
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1974

Graph model analysis of computer structures Graph model analysis of computer structures

Ömür Taşar

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Taşar, Ömür, "Graph model analysis of computer structures" (1974). Masters Theses. 3430.
https://scholarsmine.mst.edu/masters_theses/3430

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/3430?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

GRAPH MODEL ANALYSIS OF COMPUTER STRUCTURES

BY

5MUR TA~AR, 1948-

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

1974

Approved by

(Advisor)

T2977
88 pages
c.l

24082:1

PUBLICATION THESIS OPTION

This thesis has been prepared in the style utilized by the

IEEE Computer. Pages l-28 are accepted for publication in that

journal. The remainder of the paper has been added for purposes

normal to thesis writing.

ii

iii

ABSTRACT

Graph theory is applicable to the solving of problems in nearly

every field of scientific study. The purpose of this thesis is to

consider its applications in representing and analyzing digital

computers. Fundamental graph theory definitions, the types and the

properties of the directed graphs, the matrix representation, and

several reduction techniques are discussed. The blocking gate method

for diagnosing computer systems is described and applied to the

Scientific Control Corporation (SCC) 650 for its fault-diagnosis.

Microprogramming has been a significant trend in hardware and

software designs of computers. Microprogrammed computers are

discussed in comparison to conventional computers. A general scheme

utilizing four nodes generates directed graphs for both types of

architecture. The directed graphs are studied with respect to the

flexibility and cost parameters.

iv

ACKNOWLEDGEMENT

The author wishes to express her appreciation to Dr. Paul D.

Stigall for his continued guidance and advise throughout the course

of this thesis.

Appreciation is also extended to Dr. Javin M. Taylor,

Dr. Roy M. Rakestraw for their review of this thesis, and

Mrs. Diane Frederickson for her excellent typing.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

LIST OF ILLUSTRATIONS

LIST OF TABLES ..•..

v

Page

iii

iv

. vii

X

I. INTRODUCTION . l

II. A REVIEW OF DIRECTED GRAPHS AS APPLIED TO COMPUTERS. 3

A. Basic Definitions

B. Types of Directed Graphs

C. Matrix Representation. .

l. The Adjacency Matrix •

2. The Reachability Matrix.

3. The Connectedness Matrix ..

4. The Value Matrix ..

5. Description of Basic Theorems.

D. Fault Diagnosis Using Graph Theory .

III. GRAPH MODEL FAULT DIAGNOSIS OF A MINICOMPUTER:

sec 650

A. Description of SCC 650

B. Graph Model of SCC 650

C. Fault Diagnosis of SCC 650

IV. ANALYTICAL STUDY OF CONVENTIONAL AND MICROPROGRAMMED

COMPUTERS.

3

6

8

9

ll

12

15

18

22

29

29

31

36

46

TABLE OF CONTENTS (cont.)

A. Microprogramming .

1. Description.

2. Some Aspects of Implementation .

3. Advantages and Disadvantages of

Microprogramming

4. Applications of Microprogramming

B. Analytical Approach to Study Flexibility

of Computers . . .

1. Representing Computers with

Directed Graphs ..

2. Measuring Flexibility on a Directed

Graph.

3. Flexibility Improvements and its

Effect on Cost ..

V. CONCLUSION

REFERENCES .

VITA ...

vi

Page

46

46

47

48

50

53

53

60

67

73

75

78

LIST OF ILLUSTRATIONS

Figures

l. A Directed Graph .

2. Properties of Directed Graphs: a. Symmetric Graph;

b. Reflexive Graph; c. Complete Graph.

3. Types of Directed Graphs: a. Net; b. Relation;

c. Digraph; d. Network .

4. Adjacency Information of D Representing a Logic Diagram:

a. Logic Diagram for Z = XY; b. Its Directed Graph;

c. Its Adjacency Matrix A; d. Square of the

Adjacency Matrix

5. Reachability Information of D Representing a Logic

Diagram: a. Logic Diagram for F = XY + Yf; b. Its

Directed Graph; c. Its Reachability Matrix R;

d.
T

Q=RxR ..

6. The Reduced Graph of Figure 5b

7. Types of Graphs wi th Respect to Connectedn ess:

a. Disconnected Graph ; b. Strictly Weak Graph

vii

Page

4

5

7

10

13

14

c. Strictly Strong Graph ; d. Strongly Connected Graph . 1 6

8. Connectedness Matrix of a Disconnected Graph . . 17

9. A Probability Network and its Probability Matrix 19

10 . A Cost Network and its Cos t Matrix 20

ll. A Single I n p ut Single Output Graph SIOGl 24

12 . The Node Range Matrix of the Graph SIOGl . 25

viii

LIST OF ILLUSTRATIONS (cont.)

Figures Page

13. The Edge Range Matrix of the Graph SIOGl 27

14. Data Paths for SCC 650 . 30

15. Graph Model of SCC 650 ... 32

16. The Matrices of the Graph G: a. The Adjacency

Matrix for G; 33

b. The Reachability Matrix for G; . 34

T c. Q = R x R for G 35

17. The Modified Graph GM. 38

18. The Node Range Matrix of the Graph GM. 39

19. The Edge Range Matrix of the Graph GM. 40

20. The Reduced Edge Range Matrix of the Graph GM. . 42

21. Fault Location Procedure . . . 43

22. Steps in Finding Partitions of MD: a. The Reduced

Graph GR, when Outputs of Node S are Blocked; b. The Node

Range Matrix of the Graph GR . 44

23. Steps in Finding the Edges with Blocking Gates; a. The

Edge Range Matrix of the Graph GR; b. The Reduced Edge

Range Matrix of the Graph GR . 45

24. Node Behavioral Characteristics. 54

25. Buffer Registers and Their Directed Graph .. 56

26. Multiple-Port Memory and its Directed Graph. 57

27. Interleaved Memory Units and Their Directed Graph .. 58

ix

LIST OF ILLUSTRATIONS (cont.)

Figures Page

28. A Conventional Memory-Processor Network Directed Graph 59

29. Execution and Storage Nodes. 61

30. Equivalent Directed Graph of Figure 28

31. A Conventional Computer Directed Graph and its

Adjacency Matrix A .

32. A Microprogrammed Computer Directed Graph and its

Adjacency Matrix A .

33. The Structure Gl .

34. The Structure Gl with Cost Weighted Edges.

35. A Dynamically Microprogrammed Structure with Small CMT

and its Adjacency Matrix A ...

62

65

66

68

70

72

Tables

I.

II.

LIST OF TABLES

Crosscoupling Measures

Effect of Added Edges ..

X

Page

64

71

I. INTRODUCTION

Computers are one of the most complex systems that man has

made. The research that led to the evolution of today's large

scale computers is extensive and complex enough to create a

science: computer science. The complexity is not only in the

1

design stages, but also in the use and understanding of the systems.

The large scale use of such complex systems have led some researchers

to investigate tools not commonly used. In recent years,

applications of graph theory to computers as well as other fields

of study have given fruitful results and have attracted more and

more scientists. The attempt here will be to review previous

accomplishments on a fundamental level and to apply graph theory

concepts to computer related problems.

A great advantage for anyone who works on graphs is to be able

to transfer his problem to a computer. The graphs are represented

by matrices that can be easily handled in computer programs.

Useful programs, which are applicable to many engineering problems,

are documented by Henley and Williams [1].

The theory relevant to the study of graphs is rigorously

developed [2-3]. Because its applications are many, it is worth

mentioning a few interesting papers. A Fortran recognizer, which

is itself a Fortran program, has been modeled by a graph by Gonzalez

and Ramamoorthy [4]. This graph is reduced by the techniques

described in the following chapter . The information obtained from

the reduced graph is useful in determining the suitability of a

program for parallel processing. Another paper presents a

discussion of the techniques for optimal scheduling of tasks in a

multiprocessor system [5] • Given a set of computational tasks and

the relationship between them, a graph is formed. The algorithm

developed finds a schedule for tasks for which the total execution

time and the minimum number of processors required to realize this

schedule are minimum. Bruno and Altman [6] have modeled the

control structure of an asynchronous digital system. Basic control

modules are formed to perform single control functions. The

obtained graph is used to find the necessary and sufficient

conditions for a class of well-formed, control networks.

The discussion of graphs in this paper will not span the

classical use of graphs, such as state diagrams which model

finite-state sequential machines [7]. However, minicomputer,

conventional and microprogrammed computer structures will be

represented by directed graphs, that serve the analysis of

fault-diagnosis and structural behavior.

2

II. A REVIEW OF DIRECTED GRAPHS AS APPLIED TO COMPUTERS

A. Basic Definitions

A graph is simply a mathematical model of a system. It

exhibits a relation or the absence of a relation among the

elements of a set. The terms "point", "vertex", and "node" are

frequently referred to as the elements of this set. A relation

between these elements is usually called "line", "branch", "link",

or "edge". In this paper, interest is concentrated on directed

graphs, where the edges must be directed, and the terms "node"

and "edge" will be used.

What is to be coordinated with nodes and edges is a matter

for the problem in question. In the case presented here, a node

may possibly represent a register, a flip flop, a gate, or a unit

of the computer. An edge may represent a connection between two

registers, or if it has a value associated, it may reflect a

property of the system such as speed. Figure 1 shows a simple,

directed graph.

Graphs may have properties such as symmetry, reflexiveness,

and completeness. A graph is symmetric if every node satisfies

the following condition: existence of an edge from node (a) to

node (b) implies an edge directed from node (b) to node (a) . A

graph is reflexive if every node has a loop on itself. A graph

is complete if every pair of nodes is connected in at least one

direction. These properties are reflected in Figure 2.

3

4

e,
n1 ...,_ ___ ----~~~-----. n2

Figure l. A Directe d Graph.

a. Symmetric Graph b. Reflexive Graph

e1
.-------~--------~~n2

c. Complete Graph

Figure 2. Properties of Directed Graphs.

5

B. Types of Directed Graphs

The following set of directed graphs are not used throughout

the rest of the paper but are included here for the sake of

completeness.

A net is a directed graph consisting of a set of nodes and

edges. The set of nodes is finite and not empty. The set of

edges is finite [3]. Hence a single node can constitute a trivial

net. An example of a net is shown in Figure 3a. Petri nets,

named after their inventor, C. A. Petri, are used to represent

systems in which both static and dynamic conditions can exist

simultaneously [8]. J. L. Bear introduced them as graph models

for parallel computation in a survey in which multiprocessing was

studied (9].

A relation is a directed graph which satisfies the above

conditions but does not have any parallel edges. Two edges

connecting the same two nodes are not considered parallel if they

are oppositely directed.

Figure 3a is shown.

In Figure 3b, a relation obtained from

A digraph is an irreflexive relation [3]. Namely, it is a

directed graph or a net having no parallel edges and loops. The

theoretical studies and matrix representation of digraphs will be

discussed in detail below. Figure 3c illustrates a digraph

reduced from Figure 3b. Acyclic directed graphs form a special

class of digraphs where no two nodes are mutually reachable [3,9].

6

7

a. Net b. Relation

c. Digraph d. Network

Figure 3. Types of Directed Graphs.

A network is a relation in which the edges are assigned

values [3]. If all the values on the edges are one, the graph is

still a relation. In this sense, relations form a subset of

networks. Systems dealing with frequencies, probabilities, and

cost analysis can easily be represented by networks. A

corresponding network of the relation in Figure 3b is shown in

Figure 3d. In flow networks edges are interpreted to represent

capacities of a flow, such as signals, cars, people, oil, and

trade items. Then maximum flow considerations become important.

Techniques and algorithms are developed to find a maximum flow in

a network between any two nodes [2-3]. Network flows are

formulated as linear programs. Maximum flow in relation to linear

programming is discussed by T. C. Hu [10].

C. Matrix Representation

Matrix representation is a practical tool with which one can

work on graphs. It allows algebraic manipulation and use of

computer programming so that large dimensioned matrices, hence

large graphs that have many nodes and edges, can be analyzed.

In forming the matrix, one row and one column for each node

in the graph are assigned. Unless the assignment varies, a square

matrix is generated. Depending on what is intended for the matrix,

it is equally valuable to assign rows and columns to edges or rows

to nodes and columns to edges. However, the case with nodes is

discussed here, and it should be kept in mind that a similar

8

approach may be taken for other cases.

1. The Adjacency Matrix

The adjacency or connectivity matrix A has extensive use

and is defined as follows: If the element a .. of the matrix
l]

A is one, it indicates that there is an edge from node (i) to

node (j). If a . . equals zero, the graph does not contain an
l]

edge from node (i) to node (j) [3,11-12]. In other words,

the nonzero elements of A show how many paths of length one,

i.e., directed edges, exist between the corresponding nodes.

2 2 Similarly, the elements of A , where A is obtained by regular

matrix multiplication of A by itself, indicate the number of

possible paths of length two. The idea can be extended to

find the number of possible paths of length n. These are

illustrated in Figure 4. For example, there exists one

possible path of length two from n1 to n 4 .

The r ow sum of node (i) of A is called the outdegree of

node (i) and the column s um of node (i) of A is called t h e

indegree. These figures give the total number of edges going

out of and into the node, r e spective ly.

The adjace n c y ma t rix has b een e ffective ly a pplied to

computer areas. Ramamoorthy and Chang [11] have based an

algorithm on the adjace n c y matrix to segme nt a large system

into s maller subsyste ms with the purpose o f diagnosing t h e

system in paralle l. Russe l a nd Kime [12] u s e d t h e adj acenc y

9

10

0:

a. Logic Diagram for z = XY. b. Its Directed Graph

n1 n2. n3 n4

n1 0 0 1 0

A n2 0 0 1 0
n3 0 0 0 1

n4 0 0 0 0

c. Its Adjacency Matrix A

n1 n2 n3 n4

n1 0 0 0 1

~ n2 0 0 0 1

n3 0 0 0 0
n4 0 0 0 0

d. Square of the Adjacency Matrix

Figure 4. Adjacency Information of D Representing a Logic Diagram.

matrix as well as indegree and outdegree concepts in fault

diagnosis of combinational networks. Kleir and Ramamoorthy

[13] have used the adjacency matrix in optimization

strategies for microprograms. It has also been used in the

structural theory aspects of machine diagnosis [14].

2. The Reachability Matrix

The reachability matrix, R, gives useful information

about the behavior of a graph. The element r .. equals one
~J

if node (i) reaches node (j) over any path regardless of its

length and if i equals j. If r .. equals zero, it indicates
~J

that there is no possible path whereby node (j) can be

reached from node (i) [3,11-12]. The transpose of R, namely

RT, represents a graph in which the directions are reversed

with respect to the original graph.

T
The elementwise product, Q = R x R , is obviously a

symmetric matrix. The nonzero elements, q .. , of this matrix
~J

indicate that nodes (i) and (j) are mutually reachable. This

information is useful for the purpose of reducing graphs if

necessary. One reduction technique requires the selection of

the nodes whose columns are equal. These are the nodes which

are reachable from the same set of nodes and which reach the

same set of nodes. Hence, they can be combined into one node.

ll

The set of nodes combined into one new node is called a strong

component. If all columns of Q happen to be equal, the graph

is said to be strongly connected, in which case every node is

reachable from every other node. An example of the points

illustrated above is given in Figure 5.

Hence, the graph has four strong components, {n1 }, {n2 },

{n3}, and {n4 , n 5 }, which are called N1 , N2 , N3 , and N4 ,

respectively. To find the reduced graph with nodes N1 , N2 ,

N3 , and N4 , the new edges must be found. The rule is as

follows: There exists an edge from N. toN. if there is a
~ J

path from any node inN. to any node inN .. The reduced graph
~ J

is called a condensation of D and is shown in Figure 6.

The reachability matrix has been applied to computer

related problems [12,14-15]. It provides a powerful reduction

technique. Most of the algorithms in fault diagnosis are

derived for reduced graphs [16].

3. The Connectedness Matrix

12

A valuable measure for classifying graphs is connectedness.

Earlier, a strongly connected graph a nd its strong components

were defined. To explore the other possibilities, the

following types of graphs can b e briefly described with

respect to connectedness. A disconnected graph implies that

there exists at least one node or a set of strongly connec ted

node s that neither reaches nor is reached from any other node .

In a strictly weak graph, there exists a sequence of e dges

between any t wo nodes ; howe v e r , the directions are not

13

a. Logic Diagram for F = XY + Yf b. Its Directed Graph

nl n2 n3 n4 ns
nl 1 0 1

n2 0 1 1 1
R n3 0 0 1 1

n4 0 0 0
ns 0 0 0 1

c. Its Reachability Matrix R

nl n2 n3 ~ ns

nl 1 0 0 0 0
n2 0 1 0 0 0

Q n3 0 0 1 0 0
n4 0 0 0
ns 0 0 0

d.
T

Q = R X R

Figure 5. Reachability Information of D Representing a Logic Diagram.

14

Figure 6. The Reduced Graph of Figure Sb.

15

continuous. A strictly strong graph has a directed path

between any two nodes. The example in Figure 7 clarifies

these descriptions.

It is an easy matter to deduce the idea of connectedness

from the reachability information. Hence, a connectedness

matrix, C, can be defined, which will indicate the above

attributes, given two nodes. Let us say that 0, l, 2, and 3

represent the four kinds of connectedness: disconnected,

strictly weak, strictly strong, and strongly connected,

respectively. A new matrix, J, is defined as follows:

if node (k) and node (l) are disconnected

otherwise

Thus, the matrix representation for connectedness is simply

T c R + R + J. For instance, in Figure 7a, because j 14 ,

r 14 , and r 41 are zero, c 14 equals zero implying a disconnected

graph.

In case the graph is composed of disconnected subgraphs,

D1 , o2 , •.. Dn' the connectedness matrix for each subgraph

can be found, C(D1), C(D), ... C(D). The connectedness
2 n

matrix of the whole graph will have the forms shown in

Figure 8.

4. The Value Matrix

For a network, the adjacency matrix has scalar entries

16

a. Disconnected Graph b. Strictly Weak Graph

c. Strictly Strong Graph d. Strongly Connected Graph

Figure 7. Types of Graphs with Respect to Connectedness.

17

C(q) 0 0 • • 0

0 ((02) 0 • • 0
0 0 ((03) • • 0

C= • • • • • •

• • • • • •
• • • • • •
0 0 0 • • ((On)

Figure 8. Connecte dness Matrix of a Disconnect ed Graph.

18

rather than ones and zeros. To distinguish the two matrices,

the adjacency matrix for a network is called the value

matrix, M. If the values on the edges are associated with

probability or cost, the matrix is called a probability

matrix, P, or a cost matrix, G, respectively. In cases where

the outdegree of each node on a probability network is one,

and the probabilities assigned to the edges are time-dependent,

this particular type of graph is occasionally called a markov

chain. M. A. Breuer modeled the statistics of intermittent

faults in digital circuit by a first order Markov model [17].

The cost of going from node (i) to node (i+l) is infinite,

if there is no edge from node (i) to node (i+l). Examples

are shown in Figures 9 and 10.

5. Description of the Basic Theorems

At this point, it is interesting to investigate whether

the matrices discussed relate to each other in any manner.

The matrix R is expected to be a function of the powers of A,

n
because the elements of A indicate the possible number of

paths of length n, and the reachability question asks whether

any path exists between two given nodes. The procedure then

must be to take powers of A until the longest path has be.en

searched and to transform the total number of possibilities

to a "one" to indicate reachability. The latter function is

labeled U and defined as follows: U(a) = 1, where a is any

1 9

.25

nl n2 n3 n4 ns

nl 0 .25 .5 .25 0

n2 0 .4 .6 0 0

p == n3 0 0 0 0 1

n4 .5 0 .5 0 0

ns 0 0 0 1 0

Figure 9. A Probability Network and its Probability Matrix.

G

90

0 25
0

Figure 10. A Cost Network and its Cost Matrix .

20

number other than zero, and U(O) = 0.

After this stage, the reachability matrix will not

change. The above descriptions can be summarized with a

theorem:

Theorem 1: R
n

2 n
= U (I + A + A + ... + A) in which

I is the identity matrix and defines reachability

over length n. I f R = R l' then R n n+ R [3] •
n

The cost of going from one node to another over a

specified length is of great importance. One certainly would

try to find the minimum cost path, which is called cost

geosdesic. When taking powers of G, the matrix multiplicati on

is performed by using the modified multiplication "x" and the

modified addition "+" operations defined as follows : a x b =

a + b and c + d min (c, d) [3] •

Obviously, the arithmetic does not add all possible

paths of a certain length but rather finds the cost of

different paths of the same length and chooses the minimum

value. Let us find g~1 of G2 , i.e., the cost of going from

node (l) to itself over a path of length two by referring to

Figure 10.

min(O, 140, oo)

o.

21

22

Staying at node (1) is assumed to have no cost, hence that path

is chosen.

Theorem 2: There is a positive integer n for which

Gn = Gn+l [3].

After reaching this condition, there is no need to take

higher powers of G, and Gn is called the total cost matrix.

In general, if the edges of the network indicate only

zeros and ones, a distance matrix is formed, and the modified

arithmetic yields the minimum distance.

D. Fault Diagnosis Using Graph Theory

A fault is a malfunction in the system. It is of vital

importance whether a fault exists or not. Testing the machine for

a fault if it exists is called a diagnosis. Fault diagnosis in

digital computers is one of the major areas where efficient methods

have to be established. In recent years, applications of graph

theory to this area have been promising. An approach called a test

point method finds spots on the system where test points can be

located [14]. Some points serve as inputs, and the results can be

detected at other points. The blocking gate method is another

approach in which the minimum number of edges to be blocked are

found to diagnose the system [16] . The latter method is discussed

in detail below.

The blocking gate method assumes that there exists only one

fault at a time and that it is not self-correcting. Also no faults

can cancel each other during diagnosis. One way to diagnose the

system is to insert blocking gates on every edge in the graph. The

idea can be extended to conduct the diagnosis more efficiently.

First, the system is modeled with a directed graph. Then the

graph is reduced so that it does not contain any strongly connected

components. Finally, the graph is transformed into a single input

single output graph (SIOG) to enable the method to work with one

input and one output. This is easily accomplished. If the graph

has more than one input, an input node (i) is entered to the graph

that fans out to all the necessary inputs. If there is more than

one output, they will lead to an extra output node (o). One can

start with the example of the SIOG shown in Figure 11 to illustrate

the steps in the blocking gate method.

At this point, a reduced SIOG exists and it is ready for the

introduction of the pattern for finding the locations of the

minimum number of blocking gates. The range of node (k) is the

set of nodes on the directed path from node (i) to node (o) , when

node (k) is deleted. The node range matrix, NR, of a SIOG is a

square matrix with rows and columns corresponding to the nodes of

the graph. The NR matrix of the graph SIOGl is given in Figure 12.

The k'th row of the matrix has elements of ones for the nodes in

the range of node (k). Otherwise, the elements are zero. The set

of nodes, whose columns are equal, constitutes the partition of

maximum distinguishability, MD. Referring to Figure 12, the MD

23

24

INPUT

S IOG1:

OUTPUT

Figure 11. A Single Input Single Output Grap h SI OGl .

25

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 1 1 0 1 1

3 1 1 0 1 1 0 0 1 0 1
4 1 1 1 0 1 1 1 1 1 1

NR= 5 1 1 1 0 1 1 1 1 1

6 1 1 1 1 1 0 1 1 1 1

7 1 1 1 1 1 1 0 1 1 1

8 1 0 1 0 0 1 1 0 1 1

9 1 1 0 1 1 0 0 1 0 1

10 0 0 0 0 0 0 0 0 0 0

Figure 12. The Node Range Matrix of the Graph SIOGl.

set for the graph SIOGl is found as follows:

MD {1,10; 2,8; 3,9; 4; 5; 6; 7}.

Every edge of the graph is to be tested so that the set of

minimum number of edges is found. The blocking gates have to be

located on this set of edges to distinguish the particular

distinguishability class. Another matrix is used to perform what

is mentioned above. The matrix, ER, has columns corresponding to

the partitions of maximum distinguishability; its rows correspond

to the edges of the graph. If the edges are ordered with

consideration for the cost of blocking gates to be located on them,

then the resultant sets of edges obtained from the matrix, ER,

can be compared and the set with the minimum cost can be chosen.

Figure 13 illustrates the ER matrix of the graph SIOGl. It is

assumed that the cost of building blocking gates on the edges

increases as the output node is approached.

The edge range of an edge (k) is defined as the set of nodes

on a directed path from node (i) to node (o), when edge (k) is

blocked. The element erkl on the k'th row of the matrix ER would

be one if the partition 1 includes the nodes within the range of

edge (k). Otherwise, the elements are zero. After constructing

the matrix, equal rows are found. These rows form the sets of a

new partition, named E. The equal rows of the ER matrix form the

following set::

26

27

1-10 2-8 3-9 4 5 6 7

e1 0 1 0 0 1 1

e2 1 1 0 1 1 0 0
e3 1 1 1 0 1 1 1

e4 1 1 1 1 0 1 1

es 1 1 1 1 0 1

ER==e6 1 1 1 1 1 1 0

e7 1 1 1 0 1 1 1

ea 1 1 1 1 0 1 1

eg 1 1 1 1 0 1

e1o 1 1 1 1 1 1 0

e,1 1 0 1 0 0 1 1

e12 1 1 0 1 1 0 0

Figure 13. The Edge Range Matrix of the Graph SIOGl .

E {1,11; 2,12; 3,7; 4,8; 5,9; 6,10}.

The elements of E are to distinguish the partition of MD.

Ramamoorthy and Mayeda [16] discussed the method theoretically and

proved that the set E distinguishes the set MD.

The matrix ER is reduced to another matrix EQ when the equal

rows are deleted. The small numbered edges name the rows of EQ,

because they imply less cost. To complete the example if blocking

gates are placed on edges 1, 2, 3, 4, 5, 6 during design stages,

the system will be able to diagnose faults within nodes 4, 5, 6 ,

7 and sets of nodes {1,10}, {2,8}, {3,9}.

28

III. GRAPH MODEL FAULT DIAGNOSIS OF A MINICOMPUTER: SCC 650

A. Description of SCC 650 [18,19]

The Scientific Control Corporation (SCC) 650 is a high speed,

general purpose, digital minicomputer. It has a 4K, random access,

core memory. Its memory word length is 12 bits, and its memory

cycle time is two microseconds. The computer contains a single

interrupt channel and input-output equipment (teletype and paper

tape device). Some machines have multiply and divide hardware, a

digital-to-analog converter, an analog-to-digital converter, and

multiplexer.

The sec 650 is a synchronous machine. The memory cycle is

divided into eight intervals. A three-bit counter controls the

timing together with a clock. Because each interval provides ample

time for most of the transfers and operations within the computer,

as many of these as possible are performed in parallel.

The 12-bit, parallel, binary adder is a combinational circuit.

It is capable of performing "addition", "subtraction", "and", and

"exclusive or" operations. The main registers communicating with

the memory are 12-bit registers.

Each instruction has three sequences: fetch, effective

address calculation, and execution. The overlapping of these

sequences is permissible. Figure 14 shows the data paths for the

sec 650.

29

, --·- ·- ·- ·- ·- ·-·- ·- ·- -- ·-,

i I MEMORY I i

I i
DATA ADDRESS ~-t--------.

r-------"1"-----,·rl .. ~ BUFFE-R BUFFER . 1
! i

R-Register

~

SWITCH

' C-Register

•

L . - . - · - . - · - . -. -·- . -. - · - · _I

SWITCHES

' .
Z-R.12gister 1-4------.

.----..,..J' j

t t
D-Register

ADDER
P-Counter I

S-Register -

X-Register a...._f-----4----1-.,. A-Register

Figure 14. Data Paths for SCC 650.

30

31

B. Graph Model of SCC 650

There is a useful relation between discrete sequential systems

and directed graphs. By relying on Ramamoorthy's work, any discrete

sequential system can be shown to be isomorphic to a directed

graph [14,16].

The SCC 650 is an appropriate minicomputer to be represented

graphically. On the data and instruction level, information flows

through the memory and the main registers of the computer so that

the graph representation has a meaning. The necessary transfers

for the instructions can be followed as a directed path on the

graph. The graph model presented and analyzed in this paper is an

attempt to search for information that can improve the computer.

Although the conclusions are not exciting, it is felt that the

sec 650 provides an easily understandable example for a starting

point. The graph model of SCC 650 is given in Figure 15. The

circled letters indicate the nodes of the graph. They correspond

to the memory and essential registers of Figure 14.

The adjacency and reachability matrices and the Q matrix of

the graph G are given in Figure 16. It should be noted that all

nodes except node R are strongly connected. This is to be

expected, because node D, the adder, feeds the information back to

the computer. The technique of reducing a group of strongly

connected nodes into one node is not useful in this case, because

the condensation will have only two nodes, R and the set of all

32

G:

Figure 15. Graph Model of SCC 650.

33

A c 0 M p R s X z
A 0 1 0 0 0 0 0 0 1

c 0 0 1 0 0 1 0 1 0

0 1 0 0 0 0 1 1 0

M 0 1 0 0 0 1 0 0 0

A(G)=.P 0 0 0 0 0 0 1 0 1

R 0 0 0 0 0 0 0 0 0

s 0 0 0 1 1 0 0 1 0

X 0 1 0 0 0 0 0 0 1

z 0 0 1 0 0 0 0 0 0

a . The Adjace ncy Matrix for G

Figure 16. The Matrices of the Graph G.

34

A c D M p R s X z
A 1 1 1 1 1 1 1 1 1

c 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1 1 1

RCG)= P 1 1 1 1 1 1 1 1 1

R 0 0 0 0 0 1 0 0 0

s 1 1 1 1 1 1 1 1 1

X 1 1 1 1 1 1 1 1 1

z 1 1 1 1 1 1 1 1 1

b. The Reachability Matrix for G

Figure 16. The Matrices of the Graph G (cont.).

35

A c D M p R s X z
A 1 1 1 1 1 0 1 1 1

c 1 1 1 1 1 0 1 1 1

D 1 1 1 1 1 0 1 1 1

M 1 1 1 1 1 0 1 1 1

Q(G) =P 1 1 1 1 1 0 1 1 1

R 0 0 0 0 0 1 0 0 0

s 1 1 1 1 1 0 1 1 1

X 1 1 1 1 1 0 1 1 1

z 1 1 1 1 1 0 1 1 1

T
c. Q = R x R for G

Figure 16. The Matrices of the Graph G (cont .).

the other nodes.

In general, the graphs of computers face the problem of being

strongly connected, because the information has to loop around the

nodes. To analyze these graphs, other techniques have to be tried

for reduction. One approach is to break a certain edge or edges.

Some edges can be deleted from the graph [15], or nodes can be

removed. One can also add new nodes to make the information on the

graph more precise. The effect of removing edges and nodes from

the graph is not easily determined, therefore, the reason to use

this technique depends on the specifications of the computer rather

than on a predetermined conclusion. Otherwise, it can be

determined by observation.

C. Fault Diagnosis of SCC 650

36

The diagnosis of the sec 650 can be performed with the blocking

gate method [16]. To apply this method, the graph given in Figure

15 has to be modified to a reduced, single input, single output

graph.

To reduce the graph without losing too much information, one

has to break the outputs of some node. Practically, this can be

done by blocking the signals with the logical gates. A program [20]

has been written that finds the connectedness matrix of each graph,

in which the outputs of one node are deleted in succession. The

result of this program has been evaluated as follows: The desired

graph should have a minimum number of strongly connected components,

and these can be combined into a new node. Accordingly, the

outputs of node D are blocked, and the strong components, e and x

and P and S, are combined into two new nodes, ex and PS,

respectively.

The minicomputer has on its front panel four switch registers

consisting of 12 switches. These can input to the memory address

register, C, memory buffer register, S, location counter, P, and

accumulator, A. To form an SIOG, an input node has to be created

which leads to the node PS and an output node connected to node D.

Because the outputs of node D are blocked, it is convenient to

monitor this point.

37

Another modification has to be made on the graph to distinguish

several outputs of a certain node. For instance, the new node "m"

separates the outputs of memory to nodes R and ex; nodes "c" and

"s" function similarly. The modified graph, on which the blocking

gate method can be performed, is given in Figure 17.

The artificial input and output nodes are not considered in

the node set of the graph, they, therefore, need not be diagnosed.

The node range matrix is given in Figure 18. It can be

observed that nodes M and m, R and A, ex and s, and D and PS have

equal columns, correspondingly, so that they form the partitions

of D in addition to c and Z. However, by applying the method

further, the elements of MD will be fault diagnosed.

The partitions of maximum distinguishability are found as

follows: MD = {M-m; R-A; CX-s; c; D-PS; Z} (Figure 19).

38

GM:

Figure 17. The Modified Graph GM.

39

A c ex D M m PS R s z
A 0 1 1 1 1 1 1 0 1

c 0 0 1 1 1 1 1 0 1 1

ex 0 0 0 1 0 0 1 0 0 1

D 0 0 0 0 0 0 0 0 0 0

M 0 1 1 1 0 0 1 0 1 1
NR

m 0 1 1 1 0 0 1 0 1 1

PS 0 0 0 0 0 0 0 0 0 0

R 0 1 1 1 1 1 1 0 1 1

s 0 0 0 1 0 0 1 0 0 1

z 0 1 1 1 1 1 1 0 1 0

Figure 18. The Node Range Matrix of the Graph GM.

40

M-m R-A CX-s c D-PS Z

e1 1 0 1 1 1 0

e2 0 0 0 0 1 1

e3 0 0 1 1 1 1

e4 1 0 1 1 1 1

es 0 0 1 1 1 1

e6 0 0 1 1 1 1

e7 1 0 1 1 1 1
ER=

es 1 0 1 0 1 1

eg 1 0 1 1 1 1

Eio 1 0 1 1 1 1

e11 1 0 1 0 1

e12 1 0 1 1 1 0

e13 1 0 1 1 1 1

e14 1 0 1 1 1 1

Figure 1 9 . The Edge Range Matrix of the Graph GM .

The equal rows of the matrix ER give the partitions of edges

as follows:
E = {elel2; e2; e3e5e6; e4e7e9el0el3el4; eBell } .

reduced edge range matrix is shown in Figure 20.

The

As the final step, the set {e1 , e 2 , e 3 , e 4 , e 8 } is applied to

locate the fault, if it exists. This procedure is shown in

Figure 21. The end leaves of the tree structured graph are the

partitions of MD.

If the fault is found in one of the strong components, the

diagnosis is still not complete. Therefore, the procedure of

blocking gate method is applied to a reduced graph in which the

outputs of another node other than node D are blocked. After

trying several nodes for this purpose, node S is found to be

appropriate. All the necessary steps are given in Figures 22, 23.

The MD of the graph GR is {R; T; P-S}, and E of the graph GR is

{elel7; e5el6}.

This approach enables the procedure to distinguish nodes R

41

and A and D and PS, which were in the same partitions in the previous

application of the blocking gate approach. A fortunate result is

that the second application does not increase the number of blocking

gates.

To conclude the diagnosis of sec 650, it has to be mentione d

that nodes C and X and nodes P and S are not distinguishable under

the method applied here . The test point method can be applie d in

addition to the present method to overcome the proble m [14] .

42

M-m ~ CX-s c D-PS Z

el 1 0 1 1 1 0

e2 0 0 0 0 1 1

EO..= e3 0 0 1 1 1 1

e4 1 0 1 1 1 1

es 1 0 1 0 1 1

Figure 20. The Reduced Edge Range Matrix of the Graph GM.

43

Figure 21. Fault Location Procedure.

44

GR:

T {M,C,D,X,A,Z}

a . The Reduced Gr aph GR, whe n Output s o f Node S are Blocked

R T p s

R 0 1 1 1

T
NR ==

0 0 1 1

p 0 0 0 0

s 0 0 0 0

b. The Node Range Ma t rix of t h e Grap h GR .

Figure 22. Steps in Finding Par titions of MD .

R T P-6

e1 0 0 1

es 0 1 1
ER= 0 1 1 E1s

e17 0 0 1

a. The Edge Range Matrix of the Graph GR

R

0

0

T

0

1

P-S

1

1

b. The Reduced Edge Range Matrix of the Graph GR

Figure 23. Steps in Find ing the Edge s wi th Block i ng Gat es .

45

IV.

A.

46

ANALYTICAL STUDY OF CONVENTIONAL AND MICROPROGRAMMED COMPUTERS

Microprogramming

1. Description

Microprogramming was proposed by Dr. M. V. Wilkes in the

early 1950's. The technology of the period did not suffice for

an economically feasible development in practice; the main

drawback arising from the lack of the fast storage elements. An

informal description of microprogramming will clarify the

reason [21-22].

A conventional computer can be organized by the basi c

components: I/0, storage, arithmetic, logic and control units.

The control unit is a hardwired section to perform all the

necessary gating operations of the entire computer. Its design

philosophy has relied upon the available technology through the

generations of computers. In 1960's the developments in

nondestructive storage technology resulted in the produc tion of

the high speed read-only memories. Hence the replac ement of

the transistor logic control section with a stored logic or a

microprogram control proved to be advantageous [23]. A stored

program to control and select operations for the execution of

several instructions is extensively utilized in computers suc h

as some models of IBM 360/ 370 series, Burroughs B2500-B3500,

Bl700, Standard Computer 670-2700, the Honeywell H4200/ H8 200

and several minicomputers such as Hewlett Packard 2100s.

If the microprogram is stored in a read-write memory

such that the user could access and modify the

microinstructions to the advantage of his particular need,

47

the machine is called dynamically microprogrammed. IBM 360/25

is an example of using read-write memory to store microprograms

but does not utilize the ability to change the microinstruction

to any extent [24].

2. Some Aspects of Implementation

Considering the amount of control within a computer one

suspects that the microinstruction requires a large number of

bits. Hence the type of the control memory used in the system

affects the design of a microprogram. In case the number of

bits/word is preferred to be small, schemes may be used to

encode mutually exclusive control signals reducing the amount

of necessary storage and the length of microinstructions.

However, the additional circuitry for the decoders and

encoders slows down the execution of the microinstructions.

The length of the microinstruction depends also on

polyphase and monophase programming [22]. In the former the

microinstruction initiates more than one microoperation,

where monophase corresponds to the case of one microoperation

being initiated. Polyphase microprogramming is more complex,

but the execution time is reduced.

Horizontal programming and vertical programming are

alternative methods in implementing microprograms. In

horizontal programming, long words are used to set up controls

for a number of register transfers. In vertical programming,

words may be short, but the microinstructions are applied in a

certain sequence.

Upon the choices made the microprogrammed computer

characteristics will change, although all the different

implementations may control the same instruction sequence.

For example IBM 360 series have several microprogrammed

computers over a wide range of performance with the number of

bits/word in the control memory varying from 60 to 100 [24].

3. Advantages and Disadvantages of Microprogramming

Flexibility is an important advantage during design

stages. The design of the microprogram and the implementation

of the system is done in parallel. The system builders have

the chance to modify the control section, if late r in the

design procedure they observe that the addition of some

instructions would improve the performance. The r e ad-only

storage (ROS) containing the mic roprogram may eve n b e replaced

with another ROS programmed more efficiently. Taking economic

aspe cts into account this may not be feasible, howe ver,

compared to a hardwired system the possibility of e nha n c ing

the syste m per f orma n ce still e x ists .

48

If the computer is dynamically microprogrammed there is

more flexibility. The microprogram on the random access

memory (RAM) can be modified with no hardware cost.

4 9

Simplicity is another factor in favor of mic roprogramming .

Conventional control design is complex and difficult to

implement, maintain and understand. Any design mistake is

Fa u l t undesirable , s i nce it is costly to change the hardwa r e .

detection and diagnosis of the hardwired system is very

difficult. Additional circuitry to ease the problem is

expensive. Microprogram o n the other hand is easily faul t

d e t e cte d a nd diagnose d [25].

It has been stated occasionally that a microprogramme d

g e n e ral purpose computer is less expensive to imp l ement

compared to a hardwire d one , because the amoun t o f l ogic

required is less. However, the cost comparison over a period

of time may prove the reverse. One should conside r the

performance fac tor while discuss ing economy. Microprogrammed

c omputer s are s low b ecau s e t he y invol v e sto rage . Presently

memories are the slowest compone nts in c omputers e xcluding

I/0 devices. Al s o ROS contro l i s s e que n t i a l and no ove rlaps

a r e all owed i n p rocessor and memor y operat i ons.

IBM 360/370 machines emulating e arlier IBM mac hines

(14 00 and 7000 s eri es) a r e economical a n d t hey improve the

p e r for ma n c e ; microprograms are writte n for second g e neratio n

comp u t e r s . He n ce s peed and lowe r cost a r e gain e d o ver t h e

emulated machine. Also because of improved har dware

technology it is cheaper for the customer to increase the

capability of his system rather than buying a n ew mac h i ne .

4. Applications of Microprogramming

In the former sections microprogramming is descri bed as

used in designing c omputers or emulating earlie r compute rs .

There are other areas of its application such as, support of

earlier operating systems on newer systems , designing s p e c ial

purpose devices, improving system p e rformance and

maintenance [26] . A few e xamples will b e discussed here t o

illustrate practical applications.

Standard Computer MLP-900 Processor [27] is designe d f or

g e n e ral purpose emulation, simulation and interpre tation.

The MLP processor has its own instruction set, control memory

and interrupt system. This is referred to as the concept o f

"a compute r wi thin a compute r". The read-write con trol s tore

is e x ten siv ely u sed i n e nha n c ing s y stem microdiagnostics.

The microprogram is implemente d in vertical form. This c ho i ce

was ma de to use the control memory more effi c i e ntly, in spite

of s ome p erfo rmance los s. Th e s hort l engt h word configuration

is easily microprogra mmed and the language is very simi lar t o

c ommon a ssembler l a ngua ge. Therefo re , no speci a l software is

required f o r t h e dev elopme n t o f mi c rodiagnostic s . The s e

features enable the system to operat e with a n effi c i ent

50

microdiagnostic at low cost and short time.

Tucker-Flynn Processor (28] is dynamically microprogrammed.

Its 4K read-write microstorage (64 bit/word; 50 nsec) is used

for both data and subroutine storage and is about ten times

faster than read-write main storage (64 bit/word; 500 nsec).

The microinstructions are horizontally programmed. The decoding

is minimized because 32 bits of each microinstruction can

explicitly specify the operation of the processor to be

performed, by setting the control gatings.

There are three basic operations referred to as addition,

shiftmask, and sequence, which are executed in parallel. The

set of microinstructions providing the processor with the

control of a certain operation is called a macro. The rarely

used macros may be located in the relatively slow main storage

if micromemory space is limited. If a set of "problem

oriented macros" are used, the microprogrammed processor can

perform 20 times faster than the conventional processor.

Algorithms must be written for these macros, that require

careful study; however, the equivalent operation cannot be

performed by a single conventional machine instruction. Hence

the advantage of the dynamically microprogrammed processor

over the conventional one lies in the appropriate design or

selection of the macrosets, relevant to the particular

application. Linkage of macros here is implemented by

software which is also microprogrammed. More flexibility is

offered to the rigid hardware design.

Burroughs Bl700 [29) is a small-to-medium scale general

purpose computer commercially available. Its primary

objective is to interpret all programming languages in fast

run time and low computation cost. Hence it is to emulate all

existing and possibly future machines. No machine language

is built into the hardware. The main memory is made of

MOS/LSI circuitry. The 1024-bit chips have 180 nsec access

time. The microcode is also in the main memory, but it may

be buffered in a faster storage with 60 nsec access time.

Bl724 has both main memory and control memory. Its control

memory is four times faster than the main memory. In Bl700

series main memory is bit addressable and has variable operation

lengths from zero to 24 bits in parallel. The processors use

a 32-deep automatic stack. There are several compact

microprograms (less than 4000 16-bit microinstructions)

emulating COBOL, FORTRAN, BASIC and RPG language processors

and, second and third generation machines. Hardware is

implemented for parallel interpretation of many microprograms.

The so called Bl700 Master Control Program (MCP) is an

efficient operating system utilizing virtual memory,

multiprogramming and multiprocessing concepts. The user is

not limited in the amount of physical storage and the

throughput is enhanced. Since there is no machine language,

MCP is written in a high level language.

B. Analytical Approach to Study Flexibility of Computers

1. Representing Computers with Directed Graphs

A directed graph is constructed from a set of nodes and

directed edges. In the representation of computers a set

of nodes can be defined to correspond to the most vital

components of the computer. A high level graphic description

of a computer then would consist of a "storage unit node",

an "arithmetic unit node" and edges corresponding to the

interrelations among these nodes. Four types of nodes are

defined to represent a computer structure adequately. These

nodes are shown in Figure 24.

53

Memory Node: Each memory node M, represents a storage

unit, the flip-flop, the flip-flop register, also the random

access storage device. The memory node has one single directed

input edge and a single directed output edge. Depending upon

the storage device that node M represents, the edges may be

weighted with number of bits.

Decision Node: Each decision node D, has a finite number

of directed input edges and a single directed output edge.

Through external control the node selects any single input

edge and connects it to the output edge. The node then can

select one of several-bit edges, depending upon the edge

weight.

Fan-Out Node: Each fan-out node F, has a single directed

54

Memory Node Decision Node

Fan-Out Node Logic Node

Figure 24. Node Behavioral Characteristics.

input edge and a finite number of directed output edges.

The node connects the input edge to all output edges. The

node then distributes the bits on the input edge to several

output edges.

Logic Node: Each logic node L, has a finite number of

directed input edges and a single directed output edge. The

node produces an output edge, which is a logic function only

of the present input edges. Different logic functions for

the same set of input edges can be implemented by external

control. The node can represent either a simple combinational

switching network or a parallel adder. The number of bits

in the parallel adder will depend upon the edge weight.

A few examples will be demonstrated to illustrate the

use of the nodes. Figure 25 shows a bank of buffer registers

and its directed graph. The three memory nodes represent the

registers designated by A, B and C, while decision nodes and

fan-out nodes are used for multiple register inputs and

outputs, respectively. A multiple-port memory and its

directed graph are shown in Figure 26. Using three main

memories an interleaved system that gains memory acce ss

overlap by address-interl e aving among memory units can b e

formed. Such a system a nd its direct e d graph are shown in

Figure 27. The buffer registe rs of Figure 25 can be ext e nded

to a conventional memory-processor network shown in Figure 28 .

The memor y nodes Ml, M2, M3, M4 r epresent the main me mo ry,

55

5 6

Main
Memory c

Adder
Input

B

Adder A Output

Main Memory Adder Output

Adder Input

Figure 25. Buffer Registers and Their Directed Graph.

From
Processor

From
Disc

From
Processor

To
Processor

Main

Memory

From
Disc

Disc

To
Processor

To
Disc

Figure 26. Multiple-Port Memory and its Directed Graph.

57

5 8

From Processor From Oi sc

I I
~ ' ' ' l ,

Main Main Main

Memory Memory Memory

I I r I

'
I I

l

To Processor To Disc

From Processor From Disc

To Processor To Disc

Figure 27. Interleaved Memory Units and Their Directed Graph.

59

Figure 28. A Conventional Memory-Processor Network Direct e d Graph.

C-register, B-register and A-register, respectively. The

adder is represented by the logic node L. The directed

graph may adequately represent the minicomputer sec 650 if

the program counter and the index register are overlooked.

2. Measuring Flexibility on a Directed Graph

The word flexibility is a vague term and must be

interpreted for the purposes of the discussion. In the

following analysis flexibility will correspond to the ability

of any major unit represented by the node (i) to access any

other major unit represented by the node (j) directly

(excluding intercommunications between logic elements) . Hence

the most flexible computer representation is a directed graph

where every node is adjacent to every other node except logic

node.

In the above section the decision node D and fan-out node

F simply serve the creation of multiple inputs and outputs for

the one input one output memory node and one output logic

node. Therefore, in the considerations of flexibility, these

nodes may be combined with memory and logic nodes to form

equivalent nodes: storage node S and execution node E,

respectively. These nodes are multiple input multiple output

and are shown in Figure 29. Figure 30 indicates the

equivalent directed graph of the memory-processor network of

Figure 28.

60

61

Execution Node

Storage Node

Figure 29. Execution and Storage Nodes.

62

Figure 30. Equivalent Direct e d Graph of Figure 28.

Three values of crosscoupling are defined on a directed

graph composed of equivalent nodes to measure flexibility:

CMl is the ratio of the number (A) of edges from any

storage node S, to any storage node S, to the number (B) of

all possible edges between any storage node s. CMl = A/B.

CM2 is the ratio of the number (C) of edges from any

execution node E to any storage node S, to the number (D) of

all possible edges from any execution node E to any storage

node S. CM2 = C/D.

CM3 is the ratio of the number (E) of edges from any

storage node S to any execution node E, to the number (F) of

all possible edges from any storage node S to any execution

node E. CM3 E/F.

It can be seen that the sum (B + D + F) indicates the

number of all possible edges in the most flexible directed

graph, where the sum (A + C + E) indicates the number of

existing edges in the directed graph. Therefore, a total

measure of crosscoupling can be obtained as follows:

CMT (A+ C + E)/(B + D + F), where 0 < CMT < 1.

CMT of a perfectly flexible system would be one.

The three crosscoupling measures can be found using

blocks of the adjacency matrix. To find CMl let Al be the

block of the adjacency matrix whose rows and columns

correspond to the storage nodes of the directed graph.

63

CMl = A/B, where A is the number of l's in the Al matrix and

B is the number of entri es in the Al matrix. To find CM2

let A2 be the block of the adjacency matrix, where rows

correspond to the execution nodes and columns to the

storage nodes. CM2 = C/D, where Cis the number of l's and D

is the number of entries in the A2 matrix. To find CM3 let

A3 be the block of the adjacency matrix whose rows correspond

to the storage nodes and columns to the execution node.

CM3 = E/F, where E is the number of l's and F is n times the

number of entries in the A3 matrix; n is the number of inputs

of the execution node. If the directed graph has several

execution nodes, find the A3 matrix for each and add the

numerators and the denominators to find the ratio of CM3. A

factor of n is introduced in finding F since any storage node

can access any input of the execution node.

In Figures 31 and 32 directed graphs and adjacency

matrices of a conve ntional and a microprogrammed computer are

given. Table I compares the CMT values . Although the r e sult

indicates that the micropvogrammed computer is more flexible,

examples can be easily found to demonstrate the reve rse .

Table I

Crosscoupling Measures

COMPUTER CMl CM2 CM3 CMT

Conventional 4/16 2/4 2/ 8 8/ 28 (.286)

Microprogrammed 6/25 3/4 3/10 12/39(.308)

64

S1: Main Memory

S2-S4: Local Registers

E:Adder

S1

S1 0

S2 0

A ==S3 0

84 0

E 1

S2

1

0

0

1

0

S3 S4 E

0 0 0

1 0 1

0 0 1

1 0 0

0 1 0

Figure 31. A Conventional Computer Directed Graph

and its Adjacency Matrix A.

6 5

A

Sl ~Main Memory

S2-S4: Local Registers

S5:Micromemory

E: Logic Unit

51 52 53

51 0 1

52 1 0 0

-53 1 0 0

54 0 0 0

55 0 0 0

E 0 1 1

54 55 E

0 0 0

0 0 1

0 0 1

0 1 1

1 0 0

1 0 0

Figure 32. A Microprogrammed Computer Directed

Graph and its Adjacency Matrix A.

6 6

3. Flexibility Improvements and its Effect on Cost

In the previous section total crosscoupling was defined

to be the ratio of the number of the edges that the directed

graph has, to the number of all possible edges. To simplify

the problem the assumption was made so that each edge

provided equal flexibility. If the desire is to improve

the existing structure's flexibility by adding edges, we

can order the edges to be added according to their

importance. For example, for a certain computer structure,

the addition of an edge from the main memory node to a buffer

register node may serve more than the addition of an edge

from a buffer register node to a logic unit node. Let us

take the structure shown in Figure 33. For purposes of this

discussion the edges to be added can be ordered as follows:

the directed edge from 51 to 52, 51 to 53, 53 to E, 53 to 51,

E to S2, S2 to 51.

6 7

Before adding these edges to the existing directed graph

a simple cost analysis can be done. The cost parameter can

be taken as a function of the number of pins and

interconnections of components. Hence the number of edges of

the graph is the determining factor for the cost parameter.

Based upon this argument the cost on an edge directed to the

68

G1

CMT = 6/12

Figure 33. The Structure Gl.

node (i) is formulated as follows:

C f(indegree of the node (i)).

For our purposes the function f will be assumed linear. If

node (i) has one input edge (C=l) , the second input edge with

less flexibility indexing will have C=2. The execution node

should be treated differently, since it may have input edges

of C=l as many as its logic function variables. The total

cost CT is the sum of the costs on all edges.

The cost can be related to the indegree by an exponential

or some other more complicated function f, that complies with

the realistic figures more satisfactorily.

In Figure 34 the edges of the directed graph Gl are

weighted with a linear cost function. The total-cost/total­

crosscoupling ratio CT/CMT of this graph is then 7/6/12 = 14.

It was mentioned earlier that the first edge addition

would be from Sl to 52, to improve flexibility. Since 52 has

only one input, with the new edge its indegree will be 2.

Therefore, the cost of the edge from Sl to 52 is 2. Then

69

CT = 9, CMT = 7/12 and CT/CMT = 15.43. In Table II the effect

of the addition of the edges are shown. Since a function is

assumed that increases CT as CMT increases the result is

reasonable. For a constant CMT value of 7/12 any edge

addition except into node 53 would give a CT/CMT ratio of

15.43. The addition of an edge from Sl to 53 would have a

70

G1

2

CT=7

Figure 34. The Structure Gl with Cost Weighted Edges.

CT/CMT ratio of 17.14. Total costs can be calculated and

compared for constant CMT's for all possible combinations of

edges to be added.

Table II

Effect of Added Edges

ADDED EDGES CT CMT CT/CMT

From Sl to S2 9 7/12 15.43

From Sl to S3 12 8/12 18

From S3 to E 14 9/12 18.67

From S3 to Sl 16 10/12 19.2

From E to S2 19 11/12 20.73

From S2 to Sl 22 12/12 22

If the tendency in the design philosophy favors cost

savings rather than flexibility, then it is best to have CMT

as small as possible. In Figure 35 the directed graph

represents a dynamically microprogrammed computer. This

network incorporates two execution nodes to take advantage of

the parallel nature of the microinstruction and two sets of

file registers shared between logic units . CMT value is . 25

which is smaller than a ny CMT of the examples discusse d. CT

value is 12 and CT/CMT ratio is 48. The high CT/CMT value

indicates that the structure is cheap but l e ss fl e xible .

71

A

S1 :Main Memory

S2,S3:Bank of File Register-s

S4:Micromemory

E1,E2:Logic Units

51 52 53 54

Sl 0 0 0 0

52 0 0 0 0

53 0 0 0 0

54 0 0 0 0

E1 0 0

E2 0 1 0 1

E1

1

1

1

0

0

0

CM1=0/16

CM2=4/8

CM3=6/16

CM4=1 0/40 (.25)

E2

0

1

1

1

0

0

Figure 35. A Dynamically Microprogrammed Structure with

Small CMT and its Adjacency Matrix A.

72

V. CONCLUSION

In this research it has been demonstrated that a study on the

fundamental level would enable graph theory to be easily used as a

tool in the analysis of digital computers. The application of the

blocking gate method on the graph model of the sec 650 minicomputer

for the purpose of its fault-diagnosis illustrates the simplicity

of the application of some graph theory concepts. The strongly

connected nature of computer structures seemed to cause problems

because of the possibility of reducing the graph model down to one

node, when the standard reduction techniques were used. However,

this problem has been handled by breaking edges that caused the

strongly connectedness of a group of nodes.

Computer structures including conventional and microprogrammed

types has been represented by directed graphs and analyzed with

respect to their structural behavior. This type of approach

requires statistical values to be associated with nodes or edges

in order to evaluate performance on the graph models. Rather than

limiting the research on the numerical characteristics of a certain

computer, a general scheme is provided to measure flexibility of

the structures and a cost function is related to this parameter.

Measurement of other parameters would follow this basic scheme

possibly requiring weighted edges or nodes and computer programming

to work on large graphs.

Graph theory applications to computers are not necessarily

73

bound on the study of existing computers. Applications during

the design stages would give more insight to the problem in hand,

and also indicate possible improvements. Some applications have

to be considered during the design stages, such as the blocking

gate method. If the circuits are to be diagnosed with this

method, additional circuitry must be accounted for within the

design repertoire.

74

1.

REFERENCES

E. J. Henley and R. A. Williams, Graph Theory in Modern
Engineering, New York, Academic Press, 1973.

2. H. Frank and I. T. Frish, Communication, Transmission, and
Transportation Networks, Reading, Massachusetts,
Addison Wesley, 1971.

3. F. Harary, R. Z. Norman and D. Cartwright, Structural Models:
An Introduction to the Theory of Directed Graphs, New York,
John Wiley & Sons, Inc., 1965.

4. M. J. Gonzalez, Jr. and C. V. Ramamoorthy, "Program
Suitability for Parallel Processing", IEEE Trans. Computers,
vol. C-20, pp. 647-655, June 1971.

5. C. V. Ramamoorthy and K. M. Chandy and M. J. Gonzalez, Jr.,
"Optimal Scheduling Strategies in a Multiprocessor System",
IEEE Trans. Computers, vol. C-21, pp. 137-147, February 1972.

6. J. Bruno and S. M. Altman, "A Theory of Asynchronous Control
Networks", IEEE Trans. Computers, vol. C-20, pp. 629-639,
June 1971.

7. H. c. Torng, Switching Circuits, Reading, Massachusetts,
Addison Wesley, 1972.

8. R. E. Miller, "A Comparison of Some Theoretical Models of
Parallel Computation", IEEE Trans. Computers, vol. C-22,
pp. 710-717, August 1973.

9. J. L. Bear, "A Survey of Some Theoretical Aspects of
Multiprocessing", ACM Computing Surveys, vol. 5, No. l,
March 1973.

10. T. c. Hu, Integer Programming and Network Flows, Reading,
Massachusetts, Addison Wesley, 1969.

11. c. v. Ramamoorthy and L. C. Chang, "System Segmentation for
the Parallel Diagnosis of Computers", IEEE Trans. Computers,
vol. c-20, pp. 261-270, March 1971.

12. J. D. Russel and c. R. Kime, "Structural Factors in the Fault
Diagnosis of Combinational Networks", IEEE Trans. Computers,
vol. C-20, pp. 1276-1285, November 1971.

75

13. R. L.

for
pp.

REFERENCES (cont.)

Kleir and C. V. Ramamoorthy, "Optimization Strategies
Microprograms", IEEE Trans. Computers, vol. C-20,
783-794, July 1971.

14. C. V. Ramamoorthy, "A Structural Theory of Machine Diagnosis",
in 1967 Spring Joint Comput. Conf., AFIPS Conf. Proc.,
vol. 30, Washington, D. C.: Thompson, 1967, pp. 743-756.

15. P. D. Stigall, "A Data-Flow Structure for Dynamic­
Microprogrammed Computers", IEEE Computer Society
Repository R 72-239.

16. C. V. Ramamoorthy and W. Mayeda, "Computer Diagnosis Using
Blocking Gate Approach", IEEE Trans. Computers, vol. C-20,
pp. 1294-1300, November 1971.

17. M. A. Breuer, "Testing for Intermittent Faults in Digital
Circuits", IEEE Trans. Computers, vol. C-22, pp. 241-246,
March 1973.

18. 0". H. Tracey and H. T. Pottinger, "Formal Description of
SCC 650 Computer", Technical Report CRL 68.1, January 1968.

19. J. H. Tracey and R. F. Crall, "Operation of the SCC 650
Digital Computer", Technical Bulletin CRL 68.1, August 1968.

20. P. D. Stigall and 0. Tasar, "Graph Model Analysis of Computer
Structures (Program Documentation)", Technical Report
CRL 74.2, April 1974.

21. P.M. Davies, "Readings in Microprogramming", IBM System
Journal, vol. 11, pp. 16-40, 1972.

22. T. L. Dollhoff, "Microprogrammed Control for Small Computers",
Computer Design, vol. 12, pp. 91-97, May 1973.

23. s. s. Husson, Microprogramming: Principles and Practices,
Englewood Cliffs, N. J., Prentice-Hall, Inc., 1970.

24. c. G. Bell and A. Newell, Computer Structures: Readings and
Examples, New York, McGraw-Hill, Inc., 1971.

25. c. V. Ramamoorthy and L. C. Chang, "System Modeling and
Testing Procedures for Microdiagnostics", IEEE Trans.
Computers, vol. C-21, pp. 1169-1183, November 1972.

76

REFERENCES (cont.)

26. M. J. Flynn and R. F. Rosin, "Microprogranuning: An
Introduction and a Viewpoint", IEEE Trans . Computers,
vol. C-20, pp. 727-731, July 1971.

27. R. M. Guffin, "Microdiagnostics for the Standard Computer
MLP-900 Processor", IEEE Trans. Computers, vol. C-20,
pp. 803-888, July 1971.

28. A. B. Tucker and M. J. Flynn, "Dynamic Microprogranuning:
Process Organization and Progranuning", Conununications of
ACM, vol. 14, pp. 240-250, April 1971.

29. W. T. Wilner, "Design of the Burroughs Bl700", in 1972 Fall
Joint Comput. Conf., AFIPS Conf. Proc., vol. 41, Part 1,
Montvale, N. J., AFIPS Press, 1972, pp. 489-497 .

77

VITA

Omur Ta~ar was born on May 25, 1948 in Istanbul, Turkey.

She received her Bachelor of Science degree with Honors in

Electrical Engineering from Robert College, Istanbul, Turkey

in June, 1971. She enrolled in the graduate school at the

University of Missouri-Rolla in August, 1972 to begin work on

her Master of Science degree in Electrical Engineering.

240821

7 8

	Graph model analysis of computer structures
	Recommended Citation

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088

