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Abstract 

The design of the microprogram control for a digital 

system is an intricate and error-prone task. This thesis 

examines the feasibility of partially automating the 

process of microprogram design through translation of a 

high level description of the behaviour of a system into a 

microprogram in a defined format which will effect that 

behaviour. A design suite which performs this function is 

described. 

Within the suite, the behaviour of a digital system is 

expressed in terms of register transfer operations in a 

sequential, block-structured description. A maximally 

parallel representation of the behaviour is generated 

automatically through analysis of the control structure of 

the sequential description and the data dependency 

relationships defined between the register transfer 

operations. The maximally parallel representation takes 

the form of a partially ordered graph whose nodes may be 

simple, representing the primitive operations of the 

description, or composite, representing the control 

blocks. The microinstruction format in which control of 

the system should be implemented is described in terms of 

a model defining the field structure and constituent 

control signals of the chosen format. The operations.of 

the behavioural description are mapped automatically into 

a microprogram of this format in an order determined by 



the maximally parallel representation which preserves the 

defined behaviour while minimizing the size of the 

microprogram generated. 



—qi.j.xrr4ti1 

The concept of microprogramming was first proposed by 

Wilkes [61] in 1951 as a systematic method for 

implementing the control unit of a computer. Over the 

last fifteen years (since the introduction of the IBM 

System/360 125, 571 in 1961) its usage for just that 

purpose has become increasingly more common; but the 

practice of microprogram design is essentially the same 

today as it was fifteen years ago. 

This chapter considers the practice of microprogram 

design. The first section examines its current status, 

reasons why this should be improved upon, and identifies 

what can be done to improve it. The product of this 

motivation, a system intended to expedite the practice of 

microprogram design, is introduced in the second section 

and the efforts of others toward related goals are 

reviewed in the third. 
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This thesis is concerned with microprogram design, 

which hereafter will be held to denote 

"The design of the microprogram control of a digital 

system dedicated to the implementation of a specified 

processor organization and behaviour." 

This definition will be qualified and refined 

throughout the sections that follow, but will suffice as 

stated for the present. The definition does not exclude 

the writing of a microprogram to execute on a predefined, 

general purpose processor. This simply represents a 

restriction, with one less degree of freedom, on the 

subject primarily under consideration - which is to 

generate an implementation that is tailored in all its 

aspects, specifically the microinstruction format, to one 

target architecture. 

To the systems designer, microprogram design exhibits 

some interesting attributes. The most obvious of these is 

that it involves parallelism. The primitive operations 

which are evoked at the microprogram level are evoked 

concurrently - and how best to design systems for a 

concurrent implementation is not yet well understood. The 

parallelism inherent in microprogramming is different from 
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the parallelism involved in a multi-processor computer 

architecture, where the scheduling of operations is 

performed dynamically on the basis of which operations are 

"ready" to be executed at any given time. The scheduling 

of micro-operations in a microprogram entails packing 

them, perhaps together, into microinstruction words. This 

task must be performed statically at design time. It is 

based upon two factors: the ordering between the 

microinstructions which must be observed in order to 

effect the desired behaviour, and the resources employed 

by each. The scheduling of micro-operations is 

significant with respect to both the size and the speed of 

the resultant microprogram. The scheduling algorithm 

itself and the influence of the microinstruction format on 

the performance characteristics of the microprogram are 

both topics of interest, the latter having been studied 

little. Related to it is the question of how, in a 

dedicated implementation, the choice of microinstruction 

format should be influenced by the "style" of the system 

being implemented. That is, what is the most appropriate 

microinstruction format in which to effect the control of 

a given processor architecture? 

These particular questions are not the specific subject 

of this research, but are touched on to varying degree in 

the text that follows. 

It is convenient to attach a label to the class of 
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digital systems for which it is desired to generate a 

microprogram controlled implementation. The term 

processor will be used for this purpose (as it has been 

already without comment), where the immediate connotation 

with the instruction set processor of a computer is 

intentional (this being the subject to which the concept 

of microprogramming was originally applied), but extension 

of the scope of the term to encompass a more general set 

of systems is encouraged. 

Microprogramming exists as one of a hierarchy of 

digital system implementation vehicles f521, associated 

with conceptual levels at which a digital system may be 

represented (see figure 1.1.1). Each level is 

characterized by the relative complexity of the data 

structures represented and the operations performed on 

them, and may be thought of as defining a "soft machine" 

on which systems described at that level are conceptually 

implemented. The data structures which are defined at the 

microprogram level are simple registers and data lines 

carrying vectors of bits. The operations performed are 

transfers of data between such data structures plus simple 

combinatorial functions on the data held by them. 



Application System 

High Level Programming Language 

Assembly Language 

Computer Instruction Set 

Register Transfer Expressions 

Microprogramming 

Gate Level Logic 

Figure 1.1.1 
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The "soft machine" associated with the microprogram 

level may be considered a real, "hard" machine in the 

sense that it is defined in terms of resources which are 

realizable as available physical components - such as 

latches, multiplexors, functional units and physical 

interconnexions. This may be contrasted with the purely 

conceptual soft machine associated with, for example, a 

symbolic mathematical notation. If it were desired to 

implement a system conceived in such terms, it would be 

necessary either to translate the system description into 

a representation for which a realization of the associated 

soft machine exists (cf. compilation of a high level 

language program to machine code), or else to implement in 

terms of already existing machines, a soft machine which 

interprets systems described In that notation (of. machine 

code by microprogram). 

Conceptual representation schema for which soft machine 

implementations are available are exceptional: normally it 

is necessary to translate one's original conception of a 

design, possibly through many intermediary stages, to a 

representation with this property. The provision of a 

mechanism for the automatic translation of a description 

in one representation to an equivalent description in 

another representation for which a soft machine 

implementation is available (cf. compilation of a high 

level language) effectively makes available a soft machine 

implementation of the original representation. 

[1 



In a hierarchical structure, at each level of 

representation a system may be described in terms of its 

behaviour with respect to the resources defined at that 

level. For any level, there may exist many possible 

implementations of such a behaviour in terms of the 

resources defined at the next lowest level in the 

hierarchy. The low level framework of resources is said 

to define a host machine which, through ordered execution 

of the primitive operations defined at that level, 

emulates the operations which comprise the behavioural 

description at the higher level, the target machine; 

thereby implementing the behaviour. For example, a system 

expressed in terms of the statements of a high level 

language may be implemented by many different sequences of 

machine code instructions. 

The philosophy of the top-down, design of systems 

reflects this hierarchical structure. A system is 

initially described at the highest level of representation 

appropriate to the complexity of its natural components 

and structure. This description is then successively 

refined at lower levels until the system is expressed in a 

representation for which direct implementation is 

possible, le. for which a realization of the soft machine 

so defined is available. 

Consistent with the loose notion of processor employed 

above, the term processor level will be defined to denote 
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simply that level of representation in which it is 

appropriate, regardful of its complexity, to express the 

behavioural description of a system to be implemented 

under control of microprogram. It is to be hoped that 

this expression will stimulate intuitive prejudices 

sufficient to bear the reader as far as chapter 2 when the 

definition will be put on a sounder footing. 

No realization of the soft machine associated with the 

processor level of representation is currently available 

to designers. Consequently, top-down microprogram design 

is not a straightforward exercise; and it is this 

observation that provides the major motivation behind the 

work reported in this thesis. 

Microprogram design, as currently practised, is 

normally performed in a single step: through the direct 

implementation of the structure and conceptual function of 

a processor in terms of the primitive operations at the 

microprogram level. That is, the designer devises a 

microprogram level organization and microinstruction 

format which is appropriate to the system in question and 

then directly utilizes the low level operations so defined 

to effect a behaviour at the microprogram level which will 

implement the function conceived for the processor. The 

term "function" is used here as a notion of the behaviour 

of the system with respect to its external environment, 



its inputs and outputs, only. A processor level 

behavioural description of the system may be implicitly 

assumed in this process, but rarely is it used explicitly 

as an integral part of the design practice. 

(Care must be taken here to distinguish between the 

programming of a single chip, or small chip set, so-called 

microprocessor, eg. Intel 8086, Zilog Z 80 etc. whose 

instruction set closely resembles that of a typical 

minicomputer and for which ample programming aids are 

available, and microprogram design as defined above which 

implies the dedicated microprogram level implementation of 

some particular processor architecture). 

As described, microprogram design is an intricate and 

error-prone task. It is little wonder that it tends to be 

regarded as a specialist skill. 

The reasons for this state of affairs are probably 

twofold. The application of microprogramming has 

traditionally been in the control of the processing units 

of computers (central and peripheral), where every effort 

has been made to make microprograms execute as fast as 

possible while at the same time endeavouring to minimize 

the amount of very expensive control memory required to 

store the microprogram. Hence low level design was deemed 

mandatory. The second reason, of debatable significarce, 

arises from the evolutionary path of microprogramming. 

Microprograms were introduced as a replacement for random 



logic. As a result they tended to be designed in the same 

style as random logic; by designers who did not have a 

background in programming and had not yet learned the 

lessons that software experience had wrought several years 

earlier of the advantages of structured programming and 

top-down design. 

Indeed the status of microprogram design today may be 

seen as closely analogous to the status of computer 

programming two machine generations ago: when systems were 

growing exceedingly more complex and many more people 

wanted to use computers; out of which grew the necessity 

for high level programming languages. 

In the past, the limited scope for microprogram design 

has tolerated the difficulty of this task, and the 

specialists have been proficient in practising their 

skill. However two factors, both born out of the current 

trends toward cheaper and more complex hardware 

components, mitigate against continued universal 

acceptance of this situation. 

First, the availability of cheap hardware components, 

in particular bit slice microprocessor integerated circuit 

chips and fast memory suitable for use as control store, 

has at last made the custom built processor controlled by 

microprogram a realistic alternative for the 

implementation of many digital system designs. Hence many 

more people will have the opportunity to design complete 
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systems integrating hardware and software. But these 

people lack the specialist skills of the microprogram 

designer. If the potential offered by cheap hardware 

components is to be realized, then microprogram design 

must be made less difficult. 

The second motivation for change arises from the fact 

that inicroprograms themselves are growing increasingly, 

more complex as more system functions are pushed into 

microcode. And just as it proved necessary to adopt high 

level programming languages to master the complexity of 

large scale software systems, so higher level design jaids, 

perhaps sacrificing some implementation efficiency, must 

be made available for microprogram design. This is 

particularly true for the microprogrammed control of very 

large scale integrated (VLSI) systems, where the various 

criteria of vast complexity, volume production, and design 

time minimization all serve to promote the emphasis on 

structured microprogram design as a means of generating 

correct inicroprograms within reasonable time scales. 

These observations constitute the principal motivating 

factors behind the research which this thesis documents. 

The primary goal is: 

"To facilitate the practice of good microprogram design." 

With this overall objective in mind (and a hint of the 
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approach adopted to meet it) the following specific goals 

may then be identified: 

To separate the tasks of design and implementation at 

the processor level. 

To use to maximum effect the human designer's skill 

by performing automatically as much of the 

microprogram design process as is possible and 

sensible. 

To generate efficient microprograms. 

(14) To encourage the production of well structured 

microprograms. 

To facilitate verification of microprograms. 

To facilitate alteration of microprograms. 

To facilitate alteration of micro-architectures. 

To facilitate experimentation with different 

micro-architectures. 

To produce a useful and usable microprogram design 

aid. 
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In the light of the arguments of the preceding section, 

microprogram design may now be viewed as comprising three 

separate sub-tasks: 

The design of a processor level target machine. 

The design of a microprogram level host machine. 

The implementation of (1) on (2) through emulation. 

It is fundamental to the approach described herein 

toward providing a practical aid in each of these three 

tasks that the skill of the designer should not be 

ignored. On the contrary, it should be exploited to 

maximum advantage by relieving the designer of the more 

tedious aspects of the task in hand, leaving him to 

concentrate on the creative aspects. 

One such creative task is the design of the processor 

behaviour, where that term denotes an ordered set of 

operations on the resources defined at the processor level 

which implements the conceptual functional specified for 

the processor. It might be possible, given a suitable 

specification of the function and organization of the 

processor, to generate automatically a behaviour to 
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realize that function; but it is not desirable to do so. 

Design essentially involves the selection of one from 

an infinite number of alternatives. Despite the advances 

being made in the field of artificial intelligence, this 

is a task that is performed far more successfully by the 

practised human than by any computer program, whose forte 

is the evaluation of a large but finite number of 

alternatives. It would be impossible to incorporate in a 

program all the intuition and experience that the human 

designer calls upon in order to shape a design for the 

desired balance of the implementation parameters of the 

system: speed, size, cost of components etc., and all of 

the factors which affect them. In addition, the processor 

behaviour in practice is developed in conjunction with the 

organization of the processor resources necessary to 

support that behaviour. It would be unrealistic to 

propose a processor organization without giving thought to 

the processor behaviour, and it certainly would not be 

practical to generate automatically an organization as 

well as a behaviour for a processor to implement a 

specified function. 

It is much more sensible from a practical point of view 

to provide the designer with a suitable representation 

medium in which to express the design of a behavioural 

description of the processor, rather than trying to do the 

design for him. 

The same view is taken concerning the design of a 
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microprogram level host machine to implement the processor 

behaviour. This is another creative task where the skill 

and experience of the designer may be applied to 

beneficial effect. Again, the microprogram level 

organization of the processor greatly influences the 

implementation parameters for the system: the amount of 

control store required, the speed of execution of the 

microprogram, the cost of necessary components such as 

multiplexors, and so on. The designer should be given 

total control over the shape of the design and, that shape 

having been provided, where possible the body should be 

filled in automatically. That is, the designer should 

specify the organization of the microprogram level host 

machine for the processor and then, in the framework of 

that host machine organization, the emulation of the 

operations which describe the processor behaviour may be 

performed automatically.. 

What must be described about the microprogram level 

host machine? The designer's objective is to generate a 

microprogram which implements a defined behaviour. It 

does so by Issuing control signals to the microprogram 

level components of the system organization, causing each 

to effect a simple action; and the composition of these 

simple actions realizes a more complex action. The 

operations which express the behaviour of the processor 

may be seen as complex actions. What must be described in 
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order that the realization of these by the control signals 

at the microprogram level might be performed 

automatically? 

The microprogram level view of a processor may be seen 

as comprising two parts. There is the detailed 

organization of the physical data path and there is the 

control organization which governs the actions executed on 

the data path. The latter is of interest for microprogram 

design. It reflects the micro-architecture of the 

processor: the organization of the system as seen by the 

microprogrammer. This is what must be defined in order to 

write a microprogram. And it is this which must be 

defined in order to make possible the realization of the 

operations of the processor level description in terms of 

the control signals of the microprogram level host 

machine. 

MDS - Microprogram Design System - is a suite of three 

computer programs and two descriptive models which has 

been designed to perform the task outlined above. It 

facilitates the expression of a behavioural processor 

description and the specification of the control 

organization of a microprogram level host machine, and it 

automatically generates a microprogram to implement that 

processor behaviour according to the constraints of the 

specified organization. 

MDS is introduced here for the purpose both of setting 
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the scene for the succeeding three chapters which describe 

in detail the three major components of the design 

process, and of defining a context for the review of the 

efforts of others in related fields of endeavour, which is 

given in the following section. 

The relationship between the components of MDS is 

illustrated in figure 1.2.1. 
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In MDS, the processor behaviour (source microprogram) 

is represented in a block structured sequential 

description expressed in Microprogram Design Language - 

MDL. This is translated by the ANALYSE program into a 

canonical microprogram: a partial ordering on the 

statements of the MDL description which defines a 

maximally parallel representation of the processor 

behaviour. 

The control organization of the microprogram level host 

machine on which the processor behaviour is to be 

implemented is represented in terms of the 

Microinstruction Format Model (MFM). This model defines 

the action of the primitive operations at the microprogram 

level, the micro-orders, together with their 

inter-relationship with respect to the field structure of 

the microinstruction words from which they are activated. 

Descriptions expressed in the notation associated with MFM 

are processed by the FORMAT program and transformed into 

data structures suitable for subsequent processing. 

The canonical microprogram output by ANALYSE and the 

data structure representing the microprogram level control 

organization which is output by FORMAT are used as inputs 

to the MICROMAP program. MICROMAP generates a 

microprogram in the specified format to implement the 

described processor behaviour. There are two parts to 

this task: for each processor level operation, it must 

generate a set of micro-orders supported by the 
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microprogram level host machine which will effect the 

action described by that operation. Second, it must 

exploit any capability for parallelism in the 

microinstruction format by packing operations together 

into the same microinstruction word. This must be 

performed in such a fashion as to minimize the total 

number of microinstruction words in the microprogram while 

still preserving the specified behaviour. 

MICROMAP's function is rendered practicable by two 

factors. First, the microprogram level host machine is 

sympathetic to the processor behaviour description. That 

is, it is designed expressly t-o implement that processor 

behaviour. It contains as the framework of its structure 

the processor level components and their logical 

interconnexions which are defined by the processor 

description. So the micro-orders at the microprogram 

level which are relevant to the resources in question are 

described in terms of their effect on precisely the same 

processor level resources as are referred to in the 

behavioural description of the processor. 

The second factor is the level of the operations used 

to describe the processor behaviour. This is such that 

all micro-orders required to emulate each processor level 

operation may be activated in parallel, ie. from the same 

microinstruction word. Consequently, it is possible for 

the mapping function from the processor description to an 

equivalent microprogram to be maintained at manageable 
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complexity. 

The three components of the microprogram design process 

will be discussed in detail in chapters 2, 3 and 14 

respectively. 
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Relatively little has been published on the topic of 

microprogram design. This reflects the fact that for many 

Years the subject has received scant innovative attention. 

Hence its current status. 

Recently, however, the goal of machine independent 

microprogram design has aroused some general interest. De 

Witt's work [21] is closest to MDS in conception. He has 

designed EMPL, a high level microprogramming language with 

a machine independent kernel and the capability for 

extension to describe machine dependent features. A 

microprogram description expressed in EMPL is translated, 

by a compiler specific to the host machine in question, to 

a machine dependent intermediate language description. 

This is then mapped by a machine independent compiler into 

microinstructions as described by a "Control Word Model". 

The Control Word Model is more limited in descriptive 

power than the Microinstruction Format Model of MDS. 

Since the Control Word Model does not directly model the 

field structure of the microinstruction format, De Witt's 

system is unable to generate actual microcode for the host 

machine. It is capable only of producing a listing of the 

microprogram In terms of the occupancy of the 

microinstructions by intermediate language statements. No 

details of an implementation of the work have been 

presented. 
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Lewis, Ma and Malik 135, 381 are also endeavouring to 

generate microprogrammed emulators in a host machine 

independent fashion. This project is ambitious in its 

attempt to synthesize a microprogrammed emulation of a 

target machine, described in a machine independent 

language [39], on a host machine whose description is 

represented in a "Macro Expansion Table" and "Field 

Description Model". Their approach to microcode 

generation is similar to that of Baba [7] and Hodges and 

Edwards [30] in essentially "hand compiling" each 

intermediate language operation into the appropriate 

micro-orders of the host machine as a prelude to 

generating microprograms for execution on the host 

machine. 

The compaction of microprograms through the automatic 

packing of micro-operations Into microinstructions of a 

defined format is a subject that has commanded substantial 

attention [2, 6, 17, 19, 20, 40, 53, 53, 55, 631. 	A 

description of the four major algorithms that have been 

proposed to perform this task is included In chapter 4 of 

this thesis when MDS's treatment of the topic is 

described. Mallett [0] has Implemented versions of each 

of the major algorithms and has pronounced clearly In 

favour of a version of Dasgupta and Tartar's method [20), 

although it is not clear from the statistics which he 

presents why this method should be preferred to a version 
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of Yau, Schowe and Tsuchiya's method [63]. All the 

methods cited above partition the uncompacted microprogram 

into strpjht line segments and with two exceptions 

confine themselves to compaction within the straight line 

segments. The two exceptions are Dasgupta [17] and Tokoro 

et al [531, both of whom employ somewhat ad hoc techniques 

to optimize over the boundaries of straight line segments. 

Dasgupta searches for symmetric pairs of straight line 

segments, that is two segments the execution of one of 

which is a necessary and sufficient condition for the 

execution of the other, and looks for possibilities of 

code movement between them. Because of the computational 

complexity of the search for these symmetric pairs he is 

confined to detecting those which are separated by no more 

than one intervening straight line segment. Tokoro et al 

extend this notion to various identifiable specific 

conditions where compaction may be effected across the 

boundaries of straight line segments. It is not clear 

from the literature whether the techniques reported in 

[53) have been implemented, or are practical. 

None of these methods take a global view of compaction 

as is performed by MDS through exploitation of the clean 

block structure of the MDL language, although the same 

principles have been used in the design of optimizing 

compilers for high level languages [62]. 

Very many proposals have been presented for high level 
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microprogramming languages and for hardware description 

languages. In [41], Mallett and Lewis survey some of the 

issues involved in implementing a high level language for 

microprogramming. Lloyd and Van Dam have also produced a 

survey paper on the topic [36]. Dasgupta [18] argues 

convincingly that high level microprogramming languages 

should be capable of expressing low level, machine 

dependent features and has proposed a language schema with 

this property. The principle is not shared by some other 

microprogramming languages that have been proposed, eg. 

SIMPL [17]  and MPL [24]. Hardware description languages 

have been used extensively to describe machine 

architectures at various levels and Chu, for one, has 

argued their use for microprogram specification [15]. 

Barbacci summarizes the main classes of such languages in 

[8]. 

ISPS [9] is probably the best known hardware 

description language, largely through its use in the 

widely reported Computer Family Architecture project [13] 

in which it was used to describe several different machine 

architectures on to which a defined set of test programs 

were mapped (by hand) for simulated execution. The 

purpose of this was to compare the suitability of the 

various machine architectures for the particular task in 

question, a use to which MDS might well be put at the, 

microprogram level. 

ISPS is also employed in another project of some 

25 



related significance to MDS. This is the RT-CAD project 

at Carnegie-Mellon University [51]. In [42], Nagle 

describes an attempt to generate automatically a 

microprogram level implementation of a system described at 

the register transfer level. His approach is to 

synthesize automatically a minimal horizontal 

microinstruction format which will support the necessary 

control signals required to implement the desired 

behaviour on the data path whose description is provided. 

This approach is in direct contrast to the philosophy 

behind MDS. MDS attempts to assist the designer to the 

maximum possible extent, but not to eliminate him. To the 

author's knowledge, no implementation of the ideas 

suggested In [42] has been produced. 

Design, as such, is all about the effective balancing 

of conflicting influences to achieve a desired end 	- 

product. Very little work has been carried out on the 

evaluation of the parameters of microprogram design. 

O'Loughlin [145]  offers an interesting pragmatic account of 

the design trade-offs involved in microprogramming several 

of the PD? 11 family of computers. Vanneschi et al have 

produced a series of papers [28, 29, 58, 591 in which they 

evaluate, on the basis of a model of different types of 

microprogram implementation, the trade-offs between 

microprogram execution speed and memory size. They also 

examine the relationship between different computer 
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architectures and the most appropriate type of 

microprogram implementation for controlling them. In 

[11], Barr et al report on the utilization of the various 

fields of a wide, horizontally structured microinstruction 

format; but little else has been published on this topic. 

It is to be hoped that MDS will be able to offer a 

significant contribution here since it provides the 

facility for easy experimentation with different 

microprogram level implementations of a processor design. 
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 chapter is concerned with the task of describing a 

digital system at the processor level with a view to 

generating automatically an implementation of the system 

at the microprogram level. 

This section seeks to reason the intuitively obvious: 

to establish an identity for the "processor level" of 

description, which heretofore has been defined simply as 

that level of representation in which it is appropriate to 

express the design of a digital system to be implemented 

at the microprogram level. (The microprogram level is 

readily identifiable because It corresponds to a physical 

implementation). MDS is an attempt to facilitate top-down 

microprogram design; and it was observed in section 1.1 

that the process of top-down design entails the selection 

of one particular low level implementation of a 

description expressed at a higher level out of many 

possible such implementations. It therefore seems 

reasonable to propose that the level of representation in 

which it is most appropriate to express the description of 

a processor to be implemented at the microprogram level 

should be that level at which all of the essential 
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features of the processor organization may be defined, but 

at which a single processor description may be implemented 

by many possible microprogram level host machines. 

Under the above definition, the following essential 

features of a processor organization may be identified. 

They fall into three categories: 

The directly addressable memory components of the 

processor: flip-flops, registers and main memory 

elements. At this level, these entities all have a 

defined use and, in the case of registers and 

flip-flops, a unique name. (The allocation of 

registers to names is assumed to have performed 

prior to description of the processor). 

The functional capability of the processor, le. the 

arithmetic and logical operations supported by this 

processor architecture. 

The data paths interconnecting memory elements and 

functional units necessary to perform the desired 

transfers and transformations of data. Nothing is 

implied about the physical realization of these 

resources in this specification. For example, 

specifying that there must exist a data path 

between two registers does not differentiate 

between a dedicated line, a shared bus, or a 

devious route through many functional units. 
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The fundamental unit of time at this level of the 

systems hierarchy is the processor clock cycle. Each 

memory resource may be loaded once only during each clock 

cycle (although some may not be loaded on every clock 

cycle). The term processor context will be employed to 

denote the contents of all of the memory resources of the 

processor at the end of a clock cycle. Then the processor 

behaviour will be totally defined by an ordered set of 

changes of processor context: describing how the contents 

of each memory resource should be altered during each 

clock cycle. This implies that the behavioural 

description of a processor should be represented as a 

collection of register transfer expressions to be executed 

in a defined order (with some necessary mechanism for 

conditional execution on the basis of tested data). 

This may be contrasted with possible alternative levels 

of representation for describing systems to be implemented 

through microprogram control: the higher level 

conventional computer machine instruction or assembly 

language statement and the lower level micro-order. The 

former may specify an operation the execution of which is 

performed over several processor cycles, while the latter 

controls the flow of data between unstable resources over 

a single section of the processor data path. It would be 

inappropriate for the purpose of microprogram design to 

attempt to describe a processor behaviour in either of 

these forms; the first because it is too gross to define 



sufficiently an effect on the processor resources and the 

second because it is too detailed and utilizes resources 

which do not properly belong to the processor level, eg. 

multiplexors, decoders and sequencing controllers. 

That this one-to-one relationship between the primitive 

statements of the processor description and •processor 

clock cycles is fundamental to the capability for 

effective generation of a microprogram implementation of 

the defined processor behaviour will be demonstrated 

throughout subsequent sections. 

• This chapter proceeds with an examination of the 

necessary properties for a language for processor 

description. 
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Having determined that the register transfer level is 

appropriate for the statements expressing a behavioural 

processor description, what other properties should a 

processor description language exhibit? 

Intelligibility is a requisite common to all forms of 

representation. In this context it implies simple syntax, 

familiar semantics, mnemonic names, clear sequencing rules 

and similar such issues which are well known and have been 

expounded often in relation to high level programming 

languages. 

Of more particular significance with respect to the 

intended use of the language are the issues of 

parallelism, efficiency of microcode generated, and 

suitability of the language for design and specification. 

Each of these considerations will be examined in turn. 

Parallelism. An inherent property of the microprogram 

level view of digital systems is that operations are 

executed concurrently. It is therefore to be expected 

that languages for describing systems to be implemented at 

this level might be influenced by this feature. 

The definition of processor behaviour exacted in the 

preceding section was a very rigid one. It required the 

explicit specification of the clock cycle during which 
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each register transfer operation should be activated. 

This may be shown to be an unrealistic imposition for 

three reasons. 

In the first case, the relative timing of operations is 

a relationship which is not properly defined at the 

processor level. It is dependent partially on the 

availability of sub-processor level resources, such as the 

physical realization of logical data paths. For example, 

two logically distinct data paths may each be implemented 

through a single shared bus, thereby precluding the 

concurrent execution of any pair of operations which 

utilize these distinct logical resources. 

The second reason is that the ruling is too 

restrictive, in that it severely limits the scope for 

performing optimization in the generation of 

microinstructions. By specifying exactly what operations - 

each microinstruction should contain, it leaves no room 

for the possibility of reducing the size of the 

microprogram. This might otherwise be achieved through 

packing the operations into microinstruction words in a 

different order from that specified. It also may preclude 

the selection of a microinstruction format capable of 

realizing the same overall behaviour more efficiently in 

terms of microprogram space, but not capable of supporting 

the specific concurrency of operations demanded. 

Third, the professed goal of this project was to ease 

the task of microprogram design. If efficient 
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microprograms can be generated without the designer having 

to specify the relative synchronization of all the 

operations in the processor level description, then we 

shall have progressed a significant way toward that goal. 

The top-down approach to design generally entails 

selecting, from many, one particular low level 

implementation of a high level behavioural description. 

In prac.tice, where this process is wholly or partially 

automated, it becomes necessary that the designer be able 

to -intervene and apply some direction to the process of 

generating an implementation. Such intervention may be 

motivated by interest either in the efficiency or the 

correctness on the implementation being generated. It 

would be foolish to expect to anticipate all of the 

- designer's requirements. Therefore a language for 

processor level description of digital systems in this 

context must encapsulate the facility for specifying 

critical parameters of the microprogram implementation. 

In particular, it must be capable of expressing explicit 

synchronization between the register transfer operations 

of the processor description - just the requirement argued 

above that it should not enforce. 

Timing relationships between two operations, A and B, 

which a language should support would be: 
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A and B should be executed concurrently. 	(A=B) 

B should not be executed until A has completed. (A>B) 

B should not be executed before A. 	 (A>=B) 

Efficiency j microcode generated. Microprograms 

provide the low level control of processors, which often 

operate as the critical component of other machines. This 

implies that microprograms should execute the function 

which they are designed to perform as efficiently as 

possible. A language for describing systems to be 

implemented at the microprogram level must therefore 

attempt to facilitate the generation of efficient 

microcode. 

In general terms, the process of the design and 

implementation of a digital system comprises three phases: 

the conception of the design, the modelling of the design 

in the representation of the system description language 

and the translation of that model into an implementation 

of the system. Where the implementation is carried out on 

a general purpose host machine designed to perform many 

functions, such as the instruction set level of a 

computer, compromises must be made. In order to generate 

efficient code in the implementation, the system 

description language (eg. high level programming language) 

must constrain the model of the system to being 

represented in a limited set of operations: those which 

may be reasonably efficiently translated into the host 
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machine instruction set. (There is a high degree of 

commonality in the operations performed at the instruction 

set level by a wide range of computers). 

Microprogram design, as defined in section 1.1, is 

different however. The host machine is not general 

purpose. It is designed specifically to implement the 

digital system in question; and so the system description 

language in this case is not obliged to constrain the 

behavioural description of the processor to a limited set 

of operations reflecting the host machine instruction set. 

The system description language has no "knowledge" of the 

host machine on which to base such a constraint, since the 

host machine is different for each description. The best 

strategy that can be adopted in order to ensure an 

efficient implementation is for the system description 

language to provide a representation in which the 

conception of the system may be modelled as closely as 

possible. In doing so it will also be closest to the host 

machine. 

That is, the system description language should be 

capable of expressing directly any operation which a 

processor architecture might support directly. Doing 

otherwise would be the cause of inefficiences in 

implementation. 

Just as it should not exclude any idiosyncratic 

processor operations, for the same reason the system 

description language should not exclude any sequencing 
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mechanisms which might be implemented by the host machine. 

In particular, it should be capable of supporting 

multi-way conditional branching. 

These are just two examples of machine dependent 

constructs which a processor description language in this 

context should support. Ideally, it should be capable of 

controlling exactly what microcode will be generated. 

The arguments advanced in this section are perhaps more 

subjective, and perhaps therefore less critical than in 

the preceding sections. These are the properties which 

give a language its "flavour" and, in practice, determine 

the extent to whiôh it gets used. The two headings are 

inter-related, but at the same time may generate 

conflicting requirements, the balancing of which depends 

on the projected applications for the language. 

Suitabilty as g design language concerns what features 

make a language attractive to the designer for expressing 

the conception of a design, as opposed to rigorously 

specifying all of its details. What is sought is a 

representation in which the designer finds it easy to 

frame his thoughts. 

The issues overlap to a degree with those associated 
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with language intelligibility, discussed above. It is 

probably true that a procedural language is a more 

conducive medium to most designers for expressing a design 

than a non-procedural language - particularly if the 

designer has a programming background. The provision of 

modular control structures in the language: "While" loops 

and conditional blocks, is a further merit of the 

procedural approach. For a microprogram controlled 

system, a description expressed in a procedural language 

reflects more faithfully the processor behaviour as 

implemented, a microprogram itself being procedural in 

conception and execution. 

The language should be concise without being 

restrictive. It should allow the designer to express his 

design in the terms in which it has been conceived, rather 

than constraining the representation to a limited set of 

constructions built in to the language. This aspect ties 

in with the concerns for code generating efficiency of the 

language, discussed above. It also argues for simplicity 

of syntax and implies a non-declarative language, although 

this property might be relinquished for the sake of 

precision of specification. 

Suitability .Lj System Specification. Many hardware 

description languages are designed primarily for the 

purpose of providing a vehicle for formal specification of 

hardware systems; and, while this function is not the 
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principal requirement of a language for microprogram 

design, it still is a very desirable property of any 

language. Obviously, the language adopted, whatever its 

features, must be capable of expressing all of the 

information about a system which is necessary in order to 

generate an implementation. To that extent, it will 

provide a formal definition of at least part of the 

system. But it is intended in this section to distinguish 

those features of a language which conduce to the function 

of formal system specification. 

The single stipulation which encompasses all such 

features is that all information apposite to the design be 

stated explicitly within the description in a concise 

fashion; and the major implication of this policy is that 

it argues for a declarative style of language. Each 

processor resource should be declared before use and, 

ideally, fully qualified - the size of registers, side 

effects of functions, width of data paths etc. all should 

be explicitly stated. As noted above, this runs contrary 

to the "need to know" principle underlying the use of a 

language for expressing a design, where much information 

remains unstated or implicit within the description. 

The balance between the cases advanced for design and 

specification considerations is a matter for judgement 

based on the relative importance of each in prospective 

language applications. 
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To summarize the requirements expressed above, we are 

looking for a procedural, register transfer language with 

simple syntax and structured sequencing constructs which 

supports machine dependent operations and allows explicit 

synchronization between statements, but does not enforce 

the same. In regard to the emphasis on the language as a 

medium for expressing designs, we should prefer that it 

not be necessary to pre-declare all entities occurring in 

a description. 

It will come as no surprise to discover that these 

stipulations rule out all so-called hardware description 

languages and machine independent microprogramming 

languages known to the author (see [8]and [41) for an 

overview of these); but, before going ahead to describe 

the language implemented, let us review the implications 

of this decision. 

Assuming a roughly equivalent amount of effort to be 

required in each case there are, generally speaking, two 

principal reasons why one might adopt an existing language 

with all its concomitant restrictions in preferance to 

using a language tailored to one's own purpose. These 

are: 

(2) Familiarity 	Notation 

Portability is normally a strong motivation for 
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expressing a system description in a standard notation. 

The reason for this is that often there are available a 

variety of implementations of the "soft machine" defined 

by that standard notation. Target machines described in 

the notation may be implemented immediately on a variety 

of existing host machines. 

But this is not relevant to microprogram design. 

Microprogram design, as defined in section 1.1, is 

concerned with the design of a host machine, dedicated to 

implementing the behaviour defined in the processor 

description. The processor itself is a host machine which 

may be used to implement a variety of higher level digital 

system functions. Portability of descriptions is an issue 

to be taken into consideration when one is designing 

target machines. It is not meaningful when it is a host 

machine which is being designed. 

Familiarity is a worthy reason for adopting a standard 

notation: familiarity both for the designer in writing the 

description and for the reader in understanding it. 

However the strength of this argument is weakened in the 

context under consideration because there exists no 

standard notations for processor level description of 

digital systems. A plethora of hardware description 

languages have been expounded, but very few have ever been 

used outwith the application for which they were 

originally generated. 
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The most serious contender for being accepted as a 

standard "system description language", by virtue of the 

fact that it has been used quite substantially for some 

significant, and well-reported research ([10, 51]), is 

ISPS [91; and serious consideration has been given to the 

possibility of using this language in MDS. If the rather 

verbose appearance of descriptions expressed in ISPS was 

the only adverse circumstance associated with adopting the 

language, then this probably would not have been 

sufficient to compensate for the advantages to be gained 

from its reasonable familiarity. But it is the crucial 

aspects of specification of timing of operations and 

capability for generating efficient code which cause ISPS 

to be deemed unacceptable. ISPS insists on explicit 

definition of the relative synchronization of all 

operations contained in a description. Also, it supports 

no mechanism for a simple branch in control sequence on 

the basis of a tested condition (ie. a GOTO construct). A 

simple conditional branch is necessary in some situations 

in order to generate the most efficient posssible code - 

see figure 2.2.1. It is therefore an essential feature of 

a language for microprogram design under the requirement 

stated above that the language should be capable of 

expressing all sequencing constructs performed by a 

processor. 
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(Xi) 

C  i  
\1/ 

<C2) 

 
L2: (X5 

(X3) 

(X6) 

13: (X7) 

--- (Xi)--- 

if Ci goto Li 

---(X2)--- 

if C2 goto L2 

---(X3)---, goto L3 

Li: --- (X's.) --- 

---(X5)---

---(X6)--- 

---(X7)--- 

Figure 2.2.1 

Thus the arguments of portability and familiarity are 

not sufficiently powerful to prevent the decision that the 

most suitable component for MDS would be a language which 

is tailored to the purpose of describing systems at the 

processor level for automatic implementation at the 

microprogram level. The language designed for this 

purpose is described in the following section. 
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This section describes the essential features of MDL - 

Microprogram Design Language. A reference guide for the 

language is given in Appendix 2. A simple example 

illustrating the use of MDL is given in figure 2.3.1 at 

the end of this section. 

A processor description is expressed in MDL as a 

sequential list of register transfer type operations, 

hereafter referred to as micro-operations (since each will 

be realized by part of a single microinstruction), each 

optionally preceded by a label. 

There is no declaration part to a description. Each 

new name encountered as the description is processed Is 

assumed to be a processor level operand name associated 

with a particular processor memory resource - data 

register, control register, or main memory word. Comments 

may be inserted between micro-operations at any point in 

the description. 

A micro-operation may be of one of three types: 

control, register transfer, or miscellaneous. 

A register transfer type micro-operation is expressed 

in the form DEST <- EXPRESSION, where DEST is the name of 

a single operand and EXPRESSSION is a list of operands 

separated by symbols denoting operators, 
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eg. ACC <- ACC+COUNT. 

"<-" is the only operator in the language of any semantic 

consequence. It is used to denote the transfer of the 

data value generated by the expression on the right of the 

arrow to the operand on the left and its significance lies 

in the fact that it serves to distinguish when an operand 

is used as a source of data and when it is used as a 

destination. The necessity for this differentiation is 

explained in the following section. The operators used to 

separate operands in the •source expression have no 

inherent meaning. The meaning of the operations performed 

by the processor is global to the context of both 

descriptions: of its behaviour and of the sympathetic 

specification of a microprogram level implementation of 

that behaviour - and is therefore irrelevant. 

This applies also to the miscellaneous type 

micro-operations. Any statement which is not recognized 

as a control type micro-operation and does not contain an 

arrow ("<-") is interpreted as a miscellaneous type 

micro-operation (not involving the transfer of data into 

processor registers), which is accepted as a valid 

statement in the language on the assumption that it 

corresponds to some particular processor function, eg. in 

communication with its external environment. 

Register transfer and miscellaneous type 

micro-operations are grouped together under the heading of 

45 



executive micro-operations. 

Control type micro-operations serve to regulate the 

order of execution of the micro-operations constituting 

the strictly sequential procedural description of the 

processor. Control constructs provided in the language 

are for simple conditional branching, conditional blocks, 

looping on a condition and waiting for a condition. 

Simple branching is effected by micro-operations of the 

form 

"If" COND "Goto" LABEL 

where COND may be any list of operands separated by 

symbols denoting operators or relationships - again no 

semantics is assumed; it is expected that the processor 

implementation will be capable of generating and testing 

whatever function that expression might denote. LABEL is 

the name of a label associated with some other statement 

in the description (preceding the statement and separated 

from it by "::") to which control should be transferred if 

the evaluated condition is true. 

Multi-way branching (le. a "Case" statement) may be 

effected via the same syntax by specifying a COND which 

evaluates to an n-tuple and a list of 2n  labels as 

possible successor statements. 

Conditional block constructs are expressed in 

micro-operations of the form 

"If" COND "Then" 
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followed by a block of statements to be executed only if 

COND is evaluated to be true. Following this block, and 

separated from it by the statement "Else", may be a block 

of statements to be executed only if COND is false. 

"Finish" terminates the whole construct. 

Conditional loops are bounded by "Loop" and "Repeat" 

micro-operations, either (or both) of which may be 

qualified by "While" COND. The statements inside the loop 

block are executed until COND is evaluated to be false. 

Conditional loops may be jumped out of, to the 

statement succeeding the relevant "Repeat" 

micro-operation, by an "Exit" directive, optionally 

accompanied by "If" COND. "Exit" may be suffixed by "_"N, 

where N is an integer denoting the number of nested loops 

to be jumped out of. 

A micro-operation of the form "Wait For" COND is 

repeated indefinitely until the expression denoted by COND 

becomes true. 

Subroutining capability is supported in MDL by the 

"Call" LABEL and "Return" micro-operations, each 

optionally followed by "If" COND. No assumptions about 

details of implementation are inherent in the support of 

this capability in the language. The directives are 

provided to represent a function performed by many 

microprogram controllers and, if they are used within . a 

particular description, it is in the assumption that the 

chosen implementation will support them - this is checked 
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at the time of generating the implementation. 

The control directives associated with conditional 

blocks and loops are translated by the ANALYSE program 

into simple branch micro-operations to the relevant 

successor statements, as will be described fully in the 

next section. 

It was noted in the preceding section that a language 

for describing the behaviour of a processor should support 

the explicit specification of three different 

synchronization relationships between micro-operations. 

To recap, these were: 

Equivalence: The two must be activated concurrently. 

'Strong Dependency: One must not be activated until 

the other has terminated. 

Weak Denendency: One must not be activated before 

the other is. 

MDL syntax supports the explicit synchronization of 

these three relationships in two ways. 

If A and B are adjacent micro-operations in the 

sequential description of a processor, A preceding B, then 

a comma, a semi-colon, and a comma and a semi-colon (in 

either order) terminating A respectively represent these 

three relationships. 
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Alternatively, if A and B are not adjacent, B may be 

terminated by a semi-colon followed by a list of integers 

enclosed within square brackets. These integers denote 

the "distance", in statements, from B to the preceding 

micro-operations to which B is related by (2) or (3) 

above. The list is in the form of a group of integers 

separated by commas for all those statements to which B is 

related by strong dependency, followed by a bar character 

( ' '), followed by another group of integers for the 

micro-operations to which B is related by weak dependency. 

Thus a statement of the form: 

(B) ---- 	;[1, 3 1 21 

means that micro-operation B is strongly dependent on the 

immediately preceding micro-operation in the description 

as well as the one two before that, and it is weakly 

dependent on the micro-operation two before itself in the 

description. 

A similar syntactic construct, introduced here for 

completeness, but not explained properly until section 

4.1, is used for specifying resources affected by the 

action of a micro-operation but not referenced explicitly 

in the micro-operation itself. In this case it is a list 

of operand names which is included in the square brackets 

following A and the bar separates those operands which are 

used as destinations from those used as sources. 
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To summarize the main features of MDL; it is an 

extremely simple language tailored specifically for 

microprogram design. It has few built in features, but 

few restrictions as to what may be expressed in it. 

Statements are expressed sequentially and the behaviour so 

defined is never violated, but the order of the statements 

may well be varied in execution. Its modular sequencing 

constructs facilitate structured design, while the low 

level control devices it provides enable the designer to 

exploit machine dependent features whenever required. 

Figure 2.3.1 presents a simple MDL microprogram 

description illustrating some of the features of the 

language. A more comprehensive example is given in 

Appendix 1(a). 



EVCOUNT<-O 

COUNT <-SWITCHES 

loop 

wait for DATA READY ;LBUFFREGJ 

ACC<-BUFFREG&DATAMASK 

if ACC = 0 then 

COUNT <-COUNT+1, 

SAVEOVF 

exit if OVF 

else 

MAR<-ACC 

READMEM ;LMDR 1 MAR] 

wait for ~MEMBUSY ;LMDR] 

ACC<-MDR 

call ANAL ;ENEWVAL,WORKREG I ACC] 

finish 

while NEWVAL > 0 loop 

NEWVAL<-NEWVAL-1 

wait for IOBUSY; 

SEND PULSE 

repeat 

EVCOUNT<-EVCOUNT+1 

repeat 

OUTDATA<-EVCOUNT 

Fiaure 2.3.1 
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of the Source Microgrggram 

It was stipulated in section 2.2 that a language for 

describing processors should not enforce the rigid 

synchronization of micro-operations. This section is 

concerned with how to determine automatically which 

micro-operations may safely be activated in parallel. 

If the micro-operations constituting a processor 

description in MDL are executed in the sequential order in 

which they appear in the description, then they may be 

thought of as defining a function which acts on the 

processor resources and system inputs to alter the 

contents of these resources and produce an output. This 

may be expressed more formally: in section 2.1 the term 

orocessor context was introduced to denote the contents of 

all of the memory resources of a processor at the end of a 

clock cycle. Then, with the implicit ordering 

relationship between the micro-operations defined by the 

textual order of the statements, the MDL description of a 

processor defines a function 

F se q(PrOceSSOr Context x  Input Sequence) -> 

(Processor Context x  Output Sequence). 

We seek to discover the conditions determining the set 

P0 of all partial orderings between micro-operations 

(where the ordering relationship corresponds to order of 
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execution) which defines F, the set of determinate 

functions from (Processor Context 	Input Sequence) -> 

(Processor Context 	Output Sequence) such that for each 

F1 in F, for any initial processor context PC and any 

input sequence I, F 1 (PC,I) = F 3q (PCI). 	That is, 

intuitively, F 1  has the same overall behaviour
.  as F s e q . 

In particular, we seek to discover POmin in P0 such that 

for any micro-operation M in the description, the number 

of ancestors of M under POminis  no greater than the 

number of ancestors of M under any other PO j  in P0. That 

is, intuitively, we are looking for the maximally narallel 

representation of the processor description which 

preserves the determinacy and behaviour of the initial 

specification. The term canonical microprogram will be 

used to denote the microprogram under this ordering 

relationship. 

Two type of dependency relationships between 

micro-operations may be distinguished, namely control 

dependency and data dependency. These will be dealt with 

in turn, deferring consideration of conditional blocks and 

loops to be returned to later. 

Control dependency is concerned with ensuring that the 

same (and no other) history of control flow which results 

in the execution of a micro-operation in the MDL source 

microprogram will also result in the execution of that 
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micro-operation in any other ordering of the 

micro-operations with an equivalent behaviour. Enforcing 

this condition requires that no branch type 

micro-operation may be allowed to precede any non-branch 

(executive) type operation when the latter precedes the 

former in the MDL description, and that no operation which 

succeeds either a branch or a merge (label) in the MDL 

description may be allowed to precede the branch or merge 

in any other ordering. The two together imply that, for 

each executive micro-operation, the relative position of 

that operation to the most immediately preceding and most 

immediately succeeding branch or label in the MDL 

description must be preserved in any other equivalent 

ordering. 

This Is a sufficient condition for preserving the 

defined relationship between a micro-operation and the 

pattern of control flow which will result in its 

execution. In individual examples, by tracing the control 

flow defined by the particular values for the labels and 

branches, it may be found that the condition is not always 

necessary. For example, if both legs of a branch 

subsequently merge, it may be possible that a 

micro-operation succeeding the merge in the source 

microprogram may be executed prior to the branch - the 

pattern of control flow associated with its execution is 

the same, but the history is different. (The pattern of 

control flow is bounded only by termination of the 
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microprogram. At any given point, it encompasses "future" 

control flow as well as history). However, as 

demonstrated by Dasgupta [17], the cost of detecting and 

exploiting such circumstances is not warranted in a 

practical system, particularly when modular control 

constructs are available in the source microprogram 

language, as will be considered later. Hence (explicit) 

labels and branches will always be considered as absolute 

barriers to code movement in the following. 

These relationships serve to partition the sequential 

processor description into disjoint straight line segments 

of micro-operations, with the members of each straight 

line segment being all those micro-operations whose 

execution is dependent on the same control flow history. 

The limit of each segment is defined by there being a 

label on the following statement or a branch operation as 

the final statement. If the final micro-operation of any 

straight line segment is a branch operation, then it must 

be marked as dependent on all the executive 

micro-operations in the segment in order to preserve their 

relative orderings as required above. Control dependency 

implies that no statement in one straight line segment may 

precede any statement in a preceding straight line 

segment. This in turn implies that each straight line 

segment must remain totally indivisible and the relative 

ordering of the straight line segthents defined by the MDL 
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description must be preserved in any equivalent ordering. 

A skeletal example of a simple sequential description 

divided into straight line segments is illustrated in 

figure 2.4.1 below. 

Executive 

Executive 

Branch 

Executive 

LABEL:: Executive 

Executive 

LABEL:: Branch 

Figure 2.4L1 

When considering data dependency, attention need only 

be paid to cases of data dependency within each straight 

line segment, since the relative ordering of operations in 

different segments is totally defined by control 

dependency as explained above. 
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Two micro-operations, A and B, are said to be mutually 

independent if, for any initial processor context, the 

resultant processor context after executing A and B is 

always the same, irrespective of the order in which they 

are executed. 

In determining a partial ordering among the 

micro-operations of a description there is no reason to be 

concerned with micro-operations which are mutually 

independent, since no ordering need be imposed between 

them. In order to guarantee to generate the same final 

processor context as would result from sequential 

execution of the MDL description, it is necessary to 

preserve the relative ordering defined by the MDL 

description of those micro-operations which are not 

mutually independent, ie. of those operations which 

generate a different processor context depending on the 

order in which they are executed. (Concurrent execution is 

equivalent to arbitrarily selecting an ordering and does 

not guarantee determinacy when the micro-operations are 

not mutually independent). 

Such a situation may arise through two possible 

circumstances, first noted formally by Bernstein [12): 

either when one operation writes to an operan.d which the 

other uses as a source of data, or when both attempt to 

write to the same operand. 

If micro-operation B follows micro-operation A in a 

straight line segment and either of the circumstances 
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identified above holds, then B is said to be data 

Note that two micro-operations which both use the same 

operand as a source of data do not necessarily violate the 

conditions for mutual independence. Note also that, by 

definition, the destination operand is always considered 

to be defined - the action of one operation may not alter 

which operands are referenced by the other. For example, 

in the expression "Mem(MAR) <- MDR", the destination 

operand is defined to be "Mem". "MAR" is designated a 

source operand. 

These rules for control dependency and data dependency 

are the relationships which define POmin,  a partial 

ordering on the micro-operations of the MDL description 

which, it is claimed, produces an equivalent behaviour to 

that associated with the sequential ordering defined by 

the MDL description. This will be shown by informal proof 

of the following theorem. 

Theorem 2.4.1 F m i n , the function defined by the partial 

ordering POmin  is eqivalent to Fseql  the function defined 

by the sequential ordering of micro-operations in the MDL 

description. 

Proof (Informal). Consider two micro-operations A and B, 

B following A, such that under Fseq B will always be 
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executed whenever A is, there being no branch in control 

flow between them and B will never be executed without A 

having been, there being no merge of control flow between 

them. Then the rules for composition of straight line 

segments ensure that A and B will always be included in 

the same straight line segment. Further, the stipulation 

that the relative ordering of straight line segments as 

defined by Fseq  is preserved under Fmjn  and the 

association of the labels of the MDL description with 

entry points of straig-ht line - segments ensures that flow 

of control between straight line segmentsis the same in 

Fmi n  as if Fs eq . 

The proof of the theorem then follows from the proof of 

the following lemma: 

Lemma 2.4.1 The function defined by PO m i n mon each straight 

line segment is equivalent to the function defined by the 

sequential execution of that straight line segment. 

Proof (Informal). The control dependency of branch type 

micro-operations on all of the executive micro-operations 

in the same straight line segment ensures that under Fm j n  

all micro-operations in a straight line segment are, in 

fact, executed. We must show that, for any initial 

processor context, any processor context resulting from 

execution of the micro-operations in the partially defined 

order associated with POmin  is the same as that resulting 
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from sequential execution of the micro-operations. Let us 

recall the three situations in which micro-operation B 

will be data dependent on micro-operation A under POmin 

(where A and B are in the same straight line segment, A 

preceding B in the sequential description): 

A writes to an operand which B also writes to. 

A writes to an operand which B reads from. 

A reads from an operand which B writes to. 

°min will preserve the ordering defined by the 

sequential MDS description of any pair of micro-operations 

so related. It will impose no relative ordering on any 

pair of micro-operations for which none of these 

relationships hold. The proof of the lemma will follow 

from demonstration that processor context cannot be 

affected by the order of execution of any pair of 

micro-operations not related by data dependency. 

Consider two such micro-operations, A and B, and let 

them be executed in both possible orders. The only 

operands which can have their values changed as a result 

of the execution of A and B, and therefore the only ones 

which can show a different value under the different 

orderings, are the two written to by A and B. They must 

be distinct since otherwise DD(1) would hold. Without 

loss of generality, consider one of these operands, say 

the one written to by A. The only way that it could show 



a different final value under the two orderings of 

execution of A and B would be if the data loaded into it 

by A was different in each case, ie. if that data had been 

changed from its original value. But that would only be 

possible if it had been written to by B, which is not 

possible if DD(3) does not hold. (At least consistent 

behaviour of expressions such as "A <- A + Z" in which the 

same operand is used as source and destination is 

assumed) 

Therefore the two operands written to by A and B must 

be the same after each order of execution and, since these 

are the only two operands whose values could possibly 

change during the execution of the two micro-operations, 

the resulting processor context must be the same in both 

cases. 

Which proves the lemma. 

Which proves the theorem. 

Lemma 2.14.1  is a particular example of a general 

theorem concerning computation schema which states that: 

"An Elementary Schema that is Conflict Free is also 

Determinate." 

This is formally proved in [27]. 

Figure 2.14.2 illustrates the necessary data dependency 

relationships inherent in a straight line segment of 

register transfer micro-operations. 
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(1) 	 (14) 
(1) LABEL: 	SAVEACC 	<- ACC 

(2) ACC 	<- ACC&MASK1 (2) 

(3) ACC 	<- ACC+R2 
(3) 

(14) R3 	<- R2&MASK5<<15 

 R2<- R3&MASK2 / 	() 
 ACC 	<- SAVEACC I 

(6) 
 if R2< 0 goto AGAIN 

(7) 

Figure 2.14.2 

As noted in section 2.2, dependency may be strong or 

weak. Strong dependency is exhibited between two 

micro-operations when the execution of one must precede 

the execution of the other, for example when one writes to 

an operand used as a source of data by the other. Weak 

dependency occurs between two micro-operations where one 

must not precede the other, for example the control 

dependency of a branch micro-operation on an otherwise 

independent executive micro-operation in the same straight 

line segment. 

There are, however, two situations where the strength 

of a dependency relationship cannot be ascertained at the 

processor level - it may be different in different 



microprogram level implementations. These are: 

Destination-Source dependency. In some processor 

implementations, the clock cycle is divided up into 

sub-cycles with data read out of registers at an earlier 

phase than that during which registers are loaded. This 

allows two micro-operations, one of which reads from an 

operand to which the other subsequently writes data, to be 

executed in the same processor cycle, ie. it permits a 

weak dependency relationship to exist between them. Where 

the processor implementation does not operate in this 

manner, the dependency relationship must be strong. 

ComDuted data dependency. In many microprogram 

level processor implementations, the execution of the 

current microinstruction is overlapoed with the fetching 

from control store of the next microinstruction. In such 

cases, data generated during the execution of the current 

microinstruction cannot be used in determining from which 

control store address the next microinstruction should be 

fetched. Therefore any branch in the flow of control 

based on computed data must take place in a subsequent 

processor cycle (ie. different microinstruction) from that 

in which the data is actually generated. This contrasts 

with secuential implementations where the data may be 

computed and tested to determine the successor 

microinstruction in the same processor cycle. 
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For example, consider the micro-operations: 

A <- A + 1 

.il A = 0 Roto LABEL 

The dependency of the second on the first should be 

strong in an overlapped implementation, but weak in a 

sequential implementation. 

These are two examples of dependency relationships the 

strength of which is undecidable at the processor level. 

It would be perfectly simple to take a pessimistic 

viewpoint and always classify such occurrences as strong 

dependency, but one of the specified goals of MDS was to 

generate efficient microcode, and so ANALYSE must be made 

to allow the possibility of weak dependency in these 

situations. How it does so is explained in the following 

section. 

The minimality of the partial ordering POmin  within 

straight line segments may now be deduced. It follows 

from the readily observable fact that, discounting those 

arcs which are redundant through the transitivity of the 

dependency relationship, each are in the data dependency 

graph - each data dependency relationship between two 

micro-operations - is necessary in order to ensure the 

desired behaviour and determinacy for the function so 

defined.. 
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The concept of control dependency was seen to be 

necessary in ensuring that each micro-operation in the 

source microprogram is executed the same number of times 

under any ordering of execution equivalent to that defined 

by the sequential MDL description. Labels and branches 

define critical Doints in the microprogram which 

effectively limit the independence, the "freedom of 

movement", of executive type micro-operations. The source 

microprogram description was partitioned into straight 

line segments delimited by these critical points. These 

are equivalence classes of operations which have in common 

that their execution depends on the same history of flow 

of control through the system. 

Each straight line segment thus forms an indivisible 

and inviolable entity with a single entry point and a 

single exit point, which guarantees the bond between the 

component micro-operations. 

The groups of micro-operations which constitute a 

conditional block or a conditional loop similarly form an 

indivisible and inviolable entity: if one micro-operation 

of the group is executed then all must be, and no other 

may be executed with them. These constructs could be 

incorporated into the language simply by treating each 

such block as a single straight line segment (two in the 

case of the If...Then ... Else construct). This would 

exactly replicate the treatment which would be afforded 
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the constructs were they expressed explicitly in terms of 

labels and branches in MDL. But it does not take 

advantage of the fact that these are modular entities, the 

fundamental control constructs of structured programming. 

The labels and branches associated with If ... Then ... Else 

blocks and conditional While loops are well-behaved, in 

the sense that they reflect a well-defined control 

structure. If a conditional block or loop is wholly 

incorporated into an existing straight line segment then 

the essential feature of that straight line segment is 

preserved: it still has only one entry point and only one 

exit point. This is illustrated in figure 2.4.3 

Straight 
Line 
Segment 

--------------- ------- 

Single 
Entry 
Point 

Modular 
Control 
Block 

Single 
Exit 
Point 

Figure 2.4.3 



Incorporating modular control blocks into straight line 

segments in this way does not impose unnecessary 

restrictions on the independence of the other 

micro-operations inside the straight line segment, as 

would be the case were a new segment to be created for 

each such block. 

For example, consider the sequence of MDL microprogram 

illustrated in figure 2.4.4. If micro-operation B is 

independent of all of the micro-operations inside the 

loop, then there would be no difference to the behaviour 

of the sequence were B executed before the loop, perhaps 

concurrently with A if they are independent. 

---(A)--- 

While COND Loop 

---(Li)--- 

---(L2)--- 

---(L3)--- 

Repeat 

---(B)--- 

Figure 2.4.4 
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However, special care must be taken in situations such 

as this to preserve the indivisibility and inviolabilty of 

the control block. Micro-operations should be allowed to 

"migrate" over a control block, but they must be prevented 

from "landing" in the block, just as they must be 

restrained from migrating outwith the confines of their 

own block. The concept of levels of micro-operations 

within the canonical microprogram is now introduced to 

secure the necessary protection. 

For the purpose of determining its data dependency 

relationships with the other micro-operations, a modular 

control block is treated as a single micro-operation in 

the canonical microprogram. It is a block type 

micro-operation which at one level assumes the identity of 

a single micro-operation, but which is expandable to its 

component micro-operations at one level lower. These 

component micro-operations, which correspond to the 

micro-operations contained in the control block, may 

themselves be of block type - this would be the case when 

the source microprogram contained nested control blocks - 

or they may be orimitive. 

Indivisibility and inviolability of control blocks may 

now be secured by insisting that data dependency should be 

marked only between micro-operations at the same level. 

Consider for example, as illustrated in figure 2.4.5, a 



loop followed by a primitive micro-operation B which is 

data dependent on a primitive micro-operation A inside the 

loop. A is at a lower level than B since it lies inside 

the loop. Hence it is the block type micro-operation 

representing the loop structure, at the same level as B, 

that the data dependency of B must be marked upon. This 

ensures that B will not be executed until after all of the 

components of the loop. 

But this rule is not sufficient as it stands, as may be 

seen by considering the situation where B above is itself 

a component of a loop, not enclosing the loop which 

contains A, as illustrated in figure 2.4.6. Now A and B 

are at the same level, but, in order to maintain the 

desired behaviour, it must be ensured that in such a 

situation no constituent of the second loop may be 

executed before any constituent of the first loop. 

W. 



While COND L000 	 While COND Loop 

---(A)--- 

Repeat 	 Repeat  Reoeat 

---(B)--- 	 While COND LooD 

Figure 2.4.5 

Repeat  

Figure Figure 2.4.6 

This is achieved by adherence to the following rule: 

Rule 2.4.1 (Multi Level Deoendenoy Rule). The 

outermost block containing B but not A is marked as being 

dependent on the outermost block containing A but not B. 
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Figure 2.4.7.(a) presents a skeletal example of a block 

structured MDL microprogram and figure 2.47.(b) shows a 

set of data dependency relationships which might exist 

between the primitive micro-operations of 2.L7.(a). 

Figure 2.4.7.(c) illustrates the dependency relationships 

between micro-operations which result from application of 

the Multi Level Dependency Rule to this example. (Each 

micro-operation is depicted as a box with the level of the 

micro-operation displayed at the top right corner of the 

box). 
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---(1)--- 
(1) 

---(2)--- 

---(3)--- 	 (2) 

.j. COND Then 	 A\ 
(4) 	(3) 

/\ 
---(7)--- 	 (5) 	(6) 

Else 

(8) 	(7) 

_

Fin ish 

 
LooD 	 (11) 	(9) 	(10) 

---(10)--- 

---(11)--- 
(12) 	(13) 

Repeat 

---(12)--- 
Figure 2.4.7..(b) 

---(13)--- 

 Figure 2..4.7.(a) 
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Whole Microprogram 

-----1 

r (2) 	I 
Loop 

------------------------------1 

(3)_j 

Cond block 
---------2 

Ifblook 
3 

[-R;.;.- 	[i 
;- 

[_.:._i 

Elseblock 

j 

[:IEI:i 

oop 
:::: ----------- IL  ---- 2 

(9) - j 
c::1 

[- -(12) _  
 i 

Figure 2.4.7.(c) 

VIX4F,r~PrM4 IsnWvol-Kell 	To= 	 In 

73 



The whole reason for establishing dependency 

relationships between micro-operations is to determine 

which micro-operations may be executed concurrently or in 

any order and for which a defined order of execution must 

be observed. At the microprogram level, the order of 

execution will be defined by the order in the microprogram 

of the microinstructions into which the micro-operations 

are packed. The algorithm used to perform the packing of 

the micro-operations of a canonical microprogram will be 

described in chapter 4 when it will become more obvious 

just how the Multi Level Dependency Rule is used to effect 

a behaviour in implementation equivalent to that defined 

by the sequential MDL description. 

We are now lead back to the question of how, within 

this framework, to cope with explicit labels and branches, 

perhaps occurring inside modular control blocks? - The 

solution to this problem is derived from rational 

development of the concept of block type micro-operations 

and levels within the microprogram and leads us to discard 

the explicit demarcation of straight line segments for a 

unified approach to control and data dependency throughout 

the whole source microprogram. In essence, each straight 

line segment - each critical point - is associated with a 

block type micro-operation whose components are all those 

micro-operations which succeed the critical point in the 

sequential MDL description. These exist at a lower level 
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than the block type micro-operation and so their control 

dependency on the critical point is ensured. The details 

are explained in the following section. 

75 



This section explains in detail the-implementation of 

the algorithm outlined in the previous section for 

generating a maximally parallel representation of an MDL 

microprogram. This is performed by ANALYSE - a program 

which accepts as input an MDL description of a processor 

behaviour and outputs a multi level partially ordered 

graph of micro-operations representing the same processor 

behaviour. 

ANALYSE processes the MDL source microprogram serially, 

line by line. Ignoring comments, it classifies each line 

as a primitive micro-operation of one of the following 

types: 

(1) Executive - all register transfer 

and miscellaneous micro-operations. 

('I) Subroutine Call 

As well, as these micro-operation types, it also 

generates, where appropriate, additional block type 

micro-operations of the following type: 
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(5) Label 	Generated by each explicit label or 

branch micro-operation 

Svncblock 	Generated for a group of 

micro-operations which have been 

designated explicitly for concurrent 

execution. (see section 2.2) 

Loot 

	

	 Generated on recognition of "Loop" 

directive in current line. 

(S) Ifheader 	generated on recognition of "If ... Then" 

construct. Composed of Ifblock and 

Elseblock type micro-operations - see 

(9) and (10) below. 

Ifblock 	Generated at same time as Ifheader 

micro-operation to contain the 

micro-operations in the block associated 

with the evaluation to true of the 

tested condition. 

Elseblock 

	

	Generated on recognition of "Else" 

directive - contains the 

micro-operations to be executed when the 

tested condition is false. 
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Notes on the above: 

The two levels of block type micro-operations 

associated with an "If ... Then...Else" construct are 

necessary to ensure both the indivisibility of the 

total block and the separation of the Ifblock and 

Elseblock parts. Although they are logically 

independent, the latter is marked dependent on the 

former in order to guarantee consistently valid 

implicit succession from the testing of the condition 

at the head of the block. This is necessary in order 

to generate the correct sequencing information for the 

final microprogram - discussed in section 4.3. 

The reason for distinguishing between conditional and 

unconditional branch type micro-operations is 

concerned with the optimization of the microcode as 

will be explained in section 4 • 3 •  

A "Wait For..." type micro-operation is treated as a 

degenerate conditional loop. 

ANALYSE maintains a record of the level associated with 

the current line being processed and drops down one level 

each time it has cause to generate one of the above block 

type micro-operations (5)-(10). It keeps track of the 

block header micro-operation for each level and marks each 

micro-operation processed as a component of the 

appropriate block header for that level. It steps up a 

level each time it encounters a block terminating 
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directive, namely "Repeat", "Finish", or "Else" ("Else" 

causes the termination of an Ifblock and the immediate 

initiation of an Elseblock). In fact, it also steps up by 

as many levels as there are Label blocks immediately 

inside the modular control block appropriate to the 

terminator. That is, Label blocks are also 'terminated by 

control block terminating directives. Thus consistency of 

level of the micro-operations before and after the 

enclosing control block is maintained. This is necessary 

for dealing with "Exit" statements as will be explained 

below. 

ANALYSE generates a branch type micro-operation to 

replace the conditional statement heading each conditional 

block or loop (or at the tail of the loop), reversing the 

expressed condition where appropriate (this is the 

exception which proves the "no semantics" rule). For 

example the statement: 

"While A >= 0 Loop" 

would be replaced by: 

"If A < 0 Goto Label" 

where "Label" is a computed index into a label table 

calculated on the basis of the value of the current level. 

There are two label positions associated with Loop and 

Ifheader blocks (see figure 2.5.1): in the former there is 

one at the head of the loop jumped back to to repeat the 

loop and one beyond the tail of the loop jumped to if the 
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condition at the head is false. For the Ifheader block 

there is one beyond the Ifblock (this will be at the start 

of the Elseblock if such exists) and one after the 

Elseblock which is the destination of a jump round that 

block on completion of the Ifblock. 

j COND Then 
	

if COND goto Li 

Else 	 goto L2 

Li: 

Finish 
	

L2: 

While COND Loop 

Exit If COND 	= 

Repeat 

L2: if COND goto Li 

if COND goto Li 

goto L2 

Li: 

Figure 2.5.1 



Explicit labels are also entered into the label table 

and branches referring to those labels are converted to 

refer to the label table entry. This is for the purpose 

of generating the sequencing information which will ensure 

correct control flow in the microprogram, as will be 

explained in section 4.3. 

"Exit" statements (jumps out of loops) are also 

converted into branch micro-operations. The label for the 

branch destination is that implicitly associated with the 

tail of the loop ultimately being exited from, as 

illustrated in figure 2.5.1 above. The index for this 

label is calculated on the basis of the level of the loop 

and this is the value inserted Into the branch 

micro-operation with which ANALYSE replaces the Exit 

statement. 

This initial processing stage completed, ANALYSE now 

has each micro-operation in a form suitable for 

establishing the dependency relationships which it must be 

made to observe. 

In order to determine the data dependency relationships 

between micro-operations, ANALYSE associates with each 

operand It encounters in the processing of the MDL source 

microprogram two data items: a pointer to the last 

micro-operation to use that operand as the destination of 

an expression and a list of all those micro-operations 
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which have used it as a source of data subsequent to its 

last having been written to. ANALYSE isolates the 

operands referenced in each primitive micro-operation and 

determines their usage - destination or source. It is 

then able to establish data dependencies on preceding 

(primitive) micro-operations according to the rules DD1 to 

DD3 (section 2.3) using those data associated with the 

operand names, which it updates as it does so. 

The complexity of this algorithm is linearly 

proportional to the number of micro-operations in the MDL 

description input to the program, contrasting with other 

proposed methods for detecting the same type of dependency 

[55, 401 - outlined in chapter 4 - which compare each 

micro-operation with all its predecessors in the straight 

line segment: an algorithm of complexity proportional to 

the square of the number of micro-operations in the 

straight line segment. 

On the basis of the data dependency relationships 

between primitive micro-operations which it calculates in 

this way, together with the block structure of the input 

microprogram, ANALYSE applies the Multi Level Dependency 

Rule (rule 2.4.1) to generate the correct dependency 

relationships to be marked between the appropriate 

micro-operations. 



At this point we recall the syntactic construct in MDL 

introduced without explanation in section 2.2 which 

enables explicit specification of the resources which are 

affected by the action of a micro-operation, but which may 

not be expressed in the micro-operation itself. For 

example, in some implementations, the micro-operation 

"Read Memory" may implicitly reference a Memory Address 

Register (MAR) and a Memory Data Register (MDR). If this 

is the case, then no other micro-operations also using 

those registers should be classed as independent of the 

"Read Memory" micro-operation. For this reason, MDL 

allows the designer to specify explicitly the fact that 

those operands are referenced by the action of this 

micro-operation in the following manner: 

Read Memory ; I MDR 1 MAR ] 

where the vertical bar separates the list of those 

operands written to (MDR in this case) from those used 

only as data sources (MAR in this case). 

This same construction may be used beneficially in 

accompaniment with a subroutine "Call" statement, in 

effect to specify the parameters of the subroutine. Here, 

"parameters" denotes all operands referenced inside the 

subroutine body, there being no such concept as scope of 

names for operands. If the construction is used in this 

way, then ANALYSE treats the statement as an executive 

type micro-operation which references the specified 
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operands, and data dependency is marked accordingly. If 

it is absent, then the "Call" statement is treated as a 

simple conditional branch micro-operation imposing an 

absolute barrier to the independence of other 

micro-operations. In using this construction, the 

designer may be seen as providing some sort of "guarantee" 

about the behaviour of the subroutine which ANALYSE 

accepts in order to enhance the potential for 

optimization. 

As described at the end of section 2., control 

dependency of all micro-operations on the most immediately 

preceding explicit branch or label. must be enforced. This 

follows automatically when the Label block type 

micro-operation associated with the critical point has not 

been terminated at the time at which the subsequent 

micro-operation is processed. That is, if that 

micro-operation is also inside the control block which 

immediately encloses the critical point, since then the 

latter will be marked as a component of the former. But 

if the critical point is inside a modular control 

construct the terminating directive for which precedes the 

micro-operation in question, then the latter will not be a 

component of the Label block and measures must be taken to 

enforce the dependency - no micro-operation must be 

allowed to migrate over a control block which contains a 

critical point. 
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Control dependency of this nature is checked for in 

ANALYSE whenever data dependency is being determined 

according to the Multi Level Dependency Rule. If it is 

seen that the parent in a data dependency relationship 

precedes the critical point (ie. if a critical point 

intervenes between a micro-operation and another which is 

data dependent on it), then the critical point assumes the 

role of parent in the relationship and dependency of the 

child is generated according to the Multi Level Dependency 

Rule. Any micro-operation which is found not to be data 

dependent on any preceding micro-operation is marked as 

dependent on the block at the same level as itself which 

contains the most immediately preceding critical point 

block, if such exists. 

To a limited extent, this consideration must also be 

applied to "Exit" statements: for any micro-operation 

which lies between an Exit micro-operation and its 

associated loop tail, the Exit micro-operation acts as a 

critical point, limiting the range of movement of that 

micro-operation. For micro-operations lying outwith that 

range, the Exit micro-operation carries no effect. Figure 

2.5.2 illustrates several examples of such situations. 
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L0OD 	 Loon 	 Loop 

• 	 Loon 	 Loop 

Exit 

• 	 Exit-2 	 Exit-2 

• 	Range of X) 

-(X)- 

 

Repeat 	 Repeat 

Reneat 	 . 	Range of (X) 	Repeat 

-(x)- 

• 	Not 

Rene at 	 Affected 

by Exit 

Figure 2.5.2 
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As described in section 2.4, four different dependency 

relationships between micro-operations may be 

distinguished, viz: 

(1) Strong Dependency 

() Weak Dependency 

(3) Destination-Source Dependency 

(Li) Computed Data Dependency 



Types (3) and (14)  are resolved to either of types (1) 

or (2) at implementation time, but ANALYSE must retain the 

distinction at this stage. The various situations which 

give rise to the several types of dependency relationship 

marked by ANALYSE between two micro-operations A and B (A 

preceding B) are classified below. 

B writes to the same operand that A writes to. 

B reads from an operand that A has written to. 

B is a Label block type micro-operation. A is a 

childless micro-operation at the same level 

preceding B. 

A Is the conditional branch micro-operation at the 

head of a loop or conditional block. B is a 

parentless micro-operation inside the block. 

A is an Ifblock block type micro-operation. B is 

the corresponding Elseblock. 

B is a branch micro-operation not data dependent on 

A. A is a childless micro-operation preceding . 

B is a Subroutine Call micro-operation incorporating 

explicit specification of operands which render it 
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data dependent on A. 

(3) B is an Ifheader block type micro-operation data 

dependent on A on account of a component 

micro-operation of B (But not the conditional branch 

micro-operation at the head of the block - this 

causes a Computed Data Dependency relationship of B 

on the parent). 

(1) B writes to an operand that A has read from. 

(1) B is a conditional branch or subroutine call (or 

return) micro-operation which is data dependent on 

A. 

These then are the relationships constructed by ANALYSE 

to realize POmin,  the partial ordering defining the 

maximally parallel representation of the MDL source 

microprogram input to it. 

One qualification must be put on the term "maximally 

parallel" as used above, however. The canonical 

microprogram is the maximally parallel representation of 

the source microprogram that may be generated without 

tracing the control flow associated with explicit labels 

MMI 



and branches. Explicit labels and branches serve as 

absolute barriers to code movement and effectively 

partition the canonical microprogram into disjoint 

segments (not straight line segments, because critical 

points may occur inside a modular control block). As 

noted previously, it could be the case the actual control 

structure defined by the explicit labels and branches in a 

particular example would permit some code movement between 

the segments, but this would not be reflected in the 

canonical microprogram for that example. The rewards to 

be gained in attempting to detect such situations are far 

outweighed by the amount of extra effort that would have 

to be invested to do so; particularly when modular control 

constructs are available in the microprogram description 

language. 

With this qualification implicit, the canonical 

microprogram generated by ANALYSE is a maximally parallel 

representation of the MDL source microprogram description. 

ANALYSE outputs a representation of this canonical 

microprogram for use as input to MICROMAP, the program 

which generates the final implementation of the 

microprogram as will be described in chapter LI, . 
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This chapter is concerned with describing the control 

organization of the microprogram level host machine on 

which a processor behaviour will be implemented. 

Control organization at the microprogram level is 

defined by the microinstruction format of the 

implementation, which term is taken here to encompass both 

the field structure of microinstructions and the action of 

the micro-orders that may be evoked from them. 

The first section of this chapter examines the features 

of microprogram level control which must be described and 

the second introduces a model of microinstruction formats 

which has been designed with the automatic generation of 

microprograms specifically in mind. 
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To the author's knowledge, the only previous attempt to 

design a formal notation for the description of 

microinstructions is De Witt's Control Word Model [221, 

noted in section 1.3. Although it is capable of 

specifying what operations may be realized from a single 

microinstruction word over quite a wide variety of 

formats, there are three major reasons why the Control 

Word Model is not capable of achieving the objectives of 

MDS. Namely: 

The model is not complete. It does not provide 

sufficient information about the microinstruction 

format to permit the automatic generation of 

microcode for microinstructions described in the 

notation. 

It assumes that each micro-operation to be 

implemented in the particular microinstruction format 

being described may be associated with a unique block 

in the description which will realize it. This is 

not a valid assumption in all circumstances. 

The notation is difficult to use - a description 

expressed in the Control Word Model notation does not 

reflect the actual format of the microinstruction. 

Also, the user is obliged to specify explicitly all 

possible microinstruction configurations. 
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In terms of existing notations, one other alternative 

exists. That is the encapsulation of the behaviour 

associated with a particular microinstruction format 

inside the general description of the microprogram level 

organization of the system, this being represented in a 

standard hardware description language. Although this 

approach may be made to convey all of the information that 

is necessary for the purposes of microprogram design, it 

entails a complicated, detailed description incorporating 

much additional information about the organization of the 

system which is not relevant to the subject. Consequently 

it obscures that which is relevant. 

It is the professed goal of this research effort to 

construct a tool that will be practical use for the design 

of the microprogram control of digital systems. A 

fundamental implication of this tenet is that the system 

should be easy to use. Hence we seek a notation in which 

it is convenient for the microprogram designer to express 

that which he wishes to describe - in this case the 

microinstruction format for the control of a given 

processor design. The absence of an existing notation 

with this property compels the design of a new one. This 

is the motivation behind MFM - Microinstruction Format 

Model - a model of microinstruction formats defining an 

associated notation in which descriptions of the control 

organization of microprogram level systems may be 

expressed. 
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The rest of this section examines the type of features 

which a model for this purpose must be capable of 

representing. The following section presents the details 

of MFM, with an example of its use. 

There are two aspects to the description of 

microinstruction formats that must be taken account of. 

There is the functional aspect: specifying the operations 

that may be performed at the microprogram level; and there 

is the structural aspect: the organization of the fields 

within the microinstruction word. Both are necessary 

integral parts of a description for the purpose of 

microprogram design; the first in the synthesis of the 

specified behaviour for the microprogram level 

implementation of the processor; the second in recognizing 

resource conflict between micro-operations and in enabling 

the generation of complete microcode. A suitable model 

should be capable of reflecting both these aspects. 

The following properties for a model for describing 

microinstruction formats for the purpose of microprogram 

design will be assumed as axiomatic and from these will be 

derived the properties to be exhibited by MFM and its 

associated notation. 

(1) The model should be capable of describing completely 

a wide diversity of formats - not just "conventional" 

or "well behaved" examples. 
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The model should carry sufficient information to 

allow generation of complete microcode in the 

described format. 

The notation should be convenient to use. 

Descriptions expressed in the notation should be easy 

to understand. 

The model should be conducive to the automatic 

transformation of descriptions into data structures 

suitable for subsequent machine processing. 

Two alternative approaches may be taken to the 

modelling of a microinstruction format: either a function 

based approach or a field based approach. In the former, 

all of the micro-operations that a processor may perform 

are listed. The particular microinstruction configuration 

which realizes each is then calculated explicitly by the 

designer and is associated with that micro-operation in 

the format description (the "hand compiling" method 

mentioned in section 1.3). This exhaustive method may 

well lend itself to machine processing, condition (5) 

above, but quite clearly violates condition (3), that a 

description be easy to write. 

In contrast, with a field based model each constituent 

field of the microinstruction format is defined in terms 
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of the micro-orders supported by that field. In addition 

to providing a simpler description, this model is closer 

to the designer's conceptual view of the microinstruction 

format and its conformity to the structure of the 

microinstruction renders this style of description more 

intelligible. These advantages override any extra effort 

which might be required (once only) to process 

descriptions represented in this model. 

The requirement that MFMshould be field based is 

therefore deduced. 

Typically, the specification of a microinstruction 

format as it appears in both the manufacturers' literature 

and the technical journals comprises a diagram depicting a 

box which represents the microinstruction word, subdivided 

into several sections representing the fields. (Or perhaps 

several boxes divided into different sections). Lengthy 

annotation is attached to each section and the description 

is accompanied by numerous footnotes covering 

contingencies which are not uniquely associated with a 

single field. MFM must be capable of representing all of 

the information conveyed in this model, but in a more 

formal manner. Identified below are particular features 

which must be given express consideration. 

Incorporated into these diagrams of the boxes 

representing microinstructions is information expressing 
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the length of the microinstruction word and of the fields 

contained therein, as well as the position of the fields 

within the word. 

The depiction of the microinstruction format as many 

boxes each of different field structure, as illustrated in 

figure 3.1.1, reflects the property exhibited by many 

control word organizations of variable format (or two 

level encoding) , in which the interpretation of the field 

structure of the (rest of the) microinstruction word is 

dependent on the value held in a single field common to 

all structures. The archetypal example of this feature is 

the "Opoode" field of a vertically structured format. 
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Figure 3.1.1 

Sometimes, the well-defined field based structure of a 

microinstruction format is violated by the interference of 

field interdeoendence (often the cause of the copious 

footnotes associated with an informal description), 

whereby the action associated with one field may be 

predicated upon the value of another, otherwise 

independent field. This does not refer to fields whose 
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action involves transferring data determined by another 

field, or over a data path determined by another field, 

which is the normal course of events, but concerns fields 

the actual action of which is affected by the value held 

in other fields. This situation may be exemplified by the 

microinstruction format of the IBM 360 model 40  (see 1311) 

in which the interpretation of the CE field is determined 

by the values held in the CH, CN, and CQ fields. The CE 

field acts either as an immediate source of data for 

loading into one of the registers or else - if the CN 

field has the value 15 - it determines the function which 

is performed on the stat registers and loaded into the 

function register. The microinstruction format of the 

Varian 73 central processor [60, 51 also exhibits this 

feature extensively. 

Another violation of the normal "good behaviour" of 

microinstruction formats is presented by the mechanism 

known as residual control [49, 31. This breaks the rule 

stipulating that the action of a single microinstruction 

should be totally defined within a single processor cycle 

(discounting actions, such as memory references, the 

duration of execution of which lasts longer). It does so 

by "setting up" a register during one clock cycle from one 

microinstruction word and then using the contents of that 

register to determine the action activated by a subsequent 

microinstruction word. For example, the Fstore registers 

of the Nanodata QM-1 processor E43, 501 implement this 
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feature, being used among other things to select the 

register to be connected to a bus. 

Associated with each field in the microinstruction 

format is a set of micro-orders. The micro-orders that 

are grouped together in one field are mutually exclusive: 

only one may be activated from the field at any one time, 

and the corresponding control signals are encoded within 

the field to reduce the length of the microinstruction 

word. This means that each micro-order has associated 

with it a value which must be bound to the field to cause 

that micro-order to be activated from a particular 

microinstruction. Also, each action has an associated 

duration. Normally it will be completed inside a single 

processor cycle, but some actions, such as memory 

references, may be exceptional. In the event of none of 

the micro-orders belonging to a field being explicitly 

included in the action of a microinstruction word, a value 

must still be bound to that field in the microinstruction. 

Rather than this being determined arbitrarily, it should 

be possible to specify such a default binding explicitly. 

In addition to the function of providing control 

signals to the p rocessor data paths, part of any 

microinstruction format is taken up with the sequencing of 

the microprogram itself - in selecting the conditions to 

be tested and in deciding from what location the next. 

microinstruction should be fetched. Another part of the 

microinstruction word is taken up with providing Immediate 



data to either the data path or sequencing mechanisms of 

the implementation. For the sake of clarity and 

consistency, a model which represents all functions of a 

microinstruction format in a unified form is to be 

preferred. 

These then are the major requirements which MFM must be 

capable of representing. Before describing the model and 

demonstrating how it satisfies these requirements, one 

further observation concerning the interDretation of 

format descriptions may be made. 

In section 2.2, arguments were advanced explaining the 

reasons for MDS not attaching any semantic interpretation 

to the statements of an MDL microprogram description. 

These arguments are applicable to format descriptions 

also. In the context of microprogram design, there is no 

necessity to associate any connotation of semantic 

significance with the actions of the micro-orders 

described in a specification of a microinstruction format, 

when this is svmoathetic to the high level description of 

the system being implemented. The memory elements which 

are the sources and destinations of data for all 

micro-operations have names which are unique throughout 

the processor level description and the microprogram level 

description of the system - they are the names of 

processor level resources. Exactly the same is true of 

the operations performed by the processor. The format 
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specification defines how the microinstruction word 

controls the operations performed by the processor, but it 

does not need to define what these operations are. As 

long as there is consistency of naming between the two 

descriptions of the processor at different levels, 

definition of their semantics is unnecessary. When the 

format specification is directed specifically toward 

implementing the processor defined by the MDL description, 

this consistency of naming is maintained naturally. 
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 general form of a description of a microinstruction 

format within the context of MFM is of a list of all of 

the constituent fields of the format defined in terms of 

the micro-orders belonging to that field - rather like a 

Backus Normal Form language specification. 

Extensive case studies of a wide variety of 

microinstruction formats reveal that five types of field 

may be distinguished. Together, these five field types 

form a basis on which a field based model of 

microinstruction formats may be founded. The five field 

types identified are as follows: (where the entities 

enclosed in square brackets in the examples are user 

defined field names and ':' denotes the definition of the 

field name on the left in terms of the expression on the 

right. Names not enclosed in square brackets are assumed 

to be processor level resource names. The syntax of the 

notation will be explained in greater detail below.) 

(1) Composite - This type of field is simply a conceptual 

grouping together under a single name, for the sake 

of clarity, of an ensemble of associated fields. 

eg. [ALU_control] := [Opdl] [Opd2] [Op] [SaveCC]. 

This is not, an essential field type, but enhances the 

intelligibility of a format description (of. 
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"Special" and "Miscellaneous" in figure 3.1.1). 

Mode Interpretation (Bit Steering) - This type of 

field determines the interpretation of the field 

structure of the rest of the microinstruction in a 

variable format organization. 

eg. [Instmode] :: <0>: [ALutype]; 

<1>: [Condbranch]. 

The field names on the right of the '::' denote 

alternative composite type fields representing the 

field structure associated with the two alternative 

values for [Instmode]. 

Select - This type of field, the most common in most 

descriptions, defines the micro-orders used to 

control the propagation of dataalong the internal 

data paths of the processor, typically by issuing the 

selector control signals to a multiplexor orgating 

data on to a bus. The name of the field will 

normally be chosen to be a mnemonic name for the 

microprogram level resource, eg. section of data 

path, controlled by the field. This name will be 

used in the expansion of other fields when the 

sections of data path associated with each are 

connected. 

eg. [ALU_input] :: <0>: Ace; 

<1>: [GPReg); 
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<2>: [lOBus]; 

<3>: [Direct Data]. 

The micro-orders denote the "value" taken by the 

microprogram level resource associated with the field 

as a result of the action of the corresponding 

control signals. 

(14) Execute - This type of field controls the (clock 

synchronized) loading of processor registers, the 

sequencing of the microprogram, and miscellaneous 

actions involved in communicating with the 

processor's external environment. 

eg. [Load Ace] := <1>: Ace <- [ALU_out]. 

[Mem control] :: <1>: Read Memory; 

<2>: Write Word; 

<3>: Write Byte. 

(5) Emit - This type of field is used to supply data to 

the processor directly from the microinstruction word 

for a variety of purposes. 

This set of field types is not the only possible basis 

for the representation of microinstruction formats. Nor 

is it the smallest possible set. The five types 

distinguished have been identified as providing both a 

reasonable balance of simplicity and clarity in the 
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descriptions, together with sufficient information to 

facilitate the interpretation of the described format 

which is necessary for subsequent processing. Were the 

latter consideration not pertinent, it would not be 

necessary to distinguish Select and Execute type fields. 

The latter type is just a special case of the former, a 

symptom of which is that Execute type fields are never 

referenced as part of the expansion of other fields.. This 

matter will be explained further in section 14.2. 

In order to keep descriptions simple in MFM, and hence 

make the model usable, the designer is required to specify 

the type of each field defined in the MFM description of a 

microinstruction format. The whole microinstruction word 

is considered as a single Composite type field and is 

specified in terms of Its constituent fields. Thereafter 

each field supported In the format is defined by its 

expansion, that Is all of the micro-orders belonging to 

the field, which are expressed as a combination of literal 

terms and other field names. 

The general form for the specification of a field is as 

follows: 

[Fleidname] (Type) <from:to> := Expansion. 

The "fieldname" is a user defined Identifier for the field 

which normally will be unique within the description, 

105 



although two distinct Select type fields controlling a 

single resource, eg. in gating data on to a bus in an 

unencoded format, are permitted to have the same name. 

The "type" is one of the five identified above and "from" 

and "to" are two integers defining the bit range of this 

field within the microinstruction word. The 

interpretation of the expansion of the field varies with 

the type of the field as follows: 

Composite : 	[Subfield_i] [Subfield_2] ..... [Subfield_x]. 

The expansion here consists simply of that set of 

fields grouped under the same heading. These will 

themselves be expanded elsewhere in the format 

description. 

Mode Interpretation := <bindi>: [F1.1] ..... [F1.x]; 

I, 

'I 

<bindN>: [FN.1] ..... [FN.x]. 

The list of fields associated with each binding in 

the expansion of a field of this type denotes those 

fields enabled for each value of the Mode 

Interpretation field, ie. the interpretation put upon 

the field structure of the rest of the 

microinstruction word in each of the modes of the 

format corresponding to the various values of the 
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Mode Interpretation type field. These fields will 

all be expanded later in the format description. 

Explicit specification of the binding is optional, 

with the default being zero initially and incremented 

by one after each field list (which are separated by 

semi-colons). 

Emit 	Low limit : High limit 

The expansion for this type of field lists two values 

denoting the lower and upper bounds for the integral 

number which may be held by the field. The lower 

bound may be omitted, in which case zero is assumed. 

Select and Execute := <bindi>: Orderl.1, ... ,Orderl.x; 

<bindN>: OrderN.1, ... ,OrderN.x. 

Associated with each value for each Select and 

Execute type field is a list of the micro-orders 

evoked by that value for the field. The micro-orders 

take the form of a string of literal names and field 

names. For the Select type fields, the micro-orders 

denote the resources (processor or microprogram 

level) that may be "bound" to that field name. For 

Execute type fields, the micro-orders specify the 
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actions that may be evoked from that field. The 

possibility of more than one micro-order being 

associated with a single binding is entertained. 

This is a situation which often occurs in practice as 

a method of reducing the length of the control word 

whenever two actions may always be activated at the 

same time as each other. This feature is also used 

commonly in MDS as a consequence of the lack of 

semantic interpretation put upon operations in MFM 

descriptions. It is necessary to specify twice an 

expression which involves a binary commutative 

operation: once for each order of the operands. 

eg. [.ALU_out] (select) := [Opdl]+Acc, 

Acc+[Opdl]. 

Since there is no way of "knowing" in the notation 

that these two expressions are the same, "both" 

actions must be evoked simultaneously. 

There are three further parameters which may be 

associated with a field description in the MFM model, 

namely Default, Duration and Phase. 

Each field definition in the MFM description with which 

a binding may be associated may be followed by a 

directive, " DEFAULT = X". X is an integer specifying 

the value to be bound to the field in the event that no 

micro-order belonging to that field is explicitly selected 

for activation in a microinstruction word. Zero is 



assumed as the default binding for a field when the 

directive is not included in the field definition. 

The duration of the actions associated with each field 

described may be specified by the directive 

DURATION = X", where X is the number of processor 

cycles taken to complete the actions associated with the 

field. If this is omitted (which is the normal case), 

then it is assumed that the actions can be completed 

inside a single processor cycle. 

Similarly, the phase of the processor cycle in which 

the micro-orders belonging to a field are activated may be 

specified using the directive "' PHASE = X". Zero is 

assumed as default value for X. (This feature is not used 

in MDS, but is included in the model for completeness). 

In addition to the five basic types of field described 

above, two further types are included in the model. These 

are used in connexion with two of the contingencies 

identified in the preceding section. 

The first additional type is the Register type which in 

effect is a cross between the Select and Execute field 

types. It is used to control the loading of a 

microprogram level register incorporated within the 

processor data path. That is, it controls an internal 

part of the data path, just like a Select field, but in 

this case the section of data path retains its data 

between processor cycles. Hence any transfer of data by a 
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micro-operation from a processor level source register to 

a processor level destination register over a data path 

including such a register must be split up into actions: 

one to load the register with the source data and another 

to pass the data on to the destination. The 

differentiation between a processor level register and a 

microprogram level register is purely conceptual, but the 

availability of this feature is extremely useful, 

especially when experimenting with different microprogram 

level organizations for the implementation of a processor, 

when the behavioural description of the processor may 

remain invariant. It is of particular usefulness in 

modelling residual control, defined in the previous 

section, and in overlaDoed implementations (see section 

2.14) in which data generated in an arithmetic expression 

and then tested to determine branching must be split over 

two microinstructions. Register type fields may also be 

used like Execute type fields in explicitly loading the 

associated register as if it was a processor level 

resource. This will be explained further in chapter 14. 

Note that the requirement to distinguish Register type 

fields exists only through the use of the model for 

describing micro-architectures into which a processor 

description will be mapped automatically. Were the model 

not used for this purpose, then all Register types fields 

would simply be classed as Execute type (which itself is 

just a special case of Select which need not be 
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distinguished in all contexts). 

The second additional field type, the Conjunction type, 

strictly speaking is not a field type at all, nor is it 

specified in the format definition as such. A dummy field 

of this type is generated in the internal representation 

of the format whenever a case of field interdeDendence is 

encountered: whenever a micro-order is specified whose 

activation is dependent on the value of more than one 

field (but not where one of the fields is exclusively for 

this purpose, of type Mode Interpretation). Field 

interdependence may occur within Select, Register or 

Execute field types in a format description and is 

expressed within the expansion of one of these with a 

construction of the form: 

%When [Field] = Binding: list of micro-orders 

The "field" is the other field involved in activating 

the micro-orders, apart from the one in whose expansion 

the construction is included. The list of micro-orders is 

of the same form as for Select and Execute type fields and 

carries the same interpretation as the other micro-orders 

of the field in which the Conjuntion field occurs. Like 

the notion of multiple actions evoked from the same 

control signal, this device is used quite commonly asa 

consequence of the absence of semantic interpretation in 

the model. For example, one field might be used to 
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control the Carry-in bit to an arithmetic unit. Then the 

field which controls the arithmetic operation to be 

performed may be considered as implementing two different 

functions depending on the value of the Carry field. 

Thus: -  

[Carry Control] (select) := <0>: Carry in; 

<1>: No carry. 

[Acc_Add] (execute) := <1>: when [Carry Control] = 1: 

Acc<-Acc+[ALU_in] 

Acc<-[ALU_in]+Acc; 

%when [Carry Control] = 0: 

Acc<-Acc+[ALU_in]+1, 

Acc<-[ALU_in]+Acc+1. 

It is often found to be the case that the 

intelligibility of a microinstruction description may be 

enhanced by the inclusion of dummy fields. These do not 

correspond to any bit positions in the actual 

microinstruction word, but may be included in a 

description for two alternative reasons. They may be used 

to impart information about the action of the 

micro-architecture not explicitly conveyed by any of the 

real fields - in effect "pretending" to control some 

action which in fact is not totally under the control of 

the microprogram but is relevant to the microprogram level 

description, such as [Seq Op) in figure 3.2.1 (to follow). 
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Alternatively, they may simply be used for notational 

convenience, such as [Opdl] and [Opd2] in the same 

example. 

No field may assume more than one type in the 

Microinstruction Format Model. Where such a behaviour 

arises in practice, it may be represented in the model as 

two fields of different type occupying the same portion of 

the microinstruction word, ie. overlaid on top of each 

other. 

For example:- 

[Load Dest] (Execute) <4:4> := <1>: 

[Dest Reg] <- [ALU_Result]. 

[Output Bus] (Select) <:1> := <0>: [Input Bus]; 

<1>: [ALU_Result]. 

[Output] (Execute) <5:5> := <1>: Out Reg <-. [Output bus]. 

A format description need not be unique in MFM. A 

particular microinstruction format may be represented in 

the model by several different descriptions, each 

conveying the same information. For example, the above 

example could also be expressed as: 
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[Load Dest] (Execute) <14:4> := <1>: 

[Dest Reg] <- [ALU_Result]. 

[Output] (Execute) <5:5> := <1>: 

%When [Load Dest] = 0: Out Reg <- [Input bus]., 

%When [Load Dest] = 1: Out Reg <- [ALU_Result]. 

In order to avoid duplication of effort on the part of 

the designer in the description of formats, the Alias 

feature is provided in MFM. This facilitates the 

generation and use of a library of descriptions of common 

microprogrammable components, such as bit slice 

microprocessor chips. These descriptions may be included 

in the microinstruction format descriptions for processors 

in whose implementation the components are incorporated. 

It was noted above that the names referred to in the 

field expansions of a format description were the names of 

processor level resources, specific to the particular 

processor being implemented. This implies that some 

provision should be made in the notation for mapping the 

names used within the description of the library component 

to the specific names associated with the given processor 

when the Alias feature is used. This is achieved by 

issuing the directive "%NAMEALIAS" within the format 

description, followed by a list of pairs of names of the 

form: 

LIBNAME = PROCNAME 

LIBNAME is a name occurring in the library component 
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format description and PROCNAME is the corresponding 

processor resource name, as referenced in the MDL 

processor description. There is a similar requirement in 

interfacing the component description with the rest of the 

description where fields defined in one part are 

referenced from within the other part. This is dealt with 

by the "%FIELDPLLIAS 11  directive which, like %NAMEALIAS, is 

followed by a list of pairs of names; this time field 

names. The first of the pair is the name of the field as 

it is referred to. in the library component description and 

the second is the name given to that field in the part of 

the description specific to the processor. 

In order to facilitate the integration of a component 

description from a library into a complete 

microinstruction description, the component description 

must be allowed to be situated anywhere within the 

microinstruction word. Provision must therefore be made 

for the alteration of the bit range specifications 

associated with the fields defined in the component 

description. The "%ALIASINDEX=X" directive achieves this. 

"X" is an integer which is added to the bit positions of 

all the fields defined in the component description. 

The scope of the %NAMEALIAS, %FIELDALIAS and 

%ALIASINDEX directives, ie. of the format description of 

the library component, is terminated by the directive 

"%ENDALIAS". Thereafter, further library components may 

be included in the description using, if desired, the same 
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names as were used in the previous component. 

Chapter 2 referred to the existence of two 

implementation dependent parameters which affect the order 

in which micro-orders are allowed to be executed. To 

recap, these were: 

Whether microinstruction fetch and execution is 

overlanoed or sequential. 

Whether it is possible to write data into a 

register at a later phase of the same clock cycle as 

that in which data is read out of the register. 

In addition to describing the microinstruction format, 

an MFM description may specify a value for these two 

parameters. This is expressed using the directives 

"%SEQUENTIAL", 0 %OVERLAPPED", tt%OUT-AND-IN" and 

"%OUT-OR-IN", where in the absence of any explicit 

direction, %Sequential and %Out-Or-In are assumed as 

default. 

A short example illustrating the use of some of the 

features of MFM is presented in figure 3.2.1. A more 

comprehensive example is given in Appendix 1(c). 
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$ Microinstruction Format for Tucker/Flynn Microcomputer 

$ (see [561) 

%OUT-AND-IN 

%OVERLAPPED 

[Instr] (Comp) <0:63> := [Add] [Shift] [Mask] [Output] 

[Sequence] [Operands]. 

[Add] (Comp) <0:2> : 	[Add—mil [Add_in2] [Add_out]. 

[Add_mi] (Select) <0:0> := <0>: 1; 

<1>: [Opd2]. 

DEFAULT:1 

[Add_in2] (Select) <1:1> := <0>: [Opdl]; 

<1>: Acc. 

[Add—out] (Select) <2:2> := <0>: [Add_inl]XOR[Add_in2], 

[Add_in21XOR[Add_in1 ); 

<1>: [Add_in1]+[Add_1n2), 

[Add_in2)+[Add_ini]. 

'DEFAULT=l 

[Shift] (Comp) <3:11> := [Shift—in] [Direction] 

[Numshifts] [End around]. 

(Shift—in] (select) <3:3> := <0>: [Opd2]; 

<1>: Acc. 

[Direction] (Select) <:4> := <0>: <<; 

<1>: >>. 
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[Numshifts] (Emit) <5:10> := 63. 

[End around] (select) <11:11> :: <0>: ; $ Null micro-order 

<1>: (ea). 

[Shift—out] (Select) := [Shift_in][Direction] 

[End around][Numshifts], 

%When [Numshifts] = 0: [Shift_in].. 

[Mask] (Comp) <12:16> := [Maskreg] [Clear]. 

[Maskreg] (Select) <12:15> := M0;M1;M2;M3;M4;M5;M6;M7;M8; 

M9;M10 ;M1 1 ;M12;M13;M1 11;M15. 

'DEFAULT = 15 

$ M15=X'FFFFFFFF' 

[Clear] (Select) <16:16> := <0>: Or; 

<1>: Add. $ Clear dest reg? 

[Mask_out] (Select) := [Shift_out]&[Maskreg], 

%When [Maskreg] = 15: [Shift—out].. 

[Output] (Execute) <17:17> := <0>: Acc<-[Add_out], 

%When [Clear]=1: [Opdl]<-[Maskout]., 

%When [Clear]=0: 

[Opdl ]<-[Opdl ][Mask_out], 

[Op1]<_[Mask_out][Opd1].; 

<1>: Acc<-[Mask_out], 

%When [Clear]=1: [Opdl]<-[Add_out]., 

%When [Clear]=O: 

[0pd1]<_[Opd1][Add_out], 

[Opd1]<-[Add_out][Opd1].. 
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[operands] (Comp) <32:63> := [Regl][Displ][Reg2][Disp2]. 

ERegi] (Select) <32:35> := R0;R1;R2;R3;R4;R5;R6;R7;R8; 

R9;R 10 ;R11;R 12 ;R 13 ;R 1i ;R 15. 

[Dispi] (Emit) <36:47> 	4047. 

[Reg2] (Select) <48:51> := {[Regl]}. $ same as Regi 

[Disp2] (Emit) <52:63> : 	4047. 

[Opdl] (Select) := [Displ]([Regl]). 

[Opd2] (Select) := EDisp2]([Reg2]). 

[Sequence] (Comp) <18:31> := [Cond] [PC—index]. 

[Cond] (Select) <18:22> := <1>: u/f; 

<2>: minus; 

<'1>: plus; 

<8>: zero; 

<16>: o/f. 

(PC—index] (Emit)<23:31> : 	-256:255. 

[Seqop] (Execute) := if ECond] goto [PC—index], $ (+PC) 

%When [Cond]=0: goto [PC—index].. 

Figure 3.2.1 
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In MDS, the FORMAT program processes MFM format 

descriptions and transforms each into an internal data 

structure which reflects the same field based structure as 

the MFM model. For each field in the format a record is 

generated which specifies its type, duration, phase, bit 

range, default binding, and an index into a table which 

contains its expansion details expressed as literal terms 

and pointers to the records for other fields. The data 

structure is presented as input to the MICROMAP program 

which generates a microprogram in the defined format. 

This is described in the following chapter. 
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Chaoter U - Generating the Microprogram 

This chapter discusses the problem of generating an 

implementation of a canonical microprogram in 

microinstructions of a defined format. How this is 

performed by the MICROMAP program on the outputs of 

ANALYSE and FORMAT is described. 

As observed in section 1.2, there are two major aspects 

to this problem: there is the task of exploiting the 

capability for parallelism in the microinstruction format 

in such a way as to pack the micro-operations together, in 

a suitable order, into the fewest number of 

microinstruction words; and there is the task of actually 

realizing the effect of each micro-operation in terms of 

the actions that may be performed in the given 

microinstruction format. The first two sections of this 

chapter deal with these two topics and the third considers 

the issue of maintaining the correct flow of control 

between the microinstructions generated. 

121 



At the processor level, the potential for concurrency 

between two micro-operations is determined by two factors: 

the control flow which necessarily results in the 

execution of each, and the operands referended by each. 

These factors are taken into account by ANALYSE in 

generating the canonical microprogram for a processor 

description. But at the microprogram level, further 

factors affect which micro-operations may be activated 

concurrently. Just as data dependency results from two 

micro-operations referencing the same operand (the same 

processor level resource) in an incompatible manner, so 

resource contention results from two incompatible attempts 

to reference a microprogram level resource; trying to gate 

different registers on to a single physical bus for 

instance. Microprogram level resources are unstable 

memory elements. That is, they do not retain the data 

which passes through them. They are used as intermediate 

points across which the register transfer actions of the 

micro-operations are implemented. Hence the order in 

which different micro-operations reference microprogram 

level resources is not significant. Resource contention 

does not define dependency. It only defines when two 

micro-operations may not be activated concurrently. 

This section addresses the problem of minimizing the 

number of microinstruction words required to implement a 
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specified microprogram behaviour. Given is a source 

micropro gram expressed as a sequential list of 

micro-operations, together with knowledge of the 

microprogram level resources used by each and a list of, 

or some means of assessing, the necessary dependency 

relationships between the micro-operations. The 

requirement is to compact the source microprogram in 

ma2ping it into a microprogram in the defined format with 

an equivalent behaviour. This is done by Dacking the 

micro-operations into microinstruction words in an order 

which preserves the dependency relationships between them; 

packing mutually comoati.bl micro-operations, those which 

do not conflict in their requirement for resources, 

together into the same microinstruction. 

There may be many possible mappings of the given set of 

micro-operations into microinstruction words with the 

property that the microprogram so generated implements the 

specified behaviour function. Any such mapping the size 

of which is not greater than the size of any other such 

mapping (where size is taken as the number of 

microinstructions constituting the microprogram) is said 

to be optimal. An algorithm for packing micro-operations 

into microinstruction words which guarantees to produce an 

optimal packing is said to be an optimal algorithm. 

In [63], Yau et al prove that no packing algorithm .can 

be optimal which does not calculate all the implications 

on all possible subsequently generated microinstructions 
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of packing a particular micro-operation into a particular 

microinstruction word. That is, in effect, in order to 

guarantee to generate an optimal packing it is necessary 

to generate all possible mappings of micro-operations to 

microinstruction words (employing pruning techniques 

wherever possible) and to select the best one generated. 

De Witt [21] has proved that the complexity of this task 

is exponential in the number of micro-operations to be 

packed. 

The problem of packing micro-operations from straight 

line segments into microinstruction words is one that has 

commanded substantial attention in the literature in 

recent years [2, 6, 17, 19, 20, kO, 53, 54, 55, 631. 	To 

the author's knowledge, four different methods, with 

several minor variations, have been proposed to tackle the 

problem. These four methods are: 

(1) Astonas and Plukas [6] present a matrix based 

representation for micro-operations. They employ matrix 

operations to generate all possible orderings;of 

micro-operations complying with the pre-defined dependency 

rules and explicitly eliminate all those configurations 

not supported by the particular format under consideration 

before selecting the best mapping. This proposal is of 

purely theoretical interest, since it is too costly to 

attempt to put into practice. 
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(2) Yau. Schowe and Tsuchiya [63] report an optimal 

algorithmic method for generating all possible mappings of 

micro-operations to comDlete microinstruction words 

consistent with the ordering and resource contention 

constraints imposed on the implementation. A complete 

microinstruction is one into which no more 

micro-operations may be packed - either because the 

microinstruction is "full" or because the dependency and 

resource contention relationships between micro-operations 

are such that no other micro-operations could be included 

in the word without violating these relationships. This 

method generates microinstructions sequentially from a 

Data Available 	(DAS.) of micro-operations whose parent 

micro-operations in the dependency graph representation of 

the microprogram have all previously been packed. From 

the initial DAS it generates all possible complete 

microinstructions and calculates the DAS resulting from 

each. These are considered exhaustively in turn as 

sources from which the second microinstruction is 

generated, and so on. The process is illustrated in 

figure 4.1.1 
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Figure 4..1.1 

Recognizing that this optimal method is too complex for 

practical implementation, in the same report they also 

present a simplified heuristic version of the algorithm. 

Rather than calculating a new DAS from each complete 
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microinstruction generated from the previous DAS, as the 

exhaustive algorithm does, this version selects out of the 

set of complete microinstructions generated from the DAS a 

single one "most likely" to lead to a minimal 

microprogram, discarding the rest. The selected 

microinstruction is used to produce a single new DAS from 

which the next set of complete microinstructions is 

generated, from which one is selected, and so on. Figure 

4.1.2 illustrates the process. 

Determination of the microinstruction to be selected 

for inclusion in the microprogram out of the set generated 

from the DAS is based upon a weighting factor calculated 

for each member of the set. This is the sum of the 

weights of all the micro-operations packed into the 

microinstruction, where the weight of a micro-operation is 

defined to be the number of descendants of that 

micro-operation in the microprogram graph, ie. the total 

number of micro-operations which cannot be packed before 

this one has been. This strategy endeavours to take a 

global view of the obvious desire to make each 

micro-operation in the source microprogram "available" for 

packing as early as possible. 

The method is non-optimal, but is considerably less 

complex than the optimal version. 
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(3) Tsuchiya and Gonzales [55] present a more 

optimizing version of an algorithm first described by 

Ramamoorthy and Tsuchiya [117]  in which they partition the 

source microprogram description into early and late 

partitions on the basis of control and data dependency 

between the micro-operations. The early partition class 

for each micro-operation corresponds to the length of the 

shortest path on the (conceptual in this case) dependency 

graph representation of the microprogram from a start node 

to the node representing that micro-operation. This is 

the minimum number of microinstructions which must precede 

the one into which the micro-operation in question is 

packed, assuming an ancestor packed into each of them. 

The late partition is calculated as the total number of 

classes in the early partition (the depth of the 

microprogram) minus the distance of the longest path from 

the node representing the micro-operation in question to a 

terminal node. This corresponds to the last possible 

microinstruction into which that micro-operation could be 

packed in a microprogram of minimal size; ie. one whose 

size is equal to its depth. Figure 11.1.3 illustrates the 

partitioning of a microprogram into early and late 

partitions on the basis of dependency between the 

micro-operations. Some micro-operations fall into the 

same class in both the early and late partitions (marked 

with an asterisk in figure 11.1.3). These are the 

micro-operations which are part of a path in the 
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dependency graph the length of which is equal to the depth 

of the microprogram. Such micro-operations .are referred 

to as critical and are packed into microinstructions first 

in this algorithm. The late partition and resource 

conflict information, which is taken from a matrix of 

pairwise relationships between the micro-operations, serve 

as heuristic aids in determining the packing of the other 

micro-operations. The algorithm as reported appears 

somewhat ad hoc in nature. It is not optimal, but "quite 

good". 

(1) '  

(2) 

(3) 

(5) * 

(7) 

	

(1) (2) 	(3) I 	(1) 

a ----------- 

	

() 	1 	(14,) 

	

(5) 	I (5) (3) 

	

(6) (7) 	I 	(6) 

(8) 	I (8) (7) (2) 

Figure 14.1.3 
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It should be pointed out that in some instances the 

matrix of pairwise resource contention relationships 

between the micro-operations which this algorithm uses 

cannot provide sufficient information to ensure correct 

packing. For example, consider the three operations: 

RA<-SPO (3) 

SPO(4)<-SPO(4)+1 

SPE (5) <-RB 

as implemented on the Argonne AMP microcomputer [11]. 

Each of these micro-operations is pairwise independent of 

each of the other two, since that machine has two general 

purpose buses for transporting data to destination 

registers, but the three cannot be implemented together - 

as the resource contention matrix used in this packing 

method would suggest they could. 

(11) Dasuota and Tartar [19] propose an algorithm which 

is a refinement of an earlier one presented by Dasgupta 

and Jackson [20]. This takes a different approach to (2) 

and (3) above in that it selects micro-operations 

sequentially from the source microprogram without having 

constructed a dependency graph. It assigns each 

micro-operation to the earliest possible microinstruction 

compatible with its relationships with those earlier 

micro-operations which are already packed. It is a simple 
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algorithm which uses no heuristics whatsoever. In 

particular, it takes no account of the dependants of each 

micro-operation as it is packed and so, as shown by Yau et 

al, cannot be optimal. 

The two optimal algorithms of (1) and (2) above have 

complexity exponential in N, where N is the number of 

micro-operations in the straight line segment being 

packed. The Dasgupta-Tartar method (D-T) has worst case 

complexity proportional to N 2 , this being when each new 

micro-operation added to the microprogram must be compared 

for contention or dependency with each of the 

micro-operations already packed. Its average complexity 

is significantly less. The Tsuchiya-Gonzales method (T-G) 

always requires in the order of N 2  comparisons to generate 

the matrix of resource contention relationships between 

the micro-operations and this dominates the complexity of 

the actual packing algorithm. The Yau et al heuristic 

algorithm (Y-S-T(h)) is considerably more complex than 

either D-T or T-G, particularly in the worst case 

situation. The average complexity appears to be of the 

order of N 2 , although the details of the algorithm are not 

described. 

From the point of view of practical implementation s  the 

two optimal methods may be ignored and only D-T, T-G and 

Y-S-T(h) need be considered further. D-T is more general 
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than the other two in that it expects poly-phase 

implementations of microprograms (where the "time 

validity" of each micro-operation is specified with the 

micro-operation in the source microprogram) and therefore 

handles with ease the situations of destination-source and 

computed data dependencies identified in section 2.4. The 

descriptions of the other two methods make no specific 

mention of timing considerations. T-G assumes that two 

micro-operations related by destination-source or computed 

data dependencies may be packed together in the same 

microinstruction word. Y-S-T(h), on the other hand, rules 

that operations related by computed data dependency may be 

packed together in the same word, but a micro-operation 

dependent on a predecessor through destination-source 

dependency must be packed in a subsequent microinstruction 

word. 

Mallett [40] compares these algorithms in further 

detail and has implemented a version of all three. His 

results indicate •that, in practice, there is no 

significant difference between the algorithms with respect 

to the actual number of microinstructions generated, which 

is near optimal in each case. This bears out the 

conclusions derived from an earlier version of MICHOMAP 

concerning the packing of straight line segments of 

micro-operations. Straight line segments usually are S  

short, more than about six micro-operations in a single 

segment being uncommon, and, where not, exhibit a high 
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degree of data dependency between the micro-operations, 

thus restricting the scope for parallelism between them. 

Each of the algorithms discussed above operates on 

straight line segments of microprogram only (discounting 

the minor extensions to the D-T algorithm noted in section 

1.3). None can be imported directly for use in an 

extended context such as required for packing the multiple 

level canonical microprogram generated by ANALYSE. 

MICROMAP implements a derivation of Yau et al's 

heuristic algorithm. This choice has been influenced by 

two factors. The first is the observation noted above 

that a simple algorithm performs as well in practice as an 

optimal one in packing straight line segments. The second 

is that generating microinstructions sequentially from 

micro-operations selected heuristically, as opposed to 

selecting micro-operations sequentially and asigning each 

to an appropriate microinstruction word, is better suited 

to the goal of preserving the indivisibility and 

inviolability of blocks of micro-operations demanded in 

section 2.4. (It should be pointed out in passing that 

the work on identifying potential parallelism between 

micro-operations reported in chapter 2 could not possibly 

proceed independently of consideration for the method of 

packing the micro-operations. In fact, the policy 

decisions to generate a dependency graph representation of 

the microprogram as described in chapter 2 and to adopt a 
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packing algorithm in the style described below were 

developed conjointly.) 

Just as the Yau et al heuristic method is an order of 

magnitude simplification on their optimal exhaustive 

algorithm, so the algorithm which has been implemented in 

MICROMAP is an order of magnitude simplification of the 

former. It advances the pruning approach instituted by 

Y-S-T(h) one step further to generate only a single 

complete microinstruction word from the Data Available Set 

at each step in the algorithm. Using the same weighting 

factor that Y-S-T(h) uses to select a microinstruction out 

of the set generated from the DAS, MICROMAP chooses 

micro-operations out of the DAS for inclusion in the 

current microinstruction word. Figure 4.1.4 illustrates 

the process. 

Figure 11.1.5 outlines the algorithm performed by 

MICROMAP on the canonical microprogram representation 

provided by ANALYSE and the format specification generated 

by FORMAT. The basic algorithm for packing out of 

straight line segments is described first before 

illustrating how it may be extended to deal with the 

non-primitive micro-operations of the canonical 

microprogram that represent the modular control blocks of 

the MDL description. 
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The first action taken by MICROMAP on reading the 

outputs of ANALYSE and FORMAT is to take note of the 

parameters defined in the format specification. These 

concern whether the implementation supports 

micro-operations related by computed data or destination-

source dependency in the same microinstruction word or 

whether it enforces strict succession. On the basis of 

this, MICROMAP treats as either weak or strong dependants 

respectively the lists associated with each 

micro-operation of the children related to it by these 

dependencies. 

MICROMAP maintains a Data Available Set of those 

micro-operations all of whose parents in the dependency 

graph representation of the microprogram have been packed 

already. Initially, the DAS will contain those 

micro-operations with no parents in the graph. ANALYSE'S 

construction of the dependency graph ensures that all 

micro-operations in the DAS at any one time are mutually 

independent, so they are all candidates for inclusion in 

the current microinstruction word. The microinstruction 

format, reflecting as it does the microprogram level 

organization of the processor implementation, is the only 

limitation on the degree of their coincident placement. 

Each micro-operation in the dependency graph is 

assigned a weight which is calculated on the basis of-the 

number of descendants of that node in the graph, as 

explained above. (This is performed by ANALYSE while it 
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assesses dependencies - the calculation of weights for the 

micro-operations involves minimal overheads). This weight 

is the determining factor in the selection of 

micro-operations from the DAS: the most heavily weighted 

micro-operation held in the DAS is picked out for packing 

into the current microinstruction word. It 'is tested for 

resource contention with the other micro-operations 

already packed into the word (the mechanism for this will 

be described in section 11.2) and, as a result of this 

test, is either packed into the current microinstruction 

or else deferred for possible inclusion in the next word. 

Once a micro-operation has been assigned to a 

microinstruction word, it remains there. 

When a micro-operation is successfully packed into the 

current microinstruction word, all micro-operations which 

are related to it by weak dependency are checked to 

ascertain whether they might be brought immediately into 

the DAS for possible inclusion in the current word. This 

would be the case for a particular child if the 

micro-operation just packed was the last of its parents to 

be packed and the child was related to any other parents 

also packed in the current word by weak dependency only. 

The children of a micro-operation related by strong 

dependency are checked on the completion of the packing of 

the microinstruction in which the parent is included. 

The selection and attempted packing of micro-operations 

continues in this fashion until either there are no longer 
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any micro-operations left in the DAS or it is detected 

that the current microinstruction can accommodate no more 

micro-operations. A new microinstruction is started when 

this happens. The DAS is refilled from two sources: with 

all those micro-operations which were unable to find a 

place in the previous microinstruction through clashing 

over resource contention with micro-operations already 

packed; and with those micro-operations newly made 

available by the last of their parents being packed in the 

previous microinstruction. (Or at least when the 

appearance is given of the last of their parents having 

just been packed - the duration of each micro-operation, 

as defined in the format specification in terms of 

processor cycles, is allowed to elapse before the effect 

of the packing of the micro-operation is transmitted to 

its dependants.) 

Microinstructions are generated sequentially in this 

manner until all micro-operations in the source 

microprogram have been packed. 

Before describing the extensions to the algorithm which 

allow it to handle the block structured canonical 

microprogram output by ANALYSE, it is instructive to 

compare its performance in the context of straight line 

segments against the other compaction methods which 

operate solely in this environment. 

The worst case complexity of the algorithm is in the 
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order of N 2 , this being in the situation where all N 

micro-operations are potentially concurrent, but all clash 

with each other over resource contention. In practice, 

the complexity is close to being linearly proportional to 

N with deviation from linearity being dependent on the 

number of clashes generated in attempted packings. Its 

capability to cope with the different possibilities for 

the implementation of destination-source and computed data 

dependency relationships and its permitting of 

user-specified synchronization renders the algorithm 

implemented by MICROMAP •in practice at least as general as 

the Dasgupta-Tartar method and more so than the Tsuchiya-

Gonzales or Yau et al heuristics methods. 

In assessing the relative optimality of the algorithm, 

it may be observed that the weighting factor used in 

determining the micro-operation to be selected from the 

DAS for inclusion in the current microinstruction serves 

to promote a "well filled" DAS for future 

microinstructions. This decreases the likelihood of 

leaving any "holes" in the microinstruction words which 

might have been filled by a micro-operation were it 

available. The late partition class used by the Tsuchiya-

Gonzales algorithm as a heuristic aid for packing 

non-critical micro-operations denotes the length of the 

longest path from the micro-operation in question to a 

terminal node in the dependency graph. This represents an 

approximation to the same weighting factor, but it is not 
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as sensitive since it reflects only one dimension of the 

dependency relationship. For instance, T-G would pack a 

micro-operation with one child and one grandchild in 

preference to another micro-operation with twelve children 

but no grandchildren, despite the intuitively obvious fact 

that in almost all situations the former is more likely to 

leave "holes". 

The Dasgupta-Tartar algorithm takes no account of the 

dependants of micro-operations when determining whether 

one should be placed before another. For two 

micro-operations which are mutually independent but in 

contention over resources, the relative ordering of their 

placement is determined solely by their relative ordering 

in the source microprogram; in other words, totally 

arbitrarily, affording ample opportunity for loss of 

optimality. 

The Yau et al heuristic algorithm (Y-S-T(h)) is, a 

priori, more likely to produce an optimal packing than 

MICROMAP. Each microinstruction which MICROMAP generates 

from a given DAS would also be generated from the same DAS 

by Y-S-T(h) which has the opportunity of later rejecting 

that one and selecting another in preference to it. 

Y-S-T(h) will choose a different microinstruction to that 

generated by MICROMAP from the same DAS only in the case 

where the choice of the most heavily weighted operation, 

as selected by the latter, precludes the packing of two or 

more subsequent selections whose combined weights are 
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greater than that of the first choice. But empirical 

evidence reveals this to be an uncommon situation. 

Resource contention between micro-operations implemented 

in a horizontally structured microinstruction format 

usually is a transitive relationship. For three 

potentially concurrent micro-operations, A, B and C, when 

A contends with both B and C it is rare for B and C not to 

contend. This arises from the fact that a set of 

micro-operations often may be partitioned into several 

disjoint classes, each associated with a distinct set of 

fields in the microinstruction format. No resource 

contention is exhibited between micro-operations belonging 

to different classes, but there is universal contention 

among those micro-operations belonging to the same class. 

The only common situation where this rule does not 

apply is with a so-called "dippnp1" microinstruction 

format [n]. Here the microinstruction may assume one of 

several mutually exclusive modes (determined by a Mode 

Interpretation type field - see section 3.2) with 

horizontal parallelism within each mode. It is then 

possible that the selection of the most heavily weighted 

micro-operation from the DAS by MICROMAP may define a 

choice of mode incompatible with that required by the rest 

of the micro-operations in the DAS, thus giving rise to a 

poorly filled microinstruction word. Two points about 

this situation should be noted, however. The first is 

that the choice by Y-S-T(h) of a microinstruction in a 
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different mode from, and with a greater total weight than 

that generated by MICROtMAP will prove superior only if it 

furnishes to the DAS more micro-operations compatible with 

that one initially selected by MICROMAP - otherwise it is 

only deferring the necessary generation of that 

"unpopular" microinstruction. This particular occurrence 

is uncomon precisely because of the categorization of 

micro-operations observed above: micro-operations tend to 

be dependent on other micro-operations in their own class. 

It is probable that in the case under consideration 

micro-operations furnished to the DAS will be associated 

with the same mode as their parent and the singularity of 

the exceptional one will be preserved. The second point 

to be noted simply is that Y-S-T(h) is not optimal. There 

is no guarantee that a microinstruction which it rejects 

may not turn out to lead to a better packing than the one 

which it selects. It may therefore be concluded that the 

expected difference in optimizing capability between the 

algorithm implemented by MICROMAP and Y-S-T(h) is slight - 

not enough to justify the increased complexity of the 

latter. 

Notwithstanding this analysis of the expected 

performance of the different packing algorithms, the 

observation recorded above should be recollected: in 

practice the properties of micro-operations within 

straight line segments leave little scope for gainful 
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optimization. Straight line segments tend to be short 

and, where not, tend to exhibit a high degree of data 

dependency. It is clear that optimization of the packing 

of micro-operations from straight line segments into 

microinstruction words is not the most critical factor in 

determining the efficacy of a microprogram implementation. 

Simplicity and generality of the packing algorithm and 

congeniality of the design medium then assume enhanced 

significance. This evidence reinforces the arguments 

advocating an integrated approach to the problem of 

microprogram design which provides increased scope for 

optimization at the same time as expediting the task of 

actually designing the system to be implemented. 

The rest of this section describes how MICROMAP handles 

the packing of the non-primitive micro-operations 

generated by ANALYSE to represent the modular control 

blocks of the MDL language. The algorithm is outlined in 

figure 4.1.6. 
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The basic structure of the algorithm remains the same 

as described above for the compaction of straight line 

segments. A separate Data Available Set and "WAITING" 

list is maintained for each level of micro-operation in 

the canonical microprogram. The DAS for each level is 

employed in the manner as described before: containing 

those micro-operations at that level whose parents (if 

any) have already been packed. The WAITING list is a list 

of the micro-operations at that level which have not yet 

been made available for packing. MICROMAP executes 

recursively in implementing the algorithm. Conceptually 

it packs the single micro-operation which exists at level 

zero. This is a block type micro-operation constituting 

the complete microprogram. All of the components of the 

block are brought into the WAITING list for the level one 

lower than the level of the block. When a micro-operation 

selected from the DAS at any level is found to be of block 

type, the plane of operation of the algorithm descends one 

level and all of the block's component micro-operations 

are brought into the WAITING list at the lower level. 

Packing then proceeds on the micro-operations at that 

level. Only when the WAITING list and the DAS at the 

current level have been exhausted, ie. all of the 

component micro-operations of the block have been packed, 

is the level of operation ascended. When this happens - 

when all of its components have been packed - the block 

type micro-operation itself is considered packed and, 
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where appropriate, its children may be made available for 

packing (once the "duration" of each of its components has 

elapsed, that is). 

This disciplined, hierarchical approach to the packing 

of micro-operations follows and preserves the structured 

separation of blocks imposed by ANALYSE through 

enforcement of the "Multi Level Dependency Rule" (see 

section 2.4). This ensures that all components of a block 

are packed together and that the pre-defined ordering 

between micro-operations at all levels is observed in 

implementation. 

One further difference between the basic and the 

extended algorithms for packing concerns the selection of 

micro-operations from the Data Available Set. Primitive 

micro-operations are ascribed the same weighting factor 

and are selected on this basis, but some policy must be 

formulated for deciding between a primitive and a block 

type micro-operation in the same DAS. It would be 

perfectly possible to ascribe a weight to non-primitive 

micro-operations on exactly the same basis as for 

primitive micro-operations and to select between them 

accordingly, but consideration reveals this strategy not 

to be reasonable. Primitive micro-operations are selected 

according to weight in an attempt to furnish more 

micro-operations into the DAS. The purpose of this 

strategy is to afford increased opportunity for the joint 

packing of mutually compatible micro-operations in later 
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microinstruction words. But block type micro-operations 

are inviolable and so, in general, cannot be packed 

jointly with any primitive micro-operations which are not 

part of the block. Consider the case of a Loop block type 

micro-operation and a primitive micro-operation being the 

only two members of a DAS. The components Of the loop 

must be packed in separate microinstructions from all 

other micro-operations, no matter what else is available 

for packing at the same time; whereas the primitive 

micro-operation could possibly be packed beside other 

primitive micro-operations were there any available. It 

therefore makes sense, irrespective of the weight of the 

primitive micro-operation, to pack the loop before it in 

the hope of furnishing further primitive micro-operations 

(the children of the loop) for possible packing with that 

one. That is, packing primitive micro-operations before 

block type ones will not prevent any "holes" in subsequent 

microinstruction words, but vice versa may do. 

Inevitably however, this rule is not quite universally 

true. Loop blocks have an implicit label associated with 

the head of the block and a branch micro-operation at the 

tail and so must be packed totally separately from all 

micro-operations which are not included, within the loop. 

Conditional blocks on the other hand, do not have a label 

associated with the head of the block. They have a label 

at the tail and a branch as the first micro-operation of 

the block. There is no reason why that branch 
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micro-operation should not coexist in the same 

microinstruction word as primitive micro-operations which 

are not themselves part of the block. (Recall in section 

2.5 the observation that data dependency of all but the 

initial branch micro-operation at the head of the block on 

any preceding micro-operations outside of the block 

resulted in the block itself being marked as weakly 

dependent on the appropriate parent). it is necessary 

therefore to formulate a further policy to be enacted when 

a conditional block micro-operation and primitive 

micro-operations are available for selection from the same 

DAS. No matter what weight is the primitive 

micro-operation, it must be remembered that only the first 

micro-operation of the block may coexist with primitive 

micro-operations outside the block, and so there is 

nothing to be gained from packing a primitive 

micro-operation at the expense of the conditional block. 

The conditional block should be packed - thus perhaps 

releasing primitive type children - and as many as 

possible of the currently available primitive 

micro-operations should be packed along with the initial 

branch micro-operation of the block. 

This is the policy which MICROMAP implements, but doing 

so causes irregularities in the execution of the algorithm 

described in figure 4.1.6. Normally, whenever a block 

type micro-operation is selected, one level of operation 

is descended immediately and all components of the block 
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are packed before further higher level micro-operations 

are selected. When a conditional block type 

micro-operation is selected, however, after packing the 

first of its components - the branch, on which all the 

rest of its components are dependent - the algorithm 

temporarily returns to the level of the block itself to 

try to pack in the same microinstruction any available 

primitive micro-operations at that level. 

This exemplifies the efforts that have been made in 

MICROMAP to optimize packing within the constraints of the 

minimal complexity of the algorithm. 

Figure 4.1.7 summarizes the policy for selection of 

micro-operations from the DAS when it may contain 

primitive and non-primitive types. Note that block type 

micro-operations which have a label explicitly or 

implicitly associated with the head of the block are 

selected only at the initiation of a new microinstruction 

word (and, similarly, a new microinstruction word is 

always started after completion of packing of a block 

succeeded by a label - Loop, Ifblock or Elseblock). 
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No mention has been made so far of how the coincident 

placement of micro-operations explicitly specified for 

concurrent execution in the MDL microprogram description 
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is accomplished. Such micro-operations are included by 

ANALYSE in a single block type micro-operation (of type 

Syncblock) the normal treatment of which is sufficient to 

preserve their indivisibility when packed. But more than 

indivisibility must be guaranteed: they must be 

indivisible within a single microinstruction word. 

Therefore, when a Syncblock type micro-operation is 

selected from the DAS - it is treated exactly as a 

primitive micro-operation for this purpose - MICROMAP must 

pack all the component micro-operations of the block into 

the current microinstruction, or else pack none at all. 

This requires the use of a duplicate record of the current 

microinstruction word. Into this are packed one by one 

the component micro-operations of the Syncblock until 

either they are all packed, in which case the Syricblock is 

deemed packed into the current word., or else one of the 

component micro-operations clashes with a micro-operation 

already packed into the word, in which case the whole 

Syncblook is deferred for attempted packing into a 

subsequent microinstruction. (If one of the component 

micro-operations of the Syncblock clashes with another 

component of the same block then an error is signalled, 

since the designer's specification is unachievable). 

This concludes the description of how MICROMAP pacIs a 

block structured representation of a microprogram into 

microinstruction words. 
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Defined Microinstruction Format 

This section considers the question of how to generate 

the appropriate micro-orders in the specified 

microinstruction format which will realize the behaviour 

defined by the given register transfer level 

micro-operations. 

A micro-operation is a primitive action at the 

processor level which may be realized by the composition 

of primitive actions at the microprogram, level. In MDS, 

an MFM format description details the micro-orders which 

may be evoked from microinstructions in the chosen format. 

It also defines the structural relationship between the 

micro-orders, governed by the field organization of the 

format. This determines which micro-orders may be evoked 

from the same microinstruction word. The problem 

investigated here is, given a micro-operation and a 

microinstruction format, how to recognize those 

micro-orders that may all be evoked from the same 

microinstruction whose combined effect is to realize the 

action of the micro-operation. 

In the preceding two chapters, much emphasis was laid 

on the fact that neither the micro-operations described in 

MDL nor the micro-orders specified in MFM connote any 

particular semantic interpretation in MDS. How then may 
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MICROMAP generate the set of micro-orders to realize a 

particular micro-operation? The solution must be 

syntactic. It relies on the style of format descriptions 

in MFM and the fact that they are tailored to the 

implementation of the MDL microprogram in question. This 

latter fact permits the processor level resources referred 

-to in both descriptions to be attributed the same name in 

each. 

In an MFM format description, each Select type field is 

conceptually associated with a single microprogram level 

system resource. Its definition is given as a list of 

expressions, in terms of the literal names of processor 

level resources and the names of other Select type fields, 

which denote the alternative "values" that may be assumed 

by that resource. Select type field names themselves are 

incorporated into expressions denoting the actions of 

micro-orders for other fields when there is a connexion in 

the sections of data path associated with each of them. 

This style of description is such that the 

instantiation of a field name, by substituting the 

expression for a micro-order belonging to that field 

wherever the former occurs Inside another micro-order 

description, results in an expression of the composite 

action associated with the combined activation of the two 

micro-orders In question. For example, consider the two 

field definitions: 
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[ALU_bus] (Select) := <0>: 110_bus]; 

<1>: B Reg; 

<2>: [1mm Data]; 

<3>: Ace. 

[ALU_in] (select) := <0>: LALU_busj&LMaskJ; 

<1>: 0. 

Then the substitution of the expression "Ace" for 

LALU_bus] in the expansion of LALU_in] results in the 

expression "Acc&LMask]" for LALU_ini - which is the action 

which would result from activating the two micro-orders in 

question for the two fields [ALU_busi and [ALU_ini. 

Thus, by fully expanding to literal processor level 

names, via constituent micro-orders, all field names 

occurring in the expression of the action of a 

micro-order, it is possible to generate a textual 

description of the composite action effected by the 

combined activation of the micro-orders selected in the 

process. 

It remains to be noted that the loading of processor 

level registers is controlled by micro-orders belonging to 

Execute type fields. So the set of micro-orders which 

realizes a particular micro-operation will always contain 

a single member of that type. Then the full expansion of 

all the field names occurring in a micro-order as 

described above, when-the micro-order is of type Execute, 

will result in an action which is a complete register 
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transfer expression in terms solely of the processor level 

resources of the system. 

It follows that the condition stated below is necessary 

and sufficient for a particular (ordered) set of 

micro-orders in a defined format to realize a given 

micro-operation: 

Condition 4.2.1 The micro-order of the set is of type 

Execute and the expression for that micro-order may 

be expanded ultimately to a literal register transfer 

expression such that: 

The rest of the micro-orders in the set are members 

of the fields which are instantiated in the process 

of expanding the expression, with the order of 

instantiation of the field names corresponding to the 

order of the respective micro-orders in the set. 

The register transfer expression thus generated 

matches exactly the micro-operation itself. 

The format description may be envisaged as being 

represented by a series of tree structures (a forest), as 

illustrated in figure 4.2.1. Two basic.types of node are 

defined in the forest: expression nodes and term nodes. 

Term type nodes may be divided into two sub-types: literal 

and non-literal. In representing the microinstruction 

format, expression nodes correspond to micro-orders, 

literal term nodes to contiguous sections of literal 
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characters in the micro-order description, and non-literal 

term nodes to field names. The tree structure 

representation of the microinstruction consists of 

alternate layers of expression and term type nodes. The 

children of each non-literal term are expression nodes 

corresponding to all the micro-orders belonging to that 

field. The children for each expression node are are 

literal and non-literal term nodes corresponding 

respectively to the strings of symbols and field names 

comprising the description of the micro-order, in the 

order in which they occur in the description. Literal 

term nodes have no children. At the root of each of the 

trees in the forest is a non-literal term node 

corresponding to one of the Execute type fields in the 

format description. There are as many trees in the forest 

as Execute type fields in the format description. The 

leaves of each tree are all literal term nodes. (There is 

nothing to prevent the format specification from 

containing recursive field definitions, a physical 

impossibility which would be modelled as a tree of 

infinite depth, but this is detected by MICROMAP as will 

be described below.) 
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The process of searching for a set of micro-orders to 

implement a micro -operation may be seen as a depth first 
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"AND/OR" search L4 111 through the tree structure (selecting 

one child from each field node and all children of each 

micro-order node) for a set of terminal nodes the 

expressions for which may be concatenated to synthesize 

the expression of the micro-operation. 

This model serves as a framework for the 'approach 

adopted by MICROMAP for generating an implementation of a 

micro-operation in terms, of the micro-orders of the 

defined format. Using the technique of "recursive 

descent" 137, 161, it performs a depth first search 

through the trees defined by the data structure 

representing the microinstruction format passed to it by 

FORMAT. 

The algorithm, as outlined in figure 4.2.2, basically 

consists of two mutually recursive modules: PARSE FIELD 

and PARSE ENTRY. PARSE FIELD attempts to match each of 

the micro-orders belonging to the field in question with 

an initial substring of the micro-operation presented to 

it. It performs this by calling PARSE ENTRY on behalf of 

each micro-order. If any of the micro-orders are matched 

by PARSE ENTRY with an initial substring of the 

micro-operation then PARSE FIELD is deemed successful and 

returns to its calling point with that final substring of 

the micro-operation which has still to be matched with the 

micro-orders of the format. This corresponds to the best 

of the possibly multiple matchings recorded by its 

micro-orders. If no such matching is recorded, then PARSE 
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FIELD returns with failure. 

PARSE ENTRY attempts to match the expression for the 

micro-order on whose behalf it is called, which consists 

of a mixed string of literal characters and field names, 

with an initial substring of the micro-operation presented 

to it. It first checks for compatibility between the 

literal terms of the micro-order and the micro-operation. 

If matching is seen to be impossible it immediately 

returns with failure. Otherwise, it strips the 

micro-operation of the initial substring which has been 

matched by the literals of the micro-order preceding the 

first field name, and calls PARSE FIELD for the 

appropriate field, passing the reduced micro-operation to 

it. If PARSE FIELD returns with success, then this 

matching continues. (Hence the requirement for matching 

micro-orders with only an initial string of the 

micro-operation). It continues until the whole 

micro-order has been matched with an initial substring of 

the micro-operation. If PARSE FIELD fails, then PARSE 

ENTRY immediately returns with failure. 
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PARSE FIELD: 

for all micro-orders 

PARSE ENTRY 

return with failure if no successful matchings 

else return with success and best match 

PARSE ENTRY: 

return with failure if literals incompatible 

until micro-order completely matched 

return with failure if initial literals do not match 

strip initial literals from micro-operation 

PARSE FIELD (for field name next in expression) 

return with failure if PARSE FIELD fails 

return with success and reduced micro-operation 

Figure 4.2.2 
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During this search through the tree structures of the 

microinstruction format, MICROMAP is able to detect any 

field which has been defined recursively in terms of 

itself. If it does detect this, a warning message is 

issued and the search of that branch of the tree is 

abandoned. 

The algorithm uses each of the Execute type fields of 

the format as the root node of successive search trees in 

this manner (the micro-orders of these fields must match 

the whole micro-operation). The path down the tree which 

results In a successful matching of a micro-operation - 

the recognition path - identifies the fields, and the 

micro-orders belonging to thOse fields, which are involved 

in the implementation of that micro-operation, as 

illustrated in figure 4.2.3. 

By binding the value associated with each of these 

micro-orders to the field to which it belongs, it is 

possible to begin to generate the actual microcode 

required to realize each micro-operation. (MICROMAP 

maintains a bit map of the microinstruction word to which 

it binds those field values as they are generated.) To do 

this completely requires more account to be taken of the 

structural relationships between the fields. If a Mode 

Interpretation type field governs the structure of thç 

microinstruction format, then the involvement of 

micro-orders belonging to particular fields might carry 
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further implications about the format structure and hence 

about the value that the Mode Interpretation field must 

take in order to "authorize" that structure. Similar 

factors must be considered when a micro-order involved in 

realizing a micro-operation is associated with a 

Conjunction construct. In this case a value has to be 

bound to more than one field to evoke that micro-order. 

The data structure representing the microinstruction 

format which is presented by FORMAT to MICROMAP contains 

all the structural information about the dependencies of 

certain fields on the values of other fields. So MICROMAP 

is able to bind the appropriate values to all the affected 

fields in such situations, thus reflecting completely the 

ramifications of effecting micro-operations with the 

particular set of micro-orders which are supported in the 

specified microinstruction format. 
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As noted above, the recognition path associated with 
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the successful matching of a micro-operation with the 

micro-orders of a particular format identifies the values 

which should be bound to the relevant fields in order to 

select those micro-orders. The physical counterpart to 

this is that it identifies the particular usage, by the 

micro-operation in question, of the microprogram level 

system resource controlled by each field so affected. Any 

other micro-operation which required a different 

utilization of one such resource would cause a different 

value to be bound to the appropriate field. 

This observation prompts the insight that, by comparing 

the recognition paths for two micro-operations in a 

particular microinstruction format, whether or not they 

will clash over resource contention is made immediately 

clear. That is, if having packed one micro-operation into 

a microinstruction word, MICROMAP then attempts to pack 

another, then comparison of the value caused to be bound 

to each field by the second micro-operation with that 

value already bound to it by'the first facilitates the 

immediate detection of resource contention. The attempt 

to pack the second micro-operation may then be aborted. 

Contention for physical system resources is not the 

only barrier to the joint inclusion of logically 

independent micro-operations in the same microinstruction 

word. Their implementations might generate different S and 

incompatible format structures in a multiple format 

microinstruction, ie. format contention. If this is the 



case, then its detection by MICROMAP is performed in a 

manner absolutely consistent with the algorithm's 

detection of contention for physical resources. Format 

contention is manifest in MICROMAP by each micro-operation 

involved attempting to cause a different value to be bound 

to a Mode Interpretation field. 

In this way, MICROMAP is able to check for resource 

contention only where necessary: between micro-operations 

which are under consideration for packing into the same 

microinstruction word. Further, it does this extremely 

efficiently: essentially receiving the information "for 

nothing" from the micro-operation recognition algorithm as 

the latter builds up a bit map for the microinstruction 

being generated. 

Note that the detection of resource contention by 

MICROMAP, as described above, does not prevent any 

combination of micro-orders that the microinstruction 

format permits. That is, if the microinstruction format 

permits the designer to generate illogical combinations of 

control signals, then so will MICROMAP. MICROMAP also 

provides the designer with the capability to prevent any 

combination of control signals that is not desirable. 
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Microinstruction 

- Bus 

LBus] (Select) <0:0> := <1>: A. 

[Bus] (Select) <1:1> := <1>: B. 

[Load C] (Execute) <2:2> := <1>: C <- LBusi. 

[Load Di (Execute) <3:3> := <1>: D <- [Bus]. 

Figure 4.2.4 

Consider the digital system and associated format 

description of figure 4.2.4. There are four registers and 

a common bus between them. The gating of data between the 

registers and the bus is controlled by an unencoded 

microinstruction format. That is, the control signals for 

gating registers A and B onto the bus are not mutually 

exclusive (note the two fields with the same name). It is 

quite possible under this microinstruction format to pack 
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together the two micro-operations "C<-A" and "D<-B", 

although the effect will not be as desired if this is 

attempted. The designer may prevent this in MDS by 

ensuring that only one of the registers is gated on to the 

bus at any one time: whenever one is gated on to the bus 

then the other is prevented from so doing. This is 

achieved by associating a Conjunction construct with each 

of the fields gating A and B on to the bus. (This 

necessitates that these fields now be given different 

names.) Thus:- 

[A_Bus] (Select) 	<0:0> 	:= <1>: 	%When 	[B_Bus]=O:  

[B_Bus] (Select) 	<1:1>-:= <1>: 	%When 	[A_Bus]=O:  

[Load C] (Execute) 	<2:2> :: 	 <1>: 	C<-[A—Bus], C<-[B—Bus]. 

[Load D] (Execute) 	<3:3> : 	<1>: 	D<-[A—Bus], D<-[B_Bus]. 

If the bus is OR-tied and it may be desirable to gate 

A OR B on to the bus, then this too should be specified 

with another conjunction in [A_Bus] and [B_Bus]. Thus:- 

[A_Bus] (Select) := <1>: %When EB_Bus]:O: A, 

%When [B_Bus]:1: A OR B. 

and so on. 

The same effect could be produced by amalgamating the 

two [Bus] fields into a single one. Thus:- 
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[Bus] (Select) <0:1> := <1>: B; 

<2>: A; 

<3>: A OR B, 

B OR A. 

Thus MDS reflects exactly the properties of the control 

organization modelled in MFM. If the microinstruction 

format prevents resource contention (as normally is the 

case), then it will be prevented by MICROMAP. But if the 

chosen format leaves it up to the designer to prevent 

undesirable combinations of micro-orders, then the 

designer is given this responsibility in MDS also. 

The seven field types introduced in chapter 3 included 

the Register type field. This, it was stated, controls 

access to registers named at the microprogram level, and 

requires the bisection of any micro-operations implemented 

thereby. 

MICROMAP must be capable of dealing with two different 

aspects of the use of this type of field. First, it must 

be capable of recognizing when a micro-operation, as 

specified in the MDL description, must be split into two 

parts at such a register. Second, it must be able to deal 

with the two resultant micro-operations when they are 

rephrased in terms of the microprogram level register. 

name. 

The Register type field in the first instance is 
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treated exactly as a Select type field which is defined in 

terms of possible sources of data that may be loaded into 

the register. The checks which MICROMAP makes for field 

recursion and resource contention have to be suppressed in 

this case for the recognition of the second half of the 

micro-operation, since this will be implemented in a 

different microinstruction from the first. On recognition 

of a micro-operation which must be split, MICROMAP prints 

out a message declaring how the micro-operation should be 

split to be implemented as two separate actions. 

This is left to the designer to perform. The 

microprogram may then be resubmitted containing 

micro-operations which refer to the microprogram level 

register as if it was a processor level resource. This 

time MICROMAP treats the Register type field as an Execute 

type for the loading of the register and must recognize 

the Register field name when the register is used as a 

source of data in the micro-operation. 

It was originally hoped that the separation of the two 

halves of the micro-operation and their packing could all 

be performed completely automatically when this 

circumstance arose. However, the difficulty of this task 

(which involves the generation of a new micro-operation 

and its insertion into the microprogram) was seen not to 

be justifiable. This is because degradation in the 

optimality of packing as a result would be very likely. 

This is most easily illustrated by example. 
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Consider the micro-operation "Ace <- Ace + 512", where 

"512" is supplied from an Emit type field in the 

microinstruction word, but the microinstruction format is 

such that the Emit field exists only in a format mode 

incompatible with that required to effect the rest of the 

micro-operation. The implementation therefore requires an 

intermediate buffer register to hold the constant 

temporarily, with a Register type field in the format to 

load it. (Note that the loading of the constant might be 

performed automatically as a consequence of the mode of 

the microinstruction. This would be modelled by a dummy 

Register field.) MICROMAP recognizes that the stated 

micro-operation must be implemented as the two 

micro-operations: 

ConstBuff <- 512 

Ace <- Ace + ConstBuff 

By packing the first of these micro-operations into some 

earlier microinstruction of compatible mode, the whole 

microprogram could be packed in the same number of 

microinstructions as if the two were implemented as a 

single micro-operation. But this would not be possible if 

the task was performed automatically by MICROMAP. Due to 

the fact that MICROMAP generates micro-operations 

sequentially, at the time at which it attempted to pack 

the composite micro-operation (this would be determined by 

the data dependency of "Ace"), it would be too late to be 

able to pack "Constbuff<-512" in a preceding 
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microinstruction. 

It is felt that the facility provided, the detection 

and notification of micro-operations which should be 

implemented over more than one microinstruction, 

represents a useful and realistic assistance to the 

designer which is of greater practical value than vain 

attempts to perform every function automatically. Again, 

this approach adheres to the philosophy of providing 

maximum assistance to the designer while taking due regard 

of his innate capability to perform some functions more 

easily, or better, than a totally automated system. 

Implicit in the preceding discussions has been an 

assumption: that to each micro-operation being implemented 

in the specified microinstruction format there will 

correspond a unique set of micro-orders, defining a unique 

microinstruction configuration, which will realize that 

micro-operation. In many circumstances this Is an invalid 

assumption. It is as a consequence of the encoding of 

functions in some processor organizations (eg. the AMD 

2901A bit slice microprocessor lii) and it is. the 

deliberate design philosophy of others (eg. the Xerox 

Maxc2 processor L261 or the Argonne AMP microcomputer 

[111) that some micro-operations may be implemented by 

more than one microinstruction configuration. These two 

situations are manifest respectively as a particular set 

of micro-orders being supported by more than one 
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configuration of the various fields involved, and more 

than one set of micro-orders being capable of realizing 

the given micro-operation. This latter situation reflects 

the duplicity of resources that sometimes may be provided 

in a processor implementation. 

In such a situation, it is quite feasible that some 

other micro-operation, logically independent of one 

exhibiting this property, may clash over resource 

contention with one or several of the possible 

microinstruction configurations for that micro-operation, 

but may be capable of being Implemented in conjunction 

with one other of its possible configurations. 

This is perfectly exemplified by the AMD 2901A 

microprocessor chip. It has sixteen Internal registers 

and a single output port and Its function encodings 

require that the operands for arithmetic and logical 

operations be selected in pairs. Sometimes one operand of 

the pair is zero. As a result, there are seventy one 

different configurations for the relevant microinstruction 

fields which will cause the contents of one of the 

Internal registers to be passed to the output port. There 

are also four different configurations to increment by one 

one of the sixteen internal registers. But there is only 

one single configuration for the relevant fields which 

will cause both of these operations to be effected from 

the same microinstruction word. 

This demonstrates the necessity for MICROMAP to 

174 



generate all possible sets of micro-orders and associated 

bindings of values to fields which may realize each 

micro-operation implemented in the specified 

microinstruction format. Then, when attempting to pack 

further micro-operations into a microinstruction word 

which already has a micro-operation packed into it, those 

configurations for the original micro-operation with which 

the subsequent micro-operations are in contention may be 

discarded. Only those resultant composite configurations 

which are capable of implementing the micro-operations in 

conjunction need be retained. (Note that it is only when a 

subsequent micro-operation conflicts with all possible 

configurations for previously packed micro-operations that 

it is deemed to have "Clashed" and is deferred for 

possible inclusion in a later microinstruction, as 

described previously.) 

There remains two further points to be observed 

regarding the realization of micro-operations by the 

micro-orders of a particular microinstruction format. 

MICROMAP may have generated several possible 

configurations for a microinstruction to implement the 

micro-operations packed into it. Which should it choose 

to generate as output? And what about the fields to which 

no micro-orders have been explicitly bound - what value 

should they take? These two questions are related, and 

the answer to them both is to be found in the default 
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values ascribed to fields in the MFM format specification, 

as described in section 3.2. To all fields not involved 

in the realization of micro-operations MICROMAP binds the 

default value for that field. Then the microinstruction 

configuration selected for inclusion in the microprogram 

is that one with the highest number of fields assuming 

their default values. MICROMAP outputs the actual binary 

bit pattern for the microinstructions generated to effect 

the behaviour defined by the micro-operations packed into 

them, it also produces a listing of these 

micro-operations and the values bound to the fields in 

realizing them. An example of this is given in Appendix 

1(d) 
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C iN p 

The microinstructions generated by MICROMAP are 

intended to implement the behaviour defined by an MDL 

microprogram description. That behaviour depends on an 

assumed ordering of execution of the constituent 

micro-operations which is based on the implicit sequential 

ordering of executive micro-operations together with the 

properties of altering the sequential order of execution 

identified with control micro-operations. Associated with 

each branch control statement is a well defined set of 

destination statements to which control should be 

transferred after the execution of the branch 

micro-operation. 

This ordering of the flow of control was taken into 

account by ANALYSE in partitioning the microprogram, but 

so far no mention has been made of it with respect to the 

microinstructions generated, which are intended to follow 

the same control flow. 

Branch type micro-operations are recognized and matched 

to micro-orders by MICROMAP just like all other 

micro-operations, except for the field which determines 

from which control store address the next microinstruction 

should be fetched. MICROMAP fills this with an index into 

a label table - to the position associated with the label 

which is the destination of the branch (this has been 

identified by ANALYSE). But, in order to enable the 
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generation of complete microcode, MICHOMAP must associate 

a destination address with each branch micro-operation. 

Two types of branch destination (label) occur in an MDL 

microprogram: explicit and implicit. Explicit labels are 

recognized by ANALYSE which associates with each a block 

type micro-operation containing all of the 

micro-operations succeeding that label in the 

microprogram. This relieves the label from being 

identified with one particular micro-operation and allows 

the micro-operations to be packed in the most suitable 

order. Then the address associated with that label in the 

microprogram generated simply is the first 

microinstruction into which the block type micro-operation 

corresponding to the label is packed. This is entered in 

the appropriate label table position. 

It was noted in section 2.5 that each conditional block 

and loop has associated with it two positions to which 

jumps are made, as illustrated again in figure 14.3.1. 
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COND Then 	 if COND goto Li 

Else 	 goto L2 

Li: 

Finish 	 = 	L2: 

While COND Loop 	= 

Exit If COND 	= 

Reoeat 	 = 

L2: if COND goto Li 

if COND goto Li 

goto L2 

Li: 

Figure 4.3.1 

As each micro-operation corresponding to these types of 

block is packed, t4ICROMAP notes the microinstruction index 

associated with each of the label positions and inserts 

them into the appropriate label table entries. These are 

calculated on the basis of the level of the block and are 
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the entries to which the corresponding branch 

micro-operations are made to refer to. 

At this point, a simple optimization performed by 

MICROMAP might be pointed out. If a microinstruction is 

generated which contains only an unconditional branch 

micro-operation, then any microinstruction which causes a 

branch to that one is redirected to the destination of the 

unconditional branch. This situation commonly arises when 

a conditional block or a loop is the final micro-operation 

inside a loop. When this redirection of branch 

destinations is effected, it then becomes true that the 

only micro-operations whose execution will immediately 

precede the unconditional branch are those packed in the 

immediately preceding microinstruction. So that the 

unconditional branch need not occupy a separate 

microinstruction: it is no longer the destination of other 

branch operations. It may be packed into the preceding 

microinstruction if compatibility considerations permit. 

But MICROt4AP is not capable of performing this type of 

optimization. It is not capable of altering 

microinstructions once they have been generated. Thus it 

is able to prevent unnecessary double jumps, but it is not 

able to reclaim the microinstruction which may become 

unnecessary as a result of this optimization. 

In this way, MICROMAP determines the successor 

instruction(s) of each microinstruction it generates. 

Where there is no explicit branch micro-operation in the 
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microinstruction then the sequentially following 

microinstruction is assumed as successor. It produces a 

table of the absolute addresses (based on the first one 

generated having address one) for the next instruction 

associated with each microinstruction in the microprogram. 

It would be a simple task in a second pass to fill 

these values, possibly offset by some index, into the Emit 

type field(s) in the microinstruction which determine the 

next microinstruction to be fetched. But, for two 

reasons, this is not a sensible action. The first is the 

obvious point that the start address of the microprogram 

in control store may not be known. Therefore absolute 

addressing is not warranted. The second point is that 

sequencing of microinstructions typically is the most 

intricate feature of a microprogram controlled system. 

Often it involves idiosyncratic mechanisms for generating 

the next address. In such cases the value to be filled in 

the Emit field need not be the actual address of the 

microinstruction to be fetched next: it may be the key to 

some computation which ultimately generates that address. 

And in such cases it may transpire that the placement of 

microinstructions - the actual addresses assigned to them 

- assumes great significance in order that the address of 

a microinstruction may be generated by calculation from 

each of the microinstructions which may branch to it. The 

Intel 3001 microprogram control unit E481 and the DEC PD? 

11/40 processor 1233 microprogram control exhibit the 
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property of complicated next address generation schemes in 

which microinstruction placement is significant. Indeed, 

in the latter, some microinstructions are duplicated at 

different addresses for precisely this reason. 

For these reasons, the information that MICROMAP 

generates is the nearest to complete microcode that may be 

expected. It requires a final machine dependent linkage 

process to take the information provided and produce 

complete microcode. This may either be in the form of a 

separate program for each processor for which 

microprograms are generated, or else a universal version 

which accepts a description of the next addressing 

conventions of the processor in question together with the 

control flow information provided by MICROMAP and produces 

the complete microprogram from that. 

This task remains to be accomplished. 
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5.1) Results Results - A Worked Example 

This section, in conjunction with the figures presented 

in Appendix 1, documents a worked example which has been 

used to provide a realistic exercise to the MDS suite. 

The various inputs to and outputs from the programs of the 

suite are listed in Appendices 1(a) to 1(e). 

A processor is described in the Microprogram Design 

Language which purports to perform some sort of hardware 

monitoring function. The details are unimportant. The 

MDL source microprogram is listed In Appendix 1(a). The 

numbers accompanying the statements in the description are 

the indices of the corresponding micro-operations after 

the insertion of the appropriate block type 

micro-operations by ANALYSE. The block structured style 

of the description makes its comprehension much simpler 

than would otherwise be the case. Note the use of 

explicit synchronization between micro-operations and 

explicit declaration of operands affected by 

micro-operations where insufficient information to that 

effect is conveyed in the micro-operations themselves. 

For example, the statement (76) in the source microprogram 

listing has nothing logically to do with the subroutine 
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"READ WORD", but it is desirable that that statement 

should succeed the subroutine call, and so it is 

explicitly marked as dependent on it. 

This source microprogram is processed by ANALYSE. As 

well as generating the listing discussed above, ANALYSE 

also produces for MICROMAP and separately for the designer 

a representation of the microprogram in canonical form. 

This details the level of each micro-operation, the type 

of block type micro-operations together with a list of 

their components, and the dependency relationships marked 

between the micro-operations. This listing is presented 

in Appendix 1(b). (A more detailed listing of the type of 

each dependency relationship is available optionally.) 

Several points may be noted. The scope for movement of 

micro-operations is, in general, relatively small. This 

results from almost all of these micro-operations being 

contained in short control blocks and there being long 

chains of data dependencies throughout. This is quite 

typical. In this particular example there is not much 

scope for the movement of micro-operations over control 

blocks. This is due to the fact that many of the control 

blocks contain "Return" statements which act as critical 

points: absolute barriers to code movement. An example of 

a situation where such code movement is possible is 

between statements (3) and () in the source microprogram, 

where a primitive micro-operation and a loop are 
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independent. It will be seen below that this is exploited 

by the packing algorithm to save one microinstruction 

compared to the necessary restrictions entailed by 

straight line segments. The subroutine calls with 

"parameters" are worthy of note. These are used 

frequently, and the qualification of the call with the 

operands referenced within the subroutine body enables a 

substantial amount of code movement over that "Call" 

statement. 

Appendix 1(b) conveys some idea of the structure of the 

canonical microprogram generated by ANALYSE. The major 

inference that should be drawn from it is not of the 

potential that exists for dramatic optimization, but of 

the potential that exists for making errors in 

endeavouring to achieve optimization in an undisciplined 

approach to the problem. 

Appendix 1(c) lists a Microinstruction Format Model 

description of a control organization designed to 

implement the microprogram description. The 

micro-architecture it reflects is based upon an AMD 2901A 

bit slice microprocessor Lii and the major part of the 

description is taken up by that component. The 

description of the control signals associated with the 

microprocessor is held in a library of descriptions of 

such general purpose components and is drawn from there to 

be included in this description by use of the Alias 
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feature. (One line has been added to the component 

description after its inclusion in the complete format 

description. A Conjunction construct has been added to 

the LA Reg] field, field (3), to enable direct selection 

of one of the microprocessor's internal registers from a 

field of the command register.) 

Several points about the format description may be 

noted. The LSourcei field, field (6), controls two 

microprogram level resources: the two operands input to 

the ALU. To reflect this, the description includes two 

separate fields, LRJ and LSJ, occupying the same position 

in the microinstruction word. One controls each operand. 

These are referred to separately elsewhere in the format 

description. The LSourcei field itself is also included 

in the description because it is referred to in the 

exceptional cases of the ALU function field LFJ. (It is 

not necessary to refer to LSourcei here.. LRJ or LSJ, as 

appropriate, would have done just as well.) The field LFJ 

(which is aliased to "LALU_Resulti" in this format 

description) illustrates the use of the Conjunction 

construct to represent semantically equivalent but 

syntactically different functions. In this case it is 

associated with the presence or otherwise of a Carry bit 

and with one of the operands to the function being zero. 

The "Q" register is an auxiliary register in the 

microprocessor which is considered in this description as 

a microprogram level resource, controlled by a Register 
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type field. No example arises in the microprogram 

description under consideration, but if a micro-operation 

of the form ttA<...B+Ct,  where A, B and C are all internal 

microprocessor registers, was presented for implementation 

in this format description, then MICROMAP would detect 

that it would have to be implemented as "Q<-B+C" and 

"A <-Q 

The use of the dummy fields IZJ, LNZJ, IN], IPJ and LOJ 

is noteworthy. These simply are the boolean signals that 

may be detected from the ALU in the microprocessor. They 

are used to determine branching in the microprogram. It 

is not necessary to name them as fields at all. But 

consider the situation if it were desired to overlap the 

fetching and execution of microinstructions. Then the 

only alteration that would be required in the format 

description would be to change these fields to type 

Register: for the purpose of controlling the loading of 

the flip-flops that would have to be added to the 

micro-architecture to store the values of the boolean 

signals between procesor cycles. (These fields would still 

be dummy fields if the flip-flops were loaded 

automatically each processor cycle. They would all occupy 

the same single bit field if the status register 

comprising the five flip-flops was loaded explicitly and 

they would occupy five distinct fields if it were posib1e 

to load each one individually.) 
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MICROMAP packs the 106 primitive micro-operations in 

the source microprogram into 73 microinstruction words of 

the specified format. The output which it generates while 

doing so is listed in Appendix 1(d). This reveals the 

order in which the micro-operations are selected for 

packing as well as the fields which are involved in 

implementing those which are packed. It also generates a 

binary representation of the microinstructions with the 

appropriate values bound to the fields involved and 

default values bound to the rest. Note that the fields 

used to hold a microinstruction address for the purpose of 

sequencing the microprogram are filled with just an index 

to the label table. Microinstructions (1) and (2) give an 

example of compaction through the independence of a 

primitive micro-operation and a loop. Microinstructions 

(61) and(62) illustrate the reasoning behind the order of 

selectiOn of micro-operations from the. Data Available Set, 

as explained in section 4.1. At instruction (61), the 

only two micro-operations in the DAS are the Loop block 

type micro-operation (136 in the source microprogram) and 

"INTERVAL<-INHIGH.INLOW 0 . The former is selected in 

preference to the latter and turns out to furnish children 

into the DAS alongside which the existing primitive 

micro-operation may be packed. 

The "CLASH" information provided by MICROMAP makesit 

obvious how the chosen microinstruction format may be 

improved upon. In this case, by setting "ERRBIT" in the 
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status register from the same micro-orders that set 

"OVERFLOW" and "CLOCKERR" (since the setting of these two 

is always accompanied by the setting of ERRBIT) the 

microprogram may be implemented in two fewer 

microinstructions. This simple example serves to 

illustrate the helpfulnes of MDS in evolving a reasonable 

final microprogram. 

After having generated the microinstructions, MICROMAP 

issues a table listing the successor instructions 

associated with each microinstruction which effects a 

break in the normal sequential control flow assumed for 

the microprogram. The table associated with the worked 

example is listed in Appendix 1(e). Mote the successor 

microinstruction to microinstruction (LI)  which contains 

the branch micro-operation heading the conditional block 

which is micro-operation (11) in the source microprogram. 

This has been optimized by MICROMAP to avoid a double jump 

to the head of the enclosing loop via the tail, as 

described in section £4.3. As a result, the unconditional 

branch micro-operation in microinstruction (10) need no 

longer be included in a separate microinstruction, since 

it no longer acts as the destination of a branch. 

Microinstruction (10) could be merged with 

microinstruction (9) to save a further word in the 

microprogram. But MICROMAP is unable to do this 

automatically. 
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How far have the goals for a microprogram design aid 

identified in section 1.1 been met by MDS? 

The principal goal was that it should "facilitate the 

practice of good microprogram design", and the bulk of 

this thesis has been taken up in arguing that MDS does 

just that. It makes the task of microprogram design 

easier by relieving the designer from concern with 

implementation details when designing a behaviour for the 

microprogram; and it assists his concern with those 

implementation details when it is appropriate to consider 

them. That is, MDS separates the tasks of design and 

implementation, as goal 1.1.1 in section 1.1 required. It 

encourages the production of "good", well structured 

microprograms by exploiting the block structure of MDL 

descriptions to effect global optimization on the 

microprogram. 

By automatically generating a maximally parallel 

representation of the source microprogram and 

automatically mapping that into a microprogram in the 

specified microinstruction format, as well as providing 

congenial descriptive mediums, MDS allows the designer to 

make best use of his talents so that he may concentrate on 

the creative aspects of the task. This was the 

requirement of goal 1.1.2. 
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Goal 1.1.3 stated that the system should produce 

efficient microcode. Microprogram Design Language, 

described in section 2.3,  was designed with this criterion 

in mind, and the packing algorithm implemented in MICROMAP 

goes to great lengths to ensure efficient implementation 

of the behaviour specified in MDL. Because 'the initial 

stage of the microprogram design process under MDS is 

abstracted away from the microprogram level view of the 

system, it is almost inevitable that the microprogram 

generated by MICROMAP could be improved upon, in terms of 

size and execution speed, by a carefully "hand coded" 

microprogram. But the efforts that are made throughout 

MDS to attain efficiency in the microprogram finally 

generated serve to minimize the adverse effects of this 

approach, while the comprehensive approach taken to the 

detection of the potential for concurrency between 

micro-operations and to their packing in microinstructions 

effects a measure of optimization of which the human 

designer is incapable. On balance therefore, the 

efficiency of microprograms generated by MDS is high 

compared to "standard" hand implementations, but not as 

high compared to carefully tuned implementations where 

much effort has been invested into making the microprogram 

as efficient as possible. 

Goals 1.1.7 and 1.1.8 also have a bearing on this 

issue. By facilitating experimentation with different 

control organizations on which to implement a microprogram 
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behaviour, MDS is able to assist the designer in finding a 

micro-architecture which is particularly conducive to 

efficient implementation of the behaviour in question. 

The search for an efficient microprogram implementation 

covers two dimensions: the design of the control 

organization and the design of the microprogram to execute 

under that control organization. The superiority of MDS 

in the first may fully compensate for its relative 

inferiority in the second in terms of the efficiency of 

the microprogram finally generated. Of coure, improving 

efficiency is not the only reason for altering a 

micro-architecture. The functional specification of a 

design is often slightly altered many times during the 

evolution of the design. MDS is able to accommodate such 

-changes with ease. This is of particular significance to 

the "occasional" microprogram designer to whom the most 

appropriate format in which to implement a design is not 

as obvious as it might be to an experienced specialist. 

The features of MDS which particularly contribute to ease 

in altering micro-architectures are the separation of the 

behavioural design and its implementation, and the fact 

that the Microinstruction Format Model maps clearly on to 

the micro-architecture of the implementation. A simple 

ckiange in the latter induces a simple change in the 

corresponding part of the former. 

Normally, the alteration of a microprogram is a 

complicated task. Due to resource contentions and 
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interlinked chains of data dependencies, changing a single 

operation in the microprogram may generate an extensive 

"shock wave" through the rest of the microinstructions 

which follow it. So that a large portion of the completed 

microprogram may have to be changed as a result of an 

alteration to a single micro-operation. And the tracking 

of the necessary changes in the microinstructions in such 

instances is an inherently unsystematic process which is 

bound to be error prone. By virtue of the fact that 

detection of dependency and resource contention is 

performed automatically, alteration of microprograms in 

MDS is simple. Only the MDL source microprogram 

description need be changed explicitly; from which a 

completely new microprogram may be readily generated. 

Thus MDS meets goal 1.1.5. 

Microprogram verification has not been mentioned as 

yet. This is a topic of growing significance [14] which 

in some aspects is simpler than high level language proof 

but in other aspects is not as simple. It is simple in 

that the operations performed and the data structures 

which are defined at the microprogram level are simple, 

but it is complicated by the concurrency of these 

operations. MDS could offer distinct advantages in this 

field. The operations and data structures which are used 

to describe the microprogram behaviour in MDL are simple, 

and the order of execution of the operations in the 

description is sequential. Proving an assertion about a 
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source microrogram in MDL is much simpler than proving an 

assertion about a microprogram in terms of the 

microinstructions of a particular format. But the two are 

equivalent if the various components of MDS are trusted to 

preserve the behaviour of the source microprogram and the 

properties of the specified microinstruction in generating 

the completed microprogram. This thesis has attempted to 

justify the placing of that trust. Further formal 

validation of the integrity of the transformations 

performed by MDS would ideally be required. This 

once-only step would then make the task of microprogram 

verification a practical possibilty. 

Thus, MDS may be seen to have met the design goals set 

for it. As an incidental by-product it also contributed 

one further achievement of major significance. The 

Microinstruction Format Model provides a general formalism 

for the representation of microinstruction formats: a 

facility which has hitherto been unavailable and a worthy 

product in its own right. 

Of equal importance in the appraisal of MDS is what it 

does not do. 

It does not yet generate executable microcode. A 

further linkage phase is necessary for that, as explained 

in section 14.3. 

It does not design. The design which it implements is 

wholly the designer's. This is deliberate policy for the 
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reasons argued in section 1.1. 

It is not "intelligent": it is only able to map an MDL 

source microprogram into a microinstruction format 

described in MFM when the latter is tailored to 

implementing the former. 

It does not attempt to perform tasks which are not 

appropriate to the level at which it functions. In 

particular, it does not allocate addresses and registers 

for conceptual variable names. 

At the more detailed level, it is lacking in some minor 

features. In MDL it is possible, but only clumsily, to 

specify that micro-operation B should be executed X 

microinstructions later than micro-operation A. This can 

be achieved only by explicitly contriving the dependency 

relationships of the intervening operations such that the 

desired packing is the only one possible. This 

contrivance is feasible and quite simple where it is 

desired to ensure that micro-operations are packed into 

successive microinstructions: not an uncommon requirement. 

It becomes progressively more difficult and restrictive as 

the "distance" between A and B increases; the frequency of 

requirement for the feature diminishes proportionately. 

Related to the topic of computed data dependency where 

microinstruction fetch and execute are overlapped is 

another feature, sometimes occurring in the same 

circumstances. This is the phenomenon of the delayed 

effect of branch micro-operations, and MDS is unable to 
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deal with it adequately. Due to the fact that possibly 

many activities are being performed concurrently in a 

ioe1ined implementation, by the time a microinstruction 

comes to be executed one or more succeeding 

microinstructions may already have been fetched. This 

causes problems with branch operations since these may 

disrupt the implicit sequential order of execution of the 

microinstructions. Two alternative solutions to the 

problem exist: enacted either in the pipeline or the 

microprogram. The first, as implemented in several 

computer instruction set processors 1331, is simply to 

"flush" the pipeline when an operation which causes a 

branch in the control flow is encountered, so that the 

instructions that have been fetched after that one are not 

executed. This solution causes no difficulties in MDS. 

The alternative solution, as implemented for example in 

the microprogram of the PDP 11/40 processor L231, is to 

execute those microinstructions which have already been 

fetched. This means that the effect of a branch 

micro-operation is not felt until after the execution of 

one or more microinstructions succeeding it in the 

microprogram. In MDS, since micro-operations are not 

packed into microinstructions until all micro-operations 

on which they are dependent have been packed, and since 

microinstructions are generated sequentially, this 

situation cannot be exploited to advantage. Rather than 

anticipating the delayed effect of branch micro-operations 
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by packing them in a preceding microinstruction to other 

micro-operations whose execution they must succeed, all 

that MICROMAP can do is to follow the branch 

microinstruction in the microprogram with one or more 

empty microinstructions. This feature could be properly 

handled if MDS were to generate the microprogram in 

reverse order, so that it would be possible to stipulate 

in the control organization description the extent of the 

delayed effect of branches and to act on this in MICROMAP 

by delaying the packing of branch micro-operations by this 

amount. However, this method would cause problems in 

dealing with micro-operations with extended duration. It 

is not clear where the advantage would lie. 

As noted in section 4.3,  MICROMAP may fail to optimize 

fully in the situation where an unconditional branch 

operation is the sole occupant of a microinstruction word. 

MICROMAP performs the speed optimization of redirecting 

branches to that microinstruction, but it is not capable 

of performing the space optimization that may be possible 

as a result of the redirecting of branches. 

Finally, as was pointed out in section 4.2, MICROMAP is 

not able to automatically pack micro-operations which it 

recognizes as requiring to be split into two in order to 

be implemented in the specified format. This might be 

desirable, but is not practicable for the reasons 

explained in that section. 
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What general lessons should be drawn from the 

experience of this research effort? 

Perhaps the principal lesson that has been highlighted 

is that human talents should not be ignored. It is 

counter-productive to attempt to perform a task 

automatically just for the sake of performing it 

automatically. MDS has demonstrated that real achievement 

is possible by confining one's attention to a reasonably 

limited objective and endeavouring to provide a complete 

solution to that objective. It is not sufficient to 

provide a partial solution which handles only simple, or 

well behaved, or contrived hypothetical examples. To be 

usable, a design aid system must handle a wide range of 

real world examples. If it does so, and yet there are 

examples which it cannot handle, this possibly may be used 

as evidence against the design style of these examples. 

Two further factors contributing significantly to the 

success of MDS may be generalized and are noteworthy. 

First, it has applied concepts which are not novel in a 

novel context; and second, it has exploited the singular 

"local" characteristics of the context in which it is 

operating to achieve a simple solution. 

On a more particular front; encouragement for block 

strutured microprogram design has been advocated elsewhere 

[34]. MDS has demonstrated not only the practicality of 

designing in such a block structured language, but also of 

retaining that structure in implementation as a means of 
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generating an optimized microprogram. 

To summarize, the major achievements of this research 

effort are seen to be as follows: 

A package has been designed and implemented which 

facilitates the generation of microprograms. 

How the design and implementation of microprograms 

may be separated has been identified. 

The creative aspects of microprogram design have been 

identified and assistance has been provided to the 

designer to perform these tasks. The less creative 

aspects have been automated. 

(LI) The properties of block structured languages have 

been exploited advantageously in the detection of 

potential parallelism between micro-operations. 

A general formalism for the representation of 

microinstruction formats has been designed. 

The properties of block structured languages have 

been exploited to effect global optimization in 

microprogram compaction simply and effectively. 
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(7) The particular properties of designing for the 

microprogram level (ie. dedicated host machines, all 

operations being executed in a single processor 

cycle) have been exploited to effect simple automatic 

emulation of register transfer target machine 

operations by microprogram level host machine 

operations. 

() How resource contention between micro-operations may 

be detected simply and efficiently at the 

microprogram level has been identified. 

The generation of multiple configurations for 

microinstructions has ensured that resource 

contention is never falsely recognized. 

The synthesis of the sequencing information necessary 

to produce executable microprograms has been 

achieved. 

Microprogram verification has been facilitated by 

providing transformation functions from sequential 

register transfer descriptions to complete 

micro programs. 
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A research project of this nature never answers all the 

questions or explores all the avenues that lie open to it. 

Identified below are some of the principal unexplored 

problem areas that have been uncovered during this 

research or that follow on as natural extensions to the 

work that has been initiated. 

The most obvious extension that may be applied to the 

work reported herein is to proceed to generate executable 

microcode by completing a linkage phase for the design 

suite. As reported in section 4.3,  this may be 

accomplished in one of two ways: either by writing a 

separate program to perform the task for each different 

micro-architecture, or else by designing a universal 

linker which accepts a description of the sequencing 

mechanisms of the chosen micro-architecture together with 

the next instruction information output by MICROMAP and 

generates the executable microprogram from that. This 

latter approach is consistent with the rest of MDS and is 

to be preferred. It should be quite straightforward to 

handle in this way the majority of the examples which may 

be encountered, but it would be very difficult to be truly 

general: to cope with all existing sequencing mechanisms. 

As mentioned previously, these may be extremely 
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convoluted. This probably is one situation where the 

dictates of expedience must exclude a general solution. 

It is a corollary of this conclusion that strong pressure 

is brought to bear against any micro-architecture design 

which is thus excluded. The arguments in its favour must 

be very strong to outweigh the benefits accruing from the 

capability to generate microprograms in that format 

automatically. 

The next logical extension of MDS is to simulation. 

The desire to test a design in all ways possible before 

adopting full commitment to it is reasonable, and 

simulation is a valuable tool in this respect. Like 

microprogram linking, simulation may be performed either 

dedicatedly or machine independently. The former is of 

little interest with respect to MDS. A machine 

independent simulation could be based upon a 

Microinstruction Format Model description together with 

the microprogram which is output by MICROMAP. It would 

have to go further than MICROMAP in attaching an 

interpretation to the actions of the micro-orders 

described in the MFM format description, and it may also 

benefit from a declarative preamble to the description 

specifying the memory resources referenced by the 

micro-orders. 

Simulation at the microprogram level would be used to 

evaluate the detailed performance characteristics of the 
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chosen implementation. It is to be hoped that 

verification of the behaviour of the microprogram could be 

attained by more formal methods. As mentioned in the 

preceding section, MDS offers a powerful facility in the 

search for viable microprogram verification techniques. 

It may be that extra features added to the language could 

enhance this facility, as has been suggested by Patterson 

[116]. This certainly bears further investigation. 

Husso.n [32] claims that the design of the 

microinstruction format and sequencing mechanisms of the 

Honeywell H11200 computer was based on the actual behaviour 

required of the data path in question. The original seed 

of motivation from which the concept of MDS eventually 

germinated was the question "What is the optimum 

microinstruction format in which to implement the 

microprogram control of a given system?" That there was no 

ready answer to this question prompted the desire to 

experiment with different formats, from which ultimately 

descended the observation that there existed a requirement 

for a general facility to assist with the task of 

microprogram design. MDS provides a tool with which to 

return to that original enquiry. The rules which govern 

the relationship between a processor level target machine 

architecture and the most appropriate microprogram level 

implementation of it in the context of specified values 

for cost and performance parameters may just prove 
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tractable. It is worth investigating. And MDS is the 

ideal tool for the job. 

Returning to the subject of the sequencing of 

microprograms., another interesting topic which might be 

investigated is evident. It is related to the preceding 

question in that it is concerned with the relationship 

between the characteristics of a processor behaviour and 

an optimal microprogram controlled implementation of that 

processor behaviour. Specifically, it is for the 

automatic generation of a customized microprogram 

sequencer for a given microprogram behaviour. That is, 

given the next instruction information output byMICROMAP, 

the aim is to synthesize a programmable logic array (PLA) 

(or ULA or equivalent) configuration which will effect the 

desired control flow in the microprogram. In this way, 

the natural (maximally parallel) control flow of the 

behavioural description of the processor, perhaps 

incorporating multi-way branching for example, could be 

reflected in the microprogram and implemented easily and 

efficiently. As well as helping to increase the execution 

speed of the microprogram, this method of sequencing would 

eliminate the necessity for complicated next address 

generation schemes which are borne out of the desire for 

maximum generality in minimum microinstruction space.. 

Conspicuous by its absence from the foregoing 
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suggestions has been any proposal to extend the concepts 

of MDS to higher levels. A corresponding framework for 

machine independent compilation to the computer 

instruction set level may be envisaged, which function has 

been a goal of long standing. But the techniques of MDS 

are not applicable to this level. MDS is simple to the 

point of naivete. Its success, as previously noted, 

derives from its exploitation of the singular properties 

of microprogram design: the sympathetic target machine and 

the simplicity of the instructions being emulated. Any 

attempt to extrapolate these techniques to a higher level 

would lead a prohibitive increase in complexity and a 

corresponding dramatic decrease in quality of code 

produced. 
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1 $ Microprogram to implement a hardware monitor which 
1 $ obeys commands sent over an 8-bit parallel 
1 $ interface causing it to detect patterns on its 
1 $ 16 data probes. Commands obeyed are: 

	

1 $ 	(1): Count number of clock cycles occurring 

	

1 $ 	 between the detection of two specified 

	

1 $ 	 data patterns. 

	

1 $ 	(2): Count the number of times a specified 

	

1 $ 	 pattern is detected within a given time 

	

1 	$ 	 interval. 

	

1 	IDLE:: 

	

2 	loop 

	

3 	STATREG<-O 
wait for DATA AVAILABLE $ waiting for command 

	

6 	call COMMAND 

	

7 	wait for TxBUSY ;LTx] 

	

10 	Tx<-STATREG $ send status after each command 

	

11 	if BUSYBIT then 

	

14 	 wait for TxBUSY 

	

16 	 OUTBUFF<-OUTREG ; LOUTHIGH,OUTLOW] 

	

17 	 Tx<-OUTLOW 

	

18 	 wait for TxBUSY ;LTx] 

	

20 	 Tx<-OUTHIGH 

	

21 	finish 

	

21 	repeat 

22 COMMAND: 

	

23 	INLOW<-RxDATA 

	

24 	if INLOW(0) then 	$ RESET command 

	

27 	RESET $ links and all registers except STATREG 

	

28 	STATREG<-O 

	

29 	return 

	

30 	finish 

	

31 	if INLOW(1) then 	$ MEASURE INTERVALS command 

	

34 	if IDLE goto MEASURE INTERVAL 

	

35 	$ Interrupted in middle of obeying previous command 

	

35 	STATREG<-O; 

	

37 	ERRBIT<-TRUE 

	

38 	return 

	

39 	finish 

	

ZO 	if INLOW(2) then 	$ COUNT EVENTS command 

	

113 	if IDLE goto COUNT EVENTS 

	

1111 	STATREG<-0; 
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46 
	

ERRBIT<-TRUE 
147 
	return 

'18 
	

finish 

149 	if INLOW(3) then 	$ read register specified 
52 
	

BUSYBIT<-TRUE 	$ in bits 14:7 
53 
	

OUTREG<-REG(INLOW<14:7>) 
514 	finish 

514 
	

$ if none of these bits set, 
514 	$ then command is SENSE STATUS 

return 

55 
	

$ end of subroutine COMMAND 

55 READ WORD:: $ reads 2 bytes into INHIGH and INLOW 

56 
	

wait for DATA AVAILABLE ;LRxDATA) 
58 
	

INHIGH <-RxDATA 

59 
	wait for DATA AVAILABLE ;LRxDATA] 

61 
	

INLOW<-RxDATA 

62 
	return 

63 MEASURE INTERVALS:: 

614 $ Count the number of clock cycles between the 
614 $ detection of two 	16-bit patterns on the probes. 
614 $ The patterns are specified as 	16-bit values 
614 $ constrained by a 	16-bit pattern determining which 
614 $ bits in the first value are specified and which 
614 $ are 	"don't 	care" 	bits. 

614 INTMEASURE<-TRUE 	$ bit in Status Register 
65 BUSYBIT<-TRUE 
66 call READ WORD 	;LINHIGH,INLOW] 
67 PATTERN<-INHIGH.INLOW 

68 call READ WORD 	;LINHIGH,INLOW] 
69 ASSBITS<-INHIGH.INLOW 

70 call READ WORD 	;LINHIGH,INLOW] 
71 PAT2<-INHIGH.INLOW 

72 call READ WORD 	;LINHIGH.INLOW] 
73 ASS2<-INHIGH.INLOW 

714 PATTERN<-PATTERN&ASSBITS 
75 PAT2<-PAT2&ASS2 
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76 $ Try to match PATTERN with observed data on probes 

	

76 	CLOCKFF<-0 ;[k] 

	

77 	wait for CLOCKFF $ Synchronize with clock 

	

79 	CLOCKFF<-0 

	

80 	loop 

	

81 	call READ DATA ;[DATA,CLOCKFF] 

	

82 	return if BUSYBIT $ interrupt has been taken 

	

83 	repeat while DATA-PATTERN # 0 

	

85 	$ 1st pattern observed, 

	

85 	$ start counting cycles until 2nd pattern. 

	

85 	SEEN1<-TRUE 	$ in Status Register 

	

86 	COUNT<-0 

	

87 	ASSBITS<-ASS2 $ used by READ DATA 

	

88 	loop 

	

89 	COUNT<-COUNT+1 

	

90 	if OVF then ;[!COUNT] 

	

93 	 STATREG<-O; 

	

94 	 OVERFLOW<-TRUE 

	

95 	 ERRBIT<-TRUE ;[2] 

	

96 	else 

	

98 	 call READ DATA 

	

99 	finish 

	

100 	return if BUSYBIT $ due either to OVF above 

	

101 	 $ or else interrupt 

	

101 	 $ inside READ DATA 

	

101 	repeat while DATA-PAT2 # 0 

	

103 	SEEN2<-TRUE 

	

104 	OUTREG<-COUNT 

	

105 	return 

106 READ DATA:: $ Reads a 16-bit pattern from the probes 

	

107 	if INTERRUPT call COMMAND 

	

108 	return if IDLE 	 $ forced by interrupt 

	

110 	if CLOCKFF then $ Clock has already pulsed - 

	

ilk 	 $ cannot keep up. 

	

ilk 	STATREG<-0; 

	

115 	ERRBIT<-TRUE 

	

116 	CLOCKERR<-TRUE ;[2] 

	

117 	return 

	

118 	finish 

	

119 	wait for CLOCKFF ;[PROBEDATA] 

	

121 	 $ Clock has set flip-flop and latched data. 

	

121 	CLOCKFF<-O 

	

122 	DATA<-PROBEDATA&ASSBITS 

	

123 	return 
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124 COUNT EVENTS:: 

125 $ Counts the number of occurrence,s of a specified 
125 $ bit pattern within a given time interval. 

125 	EVCOUNT<-TRUE 	$ In Status Register 
126 	call READ WORD ;[INHIGH,INLOW] 
127 	PATTERN<-INHIGH.INLOW 
128 	call READ WORD ;(INHIGH,INLOW] 
129 	ASSBITS<-INHIGH.INLOW 
130 	call READ WORD ;[INHIGH,INLOW] 
131 	INTERVAL<-INHIGH.INLOW 

132 	PATTERN<-PATTERN&ASSBITS 
133 	EVENTS<-O 
134 	CLOCKFF<-O ;[14] 
135 	wait for CLOCKFF $ to synchronize with clock 
137 	CLOCKFF<-O 

138 	loop 

139 	 loop 
1140 	 call READ DATA ;[DATA] 
1141 	 return if BUSYBIT $ interrupt taken by 
1142 	 $ READ DATA 
1142 	 INTERVAL<-INTERVAL-1 
11414 	 exit-2 if INTERVAL < 0 
146 	 repeat while DATA-PATTERN # 0 

1147 	 EVENTS<-EVENTS+1 

148 	 $ wait until event has gone away before 
148 	 $ looking for next occurrence 

148 	 loop 
149 	 call READ DATA ;[DATA] 
150 	 return if BUSYBIT 
151 	 INTERVAL<-INTERVAL-1 
153 	 exit-2 if INTERVAL < 0 
155 	 repeat while DATA-PATTERN 	0 

156 	repeat 

157 	OUTREG.<-EVENTS 

158 	return 
159 

*** END *** 
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INDEX MICRO-OPERATION LEVEL PARENTS COMPONENTS 

1 [LABELLED] 0 - 2 22 
2 [LOOP] 1 - 3 14 6 7 
3 STATREG<-O 2 - - 

14 [LOOP] 2 - 5 
5 IFDATAAVAILABLEGOTOU 3 - - 

6 CALL314 2 14 3 314 
7 [LABELLED] 2 6 8 10 11 21 
8 [LOOP] 3 - 9 
9 IFTXBUSYGOT06 14 - - 

10 TX<-STATREG 3 8 - 

11 [IFHEADER] 3 10 12 
12 EIFBLOCK] 14 - 13 114 16 17 

18 20 
13 IFBUSYBITGOT08 5 - - 

114 [LOOP] 5 13 15 
15 IFTXBUSYGOT010 6 - - 

16 OUTBUFF<-OUTREG 5 13 - 

17 TX<-OUTLOW 5 16 - 

18 [LOOP] 5 13 17 19 
19 IFTXBUSYGOT010 6 - - 

20 TX<-OUTHIGH 5 18 16 - 

21 GOT02 3 11 - 

22 [LABELLED] 1 - 23 211  31 40 
149 514 55 

23 INLOW<-RXDATA 2 - - 

24 EIFHEADER] 2 23 25 
25 [IFBLOCK) 3 - 26 27 28 29 

30 
26 IFINLOW(0)GOT06 14 - - 

27 RESET 14 26 - 

28 STATREG<-O 14 26 - 

29 RETURN 14 28 27 - 

30 [LABELLED] II 29 - 

31 [IFHEADER] 2 214 32 
32 [IFBLOCK] 3 - 33 314 35 
33 IFINLOW(1)GOTO6 14 - - 

314 IFIDLEGOT035 14 33 - 

35 [LABELLED] 14 314 36 37 38 39 
36 STATREG<-O 5 - - 

37 ERRBIT<-TRUE 5 36 - 

38 RETURN 5 37 - 

39 [LABELLED] 5 38 - 

140 [IFHEADER] 2 31 141 
141 [IFBLOCK] 3 - 142 143 1414 
142 IFINLOW(2)GOT06 14 - - 

143 IFIDLEGOT036 14 112 - 

14 11 [LABELLED] 11 143 145 116 147  148 
145 STATREG<-0 5 - - 
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46 ERRBIT<—TRUE 5 145 - 

47 RETURN 5 116 - 

118 [LABELLED] 5 147 - 

119 [IFHEADER] 2 110 50 
50 [IFBLOCK] 3 - 51 52 53 
51 IFINLOW(3)GOT06 11 - - 

52 BUSYBIT<—TRUE 11 51 - 

53 OUTREG<—REG(INLOW< 11:7) 11 51 - 

54 RETURN 2 119 - 

55 [LABELLED] 2 511 56 58 59 	61 
62 63 

56 [LOOP] 3 - 57 
57 IFDATAAVAILABLEGOT06 11 - - 

58 INHIGH<—RXDATA 3 56 - 

59 [LOOP] 3 58 60 
60 IFDATAAVAILABLEGOT06 11 - - 

61 INLOW<—RXDATA 3 59 - 

62 RETURN 3 61 - 

63 [LABELLED] 3 62 614 65 66 	67 
68 69 70 	71 
72 73 74 	75 
76 77 78 79 
80 85 86 	87 
88 103 10 11 

105 106 
611 INTMEASURE<—TRUE 11 - - 

65 BUSYBIT<..-TRUE 11 - - 

66 CALL37 11 - 37 
67 PATTERN<—INHIGH.INLOW II 66 - 

68 CALL37 11 67 37 
69 ASSBITS<—INHIGH.INLOW 11 68 - 

70 CALL37 11 69 37 
71 PAT2<—INHIGH.INLOW II 70 - 

72 CALL37 II 71 37 
73 ASS2<—INHIGFI.INLOW 11 72 - 

711 PATTERN<—PATTERN&ASSBTS 14  67 69 - 

75 PAT2<—PAT2&ASS2 11 71 73 - 

76 CLOCKFF<-0 14 72 - 

77 [LOOP] 11 76 78 
78 IFCLOCKFFGOT08 5 - - 

79 CLOCKFF<—O 4 77 - 

80 [LOOP] 14 79 65 77 	76 81 82 83 
75 714 	611 

81 CALL39 5 - 39 
82 RETURNIFBUSYBIT 5 81 - 

83 [LABELLED] 5 82 814 
84 IFDATA—PATTERN#OGOT08 6 - - 

85 SEEN 1<—TRUE 11 80 - 

86 COUNT<—O 11 80 - 

87 ASSBITS<—ASS2 11 80 - 

88 [LOOP] 11 86 80 87 85 89 90 100 
101 
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INDEX MICRO-OPERATION 	LEVEL PARENTS COMPONENTS 

89 COUNT<-COUNT+1 5 - - 

90 [IFHEADER) 5 89 91 97 
91 [IFBLOCK] 6 - 92 93 94 	95 

96 
92 IFOVFGOT012 7 - - 

93 STATREG<-0 7 92 - 

94 OVERFLOW<-TRUE 7 93 - 

95 ERRBIT<-TRUE 7 93 - 

96 GOT013 7 95 94 - 

97 [ELSEBLOCK] 6 91 98 99 
98 CALL39 7 - 39 
99 [LABELLED] 7 98 - 

100 RETURNIFBUSYBIT 5 90 - 

101 [LABELLED] 5 100 102 
102 IFDATA-PAT2#OGOT08 6 - - 

103 SEEN2<-TRUE k 88 - 

104 OUTREG<-COUNT 11 88 - 

105 RETURN k 104 103 - 

106 [LABELLED] 11 105 107 108 
107 IFINTERRUPTCALL34 5 - 34 
108 [LABELLED] 5 107 109 110 
109 RETURNIFIDLE 6 - - 

110 [LABELLED] 6 109 111 119 121 
122 123 124 

111 EIFHEADER] 7 - 112 
112 [IFBLOCK] 8 - 113 ilk 115 

116 117 118 
113 IFCLOCKFFGOT016 9 - - 

ilk STATREG<-0 9 113 - 

115 ERRBIT<-TRUE 9 ilk - 

116 CLOCKERR<-TRUE 9 ilk - 

117 RETURN 9 116 115 - 

118 [LABELLED] 9 117 - 

119 [LOOP] 7 111 120 
120 IFCLOCKFFGOT014 8 - - 

121 CLOCKFF<-0 7 111 119 - 

122 DATA<-PROBEDATA&ASSBIS 7 111 119 - 

123 RETURN 7 122 121 - 

124 [LABELLED] 7 123 125 126 127 
128 129 130 
131 132 133 
134 135 137 
138 157 158 

125 EVCOUNT<-TRUE 8 - - 

126 CALL37 8 - 37 
127 PATTERN<-INHIGFI.INLOW 8 126 - 

128 CALL37 8 127 37 
129 ASSBITS<-INHIGH.INLOW 8 128 - 

130 CALL37 8 129 37 
131 INTERVAL<-INHIGH.INLO 8 130 - 

132 PATTERN<-PATTERN&ASSBTS 8 127 129 - 

133 EVENTS<-0 8 - - 
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INDEX MICRO—OPERATION 	LEVEL PARENTS 

134 CLOCKFF<-0 8 130 
135 [LOOP] 8 134 
136 IFCLOCKFFGOT016 9 - 

137 CLOCKFF<-0 8 135 
138 [LOOP] 8 137 	135 	134 

133 	132 	125 
139 [LOOP] 9 - 

140 CALL39 10 - 

141 RETURNIFBUSYBIT 10 140 
142 [LABELLED] 10 lli 
143 INTERVAL<—INTERVAL-1 11 - 

144 IFINTERVAL<0G0T017 11 143 
145 [LABELLED] 11 144 
146 IFDATA—PATTERN#OGOT01 12 - 

147 EVENTS<—EVENTS+1 9 139 
148 [LOOP] 9 139 	147 
149 CALL39 10 - 

150 RETURNIFBUSYBIT 10 149 
151 [LABELLED] 10 150 
152 INTERVAL<—INTERVAL-1 11 - 

153 IFINTERVAL<0G0T017 11 152 
154 [LABELLED] 11 153 
155 IFDATA—PATTERN0GOT01 12 - 

156 GOT016 9 148 
157 OUTREG<—EVENTS 8 138 
158 RETURN 8 157 

KerwMeIrk 

136 

139 147 148 
156 
140 141 142 
39 

143 145 144 

146 

149 150 151 
39 

152 1514  153 

155 
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t!'i.iiiJ!(I- 

$ Architecture for implementing hardware monitor based on 
$ AM 2901A microprocessor. 

%SEQUENTIAL 
%OUT-AND-IN 

1 	[INSTR] (composite) <0:46> : 
[AM2901A] [LINKI/O] [FFCONTROL] LALU_IN] [RESULT] 
[LOADBUFF] [NAC] LSELCONDJ LADDR] LSPECREGJ. 

$ Microinstruction format for AM2901A 4-bit slice 
$ microprocessor chip. 

2 	[AM2901A] (comp) <0:17> := 	[AREGJ IBREGJ ISOURCE] 
[Q] [ALU_RESULT] 
[ALU_OUT] LDEST] LCARRYJ. 

%FIELDALIAS 
D = ALU_IN 
Y = ALU_OUT 
F = ALU_RESULT 

%END 

%NAMEALIAS 
RO = OUTREG 
Ri = DATA 
R2 = COUNT 
R3 = PATTERN 
Rk = ASSBITS 
R5 = PAT2 
R6 = ASS2 
R7 = INTERVAL 
R8 = EVENTS 

%END 

%ALIASINDEX = 0 

3 	LAREGJ (select) <0:3> := %when LSPECREGJ = 1: 
REG(INL0W<4:7>)., 

HO; Ri; R2; R3;  RLI; R5; Rb; Ri; Ho; 
R9; RIO; Ru; R12; R13;  R1 11; R15. 

5 	[BREGJ (select) <4:7> := 
RO; Hi; R2; R3;  Rk; R5; R6; R7; R8; 
R9; RIO; Ru; R12; R13;  R14; R15. 

6 	ISOURCE] (select) <:10> :: SO; Si; S2; S3; 
S4; 55; Sb; 57. 
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7 	LRJ (select) <d:10> 
LAREG); 
LAREGJ; 
0; 
0; 
0; 

LDJ; 
ID]; 
LDJ. 

	

8 	is] (select) <ö:lO> := 
LQJ; 
LBREG]; 
L 	i; 
LEREG]; 
LAREGJ; 
LAREG]; 
IQi; 
0. 

	

9 	LDESTJ (execute) <14:16> : 
<2>: LBREG]<-LF]; 
<3>: LBREGJ<-[FJ;. 
< 14>: LBREG]<-LF]/2, 

IBREGJ<-LFJ>>1 
<5>: IBREG]<-LF]/2, 

LBREGi<-LFJ>>1 
<6>: LBREG]<-LF]'2, 

LBREGJ<-[F]<<1; 
<7>: LBREG]<-LF]'2, 

LBREGJ<-[FJ<<1 
'DEFAULT=l 

	

10 	IQJ (register) <114:16> := <0>: LFJ; 
<4>: LQ]/2, 

LQJ>>l; 
<6>: [Q]'2, 

LQJ<<l 
'DEFAULT = 1 

	

11 	LYJ (select) <114:16> := 
IF]; 
LF]; 
LAREG]; 
LF]; 
IF]; 
IF j; 
LF]; 
IF .1. 

'DEFAULT :1 

	

12 	LCARRYJ (emit) <17:17> := 1. 

	

13 	LF] (select) <11:13> := <0>: %when LCARRY)=1 
LRJ+LSJ+1, 
is )+ LR ] +1. 
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%when 	LCARRYJ0 
LR]+LSJ 
LS]+IRJ. 

when LSOURCE]=2 %and 	ICARRY]=1 : 	[Q]+1., 
%when ISOURCEJ=2 sand 	LCARRYJ=O : 	IQJ., 
%when LSOURCE]3 %and 	LCARRY]=1 : 	LBREG]+1., 
%when ISOURCEJ=3 %and LCARRYJ=O : 	IBREGJ., 
%wheri LSOURCE]4 %and 	LCARRY]1 : 	 LAREG]+1., 
%when LSOURCEJ4 %and 	LCARRYJ=O : 	LAREGJ., 

when LSOURCE]=7 %and 	LCARRY]=1 : 	LD]+1., 
when LSOURCEj=7 %and 	LCARRYJ=O : 	LDJ.; 

<1>: %when LCARRY]=O : 	LS]-LR]-1. 1  
%when LSOURCEJ=2 %and 	LCARRYJ=O : 	LQJ-1., 
%when LSOURCE]=3 %and 	LCARRY]=O : 	LBREG]-1., 
%when LSOURCEi= %and LCARRYJ=O : 	LAREGJ-1., 
%when LSOURCE]7 %and 	LCARRY]:O : 	-LD]-1., 
%when LCARRYJ=1 : 	LSJ-[Ri., 
%when LSOURCE]=2 'and 	LCARRY]=1 : 	IQJ., 
%when LSOURCEJ=3 %and 	LCARRYJ=1 : 	LBREGJ., 
%when LSOURCE]= 14 %and 	LCARRY]=1 : 	LAREGJ., 
%when LSOURCEJ=7 sand 	LCARRYJ=1 : 	-LDJ.; 

<2>: %when LCARRY]=O : 	LR]-LS]-1., 
%when LSOURCE]2 %and LCARRYk1 : 	-LQJ-1., 
%wheri LSOURCE)=3 %and 	LCARRY]=1 : 	-LBREG)-1., 
%when LSOURCEJ: %and 	LCARRYJ1 : 	-LAREGJ-1., 
%wheri ISOURCE]=7 %and 	LCARRY]=1 : 	 LD]-1., 

when ICARRYJ=1 	: LRJ-LSJ., 
%when LSOURCE]=2 'and 	LCARRY]=O : 	-LQJ., 
%when LSOURCE]=3 %and 	LCARRYJ=O : 	-LBREGJ., 

when LSOURCE]= 14 %and 	LCARRY]=O : 	-LAREGJ., 
%when LSOURCEJ=7 sand 	LCARRYJ=O : 	LDJ.; 

<3>: LR]!LSJ, 
L S J I LRJ, 
when LSOURCEJ.=2 : 	LQJ., 

%when LSOURCE)=3 : 	LBREGJ., 
when LSOURCEJ= : 	LAREGJ., 

%when ISOURCE):7 : 	IDJ.; 
<M>: LRJ&LSJ, 

LS]&LRJ 
%when LSOURCE.k2 : 	0., 
%when LSOURCE]=3 : 	0., 
%wheri LSOURCEJ=4 : 	 0., 
%wberi LSOURCE]=7 : 	 0.; 

<5>: LRJ&LSJ., 
%when ISOURCEJ=2 : 	IQJ., 

when LSOURCE)=3 : 	LBREGJ., 
%when LSOURCEJ=4 : 	LAREG.J., 
%when LSOURCE]=7 : 	0.; 

<b>: LRJHLSJ, S  

IS]! !LRJ, 
%when LSOURCEJ2 : 	LQJ., 
%when LSOURCE]=3 : 	IBREGJ., 
%when LSOURCEJ=l : 	LAREGJ., 
%when LSOURCE]7 : 	LDJ.; 
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<7>: LRJI!LSJ, 
LS]! !LRJ, 
when 	LSOURCE.k2 	: 
when 	LS0URCE13 	: 	LBREGJ., 
when 	LSOURCEJ=4 	: 	[AREGJ., 
when 	LSOURCE1=7 	: 	- 1DJ.. 

%ENDALIAS 

611 LLINKI/0J 	(composite) 	<18:22> := 	LINBYTEJ 	LREADBYTEJ 
LOUTBYTE] 	LOUTSOURCEJ 
LOUTSOURCEJ 	LWRITEBYTEJ. 

65 LINBYTE] 	(select) 	<16:18> 	:= <0>: 	INLOW; 
<1>: 	INHIGH. 

66 LREADBYTE] 	(execute) 	<19:19> := 	<1>: 	ACK, 
LINBiTEJ<-RxDATA. 

67 LOUTBYTE) 	(select) 	<20:20> 	:= OUTLOW; 	OUTHIGH. 
68 LOUTSOURCEJ 	(select) 	<21:21> := 	LOUTBYTEJ; 	STATREG. 
69 LWRITEBYTE] 	(execute) 	<22:22> : 	<1>: 	BUSY, 

Tx<-[OUTSOURCEJ. 
70 LFFCONTROL] 	(composite) 	<23:28> := 	LRESET] 	LFLAGSJ 

LSTATBITJ. 
71 IRESET] 	(execute) 	<23:23> 	: <1>: 	Reset. 
72 LFLAGSJ 	(execute) 	<214:25> 	: <1>: 	LSTATBITJ 	<- 	TRUE; 

<2>: 	STATREG<-0; 
<3>: 	CLOCKFF<-0. 

73 ISTATBIT] 	(select) 	<26:28> 	:= BUSYBIT; 
EVCOUNT; 
OVERFLOW; 
INTMEASURE; 
CLOCKER H; 
ERRBIT; 
SEEN 1; 
SEEN2. 

711 LALU_IN] 	(select) 	<29:29> 	:= <0>: 	TTINHIGH.INLOW"; 
<1>: 	PROBEDATA. 

75 LLOADBUFF) 	(execute) 	<30:30> := 	<1>: 
OUTBUFF<- [ALU_OUTJ. 

76 LSELCOND] 	(select) 	<31:3 14> 	:= TRUE; 
IZJ; 
LNZJ; 
IN]; 
LP]; 
I0J; 
DATA AVAILABLE, 

INTERRUPT; 
DATA AVAILABLE; 

TXBUSY; 
BUSYBIT; 
BUSYBIT, 	IDLE; 
CLOCKFF; 
INLOW(0); 
INLOW(1); 
INLOW(2); 
INLOW(3). 
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77 LZJ (Select) 	: LRESULTJ = 	0. 
78 LNZ] (Select) 	:= IRESULT] # 	0. 
79 LNJ (Select) 	:= IRESULTJ < 	0. 
80 LP] (Select) 	:= LRESULT] > 	0. 
öl LOJ (Select) - OVF. 
82 IRESULT] (select) 	<14:16> := 	LALU_RESULT]; 

LALU_RESIJLTJ; 
LBREG]; 	LBREG]; 
IBREGJ; 	LBREGJ; 
LBREG]; 	IBREG]. 
*DEFAULT1 

83 LNAC] (execute) <35:38> := 	<1>: 
if LSELCONDJ 	call LADDRJ, 

%when LSELCOND] 	= 	0: 	call LADDRJ.; 
<3>: 
if LSELCOND] 	goto LADDRJ 

%when LSELCONDJ 	= 	0: 	goto IADDRJ.; 
<10): 	if 	LSELCOND] return, 

return if LSELCONDJ, 
%when LSELCOND] 	= 	0: 	return.; 

<14>: 	continue; 
<15>: 	goto 	LADDRJ. 

*DEFAULT1 4 
7 	LADDRJ (address) <39:45> := 127. 

$ "Address" field type is just "Emit" used for special 
$ purpose of holding microinstruction address 
$ (asterisked on output). 

8 LSPECREGJ (select) <46:46> := normal; forcereg. 

*** END *** 
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SELECTED OP OP = IFDATAAVAILABLEG0T04 (5) - PACKED 

00000000000000001000000000000000111001100001000 
SELCOND - 7 
NAC - 3 
ADDR - 4* 

SELECTED OP = STATREG<-0 (3) - PACKED 

SELECTED OP = CALL34 (6) - PACKED 

00000000000000001000000010000000000000101000100 
FLAGS - 2 
SELCOND - 0 
NAC - 1 
ADDR - 34' 

SELECTED OP = IFTXBUSYGOTOb (9) - PACKED 

00000000000000001000000000000001000001100001100 
SELCOND - 
NAC - 3 
ADDR - 

SELECTED OP = TX<-STATREG (10) - PACKED 

SELECTED OP = IF - BUSYBITGOT08 (13) - PACKED 

.00000000000000001000011000000001O10001100010000 
OUTSOURCE - 1 
WRITEBYTE - 1 
SELCOND - 10 
NAC - 3 
ADDR - 5' 

SELECTED OP = IFTXBUSYGOT010 (15) - PACKED 

00000000000000001000000000000001000001100010100 
SELCOND - 
NAC - 3 
ADDR - 10' 

SELECTED OP = OUTBUFF<-OUTREG (16) - PACKED 

00000000011000001000000000000010000111000000000 
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BREG - 0 
SOURCE - 3 
Y-1 
CARRY - 0 
F - O 
LOADBUFF - 1 

SELECTED OP = TX<-OUTLOW (17) - PACKED 

000000000000000010000010000000000001 11000000000 
OUTBYTE - 0 
OUTSOURCE - 0 
WRITEBYTE - 1 

SELECTED OP = IFTXBUSYGOT010 (19) - PACKED 

0000000000000000100000000000000100000110001O100 
SELCOND - 
NAC-3 
ADDR - 10' 

SELECTED OP = TX<-OUTHIGH (20) - PACKED 

00000000000000001000101000000000000111000000000 
OUTBYTE - 1 
OUTSOURCE - 0 
WRITEBYTE - 1 

SELECTED OP = GOT02 (21) - PACKED 

00000000000000001000000000000000000001 100000100 
SELCOND - 0 
NAC - 3 
ADDR - 2* 

SELECTED OP = INLOW<-RXDATA (23) - PACKED 

SELECTED OP = IFINLOW(0)GOT06 (26) - PACKED 

00000000000000001001000000000001100001100001100 
INBYTE - 0 
READBYTE - 1 
SELCOND - 12 
MAC - 3 
ADDR - 6' 

SELECTED OP = STATREG<-0 (28) - PACKED 
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SELECTED OP = RESET (27) - PACKED 

SELECTED OP = RETURN (29) - PACKED 

00000000000000001000000110000000000101000000000 
RESET - 1 
FLAGS - 2 
SELCOND - 0 
NAC - 10 

SELECTED OP = IFINLOW(1)GOT06 (33) - PACKED 

00000000000000001000000000000001101001100001100 
SELCOND - 13 
MAC - 3 
ADDR - 

SELECTED OP = IFIDLEGOT035 (34) - PACKED 

00000000000000001000000000000001010001101000110 
SELCOND - 10 
NAG  
ADDR - 35' 

SELECTED OP = STATREG<-O (36) - PACKED 

00000000000000001000000010000000000111000000000 
FLAGS - 2 

SELECTED OP = ERRBIT<-TRUE (37) - PACKED 

SELECTED OP = RETURN (38) - PACKED 

00000000000000001000000001101000000101000000000 
FLAGS - 1 
STATBIT - 5 
SELCOND - 0 
MAC - 10 

SELECTED OP = IFINLOW(2)GOT06 (42) - PACKED 

00000000000000001000000000000001110001100001100 
SELCOND - 14 
NAG  
ADDR - b' 

SELECTED OP = IFIDLEGOT036 (43) - PACKED 
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00000000000000001000000000000001010001101001000 
SELCOND - 10 
NAG - 3 
ADDR - 36* 

SELECTED OP = STATREG<-O (45) - PACKED 

00000000000000001000000010000000000111000000000 
FLAGS - 2 

SELECTED OP = ERRBIT(-TRUE (46) - PACKED 

SELECTED OP = RETURN (47) - PACKED 

00000000000000001000000001101000000101000000000 
FLAGS - 1 
STATBIT - 5 
SELCOND - 0 
NAC - 10 

SELECTED OP = IFINLOW(3)GOT06 (51) - PACKED 

00000000000000001000000000000001111001100001100 
SELCOND - 15 
NAG  
ADDR - bt 

SELECTED OP = OUTREG<-REG(INLOW<4:7>) (53) - PACKED 

SELECTED OP = BUSYBIT<-TRUE (52) - PACKED 

00000000011000010000000001000000000111000000001 
BREG - 0 
SOURCE - 3 
DEST - 2 
CARRY - 0 
F - O 
FLAGS - 1 
STATBIT - 0 
SPECREG - 1 

SELECTED OP = RETURN (54) - PACKED 

00000000000000001000000000000000000101000000000. 
SELCOND - 0 
NAG - 10 

SELECTED OP = IFDATAAVAILABLEGOTOb (57) - PACKED 
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00000000000000001000000000000000111001100001100 
SELCOND - 7 
NAG - 3 
ADDH - b' 

SELECTED OP = INHIGH<-RXDATA (58) - PACKED 

0000000000000000101100000 0000000000111000000000  
INBYTE - 1 
READBYTE - 1 

SELECTED OP = IFDATAAVAILABLEGOTOb (bO) - PACKED 

00000000000000001000000000000000111001100001100 
SELCOND - 7 
NAG - 3 
ADDR - 6* 

SELECTED OP = INLOW<-RXDATA (61) - PACKED 

SELECTED OP = RETURN (62) - PACKED 

00000000000000001001000000000000000101000000000 
INBYTE - 0 
READBYTE - 1 
SELCOND - 0 
NAG - 10 

SELECTED OP = CALL37. (66) - PACKED 

SELECTED OP = BUSYBIT<-TRUE (65) - PACKED 

SELECTED OP = INTMEASURE<-TRUE (b'I) - CLASHED 

(2) 00000000000000001000000001000000000000101001010 
FLAGS - 1 
STATBIT - 0 
SELCOND - 0 
NAG - 1 
ADDR - 37' 

SELECTED OP = PATTERN<-INHIGH.INLOW (67) - PACKED 

SELECTED OP = CALL37 (63) - PACKED 

SELECTED OP = INTMEASURE<-TRUE (b's) - PACKED 

(29) 	00000011111000010000000001011000000000101001010 
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DREG - 3 
SOURCE - 7 
DEST - 2 
CARRY - 0 
F - O 
FLAGS - 1 
STATBIT - 3 
ALU_IN - 0 
SELCOND - 0 
NAC - 1 
ADDR - 37* 

SELECTED OP = ASSBITS<-INHIGH.INLOW (69) - PACKED 

SELECTED OP = CALL37 (70) - PACKED 

000001001110000100000000000000000 0 0 000101001010  
BREG - 
SOURCE - 7 
DEST - 2 
CARRY - 0 
F - O 
ALU_IN - 0 
SELCOND - 0 
NAC - 1 
ADDR - 37* 

SELECTED OP = PAT2<-INHIGH.INLOW (71) - PACKED 

SELECTED OP = CALL37 (72) - PACKED 

SELECTED OP = PATTERN<-PATTERN&ASSBITS (74) - CLASHED 

0000010111100001 00 000 00000000000000000101001010  
DREG - 5 
SOURCE - 7 
DEST - 2 
CARRY - 0 
F-0 
ALU_IN - 0 
SELCOND - 0 
NAC - 1 
ADDR - 37' 

SELECTED OP = CLOCKFF<-O (76) - PACKED 

SELECTED OP = ASS2<-INHIGH.INLOW (73) - PACKED 

SELECTED OP = PATTERN<-PATTERN&ASSBITS (74) - CLASHED 

00000110111000010000000011000000000111000000000 
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BREG - 6 
SOURCE - 7 
DEST - 2 
CARRY - 0 
F - O 
FLAGS - 3 
ALU_IN - 0 

SELECTED OP = IFCLOCKFFGOT08 (78) - PACKED 

0000000000000 0001000000000000001011001100010000  
SELCOND - 11 
NAC - 3 
ADDR - B' 

SELECTED OP = PATTERN<-PATTERN&ASSBITS (74) - PACKED 

SELECTED OP = PAT2<-PAT2&ASS2 (75) - CLASHED 

SELECTED OP = CLOCKFF<-O (79) - PACKED 

01000011001100010000000011000000000111000000000 
AREG - LI 

BREG - 3 
R-1 
S-i 
DEST - 2 
F - k 
FLAGS - 3 

SELECTED OP = PAT2<-PAT2&ASS2 (75) - PACKED 

0110010100110001000000000000000000011 1 00 0000000  
AREG - 6 
BREG - 5 
R-1 
S  
DEST - 2 
F - k 

SELECTED OP = CALL39 (81) - PACKED 

0000000000000000100000000000000000000010100111 0  
SELCOND - 0 
NAC-1 
ADDR - 39' 

SELECTED OP = RETURNIFBUSYBIT (82) - PACKED 
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(37) 00000000000000001000000000000001010101000000000 
SELCOND - 10 
NAC - 10 

SELECTED OP = IFDATA-PATTERN#OGOTO (84) - PACKED 

	

(38) 	001100010010010 01100000000000000010001100010000  
AREG - 3 
BREG - 1 
R  
S  
CARRY - 1 
F - i 
SELCOND - 2 
RESULT - 1 
NAC - 3 
ADDR - 8* 

SELECTED OP = ASSBITS<-ASS2 (87) - PACKED 

SELECTED OP = SEEN1<-TRUE (85) - PACKED 

SELECTED OP = COUNT<-0 (86) - CLASHED 

	

(39) 	0110 0100100000010000000001110000000111000000000  

AREG - 6 
BREG - 
SOURCE - 4 
DEST-2 
CARRY - 0 
F-0 
FLAGS  
STATBIT - 6 

SELECTED OP = COUNT<-0 (86) - PACKED 

(40) 0000001001010001000000000000000000011100000000 0  

BREG - 2 
SOURCE - 2 
DEST-2 
F-4 

SELECTED OP = COUNT<-COUNT+1 (89) - PACKED 

SELECTED OP = IFOVFGOT012 (92) - PACKED 

	

(41) 	0000001001100001010000000000000010100110001100 10 
BREG - 2 
SOURCE - 3 
DEST - 2 

233 



CARRY - 1 
F - O 
SELCOND - 5 
NAC - 3 
ADDR - 12' 

SELECTED OP = STATREG<-0 (93) - PACKED 

000000000000000010000000100000000001 11000000000 
FLAGS - 2 

SELECTED OP = ERRBIT<-TRUE (95) - PACKED 

SELECTED OP = OVERFLOW<-TRUE (94) - CLASHED 

0000000000000000100000000110 1000000111000000000  
FLAGS - 1 
STATBIT - 5 

SELECTED OP = OVERFLOW<-TRUE (94) - PACKED 

SELECTED OP = GOT013 (96) - PACKED 

(414) 	00000000000000001000000001010000000001100011010 
FLAGS - 1 
STATBIT - 2 
SELCOND - 0 
NAC - 3 
ADDR - 13' 

SELECTED OP = CALL39 (98) - PACKED 

(45) 00000000000000001000000000000000000000 1 0100 11 1 0  
SELCOND - 0 
NAC - 1 
ADDR - 39* 

SELECTED OP = RETURNIFBUSYBIT (100) - PACKED 

00000000000000001000000000000001010101000000000 
SELCOND - 10 
NAC - 10 

SELECTED OP = IFDATA-PAT2#0GOTO8 (102) - PACKED 

01010001001001001100000000000000010001100010000 
AREG - 5 
BREG - 1 
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R-i 
s-i 
CARRY - 1 
F - i 
SELCOND - 2 
RESULT - 1 

NAC - 3 
ADDR - 8* 

SELECTED OP = OUTREG<-COUNT (10 11) - PACKED 

SELECTED OP = SEEN2<-TRUE (103) - PACKED 

SELECTED OP = RETURN (105) - PACKED 

(118) 	00100000100000010000000001111000000101000000000 
AREG - 2 
BREG - 0 
SOURCE - 
DEST - 2 
CARRY -C 
F-0 
FLAGS - 1 
STATBIT - 7 
SELCOND - 0 
NAC - lO 

SELECTED OP = IFINTERRUPTCALL311 (107) - PACKED 

(149) 	00000000000000001000000000000000110000101000100 
SELCOND - 6 
NAC-1 
ADDR - 34* 

SELECTED OP = RETURNIFIDLE (109) - PACKED 

00000000000000001000000000000001010101000000000 
SELCOND - 10 
NAG - 10 

SELECTED OP = IFCLOCKFFGOT016 (113) - PACKED 

00000000000000001000000 000000001011001100100000  
SELCOND - 11 
NAG - 3 
ADDR - 16* 

SELECTED OP = STATREG<-O (1111) - PACKED 
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00000000000000001000000010000000000l 11000000000 
FLAGS - 2 

SELECTED OP = CLOCKERR<-TRUE (116) - PACKED 

SELECTED OP = ERRBIT<-TRUE (115) - CLASHED 

0000000'OOOOOOOOOlOOOOOOO011O0000000111000000000 
FLAGS - 1 
STATBIT - LI 

SELECTED OP = ERRBIT<-TRUE (115) - PACKED 

SELECTED OP = RETURN (117) - PACKED 

00000000000000001000000001101000000101000000000 
FLAGS - 1 
STATBIT - 5 
SELCOND - 0 
NAC - 10 

SELECTED OP = IFCLOCKFFGOT014 (120) - PACKED 

00000000000000001000000000 000001011001100011100  
SELCOND - 11 
NAC - 3 
ADDR - 14* 

SELECTED OP = DATA<-PROBEDATA&ASSBITS (122) - PACKED 

SELECTED OP = CLOCKFF<-0 (121) - PACKED 

SELECTED OP = RETURN (123) - PACKED 

01000001101100010000000011000100000101000000000 
AREG - 
BREG - 1 
R-5 
S-5 
DEST - 2 
F - LI 
FLAGS - 3 
ALU_IN - 1 
SELCOND - 0 
NAC - lO 

SELECTED OP = CALL37 (126) - PACKED 

SELECTED OP = EVENTS<-0 (133) - PACKED 
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SELECTED OP = EVCOUNT<-TRUE (125) - PACKED 

00001000010100010000000001001000000000101001010 
BREG - 8 
SOURCE - 2 
DEST-2 
F -  
FLAGS - 1 
STATBIT - 1 
SELCOND - 0 
NAC - 1 
ADDR - 37' 

SELECTED OP = PATTERN<-INHIGH.INLOW (127) - PACKED 

SELECTED OP = CALL37 (128) - PACKED 

00000011111000010000000000000000000000101001010 
BREG - 3 
SOURCE - 7 
DEST - 2 
CARRY - 0 
F - O 
ALU_IN - 0 
SELCOND - 0 
NAC - 1 
ADDR - 37* 

SELECTED OP = ASSBITS<-INHIGH.INLOW (129) - PACKED 

SELECTED OP = CALL37 (130) - PACKED 

0000GIOO1110000100000000000000000000001O1001O1O 
BREG - 
SOURCE - 7 
DEST - 2 
CARRY - 0 
F - O 
ALU_IN - 0 
SELCOND - 0 
NAC - 1 
ADDR - 37' 

SELECTED OP = CLOCKFF<-0 (1314) - PACKED 

SELECTED OP = PATTERN<-PATTERN&ASSBITS (132) - PACKED 

SELECTED OP = INTERVAL<-'INHIGH.INLOW (131) - CLASHED 

01000011001100010000000011000000000111000000000 
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AREG - 
BREG - 3 
R-1 
3-1 
DEST - 2 
F - k 
FLAGS - 3 

SELECTED OP = IFCLOCKFFGOT016 (136) - PACKED 

00000000000000001000000000000001011001100100000 
SELCOND - 11 
NAC-3 
ADDR - 16* 

SELECTED OP = INTERVAL<-INHIGH.INLOW (131) - PACKED 

SELECTED OP = CLOCKFF<-O (137) - PACKED 

00000111111000010000000011000000000111000000000 
BREG - 7 
SOURCE - 7 
DEST-2 
CARRY -C 
F - O 
FLAGS - 3 
ALU_IN - 0 

SELECTED OP = CALL39 (lkO) - PACKED 

00000000000000.00100 0000000000000000000101001110  
SELCOND - 0 
NAC - 1 
ADDR - 39' 

SELECTED OP = RETURNIFBUSYBIT (141) - PACKED 

00000000000000001000000000000001010101000000000 
SELCOND - 10 
NAC - 10 

SELECTED OP = INTERVAL<-INTERVAL-1 (1 113) - PACKED 

SELECTED OP 	IFINTERVAL<0G0T017 (1411) - PACKED 

0000011101100101000000000000 00 0 0011001100100010  
BREG - 7 
SOURCE - 3 
DEST - 2 
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CARRY - 0 
F - i 
SELCOND - 3 
RESULT - 2 
NAC - 3 
ADDR - 17' 

SELECTED OP = IFDATA-PATTERN#OGOT018 (1 1 6) - PACKED 

	

(66) 	00110001001001001100000000000000010001100100100 
AREG - 3 
BREG - 1 
R  
S  
CARRY - 1 
F - i 
SELCOND - 2 
RESULT - 1 
NAC - 3 
ADDR - 18' 

SELECTED OP = EVENTS<-EVENTS+i (147) - PACKED 

	

(67) 	000010000110000 1 010 00000000000000 0 0111000000000  
BREG - 8 
SOURCE - 3 
DEST - 2 
CARRY  
F - O 

SELECTED OP = CALL39 (149) - PACKED 

(68) 00000000000000001000000000000000000000101001110 
SELCOND - 0 
NAC-i 
ADDR - 39' 

SELECTED OP = RETURNIFBUSYBIT (150) - PACKED 

(69) 00000000000000001000000000000001010101000000000 
SELCOND - 10 
NAC - 10 

SELECTED OP = INTERVAL<-INTERVAL-1 (152) - PACKED 

SELECTED OP = IFINTERVAL<0G0T017 (153) - PACKED 

	

(70) 	00000111011001010000000000000000011001100100010 
BREG - 7 

239 



SOURCE - 3 
DEST - 2 
CARRY - 0 
F - i 
SELCOND - 3 
RESULT - 2 
NAC - 3 
ADDR - 17* 

SELECTED OP = IFDATA-PATTERN=OGOT018 (155) 	PACKED 

00110001001001001100000000000000001001100100100 
AREG - 3 
BREG - i 
R  
3-1 
CARRY - 1 
F - i 
SELCOND - 1 
RESULT - i 
NAC-3 
ADDR - 18* 

SELECTED OP = GOT016 (156) - PACKED 

0000000000000000i000000000000000000001 100100000 
SELCOND - 0 
NAC - 3 
ADDR - 16* 

SELECTED OP = OUTREG<-EVENTS (157) - PACKED 

SELECTED OP = RETURN (158) - PACKED 

10000000100000010000000000000000000101000000000 
AREG - 8 
BREG - 0 
SOURCE - 
DEST - 2 
CARRY - 0 
F - O 
SELCOND - 0 
NAC - 10 

*** 106 OPERATIONS PACKED INTO 73 MICROINSTRUCTION WORDS 
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1I.IbT4cIfI- 

INSTRUCTION EXPLICIT SUCCESSORS 

1 1 
2 11 
3 3 
14 1 
5 5 
6 - 

7 - 

8 8 
9 - 

10 1 
11 13 
12 - 

13 17 
114 - 

15 - 

16 - 

17 21 
18 57 
19 - 

20 - 

21 23 
22 - 

23 - 

214 214 
25 - 

26 26 
27 - 

28 214 
29 214 
30 214 
31 214 
32 - 

33 33 
314 - 

35 - 

36 149 
37 - 

38 36 
39 - 

140 - 

141 145 
142 - 

143 - 

1414 146 
145 149 
146 - 

147 141 
148 - 
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EXPLICIT SUCCESSORS 

49 
50 
51 
52 
53 
514 
55 
56 
57 
58 
59 
60 
61 
62 
63 
614 
65 
66 
67 
68 
69 
70 
71 
72 
73 

11 

55 

55 

214 
214 
214 

61 

73 
63 

1 9 

73 
68 
63 
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A source microprogram description is expressed in 
Microprogram Design Language (MDL) as a set of 
micro-oDeratlons whose conceptual order of execution is 
sequential, except where otherwise designated explicitly. 

A micro-operation is terminated by a new line or by a 
Comment statement. Comments start with a '$' symbol and 
are terminated by a new line. Where a '$' symbol is part 
of a micro-operation, then it should be duplicated (?$$'). 
Each statement may be preceded by a Label. A label may be 
any string of characters separated from the 
micro-operation by '::'. 

A micro-operation may belong to one of three classes: 
Reister Transfer, Control, or Miscellaneous. 

Register Transfer micro-operations are of the form 
NAME'<-'EXPRESSION, denoting the transfer of the value 
generated by EXPRESSION to the operand, NAME. 

NAME is a string of symbols not including an Operator 
(see below) and including g. least one letter. 

EXPRESSION is a list of OPERANDS separated by one or 
more OPERATORS. 

An OPERAND is a NAME or a number. 
An OPERATOR is one of the following: 

" # $ & ( ) * = - i: ] { } @ + ; I \ / . , - 	< > 

Control operations are those which cause deviation from 
the normal sequential flow, of control between operations. 
Control constructs supported in the language are:. 
Conditional Blocks, Loops, Wait for conditions, Subroutine 
Call and Return, and Simple Branching. 

(In the following, underlined words in quotes denote 
key words in the language. They are not underlined or in 
quotes in the source microprogram.) 

A Conditional Block is headed by an operation of the 
form 

EXPRESSION "Then". 

EXPRESSION will normally be a conditional expression, but 
the language requires only the syntax cited above for the 
phrase. This is followed by a block of micro-operations 
to be executed only if the interpretation put on the 
meaning of EXPRESSION is True. This block may be followed 
by a block of operations to be executed only if EXPRESSION 
is False, in which case the two blocks are separated by 
the statement "Else". The conditional block is terminated 
by the statement "Finish". 

A Loop construct is headed by the directive "Loop" ;  
optionally succeeded (in the same statement) by 
"While" EXPRESSION. This is followed by a block of 
statements to be executed repeatedly while the conditional 
expression, if any, at the head of the loop is true. The 
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loop is terminated by the statement "Repeat", optionally 
qualified by "While" EXPRESSION, which if the expression 
evaluates to True, causes control to revert back to the 
head of the loop. Otherwise, execution proceeds 
sequentially. 

The normal execution of operations inside a loop may be 
interrupted by a statement causing a jump out of the loop. 
It may also cause a jump out of any loops enclosing the 
most immediate one. The statement is of the form: 

"Exit""_"N, where N is the number of nested loops to be 
exited from. "Exit" alone causes exit from a single loop. 
The directive may optionally be preceded or succeeded by 
"11" EXPRESSION, in which case the jump is taken only if 
the expression is true. 

A statement of the form "Wait jj" EXPRESSION causes 
execution of the microprogram to halt until EXPRESSION 
becomes true. This is used to effect synchronization of 
the microprogram with a concurrently executing process. 

Subroutine calls are specified as "Call" LABEL, 
optionally preceded by "j" EXPRESSION. "Return", 
optionally preceded by "Jj"  EXPRESSION, effects return 
from a subroutine. Subroutine bodies are identified by 
the heading label. No special precaution is afforded to 
them: it is possible to execute the statements of the 
subroutine without calling it. 

Simple conditional branching is performed by statements 
of the form 

"j" EXPRESSION "Goto" LABELLIST. 

If EXPRESSION evaluates to a single boolean value, then' 
LABELLIST may be a single label (a name comprising any 
characters) to which control is transferred if EXPRESSION 
is true, with sequential execution preserved if EXPRESSION 
is false. Otherwise, LABELLIST is a list of labels 
separated by commas, with the whole list enclosed in round 
brackets, as also should be the conditional expression. 
There should be 2' such labels where EXPRESSION evaluates 
to an n-tuple. An unconditional branch in the flow of 
control Is specified as "Goto" LABEL. 

Any micro-operation which does not contain "<-" or any 
of the key words denoting control micro-operations is 
classified as a miscellaneous micro-operation and is 
accepted as a valid statement in MDL. 

Any statement may be qualified by a list of operands 
which are affected by the action of that operation but are 
not explicitly mentioned in the statement itself. This is 
specified in the form: 

OPERATION ";" "[" NAMELIST "" NAMELIST "]" 

The first NAMELIST is a list of names, separated by 
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commas, which are the operands which act as destinations 
for data in the action of the operation. The second 
NAMELIST is a list of operands which act as data sources 
in the action of the operation. If the vertical bar 
symbol ("") is omitted, then all the operands are treated 
as destinations. 

The order of execution of operations may be 
synchronized explicitly in two ways. Two contiguous 
statements in the source microprogram may be separated by 
a comma, a semi-colon, or a comma and a semi-colon (in 
either order). These represent respectively the following 
three situations: 

Both operations should be executed concurrently. 
The second operation should not be executed before 
the first, but may be executed concurrently with It. 
The second operation should be executed after the 
first. 

(2) and (3) above may also be represented as follows: 

OPERATION ";" "[" VALUE LIST "1," VALUE LIST "]" 

The OPERATION is the second of the pair related by (2) or 
(3). The two VALUE LISTS are lists of integers separated 
by commas denoting the 'distance', in terms of statements, 
from that operation to preceding operations in the source 
microprogram with which it is related. The first list 
denotes those operations with which the relationship is 
like (3)above and the second, if present, denotes the 
operations with which the relationship is-like (2) above. 

If a statement Is qualified with either a list of 
affected operands or a list of preceding statements whose 
execution it must not precede, as well as synchronization 
punctuation as described above, then the latter should 
follow the former in the statement. 

Recognition of any key words or symbols in the 
statement may be suppressed by enclosing the statement in 
quotation marks, where the final quote mark may be before 
or after any synchronization directives as described above 
depending on whether they should be recognized as such or 
Included as part of the micro-operation. Similarly, the 
initial quote mark may come before or after any label 
associated with the micro-operation depending on whether 
it is desired that it should or should not be recognized 
as such. 
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