented from so doing. This is

achieved by associating a Conjunction construct with each

of the fields gating A and B on to the bus. (This

necessitates that these fields now be given different

names.) Thus:-

[A_Bus] (Select) 	<0:0> 	:= <1>: 	%When 	[B_Bus]=O:

[B_Bus] (Select) 	<1:1>-:= <1>: 	%When 	[A_Bus]=O:

[Load C] (Execute) 	<2:2> :: 	 <1>: 	C<-[A—Bus], C<-[B—Bus].

[Load D] (Execute) 	<3:3> : 	<1>: 	D<-[A—Bus], D<-[B_Bus].

If the bus is OR-tied and it may be desirable to gate

A OR B on to the bus, then this too should be specified

with another conjunction in [A_Bus] and [B_Bus]. Thus:-

[A_Bus] (Select) := <1>: %When EB_Bus]:O: A,

%When [B_Bus]:1: A OR B.

and so on.

The same effect could be produced by amalgamating the

two [Bus] fields into a single one. Thus:-

169

[Bus] (Select) <0:1> := <1>: B;

<2>: A;

<3>: A OR B,

B OR A.

Thus MDS reflects exactly the properties of the control

organization modelled in MFM. If the microinstruction

format prevents resource contention (as normally is the

case), then it will be prevented by MICROMAP. But if the

chosen format leaves it up to the designer to prevent

undesirable combinations of micro-orders, then the

designer is given this responsibility in MDS also.

The seven field types introduced in chapter 3 included

the Register type field. This, it was stated, controls

access to registers named at the microprogram level, and

requires the bisection of any micro-operations implemented

thereby.

MICROMAP must be capable of dealing with two different

aspects of the use of this type of field. First, it must

be capable of recognizing when a micro-operation, as

specified in the MDL description, must be split into two

parts at such a register. Second, it must be able to deal

with the two resultant micro-operations when they are

rephrased in terms of the microprogram level register.

name.

The Register type field in the first instance is

170

treated exactly as a Select type field which is defined in

terms of possible sources of data that may be loaded into

the register. The checks which MICROMAP makes for field

recursion and resource contention have to be suppressed in

this case for the recognition of the second half of the

micro-operation, since this will be implemented in a

different microinstruction from the first. On recognition

of a micro-operation which must be split, MICROMAP prints

out a message declaring how the micro-operation should be

split to be implemented as two separate actions.

This is left to the designer to perform. The

microprogram may then be resubmitted containing

micro-operations which refer to the microprogram level

register as if it was a processor level resource. This

time MICROMAP treats the Register type field as an Execute

type for the loading of the register and must recognize

the Register field name when the register is used as a

source of data in the micro-operation.

It was originally hoped that the separation of the two

halves of the micro-operation and their packing could all

be performed completely automatically when this

circumstance arose. However, the difficulty of this task

(which involves the generation of a new micro-operation

and its insertion into the microprogram) was seen not to

be justifiable. This is because degradation in the

optimality of packing as a result would be very likely.

This is most easily illustrated by example.

171

Consider the micro-operation "Ace <- Ace + 512", where

"512" is supplied from an Emit type field in the

microinstruction word, but the microinstruction format is

such that the Emit field exists only in a format mode

incompatible with that required to effect the rest of the

micro-operation. The implementation therefore requires an

intermediate buffer register to hold the constant

temporarily, with a Register type field in the format to

load it. (Note that the loading of the constant might be

performed automatically as a consequence of the mode of

the microinstruction. This would be modelled by a dummy

Register field.) MICROMAP recognizes that the stated

micro-operation must be implemented as the two

micro-operations:

ConstBuff <- 512

Ace <- Ace + ConstBuff

By packing the first of these micro-operations into some

earlier microinstruction of compatible mode, the whole

microprogram could be packed in the same number of

microinstructions as if the two were implemented as a

single micro-operation. But this would not be possible if

the task was performed automatically by MICROMAP. Due to

the fact that MICROMAP generates micro-operations

sequentially, at the time at which it attempted to pack

the composite micro-operation (this would be determined by

the data dependency of "Ace"), it would be too late to be

able to pack "Constbuff<-512" in a preceding

172

microinstruction.

It is felt that the facility provided, the detection

and notification of micro-operations which should be

implemented over more than one microinstruction,

represents a useful and realistic assistance to the

designer which is of greater practical value than vain

attempts to perform every function automatically. Again,

this approach adheres to the philosophy of providing

maximum assistance to the designer while taking due regard

of his innate capability to perform some functions more

easily, or better, than a totally automated system.

Implicit in the preceding discussions has been an

assumption: that to each micro-operation being implemented

in the specified microinstruction format there will

correspond a unique set of micro-orders, defining a unique

microinstruction configuration, which will realize that

micro-operation. In many circumstances this Is an invalid

assumption. It is as a consequence of the encoding of

functions in some processor organizations (eg. the AMD

2901A bit slice microprocessor lii) and it is. the

deliberate design philosophy of others (eg. the Xerox

Maxc2 processor L261 or the Argonne AMP microcomputer

[111) that some micro-operations may be implemented by

more than one microinstruction configuration. These two

situations are manifest respectively as a particular set

of micro-orders being supported by more than one

173

configuration of the various fields involved, and more

than one set of micro-orders being capable of realizing

the given micro-operation. This latter situation reflects

the duplicity of resources that sometimes may be provided

in a processor implementation.

In such a situation, it is quite feasible that some

other micro-operation, logically independent of one

exhibiting this property, may clash over resource

contention with one or several of the possible

microinstruction configurations for that micro-operation,

but may be capable of being Implemented in conjunction

with one other of its possible configurations.

This is perfectly exemplified by the AMD 2901A

microprocessor chip. It has sixteen Internal registers

and a single output port and Its function encodings

require that the operands for arithmetic and logical

operations be selected in pairs. Sometimes one operand of

the pair is zero. As a result, there are seventy one

different configurations for the relevant microinstruction

fields which will cause the contents of one of the

Internal registers to be passed to the output port. There

are also four different configurations to increment by one

one of the sixteen internal registers. But there is only

one single configuration for the relevant fields which

will cause both of these operations to be effected from

the same microinstruction word.

This demonstrates the necessity for MICROMAP to

174

generate all possible sets of micro-orders and associated

bindings of values to fields which may realize each

micro-operation implemented in the specified

microinstruction format. Then, when attempting to pack

further micro-operations into a microinstruction word

which already has a micro-operation packed into it, those

configurations for the original micro-operation with which

the subsequent micro-operations are in contention may be

discarded. Only those resultant composite configurations

which are capable of implementing the micro-operations in

conjunction need be retained. (Note that it is only when a

subsequent micro-operation conflicts with all possible

configurations for previously packed micro-operations that

it is deemed to have "Clashed" and is deferred for

possible inclusion in a later microinstruction, as

described previously.)

There remains two further points to be observed

regarding the realization of micro-operations by the

micro-orders of a particular microinstruction format.

MICROMAP may have generated several possible

configurations for a microinstruction to implement the

micro-operations packed into it. Which should it choose

to generate as output? And what about the fields to which

no micro-orders have been explicitly bound - what value

should they take? These two questions are related, and

the answer to them both is to be found in the default

175

values ascribed to fields in the MFM format specification,

as described in section 3.2. To all fields not involved

in the realization of micro-operations MICROMAP binds the

default value for that field. Then the microinstruction

configuration selected for inclusion in the microprogram

is that one with the highest number of fields assuming

their default values. MICROMAP outputs the actual binary

bit pattern for the microinstructions generated to effect

the behaviour defined by the micro-operations packed into

them, it also produces a listing of these

micro-operations and the values bound to the fields in

realizing them. An example of this is given in Appendix

1(d)

176

C iN p

The microinstructions generated by MICROMAP are

intended to implement the behaviour defined by an MDL

microprogram description. That behaviour depends on an

assumed ordering of execution of the constituent

micro-operations which is based on the implicit sequential

ordering of executive micro-operations together with the

properties of altering the sequential order of execution

identified with control micro-operations. Associated with

each branch control statement is a well defined set of

destination statements to which control should be

transferred after the execution of the branch

micro-operation.

This ordering of the flow of control was taken into

account by ANALYSE in partitioning the microprogram, but

so far no mention has been made of it with respect to the

microinstructions generated, which are intended to follow

the same control flow.

Branch type micro-operations are recognized and matched

to micro-orders by MICROMAP just like all other

micro-operations, except for the field which determines

from which control store address the next microinstruction

should be fetched. MICROMAP fills this with an index into

a label table - to the position associated with the label

which is the destination of the branch (this has been

identified by ANALYSE). But, in order to enable the

177

generation of complete microcode, MICHOMAP must associate

a destination address with each branch micro-operation.

Two types of branch destination (label) occur in an MDL

microprogram: explicit and implicit. Explicit labels are

recognized by ANALYSE which associates with each a block

type micro-operation containing all of the

micro-operations succeeding that label in the

microprogram. This relieves the label from being

identified with one particular micro-operation and allows

the micro-operations to be packed in the most suitable

order. Then the address associated with that label in the

microprogram generated simply is the first

microinstruction into which the block type micro-operation

corresponding to the label is packed. This is entered in

the appropriate label table position.

It was noted in section 2.5 that each conditional block

and loop has associated with it two positions to which

jumps are made, as illustrated again in figure 14.3.1.

178

COND Then 	 if COND goto Li

Else 	 goto L2

Li:

Finish 	 = 	L2:

While COND Loop 	=

Exit If COND 	=

Reoeat 	 =

L2: if COND goto Li

if COND goto Li

goto L2

Li:

Figure 4.3.1

As each micro-operation corresponding to these types of

block is packed, t4ICROMAP notes the microinstruction index

associated with each of the label positions and inserts

them into the appropriate label table entries. These are

calculated on the basis of the level of the block and are

179

the entries to which the corresponding branch

micro-operations are made to refer to.

At this point, a simple optimization performed by

MICROMAP might be pointed out. If a microinstruction is

generated which contains only an unconditional branch

micro-operation, then any microinstruction which causes a

branch to that one is redirected to the destination of the

unconditional branch. This situation commonly arises when

a conditional block or a loop is the final micro-operation

inside a loop. When this redirection of branch

destinations is effected, it then becomes true that the

only micro-operations whose execution will immediately

precede the unconditional branch are those packed in the

immediately preceding microinstruction. So that the

unconditional branch need not occupy a separate

microinstruction: it is no longer the destination of other

branch operations. It may be packed into the preceding

microinstruction if compatibility considerations permit.

But MICROt4AP is not capable of performing this type of

optimization. It is not capable of altering

microinstructions once they have been generated. Thus it

is able to prevent unnecessary double jumps, but it is not

able to reclaim the microinstruction which may become

unnecessary as a result of this optimization.

In this way, MICROMAP determines the successor

instruction(s) of each microinstruction it generates.

Where there is no explicit branch micro-operation in the

180

microinstruction then the sequentially following

microinstruction is assumed as successor. It produces a

table of the absolute addresses (based on the first one

generated having address one) for the next instruction

associated with each microinstruction in the microprogram.

It would be a simple task in a second pass to fill

these values, possibly offset by some index, into the Emit

type field(s) in the microinstruction which determine the

next microinstruction to be fetched. But, for two

reasons, this is not a sensible action. The first is the

obvious point that the start address of the microprogram

in control store may not be known. Therefore absolute

addressing is not warranted. The second point is that

sequencing of microinstructions typically is the most

intricate feature of a microprogram controlled system.

Often it involves idiosyncratic mechanisms for generating

the next address. In such cases the value to be filled in

the Emit field need not be the actual address of the

microinstruction to be fetched next: it may be the key to

some computation which ultimately generates that address.

And in such cases it may transpire that the placement of

microinstructions - the actual addresses assigned to them

- assumes great significance in order that the address of

a microinstruction may be generated by calculation from

each of the microinstructions which may branch to it. The

Intel 3001 microprogram control unit E481 and the DEC PD?

11/40 processor 1233 microprogram control exhibit the

181

property of complicated next address generation schemes in

which microinstruction placement is significant. Indeed,

in the latter, some microinstructions are duplicated at

different addresses for precisely this reason.

For these reasons, the information that MICROMAP

generates is the nearest to complete microcode that may be

expected. It requires a final machine dependent linkage

process to take the information provided and produce

complete microcode. This may either be in the form of a

separate program for each processor for which

microprograms are generated, or else a universal version

which accepts a description of the next addressing

conventions of the processor in question together with the

control flow information provided by MICROMAP and produces

the complete microprogram from that.

This task remains to be accomplished.

182

5.1) Results Results - A Worked Example

This section, in conjunction with the figures presented

in Appendix 1, documents a worked example which has been

used to provide a realistic exercise to the MDS suite.

The various inputs to and outputs from the programs of the

suite are listed in Appendices 1(a) to 1(e).

A processor is described in the Microprogram Design

Language which purports to perform some sort of hardware

monitoring function. The details are unimportant. The

MDL source microprogram is listed In Appendix 1(a). The

numbers accompanying the statements in the description are

the indices of the corresponding micro-operations after

the insertion of the appropriate block type

micro-operations by ANALYSE. The block structured style

of the description makes its comprehension much simpler

than would otherwise be the case. Note the use of

explicit synchronization between micro-operations and

explicit declaration of operands affected by

micro-operations where insufficient information to that

effect is conveyed in the micro-operations themselves.

For example, the statement (76) in the source microprogram

listing has nothing logically to do with the subroutine

183

"READ WORD", but it is desirable that that statement

should succeed the subroutine call, and so it is

explicitly marked as dependent on it.

This source microprogram is processed by ANALYSE. As

well as generating the listing discussed above, ANALYSE

also produces for MICROMAP and separately for the designer

a representation of the microprogram in canonical form.

This details the level of each micro-operation, the type

of block type micro-operations together with a list of

their components, and the dependency relationships marked

between the micro-operations. This listing is presented

in Appendix 1(b). (A more detailed listing of the type of

each dependency relationship is available optionally.)

Several points may be noted. The scope for movement of

micro-operations is, in general, relatively small. This

results from almost all of these micro-operations being

contained in short control blocks and there being long

chains of data dependencies throughout. This is quite

typical. In this particular example there is not much

scope for the movement of micro-operations over control

blocks. This is due to the fact that many of the control

blocks contain "Return" statements which act as critical

points: absolute barriers to code movement. An example of

a situation where such code movement is possible is

between statements (3) and () in the source microprogram,

where a primitive micro-operation and a loop are

1 84

independent. It will be seen below that this is exploited

by the packing algorithm to save one microinstruction

compared to the necessary restrictions entailed by

straight line segments. The subroutine calls with

"parameters" are worthy of note. These are used

frequently, and the qualification of the call with the

operands referenced within the subroutine body enables a

substantial amount of code movement over that "Call"

statement.

Appendix 1(b) conveys some idea of the structure of the

canonical microprogram generated by ANALYSE. The major

inference that should be drawn from it is not of the

potential that exists for dramatic optimization, but of

the potential that exists for making errors in

endeavouring to achieve optimization in an undisciplined

approach to the problem.

Appendix 1(c) lists a Microinstruction Format Model

description of a control organization designed to

implement the microprogram description. The

micro-architecture it reflects is based upon an AMD 2901A

bit slice microprocessor Lii and the major part of the

description is taken up by that component. The

description of the control signals associated with the

microprocessor is held in a library of descriptions of

such general purpose components and is drawn from there to

be included in this description by use of the Alias

185

feature. (One line has been added to the component

description after its inclusion in the complete format

description. A Conjunction construct has been added to

the LA Reg] field, field (3), to enable direct selection

of one of the microprocessor's internal registers from a

field of the command register.)

Several points about the format description may be

noted. The LSourcei field, field (6), controls two

microprogram level resources: the two operands input to

the ALU. To reflect this, the description includes two

separate fields, LRJ and LSJ, occupying the same position

in the microinstruction word. One controls each operand.

These are referred to separately elsewhere in the format

description. The LSourcei field itself is also included

in the description because it is referred to in the

exceptional cases of the ALU function field LFJ. (It is

not necessary to refer to LSourcei here.. LRJ or LSJ, as

appropriate, would have done just as well.) The field LFJ

(which is aliased to "LALU_Resulti" in this format

description) illustrates the use of the Conjunction

construct to represent semantically equivalent but

syntactically different functions. In this case it is

associated with the presence or otherwise of a Carry bit

and with one of the operands to the function being zero.

The "Q" register is an auxiliary register in the

microprocessor which is considered in this description as

a microprogram level resource, controlled by a Register

186

type field. No example arises in the microprogram

description under consideration, but if a micro-operation

of the form ttA<...B+Ct, where A, B and C are all internal

microprocessor registers, was presented for implementation

in this format description, then MICROMAP would detect

that it would have to be implemented as "Q<-B+C" and

"A <-Q

The use of the dummy fields IZJ, LNZJ, IN], IPJ and LOJ

is noteworthy. These simply are the boolean signals that

may be detected from the ALU in the microprocessor. They

are used to determine branching in the microprogram. It

is not necessary to name them as fields at all. But

consider the situation if it were desired to overlap the

fetching and execution of microinstructions. Then the

only alteration that would be required in the format

description would be to change these fields to type

Register: for the purpose of controlling the loading of

the flip-flops that would have to be added to the

micro-architecture to store the values of the boolean

signals between procesor cycles. (These fields would still

be dummy fields if the flip-flops were loaded

automatically each processor cycle. They would all occupy

the same single bit field if the status register

comprising the five flip-flops was loaded explicitly and

they would occupy five distinct fields if it were posib1e

to load each one individually.)

187

MICROMAP packs the 106 primitive micro-operations in

the source microprogram into 73 microinstruction words of

the specified format. The output which it generates while

doing so is listed in Appendix 1(d). This reveals the

order in which the micro-operations are selected for

packing as well as the fields which are involved in

implementing those which are packed. It also generates a

binary representation of the microinstructions with the

appropriate values bound to the fields involved and

default values bound to the rest. Note that the fields

used to hold a microinstruction address for the purpose of

sequencing the microprogram are filled with just an index

to the label table. Microinstructions (1) and (2) give an

example of compaction through the independence of a

primitive micro-operation and a loop. Microinstructions

(61) and(62) illustrate the reasoning behind the order of

selectiOn of micro-operations from the. Data Available Set,

as explained in section 4.1. At instruction (61), the

only two micro-operations in the DAS are the Loop block

type micro-operation (136 in the source microprogram) and

"INTERVAL<-INHIGH.INLOW 0 . The former is selected in

preference to the latter and turns out to furnish children

into the DAS alongside which the existing primitive

micro-operation may be packed.

The "CLASH" information provided by MICROMAP makesit

obvious how the chosen microinstruction format may be

improved upon. In this case, by setting "ERRBIT" in the

188

status register from the same micro-orders that set

"OVERFLOW" and "CLOCKERR" (since the setting of these two

is always accompanied by the setting of ERRBIT) the

microprogram may be implemented in two fewer

microinstructions. This simple example serves to

illustrate the helpfulnes of MDS in evolving a reasonable

final microprogram.

After having generated the microinstructions, MICROMAP

issues a table listing the successor instructions

associated with each microinstruction which effects a

break in the normal sequential control flow assumed for

the microprogram. The table associated with the worked

example is listed in Appendix 1(e). Mote the successor

microinstruction to microinstruction (LI) which contains

the branch micro-operation heading the conditional block

which is micro-operation (11) in the source microprogram.

This has been optimized by MICROMAP to avoid a double jump

to the head of the enclosing loop via the tail, as

described in section £4.3. As a result, the unconditional

branch micro-operation in microinstruction (10) need no

longer be included in a separate microinstruction, since

it no longer acts as the destination of a branch.

Microinstruction (10) could be merged with

microinstruction (9) to save a further word in the

microprogram. But MICROMAP is unable to do this

automatically.

189

How far have the goals for a microprogram design aid

identified in section 1.1 been met by MDS?

The principal goal was that it should "facilitate the

practice of good microprogram design", and the bulk of

this thesis has been taken up in arguing that MDS does

just that. It makes the task of microprogram design

easier by relieving the designer from concern with

implementation details when designing a behaviour for the

microprogram; and it assists his concern with those

implementation details when it is appropriate to consider

them. That is, MDS separates the tasks of design and

implementation, as goal 1.1.1 in section 1.1 required. It

encourages the production of "good", well structured

microprograms by exploiting the block structure of MDL

descriptions to effect global optimization on the

microprogram.

By automatically generating a maximally parallel

representation of the source microprogram and

automatically mapping that into a microprogram in the

specified microinstruction format, as well as providing

congenial descriptive mediums, MDS allows the designer to

make best use of his talents so that he may concentrate on

the creative aspects of the task. This was the

requirement of goal 1.1.2.

190

Goal 1.1.3 stated that the system should produce

efficient microcode. Microprogram Design Language,

described in section 2.3, was designed with this criterion

in mind, and the packing algorithm implemented in MICROMAP

goes to great lengths to ensure efficient implementation

of the behaviour specified in MDL. Because 'the initial

stage of the microprogram design process under MDS is

abstracted away from the microprogram level view of the

system, it is almost inevitable that the microprogram

generated by MICROMAP could be improved upon, in terms of

size and execution speed, by a carefully "hand coded"

microprogram. But the efforts that are made throughout

MDS to attain efficiency in the microprogram finally

generated serve to minimize the adverse effects of this

approach, while the comprehensive approach taken to the

detection of the potential for concurrency between

micro-operations and to their packing in microinstructions

effects a measure of optimization of which the human

designer is incapable. On balance therefore, the

efficiency of microprograms generated by MDS is high

compared to "standard" hand implementations, but not as

high compared to carefully tuned implementations where

much effort has been invested into making the microprogram

as efficient as possible.

Goals 1.1.7 and 1.1.8 also have a bearing on this

issue. By facilitating experimentation with different

control organizations on which to implement a microprogram

191

behaviour, MDS is able to assist the designer in finding a

micro-architecture which is particularly conducive to

efficient implementation of the behaviour in question.

The search for an efficient microprogram implementation

covers two dimensions: the design of the control

organization and the design of the microprogram to execute

under that control organization. The superiority of MDS

in the first may fully compensate for its relative

inferiority in the second in terms of the efficiency of

the microprogram finally generated. Of coure, improving

efficiency is not the only reason for altering a

micro-architecture. The functional specification of a

design is often slightly altered many times during the

evolution of the design. MDS is able to accommodate such

-changes with ease. This is of particular significance to

the "occasional" microprogram designer to whom the most

appropriate format in which to implement a design is not

as obvious as it might be to an experienced specialist.

The features of MDS which particularly contribute to ease

in altering micro-architectures are the separation of the

behavioural design and its implementation, and the fact

that the Microinstruction Format Model maps clearly on to

the micro-architecture of the implementation. A simple

ckiange in the latter induces a simple change in the

corresponding part of the former.

Normally, the alteration of a microprogram is a

complicated task. Due to resource contentions and

192

interlinked chains of data dependencies, changing a single

operation in the microprogram may generate an extensive

"shock wave" through the rest of the microinstructions

which follow it. So that a large portion of the completed

microprogram may have to be changed as a result of an

alteration to a single micro-operation. And the tracking

of the necessary changes in the microinstructions in such

instances is an inherently unsystematic process which is

bound to be error prone. By virtue of the fact that

detection of dependency and resource contention is

performed automatically, alteration of microprograms in

MDS is simple. Only the MDL source microprogram

description need be changed explicitly; from which a

completely new microprogram may be readily generated.

Thus MDS meets goal 1.1.5.

Microprogram verification has not been mentioned as

yet. This is a topic of growing significance [14] which

in some aspects is simpler than high level language proof

but in other aspects is not as simple. It is simple in

that the operations performed and the data structures

which are defined at the microprogram level are simple,

but it is complicated by the concurrency of these

operations. MDS could offer distinct advantages in this

field. The operations and data structures which are used

to describe the microprogram behaviour in MDL are simple,

and the order of execution of the operations in the

description is sequential. Proving an assertion about a

193

source microrogram in MDL is much simpler than proving an

assertion about a microprogram in terms of the

microinstructions of a particular format. But the two are

equivalent if the various components of MDS are trusted to

preserve the behaviour of the source microprogram and the

properties of the specified microinstruction in generating

the completed microprogram. This thesis has attempted to

justify the placing of that trust. Further formal

validation of the integrity of the transformations

performed by MDS would ideally be required. This

once-only step would then make the task of microprogram

verification a practical possibilty.

Thus, MDS may be seen to have met the design goals set

for it. As an incidental by-product it also contributed

one further achievement of major significance. The

Microinstruction Format Model provides a general formalism

for the representation of microinstruction formats: a

facility which has hitherto been unavailable and a worthy

product in its own right.

Of equal importance in the appraisal of MDS is what it

does not do.

It does not yet generate executable microcode. A

further linkage phase is necessary for that, as explained

in section 14.3.

It does not design. The design which it implements is

wholly the designer's. This is deliberate policy for the

194

reasons argued in section 1.1.

It is not "intelligent": it is only able to map an MDL

source microprogram into a microinstruction format

described in MFM when the latter is tailored to

implementing the former.

It does not attempt to perform tasks which are not

appropriate to the level at which it functions. In

particular, it does not allocate addresses and registers

for conceptual variable names.

At the more detailed level, it is lacking in some minor

features. In MDL it is possible, but only clumsily, to

specify that micro-operation B should be executed X

microinstructions later than micro-operation A. This can

be achieved only by explicitly contriving the dependency

relationships of the intervening operations such that the

desired packing is the only one possible. This

contrivance is feasible and quite simple where it is

desired to ensure that micro-operations are packed into

successive microinstructions: not an uncommon requirement.

It becomes progressively more difficult and restrictive as

the "distance" between A and B increases; the frequency of

requirement for the feature diminishes proportionately.

Related to the topic of computed data dependency where

microinstruction fetch and execute are overlapped is

another feature, sometimes occurring in the same

circumstances. This is the phenomenon of the delayed

effect of branch micro-operations, and MDS is unable to

195

deal with it adequately. Due to the fact that possibly

many activities are being performed concurrently in a

ioe1ined implementation, by the time a microinstruction

comes to be executed one or more succeeding

microinstructions may already have been fetched. This

causes problems with branch operations since these may

disrupt the implicit sequential order of execution of the

microinstructions. Two alternative solutions to the

problem exist: enacted either in the pipeline or the

microprogram. The first, as implemented in several

computer instruction set processors 1331, is simply to

"flush" the pipeline when an operation which causes a

branch in the control flow is encountered, so that the

instructions that have been fetched after that one are not

executed. This solution causes no difficulties in MDS.

The alternative solution, as implemented for example in

the microprogram of the PDP 11/40 processor L231, is to

execute those microinstructions which have already been

fetched. This means that the effect of a branch

micro-operation is not felt until after the execution of

one or more microinstructions succeeding it in the

microprogram. In MDS, since micro-operations are not

packed into microinstructions until all micro-operations

on which they are dependent have been packed, and since

microinstructions are generated sequentially, this

situation cannot be exploited to advantage. Rather than

anticipating the delayed effect of branch micro-operations

196

by packing them in a preceding microinstruction to other

micro-operations whose execution they must succeed, all

that MICROMAP can do is to follow the branch

microinstruction in the microprogram with one or more

empty microinstructions. This feature could be properly

handled if MDS were to generate the microprogram in

reverse order, so that it would be possible to stipulate

in the control organization description the extent of the

delayed effect of branches and to act on this in MICROMAP

by delaying the packing of branch micro-operations by this

amount. However, this method would cause problems in

dealing with micro-operations with extended duration. It

is not clear where the advantage would lie.

As noted in section 4.3, MICROMAP may fail to optimize

fully in the situation where an unconditional branch

operation is the sole occupant of a microinstruction word.

MICROMAP performs the speed optimization of redirecting

branches to that microinstruction, but it is not capable

of performing the space optimization that may be possible

as a result of the redirecting of branches.

Finally, as was pointed out in section 4.2, MICROMAP is

not able to automatically pack micro-operations which it

recognizes as requiring to be split into two in order to

be implemented in the specified format. This might be

desirable, but is not practicable for the reasons

explained in that section.

197

What general lessons should be drawn from the

experience of this research effort?

Perhaps the principal lesson that has been highlighted

is that human talents should not be ignored. It is

counter-productive to attempt to perform a task

automatically just for the sake of performing it

automatically. MDS has demonstrated that real achievement

is possible by confining one's attention to a reasonably

limited objective and endeavouring to provide a complete

solution to that objective. It is not sufficient to

provide a partial solution which handles only simple, or

well behaved, or contrived hypothetical examples. To be

usable, a design aid system must handle a wide range of

real world examples. If it does so, and yet there are

examples which it cannot handle, this possibly may be used

as evidence against the design style of these examples.

Two further factors contributing significantly to the

success of MDS may be generalized and are noteworthy.

First, it has applied concepts which are not novel in a

novel context; and second, it has exploited the singular

"local" characteristics of the context in which it is

operating to achieve a simple solution.

On a more particular front; encouragement for block

strutured microprogram design has been advocated elsewhere

[34]. MDS has demonstrated not only the practicality of

designing in such a block structured language, but also of

retaining that structure in implementation as a means of

198

generating an optimized microprogram.

To summarize, the major achievements of this research

effort are seen to be as follows:

A package has been designed and implemented which

facilitates the generation of microprograms.

How the design and implementation of microprograms

may be separated has been identified.

The creative aspects of microprogram design have been

identified and assistance has been provided to the

designer to perform these tasks. The less creative

aspects have been automated.

(LI) The properties of block structured languages have

been exploited advantageously in the detection of

potential parallelism between micro-operations.

A general formalism for the representation of

microinstruction formats has been designed.

The properties of block structured languages have

been exploited to effect global optimization in

microprogram compaction simply and effectively.

199

(7) The particular properties of designing for the

microprogram level (ie. dedicated host machines, all

operations being executed in a single processor

cycle) have been exploited to effect simple automatic

emulation of register transfer target machine

operations by microprogram level host machine

operations.

() How resource contention between micro-operations may

be detected simply and efficiently at the

microprogram level has been identified.

The generation of multiple configurations for

microinstructions has ensured that resource

contention is never falsely recognized.

The synthesis of the sequencing information necessary

to produce executable microprograms has been

achieved.

Microprogram verification has been facilitated by

providing transformation functions from sequential

register transfer descriptions to complete

micro programs.

200

A research project of this nature never answers all the

questions or explores all the avenues that lie open to it.

Identified below are some of the principal unexplored

problem areas that have been uncovered during this

research or that follow on as natural extensions to the

work that has been initiated.

The most obvious extension that may be applied to the

work reported herein is to proceed to generate executable

microcode by completing a linkage phase for the design

suite. As reported in section 4.3, this may be

accomplished in one of two ways: either by writing a

separate program to perform the task for each different

micro-architecture, or else by designing a universal

linker which accepts a description of the sequencing

mechanisms of the chosen micro-architecture together with

the next instruction information output by MICROMAP and

generates the executable microprogram from that. This

latter approach is consistent with the rest of MDS and is

to be preferred. It should be quite straightforward to

handle in this way the majority of the examples which may

be encountered, but it would be very difficult to be truly

general: to cope with all existing sequencing mechanisms.

As mentioned previously, these may be extremely

201

convoluted. This probably is one situation where the

dictates of expedience must exclude a general solution.

It is a corollary of this conclusion that strong pressure

is brought to bear against any micro-architecture design

which is thus excluded. The arguments in its favour must

be very strong to outweigh the benefits accruing from the

capability to generate microprograms in that format

automatically.

The next logical extension of MDS is to simulation.

The desire to test a design in all ways possible before

adopting full commitment to it is reasonable, and

simulation is a valuable tool in this respect. Like

microprogram linking, simulation may be performed either

dedicatedly or machine independently. The former is of

little interest with respect to MDS. A machine

independent simulation could be based upon a

Microinstruction Format Model description together with

the microprogram which is output by MICROMAP. It would

have to go further than MICROMAP in attaching an

interpretation to the actions of the micro-orders

described in the MFM format description, and it may also

benefit from a declarative preamble to the description

specifying the memory resources referenced by the

micro-orders.

Simulation at the microprogram level would be used to

evaluate the detailed performance characteristics of the

202

chosen implementation. It is to be hoped that

verification of the behaviour of the microprogram could be

attained by more formal methods. As mentioned in the

preceding section, MDS offers a powerful facility in the

search for viable microprogram verification techniques.

It may be that extra features added to the language could

enhance this facility, as has been suggested by Patterson

[116]. This certainly bears further investigation.

Husso.n [32] claims that the design of the

microinstruction format and sequencing mechanisms of the

Honeywell H11200 computer was based on the actual behaviour

required of the data path in question. The original seed

of motivation from which the concept of MDS eventually

germinated was the question "What is the optimum

microinstruction format in which to implement the

microprogram control of a given system?" That there was no

ready answer to this question prompted the desire to

experiment with different formats, from which ultimately

descended the observation that there existed a requirement

for a general facility to assist with the task of

microprogram design. MDS provides a tool with which to

return to that original enquiry. The rules which govern

the relationship between a processor level target machine

architecture and the most appropriate microprogram level

implementation of it in the context of specified values

for cost and performance parameters may just prove

203

tractable. It is worth investigating. And MDS is the

ideal tool for the job.

Returning to the subject of the sequencing of

microprograms., another interesting topic which might be

investigated is evident. It is related to the preceding

question in that it is concerned with the relationship

between the characteristics of a processor behaviour and

an optimal microprogram controlled implementation of that

processor behaviour. Specifically, it is for the

automatic generation of a customized microprogram

sequencer for a given microprogram behaviour. That is,

given the next instruction information output byMICROMAP,

the aim is to synthesize a programmable logic array (PLA)

(or ULA or equivalent) configuration which will effect the

desired control flow in the microprogram. In this way,

the natural (maximally parallel) control flow of the

behavioural description of the processor, perhaps

incorporating multi-way branching for example, could be

reflected in the microprogram and implemented easily and

efficiently. As well as helping to increase the execution

speed of the microprogram, this method of sequencing would

eliminate the necessity for complicated next address

generation schemes which are borne out of the desire for

maximum generality in minimum microinstruction space..

Conspicuous by its absence from the foregoing

204

suggestions has been any proposal to extend the concepts

of MDS to higher levels. A corresponding framework for

machine independent compilation to the computer

instruction set level may be envisaged, which function has

been a goal of long standing. But the techniques of MDS

are not applicable to this level. MDS is simple to the

point of naivete. Its success, as previously noted,

derives from its exploitation of the singular properties

of microprogram design: the sympathetic target machine and

the simplicity of the instructions being emulated. Any

attempt to extrapolate these techniques to a higher level

would lead a prohibitive increase in complexity and a

corresponding dramatic decrease in quality of code

produced.

205

Advanced Micro Devices Inc.
"The Am2900 Family Data Book"
AMD Inc., Sunnyvale, Ca. (1978)

Agerwala T.
"Microprogram Optimization: a Survey"
IEEE T-C Vol C-25, No 10 (Oct 76) pp. 962-973

Agrawala A.K.; Rauscher T.G.
"Foundations of Microprogramming"
Academic Press New York 1976
pp. 73-75

[LI] Agrawala A.K.; Rauscher T.G.
As Above, 	p. 1111

Agrawala A.K.; Rauseher T.G.
As Above, pp. 239-2I1

Astopas F.F.; Plukas K.I.
"Method of Minimizing Computer Memories"
Automatic Control Vol 5, No k (1971) pp. 10-16

[7) Baba T.
"A Microprogram Generating System - MPG"
IFIP 77 (Ed. B. Gilchrist)
N. Holland Pubi. Co. 1977 pp. 739-744

Barbacci M.R.
"A Comparison of Register Transfer Languages
for Describing Computers and Digital Systems"

IEEE T-C Vol C-24, No 2 (Feb 75) pp. 137-149

Barbacci M.R.; Barnes G.E.; Catell R.C.;
Siewiorek D.P.
"The ISPS Computer Description Language"
Technical Report,
Computer Science Dept,
Carnegie-Mellon University,
Pittsburgh, Pa. 	1977

[10) Barbacci M.R.; Siewiorek D.P.
"Evaluation of the CFA Test Programs
via Formal Computer Descriptions"
IEEE Computer Vol 10, No 10 (Oct 77)

[11] Barr R.G.; Becker J.A.; Lidinsky W.P.; Tantillo V.V.
"A Research Oriented Dynamic Microprocessor"
IEEE T-C Vol C-22, No 11 (Nov 73) pp. 976-985

206

Bernstein A.J.
"Analysis of Programs for Parallel Processing"
IEEE T-C Vol C-15, No 10 (Oct 66) PP. 757-762

Burr W.E.; Coleman A.H.; Smith W.R.
"Overview of the Military Computer Family
Architecture Selection"
Proc. AFIPS NCC Vol 46 1977

Carter W.C.; Ellozy H.A.; Joyner W.H.Jr.; Brand D.
"Microprogram Verification Considered Necessary"
Proc. AFIPS NCC Vol 47 (1978) pp. 657-66'4

Chu Y.
"Computer Organization and Microprogramming"
Prentice-Hall Englewood-Cliffs NJ 1972

Conway M.E.
"Design of a Separable Transition-Diagram Compiler"
CACM Vol 6, No 7 (July 63) 	pp. 396 1408

Dasgupta S.
"Parallelism in Loop Free Microprograms"
IFIP 77 (Ed. B. Gilchrist)
N. Holland Publ. Co. pp. 745-750

Dasgupta S.
"Towards a Microprogramming Language Schema"
Proc. 11th Annual Workshop on Microprogramming,
Pacific Grove, Ca. (Nov 78) 	pp. 1144_153

Dasgupta S.; Jackson L.W.
"An Algorithm for Identifying Parallel
Micro-operations"

Technical Report TR73-20 (Dec 73),
Computing Science Dept,
Univ. of Alberta, Edmonton, Alberta, Canada

Dasgupta S.; Tartar J.
"Automatic Identification of Maximal Parallelism
in Straight Line Microprograms"

IEEE T-C Vol C-25, No 10 (Oct 76) pp. 986-991
See also comments on above in
IEEE T-C Vol C-27, No 3 (March 78)

De Witt D.J.
"A Machine Independent Approach to the Production
of Optimized Horizontal Microcode"
Ph.D. Dissertation
Computer Science Dept,
Univ. of Michigan, Ann Arbor. 1976

207

De Witt D.J.
"A Control Word Model for Detecting Conflicts
between Micro-operations"

Proc. 8th Annual Workshop on Microprogramming
(Oct 75) 	pp. 6-12

Digital Equipment Corporation
"PDP 11/0 System -
KD11 A Processor Maintenance Manual"
Technical Document EK-KD11A-MM-001 (1973)
DEC, Maynard, Mass.

Eckhouse R.H.Jr.
"A High Level Microprogramming Language"
Proc. AFIPS SJCC Vol 36 (1971) 	pp. 169-177

Fagg P.; Brown J.L.; Hipp J.A.; Doody D.T.;
Fairciough J.W.; Greene J.
"IBM System/360 Engineering"
Proc. AFIPS FJCC Vol 22 (1964) pp. 205-231

Fiala E.R.
"The Maxc Systems"
IEEE Computer Vol 11, No 5 (May 78) pp. 57-67

Flynn M.J.
"Lecture Notes on Data Flow -
Chapter 3: Computation Schema"

Massachusetts Institute of Technology,
Cambridge, Mass. (1971) 	pp. 15-18

[28j Gerace G.,B.; Vanneschi M.
"Processing Speed of Microprogrammed Systems -
Evaluation and System Design"

Scientific Note 8-75-2 (Jan 75)
Universita degli Studi di Pisa,
Instituto di Scienze deli' Informazione,
Pisa, Italy

L291 Gerace G.B.; Vanneschi M.; Casaglia G.F.
"Models and Comparisons of Microprogrammed Systems"
Scientific Note S-74-18 (Dec 74)
Universita degli Studi di Pisa,
Instituto di Scienze deli' Informazione,
Pisa, Italy

130] Hodges B.C.; Edwards A.J.
"Software Support for Microprogram Development"
ACM SlGmicro Newsletter Vol 5 (Jan 75) pp. 17-24

131J Husson S.S.
"Microprogramming: Principles and Practice"
Prentice-Hall Englewood-Cliffs NJ 1970 p.240

208

L32i Husson S.S.
As Above, p.493

L331 Ibbett R.N.
"The MU5 Instruction Pipeline"
Computer Journal Vol 15, No 1 (1972) pp. 42-50

L341 Jones L.H.
"Instruction Sequencing in Microprogrammed Computers"
Proc. AFIPS NCC Vol 44 (1975) pp. 91-9

[35] Lewis T.G.; Malik K.; Ma P-I.
"Firmware Engineering Using a High Level
Microprogramming System to Implement
Instruction Set Processors"
(Unpublished) Technical Report
Computer Science Dept.
Oregon State Univ.
Corvallis, Oregon 97331

L361 Lloyd G.R.; Van Dam A.
"Design Considerations for Microprogramming
Languages"

ACM SlGmicro Newsletter Vol 5, No 1 (April 74)
pp. 15-44

L371 Lucas P.
"Die Strukturanalyse van Formelubersetzern"
Electron. Rechenanl 3 (1961) pp. 159-167

L381 Ma P-Y.; Lewis T.G.
"A Portable, Efficient Microprogramming System
for Emulator Development"
(Unpublished) Technical Report
Computer Science Dept.
Oregon State Univ.
Corvallis, Oregon 97331

1391 Malik K.
"Optimizing the Design of a High Level Language
for Microprogramming"

Ph.D. Dissertation
Computer Science Dept.
Oregon State Univ.
Corvallis, Oregon 97331

140] Mallett P.W.
"Methods for Compacting Microprograms"
Ph.D. Dissertation (Dec 7)
Computer Science Dept.
Univ. of Southwestern Louisiana
Lafayette, La 75401

209

L41J Mallett P.W.; Lewis T.G.
"Considerations for Implementing a High Level
Microprogramming Language Translation System"
IEEE Computer Vol b, No 8 (Aug 75) pp. 40-52

L42J Nagle A.
"Automated Design of Micro Controllers"
Proc. 11th Annual Workshop on Microprogramming
Pacific Grove, Ca. (Nov 78) 	pp. 112-117

[143J Nanodata Corporation
"QM-1 Hardware Level User's Manual"
2nd edition, revised Aug 74

L441 Nilsson N.J.
"Problem Solving Methods in Artificial Intelligence"
McGraw-Hill New York 1971 pp. 87-90

L451 O'Loughlin J.F.
"Microprogramming a Fixed Architecture Machine"
Infotech State of the Art Report, No 23. pp. 205-224
Infotech Information Ltd. Maidenhead, England 1975

L461 Patterson D.A.
"STRUM - Structured Microprogramming System for
Correct Firmware"

IEEE T-C Vol C-25, No 10 (Oct 76) pp. 974-986

L471 Ramamoorthy C.V.; Tsuchiya M.
"A High Level Language for Horizontal
Microprogramming"
IEEE T-C Vol C-23, No ö (Aug 74) pp. 791-801

148J Rattner J.; Cornet J-C.; Hoff M.E.Jr.
"Bipolar LSI Computing Elements Usher in New Era
of Digital Design"
Electronics Sept 1974

L49J Salisbury A.B.
"Mi croprogrammable Computer Architectures"
American Elsevier New York 1976
pp. 47-49

[50j Salisbury A.B.
As Above, 	pp. 112-135

151J Siewiorek D.P.; Barbacci M.R.
"The CMU RT-CAD System - An Innovative Approach
to Computer Aided Design"

Proc. AFIPS NCC Vol 45 (1976) pp. b43-65

[521 Tanenbaum A.J.
"Structured Computer Organization"
Prentice-Hall Englewood-Cliffs NJ 1976

210

1531 Tokoro M.; Takizuka T.; Tamura E.; Yamaura I.
"A Technique of Global Optimization of Microprograms"
Proc. 11th Annual Workshop on Microprogramming
Pacific Grove, Ca. (Nov 78) pp. I1-50

L541 Tokoro M.; Tamura E.; Takase K.; Tamaru K.
"An Approach to Microprogram Optimization Considering
Resource Occupancy and Instruction Formats"
Proc. 10th Annual Workshop on Microprogramming
(Oct 77) 	pp. 92-108

[55J Tsuchiya M.; Gonzales M.J.
"An Approach to the Optimization of Horizontal
Microprograms"

Proc. 7th Annual Workshop on Microprogramming,
Palo Alto, Ca. (Sept-Oct 7) pp. 85-90

[56] Tucker A.B.; Flynn M.J.
"Dynamic Microprogramming: Processor Organization
and Programming"
CACM Vol 1, No 11 (April 71) 	pp. 240-250

[57J Tucker S.G.
"Microprogram Control for the System/360"
IBM Systems Journal Vol 6, No 4 (1967) pp. 222_241

L581 Vanneschi M.
"Implementation of Microprograms and Processing
Speed"

Scientific Note S-76-18 (Oct 76)
Universita degli Studi di Pisa
Instituto di Scienze deli' Informazione
Pisa, Italy

1591 Vanneschi M.
"On the Microprogrammed Implementation of Some
Computer Architectures"

Scientific Note S-76-3 (April 76)
Universita degli Studi di Pisa
Instituto di Scienze deli' Informazione
Pisa, Italy

1601 Varian Data Machines
"Varian Microprogramming Guide"
Irvine, Ca., (1973)

[61] Wilkes M.V.
"The Best Way to Design an Automatic Calculating
Machine"

Report of Manchester University Computer
Inaugural Conference 	(July 1951) pp. 16-18

211

L62J Wolf W.; Johnsson R.K.; Hobbs S.O.; Geschke C.M.
"The Design of an Optimizing Compiler"
Elsevier, North Holland Inc. New York 1975

[631 Yau S.S.; Schowe A.C.; Tsuchiya M.
"On Storage Optimization of Horizontal Microprograms"
Proc. 7th Annual Workshop on Microprogramming
Pala Alto, Ca. (Sept-Oct 74) pp. 98-106

212

,J.ZIIFcIr1__

1 $ Microprogram to implement a hardware monitor which
1 $ obeys commands sent over an 8-bit parallel
1 $ interface causing it to detect patterns on its
1 $ 16 data probes. Commands obeyed are:

	

1 $ 	(1): Count number of clock cycles occurring

	

1 $ 	 between the detection of two specified

	

1 $ 	 data patterns.

	

1 $ 	(2): Count the number of times a specified

	

1 $ 	 pattern is detected within a given time

	

1 	$ 	 interval.

	

1 	IDLE::

	

2 	loop

	

3 	STATREG<-O
wait for DATA AVAILABLE $ waiting for command

	

6 	call COMMAND

	

7 	wait for TxBUSY ;LTx]

	

10 	Tx<-STATREG $ send status after each command

	

11 	if BUSYBIT then

	

14 	 wait for TxBUSY

	

16 	 OUTBUFF<-OUTREG ; LOUTHIGH,OUTLOW]

	

17 	 Tx<-OUTLOW

	

18 	 wait for TxBUSY ;LTx]

	

20 	 Tx<-OUTHIGH

	

21 	finish

	

21 	repeat

22 COMMAND:

	

23 	INLOW<-RxDATA

	

24 	if INLOW(0) then 	$ RESET command

	

27 	RESET $ links and all registers except STATREG

	

28 	STATREG<-O

	

29 	return

	

30 	finish

	

31 	if INLOW(1) then 	$ MEASURE INTERVALS command

	

34 	if IDLE goto MEASURE INTERVAL

	

35 	$ Interrupted in middle of obeying previous command

	

35 	STATREG<-O;

	

37 	ERRBIT<-TRUE

	

38 	return

	

39 	finish

	

ZO 	if INLOW(2) then 	$ COUNT EVENTS command

	

113 	if IDLE goto COUNT EVENTS

	

1111 	STATREG<-0;

213

46
	

ERRBIT<-TRUE
147
	return

'18
	

finish

149 	if INLOW(3) then 	$ read register specified
52
	

BUSYBIT<-TRUE 	$ in bits 14:7
53
	

OUTREG<-REG(INLOW<14:7>)
514 	finish

514
	

$ if none of these bits set,
514 	$ then command is SENSE STATUS

return

55
	

$ end of subroutine COMMAND

55 READ WORD:: $ reads 2 bytes into INHIGH and INLOW

56
	

wait for DATA AVAILABLE ;LRxDATA)
58
	

INHIGH <-RxDATA

59
	wait for DATA AVAILABLE ;LRxDATA]

61
	

INLOW<-RxDATA

62
	return

63 MEASURE INTERVALS::

614 $ Count the number of clock cycles between the
614 $ detection of two 	16-bit patterns on the probes.
614 $ The patterns are specified as 	16-bit values
614 $ constrained by a 	16-bit pattern determining which
614 $ bits in the first value are specified and which
614 $ are 	"don't 	care" 	bits.

614 INTMEASURE<-TRUE 	$ bit in Status Register
65 BUSYBIT<-TRUE
66 call READ WORD 	;LINHIGH,INLOW]
67 PATTERN<-INHIGH.INLOW

68 call READ WORD 	;LINHIGH,INLOW]
69 ASSBITS<-INHIGH.INLOW

70 call READ WORD 	;LINHIGH,INLOW]
71 PAT2<-INHIGH.INLOW

72 call READ WORD 	;LINHIGH.INLOW]
73 ASS2<-INHIGH.INLOW

714 PATTERN<-PATTERN&ASSBITS
75 PAT2<-PAT2&ASS2

214

76 $ Try to match PATTERN with observed data on probes

	

76 	CLOCKFF<-0 ;[k]

	

77 	wait for CLOCKFF $ Synchronize with clock

	

79 	CLOCKFF<-0

	

80 	loop

	

81 	call READ DATA ;[DATA,CLOCKFF]

	

82 	return if BUSYBIT $ interrupt has been taken

	

83 	repeat while DATA-PATTERN # 0

	

85 	$ 1st pattern observed,

	

85 	$ start counting cycles until 2nd pattern.

	

85 	SEEN1<-TRUE 	$ in Status Register

	

86 	COUNT<-0

	

87 	ASSBITS<-ASS2 $ used by READ DATA

	

88 	loop

	

89 	COUNT<-COUNT+1

	

90 	if OVF then ;[!COUNT]

	

93 	 STATREG<-O;

	

94 	 OVERFLOW<-TRUE

	

95 	 ERRBIT<-TRUE ;[2]

	

96 	else

	

98 	 call READ DATA

	

99 	finish

	

100 	return if BUSYBIT $ due either to OVF above

	

101 	 $ or else interrupt

	

101 	 $ inside READ DATA

	

101 	repeat while DATA-PAT2 # 0

	

103 	SEEN2<-TRUE

	

104 	OUTREG<-COUNT

	

105 	return

106 READ DATA:: $ Reads a 16-bit pattern from the probes

	

107 	if INTERRUPT call COMMAND

	

108 	return if IDLE 	 $ forced by interrupt

	

110 	if CLOCKFF then $ Clock has already pulsed -

	

ilk 	 $ cannot keep up.

	

ilk 	STATREG<-0;

	

115 	ERRBIT<-TRUE

	

116 	CLOCKERR<-TRUE ;[2]

	

117 	return

	

118 	finish

	

119 	wait for CLOCKFF ;[PROBEDATA]

	

121 	 $ Clock has set flip-flop and latched data.

	

121 	CLOCKFF<-O

	

122 	DATA<-PROBEDATA&ASSBITS

	

123 	return

215

124 COUNT EVENTS::

125 $ Counts the number of occurrence,s of a specified
125 $ bit pattern within a given time interval.

125 	EVCOUNT<-TRUE 	$ In Status Register
126 	call READ WORD ;[INHIGH,INLOW]
127 	PATTERN<-INHIGH.INLOW
128 	call READ WORD ;(INHIGH,INLOW]
129 	ASSBITS<-INHIGH.INLOW
130 	call READ WORD ;[INHIGH,INLOW]
131 	INTERVAL<-INHIGH.INLOW

132 	PATTERN<-PATTERN&ASSBITS
133 	EVENTS<-O
134 	CLOCKFF<-O ;[14]
135 	wait for CLOCKFF $ to synchronize with clock
137 	CLOCKFF<-O

138 	loop

139 	 loop
1140 	 call READ DATA ;[DATA]
1141 	 return if BUSYBIT $ interrupt taken by
1142 	 $ READ DATA
1142 	 INTERVAL<-INTERVAL-1
11414 	 exit-2 if INTERVAL < 0
146 	 repeat while DATA-PATTERN # 0

1147 	 EVENTS<-EVENTS+1

148 	 $ wait until event has gone away before
148 	 $ looking for next occurrence

148 	 loop
149 	 call READ DATA ;[DATA]
150 	 return if BUSYBIT
151 	 INTERVAL<-INTERVAL-1
153 	 exit-2 if INTERVAL < 0
155 	 repeat while DATA-PATTERN 	0

156 	repeat

157 	OUTREG.<-EVENTS

158 	return
159

*** END ***

216

INDEX MICRO-OPERATION LEVEL PARENTS COMPONENTS

1 [LABELLED] 0 - 2 22
2 [LOOP] 1 - 3 14 6 7
3 STATREG<-O 2 - -

14 [LOOP] 2 - 5
5 IFDATAAVAILABLEGOTOU 3 - -

6 CALL314 2 14 3 314
7 [LABELLED] 2 6 8 10 11 21
8 [LOOP] 3 - 9
9 IFTXBUSYGOT06 14 - -

10 TX<-STATREG 3 8 -

11 [IFHEADER] 3 10 12
12 EIFBLOCK] 14 - 13 114 16 17

18 20
13 IFBUSYBITGOT08 5 - -

114 [LOOP] 5 13 15
15 IFTXBUSYGOT010 6 - -

16 OUTBUFF<-OUTREG 5 13 -

17 TX<-OUTLOW 5 16 -

18 [LOOP] 5 13 17 19
19 IFTXBUSYGOT010 6 - -

20 TX<-OUTHIGH 5 18 16 -

21 GOT02 3 11 -

22 [LABELLED] 1 - 23 211 31 40
149 514 55

23 INLOW<-RXDATA 2 - -

24 EIFHEADER] 2 23 25
25 [IFBLOCK) 3 - 26 27 28 29

30
26 IFINLOW(0)GOT06 14 - -

27 RESET 14 26 -

28 STATREG<-O 14 26 -

29 RETURN 14 28 27 -

30 [LABELLED] II 29 -

31 [IFHEADER] 2 214 32
32 [IFBLOCK] 3 - 33 314 35
33 IFINLOW(1)GOTO6 14 - -

314 IFIDLEGOT035 14 33 -

35 [LABELLED] 14 314 36 37 38 39
36 STATREG<-O 5 - -

37 ERRBIT<-TRUE 5 36 -

38 RETURN 5 37 -

39 [LABELLED] 5 38 -

140 [IFHEADER] 2 31 141
141 [IFBLOCK] 3 - 142 143 1414
142 IFINLOW(2)GOT06 14 - -

143 IFIDLEGOT036 14 112 -

14 11 [LABELLED] 11 143 145 116 147 148
145 STATREG<-0 5 - -

217

.Ls1sJIEkfl

46 ERRBIT<—TRUE 5 145 -

47 RETURN 5 116 -

118 [LABELLED] 5 147 -

119 [IFHEADER] 2 110 50
50 [IFBLOCK] 3 - 51 52 53
51 IFINLOW(3)GOT06 11 - -

52 BUSYBIT<—TRUE 11 51 -

53 OUTREG<—REG(INLOW< 11:7) 11 51 -

54 RETURN 2 119 -

55 [LABELLED] 2 511 56 58 59 	61
62 63

56 [LOOP] 3 - 57
57 IFDATAAVAILABLEGOT06 11 - -

58 INHIGH<—RXDATA 3 56 -

59 [LOOP] 3 58 60
60 IFDATAAVAILABLEGOT06 11 - -

61 INLOW<—RXDATA 3 59 -

62 RETURN 3 61 -

63 [LABELLED] 3 62 614 65 66 	67
68 69 70 	71
72 73 74 	75
76 77 78 79
80 85 86 	87
88 103 10 11

105 106
611 INTMEASURE<—TRUE 11 - -

65 BUSYBIT<..-TRUE 11 - -

66 CALL37 11 - 37
67 PATTERN<—INHIGH.INLOW II 66 -

68 CALL37 11 67 37
69 ASSBITS<—INHIGH.INLOW 11 68 -

70 CALL37 11 69 37
71 PAT2<—INHIGH.INLOW II 70 -

72 CALL37 II 71 37
73 ASS2<—INHIGFI.INLOW 11 72 -

711 PATTERN<—PATTERN&ASSBTS 14 67 69 -

75 PAT2<—PAT2&ASS2 11 71 73 -

76 CLOCKFF<-0 14 72 -

77 [LOOP] 11 76 78
78 IFCLOCKFFGOT08 5 - -

79 CLOCKFF<—O 4 77 -

80 [LOOP] 14 79 65 77 	76 81 82 83
75 714 	611

81 CALL39 5 - 39
82 RETURNIFBUSYBIT 5 81 -

83 [LABELLED] 5 82 814
84 IFDATA—PATTERN#OGOT08 6 - -

85 SEEN 1<—TRUE 11 80 -

86 COUNT<—O 11 80 -

87 ASSBITS<—ASS2 11 80 -

88 [LOOP] 11 86 80 87 85 89 90 100
101

218

INDEX MICRO-OPERATION 	LEVEL PARENTS COMPONENTS

89 COUNT<-COUNT+1 5 - -

90 [IFHEADER) 5 89 91 97
91 [IFBLOCK] 6 - 92 93 94 	95

96
92 IFOVFGOT012 7 - -

93 STATREG<-0 7 92 -

94 OVERFLOW<-TRUE 7 93 -

95 ERRBIT<-TRUE 7 93 -

96 GOT013 7 95 94 -

97 [ELSEBLOCK] 6 91 98 99
98 CALL39 7 - 39
99 [LABELLED] 7 98 -

100 RETURNIFBUSYBIT 5 90 -

101 [LABELLED] 5 100 102
102 IFDATA-PAT2#OGOT08 6 - -

103 SEEN2<-TRUE k 88 -

104 OUTREG<-COUNT 11 88 -

105 RETURN k 104 103 -

106 [LABELLED] 11 105 107 108
107 IFINTERRUPTCALL34 5 - 34
108 [LABELLED] 5 107 109 110
109 RETURNIFIDLE 6 - -

110 [LABELLED] 6 109 111 119 121
122 123 124

111 EIFHEADER] 7 - 112
112 [IFBLOCK] 8 - 113 ilk 115

116 117 118
113 IFCLOCKFFGOT016 9 - -

ilk STATREG<-0 9 113 -

115 ERRBIT<-TRUE 9 ilk -

116 CLOCKERR<-TRUE 9 ilk -

117 RETURN 9 116 115 -

118 [LABELLED] 9 117 -

119 [LOOP] 7 111 120
120 IFCLOCKFFGOT014 8 - -

121 CLOCKFF<-0 7 111 119 -

122 DATA<-PROBEDATA&ASSBIS 7 111 119 -

123 RETURN 7 122 121 -

124 [LABELLED] 7 123 125 126 127
128 129 130
131 132 133
134 135 137
138 157 158

125 EVCOUNT<-TRUE 8 - -

126 CALL37 8 - 37
127 PATTERN<-INHIGFI.INLOW 8 126 -

128 CALL37 8 127 37
129 ASSBITS<-INHIGH.INLOW 8 128 -

130 CALL37 8 129 37
131 INTERVAL<-INHIGH.INLO 8 130 -

132 PATTERN<-PATTERN&ASSBTS 8 127 129 -

133 EVENTS<-0 8 - -

219

INDEX MICRO—OPERATION 	LEVEL PARENTS

134 CLOCKFF<-0 8 130
135 [LOOP] 8 134
136 IFCLOCKFFGOT016 9 -

137 CLOCKFF<-0 8 135
138 [LOOP] 8 137 	135 	134

133 	132 	125
139 [LOOP] 9 -

140 CALL39 10 -

141 RETURNIFBUSYBIT 10 140
142 [LABELLED] 10 lli
143 INTERVAL<—INTERVAL-1 11 -

144 IFINTERVAL<0G0T017 11 143
145 [LABELLED] 11 144
146 IFDATA—PATTERN#OGOT01 12 -

147 EVENTS<—EVENTS+1 9 139
148 [LOOP] 9 139 	147
149 CALL39 10 -

150 RETURNIFBUSYBIT 10 149
151 [LABELLED] 10 150
152 INTERVAL<—INTERVAL-1 11 -

153 IFINTERVAL<0G0T017 11 152
154 [LABELLED] 11 153
155 IFDATA—PATTERN0GOT01 12 -

156 GOT016 9 148
157 OUTREG<—EVENTS 8 138
158 RETURN 8 157

KerwMeIrk

136

139 147 148
156
140 141 142
39

143 145 144

146

149 150 151
39

152 1514 153

155

220

t!'i.iiiJ!(I-

$ Architecture for implementing hardware monitor based on
$ AM 2901A microprocessor.

%SEQUENTIAL
%OUT-AND-IN

1 	[INSTR] (composite) <0:46> :
[AM2901A] [LINKI/O] [FFCONTROL] LALU_IN] [RESULT]
[LOADBUFF] [NAC] LSELCONDJ LADDR] LSPECREGJ.

$ Microinstruction format for AM2901A 4-bit slice
$ microprocessor chip.

2 	[AM2901A] (comp) <0:17> := 	[AREGJ IBREGJ ISOURCE]
[Q] [ALU_RESULT]
[ALU_OUT] LDEST] LCARRYJ.

%FIELDALIAS
D = ALU_IN
Y = ALU_OUT
F = ALU_RESULT

%END

%NAMEALIAS
RO = OUTREG
Ri = DATA
R2 = COUNT
R3 = PATTERN
Rk = ASSBITS
R5 = PAT2
R6 = ASS2
R7 = INTERVAL
R8 = EVENTS

%END

%ALIASINDEX = 0

3 	LAREGJ (select) <0:3> := %when LSPECREGJ = 1:
REG(INL0W<4:7>).,

HO; Ri; R2; R3; RLI; R5; Rb; Ri; Ho;
R9; RIO; Ru; R12; R13; R1 11; R15.

5 	[BREGJ (select) <4:7> :=
RO; Hi; R2; R3; Rk; R5; R6; R7; R8;
R9; RIO; Ru; R12; R13; R14; R15.

6 	ISOURCE] (select) <:10> :: SO; Si; S2; S3;
S4; 55; Sb; 57.

221

	

7 	LRJ (select) <d:10>
LAREG);
LAREGJ;
0;
0;
0;

LDJ;
ID];
LDJ.

	

8 	is] (select) <ö:lO> :=
LQJ;
LBREG];
L 	i;
LEREG];
LAREGJ;
LAREG];
IQi;
0.

	

9 	LDESTJ (execute) <14:16> :
<2>: LBREG]<-LF];
<3>: LBREGJ<-[FJ;.
< 14>: LBREG]<-LF]/2,

IBREGJ<-LFJ>>1
<5>: IBREG]<-LF]/2,

LBREGi<-LFJ>>1
<6>: LBREG]<-LF]'2,

LBREGJ<-[F]<<1;
<7>: LBREG]<-LF]'2,

LBREGJ<-[FJ<<1
'DEFAULT=l

	

10 	IQJ (register) <114:16> := <0>: LFJ;
<4>: LQ]/2,

LQJ>>l;
<6>: [Q]'2,

LQJ<<l
'DEFAULT = 1

	

11 	LYJ (select) <114:16> :=
IF];
LF];
LAREG];
LF];
IF];
IF j;
LF];
IF .1.

'DEFAULT :1

	

12 	LCARRYJ (emit) <17:17> := 1.

	

13 	LF] (select) <11:13> := <0>: %when LCARRY)=1
LRJ+LSJ+1,
is)+ LR] +1.

222

%when 	LCARRYJ0
LR]+LSJ
LS]+IRJ.

when LSOURCE]=2 %and 	ICARRY]=1 : 	[Q]+1.,
%when ISOURCEJ=2 sand 	LCARRYJ=O : 	IQJ.,
%when LSOURCE]3 %and 	LCARRY]=1 : 	LBREG]+1.,
%when ISOURCEJ=3 %and LCARRYJ=O : 	IBREGJ.,
%wheri LSOURCE]4 %and 	LCARRY]1 : 	 LAREG]+1.,
%when LSOURCEJ4 %and 	LCARRYJ=O : 	LAREGJ.,

when LSOURCE]=7 %and 	LCARRY]=1 : 	LD]+1.,
when LSOURCEj=7 %and 	LCARRYJ=O : 	LDJ.;

<1>: %when LCARRY]=O : 	LS]-LR]-1. 1
%when LSOURCEJ=2 %and 	LCARRYJ=O : 	LQJ-1.,
%when LSOURCE]=3 %and 	LCARRY]=O : 	LBREG]-1.,
%when LSOURCEi= %and LCARRYJ=O : 	LAREGJ-1.,
%when LSOURCE]7 %and 	LCARRY]:O : 	-LD]-1.,
%when LCARRYJ=1 : 	LSJ-[Ri.,
%when LSOURCE]=2 'and 	LCARRY]=1 : 	IQJ.,
%when LSOURCEJ=3 %and 	LCARRYJ=1 : 	LBREGJ.,
%when LSOURCE]= 14 %and 	LCARRY]=1 : 	LAREGJ.,
%when LSOURCEJ=7 sand 	LCARRYJ=1 : 	-LDJ.;

<2>: %when LCARRY]=O : 	LR]-LS]-1.,
%when LSOURCE]2 %and LCARRYk1 : 	-LQJ-1.,
%wheri LSOURCE)=3 %and 	LCARRY]=1 : 	-LBREG)-1.,
%when LSOURCEJ: %and 	LCARRYJ1 : 	-LAREGJ-1.,
%wheri ISOURCE]=7 %and 	LCARRY]=1 : 	 LD]-1.,

when ICARRYJ=1 	: LRJ-LSJ.,
%when LSOURCE]=2 'and 	LCARRY]=O : 	-LQJ.,
%when LSOURCE]=3 %and 	LCARRYJ=O : 	-LBREGJ.,

when LSOURCE]= 14 %and 	LCARRY]=O : 	-LAREGJ.,
%when LSOURCEJ=7 sand 	LCARRYJ=O : 	LDJ.;

<3>: LR]!LSJ,
L S J I LRJ,
when LSOURCEJ.=2 : 	LQJ.,

%when LSOURCE)=3 : 	LBREGJ.,
when LSOURCEJ= : 	LAREGJ.,

%when ISOURCE):7 : 	IDJ.;
<M>: LRJ&LSJ,

LS]&LRJ
%when LSOURCE.k2 : 	0.,
%when LSOURCE]=3 : 	0.,
%wheri LSOURCEJ=4 : 	 0.,
%wberi LSOURCE]=7 : 	 0.;

<5>: LRJ&LSJ.,
%when ISOURCEJ=2 : 	IQJ.,

when LSOURCE)=3 : 	LBREGJ.,
%when LSOURCEJ=4 : 	LAREG.J.,
%when LSOURCE]=7 : 	0.;

: LRJHLSJ, S

IS]! !LRJ,
%when LSOURCEJ2 : 	LQJ.,
%when LSOURCE]=3 : 	IBREGJ.,
%when LSOURCEJ=l : 	LAREGJ.,
%when LSOURCE]7 : 	LDJ.;

223

<7>: LRJI!LSJ,
LS]! !LRJ,
when 	LSOURCE.k2 	:
when 	LS0URCE13 	: 	LBREGJ.,
when 	LSOURCEJ=4 	: 	[AREGJ.,
when 	LSOURCE1=7 	: 	- 1DJ..

%ENDALIAS

611 LLINKI/0J 	(composite) 	<18:22> := 	LINBYTEJ 	LREADBYTEJ
LOUTBYTE] 	LOUTSOURCEJ
LOUTSOURCEJ 	LWRITEBYTEJ.

65 LINBYTE] 	(select) 	<16:18> 	:= <0>: 	INLOW;
<1>: 	INHIGH.

66 LREADBYTE] 	(execute) 	<19:19> := 	<1>: 	ACK,
LINBiTEJ<-RxDATA.

67 LOUTBYTE) 	(select) 	<20:20> 	:= OUTLOW; 	OUTHIGH.
68 LOUTSOURCEJ 	(select) 	<21:21> := 	LOUTBYTEJ; 	STATREG.
69 LWRITEBYTE] 	(execute) 	<22:22> : 	<1>: 	BUSY,

Tx<-[OUTSOURCEJ.
70 LFFCONTROL] 	(composite) 	<23:28> := 	LRESET] 	LFLAGSJ

LSTATBITJ.
71 IRESET] 	(execute) 	<23:23> 	: <1>: 	Reset.
72 LFLAGSJ 	(execute) 	<214:25> 	: <1>: 	LSTATBITJ 	<- 	TRUE;

<2>: 	STATREG<-0;
<3>: 	CLOCKFF<-0.

73 ISTATBIT] 	(select) 	<26:28> 	:= BUSYBIT;
EVCOUNT;
OVERFLOW;
INTMEASURE;
CLOCKER H;
ERRBIT;
SEEN 1;
SEEN2.

711 LALU_IN] 	(select) 	<29:29> 	:= <0>: 	TTINHIGH.INLOW";
<1>: 	PROBEDATA.

75 LLOADBUFF) 	(execute) 	<30:30> := 	<1>:
OUTBUFF<- [ALU_OUTJ.

76 LSELCOND] 	(select) 	<31:3 14> 	:= TRUE;
IZJ;
LNZJ;
IN];
LP];
I0J;
DATA AVAILABLE,

INTERRUPT;
DATA AVAILABLE;

TXBUSY;
BUSYBIT;
BUSYBIT, 	IDLE;
CLOCKFF;
INLOW(0);
INLOW(1);
INLOW(2);
INLOW(3).

224

77 LZJ (Select) 	: LRESULTJ = 	0.
78 LNZ] (Select) 	:= IRESULT] # 	0.
79 LNJ (Select) 	:= IRESULTJ < 	0.
80 LP] (Select) 	:= LRESULT] > 	0.
öl LOJ (Select) - OVF.
82 IRESULT] (select) 	<14:16> := 	LALU_RESULT];

LALU_RESIJLTJ;
LBREG]; 	LBREG];
IBREGJ; 	LBREGJ;
LBREG]; 	IBREG].
*DEFAULT1

83 LNAC] (execute) <35:38> := 	<1>:
if LSELCONDJ 	call LADDRJ,

%when LSELCOND] 	= 	0: 	call LADDRJ.;
<3>:
if LSELCOND] 	goto LADDRJ

%when LSELCONDJ 	= 	0: 	goto IADDRJ.;
<10): 	if 	LSELCOND] return,

return if LSELCONDJ,
%when LSELCOND] 	= 	0: 	return.;

<14>: 	continue;
<15>: 	goto 	LADDRJ.

*DEFAULT1 4
7 	LADDRJ (address) <39:45> := 127.

$ "Address" field type is just "Emit" used for special
$ purpose of holding microinstruction address
$ (asterisked on output).

8 LSPECREGJ (select) <46:46> := normal; forcereg.

*** END ***

225

SELECTED OP OP = IFDATAAVAILABLEG0T04 (5) - PACKED

00000000000000001000000000000000111001100001000
SELCOND - 7
NAC - 3
ADDR - 4*

SELECTED OP = STATREG<-0 (3) - PACKED

SELECTED OP = CALL34 (6) - PACKED

00000000000000001000000010000000000000101000100
FLAGS - 2
SELCOND - 0
NAC - 1
ADDR - 34'

SELECTED OP = IFTXBUSYGOTOb (9) - PACKED

00000000000000001000000000000001000001100001100
SELCOND -
NAC - 3
ADDR -

SELECTED OP = TX<-STATREG (10) - PACKED

SELECTED OP = IF - BUSYBITGOT08 (13) - PACKED

.00000000000000001000011000000001O10001100010000
OUTSOURCE - 1
WRITEBYTE - 1
SELCOND - 10
NAC - 3
ADDR - 5'

SELECTED OP = IFTXBUSYGOT010 (15) - PACKED

00000000000000001000000000000001000001100010100
SELCOND -
NAC - 3
ADDR - 10'

SELECTED OP = OUTBUFF<-OUTREG (16) - PACKED

00000000011000001000000000000010000111000000000

226

BREG - 0
SOURCE - 3
Y-1
CARRY - 0
F - O
LOADBUFF - 1

SELECTED OP = TX<-OUTLOW (17) - PACKED

000000000000000010000010000000000001 11000000000
OUTBYTE - 0
OUTSOURCE - 0
WRITEBYTE - 1

SELECTED OP = IFTXBUSYGOT010 (19) - PACKED

0000000000000000100000000000000100000110001O100
SELCOND -
NAC-3
ADDR - 10'

SELECTED OP = TX<-OUTHIGH (20) - PACKED

00000000000000001000101000000000000111000000000
OUTBYTE - 1
OUTSOURCE - 0
WRITEBYTE - 1

SELECTED OP = GOT02 (21) - PACKED

00000000000000001000000000000000000001 100000100
SELCOND - 0
NAC - 3
ADDR - 2*

SELECTED OP = INLOW<-RXDATA (23) - PACKED

SELECTED OP = IFINLOW(0)GOT06 (26) - PACKED

00000000000000001001000000000001100001100001100
INBYTE - 0
READBYTE - 1
SELCOND - 12
MAC - 3
ADDR - 6'

SELECTED OP = STATREG<-0 (28) - PACKED

227

SELECTED OP = RESET (27) - PACKED

SELECTED OP = RETURN (29) - PACKED

00000000000000001000000110000000000101000000000
RESET - 1
FLAGS - 2
SELCOND - 0
NAC - 10

SELECTED OP = IFINLOW(1)GOT06 (33) - PACKED

00000000000000001000000000000001101001100001100
SELCOND - 13
MAC - 3
ADDR -

SELECTED OP = IFIDLEGOT035 (34) - PACKED

00000000000000001000000000000001010001101000110
SELCOND - 10
NAG
ADDR - 35'

SELECTED OP = STATREG<-O (36) - PACKED

00000000000000001000000010000000000111000000000
FLAGS - 2

SELECTED OP = ERRBIT<-TRUE (37) - PACKED

SELECTED OP = RETURN (38) - PACKED

00000000000000001000000001101000000101000000000
FLAGS - 1
STATBIT - 5
SELCOND - 0
MAC - 10

SELECTED OP = IFINLOW(2)GOT06 (42) - PACKED

00000000000000001000000000000001110001100001100
SELCOND - 14
NAG
ADDR - b'

SELECTED OP = IFIDLEGOT036 (43) - PACKED

228

00000000000000001000000000000001010001101001000
SELCOND - 10
NAG - 3
ADDR - 36*

SELECTED OP = STATREG<-O (45) - PACKED

00000000000000001000000010000000000111000000000
FLAGS - 2

SELECTED OP = ERRBIT(-TRUE (46) - PACKED

SELECTED OP = RETURN (47) - PACKED

00000000000000001000000001101000000101000000000
FLAGS - 1
STATBIT - 5
SELCOND - 0
NAC - 10

SELECTED OP = IFINLOW(3)GOT06 (51) - PACKED

00000000000000001000000000000001111001100001100
SELCOND - 15
NAG
ADDR - bt

SELECTED OP = OUTREG<-REG(INLOW<4:7>) (53) - PACKED

SELECTED OP = BUSYBIT<-TRUE (52) - PACKED

00000000011000010000000001000000000111000000001
BREG - 0
SOURCE - 3
DEST - 2
CARRY - 0
F - O
FLAGS - 1
STATBIT - 0
SPECREG - 1

SELECTED OP = RETURN (54) - PACKED

00000000000000001000000000000000000101000000000.
SELCOND - 0
NAG - 10

SELECTED OP = IFDATAAVAILABLEGOTOb (57) - PACKED

229

00000000000000001000000000000000111001100001100
SELCOND - 7
NAG - 3
ADDH - b'

SELECTED OP = INHIGH<-RXDATA (58) - PACKED

0000000000000000101100000 0000000000111000000000
INBYTE - 1
READBYTE - 1

SELECTED OP = IFDATAAVAILABLEGOTOb (bO) - PACKED

00000000000000001000000000000000111001100001100
SELCOND - 7
NAG - 3
ADDR - 6*

SELECTED OP = INLOW<-RXDATA (61) - PACKED

SELECTED OP = RETURN (62) - PACKED

00000000000000001001000000000000000101000000000
INBYTE - 0
READBYTE - 1
SELCOND - 0
NAG - 10

SELECTED OP = CALL37. (66) - PACKED

SELECTED OP = BUSYBIT<-TRUE (65) - PACKED

SELECTED OP = INTMEASURE<-TRUE (b'I) - CLASHED

(2) 00000000000000001000000001000000000000101001010
FLAGS - 1
STATBIT - 0
SELCOND - 0
NAG - 1
ADDR - 37'

SELECTED OP = PATTERN<-INHIGH.INLOW (67) - PACKED

SELECTED OP = CALL37 (63) - PACKED

SELECTED OP = INTMEASURE<-TRUE (b's) - PACKED

(29) 	00000011111000010000000001011000000000101001010

230

DREG - 3
SOURCE - 7
DEST - 2
CARRY - 0
F - O
FLAGS - 1
STATBIT - 3
ALU_IN - 0
SELCOND - 0
NAC - 1
ADDR - 37*

SELECTED OP = ASSBITS<-INHIGH.INLOW (69) - PACKED

SELECTED OP = CALL37 (70) - PACKED

000001001110000100000000000000000 0 0 000101001010
BREG -
SOURCE - 7
DEST - 2
CARRY - 0
F - O
ALU_IN - 0
SELCOND - 0
NAC - 1
ADDR - 37*

SELECTED OP = PAT2<-INHIGH.INLOW (71) - PACKED

SELECTED OP = CALL37 (72) - PACKED

SELECTED OP = PATTERN<-PATTERN&ASSBITS (74) - CLASHED

0000010111100001 00 000 00000000000000000101001010
DREG - 5
SOURCE - 7
DEST - 2
CARRY - 0
F-0
ALU_IN - 0
SELCOND - 0
NAC - 1
ADDR - 37'

SELECTED OP = CLOCKFF<-O (76) - PACKED

SELECTED OP = ASS2<-INHIGH.INLOW (73) - PACKED

SELECTED OP = PATTERN<-PATTERN&ASSBITS (74) - CLASHED

00000110111000010000000011000000000111000000000

231

BREG - 6
SOURCE - 7
DEST - 2
CARRY - 0
F - O
FLAGS - 3
ALU_IN - 0

SELECTED OP = IFCLOCKFFGOT08 (78) - PACKED

0000000000000 0001000000000000001011001100010000
SELCOND - 11
NAC - 3
ADDR - B'

SELECTED OP = PATTERN<-PATTERN&ASSBITS (74) - PACKED

SELECTED OP = PAT2<-PAT2&ASS2 (75) - CLASHED

SELECTED OP = CLOCKFF<-O (79) - PACKED

01000011001100010000000011000000000111000000000
AREG - LI

BREG - 3
R-1
S-i
DEST - 2
F - k
FLAGS - 3

SELECTED OP = PAT2<-PAT2&ASS2 (75) - PACKED

0110010100110001000000000000000000011 1 00 0000000
AREG - 6
BREG - 5
R-1
S
DEST - 2
F - k

SELECTED OP = CALL39 (81) - PACKED

0000000000000000100000000000000000000010100111 0
SELCOND - 0
NAC-1
ADDR - 39'

SELECTED OP = RETURNIFBUSYBIT (82) - PACKED

232

(37) 00000000000000001000000000000001010101000000000
SELCOND - 10
NAC - 10

SELECTED OP = IFDATA-PATTERN#OGOTO (84) - PACKED

	

(38) 	001100010010010 01100000000000000010001100010000
AREG - 3
BREG - 1
R
S
CARRY - 1
F - i
SELCOND - 2
RESULT - 1
NAC - 3
ADDR - 8*

SELECTED OP = ASSBITS<-ASS2 (87) - PACKED

SELECTED OP = SEEN1<-TRUE (85) - PACKED

SELECTED OP = COUNT<-0 (86) - CLASHED

	

(39) 	0110 0100100000010000000001110000000111000000000

AREG - 6
BREG -
SOURCE - 4
DEST-2
CARRY - 0
F-0
FLAGS
STATBIT - 6

SELECTED OP = COUNT<-0 (86) - PACKED

(40) 0000001001010001000000000000000000011100000000 0

BREG - 2
SOURCE - 2
DEST-2
F-4

SELECTED OP = COUNT<-COUNT+1 (89) - PACKED

SELECTED OP = IFOVFGOT012 (92) - PACKED

	

(41) 	0000001001100001010000000000000010100110001100 10
BREG - 2
SOURCE - 3
DEST - 2

233

CARRY - 1
F - O
SELCOND - 5
NAC - 3
ADDR - 12'

SELECTED OP = STATREG<-0 (93) - PACKED

000000000000000010000000100000000001 11000000000
FLAGS - 2

SELECTED OP = ERRBIT<-TRUE (95) - PACKED

SELECTED OP = OVERFLOW<-TRUE (94) - CLASHED

0000000000000000100000000110 1000000111000000000
FLAGS - 1
STATBIT - 5

SELECTED OP = OVERFLOW<-TRUE (94) - PACKED

SELECTED OP = GOT013 (96) - PACKED

(414) 	00000000000000001000000001010000000001100011010
FLAGS - 1
STATBIT - 2
SELCOND - 0
NAC - 3
ADDR - 13'

SELECTED OP = CALL39 (98) - PACKED

(45) 00000000000000001000000000000000000000 1 0100 11 1 0
SELCOND - 0
NAC - 1
ADDR - 39*

SELECTED OP = RETURNIFBUSYBIT (100) - PACKED

00000000000000001000000000000001010101000000000
SELCOND - 10
NAC - 10

SELECTED OP = IFDATA-PAT2#0GOTO8 (102) - PACKED

01010001001001001100000000000000010001100010000
AREG - 5
BREG - 1

234

R-i
s-i
CARRY - 1
F - i
SELCOND - 2
RESULT - 1

NAC - 3
ADDR - 8*

SELECTED OP = OUTREG<-COUNT (10 11) - PACKED

SELECTED OP = SEEN2<-TRUE (103) - PACKED

SELECTED OP = RETURN (105) - PACKED

(118) 	00100000100000010000000001111000000101000000000
AREG - 2
BREG - 0
SOURCE -
DEST - 2
CARRY -C
F-0
FLAGS - 1
STATBIT - 7
SELCOND - 0
NAC - lO

SELECTED OP = IFINTERRUPTCALL311 (107) - PACKED

(149) 	00000000000000001000000000000000110000101000100
SELCOND - 6
NAC-1
ADDR - 34*

SELECTED OP = RETURNIFIDLE (109) - PACKED

00000000000000001000000000000001010101000000000
SELCOND - 10
NAG - 10

SELECTED OP = IFCLOCKFFGOT016 (113) - PACKED

00000000000000001000000 000000001011001100100000
SELCOND - 11
NAG - 3
ADDR - 16*

SELECTED OP = STATREG<-O (1111) - PACKED

235

00000000000000001000000010000000000l 11000000000
FLAGS - 2

SELECTED OP = CLOCKERR<-TRUE (116) - PACKED

SELECTED OP = ERRBIT<-TRUE (115) - CLASHED

0000000'OOOOOOOOOlOOOOOOO011O0000000111000000000
FLAGS - 1
STATBIT - LI

SELECTED OP = ERRBIT<-TRUE (115) - PACKED

SELECTED OP = RETURN (117) - PACKED

00000000000000001000000001101000000101000000000
FLAGS - 1
STATBIT - 5
SELCOND - 0
NAC - 10

SELECTED OP = IFCLOCKFFGOT014 (120) - PACKED

00000000000000001000000000 000001011001100011100
SELCOND - 11
NAC - 3
ADDR - 14*

SELECTED OP = DATA<-PROBEDATA&ASSBITS (122) - PACKED

SELECTED OP = CLOCKFF<-0 (121) - PACKED

SELECTED OP = RETURN (123) - PACKED

01000001101100010000000011000100000101000000000
AREG -
BREG - 1
R-5
S-5
DEST - 2
F - LI
FLAGS - 3
ALU_IN - 1
SELCOND - 0
NAC - lO

SELECTED OP = CALL37 (126) - PACKED

SELECTED OP = EVENTS<-0 (133) - PACKED

236

SELECTED OP = EVCOUNT<-TRUE (125) - PACKED

00001000010100010000000001001000000000101001010
BREG - 8
SOURCE - 2
DEST-2
F -
FLAGS - 1
STATBIT - 1
SELCOND - 0
NAC - 1
ADDR - 37'

SELECTED OP = PATTERN<-INHIGH.INLOW (127) - PACKED

SELECTED OP = CALL37 (128) - PACKED

00000011111000010000000000000000000000101001010
BREG - 3
SOURCE - 7
DEST - 2
CARRY - 0
F - O
ALU_IN - 0
SELCOND - 0
NAC - 1
ADDR - 37*

SELECTED OP = ASSBITS<-INHIGH.INLOW (129) - PACKED

SELECTED OP = CALL37 (130) - PACKED

0000GIOO1110000100000000000000000000001O1001O1O
BREG -
SOURCE - 7
DEST - 2
CARRY - 0
F - O
ALU_IN - 0
SELCOND - 0
NAC - 1
ADDR - 37'

SELECTED OP = CLOCKFF<-0 (1314) - PACKED

SELECTED OP = PATTERN<-PATTERN&ASSBITS (132) - PACKED

SELECTED OP = INTERVAL<-'INHIGH.INLOW (131) - CLASHED

01000011001100010000000011000000000111000000000

237

AREG -
BREG - 3
R-1
3-1
DEST - 2
F - k
FLAGS - 3

SELECTED OP = IFCLOCKFFGOT016 (136) - PACKED

00000000000000001000000000000001011001100100000
SELCOND - 11
NAC-3
ADDR - 16*

SELECTED OP = INTERVAL<-INHIGH.INLOW (131) - PACKED

SELECTED OP = CLOCKFF<-O (137) - PACKED

00000111111000010000000011000000000111000000000
BREG - 7
SOURCE - 7
DEST-2
CARRY -C
F - O
FLAGS - 3
ALU_IN - 0

SELECTED OP = CALL39 (lkO) - PACKED

00000000000000.00100 0000000000000000000101001110
SELCOND - 0
NAC - 1
ADDR - 39'

SELECTED OP = RETURNIFBUSYBIT (141) - PACKED

00000000000000001000000000000001010101000000000
SELCOND - 10
NAC - 10

SELECTED OP = INTERVAL<-INTERVAL-1 (1 113) - PACKED

SELECTED OP 	IFINTERVAL<0G0T017 (1411) - PACKED

0000011101100101000000000000 00 0 0011001100100010
BREG - 7
SOURCE - 3
DEST - 2

238

CARRY - 0
F - i
SELCOND - 3
RESULT - 2
NAC - 3
ADDR - 17'

SELECTED OP = IFDATA-PATTERN#OGOT018 (1 1 6) - PACKED

	

(66) 	00110001001001001100000000000000010001100100100
AREG - 3
BREG - 1
R
S
CARRY - 1
F - i
SELCOND - 2
RESULT - 1
NAC - 3
ADDR - 18'

SELECTED OP = EVENTS<-EVENTS+i (147) - PACKED

	

(67) 	000010000110000 1 010 00000000000000 0 0111000000000
BREG - 8
SOURCE - 3
DEST - 2
CARRY
F - O

SELECTED OP = CALL39 (149) - PACKED

(68) 00000000000000001000000000000000000000101001110
SELCOND - 0
NAC-i
ADDR - 39'

SELECTED OP = RETURNIFBUSYBIT (150) - PACKED

(69) 00000000000000001000000000000001010101000000000
SELCOND - 10
NAC - 10

SELECTED OP = INTERVAL<-INTERVAL-1 (152) - PACKED

SELECTED OP = IFINTERVAL<0G0T017 (153) - PACKED

	

(70) 	00000111011001010000000000000000011001100100010
BREG - 7

239

SOURCE - 3
DEST - 2
CARRY - 0
F - i
SELCOND - 3
RESULT - 2
NAC - 3
ADDR - 17*

SELECTED OP = IFDATA-PATTERN=OGOT018 (155) 	PACKED

00110001001001001100000000000000001001100100100
AREG - 3
BREG - i
R
3-1
CARRY - 1
F - i
SELCOND - 1
RESULT - i
NAC-3
ADDR - 18*

SELECTED OP = GOT016 (156) - PACKED

0000000000000000i000000000000000000001 100100000
SELCOND - 0
NAC - 3
ADDR - 16*

SELECTED OP = OUTREG<-EVENTS (157) - PACKED

SELECTED OP = RETURN (158) - PACKED

10000000100000010000000000000000000101000000000
AREG - 8
BREG - 0
SOURCE -
DEST - 2
CARRY - 0
F - O
SELCOND - 0
NAC - 10

*** 106 OPERATIONS PACKED INTO 73 MICROINSTRUCTION WORDS

20

1I.IbT4cIfI-

INSTRUCTION EXPLICIT SUCCESSORS

1 1
2 11
3 3
14 1
5 5
6 -

7 -

8 8
9 -

10 1
11 13
12 -

13 17
114 -

15 -

16 -

17 21
18 57
19 -

20 -

21 23
22 -

23 -

214 214
25 -

26 26
27 -

28 214
29 214
30 214
31 214
32 -

33 33
314 -

35 -

36 149
37 -

38 36
39 -

140 -

141 145
142 -

143 -

1414 146
145 149
146 -

147 141
148 -

241

EXPLICIT SUCCESSORS

49
50
51
52
53
514
55
56
57
58
59
60
61
62
63
614
65
66
67
68
69
70
71
72
73

11

55

55

214
214
214

61

73
63

1 9

73
68
63

22

A source microprogram description is expressed in
Microprogram Design Language (MDL) as a set of
micro-oDeratlons whose conceptual order of execution is
sequential, except where otherwise designated explicitly.

A micro-operation is terminated by a new line or by a
Comment statement. Comments start with a '$' symbol and
are terminated by a new line. Where a '$' symbol is part
of a micro-operation, then it should be duplicated (?$$').
Each statement may be preceded by a Label. A label may be
any string of characters separated from the
micro-operation by '::'.

A micro-operation may belong to one of three classes:
Reister Transfer, Control, or Miscellaneous.

Register Transfer micro-operations are of the form
NAME'<-'EXPRESSION, denoting the transfer of the value
generated by EXPRESSION to the operand, NAME.

NAME is a string of symbols not including an Operator
(see below) and including g. least one letter.

EXPRESSION is a list of OPERANDS separated by one or
more OPERATORS.

An OPERAND is a NAME or a number.
An OPERATOR is one of the following:

" # $ & () * = - i:] { } @ + ; I \ / . , - 	< >

Control operations are those which cause deviation from
the normal sequential flow, of control between operations.
Control constructs supported in the language are:.
Conditional Blocks, Loops, Wait for conditions, Subroutine
Call and Return, and Simple Branching.

(In the following, underlined words in quotes denote
key words in the language. They are not underlined or in
quotes in the source microprogram.)

A Conditional Block is headed by an operation of the
form

EXPRESSION "Then".

EXPRESSION will normally be a conditional expression, but
the language requires only the syntax cited above for the
phrase. This is followed by a block of micro-operations
to be executed only if the interpretation put on the
meaning of EXPRESSION is True. This block may be followed
by a block of operations to be executed only if EXPRESSION
is False, in which case the two blocks are separated by
the statement "Else". The conditional block is terminated
by the statement "Finish".

A Loop construct is headed by the directive "Loop" ;
optionally succeeded (in the same statement) by
"While" EXPRESSION. This is followed by a block of
statements to be executed repeatedly while the conditional
expression, if any, at the head of the loop is true. The

243

loop is terminated by the statement "Repeat", optionally
qualified by "While" EXPRESSION, which if the expression
evaluates to True, causes control to revert back to the
head of the loop. Otherwise, execution proceeds
sequentially.

The normal execution of operations inside a loop may be
interrupted by a statement causing a jump out of the loop.
It may also cause a jump out of any loops enclosing the
most immediate one. The statement is of the form:

"Exit""_"N, where N is the number of nested loops to be
exited from. "Exit" alone causes exit from a single loop.
The directive may optionally be preceded or succeeded by
"11" EXPRESSION, in which case the jump is taken only if
the expression is true.

A statement of the form "Wait jj" EXPRESSION causes
execution of the microprogram to halt until EXPRESSION
becomes true. This is used to effect synchronization of
the microprogram with a concurrently executing process.

Subroutine calls are specified as "Call" LABEL,
optionally preceded by "j" EXPRESSION. "Return",
optionally preceded by "Jj" EXPRESSION, effects return
from a subroutine. Subroutine bodies are identified by
the heading label. No special precaution is afforded to
them: it is possible to execute the statements of the
subroutine without calling it.

Simple conditional branching is performed by statements
of the form

"j" EXPRESSION "Goto" LABELLIST.

If EXPRESSION evaluates to a single boolean value, then'
LABELLIST may be a single label (a name comprising any
characters) to which control is transferred if EXPRESSION
is true, with sequential execution preserved if EXPRESSION
is false. Otherwise, LABELLIST is a list of labels
separated by commas, with the whole list enclosed in round
brackets, as also should be the conditional expression.
There should be 2' such labels where EXPRESSION evaluates
to an n-tuple. An unconditional branch in the flow of
control Is specified as "Goto" LABEL.

Any micro-operation which does not contain "<-" or any
of the key words denoting control micro-operations is
classified as a miscellaneous micro-operation and is
accepted as a valid statement in MDL.

Any statement may be qualified by a list of operands
which are affected by the action of that operation but are
not explicitly mentioned in the statement itself. This is
specified in the form:

OPERATION ";" "[" NAMELIST "" NAMELIST "]"

The first NAMELIST is a list of names, separated by

244

commas, which are the operands which act as destinations
for data in the action of the operation. The second
NAMELIST is a list of operands which act as data sources
in the action of the operation. If the vertical bar
symbol ("") is omitted, then all the operands are treated
as destinations.

The order of execution of operations may be
synchronized explicitly in two ways. Two contiguous
statements in the source microprogram may be separated by
a comma, a semi-colon, or a comma and a semi-colon (in
either order). These represent respectively the following
three situations:

Both operations should be executed concurrently.
The second operation should not be executed before
the first, but may be executed concurrently with It.
The second operation should be executed after the
first.

(2) and (3) above may also be represented as follows:

OPERATION ";" "[" VALUE LIST "1," VALUE LIST "]"

The OPERATION is the second of the pair related by (2) or
(3). The two VALUE LISTS are lists of integers separated
by commas denoting the 'distance', in terms of statements,
from that operation to preceding operations in the source
microprogram with which it is related. The first list
denotes those operations with which the relationship is
like (3)above and the second, if present, denotes the
operations with which the relationship is-like (2) above.

If a statement Is qualified with either a list of
affected operands or a list of preceding statements whose
execution it must not precede, as well as synchronization
punctuation as described above, then the latter should
follow the former in the statement.

Recognition of any key words or symbols in the
statement may be suppressed by enclosing the statement in
quotation marks, where the final quote mark may be before
or after any synchronization directives as described above
depending on whether they should be recognized as such or
Included as part of the micro-operation. Similarly, the
initial quote mark may come before or after any label
associated with the micro-operation depending on whether
it is desired that it should or should not be recognized
as such.

245

