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ABSTRACT 

Graph theory is applicable to the solving of problems in nearly 

every field of scientific study. The purpose of this thesis is to 

consider its applications in representing and analyzing digital 

computers. Fundamental graph theory definitions, the types and the 

properties of the directed graphs, the matrix representation, and 

several reduction techniques are discussed. The blocking gate method 

for diagnosing computer systems is described and applied to the 

Scientific Control Corporation (SCC) 650 for its fault-diagnosis. 

Microprogramming has been a significant trend in hardware and 

software designs of computers. Microprogrammed computers are 

discussed in comparison to conventional computers. A general scheme 

utilizing four nodes generates directed graphs for both types of 

architecture. The directed graphs are studied with respect to the 

flexibility and cost parameters. 
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I. INTRODUCTION 

Computers are one of the most complex systems that man has 

made. The research that led to the evolution of today's large 

scale computers is extensive and complex enough to create a 

science: computer science. The complexity is not only in the 

1 

design stages, but also in the use and understanding of the systems. 

The large scale use of such complex systems have led some researchers 

to investigate tools not commonly used. In recent years, 

applications of graph theory to computers as well as other fields 

of study have given fruitful results and have attracted more and 

more scientists. The attempt here will be to review previous 

accomplishments on a fundamental level and to apply graph theory 

concepts to computer related problems. 

A great advantage for anyone who works on graphs is to be able 

to transfer his problem to a computer. The graphs are represented 

by matrices that can be easily handled in computer programs. 

Useful programs, which are applicable to many engineering problems, 

are documented by Henley and Williams [1]. 

The theory relevant to the study of graphs is rigorously 

developed [2-3]. Because its applications are many, it is worth 

mentioning a few interesting papers. A Fortran recognizer, which 

is itself a Fortran program, has been modeled by a graph by Gonzalez 

and Ramamoorthy [4]. This graph is reduced by the techniques 

described in the following chapter . The information obtained from 

the reduced graph is useful in determining the suitability of a 



program for parallel processing. Another paper presents a 

discussion of the techniques for optimal scheduling of tasks in a 

multiprocessor system [5] • Given a set of computational tasks and 

the relationship between them, a graph is formed. The algorithm 

developed finds a schedule for tasks for which the total execution 

time and the minimum number of processors required to realize this 

schedule are minimum. Bruno and Altman [6] have modeled the 

control structure of an asynchronous digital system. Basic control 

modules are formed to perform single control functions. The 

obtained graph is used to find the necessary and sufficient 

conditions for a class of well-formed, control networks. 

The discussion of graphs in this paper will not span the 

classical use of graphs, such as state diagrams which model 

finite-state sequential machines [7]. However, minicomputer, 

conventional and microprogrammed computer structures will be 

represented by directed graphs, that serve the analysis of 

fault-diagnosis and structural behavior. 

2 



II. A REVIEW OF DIRECTED GRAPHS AS APPLIED TO COMPUTERS 

A. Basic Definitions 

A graph is simply a mathematical model of a system. It 

exhibits a relation or the absence of a relation among the 

elements of a set. The terms "point", "vertex", and "node" are 

frequently referred to as the elements of this set. A relation 

between these elements is usually called "line", "branch", "link", 

or "edge". In this paper, interest is concentrated on directed 

graphs, where the edges must be directed, and the terms "node" 

and "edge" will be used. 

What is to be coordinated with nodes and edges is a matter 

for the problem in question. In the case presented here, a node 

may possibly represent a register, a flip flop, a gate, or a unit 

of the computer. An edge may represent a connection between two 

registers, or if it has a value associated, it may reflect a 

property of the system such as speed. Figure 1 shows a simple, 

directed graph. 

Graphs may have properties such as symmetry, reflexiveness, 

and completeness. A graph is symmetric if every node satisfies 

the following condition: existence of an edge from node (a) to 

node (b) implies an edge directed from node (b) to node (a) . A 

graph is reflexive if every node has a loop on itself. A graph 

is complete if every pair of nodes is connected in at least one 

direction. These properties are reflected in Figure 2. 

3 
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e, 
n1 ...,_ ___ ----~~~-----. n2 

Figure l. A Directe d Graph. 



a. Symmetric Graph b. Reflexive Graph 

e1 
.-------~--------~~n2 

c. Complete Graph 

Figure 2. Properties of Directed Graphs. 
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B. Types of Directed Graphs 

The following set of directed graphs are not used throughout 

the rest of the paper but are included here for the sake of 

completeness. 

A net is a directed graph consisting of a set of nodes and 

edges. The set of nodes is finite and not empty. The set of 

edges is finite [3]. Hence a single node can constitute a trivial 

net. An example of a net is shown in Figure 3a. Petri nets, 

named after their inventor, C. A. Petri, are used to represent 

systems in which both static and dynamic conditions can exist 

simultaneously [8]. J. L. Bear introduced them as graph models 

for parallel computation in a survey in which multiprocessing was 

studied (9]. 

A relation is a directed graph which satisfies the above 

conditions but does not have any parallel edges. Two edges 

connecting the same two nodes are not considered parallel if they 

are oppositely directed. 

Figure 3a is shown. 

In Figure 3b, a relation obtained from 

A digraph is an irreflexive relation [3]. Namely, it is a 

directed graph or a net having no parallel edges and loops. The 

theoretical studies and matrix representation of digraphs will be 

discussed in detail below. Figure 3c illustrates a digraph 

reduced from Figure 3b. Acyclic directed graphs form a special 

class of digraphs where no two nodes are mutually reachable [3,9]. 

6 
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a. Net b. Relation 

c. Digraph d. Network 

Figure 3. Types of Directed Graphs. 



A network is a relation in which the edges are assigned 

values [3]. If all the values on the edges are one, the graph is 

still a relation. In this sense, relations form a subset of 

networks. Systems dealing with frequencies, probabilities, and 

cost analysis can easily be represented by networks. A 

corresponding network of the relation in Figure 3b is shown in 

Figure 3d. In flow networks edges are interpreted to represent 

capacities of a flow, such as signals, cars, people, oil, and 

trade items. Then maximum flow considerations become important. 

Techniques and algorithms are developed to find a maximum flow in 

a network between any two nodes [2-3]. Network flows are 

formulated as linear programs. Maximum flow in relation to linear 

programming is discussed by T. C. Hu [10]. 

C. Matrix Representation 

Matrix representation is a practical tool with which one can 

work on graphs. It allows algebraic manipulation and use of 

computer programming so that large dimensioned matrices, hence 

large graphs that have many nodes and edges, can be analyzed. 

In forming the matrix, one row and one column for each node 

in the graph are assigned. Unless the assignment varies, a square 

matrix is generated. Depending on what is intended for the matrix, 

it is equally valuable to assign rows and columns to edges or rows 

to nodes and columns to edges. However, the case with nodes is 

discussed here, and it should be kept in mind that a similar 

8 



approach may be taken for other cases. 

1. The Adjacency Matrix 

The adjacency or connectivity matrix A has extensive use 

and is defined as follows: If the element a .. of the matrix 
l] 

A is one, it indicates that there is an edge from node (i) to 

node (j). If a . . equals zero, the graph does not contain an 
l] 

edge from node (i) to node (j) [3,11-12]. In other words, 

the nonzero elements of A show how many paths of length one, 

i.e., directed edges, exist between the corresponding nodes. 

2 2 Similarly, the elements of A , where A is obtained by regular 

matrix multiplication of A by itself, indicate the number of 

possible paths of length two. The idea can be extended to 

find the number of possible paths of length n. These are 

illustrated in Figure 4. For example, there exists one 

possible path of length two from n1 to n 4 . 

The r ow sum of node (i) of A is called the outdegree of 

node (i ) and the column s um of node (i) of A is called t h e 

indegree. These figures give the total number of edges going 

out of and into the node, r e spective ly. 

The adjace n c y ma t rix has b een e ffective ly a pplied to 

computer areas. Ramamoorthy and Chang [11] have based an 

algorithm on the adjace n c y matrix to segme nt a large system 

into s maller subsyste ms with the purpose o f diagnosing t h e 

system in paralle l. Russe l a nd Kime [12] u s e d t h e adj acenc y 

9 
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0: 

a. Logic Diagram for z = XY. b. Its Directed Graph 

n1 n2. n3 n4 

n1 0 0 1 0 

A n2 0 0 1 0 
n3 0 0 0 1 

n4 0 0 0 0 

c. Its Adjacency Matrix A 

n1 n2 n3 n4 

n1 0 0 0 1 

~ n2 0 0 0 1 

n3 0 0 0 0 
n4 0 0 0 0 

d. Square of the Adjacency Matrix 

Figure 4. Adjacency Information of D Representing a Logic Diagram. 



matrix as well as indegree and outdegree concepts in fault 

diagnosis of combinational networks. Kleir and Ramamoorthy 

[13] have used the adjacency matrix in optimization 

strategies for microprograms. It has also been used in the 

structural theory aspects of machine diagnosis [14]. 

2. The Reachability Matrix 

The reachability matrix, R, gives useful information 

about the behavior of a graph. The element r .. equals one 
~J 

if node (i) reaches node (j) over any path regardless of its 

length and if i equals j. If r .. equals zero, it indicates 
~J 

that there is no possible path whereby node (j) can be 

reached from node (i) [3,11-12]. The transpose of R, namely 

RT, represents a graph in which the directions are reversed 

with respect to the original graph. 

T 
The elementwise product, Q = R x R , is obviously a 

symmetric matrix. The nonzero elements, q .. , of this matrix 
~J 

indicate that nodes (i) and (j) are mutually reachable. This 

information is useful for the purpose of reducing graphs if 

necessary. One reduction technique requires the selection of 

the nodes whose columns are equal. These are the nodes which 

are reachable from the same set of nodes and which reach the 

same set of nodes. Hence, they can be combined into one node. 

ll 

The set of nodes combined into one new node is called a strong 

component. If all columns of Q happen to be equal, the graph 



is said to be strongly connected, in which case every node is 

reachable from every other node. An example of the points 

illustrated above is given in Figure 5. 

Hence, the graph has four strong components, {n1 }, {n2 }, 

{n3}, and {n4 , n 5 }, which are called N1 , N2 , N3 , and N4 , 

respectively. To find the reduced graph with nodes N1 , N2 , 

N3 , and N4 , the new edges must be found. The rule is as 

follows: There exists an edge from N. toN. if there is a 
~ J 

path from any node inN. to any node inN .. The reduced graph 
~ J 

is called a condensation of D and is shown in Figure 6. 

The reachability matrix has been applied to computer 

related problems [12,14-15]. It provides a powerful reduction 

technique. Most of the algorithms in fault diagnosis are 

derived for reduced graphs [16]. 

3. The Connectedness Matrix 

12 

A valuable measure for classifying graphs is connectedness. 

Earlier, a strongly connected graph a nd its strong components 

were defined. To explore the other possibilities, the 

following types of graphs can b e briefly described with 

respect to connectedness. A disconnected graph implies that 

there exists at least one node or a set of strongly connec ted 

node s that neither reaches nor is reached from any other node . 

In a strictly weak graph, there exists a sequence of e dges 

between any t wo nodes ; howe v e r , the directions are not 
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a. Logic Diagram for F = XY + Yf b. Its Directed Graph 

nl n2 n3 n4 ns 
nl 1 0 1 

n2 0 1 1 1 
R n3 0 0 1 1 

n4 0 0 0 
ns 0 0 0 1 

c. Its Reachability Matrix R 

nl n2 n3 ~ ns 

nl 1 0 0 0 0 
n2 0 1 0 0 0 

Q n3 0 0 1 0 0 
n4 0 0 0 
ns 0 0 0 

d. 
T 

Q = R X R 

Figure 5. Reachability Information of D Representing a Logic Diagram. 
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Figure 6. The Reduced Graph of Figure Sb. 
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continuous. A strictly strong graph has a directed path 

between any two nodes. The example in Figure 7 clarifies 

these descriptions. 

It is an easy matter to deduce the idea of connectedness 

from the reachability information. Hence, a connectedness 

matrix, C, can be defined, which will indicate the above 

attributes, given two nodes. Let us say that 0, l, 2, and 3 

represent the four kinds of connectedness: disconnected, 

strictly weak, strictly strong, and strongly connected, 

respectively. A new matrix, J, is defined as follows: 

if node (k) and node (l) are disconnected 

otherwise 

Thus, the matrix representation for connectedness is simply 

T c R + R + J. For instance, in Figure 7a, because j 14 , 

r 14 , and r 41 are zero, c 14 equals zero implying a disconnected 

graph. 

In case the graph is composed of disconnected subgraphs, 

D1 , o2 , •.. Dn' the connectedness matrix for each subgraph 

can be found, C(D1 ), C(D), ... C(D). The connectedness 
2 n 

matrix of the whole graph will have the forms shown in 

Figure 8. 

4. The Value Matrix 

For a network, the adjacency matrix has scalar entries 
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a. Disconnected Graph b. Strictly Weak Graph 

c. Strictly Strong Graph d. Strongly Connected Graph 

Figure 7. Types of Graphs with Respect to Connectedness. 
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C(q) 0 0 • • 0 

0 ((02) 0 • • 0 
0 0 ((03) • • 0 

C= • • • • • • 

• • • • • • 
• • • • • • 
0 0 0 • • ((On) 

Figure 8. Connecte dness Matrix of a Disconnect ed Graph. 
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rather than ones and zeros. To distinguish the two matrices, 

the adjacency matrix for a network is called the value 

matrix, M. If the values on the edges are associated with 

probability or cost, the matrix is called a probability 

matrix, P, or a cost matrix, G, respectively. In cases where 

the outdegree of each node on a probability network is one, 

and the probabilities assigned to the edges are time-dependent, 

this particular type of graph is occasionally called a markov 

chain. M. A. Breuer modeled the statistics of intermittent 

faults in digital circuit by a first order Markov model [17]. 

The cost of going from node (i) to node (i+l) is infinite, 

if there is no edge from node (i) to node (i+l). Examples 

are shown in Figures 9 and 10. 

5. Description of the Basic Theorems 

At this point, it is interesting to investigate whether 

the matrices discussed relate to each other in any manner. 

The matrix R is expected to be a function of the powers of A, 

n 
because the elements of A indicate the possible number of 

paths of length n, and the reachability question asks whether 

any path exists between two given nodes. The procedure then 

must be to take powers of A until the longest path has be.en 

searched and to transform the total number of possibilities 

to a "one" to indicate reachability. The latter function is 

labeled U and defined as follows: U(a) = 1, where a is any 



1 9 

.25 

nl n2 n3 n4 ns 

nl 0 .25 .5 .25 0 

n2 0 .4 .6 0 0 

p == n3 0 0 0 0 1 

n4 .5 0 .5 0 0 

ns 0 0 0 1 0 

Figure 9. A Probability Network and its Probability Matrix. 



G 

90 

0 25 
0 

Figure 10. A Cost Network and its Cost Matrix . 
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number other than zero, and U(O) = 0. 

After this stage, the reachability matrix will not 

change. The above descriptions can be summarized with a 

theorem: 

Theorem 1: R 
n 

2 n 
= U (I + A + A + ... + A ) in which 

I is the identity matrix and defines reachability 

over length n. I f R = R l' then R n n+ R [ 3] • 
n 

The cost of going from one node to another over a 

specified length is of great importance. One certainly would 

try to find the minimum cost path, which is called cost 

geosdesic. When taking powers of G, the matrix multiplicati on 

is performed by using the modified multiplication "x" and the 

modified addition "+" operations defined as follows : a x b = 

a + b and c + d min ( c, d) [ 3] • 

Obviously, the arithmetic does not add all possible 

paths of a certain length but rather finds the cost of 

different paths of the same length and chooses the minimum 

value. Let us find g~1 of G2 , i.e., the cost of going from 

node (l) to itself over a path of length two by referring to 

Figure 10. 

min(O, 140, oo ) 

o. 

21 
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Staying at node (1) is assumed to have no cost, hence that path 

is chosen. 

Theorem 2: There is a positive integer n for which 

Gn = Gn+l [3]. 

After reaching this condition, there is no need to take 

higher powers of G, and Gn is called the total cost matrix. 

In general, if the edges of the network indicate only 

zeros and ones, a distance matrix is formed, and the modified 

arithmetic yields the minimum distance. 

D. Fault Diagnosis Using Graph Theory 

A fault is a malfunction in the system. It is of vital 

importance whether a fault exists or not. Testing the machine for 

a fault if it exists is called a diagnosis. Fault diagnosis in 

digital computers is one of the major areas where efficient methods 

have to be established. In recent years, applications of graph 

theory to this area have been promising. An approach called a test 

point method finds spots on the system where test points can be 

located [14]. Some points serve as inputs, and the results can be 

detected at other points. The blocking gate method is another 

approach in which the minimum number of edges to be blocked are 

found to diagnose the system [16] . The latter method is discussed 

in detail below. 

The blocking gate method assumes that there exists only one 



fault at a time and that it is not self-correcting. Also no faults 

can cancel each other during diagnosis. One way to diagnose the 

system is to insert blocking gates on every edge in the graph. The 

idea can be extended to conduct the diagnosis more efficiently. 

First, the system is modeled with a directed graph. Then the 

graph is reduced so that it does not contain any strongly connected 

components. Finally, the graph is transformed into a single input 

single output graph (SIOG) to enable the method to work with one 

input and one output. This is easily accomplished. If the graph 

has more than one input, an input node (i) is entered to the graph 

that fans out to all the necessary inputs. If there is more than 

one output, they will lead to an extra output node (o). One can 

start with the example of the SIOG shown in Figure 11 to illustrate 

the steps in the blocking gate method. 

At this point, a reduced SIOG exists and it is ready for the 

introduction of the pattern for finding the locations of the 

minimum number of blocking gates. The range of node (k) is the 

set of nodes on the directed path from node (i) to node (o) , when 

node (k) is deleted. The node range matrix, NR, of a SIOG is a 

square matrix with rows and columns corresponding to the nodes of 

the graph. The NR matrix of the graph SIOGl is given in Figure 12. 

The k'th row of the matrix has elements of ones for the nodes in 

the range of node (k). Otherwise, the elements are zero. The set 

of nodes, whose columns are equal, constitutes the partition of 

maximum distinguishability, MD. Referring to Figure 12, the MD 

23 
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INPUT 

S IOG1: 

OUTPUT 

Figure 11. A Single Input Single Output Grap h SI OGl . 
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1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 
2 1 0 1 0 0 1 1 0 1 1 

3 1 1 0 1 1 0 0 1 0 1 
4 1 1 1 0 1 1 1 1 1 1 

NR= 5 1 1 1 0 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 

7 1 1 1 1 1 1 0 1 1 1 

8 1 0 1 0 0 1 1 0 1 1 

9 1 1 0 1 1 0 0 1 0 1 

10 0 0 0 0 0 0 0 0 0 0 

Figure 12. The Node Range Matrix of the Graph SIOGl. 



set for the graph SIOGl is found as follows: 

MD {1,10; 2,8; 3,9; 4; 5; 6; 7}. 

Every edge of the graph is to be tested so that the set of 

minimum number of edges is found. The blocking gates have to be 

located on this set of edges to distinguish the particular 

distinguishability class. Another matrix is used to perform what 

is mentioned above. The matrix, ER, has columns corresponding to 

the partitions of maximum distinguishability; its rows correspond 

to the edges of the graph. If the edges are ordered with 

consideration for the cost of blocking gates to be located on them, 

then the resultant sets of edges obtained from the matrix, ER, 

can be compared and the set with the minimum cost can be chosen. 

Figure 13 illustrates the ER matrix of the graph SIOGl. It is 

assumed that the cost of building blocking gates on the edges 

increases as the output node is approached. 

The edge range of an edge (k) is defined as the set of nodes 

on a directed path from node (i) to node (o), when edge (k) is 

blocked. The element erkl on the k'th row of the matrix ER would 

be one if the partition 1 includes the nodes within the range of 

edge (k). Otherwise, the elements are zero. After constructing 

the matrix, equal rows are found. These rows form the sets of a 

new partition, named E. The equal rows of the ER matrix form the 

following set:: 
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1-10 2-8 3-9 4 5 6 7 

e1 0 1 0 0 1 1 

e2 1 1 0 1 1 0 0 
e3 1 1 1 0 1 1 1 

e4 1 1 1 1 0 1 1 

es 1 1 1 1 0 1 

ER==e6 1 1 1 1 1 1 0 

e7 1 1 1 0 1 1 1 

ea 1 1 1 1 0 1 1 

eg 1 1 1 1 0 1 

e1o 1 1 1 1 1 1 0 

e,1 1 0 1 0 0 1 1 

e12 1 1 0 1 1 0 0 

Figure 13. The Edge Range Matrix of the Graph SIOGl . 



E {1,11; 2,12; 3,7; 4,8; 5,9; 6,10}. 

The elements of E are to distinguish the partition of MD. 

Ramamoorthy and Mayeda [16] discussed the method theoretically and 

proved that the set E distinguishes the set MD. 

The matrix ER is reduced to another matrix EQ when the equal 

rows are deleted. The small numbered edges name the rows of EQ, 

because they imply less cost. To complete the example if blocking 

gates are placed on edges 1, 2, 3, 4, 5, 6 during design stages, 

the system will be able to diagnose faults within nodes 4, 5, 6 , 

7 and sets of nodes {1,10}, {2,8}, {3,9}. 
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III. GRAPH MODEL FAULT DIAGNOSIS OF A MINICOMPUTER: SCC 650 

A. Description of SCC 650 [18,19] 

The Scientific Control Corporation (SCC) 650 is a high speed, 

general purpose, digital minicomputer. It has a 4K, random access, 

core memory. Its memory word length is 12 bits, and its memory 

cycle time is two microseconds. The computer contains a single 

interrupt channel and input-output equipment (teletype and paper 

tape device). Some machines have multiply and divide hardware, a 

digital-to-analog converter, an analog-to-digital converter, and 

multiplexer. 

The sec 650 is a synchronous machine. The memory cycle is 

divided into eight intervals. A three-bit counter controls the 

timing together with a clock. Because each interval provides ample 

time for most of the transfers and operations within the computer, 

as many of these as possible are performed in parallel. 

The 12-bit, parallel, binary adder is a combinational circuit. 

It is capable of performing "addition", "subtraction", "and", and 

"exclusive or" operations. The main registers communicating with 

the memory are 12-bit registers. 

Each instruction has three sequences: fetch, effective 

address calculation, and execution. The overlapping of these 

sequences is permissible. Figure 14 shows the data paths for the 

sec 650. 
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Figure 14. Data Paths for SCC 650. 
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B. Graph Model of SCC 650 

There is a useful relation between discrete sequential systems 

and directed graphs. By relying on Ramamoorthy's work, any discrete 

sequential system can be shown to be isomorphic to a directed 

graph [14,16]. 

The SCC 650 is an appropriate minicomputer to be represented 

graphically. On the data and instruction level, information flows 

through the memory and the main registers of the computer so that 

the graph representation has a meaning. The necessary transfers 

for the instructions can be followed as a directed path on the 

graph. The graph model presented and analyzed in this paper is an 

attempt to search for information that can improve the computer. 

Although the conclusions are not exciting, it is felt that the 

sec 650 provides an easily understandable example for a starting 

point. The graph model of SCC 650 is given in Figure 15. The 

circled letters indicate the nodes of the graph. They correspond 

to the memory and essential registers of Figure 14. 

The adjacency and reachability matrices and the Q matrix of 

the graph G are given in Figure 16. It should be noted that all 

nodes except node R are strongly connected. This is to be 

expected, because node D, the adder, feeds the information back to 

the computer. The technique of reducing a group of strongly 

connected nodes into one node is not useful in this case, because 

the condensation will have only two nodes, R and the set of all 
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G: 

Figure 15. Graph Model of SCC 650. 
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A c 0 M p R s X z 
A 0 1 0 0 0 0 0 0 1 

c 0 0 1 0 0 1 0 1 0 

0 1 0 0 0 0 1 1 0 

M 0 1 0 0 0 1 0 0 0 

A(G)=.P 0 0 0 0 0 0 1 0 1 

R 0 0 0 0 0 0 0 0 0 

s 0 0 0 1 1 0 0 1 0 

X 0 1 0 0 0 0 0 0 1 

z 0 0 1 0 0 0 0 0 0 

a . The Adjace ncy Matrix for G 

Figure 16. The Matrices of the Graph G. 
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A c D M p R s X z 
A 1 1 1 1 1 1 1 1 1 

c 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 

M 1 1 1 1 1 1 1 1 1 

RCG)= P 1 1 1 1 1 1 1 1 1 

R 0 0 0 0 0 1 0 0 0 

s 1 1 1 1 1 1 1 1 1 

X 1 1 1 1 1 1 1 1 1 

z 1 1 1 1 1 1 1 1 1 

b. The Reachability Matrix for G 

Figure 16. The Matrices of the Graph G (cont.). 
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A c D M p R s X z 
A 1 1 1 1 1 0 1 1 1 

c 1 1 1 1 1 0 1 1 1 

D 1 1 1 1 1 0 1 1 1 

M 1 1 1 1 1 0 1 1 1 

Q(G) =P 1 1 1 1 1 0 1 1 1 

R 0 0 0 0 0 1 0 0 0 

s 1 1 1 1 1 0 1 1 1 

X 1 1 1 1 1 0 1 1 1 

z 1 1 1 1 1 0 1 1 1 

T 
c. Q = R x R for G 

Figure 16. The Matrices of the Graph G (cont . ). 



the other nodes. 

In general, the graphs of computers face the problem of being 

strongly connected, because the information has to loop around the 

nodes. To analyze these graphs, other techniques have to be tried 

for reduction. One approach is to break a certain edge or edges. 

Some edges can be deleted from the graph [15], or nodes can be 

removed. One can also add new nodes to make the information on the 

graph more precise. The effect of removing edges and nodes from 

the graph is not easily determined, therefore, the reason to use 

this technique depends on the specifications of the computer rather 

than on a predetermined conclusion. Otherwise, it can be 

determined by observation. 

C. Fault Diagnosis of SCC 650 
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The diagnosis of the sec 650 can be performed with the blocking 

gate method [16]. To apply this method, the graph given in Figure 

15 has to be modified to a reduced, single input, single output 

graph. 

To reduce the graph without losing too much information, one 

has to break the outputs of some node. Practically, this can be 

done by blocking the signals with the logical gates. A program [20] 

has been written that finds the connectedness matrix of each graph, 

in which the outputs of one node are deleted in succession. The 

result of this program has been evaluated as follows: The desired 

graph should have a minimum number of strongly connected components, 



and these can be combined into a new node. Accordingly, the 

outputs of node D are blocked, and the strong components, e and x 

and P and S, are combined into two new nodes, ex and PS, 

respectively. 

The minicomputer has on its front panel four switch registers 

consisting of 12 switches. These can input to the memory address 

register, C, memory buffer register, S, location counter, P, and 

accumulator, A. To form an SIOG, an input node has to be created 

which leads to the node PS and an output node connected to node D. 

Because the outputs of node D are blocked, it is convenient to 

monitor this point. 
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Another modification has to be made on the graph to distinguish 

several outputs of a certain node. For instance, the new node "m" 

separates the outputs of memory to nodes R and ex; nodes "c" and 

"s" function similarly. The modified graph, on which the blocking 

gate method can be performed, is given in Figure 17. 

The artificial input and output nodes are not considered in 

the node set of the graph, they, therefore, need not be diagnosed. 

The node range matrix is given in Figure 18. It can be 

observed that nodes M and m, R and A, ex and s, and D and PS have 

equal columns, correspondingly, so that they form the partitions 

of D in addition to c and Z. However, by applying the method 

further, the elements of MD will be fault diagnosed. 

The partitions of maximum distinguishability are found as 

follows: MD = {M-m; R-A; CX-s; c; D-PS; Z} (Figure 19). 
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GM: 

Figure 17. The Modified Graph GM. 
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A c ex D M m PS R s z 
A 0 1 1 1 1 1 1 0 1 

c 0 0 1 1 1 1 1 0 1 1 

ex 0 0 0 1 0 0 1 0 0 1 

D 0 0 0 0 0 0 0 0 0 0 

M 0 1 1 1 0 0 1 0 1 1 
NR 

m 0 1 1 1 0 0 1 0 1 1 

PS 0 0 0 0 0 0 0 0 0 0 

R 0 1 1 1 1 1 1 0 1 1 

s 0 0 0 1 0 0 1 0 0 1 

z 0 1 1 1 1 1 1 0 1 0 

Figure 18. The Node Range Matrix of the Graph GM. 
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M-m R-A CX-s c D-PS Z 

e1 1 0 1 1 1 0 

e2 0 0 0 0 1 1 

e3 0 0 1 1 1 1 

e4 1 0 1 1 1 1 

es 0 0 1 1 1 1 

e6 0 0 1 1 1 1 

e7 1 0 1 1 1 1 
ER= 

es 1 0 1 0 1 1 

eg 1 0 1 1 1 1 

Eio 1 0 1 1 1 1 

e11 1 0 1 0 1 

e12 1 0 1 1 1 0 

e13 1 0 1 1 1 1 

e14 1 0 1 1 1 1 

Figure 1 9 . The Edge Range Matrix of the Graph GM . 



The equal rows of the matrix ER give the partitions of edges 

as follows: 
E = {elel2; e2; e3e5e6; e4e7e9el0el3el4; eBell } . 

reduced edge range matrix is shown in Figure 20. 

The 

As the final step, the set {e1 , e 2 , e 3 , e 4 , e 8 } is applied to 

locate the fault, if it exists. This procedure is shown in 

Figure 21. The end leaves of the tree structured graph are the 

partitions of MD. 

If the fault is found in one of the strong components, the 

diagnosis is still not complete. Therefore, the procedure of 

blocking gate method is applied to a reduced graph in which the 

outputs of another node other than node D are blocked. After 

trying several nodes for this purpose, node S is found to be 

appropriate. All the necessary steps are given in Figures 22, 23. 

The MD of the graph GR is {R; T; P-S}, and E of the graph GR is 

{elel7; e5el6}. 

This approach enables the procedure to distinguish nodes R 
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and A and D and PS, which were in the same partitions in the previous 

application of the blocking gate approach. A fortunate result is 

that the second application does not increase the number of blocking 

gates. 

To conclude the diagnosis of sec 650, it has to be mentione d 

that nodes C and X and nodes P and S are not distinguishable under 

the method applied here . The test point method can be applie d in 

addition to the present method to overcome the proble m [14] . 
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M-m ~ CX-s c D-PS Z 

el 1 0 1 1 1 0 

e2 0 0 0 0 1 1 

EO..= e3 0 0 1 1 1 1 

e4 1 0 1 1 1 1 

es 1 0 1 0 1 1 

Figure 20. The Reduced Edge Range Matrix of the Graph GM. 



43 

Figure 21. Fault Location Procedure. 
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GR: 

T {M,C,D,X,A,Z} 

a . The Reduced Gr aph GR, whe n Output s o f Node S are Blocked 

R T p s 

R 0 1 1 1 

T 
NR == 

0 0 1 1 

p 0 0 0 0 

s 0 0 0 0 

b. The Node Range Ma t rix of t h e Grap h GR . 

Figure 22. Steps in Finding Par titions of MD . 



R T P-6 

e1 0 0 1 

es 0 1 1 
ER= 0 1 1 E1s 

e17 0 0 1 

a. The Edge Range Matrix of the Graph GR 

R 

0 

0 

T 

0 

1 

P-S 

1 

1 

b. The Reduced Edge Range Matrix of the Graph GR 

Figure 23. Steps in Find ing the Edge s wi th Block i ng Gat es . 
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ANALYTICAL STUDY OF CONVENTIONAL AND MICROPROGRAMMED COMPUTERS 

Microprogramming 

1. Description 

Microprogramming was proposed by Dr. M. V. Wilkes in the 

early 1950's. The technology of the period did not suffice for 

an economically feasible development in practice; the main 

drawback arising from the lack of the fast storage elements. An 

informal description of microprogramming will clarify the 

reason [21-22]. 

A conventional computer can be organized by the basi c 

components: I/0, storage, arithmetic, logic and control units. 

The control unit is a hardwired section to perform all the 

necessary gating operations of the entire computer. Its design 

philosophy has relied upon the available technology through the 

generations of computers. In 1960's the developments in 

nondestructive storage technology resulted in the produc tion of 

the high speed read-only memories. Hence the replac ement of 

the transistor logic control section with a stored logic or a 

microprogram control proved to be advantageous [23]. A stored 

program to control and select operations for the execution of 

several instructions is extensively utilized in computers suc h 

as some models of IBM 360/ 370 series, Burroughs B2500-B3500, 

Bl700, Standard Computer 670-2700, the Honeywell H4200/ H8 200 



and several minicomputers such as Hewlett Packard 2100s. 

If the microprogram is stored in a read-write memory 

such that the user could access and modify the 

microinstructions to the advantage of his particular need, 
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the machine is called dynamically microprogrammed. IBM 360/25 

is an example of using read-write memory to store microprograms 

but does not utilize the ability to change the microinstruction 

to any extent [24]. 

2. Some Aspects of Implementation 

Considering the amount of control within a computer one 

suspects that the microinstruction requires a large number of 

bits. Hence the type of the control memory used in the system 

affects the design of a microprogram. In case the number of 

bits/word is preferred to be small, schemes may be used to 

encode mutually exclusive control signals reducing the amount 

of necessary storage and the length of microinstructions. 

However, the additional circuitry for the decoders and 

encoders slows down the execution of the microinstructions. 

The length of the microinstruction depends also on 

polyphase and monophase programming [22]. In the former the 

microinstruction initiates more than one microoperation, 

where monophase corresponds to the case of one microoperation 

being initiated. Polyphase microprogramming is more complex, 

but the execution time is reduced. 



Horizontal programming and vertical programming are 

alternative methods in implementing microprograms. In 

horizontal programming, long words are used to set up controls 

for a number of register transfers. In vertical programming, 

words may be short, but the microinstructions are applied in a 

certain sequence. 

Upon the choices made the microprogrammed computer 

characteristics will change, although all the different 

implementations may control the same instruction sequence. 

For example IBM 360 series have several microprogrammed 

computers over a wide range of performance with the number of 

bits/word in the control memory varying from 60 to 100 [24]. 

3. Advantages and Disadvantages of Microprogramming 

Flexibility is an important advantage during design 

stages. The design of the microprogram and the implementation 

of the system is done in parallel. The system builders have 

the chance to modify the control section, if late r in the 

design procedure they observe that the addition of some 

instructions would improve the performance. The r e ad-only 

storage (ROS) containing the mic roprogram may eve n b e replaced 

with another ROS programmed more efficiently. Taking economic 

aspe cts into account this may not be feasible, howe ver, 

compared to a hardwired system the possibility of e nha n c ing 

the syste m per f orma n ce still e x ists . 
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If the computer is dynamically microprogrammed there is 

more flexibility. The microprogram on the random access 

memory (RAM) can be modified with no hardware cost. 

4 9 

Simplicity is another factor in favor of mic roprogramming . 

Conventional control design is complex and difficult to 

implement, maintain and understand. Any design mistake is 

Fa u l t undesirable , s i nce it is costly to change the hardwa r e . 

detection and diagnosis of the hardwired system is very 

difficult. Additional circuitry to ease the problem is 

expensive. Microprogram o n the other hand is easily faul t 

d e t e cte d a nd diagnose d [25]. 

It has been stated occasionally that a microprogramme d 

g e n e ral purpose computer is less expensive to imp l ement 

compared to a hardwire d one , because the amoun t o f l ogic 

required is less. However, the cost comparison over a period 

of time may prove the reverse. One should conside r the 

performance fac tor while discuss ing economy. Microprogrammed 

c omputer s are s low b ecau s e t he y invol v e sto rage . Presently 

memories are the slowest compone nts in c omputers e xcluding 

I/0 devices. Al s o ROS contro l i s s e que n t i a l and no ove rlaps 

a r e all owed i n p rocessor and memor y operat i ons. 

IBM 360/370 machines emulating e arlier IBM mac hines 

(14 00 and 7000 s eri es ) a r e economical a n d t hey improve the 

p e r for ma n c e ; microprograms are writte n for second g e neratio n 

comp u t e r s . He n ce s peed and lowe r cost a r e gain e d o ver t h e 



emulated machine. Also because of improved har dware 

technology it is cheaper for the customer to increase the 

capability of his system rather than buying a n ew mac h i ne . 

4. Applications of Microprogramming 

In the former sections microprogramming is descri bed as 

used in designing c omputers or emulating earlie r compute rs . 

There are other areas of its application such as, support of 

earlier operating systems on newer systems , designing s p e c ial 

purpose devices, improving system p e rformance and 

maintenance [26] . A few e xamples will b e discussed here t o 

illustrate practical applications. 

Standard Computer MLP-900 Processor [27] is designe d f or 

g e n e ral purpose emulation, simulation and interpre tation. 

The MLP processor has its own instruction set, control memory 

and interrupt system. This is referred to as the concept o f 

"a compute r wi thin a compute r". The read-write con trol s tore 

is e x ten siv ely u sed i n e nha n c ing s y stem microdiagnostics. 

The microprogram is implemente d in vertical form. This c ho i ce 

was ma de to use the control memory more effi c i e ntly, in spite 

of s ome p erfo rmance los s. Th e s hort l engt h word configuration 

is easily microprogra mmed and the language is very simi lar t o 

c ommon a ssembler l a ngua ge. Therefo re , no speci a l software is 

required f o r t h e dev elopme n t o f mi c rodiagnostic s . The s e 

features enable the system to operat e with a n effi c i ent 
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microdiagnostic at low cost and short time. 

Tucker-Flynn Processor (28] is dynamically microprogrammed. 

Its 4K read-write microstorage (64 bit/word; 50 nsec) is used 

for both data and subroutine storage and is about ten times 

faster than read-write main storage (64 bit/word; 500 nsec). 

The microinstructions are horizontally programmed. The decoding 

is minimized because 32 bits of each microinstruction can 

explicitly specify the operation of the processor to be 

performed, by setting the control gatings. 

There are three basic operations referred to as addition, 

shiftmask, and sequence, which are executed in parallel. The 

set of microinstructions providing the processor with the 

control of a certain operation is called a macro. The rarely 

used macros may be located in the relatively slow main storage 

if micromemory space is limited. If a set of "problem 

oriented macros" are used, the microprogrammed processor can 

perform 20 times faster than the conventional processor. 

Algorithms must be written for these macros, that require 

careful study; however, the equivalent operation cannot be 

performed by a single conventional machine instruction. Hence 

the advantage of the dynamically microprogrammed processor 

over the conventional one lies in the appropriate design or 

selection of the macrosets, relevant to the particular 

application. Linkage of macros here is implemented by 

software which is also microprogrammed. More flexibility is 



offered to the rigid hardware design. 

Burroughs Bl700 [29) is a small-to-medium scale general 

purpose computer commercially available. Its primary 

objective is to interpret all programming languages in fast 

run time and low computation cost. Hence it is to emulate all 

existing and possibly future machines. No machine language 

is built into the hardware. The main memory is made of 

MOS/LSI circuitry. The 1024-bit chips have 180 nsec access 

time. The microcode is also in the main memory, but it may 

be buffered in a faster storage with 60 nsec access time. 

Bl724 has both main memory and control memory. Its control 

memory is four times faster than the main memory. In Bl700 

series main memory is bit addressable and has variable operation 

lengths from zero to 24 bits in parallel. The processors use 

a 32-deep automatic stack. There are several compact 

microprograms (less than 4000 16-bit microinstructions) 

emulating COBOL, FORTRAN, BASIC and RPG language processors 

and, second and third generation machines. Hardware is 

implemented for parallel interpretation of many microprograms. 

The so called Bl700 Master Control Program (MCP) is an 

efficient operating system utilizing virtual memory, 

multiprogramming and multiprocessing concepts. The user is 

not limited in the amount of physical storage and the 

throughput is enhanced. Since there is no machine language, 

MCP is written in a high level language. 



B. Analytical Approach to Study Flexibility of Computers 

1. Representing Computers with Directed Graphs 

A directed graph is constructed from a set of nodes and 

directed edges. In the representation of computers a set 

of nodes can be defined to correspond to the most vital 

components of the computer. A high level graphic description 

of a computer then would consist of a "storage unit node", 

an "arithmetic unit node" and edges corresponding to the 

interrelations among these nodes. Four types of nodes are 

defined to represent a computer structure adequately. These 

nodes are shown in Figure 24. 
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Memory Node: Each memory node M, represents a storage 

unit, the flip-flop, the flip-flop register, also the random 

access storage device. The memory node has one single directed 

input edge and a single directed output edge. Depending upon 

the storage device that node M represents, the edges may be 

weighted with number of bits. 

Decision Node: Each decision node D, has a finite number 

of directed input edges and a single directed output edge. 

Through external control the node selects any single input 

edge and connects it to the output edge. The node then can 

select one of several-bit edges, depending upon the edge 

weight. 

Fan-Out Node: Each fan-out node F, has a single directed 
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Memory Node Decision Node 

Fan-Out Node Logic Node 

Figure 24. Node Behavioral Characteristics. 



input edge and a finite number of directed output edges. 

The node connects the input edge to all output edges. The 

node then distributes the bits on the input edge to several 

output edges. 

Logic Node: Each logic node L, has a finite number of 

directed input edges and a single directed output edge. The 

node produces an output edge, which is a logic function only 

of the present input edges. Different logic functions for 

the same set of input edges can be implemented by external 

control. The node can represent either a simple combinational 

switching network or a parallel adder. The number of bits 

in the parallel adder will depend upon the edge weight. 

A few examples will be demonstrated to illustrate the 

use of the nodes. Figure 25 shows a bank of buffer registers 

and its directed graph. The three memory nodes represent the 

registers designated by A, B and C, while decision nodes and 

fan-out nodes are used for multiple register inputs and 

outputs, respectively. A multiple-port memory and its 

directed graph are shown in Figure 26. Using three main 

memories an interleaved system that gains memory acce ss 

overlap by address-interl e aving among memory units can b e 

formed. Such a system a nd its direct e d graph are shown in 

Figure 27. The buffer registe rs of Figure 25 can be ext e nded 

to a conventional memory-processor network shown in Figure 28 . 

The memor y nodes Ml, M2, M3, M4 r epresent the main me mo ry, 
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Figure 25. Buffer Registers and Their Directed Graph. 
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Figure 26. Multiple-Port Memory and its Directed Graph. 
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Figure 27. Interleaved Memory Units and Their Directed Graph. 
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Figure 28. A Conventional Memory-Processor Network Direct e d Graph. 



C-register, B-register and A-register, respectively. The 

adder is represented by the logic node L. The directed 

graph may adequately represent the minicomputer sec 650 if 

the program counter and the index register are overlooked. 

2. Measuring Flexibility on a Directed Graph 

The word flexibility is a vague term and must be 

interpreted for the purposes of the discussion. In the 

following analysis flexibility will correspond to the ability 

of any major unit represented by the node (i) to access any 

other major unit represented by the node (j) directly 

(excluding intercommunications between logic elements) . Hence 

the most flexible computer representation is a directed graph 

where every node is adjacent to every other node except logic 

node. 

In the above section the decision node D and fan-out node 

F simply serve the creation of multiple inputs and outputs for 

the one input one output memory node and one output logic 

node. Therefore, in the considerations of flexibility, these 

nodes may be combined with memory and logic nodes to form 

equivalent nodes: storage node S and execution node E, 

respectively. These nodes are multiple input multiple output 

and are shown in Figure 29. Figure 30 indicates the 

equivalent directed graph of the memory-processor network of 

Figure 28. 
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Execution Node 

Storage Node 

Figure 29. Execution and Storage Nodes. 
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Figure 30. Equivalent Direct e d Graph of Figure 28. 



Three values of crosscoupling are defined on a directed 

graph composed of equivalent nodes to measure flexibility: 

CMl is the ratio of the number (A) of edges from any 

storage node S, to any storage node S, to the number (B) of 

all possible edges between any storage node s. CMl = A/B. 

CM2 is the ratio of the number (C) of edges from any 

execution node E to any storage node S, to the number (D) of 

all possible edges from any execution node E to any storage 

node S. CM2 = C/D. 

CM3 is the ratio of the number (E) of edges from any 

storage node S to any execution node E, to the number (F) of 

all possible edges from any storage node S to any execution 

node E. CM3 E/F. 

It can be seen that the sum (B + D + F) indicates the 

number of all possible edges in the most flexible directed 

graph, where the sum (A + C + E) indicates the number of 

existing edges in the directed graph. Therefore, a total 

measure of crosscoupling can be obtained as follows: 

CMT (A+ C + E)/(B + D + F), where 0 < CMT < 1. 

CMT of a perfectly flexible system would be one. 

The three crosscoupling measures can be found using 

blocks of the adjacency matrix. To find CMl let Al be the 

block of the adjacency matrix whose rows and columns 

correspond to the storage nodes of the directed graph. 

63 



CMl = A/B, where A is the number of l's in the Al matrix and 

B is the number of entri es in the Al matrix. To find CM2 

let A2 be the block of the adjacency matrix, where rows 

correspond to the execution nodes and columns to the 

storage nodes. CM2 = C/D, where Cis the number of l's and D 

is the number of entries in the A2 matrix. To find CM3 let 

A3 be the block of the adjacency matrix whose rows correspond 

to the storage nodes and columns to the execution node. 

CM3 = E/F, where E is the number of l's and F is n times the 

number of entries in the A3 matrix; n is the number of inputs 

of the execution node. If the directed graph has several 

execution nodes, find the A3 matrix for each and add the 

numerators and the denominators to find the ratio of CM3. A 

factor of n is introduced in finding F since any storage node 

can access any input of the execution node. 

In Figures 31 and 32 directed graphs and adjacency 

matrices of a conve ntional and a microprogrammed computer are 

given. Table I compares the CMT values . Although the r e sult 

indicates that the micropvogrammed computer is more flexible, 

examples can be easily found to demonstrate the reve rse . 

Table I 

Crosscoupling Measures 

COMPUTER CMl CM2 CM3 CMT 

Conventional 4/16 2/4 2/ 8 8/ 28 ( .286) 

Microprogrammed 6/25 3/4 3/10 12/39(.308) 
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S1: Main Memory 

S2-S4: Local Registers 

E:Adder 

S1 

S1 0 

S2 0 

A ==S3 0 

84 0 

E 1 

S2 

1 

0 

0 

1 

0 

S3 S4 E 

0 0 0 

1 0 1 

0 0 1 

1 0 0 

0 1 0 

Figure 31. A Conventional Computer Directed Graph 

and its Adjacency Matrix A. 
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A 

Sl ~Main Memory 

S2-S4: Local Registers 

S5:Micromemory 

E: Logic Unit 

51 52 53 

51 0 1 

52 1 0 0 

-53 1 0 0 

54 0 0 0 

55 0 0 0 

E 0 1 1 

54 55 E 

0 0 0 

0 0 1 

0 0 1 

0 1 1 

1 0 0 

1 0 0 

Figure 32. A Microprogrammed Computer Directed 

Graph and its Adjacency Matrix A. 
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3. Flexibility Improvements and its Effect on Cost 

In the previous section total crosscoupling was defined 

to be the ratio of the number of the edges that the directed 

graph has, to the number of all possible edges. To simplify 

the problem the assumption was made so that each edge 

provided equal flexibility. If the desire is to improve 

the existing structure's flexibility by adding edges, we 

can order the edges to be added according to their 

importance. For example, for a certain computer structure, 

the addition of an edge from the main memory node to a buffer 

register node may serve more than the addition of an edge 

from a buffer register node to a logic unit node. Let us 

take the structure shown in Figure 33. For purposes of this 

discussion the edges to be added can be ordered as follows: 

the directed edge from 51 to 52, 51 to 53, 53 to E, 53 to 51, 

E to S2, S2 to 51. 

6 7 

Before adding these edges to the existing directed graph 

a simple cost analysis can be done. The cost parameter can 

be taken as a function of the number of pins and 

interconnections of components. Hence the number of edges of 

the graph is the determining factor for the cost parameter. 

Based upon this argument the cost on an edge directed to the 
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G1 

CMT = 6/12 

Figure 33. The Structure Gl. 



node (i) is formulated as follows: 

C f(indegree of the node (i)). 

For our purposes the function f will be assumed linear. If 

node (i) has one input edge (C=l) , the second input edge with 

less flexibility indexing will have C=2. The execution node 

should be treated differently, since it may have input edges 

of C=l as many as its logic function variables. The total 

cost CT is the sum of the costs on all edges. 

The cost can be related to the indegree by an exponential 

or some other more complicated function f, that complies with 

the realistic figures more satisfactorily. 

In Figure 34 the edges of the directed graph Gl are 

weighted with a linear cost function. The total-cost/total­

crosscoupling ratio CT/CMT of this graph is then 7/6/12 = 14. 

It was mentioned earlier that the first edge addition 

would be from Sl to 52, to improve flexibility. Since 52 has 

only one input, with the new edge its indegree will be 2. 

Therefore, the cost of the edge from Sl to 52 is 2. Then 
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CT = 9, CMT = 7/12 and CT/CMT = 15.43. In Table II the effect 

of the addition of the edges are shown. Since a function is 

assumed that increases CT as CMT increases the result is 

reasonable. For a constant CMT value of 7/12 any edge 

addition except into node 53 would give a CT/CMT ratio of 

15.43. The addition of an edge from Sl to 53 would have a 
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G1 

2 

CT=7 

Figure 34. The Structure Gl with Cost Weighted Edges. 



CT/CMT ratio of 17.14. Total costs can be calculated and 

compared for constant CMT's for all possible combinations of 

edges to be added. 

Table II 

Effect of Added Edges 

ADDED EDGES CT CMT CT/CMT 

From Sl to S2 9 7/12 15.43 

From Sl to S3 12 8/12 18 

From S3 to E 14 9/12 18.67 

From S3 to Sl 16 10/12 19.2 

From E to S2 19 11/12 20.73 

From S2 to Sl 22 12/12 22 

If the tendency in the design philosophy favors cost 

savings rather than flexibility, then it is best to have CMT 

as small as possible. In Figure 35 the directed graph 

represents a dynamically microprogrammed computer. This 

network incorporates two execution nodes to take advantage of 

the parallel nature of the microinstruction and two sets of 

file registers shared between logic units . CMT value is . 25 

which is smaller than a ny CMT of the examples discusse d. CT 

value is 12 and CT/CMT ratio is 48. The high CT/CMT value 

indicates that the structure is cheap but l e ss fl e xible . 
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A 

S1 :Main Memory 

S2,S3:Bank of File Register-s 

S4:Micromemory 

E1,E2:Logic Units 

51 52 53 54 

Sl 0 0 0 0 

52 0 0 0 0 

53 0 0 0 0 

54 0 0 0 0 

E1 0 0 

E2 0 1 0 1 

E1 

1 

1 

1 

0 

0 

0 

CM1=0/16 

CM2=4/8 

CM3=6/16 

CM4=1 0/40 (.25) 

E2 

0 

1 

1 

1 

0 

0 

Figure 35. A Dynamically Microprogrammed Structure with 

Small CMT and its Adjacency Matrix A. 
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V. CONCLUSION 

In this research it has been demonstrated that a study on the 

fundamental level would enable graph theory to be easily used as a 

tool in the analysis of digital computers. The application of the 

blocking gate method on the graph model of the sec 650 minicomputer 

for the purpose of its fault-diagnosis illustrates the simplicity 

of the application of some graph theory concepts. The strongly 

connected nature of computer structures seemed to cause problems 

because of the possibility of reducing the graph model down to one 

node, when the standard reduction techniques were used. However, 

this problem has been handled by breaking edges that caused the 

strongly connectedness of a group of nodes. 

Computer structures including conventional and microprogrammed 

types has been represented by directed graphs and analyzed with 

respect to their structural behavior. This type of approach 

requires statistical values to be associated with nodes or edges 

in order to evaluate performance on the graph models. Rather than 

limiting the research on the numerical characteristics of a certain 

computer, a general scheme is provided to measure flexibility of 

the structures and a cost function is related to this parameter. 

Measurement of other parameters would follow this basic scheme 

possibly requiring weighted edges or nodes and computer programming 

to work on large graphs. 

Graph theory applications to computers are not necessarily 
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bound on the study of existing computers. Applications during 

the design stages would give more insight to the problem in hand, 

and also indicate possible improvements. Some applications have 

to be considered during the design stages, such as the blocking 

gate method. If the circuits are to be diagnosed with this 

method, additional circuitry must be accounted for within the 

design repertoire. 
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