W Durham
University

AR

Durham E-Theses

Application of bit-slice microprocessors to digital
correlation in spread spectrum commumnication Systems

Ismail, Nabil Abd-el-wahid

How to cite:

Ismail, Nabil Abd-el-wahid (1983) Application of bit-slice microprocessors to digital correlation in spread
spectrum communication systems, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/698/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/698/
 http://etheses.dur.ac.uk/698/
htt://etheses.dur.ac.uk/policies/

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://etheses.dur.ac.uk

APPLICATIONS OF BIT-SLICE MICROPROCESSORS
TO DIGITAL CORRELATION

IN SPREAD SPECTRUM COMMUNICATION SYSTEMS

by

Nabil Abd-el-wahid Ismail, B.Sc., M.Sc.

A thesis submitted in accordance with the regulation for the
degree of Doctor of Philosphy in the University of Durham
Department of Applied Physics & Electronics

1982

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Applications of Bit-Slice Microprocessors to Digital

Correlation in Spread Spectrum Communication Systems

Nabil Abd-el-wahid Ismail

ABSTRACT

This thesis describes the application of commercially
available microprocessors and other VLSI devices to high-speed
real-time digital correlation in spread spectrum and related
communication applications. Spread spectrum communications are a
wide-band secure communication system that generate a very broad
spectral bandwidth signal that is therefore hard to detect in
noise. They are capable of rejecting intentional or unintentional
jamming, and are insensitive to the multipath and fading that
affects conventional high frequency systems. The bandwidth of
spread spectrum systems must be large to obtain a significant
performance improvement. This means that the sequence rate must
be fast and therefore very fast microprocessors will be required
when they are used to perform spread spectrum correlation. Since
multiplication cannot be performed efficiently by microprocessors
considerable work, since 1974, has been published in the
literature which is devoted to minimising the requirement of
multiplications in digital correlation and other signal
processing algorithms. These fast techniques are investigated
and implemented using general-purpose microprocessors. The
restricted-bandwidth problem in microprocessor-based digital
correlator has been discussed. A new implementation is suggested
which uses bit-slice devices to maintain the flexibility of
microprocessor-based digital correlation without sacrificing
speed. This microprocessor-based system has been found to be
efficient in implementing the correlation process at the baseband
in the digital domain as well as the post-correlation signal
processing- demodulation, detection and tracking, especially for
low rate signals. A charge coupled-device is used to obtain
spectral density function. An all-digital technique which Iis
programmable for any binary waveform and can be used for
achieving initial acquisition and maintaining synchronisation in
spread spectrum communications is described. Many of the
practical implementation problems are discussed. The receiver
performance, which is measured in terms of the acquisition time
and the bit-error rate, is also presented and results are
obtained which are close to those predicted in the system
simulations.

ACKNOWLEDGEMENTS

I would like to express my gratitude for the consistent
guidance and the constructive criticism of Dr C.T.Spracklen
during the project. 1 am indebted to him for his supervision,
encouragement, and helpful advice and for his help in securing

equipment.

I would also like to thank Professor G.G.Roberts for
allowing me to use the facilities of the Department of Applied
Physics and Electronics, the University of Durham, and I am
grateful to members of the workshop for their willingness to

provide their skill and advice.

My thanks are also due to my colleagues in the Digital
Electronics Group for many useful discussions and times spent
together. The help of the staff of the Computer Unit of the
University of Durham as well as the staff of the Science Library

is also gratefully acknowledged.

My appreciation is also extended to the Egyptian Mission
Department and the University of Menoufia for an award of a
research studentship and for providing financial support over

more than three years.

Finally, I am particularly indebted to my wife Afrah for her
understanding, patience and support and to my parents, brothers
and sisters for moral and financial support and to my daughter
Marwa for her unceasing distraction which formed a source of much

relaxation.

To Afrah, Marwa and Aeimn

iii

ABSTRACT
ACKNOWLEDGEMENTS
Glossary of Terms

CHAPTER 1 Introduction

1.1 History

1.2 Spread spectrum techniques

1.3 Problems of spread spectrum systems

1.4 Synchronisation problems

1.5 Practical implementation problems

1.6 Bit-slice microprocessors and spread spectrum systems
1.7 Conclusion

CHAPTER 2 Digital Correlation Techniques Using Microprocessors

2.1 Introduction
2.2 Digital correlation
2.3 Transform analysis
2.3.1 Correlation using rectangular transforms
2.4 Implementations
2.4.1 Implementation using an Intel-8080 microprocessor
system
2.4.2 Correlation on TMS9900 microcomputer
5 Binary correlation
.6 Real-time power spectrum density
2.6.1 Chirp-Z transform algorithm
2.6.2 Hardware implementation
2.7 Conclusion

CHAPTER 3 Bit-Slice Microprocessor System
3.1 Introduction

3.2 System organisation

3.3 2901 ALU/Register slices

3.3.1 Architecture
3.3.2 2901-slices interconnection
3.4 Microprogram control
3.4.1 Microprogram memory
3,4.2 Microprogram counter
3.5 Condition code select logic
3.6 1/0 external registers handling
3.6.1 The 'To' decoder
3.6.2 The 'From' decoder

iv

3.6.3 The control decoder
3.7 Input/Output buffer memory
3.8 System clock
3.9 Conclusion

CHAPTER 4 System Microprogramming Features

1 Microprogramming

2 Microinstruction format

.3 Microinstruction implementation

4 Microinstruction sequencing

4.4.1 Sequential execution

4.4.2 Skip control

4.4.3 Multiple sequences

4.4.4 Start address

4.5 Special microassembler

4.6 Software simulator

4.7 PROM programming

4.8 Development test equipments

4.9 Test software

4.9.1 Control decoder test

4.9.2 "To" and "From" decoder test
4.9.3 2901-slices internal registers test
4.9.4 Up shift test

4.9.5 Down shift test

4.9.6 2901 ALUs arithmetic operation test
4.9.7 Carry control test

4.9.8 FIFO control tests

4,9.9 FIFO data tests
4.9.10 Output enable test
4,10 Conclusion

CHAPTER 5 Implementation of Direct Sequences by Microprocessors

1 Introduction
2 Pseudo-noise sequences
5.2.1 Generation and properties
5.2.2 Correlation functions and power spectra of codes
5.3 Implementing the feedback shift register on a
microprocessor
5.4 Sequence inversion keying (SIK) modulation
5.5 Synchronisation
5.5.1 Initial acquisition techniques
5.5.2 Correlation process
5.6 Tracking
5.6.1 Delay-lock loop correlator
5.6.2 Implementation
5.7 Conclusion

5.
5.

CHAPTER 6 Transmitter and Receiver Design

6.1 Introduction
6.2 Transmitter

6.6
6.7
6.8

6.2.1 Data acquisition
6.2.2 FIFO on transmit
Spreading

Transmitter software
Receiver

6.5.1 FIFO on receive
6.5.2 Search/lock strategy
6.5.3 Receiver software
Clock frequency effects
Data recovery
Conclusion

CHAPTER 7 System Performance & Experimental Results

7.1 Introduction
7.2 System performance
7.2.1 Acquisition time measurements
7.2.2 Bit error-rate measurements
7.3 Noise channel simulation
7.3.1 The microprocessor
7.3.2 Hardware description
7.3.3 Implementation
7.4 Experimental results
7.5 Conclusion
CHAPTER 8 Conclusion
APPENDIX A References
APPENDIX B Program Listings

vi

Glossary of Terms

ADC Analogue to Digital Converter
A/D Analogue to Digital

Al Antijamming

ALU Arithmetic Logic Unit

BER Bit Error Rate

BPSK Biphase Phase Shift Keying
CcCD Charge Coupled Device

CCP Cyclic Convolution Property
CPE Central Processing Element
CcPU Central Processing Unit

CRT Chineese Remainder Theorem
CZT Chirp-Z Transform

DAC Digital to Analogue Converter
D/A Digital to Analogue

DFT Discrete Fourier Transform
DLL Delay-Lock Loop

DMA Direct Memory Access

FFT Fast Fourier Transform

FIFO First Input First Output

FIS Fixed Instruction Set

Gp Process Gain of Spread Spectrum System
IC Integrated Circuit

I/0 Input/Output

LSB Least Significant Bit

LSI Large Scale Integration
m-sequence Maximal Length Pseudonoise Sequence
MSI Medium Scale Integration

vii

NTT Number Theoretic Transform

pD Probability of Detection

PE Probability of Error

PIA Peripheral Interface Adapter
PN Pseudo-Noise Sequence

PROM Programmable Read Only Memory
PSK Phase Shift Keying

QPSK Quadriphase Phase Shift Keying
RAM ﬂamaém Access Memory

ROM Loz { Only Memory

SIK Sequence Inversion Keying

SAW Surface Acoustic Wave

TDMA Time-Division Multiple Access
VCO Voltage Controlled Oscillator
VLSI Very Large Scale Integration

WFTA Winograd Fourier Transform Algorithm

vili

CHAPTER 1

Introduction

1.1 History

The spread spectrum technique has evolved from a desire by
communication system users to protect their messages against
detection by wunauthorised users and provide reasonable immunity
to interference for the desired user. Spread spectrum is a means
of transmission in which the basic signal characteristics are:

(i) The carrier is a pseudonoise, wide-band signal.

(ii) The bandwidth of the carrier is much wider than the
minimum bandwidth required to transmit the information being
sent. As a minimum, a voice signal can be sent with amplitude
modulation (AM) in a bandwidth only twice that of the information
itself. A spread spectrum system, on the other hand, has a
modulated signal bandwidth that is at least 10 to 100 times that
of the information bandwidth.

(iii) Reception is achieved by crosscorrelation of the received
wide-band signal with a synchronously generated replica of the
wide-band carrier. This is used for despreading and subsequent
data recovery. Furthermore, in a spread spectrum system, the
information data rate does not dictate the bandwidth of the

modulated signal.

The concept of spread spectrum technology has been known
since Shannon's theorem (1) came to the light in 1940's. Costas
work in 1959 (2) indicates that the idea of employing coded

wide-band signals for communicating in the presence of noise

1-1

could be implemented in some systems. Golomb's work (3) in the
area of codes used in communication and pseudonoise generation
which was started in 1956 has offered a further recognition to
the field. The first high performance electronic correlator by
Lee which was decribed with other correlation techniques by Lange
(4) in the early 1960's, was the important step towards the
ability to mechanise the correlation operation precisely, which
is essential in building high-performance spread spectrum
systems. At that time, the initial application have been to
military antijamming (AJ) communications, to gquidance systems and
other related applications which were employed with conventional
vacuum tube technology. The prime advances in spread spectrum
performance have come about primarily as a result of the
availability of solid state components. The advent of high
speed, high gain transistors in the 1960's gained the subject a
new area of applications such as the navigation (ranging and
direction finding) area and space exploration programs. Certain
investigations and systems were carried out, mainly in the United
States, during the 1960's and early 1970's (5)-(8), but were
largely abandoned in favour of satellite and satellite-aircraft

communicatons.

The recent advances in digital integrated circuits (IC)
technology and VLSI (very large scale integration)/LSI (large
scale integration) packages have enabled substantial reductions
to be made in both the size and the cost of communication
systems. At the same time, new analogue device developments, such

as surface acoustic wave (SAW) and charge coupled devices (CCD),

have been introduced. It seems only logical that spread spectrum
systems also benifit from such developments (9). On the other
hand, much work (10), (11) has been performed in the area of
developing special "acquirable" codes which have the required
length for the system under question, but which also have
synchronisation properties (excellent autocorrelation and
crosscorrelation properties) that permit acquisition to be

searched out without traversing the entire code length.

Although the current application for spread spectrum
continue to be primarily for military communications, there is an
increasing interest in the use of this techniques such as for
mobile radio networks and some specialised applications in
satellites. Most recently they have been successfully applied to

multiple access situations involving many users simultaneously

(12).

At present there is a limited amount of information
(unclassified) in the published literature which outlines the
applications of the spread spectrum concept to a communication
system from an overall system viewpoint. The general details on
practical performance are few with isolated theoretical

investigations of some of the problems.

In this thesis we confine ourselves to principles related to
the applications of VLSI technology to the design and analysis of
those parts of a spread spectrum communications system concerned
with synchronisation acquisition and tracking. For this complete
transmitter and receiver systems were developed using the latest

state-of-the-art technology, the bipolar bit-slice

microprocessors. It is shown that those parts of the receiver
which previously required large amounts of expensive analogue or
discrete equipment can be realised at lower cost and with

increased flexibility using all digital techniques.

1.2 Spread Spectrum Techniques

To illustrate the principle of a spread spectrum system the
block diagram of a transmitter and receiver is shown in Figure
(1.1). When viewed as a system composed of many sub-systems the
individual units of a spread spectrum system are in many ways
identical with sub-systems in conventional communication systems.
From a theoretical viewpoint there is no reason why analogue
waveforms should not be considered for bandwidth expansion in
spread spectrum systems. There are, however, constraints on the
desired correlation properties of spreading waveforms. In an
ideal spread spectrum system, waveforms with good autocorrelation
properties and orthogonality between the various waveforms are
desired. It is generally accepted that in practical systems the
best that can be achieved is waveforms which exhibit a two level

autocorrelation function and low values of crosscorrelation.

The study of binary sequences is comprehensive in the
literature (3), (10), (11). It is mainly due to this, and the
ease of generation of maximal length pseudonoise sequences
(m-sequence) using shift registers, that digital spreading
waveforms are widely used. There are many techniques to achieve
spectrum spreading (6), these are;

(1) direct sequence modulated |~ :

(2) frequency hopping

14

i L~)
DATA MOD 2 ' ' DIGITL CORRELATION
SOURCE [gn ~| ADDER l_ | | CORRELATOR DETECOR
I o e ¥ .
alt) alt) 3
rate = f, NOISE INTERFERENCE 3
§
PSEUDONOISE PSEUDONOISE SYNCHRONISATION i
SEQUENCE fe— _— SEQUENCE NETWORK [*
GENERATOR GENERATOR
spreading despreading
sequence sequence
TRANSMITTER RECEIVER
FIGURE (1) DIRECT SEQUENCE SPREAD SPECTRUM SYSTEM FOR TRANSMITTING

CHANNEL

A BINARY DATA (BASEBAND).

TO
DATA

®™RECOVERY

(3) time hopping

(4) pulse-FM or chirp

In a direct sequence system (which is also called
PN-sequence), as shown in Figure (1.1), the data information is
combined with a high clock rate m-sequence before modulation on
the carrier, resulting in direct bandwidth expansion. Frequency
hopping (FH) has evolved from the idea that a good way to prevent
an unintended receiver from receiving a message, or to prevent
interference, is to move the carrier frequency of the information
signal in a pseudorandom manner. Instead of directly modulating
the carrier, the code sequence is used to switch the carrier
frequency in a pseudorandom manner. The synchronisation
acquisition in a frequency hopping scheme is faster due to a
larger duration of the hopping chip. However, this is a
disadvantage when the overall system requires any form of
accurate time of arrival measurements. The hardware required to
implement such schemes is always far more complicated and
expensive to implement. Like frequency hopping, time hopping
systems control their transmission time and period from a
pseudonoise sequence. Time hopping is generally not used alone
but is always employed in conjunction with frequency hopping and
direct sequence methods to eliminate time dependent interference
or allow time-division multiple-access (TDMA) system. Unlike the
other spread spectrum systems, pulse-FM or chirp does not employ
m-sequences. The operation is based on pulse compression
achieved by frequency sweep at the transmitter and compression

using a dispersive matched filter at the receiver.

1-5

Hybrid spread spectrum systems are possible by combining

these basic techniques.

There are many advantages for spreading a signal's bandwidth
and then collapsing it through correlation with a stored
reference signal contained in the receiver:

(a) selective addressing

(b) low power density signals

(c) inherent message privacy

(d) code division multiple user access

(e) high resolution ranging

(f) interference rejection

(g) possible operation with adverse transmission distortion

(h) accurate universal timing

Selective addressing is possible through the assignment of a
particular m-sequence (code) to a receiver. The low power
density of spread spectrum signals results from the wideband for
transmission and causes low interference to other users. The
coded format of spread spectrum systems offers privacy in
communication from the casual listener. The use of different
codes allows multiple users in a spread spectrum communication
system. The good correlation properties of m-sequences in
conjunction with the wide bandwidth used for transmission allow
accurate ranging of transmitter or receiver. The interference
rejection occurs as a result of the despreading necessary for the
operation of a spread spectrum receiver. In a particular system,
the ratio of spread or transmitted bandwidth to the rate of the

information sent is called the "process gain" (GP) (7) of that

1-6

system. This factor is the measure of the interference rejection
in that system. The large bandwidth of spread spectrum systems
suggests that a form of frequency diversity is available in the
system which may combat distortions due to the transmission
medium. It should be noted that these advantages are not always
available and rely on reasonable synchronisation of the receiver

with respect to the transmitter.

1.3 Problems of Spread Spectrum Systems
Most of the problems discussed in this section are not

unique to spread spectrum systems. Some of them are associated
with communication via the propagation medium. The object is to
provide an appreciation of the general problems relevant to the
subsequent practical limitations in spread spectrum receiver
system. The main problems are:

(1) Interference and noise

(2) Distortion due to the transmission medium

(3) Synchronisation problems

(4) Practical implementation problems

These problems are of equal concern in that; either they
corrupt the received data or they affect the system performance.
Interference and noise in spread spectrum systems are a result
of:

(1) Interference due to other spread spectrum users; this is
increases as more users utilise the same RF band. It is required
to devise orthogonal spreading functions for the numerous users

using the same frequency band.

(2) Interference due to the geometry of links; in certain

instants an interfering transmitter may be closer to a receiver
than the desired transmitter. In this situation the wanted
signal will be received in a high level of interference. This is
known as the "near-far" problem.

(3) Interference from conventional radio systems; to a
considerable extent a spread spectrum system has the ability to
reject interference from narrowband systems. This is possible
within the jamming margin of the spread spectrum. The jamming
margin is the power level above the spread spectrum signal that a
narrowband interferer can be discriminated against, for a desired
output signal to noise ratio, including implementation losses
(M.

(4) Man-made impulsive noise; this is produced from machinary,
fluorescent lights, power switching appliances etc.

(5) Atmospheric and receiver noise; this may need consideration
as in a conventional receiver system, depending on the frequency

band of interest.

Distortions due to the transmission medium, on the other
hand, are dependent on the propagation mechanisms of radio waves

in a known environment.

1.4 Synchronisation Problems

The problem of synchronisation is of major concern in the
design and implementation of spread spectrum systems. This is
because the interference rejection capabilities rely on adequate
synchronisation of the spreading and despreading waveforms. By
synchronisation we mean that, the signal seen by the receiver

must be precisely correlated in time with a locally generated

1-8

reference signal.

The main sources of uncertainty, with respect to
synchronisation, in spread spectrum systems are those that are
time or frequency dependent. Time uncertainty includes any
propagation time delay due to unknown range. Frequency
uncertainty is due to the instability of the frequency sources
used in both transmitter and receiver. Code, phase, and carrier
frequency are the frequency uncertainty. Doppler-related
frequency errors often cannot be predicted and may p(affect both
code rate and carrier frequency. Another consequence of
frequency uncertainty may also exist, any clock rate offset is
accumulated in code phase offset. These factors lead to a
degradation of the synchronisation performance because; (i) not
all main correlation peaks are detected, i.e., the detection
probability PD, and (ii) false set impulses occur, as false
alarms are generated at instants at which correlation subpeaks

are above a certain threshold away from the main peaks.

The time required for achieving synchronisation between
transmitting and receiving units has become the major factor
limiting usage of spread spectrum systems. Reduction of
synchronisation time is limited by the maximum search rate a
receiving unit is capable of achieving and the length of the
m-sequence to be used. Maximum search rate, is limited by the
recognition time of the receiver's correlation detection
circuits. The receiver must be able to recognise correlation and
stop the search process before the point of code synchronisation

is passed. This requires that the bandwidth of the correlation

detectors must be commensurate with the auteorrelation

requirements of the m-sequence used.

The synchronisation process is generally separated into two
phases, initial synchronisation and tracking. The initial
synchronisation phase determines the timing of an incoming signal
and brings the receiver into initial alignment, the tracking
phase holds it in alignment. Initial synchronisation is
frequently achieved by means of a single synchronisation preamble
at the beginning of each transmission. The structure of the
preamble is known to all users, and is usually fixed. An
alternative is to intersperse synchronising signals within the
structure of the transmission, so that receipt of the beginning
of the transmission is not necessary to achieve synchronisation
and receivers which lose synchronisation during the transmission
can reacquire. For security reasons and ease of implementation
the transmitting signal itself can be used to achieve initial
acquisition. Tracking is generally accomplished by a feedback
loop which adjusts the receiver's time base to track the incoming

signal.

Most of these synchronisation methods, especially for low
data rate systems, have been performed using digital techniques
(5). The advent of analogue SAW devices and CCD technology has
led to synchronisation schemes with fast acquisition
characteristics. These are mainly used for very high data rate

systems (13)-(15).

1-10

1.5 Practical Implementation Problems

The code sequences that are used for spectrum spreading must
fulfill two criteria; (i) denying any information about future
sequence k-tuples to the unintended user, and (ii) permitting
practical implementation, including convenient code changes.
Sometimes it is desirable for the sequence autocorrelation
behaviour to have a high peak-to-sidelobe ratio, for acquisition
synchronisation purposes. It is also desirable that the code
sequence has a proper k-tuple statistics. Practical and
effecient implementation techniques for PN sequences centre
around use of shift-registers (3). High speed shift register
implementation has been improved over the years from the use, in
1959, of large lumped-constant delay networks to present use of
integrated circuits. A special LSI/MSI packages capable of
operation at bit rates in excess of more than 300 Mbps has been
developed especially for code sequence generation in spread
spectrum systems. Increasing the code rate requires a
significant improvement in the speed of integrated circuit
technology. On the other hand, high speed logic circuits tend
toward noise sensitivity and are more susceptible to error. This
reason, in addition to the problems of spectrum occupancy, system
synchronisation, and propagation constraints tend to limit the

code rates used for spectrum spreading, and hence to improve

system process gain.

In principle, it is possible for spread spectrum receivers
to use matched filter or correlator structures to synchronise to

the incoming signal. Sliding correlator (7) and sequential

1-11

estimation (16) methods have been used for acquisition which
employ techniques to bring the transmitter and receiver code
sequences into a range in which digital correlator or matched
filter may be used. A time-complexity tradeoff exists. While
using a bank of correlator or matched filters provides a means
for rapid acquisition, a considerable reduction in complexity,
size, and receiver cost can be achieved by using a single
correlator or a single matched filter. However, .these reductions
are paid for by the increased acquisition time needed when
performing a serial rather than a parallel operation. One
obvious practical implementation problem is therefore the
determination of the tradeoff between the number of parallel
correlators (or matched filters) used and the cost and time to
acquire. It is important to note that this tradeoff may become a
major point, recently, as a result of the rapidly advancing VLSI

technology.

Practical system considerations such as those encountered
when operating at, HF, VHF, or UHF, and technology
considerations, such as the role of surface acoustic wave devices
and charge-coupled devices in the design of spread spectrum

systems are not included in this work.

1.6 Bit-Slice Microprocessors and Spread Spectrum Systems
Microprocessors are one of the most significant products of
VLSI technology previously mentioned. It is a monolithic device
which can be obtained at low cost and which may be made to
perform a wide range of instructions. The microprocessor system

is configured such that it may perform most of the digital signal

1-12

processing tasks by appropriate choice of a sequence of
instructions, 'software'; stored in a read-only memory (ROM)
space. Under the user control, the microprocessor may access the
stored instructions and executes them sequentially, A
microprocessor system may be made adaptive by determinig that the
order of execution of the instruction sequence is dependent on
previous and/or present events. Because these devices are
fabricated using MOS technologies, the instruction execution time
is relatively long. In addition, their word length is limited
and instructions are fixed. The inflexibility might prevent
their use in applications where high speed or special

instructions are essential.

A bit-slice microprocessor is a bipolar device which is
designed to achieve high performance, flexible instruction
format, and much longer word lengths. It is configured such that
its control should be microprogrammed. A set of programmable
read-only memory (PROM) or ROM are used to store the program
instructions or 'microinstructions' which supervises the central
processing unit (CPU) and the other auxiliary logic circuits.
The CPU is where data is processed and it consists of one or more
bit-slice microprocessors connected in cascade. A program
counter may be used to access the stored microinstructions which
are executed sequentially or in adaptive order. Usually the

microinstruction is a dedicated user design.

This thesis describes the applications of bit-slice
microprocessors to synchronisation and other aspects of digital

spread spectrum communication systems.

1-13

The next chapter describes the different digital correlation
techniques to be implemented with the aid of a microprocessor,
and the implementation of other discrete-time signal processsing

techniques which are used in subsequent chapters in this thesis.

Chapter 3 describes the hardware configuration of the
bit-slice microprocessor system, based on the 2901 bit-slice

devices, that has been used in the subsequent chapters.

Chapter 4 continues the description of the microinstruction
design of the system and introduces timing considerations. It
describes the microprogram support tools; special assembler,

software simulator, and other development and test equipments.

Chapter 5 discusses the analysis and implementation, in both
software and hardware, of the functions which are concerned with

direct sequence spread spectrum systems.

Chapter 6 describes how the 2901 microprocessor can be
applied to perform the signal processing for the spreading,
synchronising, and despreading of the transmitter and the

receiver.

The ideas and results obtained from previous chapters in
this thesis were combined in chapter 7 to discuss the performance
of the receiving system in the presence of a channel noise
simulator process. Formulas for estimating the synchronisation
time have been given and results obtained using the equipment

which was previously described are discussed.

1-14

1.7 Conclusion

Although the current applications for spread spectrum
techniques continue to be primarily for military communications,
there is a growing interest, during the last decade, in the use
of these techniques for other commercial applications such as
mobile radio networks, code division multiple access, and timing

and positioning systems.

The problems associated with implementing this technique in
data communications systems are considerable because of the cost,
complexity, and the constraints on the information. Most of
these problems are related to the technology to be used and the
applications under question. One of the main tasks, which can be
all digital, to be accomplished at the receiving end of a spread
spectrum system is the synchronisation of the pseudonoise signal
generated locally at the receiver with the pseudonoise signal
contained in the received signal. This synchronisation process
must be achieved in minimum time which requires high speed

digital circuitry.

With the advent of microprocessors a relatively cheap and
powerful digital signal processor has now become available.
These microprocessors are well suited to communication systems
which require adaptability since they are cheaper than analogue

processing methods and take up less space.

This thesis describes the applications of these devices to
synchronisation process and other digital signal processing

requirements which are related to the present communication

1-15

systems. It shows that considerable savings in cost and hardware
requirements may be made by using a primarily software-based

approach to system design.

1-16

CHAPTER 2

Digital Correlation Techniques Using Microprocessors

2.1 Introduction

Correlation techniques have been widely used in signal
processing systems such as spread spectrum communications, radar,
and others. In all these systems correlation must be performed
in real-time, requiring the use of electronic circuits that are
compatible with the system in question. Electronic systems that
perform correlation have been around for years, but they have
been bulky and inefficient. The development of VLSI and
microprocessors have changed this; now correlation can be
performed efficiently with a minimum number of components (17).
A digital correlation circuit should be able to achieve the three
functions of correlation: time delay, multiplications, and
summation, respectively. In binary correlation, on the other
hand, the shift register, the exclusive NOR gates, and the summer

fulfill the three functions.

A microprocessor has been found to be efficient in
implementing digital correlation signal processing, especially
for low rate signals. Recent work of Cooley, Tukey (18), (19),
Winograd (20), (21), Agarwal, and Burrus (22), (23) has been
devoted to minimising the requirement of multiplications in
convolution and correlation algorithms to be implementd using
microprocessors, because multiplication cannot be perfnrrﬁed

efficiently by microprocessors.

2-1

Many of the correlation signal processing requirements of
spread spectrum communications systems may be realised using high
speed digital techniques. Spread spectrum bandwidth must be
large to obtain significant performance improvement. This means
that the sequence rate must be fast and very fast microprocessors
will be required when they are used to perform spread spectrum
correlations. This is one of the reasons that the bit-slice

technology is very attractive in this application.

This chapter introduces the different digital correlation
techniques to be implemented with the aid of microprocessors.
Digital correlation plays an important role in the analysis, the
design, and the implementation of digital signal processing
systems concerned with spread spectrum systems and is used in
several of the parts described in following chapters. Software
implementation of efficient algorithms for the computation of
digital correlation is investigated. The possibility of applying
the other alternative, binary correlation, using the bit-slice
technology is also presented. The theory and hardware
construction of a real-time spectral analyser based on the most

recent charge coupled devices (CCD) technology is also included.

2.2 Digital Correlation

It is well known that when a received spread spectrum signal

r(t) is the transmitted signal s(t) corrupted by additive white

Gaussian noise, n(t), the optimal receiver is a correlator

receiver which computes correlation according to the equation

"
o(r) = 1T _g r(t)s(t + 1) dt (2.1)

where c(7) represents the crosscorrelation between the received
signal and a replica of the transmitted signal. In many spread
spectrum communications systems, the signal s(t) is a pseudonoise

(PN) sequence.

In general, correlation between two functions is a measure
of their similarity, i.e., it is a comparison process. Equation
(2.1) is determined by multiplying the received signal r(t), by
the transmitted signal shifted in time, s(t+t), and then taking
the integral of the product. Thus correlation involves time
shifting, multiplication, and integration. The correlation of a
function s(t) with a time-delayed replica of itself is called

autocorrelation.

Digital signal processing requires functions to be
represented in discrete form, where the time scale and amplitude
are quantised into discrete steps. The PN spread spectrum
receiver, when implemented digitally, performs the correlation

function as follows:

N-1
c(nT) = I/NY (iTs+mT) n=0,1,.....N-1 (2.2)
i=0

where the original time functions are approximated by sequences
of length N. The N selected will depend on the durations of the
two functions and of their sampled portions, and on their
periodicities (if any). One guide often used in determining the
sampling rate 'Tu' is the sampling theorem which states that an

input signal with a highest frequency component of 'f' can be

recovered without distortion using a sampling frequency 2f (24).
A sampling rate (which is also known as Nyquist sampling rate) of
2f or greater will therefore minimise the likelihood that

analogue information is being lost in the quantising process.

A microprocessor may'be" perform correlation, operating
according to the discrete summation equation (2.2). Successive
samples of an input voltage waveforms can be collected using an
analogue-to-digital (A/D) converter. These data samples can
either be put through some interface (input/output (I/O) ports or
perhaps a peripheral interface adapter (PIA)) and sent to the
microprocessor, or they can be stored in read access memory RAM
directly by using each successive "conversion done" output of the
analoque to digital converter (ADC) to initiate a direct memory
access (DMA) cycle. After all the desired samples have
collected, the data can be processed. For a fixed data record,
the memory information is held for N complete recirculations
before being replaced by a new record. With a varying input
signal, after each recirculation the oldest memory sample is
replaced by a new input sample. Since all the data samples are
available for subsequent processing, multiplying each sample of
the recirculating data with a fast reference signal and summing
over N samples provides one point of the correlation function.
Further points are obtained on successive recirculation. This
method requires 2N memory space locations, N multiplications and
N additions for each term of the correlation. If all terms of
correlation function were desired, N2 multiplications plus NG

additions would be required. In a microprocessor system which

2-4

does not contain a hardware multiplier or employing a single
hardware multiplier (rather than a bank of external multipliers)
the multiplication operation can take up to 300 microseconds
(u.sec). As a result of adopting this method, the signal

bandwidth will be very limited.

2.3 Transform Analysis

Certain transforms possess the cyclic-convolution property
(CCP) which may be stated as; the transform of cyclic convolution
of two sequences is equal to the product of their transform.
Transforms with the discrete Fourier transform (DFT) structure
possess the CCP. Such transforms can be applied to the discrete
correlation transform pair theorem (25) which stated as,

I'\ZI:DI
cln) = r(i).s(n+i) n=0,1,...N-1

and x
Ck) = R (k) x S(k) k=0,1,...N-1 (2.3)

are transform pair, where 'x' denotes pointwise multiplication.

This implies that a correlation can be calculated by
&)
cen) = T (R (k) x S(k)) (2.4)

using two transforms, N multiplications, and one inverse
transform. While the direct calculation of correlation according
to the defining equation (2.2) would require a number of complex
multiplications and additions proportional to Nz, use of such

transforms have been able to reduce this number tremendously.

Fast Fourier Transform (FFT) Correlation

Fast Fourier transform (FFT) is an algorithm for efficiently
computing the discrete Fourier transform (DFT) of a finite length
sequence. The development and the computation aspects of the FFT
algorithm have taken a great stride since the Cooley-Tukey
algorithm appeared in 1965 (18). The FFT derivation will not be
discussed here (24), only technique for using the FFT for high

speed correlation computation.

To apply the FFT to the computation of equation (2.2), N may
be chosen to fulfill the required transform length, N=2v. If the
data sequence length is less than N, zeros are appended to r{n)
and s(n) to eliminate the overlap or end effects. According to
equation (2.4), we compute the following;

Compute the DFT of r(n) and s(n) using the FFT algorithm:

N-1

R(K) = Zn Kn) W k=0,1, ... (N-1) (2.5)
n=
S0 = - s(n) WK (2.6)
k = n w .

*
Change the sign of the imaginary part of R(k) to obtain R (k).

Compute the product;

Ck) = R (k) x S(k) (2.7)

Compute the inverse transform using the forward transform;

N-1
em = N1y ciaow ™k (2.8)
k=0
where W = e'jzﬂ /N.

2-6

From the computation time point of view, the use of FFT
correlation technique would require a time proportional to
(3.(N/2)logN + N), complex multiplications, when N is a power of
Z. It is generally faster to use this technique to compute
digital correlation rather than computing equation (2.2)
directly. Exactly how much faster the FFT approach is than the
direct method depends on the microprocessor being employed and
the extra supported hardware (i.e., single or parallel-processing
scheme with either software or hardware multiplier). It should
be noted that the efficient computation of correlation using FFT
algorithm involves intermediate quantities, i.e., stored or
generated sines and cosines, which are irrational numbers, so
making exact results without roundoff errors is impossible on a

micraprocessnr.

In 1975, Winograd (20) developed a new algorithm for
computing short length DFT's known as the Winograd Fourier
transform algorithm (WFTA). This algorithm uses fewer
multiplications than the FFT, and about the same number of

additions (26).
Correlation using Number Theoretic Transforms

Since 1972, Rader (27), Agarwal and Burrus (22), (28) have
developed many transforms with the DFT structure (i.e. FFT and
WFTA algorithms can be applied) which can be used for fast and
exact calculation of finite digital convolution or correlation,
and do not require storage of basis functions (sines and
cosines). These transforms are collectively known as number

theoretic transforms (NTT's), that are ideally compatable with

microprocessors. In these transforms an integer 'a' of order N
replaces W = exp(-j2 w /N) used in the DFT, and both 'a' and N are
defined on finite fields and rings of integers with all the
arithmetic operations to be carried out modulo an integer M, e.g.
if we have a sequence of length N, x(n) with modulo M we define
the NTT of this sequence as:
N-1
Xk) =Y x() @™ mod (M) Kk=0,1,...N-1
n=0
and by analogy to DFT, the inverse NTT is;
1 Nt -nk
x(n) = N™) X(k) o mod (M) n=0,1,...N-1
k=0
where the modulus, M, and the sequence length, N, have no common
factors and where N is a divisor of O(M) (the number of prime
integers in M). is chosen to be mutually prime to M and to
have order N (22), (27), (28). These NTT's are truly digital
transforms, taking into account the quantisation in amplitude and

the finite precesion of digital signals.

Microprocessors are becoming available with fast-multiply
instructions, and for these that do not have this facility, fast
hardware multiplier chips are available which allowing non-simple
moduli and @'s and so many NTT's become practicable for
microprocessor implementation (29). The main disadvantage of
these transforms is that there is a relation between the sequence
length N and the required word length that can require long word

lengths for long sequence lengths.

2-8

2.3.1 Correlation Using Rectangular Transforms

Agrawal and Cooley (23) have derived a very efficient short
term convolution algorithms (N=2,3,.....,9) based on the recent
work of Winograd (26), which can be used to generate a very
useful tool to compute digital correlation. The new technique
which was derived is called the rectangular transform technique.
Like the FFT method, it significantly reduces the number of
multiplications relative to the N2 multiplies of the direct
method. The authors have described a method, by which long length
convolutions can be derived using two or more shorter
convolutions, known as multidimensional convolutions. As an
example, the derivation of a two-factor algorithm for cyclic N=15
correlation will be given here, according to this rectangular

transformation technique.

Consider, in this example (to avoid any misleading due to

symbol variations), that the correlation equation is

14 _
Y; =|§ Pige X i=0,1,00000,14

and let each of the vectors H, X contains the sequence elements

h. and Xis and the vector Y contains the correlation sequence

Y It should be noted that if the discussion in this section

will be carried out on the discrete convolution equation only the

h. indices are needed to be taken in the backward direction to

i

represent the discrete correlation equation.

Let N t,d/ be a composite number with mutually prime factor,

N=r1.r2, where r;=5 and ry=3. By using the Chineese

Remainder Theorem (CRT) (23) to define the one-to-one mapping;
| — (i, , i)
ile.’
i = x'z.ql.i1 + r).Qy.i,mod (15) (2.9)
where 9, and q, are given by
TpeQy = 1 mod r q1<]
and
ryGp = 1 mod Ty q2< ry

one would obtain
q = 2 and q, = 2

substituting 9 and a4 in equation (2.9), we get

i =6i, + 10i mod (15) (2.10)

1 2

Table (2.1) illustrates how the index i is mapped to (il,iz),

i
i 0 1 2
0 0 10 5
1 g 1 1
i 2 12 7 2
3 3 13 8
4 o 4 14

Table(2.1) Correspondence between one-and two-dimensional
indexing in the prime factor algorithm for the case

1)=5, ip=3 and N=15.

2-10

Let Yis hi’ and X;» respectively be indexed by the index
pair “1"2) as shown in table (2.1). The two-dimensional

algorithm can be represented, in this case, as

2 4
_ Z Zh. — (2.11)
o) Il+k1,12+k2 klkz

k2=0 kl=l]

In vector-matrix notation equation (2.11) may be written as

Y= 05C3(A3A5H x(B4BgX) (2.12)

The notation A3A5H means that, one computes the transform
A5 of the columns of H ; that is, each column contains
5-elements which can be computed using an optimal algorithm (23)
of length N=5, the result is a rectangular array of 10x3.
Similarly A, denotes a rectangular transformation of length 3.
The final result is then a rectangular transform of 10x4. The
notation B3B5X means that, one computes the transform B5 of
the columns of X and then the transformation 83 of the rows of
the result. This will give a rectangular array of 10x4. The
element by element multiplication is also a rectangular array of
10x4. In the same way the operator 03 reduces the
dimensionality, in reverse order, on the array on which it
operates; that is, it transforms the 10x4 array to 10x3, and the

operator C5 transforms the 10x3 array to 5x3 array whose

elements are the sequences y, ; . By applying the inverse

172
CRT, this will yields the one-dimensional correlation of length

15. The above algorithm can be summarised in the flowchart shown

in Figure (2.1).

2-11

H=h(), i=01.... N
X=x(i), i=0,1,.... N-

i

initialisation
Y::yi =0 i i=0,1,. ... N=1

'

-1
1

apply CRT
i=:lq|i‘4 qqzi2 mod N
h(il ,i2J = h(i)
x(i,i,) = x(i)
compute
AH.B X

of the columns

compute

A(AH), B(BX)

of the rows

compute

C) Co(BB X) . (AAH)

!

apply the inverse CRT
Y(l) = y‘i‘.izj

FIGURE(2.1) TWO DIMENSIONAL RECTANGULAR TRANSFORM
FLOWCHART.

The rectangular transform approach is applicable for both
real and modular arithmetic, depending upon the sort of the
transform which is used in each dimension. In most cases the hi
sequences represent a reference signal and remain fixed for many
blocks of the X; sequence, the received signal. Therefore, A.H

can be precomputed and used many times.

2.4 Implementations
Two methods for implementing the digital correlation using
the direct technique and the rectangular transformation algorithm
were investigated in software using the FORTH programming
technique (30), (31):
(i) implementation using Intel-8080 microprocessor system,

(ii) implementation using TMS9900 microcomputer.
2.4.1 Implementation Using an Intel-80B0 microprocessor system

The Intel-8080 microprocessor system (32) which was used is
an 8-bit microprocessor with some instructions which operate on
l6-bit data. The B08B0 system has an instruction cycle about 2
u.sec, it does not contain multiply or divide instructions, and
these functions must be performed using software which takes
about 250 u.sec. Since it is capable of performing 16-bit
arithmetic, the FORTH programming technique was used. This
permits the routines to be made very flexible and efficient. In
performing arithmetic with reasonably complex expressions it is
convenient to use reverse Polish Notation (33) (as in FORTH)
which requires a stack to store temporary variables and to pass
arguments. Such a stack need not be large, but there should be a

reasonable set of instructions for transfering and manipulating

2-12

data in conjunction with it, which was available in the
Intel-8080 system. FORTH programming is a very efficient
technique, since it is an interactive, high level language
compact with high speed performance that was suitable to use on
the system. However, it was very attractive because the other
alternatives, 8080 cross-assembler or any other high level

language interpreter, were not readily available at that time.

An 8-bit ADC (Ferranti ZN425E type) was used to convert the
analogue signals into sequence as shown in the system block
diagram of Figure (2.2). In operation a 'start conversion'
signal, a negative going pulse of at least 500 nanoseconds
(n.sec) duration, was sent to the ADC from the microprocessor.
The conversion takes a finite time and only when it is complete
can the digital output be read. The converter produces a
'status' signal, which when high informs the microprocessor that
a conversion is in progress, and when the data'.-valid informs the
microprocessor that the converter's output latches Ee_r_‘Eain valid

data. One output port and two input ports were required in this

case.

A simple digital-to-analogue converter (DAC) is incorporated
in the Ferranti ZN425E chip. This was used to display the output
using an oscilloscope. Two output ports were necessary, in this
case, one for the converter data (8-bit) and the other for the

'load' pulse.

Real-time correlation programs were written for an

Intel-8080 using FORTH programming language, in which two special

2-13

ANALOGUE DIGITAL ANALOGUE

source(1) v ABE | :
| T Status | %OIBTE' ~
CONVERT FORTH —>{ DAC
J LOAD _}
source(2)) A bee—ael = = [
| =
! s
' —=
|
L__SURT____]|

FIGURE(2.2) BLOCK DIAGRAM OF THE CORRELATION MEASUREMENTS
SYSTEM USING INTEL 8080 MICROPROCESSOR.

operations were developed in order to keep the correlation
computation accurate. These are; a 16-bit by 16-bit multiply and
divide the result (32-bit) by a 16-bit number, and the second is
a routine to store the summation of the multiplication of two
sequences. A complete list of the FORTH programs on the 8080
system is shown in the listing of programs in Appendix B. The
correlation function scaling was necessary in order to get a
resolution of 8-bits. The execution time for an example
requiring 100 correlation points using the direct technique was
estimated to be about 4.5 seconds. Hence the speed is important
in this application, even using the low level feature (assembly)

of FORTH language, the system was impractically slow.
2.4.2 Caorrelation on TMS9900 microcomputer

The TMS9900 microcomputer is an efficient 16-bit machine
(34), since it includes the capabilities offered by a full
minicomputer. Its powerful instruction set including multiply and
divide providing the possibility of computing correlation using
fast transformation algorithms, such as the rectangular
transforms, in short execution time. In addition, it is highly
compatible with the FORTH programming technique, especially since
during that time there was no cross-assembler for the 9900 system
available. The main block diagram which was used is similar to
that of Figure (2.2), except that the B0OB0 system was replaced by
9900 system. A program was written using the FORTH programming
technique to compute 100 equally spaced correlation points using
the direct method. Each point required two memory words to have

sufficiently accurate results. The approximate speed of the

2-14

execution was estimated (excluding the input/output overhead
time) by determining the total instruction-execution time. This

time was found to be approximatly 1 second.

When computing a 15 point correlation by using the
rectangular transforms, (note that 16-bit modular operations was
used) according to the flow-chart of Figure (2.1), it was found
that the execution time is about 15 milliseconds (m.sec).
Although there was a great improvements of the execution time
when using the TMS9900, the overall requirements cannot be
fulfilled by using a single microprocessor system implemented
using software only. However, it was envisaged that using binary
correlation implemented with the aid of fast bipolar bit-slice

technology would fulfill the speed required.

2.5 Binary Correlation

In contrast to general-purpose microprocessors, bit-slice
microprocessors (35) can be dedicated to the execution of a
special task, for which they may be then prove very efficient.
This procedure is especially powerful in combination with
microprogramming. The bit-sliced processors are microprogrammed
devices that can be realised with two basic types of devices:
cascadable bit-slices with the arithmetic/logic unit and the
register file on one hand, and a microprogram control memory,
which may be arranged to constitute a microprocessor with almost
any instruction set, on the other. This gives us the possibility
of writing the required algorithms as close as possible to their

hardware realisation and to get very high performance but with a

'hard-to-write' microprogram.

2-15

An alternative digital correlator using such a bit-slice
processor was implemented, which demonstrates the feasibility of
using bit-slice microprocessors for digital spread spectrum
signal processing. In contrast to the previous methods, the
realised processor was tailored for this application, which it
therefore fulfills very efficiently. The received signal is
normally a binary modulated sequence on which the information was
embedded. Therefore, equation (2.2) simply implies a comparison
process between the respective bits in the received sequence,
r(i), and the shifted stored sequence, s(i+n). The number of
agreement bits can be obtained by an exclusive-NOR operation and
a Hamming weight function generator, whose outputs are summed.
So, the main three operations in the correlation process are
replaced by shifter, exclusive-NOR, and summer operations which
were implemented at very high speed using the bit-slice approach.
Thus for a digital correlator to be effective in this application
it must be expandable to accomodate variations in the sequence
length. The next chapter will introduce the bit-slice

microprocessor chosen for the subsequent work in this thesis.

2.6 Real-time Power Spectral Density

In spread spectrum communication it is desirable to
determine the spectral content of signals in real-time. It is
very expensive to do this on general-purpose microprocessors, and
only special array processors can provide the required digital
computing power. However, analogue circuit technology, such as
charge-coulped devices, have been widely used in such cases. An

evaluation module containing the Reticon R5601 quad chirped

2-16

transversal filter (36) was available, which included additional
circuitry necessary to compute the power spectrum of an analogue
input signal by ‘the Chirp-z transform algorithm (37). Simply,
the device and interface system form a discrete-time spectrum
analyser, selecting and outputing the magnitude and frequencies
of the spectral components of an analogue input signal. The
analysis band in the normal situation extends from zero to the
Nyquist frequency (one-half the sample frequency). A mirror
image also appears extending from the sample frequency
(equivalent to dc) down to the Nyquist frequency. The resolution
bandwidth in general is approximately (1/512) of the sample
frequency. The overall performance is limited to obtaining the

power spectral density and to a maximum sample rate of 200 KHz.
2.6.1 Chirp-Z Transform Algorithm

In 1969, Rabiner and Schafer (37) derived an algorithm for

" transform

evaluating the DFT, which was called the "chirp-z
(CZT), in which the bulk of the computation is performed in a
chirp transversal filter, and for this reason it is particularly
attractive for CCD implementation (38). When implemented

digitally, the CZT has no advantages over the conventional FFT

algorithm (39).

The CZT algorithm can be derived by starting with the

definition of the DFT

N-1
X0 =3 s ZTKN 0,1, v N-L
n=0

where either or both x(n) and X(k) may be complex.

2-17

Using the substitution

2nk = n2 + kz - (n-k)2

the following equation results:

N-1
fin. i 2 . . 2
X(Kk) = e J2mk /NZ (x(n)e~T™ /N) JM(k-n)"/N

n=0

N-1
2 : 2
- o k"N Z g(n)e-jﬂ(k-n) /N (2.13)

n=0

Equation (2.13) represents the CZT. Three operations are
required

(i) Multiply each term, x(n), by the complex factor,
exp(-j-nnZ/N) to produce a new sequence g(n).

(ii) Perform a discrete convolution between the sequence g(n)
and the sequence exp(jnnsz).

(iii) Multiply the resulting output sequence by the factor

exp(-j‘nkle) for each point of X(k).

The CZT gets its name from the fact that; the sequences
exp(-jrrnsz) and exp(-jﬂkle) can be thought of as complex
exponential sequences with linearly increasing frequency. Such
signals are called "chirp" (linear FM) signals.

2.6.2 Hardware Implementation

The above discussion shows that the CZT algorithm involves

three stages of computation: pre-multiplication, convolution, and

2-18

post-multiplication. The block diagram of a complete transform
based on the CZT algorithm of equation (2.13) is shown in Figure
(2.3). Pre-multiplication is accomplished by the multipliers to
the left in Figure (2.3) and post-multiplication by those on the
right. The major computing task is the convolution portion; this
task is performed by the Reticon R5601 quad chirped transversal
filter (36). This device contains two separate 512-stage MOS
charge-coupled devices which are used to implement four
transversal filters using a split-electrode technique (40). The
filter weighting coefficients and internal circuit connections
are configured so that the device, in conjunction with additional
off-chip components, can implement the CZT algorithm to calculate

a 512-point DFT (38), (41).

The evaluation module which contained the R5601 device can
be used to compute the power spectrum of an analogue signal. No
phase information is obtainable with this module, as the
post-multiplier unit is replaced with a hypotenuse function which
recovers the spectral amplitude from the component cosine and
sine terms. From equation (2.13), the squared spectral amplitude

of a sequence x(n) can be expressed as

N-1
2. 2
X(k) = Zx(n}e'l"" N gm (e-n)"/N (2.14)
n=0

2
-jmk”/N
The final phase multiplier term, e jwk®/ , has been deleted

because it has unit magnitude and so does not affect the

amplitude. The input data is stepped each time a new spectral

component is calculated. Equation (2.14) then becomes:

2-19

2
m
COS -E..__

2
. T
S 2t

+

2
Sin Ui

—_—

2
Cos ZLM_

rn? _l l

"rrkz
Cos N Cos—ﬁ-—
PREMULTIPLIER CONVOLUTION FILTER SQUARING FUNCTION POST MULTIPLIER

(RS601) (FOR SPECTRAL DENSITY) (FOR FOURIER COEFFICIENTS)

FIGURE(2.3) BLOCK DIAGRAM OF THE CHIRP-Z TRANSFORM ALGORITHM.

N-1
2, 2
Xs(k) = Zx(n+k)e"1ﬂ'n IN e-]‘rr(k-n) IN

n=0
The notation Xs(k) indicates a "sliding" CZT.

A further simplification in implementation is possible if
the input is purely real, as it is in this case. The imaginary
input is always zero so that two of the input multipliers may be

deleted and the input circuit simplified.

A block diagram of the evaluation module is shown in Figure
(2.4). The analogue (real) input signal is buffered and
converted to discrete-time samples by the input sample-and-hold,
then split into the direct and quadrature (real and imaginary)
channels. The sample values are multiplied by the appropriate
chirped waveform wusing multiplying digital-to-analogue
converters. The digital inputs to these converters are derived
from two 512-by-8 bit ROMs which contain the sampled chirped sine
and cosine waveforms. The sampled analogue products are then
used for the input to the R5601 four-channel convolution filter.
Outputs from the filter are sampled and held to give time
coincidence of all outputs, and then combined on an rms basis to

give the spectral density of the input waveform.

Four clock phases are required by the filter device to
propagate the discrete signal packets through the CCD channels.
These are designated qu - (D& and are generated by a
multi-phase clock generator circuit incorporated in the

evaluation module which may be driven either from a 1.6 MHz

2-20

— ————————— —

PRE MWTIPLICATION

VOLUTION pleg-

-

CompiraTION %
WEIGHTING

Al

-

TARLIZEM)

o Tk e e T
@
: | l | PR eLER | | EXTRACTION | I V;‘:;B:O\.m‘&i I
I | I I | ANMP I |AMDL.\F15R 11
| 1k { | & 1 [|
| I | b 1 |
| i Ky | | MDAC | Y S T—" - I = | | I
| ! bl i g kN
1|l a5 ——4 ! |
| 1 _._1_L_Abmuvv.
‘ % ! | ®3 J: : | VALUS } i
TPG O '
RS&01
I it : DeEvICE } e e Mamsoran J |
o . [araer 41
i || o eyl pguno. § | et e =] et T Pty
|| | Yese } PANTRRLE I surren TSy
| | +y2 | | I) i S/ ' ABSOLUTE : :
. - | 4
¢ basa j_l |) | | | vawus |
l I(ML‘ I | I i_________} ke J. l '\--z' i
| | - Il |MDAC | -V _ }'[T | |1
l] nL2 If1 | | | | |
| team Bany || | RIOS &, | |1
INPUT SAMP l l OFESwY ! L i | I
M:JD HOLD\-E ! o i } | L I b SIGNAL i I:'At?_l?‘-‘-”ﬁi | HYPOTENUSE
o = TR
|l AMPLIFIER i In‘f:u‘:_:_m_‘“ | iﬁp ACTION E B Y { : FUNCTION
= besaaas [e i = o o = = [l RS =y L L e e 2o
@)-.om[m
= - 5V
E g a9
EnT b———a
TRIGGER CLOCK }5%5 inv
. e sTersy L 047 e wcnnsld gfé’e";%c’
Al
ApDazss | Anvance |SiHNROM Cos RoOM
2 ([nh'!ﬁtl\] _G-ﬁ“js“‘]
IN SYNC (F) 9-BIT

}

=

oUT STNG (M) —=— COUNTER

()= EDGE CONNECTOR
PIN NUMBER

FIGURE(2.4)

DIGITAL BOARD

BLOCK DIAGRAM OF POWER SPECTRUM EVALUATION MODULE.

internal oscillator or from an external trigger source. The
sample rate with the on-board oscillator is a nominal 100 KHz,
but lower rates are attainable with external triggering. The
"address advance" pulse increments a 9-bit counter which

addresses the weighting factor ROMs.
2.7 Conclusion

To apply digital techniques directly to the correlation
process would seem to require high speed circuitry, in contrast
to the rather slow FIS microprocessor systems. Much ongoing
research is devoted to minimising the requirement of
multiplications in signal processing algorithms, because
multiplications cannot be performed efficiently by
microprocessors. The applications of efficient algorithms such as
FFT, WFTA, and NTTs for digital correlation have been described.
The idea of using a general-purpose microprocessor system rather
than dedicated processors for digital correlation computation
using a fast transform techniques, such as a rectangular
transforms, has been implemented and investigated, this will not
lead to a very practical bandwidth capability. The use of a
dedicated bit-slice microprocessor has been found very efficient
in implementing binary correlation and other signal processing
applications related to PN spread spectrum system described

elsewhere in this thesis.

An investigation into power spectrum using charge-coupled

devices has been demonstrated.

2-21

CHAPTER 3

Bit-Slice Microprocessor System

3.1 Introduction

In the late 1970's, bipolar LSI devices including the
four-bit microprocessor slice became readily available (42),
(43), (44). These devices have been used in the design of 4-bit,
8-bit, 16-bit, 32-bit, and even larger CPU's (45), The
structures function under the control of a microprogrammed
memory. The microprogram memory is an N word by M bit memory used
to hold the microinstructions, e.q. 1K x 32 bits in the present
system. The data output from the microprogram memory are
distributed to most parts of the system and these constitute the

control signals.

The bit-slice approach requires each central processing
element (CPE) chip to contain a 2-bit or 4-bit slice of every
register in the CPU of the system. For a CPU constructed of
bipolar microprocessor slices, the difference between a CPE and a
CPU is that the CPE is the bit-sliced element that is used to
form the complete CPU by paralleling two or more CPE's in order
to obtain the desired microprocessor word length. A bit-sliced
CPE contains a bit group of the working register set or RAM, a
very high-speed ALU and status indicators. Multiple buses are
used to interconnect the parallel bit-sliced chips and form the
microprocessor system. Bipolar microprocessors of this type can

be used to form systems with 125 n.sec cycle times. MOS

3-1

microprocessor equivalents are slower, with cycle times of the
order of 1-2 u.sec. When instruction times are given for a MOS
microprocessor, the instruction is a machine level instruction.
To compare this with a bit-slice system macroinstruction
execution times must be used, where a macroinstruction is a
machine instruction which the microprogram supports. The
bit-slice microprocessor developed for this project has an

effective macroinstruction time of 330 n.sec or less.

This chapter describes the hardware of the bit-slice
microprocessor system that has been used in the following

chapters.

3.2 System Organisation
Since the required speed cannot be obtained using MOS
microprocessors, a bit-slice approach was chosen for this

project.

The architecture of the bit-slice microprocessor system is
shown in Figure (3.1). It is an B8-bit microprogrammed processor
made up of two 4-bit 2901 bit-slice devices with a microprogram
control unit constructed from a PROM and a counter. Other
subsystems consist of auxiliary logic control circuits which
support the execution of the microinstructions; these are the
carry control, the skip select, and the skip control. The system
also contains various decoders and external registers which were
used for interfacing the system to the external world through an
8-bit data bus and eight control flags. The system operates

synchronously under the control of a clock which runs at 3 MHz

CONTROL BUS

§-BIT_DATA BUS

-~
o>

_F o <] STROBE
LOAD I
CPm%RngTER an SKIP
DATA IN DATA OUT
_ CONTROL REGISTERS REGISTERS
1 1
2 P,
) S 1 sl)
SKIP
SELECT
MICROPROGRAM MEMORY <) P
->108 Y
X2[2] &t 2
8) ! AL 9 1l INSTRUCTION BUS] N sticks
ADDRESS BUS B B
ADDRESS g:_ms A oA
3 J Y=-B
CONTROL OQUTPUT 1 } I’
DEC R A A 1 1
DECODER “FROM' I 70°
[W X —o{ CARRY
8| 18] 6} —*] CONTROL

FIGURE (3. 1) ARCHITECTURE OF BIT-SLICE MICROPROCESSOR SYSTEM.

and produces a low level for 83.3 n.sec and a high level for 250
n.sec. Before operation the microprogram is loaded into PROM.
The size of the PROM is 512 words, with each word being 32 bits
long (one microinstruction in length). In operation the
microprogram counter outputs an address to the PROM memory, and
this address is used to fetch the next microinstruction that is
to be executed (a microinstruction will be assumed to execute in
one clock cycle). In this case the next microinstruction address
is always equal to the current microinstruction address plus 1.
After a time delay equal to the read access time of the memory,
the memory outputs the control signals to the rest of the system.
Each microinsruction contains information blocked out in fields,
where each microinstruction field directs or controls one or more
specific hardware elements in the system, as shown in Figure
(3.1).

The 'Y' field (B-bits) is used to provide constant parameters
for the microprogram as well as the address of the destination in
the branch instruction.

Two four bit fields, A and B, are used for addressing the
internal registers, source and destination. A and B are also
used to address the 'From' (data-in) and 'To' (data-out)
registers, respectively.

An 'I' field (9-bits) is used to control the source, function,
and the destination of any external or internal data in the 2901
slices.

X2 (1-bit) when low, enables one of 16 'To' registers.

The carry control field (2-bits) is used to control the carry

into the 2901 slices.

3-3

The skip control field (4-bit) is used to control the LSB of
the microprogram counter. It is worth mentioning here that the
two flags 'TO' and 'FO' have special uses in the system which

will be discussed later.

The following sections of this chapter will describe the

connection of each IC used in this design.

3.3 2901 ALU/Register slices

The Am2901 bipolar 4-bit microprocessor slice is designed to
be used in microprogrammed systems (46), (47). It was first
produced by Advanced Micro Devices and is now second-sourced by
many other firms. It is the most widely used bit-slice device,
because of the flexible structure of the slice's
microinstruction. The 9-bit microinstruction code consists of
three 3-bit groups that either control or determine the internal
arithmetic-logic unit's source operand, ALU function and
destination register. This breakdown reduces delays; it permits
parallel decoding of different groups of the same
microinstruction. The three groups lead to 512 possible

microinstructions.

3.3.1 Architecture

The architecture of the 2901 is shown in Figure (3.2) (46).
All data paths are 4-bits wide. One key element is the 16-word
RAM forming a bank of 16 4-bit registers. It is a 2-port RAM,
meaning that two words (registers) can be selected
simultaneously. Data in any of the 16 registers of the RAM can be

read from the A-port which is controlled by the 4-bit A address

3-4

==

sl 7[e[s[a]al2[1]o
DEsTINATION| ALY ALU
CONTROL FUNCTION SOURCE
MICRDINSTRUCTION DECODE

RO/LI
LO/RI =] II.Q.M0 RAM SHIFT gm:‘ | ——
cLOCK !
"J..ILJ',V
B’ DATA IN
A (reao) —\.,.
ADORESS 2 ¥ -A’ ADDRESS ce
AAM F
- 16 ADDRESSABLE REGISTERS
— Q REGISTER
(READ/WRITE) = ‘8’ ADDRESS
ADDRESS — 7 A B a
DATA DATA -
DIRECT
DATA IN
i ALU DATA SOURCE
i SELECTOR
5] s
R s — G
CARRY IN Cin o
8-FUNCTION ALU — Cnes
| F, (SIGN)
| OVERFLOW
e F = 0000
A F
ouTPUT
ENABLE ouTPUT m? SELECTOR

U DATA OUT

FIGURE (3.2) THE AM 2901 MICROPROCESSOR SLICE.

field input. Likewise, data in any of the 16 registers of the
RAM as defined by the B address field input can be simultaneously
read from the B-port of the RAM, The A and B busses feed two
latches. When the clock input to the slice is HIGH, the selected
registers are enabled into the A and B busses and pass through
the latches. When the clock input is LOW, the latches hold the
RAM data. This eliminates any possible race conditions that
could occur while new data is being written into the RAM, The
4-bit high-speed ALU can perform three binary arithmetic and five
logic operations. The R port of the ALU is fed from a
multiplexer, allowing us to gate the A register, the D bus (an
external bus coming into the 2901), or zeros into the R port.
Likewise, the S port of the ALU is fed by a multiplexer, allowing
us to gate the A register, B register, Q register, or zeros into
the S port. These multiplexers and the characteristics of the

register array allow us to perform operations such as:

R3 = R2 + R3 + 0/1 R3=D+Q+0/1

R3 = R3 + R3 + 0/1 R3=D+0+0/1

R3 =D+ R2 +0/1 R3=0+R2 +0/1
but not

R4 = R2 + R3 + 0/1 R3=Q+Q+0/1

where the meaning of 0/1 is that the carry condition can be added

to the operation.

The ALU has three other status outputs. These are F3, F=0,
and the overflow (OVR). The F3 output is the sign bit. F=0

output is used for zero detect, F=0 is HIGH when all outputs are

LOW. The overflow (OVR) output is used to flag arithmetic
operations that exceed the available two's complement number
range. The chip also contains another register, the Q register.

It can be used for 8-bit shift up or down operations.

The output of the ALU can be gated to several destinations.
A 3-state output bus (Y) can be fed with the ALU output (the F
bus) or with the value of the register selected as the A
register. The ALU output can also be gated into the register
array (the register currently selected as the B register),
passing through a shifter as well as being gated into the Q@

register, passing first through another shifter.

The nine 1 inputs control the source operands, the ALU
function, the shifters, and the routing of data. The
microinstruction inputs used to select the ALU source operands
are IU, Il’ and lz. The 13, I&, and IS
microinstruction inputs are used to specify the function of
the ALU. The remaining three microinstruction inputs, [6']7
and IB control the two shifters, the Q-register multiplexer,

and the Y-bus multiplexer.

The clock input to the 2901 controls the registers array,
the Q register, and the A and B latches to the ALU. Data is
clocked into the Q register on the LOW-to-HIGH transition of the
clock. When the clock input is HIGH, the latches are open and
pass the values of the registers selected as the A and B
registers. When the clock input is LOW, the latches close and

retain the last data entered. New data can be fed into the B

3-6

register when the clock input is LOW. Figure (3.3) is a
simplified view of the timing of the 2901, the clock timing of
the system will be described in the following sections. Notice
that the control inputs must be stabilised at their required
states at the beginning of the cycle. These times are called
set-up times; these are expressed relative to the transitions of
the clock input. As an example, the I signals from the current
microinstruction must be present at the 2901's pins at least 80
n.sec before the LOW-to-HIGH transition of the clock pulse.
Another timing consideration is propagation delays, the time from
when an input signal is established to when a particular output

is stable (46).

~[Ll

control and Y status B register Q register
D-control inputs output outputs latches filled filled
stable close

FIGURE (3.3) SIMPLIFIED VIEW OF 2901 TIMING.

3.3.2 2901-Slices Interconnection

Two 2901's were connected to form a CPU with a data-path
width of eight bits. The 16 registers and the Q register are
8-bits wide and reside in the 290l's, a half in each 2901 as
shown in Figure (3.4). An B-bit data-in bus feeds both 2301's in
parallel, and the 2901's feed an B8-bit data-out bus. Figure

(3.4) also shows the connection of the control signals and the

X1

A ibaess b5 5

ADDRESS BUS A

lm-m

}_

:),_.

5

D4-D7 %“‘

CARRY CONTROL

i
1] A B D |
} Do WO il 2901 "q‘"": = - A
Ch L.S.SUCE G M.S. SLICE ™4
K F3 F3 ek
0E CP Y ow Fs0 |_1 cP Y OVR Fx0 s
*5 CLR
e
10
ZERO l‘r {'IK & 1K
cLock Y0- Y4-Y7
MSB 2'S PLEM *5
ALU OVERFLOW
DATA- QUT BUS

FIGURE (3.4) TWO 290TrS USE TO CONSTRUCT 8-8BIT CPU WITH

7
]

CARRY CONTROL.

status outputs. Most of the control signals feed the 2901's in

parallel.

It was mentioned in the previous section that the
microinstruction inputs, IU’ ll, and I2 are used to select
the ALU source. One of these source operands is the direct data
input (D). To select D the data output (Y) must be in the
high-impedance state. This can be done by using the group
inputs, IU’ Il’ and 12 to control the output enable (OE) as
shown in Figure (3.5), when OE is HIGH, the Y outputs are in the

high-impedance state.

ALU source
micro caode operand
mnemonic I2 I1 IU octal R S OE
code
DA H L H 5 D A H
DQ H H L 6 D Q
DZ H H H 7 D @] H

FIGURE (3.5) ALU DIRECT INPUTS (D) SOURCE SELECT CONTROL.

On the least-significant slice, the carry-in is an input
from an external carry control source. Two bits X0 and Xl
determine the carry-in state as shown in Figure (3.6). On the
other slice, the carry-in is connected to the carry-out of the
first slice, enabling the ALUs to work as a single, ripple carry,
8-bit ALU. Notice also the interconnection of the shifters,

enabling the Q shifter and RAM shifter to act as two 8-bit

3-8

shifters. Most of the status output are taken only from the
most-significant slice. The F=0 output is an open-collector
output, meaning that it can be wire-AND'ed, with a pull-up
resistor, between slices to indicate whether the output from both
ALUs is zero. The look-ahead carry pins on both slices were not
used, since the look-ahead carry logic was not used in this

design.

X1 X0 carry-in

0 0 1 carry set

0 1 0 carry hold

1 0 Cn+f; carry propagate
1 1 0 carry clear

FIGURE (3.6) CARRY CONTROL LOGIC,

From Figure (3.4) we can analyse the minimum microcycle time

for this system as follows:

The guaranteed, or worst-case, propagation times for the Am2901B

slice are (43), (42);

From inputs A, B to output Y 60 n.sec

From inputs A, B to last status output 70 n.sec
i 59 n.sec

From inputs A, B to Cﬁ+4

From input Cn to last status output 37 n.sec

From input Cn to outpud Y 30 n.sec

The propagation delay due to the ripple carry between the slices
(i.e. the carry-in to the most-significant slice is not stable

until t + 59 n.sec) means that the output of this slice will not

stabilise until t + 59 + 37 nsec. By adding the propagation and
set-up times of the external carry control (60 n.sec) this system

could not operate faster than one microcycle per 160 n.sec.

3.4 Microprogram Control

The microprogram control unit is the part of the system that
controls the other subsystems, synchronises the internal and
external events and fetches and decodes the microprogram residing
in the microprogram memory. A microprogram control unit consists
of the microprogram memory and the structure required to
determine the address of the next microinstruction; in our case
this structure is the microprogram counter. The logic diagram of
the microprogram control together with the skip control and the

skip select is shown in Figure (3.7).

Unlike the main memory in MOS microprocessor systemns, the
microprogram memory is referred to once each microcycle during
the execution of a microinstruction. Therefore, to gain the
necessary speed, the microprogram memory is always implemented
using bipolar memory devices. This memory contains sequences of
microinstructions, 32 bits wide, which apply the proper control
signals to the 2901's and the other subsystems, to execute the
desired operation. The address lines of the microprogram memory
are driven from the microprogram counter. This counter has
facilities for storing an address, incrementing an address, and
jumping to any address. The microprogram counter is controlled

by bits from the microprogram memaory.

3-10

- PARALLEL DATA INPUT

Yu, N1,Y2 Y3 i
L
2 \pCPA B C D DcPA BC D
"
K;u } \i‘;“ 25LS163 clo CLY 2sLsie
ET QA @BQC QD QA QB QC QD
T4LS51 PR
C
K skiP coNTROL 1K F
-95 +5 4
M3
M2
M1
MO
AD gasim A sasiat A'] JAO gasim AY [AC gasist AS] A0 gasim AY] A0 gaq0y A9 s2s AN A0 gaqiy AR
(Me.4) CE E (683) (Fe1) CE (D6.2) (E6.8) CEjdCE (Kg7) {Les) CE (M85
81 [Vt Q1 % ol o) al [o (13) a a o] Q%
Yo YsYo Vs YoYi Y2 Vs Ao A1A2Ad Bo B1 B2Bs Is ls 17 ls lo 12 1s & Xo X1 X211
MICROPROGRAM BITS
MICROPROGRAM MEMORY
F0 —

FIGURE (3.7) MICROPROGRAM CONTROL UNIT,

SKIP SELECT

MICROINSTRUCTION

ADDRESS

3.4.1 Microprogram Memory

The microprogram memory was implemented in PROMs, A 512 by
32 memory was constructed using the B82S131 device (tristate)
(48). The 82S131 is a bipolar PROM, organized as 512 words by 4
bits per word, with nine address lines and an enable line (65
n.sec access time). Eight chips were placed in parallel with all
address lines common (Figure (3.7)). The address lines are
loaded with 8 loads, under the maximum load limit (50 loads) that
could be driven by the counter, therefore no buffer drivers were
required. These are driven by the microprogram counter (9-bit).
It was mentioned before that the PROM outputs (the
microinstructions) are the microprogram bits required to control
the rest of the system, these are stable before the next clock
pulse. Figure (3.7) shows a typical construction of the output

control bits.

The PROM chips are always enabled (active LOW) except for
the two chips that are used to store the fixed constants field,
the 'Y' field, these are enabled by the strobe 'FO. In this
case the 'Y' field outputs are used as an 8-bit external register
to store fixed parameters and the destination address of a branch

microinstruction within the microprogram.

Programs were developed to take the microprogram to be
placed in the microprogram memory and slice it up among the
8-PROMSs. The microprogram support tools will be described in the

next chapter.

3-11

3.4.2 Microprogram Counter

The address information to the microprogram control is
derived from the data bus. The microprogram counter stores the
9-bit address of the current microinstruction to be fetched from
the PROM, It consists of two parts, counter, and skip control
logic. The counter stores the most significant 8-bits of the
address, this consists of two 25LS163 types connected in cascade
(49), and it increments on the positive transition of the clock
pulse unless the load or clear lines are activated. Two D-type
flip-flops were used for constructing the skip control logic,
this generates the least significant bit (LSB) of the address
that indicates if a skip is required or not. On the negative
transition of the clock a selected skip state is strobed into the
flip-flop and if the output is LOW the LSB of the microprogram
counter is held and count enable to the counter is activated
(HIGH), so that on the positive transition of the clock the
microprogram counter contents are increased by two instead of
being incremented. If a branch microinstruction is taking place
then the skip control is used to determine if the LSB of the new
microinstruction address is odd or even (1 or 0), while an active
LOW strobe 'TO' can be used for loading the counter by B-bit data
on the data bus. In fact, that is the main use for the strobe
'TO' in the system, and it should not be used elsewhere. A LOW
level (INITL) at the clear inputs sets the microprogram counter
outputs LOW after the next positive clock transition. This
facility, reset the microinstruction address to zero on startup,
is very efficient in writing a microprogram for the system.

Usually the microprogram, to be loaded on PROM, starts with a

3-12

microinstruction, which by loading the microprogram counter 'TO'
and skipping to give a D LSB, and not skipping to give a 1 LSB

allows a branch to any location in the PROM.,

3.5 Condition code select logic

The skip select logic was added to the system to allow a
microinstruction to test conditions generated within its own
microcycle. This consists of two 74LS151 types (50) which, under
control of 4 microprogram bits, route one of sixteen lines from
the various flags to the D input of a flip-flop, for use in
determining the next microinstruction address ("skip on result
of condition'). The microprogram counter skips one
microinstruction if the state of the flag specified is 'TRUE'
(HIGH). For microprogram simplicity, the flags were designated SO
to SF, and these assignments will correspond to predefined flags
within the system. Typical flag assignments that will be used in

the following chapters are shown in figure (3.8).

skip field flag function
(Hex) assignments

0 SO never skip (connected to +5 volt
through 1k resistance)

1 S1 always skip (connected to 0-volt)

6 S6 test flag

7 S7 test flag

8 S8 output register empty
(buffer (FIFO) output)

B SB the most significant ALU (F3)
output bit

3-13

D SD input register full
(buffer (FIFO) output)

F SF the result of an ALU
operation is zero (F=0)

FIGURE (3.8) SKIP FLAG ASSIGNMENTS.

The other flag assignments could be used for interfacing the
system with different computer systems and connecting it to test

equipment.

3.6 1/0 External Registers Handling
The 1/O subsystem provides the communication between the

processor and the outside world. There are three types of 1/0
used according to the method of controlling the data transfer
(50), (51), (52):

(i) microprogram controlled 1/O

(ii) interrupt controlled I/O

(iii) direct-memory-access 1/O
Interrupt controlled and direct-memory-access 1/Os require a
complete hardware interface circuit; fortunately the system can
provide the suitable data paths and the control signals which are
needed for this interfacing. I/O paths can either be
bidirectional, in which case the external data will be sent and
received via the same lines, or the input and output lines can be

separate. Microprogram controlled I/O with separate input and

output lines was used in this project.

3-14

Two sets of I/O registers were used to interface the
external 1/0 data to the data bus of the system under the control
of the microprogram memory through input and output decoders as
shown in Figure (3.9). By using 4-to-16 line decoders, any one
of the sixteen I/O read or the sixteen I/O write external
registers can be selected. Because only one output from the
decoders can be activated at a time, in a given microcycle no
more than one I/O register in the group can be used. Two four
bit fields, A and B, are decoded as input (From) and output (To)
decoders respectively. If the microinstruction indicates that
external register contents are required, then the 'A' (From)
field is decoded, to gate data from a register external to the
2901 slices onto the data bus, in which case the 'B' field is
used to select the destination register in the 2901 internal RAM.
If the microinstruction indicates an internal source of data,
then the B' (To) field is decoded and routes either the contents
of the 'Y' field or the output from the 2901 slices to the data
bus, to be strobed into the external register selected by the B
field. In the later case, if the 2901 slices output was chosen to
be the source of the data, the 'A' field is used to select the
register in the 2901 internal register array. Also it is
possible to store data in the 2901 internal RAM and an external

register simultaneously, in which case the 'B' field is used to

address these registers.

3.6.1 The "To" Decoder
The 'To' decoder was used to provide the system with sixteen

data-out registers, one of these registers was assigned as the

.

3-15

INSTRUCTION BUS

<53 B2E3 BB EEI
b

1],

—{G2A Yo}—cCoO
A 21
__C2

B
c & o
o —CA
(c] I :gg?
G2B YT7}—C7

"

CONTROL DECODER

{624~ Yo} FO
A — g
B 2 |-
__F3
& 2’ | Fi
& |—F5
G2B —_Fs
rlm Y7}—F7
+5
=4G2A YO}— F8
i) __F9
B & |—FA
0 — FB
¢ 3§ |—Fc
o [EP
628 Y7|_FF
‘FROM' DECODER

G2A YOL_TO

A T

B ® T2

o L1

(o g s }g
dor & [T 16
68 YIL—_T7

L fe2a vol—18
A L 19

B & R

G [

L TC
= | 1o
01 [TE
G2B Y7 F

‘TO' DECODER

FIGURE

(3.9)

I/0 AND CONTROL DECODERS.

microprogram counter (T0). This decoder consists of two 7415138
(three-line to eight-line) decoders, enabled by the 'X2' control
bit and the clock of the system, and use the output B' field, of
the PROM to generate the 'To' flags. These flags determine which
of the data-out registers in the system is to receive the data on
the bus and to generate a strobe for that register to store the

data in the second half of the microcycle.

3.6.2 The "From" Decoder

A sixteen-line decoder was implemented using two 74L5138
decoders to provide the system with a sixteen port external
source of data. The 'From' decoder decodes one of the sixteen
lines, dependent on the conditions of the four binary select
inputs and the 'A' field, and is enabled by the IU’ I1 and
I2 microinstruction code (the source operand of the 2901)
output from the PROM. The 'From' decoder outputs are used to
select data-in registers within the system and cause them to
output their data onto the common B-bit data bus while the Y
outputs of the 2901 slices are OFF. One of these registers is

the B8-bit constant field output of the PROM which is enabled by

the 'FO' line.

3.6.3 The Control Decoder

To generate the control signals (that are seldom all needed
within the same microcycle) would require a greater
microinstruction length than is really needed. By using a three
to eight line decoder, any one of an eight control signals can be

generated with only three microprogram bits. The advantages and

3-16

disadvantages of this technique will be described in the next
chapter. The control decoder is a 74L5138 type, enabled by the
clock of the system and an output from the 'To' decoder (which in
this case is 'TF') and uses the YO0, Y1, and Y2 data outputs of
the 'Y' field to select one of the 'C' lines (CO to C7) to be
active LOW in the second half of the microcycle. These lines are
used to determine which flag within the other subsystem is to be

set or cleared.

3.7 Input/Output Buffer Memory

The input/output buffer memory provides the means for the
microprocessor system to interact with the external data medium
as characterised by a communication link. First-in, first-out
(FIFO) register stacks were used, these allow data transfers that
are continuous and do not require the processor to wait during
the communication operation. Transferring data from the
processor to the link is normally executed as a single
microinstruction that loads data, either from an external memory
or the 2901 internal RAM registers, into the FIFOs and then
issues the necessary flags to initiate the transmitting
operation. The subsystem logic circuitry provides the autonomous
timing and sequencing signals necessary to perform the shifting
operation associated with sending or receiving the serial data.

Data may be accepted in serial or parallel at one data rate and

extracted at another rate.

The interconnections necessary to form a l6-word by B8-bit

FIFO, using the Fairchild's 9403 (16 words by four bits) type,

are shown in Figure (3.10). In operation, on the input side,

3-17

iF

TRNSMIT ENABLE

DATA TRANSFER(TB)_DF

SERIAL DATA INPUT

CPSI
MASTER RESET

74LS08

PARALLEL DATA INPUT

TeL S04

||=—

<

74LS04

118
€S
OES
103
E0

1Sd2

n
2
L.

TOP

DS D3 D2 D DO

S.DEVICE gmr
9403 ORE
FIFO

Qs 03 2 & Q0

118
IES

ES

T0S
EO

FL DS D3 D2 DI DO

1542

3

M.S, DEVICE |ar

9403 ORE

FIFO

Qs Q3 @ o1 Qo

N

TOP

L

SERIAL DATA OUTPUT

DATA RECEIPT (Fé)

DATA REQUEST (SD)

74810

FIF0 EMPTY (58)

=2

B

x

FIGURE(3.10) 16 WORD BY 8-BIT BUFFER MEMORY SYSTEM.

Y5

i YO

YO .q:
Y1 "._
o &5
2 s
-
—(-'0
%
Y7 o

successive words (8-bits) can be loaded into the FIFO by a LOW on
T6 for each one. This can be continued for up to 16 words, if
none are removed from the output during the process of loading
these 16 words. More generally, the FIFO can continue to be
loaded until it no longer raises its SD (data request) line. At
this point, the FIFO has accepted the last word but is indicating
that it is full and cannot accept further data. Serial data can
be entered on each HIGH-to-LOW transition of the CPSI clock
input, once loaded into the FIFO, the successive data bits "fall
through" the FIFO structure and line up in order at the output.
The clock required for the output from the FIFO is completely
independent of that on the input. Data words can be extracted by
a LOW on Fé line, this can be continued with successive words in
the FIFO until S8 (FIFO empty) no longer rises, indicating that
the FIFO is empty. Data is serially shifted out on the
HIGH-to-LOW transition of CPSO. An important characteristic time
of a FIFO, for our purposes, is the "fall through time". This is
the time it takes for an input-data word to appear at the output
of the initially empty FIFO. This time, in our case, is 450
n.sec (53); this means that it is not possible to extract the
same input-data word in two successive microinstructions without

using an intermediate microinstruction to test the line S8.

The timing sources for the shifting operation associated
with the serial entering or extracting of the data will be

described in the following chapters.

3-18

3.8 System Clock

The main source of the timing signals is the system clock.
The clock's output frequency is controlled by a stable crystal
oscillator, MC300 (12 MHz) type. A single phase clock was used
in the microprocessor system. The oscillator output drives a
binary counter, 25LS169 type, with outputs logically combined to
form a set of repetitive signals. Figure (3.11) shows the block
diagram of the clock circuit and the clock pulses. The clock

pulse width, called the microcycle, is determined from:
c =t +t2+t+t4 (3.1)

where

tl : counter clock to output time (n.sec)

.

PROM read access time (n.sec)
: 2901 ALU execution time (n.sec)

t, : other propagation delay in the system (n.sec)

For the 2901 system a microcycle is measured from one rising
edge of the clock to the next (42). All input signals to the
2901 slices from the system data bus are captured on the rising
edge of the clock (the set-up time prior to the clock LOW-to-HIGH
transition is about 70 n.sec for the 2901B). A timing diagram is
given in Figure (3.12) showing a series of sequential
microprogram steps. During each microcycle, one microinstruction
is fetched and executed. At each rising edge of the clock, the
microprogram counter increments and settles, and the counter
outputs an address to the PROM, whose access time is greater than

the counter settling time. As soon as the outputs are stable at

3-19

b
ﬁwo A B C D
MC300 —
12MHz o/F g; r-1%:1' 1]
E NT qa o8B QD Z_F
= >, 7F
IF
¥
CLOCK
————— L o
OSCILLATOR
2F
1F -
CLOCK
CLOCK .t

FIGURE (3.11) CLOCK CIRCUIT AND CLOCK PULSES.

CLOCK

MICROPROGRAM
ADDRESS

PROM MEMORY

2901 SUCES

REGISTERS

MICROCYCLE

—B83.I NS —
< 250 NS

MICROINSTRUCION |
ADDRESS
FETCH
MICROINSTRUCTION |
— EXECUTE
MICROINSTRUCTION |
RESULT OF
MCROIN STRUCTION I-1

MICROINSTRUCTION 141

ADDRESS

FETCH
MICROINSTRUCTION I+1

EXECUTE
MICROINSTRUCTION o1

RESULT OF
MICROINSTRUCTION |

FIGURE(3.12) MICROCYCLE TIMING FOR THE SYSTEM OF FIGURE(3.1).

the PROM output, execution begins in the 2901 ALU slices. On the
next rising edge of the clock, the 2901 ALU result is gated into
the registers and the status signals which are being input to the
subsystem circuits are assumed to be stable. If an
unconditional branch microinstruction is to be executed then when
the outputs are available from the PROM memory, the control
signals are sent to the counter to cause it to load the branch
address. No 2901 ALU activity occurs. On the next rising edge of
the clock, the branch address enters the counter and the address
is input to the PROM. The execution proceeds as before. There
is no difference in the microcycle of a branch and nonbranch
microinstruction in this system. However, while the PROM memory
is being accessed, the 2901 ALU must remain idle, and while the

2901 ALU executes, the PROM memory must remain idle.

In the 2901 ALU, some internal operations require longer
time to execute than others. One or more of these operations
requires the maximum length of the time to complete. This is
called the worst case delay path. The minimum total width of the
microcycle, cp, is the sum of the worst case fetch and execute

times.

3.9 Conclusion

The hardware construction of an 8-bit microprogrammed
processor which is constructed with 4-bit bipolar microprocessor
slices has been described. A bit-slice approach was chosen for
this project, since the flexibility and speed required cannot be
obtained using a single fixed instruction set microprocessor.

The system is configured such that it can support a

3-20

microinstruction cycle of up to 250 n.sec.

3-21

CHAPTER 4

System Microprogramming Features

4.1 Microprogramming

Microprogramming was first suggested by Wilks in the early
1950s (54), (55). With the development of fast, inexpensive LSI
devices, commercial use of microprogramming spread into the
microprocessor-based systems domain. Present microprocessors
employ microprogramming in two ways. The first is the
traditional method of using microprograms to perform machine
instructions (56). The second is to combine bipolar bit-slice
devices to synthesize a microprocessor or controller system with
a particular architecture (57), (42). One can describe
microprogramming as (58) the use of a program language
(microprogram) that explicitly and directly controls the sequence
of internal machine-hardware functions (e.g., registers, ALU's,
counters, busses, memory). In this way, microinstructions
specify control terms that cause the machine hardware to perform
an elemental function such as transfering data from one register
to another. The device, in this case, is completely software
driven, having no predetermined sequence of operation implemented
in hardware, i.e., linkages of microinstructions cause the

machine to perform the desired function.

Microprogramming is considered to be the best approach to
control a bit-slice system for the following reasons (59), (42),
(60), (61):

1- A memory (ROM or PROM or related devices) is a substitute

for random sequential control logic circuits. This leads to a
more structured organisation of the design.

2- Software test routines can be developed and included in the
PROMs or, the normal PROM memory could be swapped with a special
test memory by substituting PROMs.

3- Variation of the initial design can be implemented by
substituting one or more PROMs (i.e., changing the microprogram),
and also adding PROMs expands the system.

4- The microprogram, documented in the definition file and in
the assembly source file, serves as the principle documentation
of the 'firmware' (62) (because such microprograms have been
placed in PROM or ROM, they have been called firmware, i.e.,
software modules that are "firmly protected” from being changed),
this provides a clearer documentation than multipaged schematics
can provide.

5- Subsystems can be upgraded by replacing the appropriate
PROM more easily than hardwiring or patching new components onto
a crowded printed circuit board (PCB), with all of associated

difficulty that this entails.

Three measures are useful for defining the microinstruction
characteristics (63):

A- Monophase-polyphase characteristic

A monophase microinstruction would generate the control
signals used during one clock pulse. A polyphase
microinstruction would generate control levels and signals used

during two or more clock pulses.

4-2

B- Encoding characteristic

This measure refers to the degree of encoding in the
microinstruction word. There are two different types. The first
is direct encoding, in which case the mutually exclusive signals
can be grouping together into fields. These fields are then
decoded to produce the corresponding control signals. This type
of encoding reduces the size of the microinstruction word. The
other type of encoding is known as indirect encoding where the
meaning of a field is made to depend on the value of a control
field in the microinstruction.

C- Serial-parallel characteristic

This refers to the method used to determine the next
microinstruction to be executed. In the serial approach, the
generation of the address for the next microinstruction to be
executed does not begin until the execution of the current
microinstruction terminates. In the parallel microprogram
approach, the addressing of the PROM for the next
microinstruction is overlapped with the execution of the current

microinstruction.

The microprogram size can be expanded in two ways (55),
horizontally and vertically. A horizontal expansion of the
microinstruction, is implemented by adding more control bits to
each and every microinstruction in the microprogram for
controlling additional hardware elements. A vertical expansion
means that you increase the actual number of microinstructions in
the microprogram to perform new functions. Although horizontal

expansion allows the microprocessor system to perform more

4-3

parallel operations in each microcycle, it has the disadvantage
that each bit is dedicated to a single function and,
consequently, a maximum number of bits is required, i.e., a much
larger amount of microprogram memory is needed. On the other
hand, a vertical expansion can increase the capability of the
CPU, but the amount of sequential control logic in the system
increases. A vertical microinstruction usually involves little
parallel operation within the microcycle; instead it initiates a
single sequence of events, and hence, the microcycle time
increases and the speed is decreased. A combination of
horizontal and vertical microprogramming schemes is normally used

to meet the specific speed and control memory limitations.

For long microprograms (> 48 microinstructions in length or
with microinstructions > 16 bits wide), software development
systems are required. These systems allow each field to be
defined with symbolic definitions, which is a documentation
method. Once the fields are defined, the microcode (microprogram,
microinstruction) can be written in symbolic language, similar to
a pseudoassembly language, that will provide human-readable
documentation. The development system may be used to assemble the
microprogram thus written and to create the input to a PROM
programmer. Since microprograms, like programs, seldom run
properly when first executed, the development system provides
simulators and debuggers which allow users to interact with, and
monitor the execution of, a microprogram as it is being run on
the system. Simulators usually run on a different machine and

simulate the actions of the system for which the microprograms

4-4

were written.

Given that the microprogramming concept is closely related
with the bit-slice microprocessor system, this chapter will
describe the microinstruction characteristics and discuss tools

and facilities for the development of microprograms.

4.2 Microinstruction Format
The microinstruction has two primary parts. These are:

1- the definition and control of all micro-operations to be
carried out

2- the definition and control of the address of the next
microinstruction to be executed
The definition of the micro-operations to be carried out includes
such things as ALU source operand selection, ALU function, ALU
destination, carry control, shift control, and data-in and
data-out control. The definition of the next microinstruction
function includes identifying the source selection of the next
microinstruction address or supplying the actual value of that

microinstruction address.

The thirty-two bit microinstructions of the 2901
microprocessor system used in this investigation consist of ten
fields which provide some parallel operation as illustrated in
Figure (4.1).

SK (4 bits) is the test and skip control field for selecting
one-of-sixteen skip flags denoted by 0 through F, these values
will correspond to predefined bits within the system, as
described before.

CC (2 bits), the carry-select control field, determines the

3 24 23 20 19 16 15 7 6 5 L 3 1 0
ol P I R | T 18 17 "16 15 "1e '1s "1z 10 ' 1 &Lz[;]m %l - "
A B I TQJ _CC_' __SK__|
D F S

FIGURE(4.1) FORMAT OF 32-BIT INSTRUCTION WORD
FOR THE 2901 SYSTEM OF FIGURE(3.1).

carry-in state as illustrated in Figure (3.6).

TO (1 bit), the external write-only registers strobe, enables
the current data value on the data bus to be strobed into an
external register when it is '0". This field also activates the
LOAD control line of the microprogram counter during branch
operations.

I (9 bits), is the 2901 instruction control lines. Also shown
in Figure (4.1) is

S (3 bits), source operand field, used to determine what data
sources will be applied to the ALU-slices.

F (3 bits), function field, used to determine what function
the ALU will perform.

D (3 bits), destination format field, used to determine what
data is to be deposited in the Q-register or the internal
register array.

B (4 bits), is the B address field, the four address inputs to
the internal register array used to select one register whose
contents are displayed through the B-port and into which new data
can be written when the clock goes LOW. This field also selects
one-of-sixteen external write-only registers (TO-registers) to be
loaded from the data bus.

A (4 bits), is the A address field, The four address inputs to
the internal register array used to select one register whose
contents are displayed through the A-port. It also selects
one-of-sixteen external read-only registers (From registers)
whose contents are output onto the data bus.

Y (8 bits), the control store literal field, an B8-bit data

word which represents a number or an address. It is used for

assignment to a register or to indicate the address of the next
microinstruction to be executed. This is rather like the

immediate field used in some machine language instructions.

4.3 Microinstruction Implementation

The system microinstructions have the capability to perform
two distinct operations simultaneously- An ALU/shifter operation
and a conditional branch or skip operation. The additional
capability to perform other operations simultaneously (such as
external register handling, and carry control) suffices to
classify these microinstructions as horizontal. Direct (or one
level) encoding was implemented in the representation of
microinstructions, this is due to the fact that most of the
micro-operations that a particular subsystem can perform were
represented in the microinstructions as a field rather than as
individual bits. Since the micro-operations that were combined
into a field are mutually exclusive, no information is lost in
this single level encoding scheme. There is only one hardware
subsystem, the control decoder, in which indirect (two level)
encoding was used. The flag TF, generated by the TO decoder (it
is not a direct control bit output), and the Y-field (YO - Y2)

are combined to select the control flags (CO - C7).

When no control signals are to be enabled by a given set of
bits, the bits are all placed in the O state. In this case, a
unique binary code must be assigned to this condition since it
represents a legitimate control pattern for a control field.
When the all-Os bit pattern is decoded, no action is generated by

that field during that microcycle. Typically, this all-Os bit

pattern is used to represent a microcycle no-operation (NOP).
Microinstruction implementation is serial (fetching the next
microinstruction to be executed is started after the execution
phase of the present microinstruction). The basic system clock
cycle is 330 n.sec, and in normal operation, a microinstruction
is read from the PROM to the subsystem and executed in one clock
cycle (there are no suboperations performed, and all operations

specified by a microinstruction are executed simultaneously).

4.4 Microinstruction Sequencing
Three techniques were combined for accomplishing this
microinstruction sequencing. These are:
1- sequential execution
2- skip control

3- multiple sequences

4.4.1 Sequential execution

In this case the PROM address of the next microinstruction
to be executed is one greater than the address of the
microinstruction being executed. The microprogram counter

increments by one on each clock cycle.
4.4.2 Skip control

The sequential execution of microinstructions may be altered
by the skip micro-operation. The microinstruction has a skip
micro-operation in which the microprogram counter is incremented
by two instead of one. A conditional skip micro-operation

facilitates an efficient one microinstruction subroutine.

4-8

4.4.3 Multiple Sequences

The sequential execution of microinstructions may be altered
by unconditional branch micro-operations. The load control of
the counter is a single bit (T0O) defined by the microinstruction.
Whenever this bit is at logic '0' a load will be enabled. If the
load is enabled, the new (branch) address contained within the
PROM will be parallel loaded into the counter. The branch
address originates from two sources; the literal (addressing)
field of the microinstruction, in which case it is the field
supplying the actual value of the address. The other source is
the external read-only registers (From registers), in which case,

the data inputs to the counter receive the start address.

Another useful facility combines sequential and skip
execution, by assigning an address to a label or register. This
facility, with the wunconditional branch micro-operation can be

used to implement loops in microprograms.

4.4.4 Start Address
The microprogram counter is reset to zero on startup, at

which the microinstruction must be in the form:
T0 = F7 + 0 ’ 57

This loads the microprogram counter (TO) with the data on the
data bus which is the output of the 'From' register (F7).
Skipping to give a 0 LSB, when S7 is true 'l', and not skipping
to give a 1 LSB, when S7 is '0 Start addresses may now be
assigned to any location in the PROM. The 'From' register 'F7'

contains address lines driven by switches to allow all the

different states to be valid.

4.5 Special Microassembler

One of the difficulties of using the 2901 bit-slice system
is the difficulty with software support for the completed system.
It is evident that the system described in the previous chapter
is unique and a special assembler and simulator will be required.
The following two sections will describe the assembler and
simulator that have been used in this work for developing the

microprograms.

The architecture of the 2901-system is designed for maximum
speed of operation in its application, which differ from those of
MOS microprocessors. As a result, the 2901-system assembler
contains features which are unique to this system application,
e.g. the assembly language differs from standard assembly

languages, as described below.

A microassembler (we will call it an assembler from now on)
was developed for the microinstruction format described in the
previous two sections and illustrated in Figure (4.1). It
assembles a microprogram written in a symbolic language into the
bit patterns for subsequent use in microprogram PROMs, and
provides various convenient features for use in writing
microprograms. The assembler was written in the CORAL programming
language (64) and was implemented using a CORAL compiler which
runs under the UNIX operating system for PDP-11 computers (65),
(66). The language comprises several fields correspond to
microinstruction fields (operators, operands, shift, skip, and

carry control), label field, and comments. Operations specify

4-10

transfers of information among registers. Unary and binary
operations can be written in algebraic notation, and
unconditional execution can be represented by simple 'branch'

statements.

The address space is 512 words. This is achieved using the
8 bit literal field plus the skip option. In consequence a
branch instruction requires a knowledge of whether the executing
instruction is at an odd or even address and whether the target
is at an odd or even address. There are two assembler directives
which force these conditions, *EVEN and *ODD. The addressing
given in the generated list is a 3-digit number, the numbers
being hex, hex, binary (the least significant being binary). The
source program contains function assignments and the symbolic
microprogram itself. The assembler makes two passes through the
source. On the first pass it makes entries into the label table
for each label, assigning it to a value equal to its address,
starting at location 000. On the second pass it converts the
symbolic values to the binary encoding of the microinstructions
and stores these in internal memory (binary file) for subsequent
processing. In addition to the binary output, an assembled
listing file 'ass.lst' can be produced. This file is the output
medium by which the assembler communicates its results to the
2901-system microprogrammer. This file is prepared by re-reading
the input source microprogram and matching each line to the
assembled code. It shows, for the microinstruction, each
symbolic representation, its translated binary representation,

and its assigned PROM address.

4-11

Associated with the assembler is a 'converter' program. It
takes the binary output of the assembler and, given the
description of each PROM location, produces the proper output

(for input to the PROM programmer) for each PROM.

4.6 Software Simulator

Another development aid for the microprogram is a software
simulator. It was decided to use a software simulator in order to
test, debug, and optimise the microprogram before 'burning' a set
of PROMs. The simulator being used is specifically for the
present system (67), and runs under the UNIX operating system.
The simulator provides an interactive microprogram development
and debugging facility which operates exclusively in UNIX with no
need for the 2901-system or any associated hardware. It includes
input/output handling and has the ability to access registers,
set breakpoints (break on condition mode), and single step
execution mode. Execution can be halted at any time for
observation of the register contents, change in the breakpoint
conditions, after which execution can be continued without any
loss. Preparation of microprograms is achieved by using the
assembler (and converter) which generates a file that the
simulator can load directly into its microprogram memory.
Diagnostic messages are printed in response to erroneous

operations and special system conditions.

A block diagram of simulator is shown in Figure (4.2). The
system box represents the simulation of the 2901-system
architecture as described in the previous chapter. The operation

of the simulator is controlled by the simulator executive system

4-12

v ¢

' 3

RAM FILE

ASSIGNMENTS
FILE

|

i

PROM
TABLE
LOOK - UP

‘

2901 - SYSTEM
SIMULATION

l

ARRAY

!

SYSTEM
SIMULATOR

EXECUTIVE

l

!

UNIX FILE
SYSTEM

UNIX

SYSTEM

FIGURE(4.2) BLOCK DIAGRAM OF SYSTEM SIMULATOR.

UTILIT Y
ROUTINE

OPERATING §

TERMINAL

which interprets commands and invokes required utility routines
(macros). A number of files are associated with the simulator.
The RAM file corresponds to the random access memory which is
interfaced to the system. The microprogram file contains data
that are to be loaded into the PROMs of the simulator. The table
look-up files and signal sources contain data to be read into the
internal registers. The simulator has thirty seven control/skip
status and register assignments which correspond to dedicated
hardware in the system. The simulator handles these assignments
through its communications links with the terminal or the UNIX
file system in the following ways:

(i) Default. A request is printed on the terminal for the value
of the assignments. Execution resumes when the assignment value
is entered.

(ii) Optional. The assignments can be read from a UNIX file
specified as an assignments file.

The simulator can access files in the UNIX file system, so that
system files can be loaded from and written to UNIX files. Data
to be entered into registers directly from the terminal may be
hexadecimal or binary. Files for the system are arrays in
memory. They are four different types in accordance with the
length of the data they store. The file types, characterised by
their data format and their use by the simulator, are as follows:

1- 6 types of 10K x 8 bits data RAM file

2

4 types of 15 x B bits data assignments file (option)

3- B types of 512 x 4 bits data microprogram file

4

8 types of 512 x &4 bits data table look-up files

The UNIX files are in ASCII format. They contain a filetype

4-13

declaration which must match the binary type required in this

system.

One can be constantly interacting with the simulator and
this interaction will be controlled by the use of the 'command
library'. The command library includes commands for
re-initialisation the simulator, setting and reading 2901-system
registers, resetting monitor points, and transfer of files
between the simulator and UNIX environments. Another group of
commands are used to perform checks on breakpoint variables
during execution of the microprogram and print messages when
breakpoint conditions are met. A breakpoint can be set on a
microinstruction address, on a register value, and on the number
of clock cycles executed. The run (rn) command initiates
execution of the microprogram until a break condition is met or
for a specified number of clock cycles. While the run command
provides for continuous execution of a microprogram, the single

step command (ss) executes only one microinstruction.

The simulator makes full use of the connected terminal being
used. When one invokes the simulator, the terminal displays a
"start-up" frame. The simulator command level is indicated by a
":" prompt character. First, the simulator's microprogram memory
is loaded, using pc or pt commands, with the binary object file,
which was generated previously by the 2901-assembler from a
source program. Next, assignments, RAM, breakpoints, and any
number of monitor points up to 18 points are set. Various
actions may be taken when the breakpoint is reached; these are:

1- Print the monitor points on the terminal for investegation

4-14

2- Write into the RAM file and stop execution, or
3- Initialise the execution.

This gives a general idea of the simulator operation.

4.7 PROM Programming

A multi-interface system has been used for programming the
PROMs. The block diagram for this interface is shown in Figure
(4.3). The PROM programmer used was the PRO-LOG M920 (68), which
permits entry from either the 6809 system (69), or copied from
another PROM. This PROM programmer puts successive pulses onto
each bit at the recommended rates (current specification is usual

for "fusable-link" bipolar PROMs) of the PROM manufacturer.

TERMINAL
UNIX
6809 M920 PROM
OPERATING > >
SVSTEM SYSTEM PROGRAMMER
i
DISC
OPERA TING
SYSTEM

FIGURE (4.3) PROM PROGRAMMING INTERFACE.

4-15

The assembler output files are transfered from UNIX to the 6809
microprocessor system using a special program. These files, in
turn, can be maintained in 6809 system disctes for subsequent
use. The 6B09 system is connected to the parallel interface of
the M920 via a 25-pin, D-type connector. The parallel interface
provides eight parallel input data lines, eight parallel output
data lines, seven handshake control lines, and an internal
handshake program (this PROM programmer uses an Intel 4004

microprocessor to provide this and other features).

4.8 Development Test Equipments

A sophisticated microprogram requires special equipment for
testing the system functions and circuits. These supporting
tools should be efficient and easy to implement. The test tools
that have been used in this system are classified into two
groups. Software test microprograms which enable us to examine
the system functions (these will be described in the next
section) and external test equipment which allow us to control
and investigate the software routines. The external test
equipment that was used was a test box , a logic analyser, and an

oscilloscope.

The software test routines requires a test box which allow
us to select a particular test, to set parameters, and to display
the results. The circuit diagram of the test box is shown in
Figure (4.4). It consists of two TIL 311 types (an hexadecimal
display with integral TTL circuit to accept, store, and display
4-bit binary data) (70) and three 74LS367 types, hex bus drivers.

Three rows of address switches, are included that can be used to

4-16

?
Y
ry.‘é *g +5
F7j A B C o A B C D
A (T L3
LED GND LED GND
L
I SELECTOR SWITCH
| 11 _
BA 6Y S5A S5Y LA &Y 6A BY S5A S5Y LA LY 6A 6Y SA S5Y LA LY =
462 ~{ 62 — G2 L A
1], 74LS67 o TeLS67 o T6LSB7 (L
W TY 2A 2Y 3A 3Y 1A Y 2A 2Y 3A 3Y |-|AIY 2A Y 3A W T
E : I'TE ' TE
. T +5
K KaIKeIKAIKA 1K
WaEE INITL
1“? 7 ;
K | K | = K |K|IK S6
.5 %?H L3033 R RRRRRE | 57
(e T W eod(
o B l L
= F4-SWITCHES F7- SWITCHES = SKIP SWITCHES =

FIGURE(4.4) TEST BOX CIRCUIT.

set up addresses or parameters on the F4 and F7 registers. It
can also be used to set or clear any of seven different types of
skip flags. The test box contains also a selector switch which
is used for displaying the contents of any of the general use
'TO' registers. The test box is directly interfaced to the
system via an B8-bit data bus, and the 'TO' and 'From' strobes.
It should be noted that the initialisation control line 'INITL'
is generated from the test box and supplied to the rest of the

system circuits.

4.9 Test Software

It was mentioned before that one considerable advantage
which is derived from the use of microprogram control of the
2901-system is that software test routine can be developed and
included in a special test memory by substituting the normal
PROMs, A set of software microprograms were used to test the
system hardware, any of which could be selected by setting up the
appropriate address on the test box registers. Each microprogram
contains one or more tests for a particular part of the hardware.

These microprograms are described below.

4.9.1 Control Decoder Test

This microprogram generates control pulses corresponding to
the value to which F4 is set on the test box. The pulses are
observed on an oscilloscope to test for correct decoding. A
continuously changing value on display TE indicates that the

microprogram is running.

4-17

4.9.2 "To" and "From" Decoder Test

This microprogram generates pulses on lines T1 through TF in
sequence and on lines F1 through FF in sequence (notice that TO
and FO are special purpose control lines). The pulses are
observed on an oscilloscope to establish the correct operation of

the decoders.

4.9.3 2901-Slices Internal Registers Test

This microprogram tests the 'R' registers on the 2901-slices
by incrementing the 'Q' register, loading its value into
registers RO through RF in turn, and then comparing each register
to 'Q@. A fault causes the microprogram to loop indefinitely in
an error loop. This is indicated by the display TA. A
successful run through the microprogram causes the 'Q' register

to be incremented and the microprogram repeated.

4.9.4 Up Shift Test

This microprogram tests the upward shift function on the
2901-slices. A 'ONE' is shifted around registers Q@ and RO using
the up-shift function. A second 'ONE' is shifted around
registers R1 and R2 using the carry. Errors are checked by
comparing R1 and @, and R2 and RO. R3 is an error counter

displayed on TB8.

4.9.5 Down Shift Test

This microprogram tests the downward shift function on the
2901-slices. The value 'hex B0' is loaded into registers Q@ and
R1, and then shifted down one bit at a time, comparing its value

to the pre-defined value in register R3 between shifts. An error

4-18

will increment RA while a successful shift will increment R9. RA
is displayed on TA, while R9 is displayed on T9. Resetting 56

introduces a delay loop which allows displays to be read.
4.9.6 2901 ALUs Arithmetic Operation Test

This microprogram tests the 2901 ALU's by carrying out its
eight different operations on two registers which are loaded from
the test box. The results of the operations are displayed on T8

through TE. Switch S6 selects either R-S or S-R operation.

4.9.7 Carry Control Test

This microprogram tests the carry generator circuit for
correct operation. If F7 is set to 'hex FF' and F4 to any value,
then TA will display (the contents of F4 + 1) if S6 is clear and
contents of F4 if it is set. T9 will always display the contents
of F4 while T8 will display 'FF' if Sé6 is set, and '01' if it is

clear.

4.9.8 FIFO control tests

This microprogram tests the FIFO control system and consists
of three consecutive tests. For the first test, the FIFO is
loaded with 'hex 55' and a reset pulse is generated. If the FIFO
fails to clear, a branch is made to an error routine, otherwise
the second test is entered. In this second test, the FIFO is
loaded with sixteen characters, a check for 'FIFO full' being
made before each entry, and a check for 'WIFO empty' made after
each entry. When sixteen characters have been loaded, a check
for 'FIFO full' is made. If the flag is set, the third test is

entered, otherwise the error routine is entered. The error

4-19

routine is also entered if any of the previous checks fails. In
the third test, the FIFO is unloaded one character at a time, a
check for a 'FIFO empty' being made before unloading each
character, and a check for 'FIFO full' made after unloading a
character. When sixteen characters have been unloaded, a check
for 'WIFO empty' is made. If the flag is set, the program loops
back to the first test, otherwise the error routine is entered.
The error routine is also entered if any of the previous checks
fails. A failure in the first test is indicated by T8 displaying
the value 'FF'. R9 is an error counter, and T9 displays the

total error count.

4.9.9 FIFO Data Tests

This microprogram tests the FIFO for correct retention of
data. The FIFO is initially cleared as are registers RO through
R3. The FIFO is then loaded with the contents of registers RO,
Rl, R2 and R3 in sequence. The data is then read back and
compared with the register contents. An error increments R9 and
restarts the program. A successful pass causes RO to be
incremented and the cycle repeated. Every time RO reaches 'hex
FF' R1 is incremented, and when this reaches 'hex FF' R2 is
incremented. R3 is likewise incremented when R2 reaches 'hex FF'.
The FIFO is therefore tested for all possible combinations of
data. T9 displays the value of the error counter R9, while T8
displays either the value of R3 if 56 is clear, or the value of

R2 if Sé is set.

4-20

4.9.10 Output Enable Test

This microprogram tests the output enable on the 2901-slices
for correct operation. F4 and F7 are set to any value. TC and
TD should display the value of F4 T8 and T9 should display the
value of F7 while TA and TB should display (the value of F7) AND

(the value of F&).

The FIFO transmit/receive tests will be described in the
subsequent chapters. The test microprograms were written such
that they will loop continuously permitting diagnosis with a
logic analyser and an oscilloscope, that will isolate faults to

particular areas.

4.10 Conclusion

The characteristics and implementation of a 32-bit
microinstruction for the system of Figure (3.1) has been
described. Microprogram development aids have been discussed.
One of these aids is a software simulator, which can be used
without access to the 2901-system hardware environment. This
simulator allows us to monitor run-time characteristics of
microprograms which cannot be observed using the system itself.
The assembler and simulator discussed in this chapter have been
used extensively in applications described elsewhere in this
thesis. The method was used for programming the PROMs has also

described.

4-21

CHAPTER 5

Implementation of Direct Sequences By Microprocessors

5.1 Introduction

It has been mentioned in the introductory chapter that the
object of this work is the realisation of the signal processing
requirements of a spread spectrum communication system using
digital techniques implemented with the aid of fast
microprocessors. In all spread spectrum systems synchronisation
acquisition and tracking is of prime importance. The behaviour
of synchronisation systems in the presence of multipath
propagation, unacceptable levels of interference, and secondary
cross-correlation peaks of the sub-sequences used for rapid
acquisition have to be studied to set thresholds on performance
in practical systems. The cause of thresholding lies in such
things as tracking loss, and thresholding of the correlation
detector. In general, direct sequence spread spectrum
communication systems are the most widely used spread spectrum
systems (3), (6), (7), (71), (72). In direct sequence modulation
the baseband information is added (modulo-2) to a digital code
sequence whose bit rate is much higher than the information
signal bandwidth. This process has the effect of "spreading" the
signal energy over a bandwidth equal to twice Rc’ the system's
code clock rate (7). For good correlation properties and ease of
generation, "maximal" length pseudo-noise sequences (m-sequences)
were used. Despreading, at the other end, is obtained by

correlating the received spread spectrum signal with a similar

local reference signal (code). When the signals are matched
(i.e. synchronisation occurs), the baseband signal collapses to
its original bandwidth before spreading. Synchronisation is
generally achieved in two stages

a) Acquisition or coarse synchronisation

b) Tracking or fine synchronisation
The spread spectrum system is required to accomplish
synchronisation in the presence of interference and transmission

distortion.

This chapter discusses the analysis and implementation, in
both software and hardware, of the functions which are concerned
with direct sequence spread spectrum systems. In particular,
maximal length sequences, and sequence-inversion keying (SIK)
modulation are considered. The difficult problem of initial
synchronisation of the system and the methods by which

synchronisation can be maintained are then examined.

5.2 Pseudo-noise Sequences

Binary pseudo-noise (PN) sequences (which are also called
shift-register sequences or m-sequences) are the basis for the
direct sequence spread spectrum implementation. These imply a
deterministic string of binary digits that repeat only after a
relatively long period and have statistical properties similar to
those of true random numbers. These sequences can be reproduced
by any authorised terminal. Pseudo-noise sequences have been
known for more than twenty-five years. During that time, results
have been obtained on the structural properties and are used in

many applications such as range-finding, modulation, and

5-2

synchronisation (72),(3). Recently, MacWilliams, Sloane,
Sarwate, and Pursley (10), (11) have been examining certain
properties of these sequences and their applications in spread
spectrum communications. The sequences that have received the
most attention in the literature are the binary maximal-length
linear feedback shift register sequences which are known as
m-sequences. In m-sequences, which are the type used in this
work, the maximum length sequence L is 2%.3 bits, where n is

the number of stages in the shift register.

5.2.1 Generation and Properties

At present, MSI pseudo-noise sequence generators are
available which allow limited code generation at rates up to
several Mbps (73). In this project, software methods were
developed for the 2901 system which use a few bytes of PROM and

do not require any R/W RAM.,

A particularly convenient method for generating the
m-sequences is by using an n-stage shift register with a feedback
term formed by the modulo-2 addition of several stages which can

be specified by its feedback polynomial,

n
= . . 5.1
h(x) = hg* hyx + . + h (5.1)

where the degree n of the feedback polynomial is the length of
the shift-register generator and the binary coefficient
hi(D or 1) represents the feedback tap on the generator. The
equivalent of this operation can also be performed efficiently

using microprocessors (see Appendix B).

Mathematically, the generation of a binary m-sequence Iak}

is defined by the operation

n
8 = iz‘l c8,_; (mod 2) k=0,1,...,L-1 (5.2)

where the sum is modulo 2 addition and both c; and a, take
the values 0 or 1. The coefficients Cps i=1,2,..n do not
depend on n and must be known in order to specify an m-sequence.
The kth state of the m-sequence generator is, therefore, defined

by the past n terms of the sequence a i=1,2,..n as shown in

k-i’
Figure (5.1).

Figure (5.2) illustrates a shift register consisting of 7
stages, representing memory elements or flip-flops, each
containing a 0 or 1 (all-zeros state is not allowed to exist).
Outputs from the last stage (D5) and an intermediate stage
(Dl) are combined in a modulo-2 adder or EXCLUSIVE-OR gate,
defined by 0 + 0 =1 +1=0,0+1=1+0 =1, and fed-back to
the input of the first stage. At each clock cycle the contents
of the stages are shifted one place to the right. In this
particular example the code sequence generated is shown in Figure
(5.3), which is cyclic with a total period 127 times the period
of a single flip-flop output pulse. This is the longest code
sequence that can be generated by 7 stages in a shift register;
that is for n stages the longest sequence that can be generated
is 2"-1. For an n-stage register, there are ¢(L) /n maximal
sequences that can be generated by using different linear
combinations of feedback taps (where @(L), is the Euler

¢-function, i.e., the number of positive integers including 1

5-4

= CLOCK

A
. Ak-! Ak-—2 e it | M Ak-n
q c? Cn
EXCLUSIVE OR
FIGURE (5.1) BINARY SHIFT REGISTER.
EXCLUSIVE OR

<+

o D D, |5 CODE OUTPUT

FIGURE (5.2) SHIFT REGISTER GENERATOR FOR 127-BIT m-SEQUENCE.

2.00 3.00 4.00

FSRG

PSEUDO-NOISE BINARY SEQUENCE
LENGTH=127
FEEDBACK TAPS--(7,1)

ﬂ|
IH!M;I iJ| l 1| |

3.00

2.00

0.00
.

20,00 40.00 60.00 80,00 100.00 120.00 140.00
K-SHIFT

FIGURE(S.3a) TYPICAL m-SEQUENCE al(0,1) (PERIOD =127).

PSEUDO-NOISE BINARY SEQUENCE
LENGTH=127
FEEDBACK TAPS——(7,1)

| | !

e

.00 60.00 80.00 100.00 120.00 140.00
T K-SHIFT

FIGURE(S.3b) TYPICAL m-SEQUENCE b(+1,-1) (PERIOD =127).

that are relatively prime to and less than L). Feedback
connections have been tabulated for maximal code generators from
3 to 100 stages, so that any length from 7 through 236-1 are

readily available (7), (3).

For most cases it is convenient to consider the m-sequence
as formed from the digits {+l,-1}instead of {D,l}, the {+1,-1}

sequence{ bj} is related to the { 0,1} sequence Bi} by

(o =3 - 20}

this enables modulo-2 addition to be replaced by conventional

multiplication or vice versa.

For convenience some relevant properties, for our
application, of m-sequences are summarised below.
1- The one-zero balance property : in every period of the
sequence the total number of ones (2“‘1) always exceeds the
total number of zeros (Zn-l-l) by one. For a 127 bit code
there are 64 ones and 63 zeros. This property has the effect
that the DC component in a code or in a code-modulated signal can

be neglected.

rl-(l:”z)runs

2- Runs property : in any code sequence there are 2
of length p for both ones and zeros, where runs is defined to be
a maximal string of consecutive identical symbols, except that
there is only one run containing n ones, and only one run
containing n-1 zeros. There are no runs of zeros of length n or
ones of length n-l. This property is useful for testing code

sequences of any length.

3- Autocorrelation property : if a maximal code {ai} is

5-5

correlated with a replica of itself during a complete sequence
period L, then the normalised autocorrelation function varies
linearly from 1 to 0 in the range U+Tc (the sequence chip)
phase shift and equals to O for all other values of phase shift,
i.e. for a complete period L the normalised autocorrelation
function is given by

1- It o¢i¢r

Ra(T) 5 (5.4)

0 elsewhere

For convenience, the periodic unnormalised autocorrelation

function is often used and is defined as

L
R = :L; 88,1

L, if 1 =0 (mod L)
= (5.5)

-1, if | 20 (mod L)
Thus binary m-sequences have two-valued autocorrelation
functions. This is the most important property and it will be
discussed in detail in the following section.
4- Shift and add property : the modulo-2 addition of a maximal
code and a cyclic shift of itself is another replica with a phase
shift different from either of the originals. This property,
which allows generation of any desired code phase, can be used in
a multiple correlators scheme in order to reduce effective
synchronisation time.
5- Window property : if a window of width n is slid along a

complete code period, each of the 2"-1 nonzero binary state

n-tuples exists only once.

5-6

5.2.2 Correlation Functions and Power Spectra of Codes

The autocorrelation properties of m-sequences are
interesting from the point of view of synchronisation as the
autocorrelation function is periodic and two valued, with a peak
only at the zero shift point. This property is important in
choosing code sequences that give the least probability of a
false synchronisation. Code sequence (unnormalised) correlation
can be expressed as the number of agreements (A) minus the number
of disagreements (D) when the code and a phase-shifted replica of
itself are compared bit by bit. The normalised correlation is

then given by

The unnormalised autocorrelation (crosscorrelation) function of a
sequence (two sequences) is the set of correlation values of the
sequence (one sequence) with all cyclic permutations of itself
(the other sequence). This is a generalised correlation
definition which coincides with the two types of code sequence
representation {U,l} and {4-1,-1} as mentioned above. Figure
(5.4a) shows the autocorrelation function of a 7-stage shift
register generator, generating a 127-bit m-sequence of Figure
(5.3a). Autocorrelation properties for nonmaximal sequences may
be different from those of the m-sequences, an example in Figure
(5.4b) shows the autocorrelation for a nonmaximal sequence
generated from the same shift register but with different
feedback taps. The Figure shows minor correlation peaks which
are dependent on the code and are caused by partial correlations

during the correlation process. When such minor correlations

AUTOCORRELATION

AUTOCORRELATION

RUTOCORRELATION FUNCTION

140.00

LENGTH=127
G

2

8

21

=1

gdl

o

“h.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

K=-SHIFT
FIGURE(5.4a) A 127-BIT m—SEQUENCE RUTOCORRELATION FUNCTION.

AUTOCORRELATION FUNCTION
(1.5)

S

ST

8

8.

8

8.

W

=

T0.00 20,00 40.00 80.00 100.00 120.00 140.00

60.00
K-SHIFT
FIGURE(S.4b) NON-MAXIMAL SEQUENCE AUTOCORRELATION FUNCTION.

occur, the receiving system's ability to synchronise may be
impaired because it must discriminate between the major (0+1 bit
shift) and minor correlation peaks, and the margin of

discrimination (index of discrimination (ID) (7)) is reduced.

The power spectrum of an m-sequence may be determined from

the autocorrelation (74) function by application of the equation:

+
S(w) = f R(T) e W gr (5.7)

-00
Defining the sequence autocorrelation function as equation (5.4),

then its Fourier transform is

_7 { Ra(T)} = T sinc2nfT (5.8)

Since Ra('r) is periodic it can be expressed as
R (1) = -1/L + (L+1/UL)R _(7) *iﬁ(T+nLT} (5.9)
a a e

where the asterisk indicates the convolution operation. The
power spectrum can now be obtained by applying equation (5.7) and

using
= & /LT) 5.10)
7{ coZa(nnLT) ”LT.-.;oo(f +n

Thus
3 2
S(w) = (L+1/LD) sincz(w/znf);a(w-cznkn/uum 5(w)
=-0

k#0
(5.11)

where L is the length of the sequence, and f is the clock

frequency, and

5-8

sinczx = (sinmwx /n x)2

The spectrum has a (sin x/ x)2 envelope. Figure (5.5) shows
the power spectrum of the m-sequence waveform whose
autocorrelation function was shown in Figure (5.4a). Observation
of such a spectrum will show that it is a line spectrum with a
line spacing equal to the code repetition rate, Rch. Because
the pulse of shortest duration in the m-sequence is equal in
length to the code sequence clock period, the spectrum will have
a main lobe bandwidth such that its first nulls fall at the code
bit rate. This is an interesting point in a direct sequence
system, in which the transmission bandwidth is assumed to be
equal to the bandwidth of the main lobe (i.e., is twice the code
bit rate). From the one-zero distribution property, which is
mentioned earlier, it is seen that the DC component is +1/L and

the DC power is 112,
5.3 Implementing the Feedback Shift Register on a Microprocessor

Although the linear congruential algorithms (75), (76) are
the most successful approach for pseudonoise sequence generation
in large computers, they are not well suited for use on
microprocessors because they rely on multiplication of large
integers. Instead, straightforward simulation of a linear
feedback shift register is usua!ly used to produce binary
m-sequence using microprocessors. The term 'linear' here, means
that only EXCLUSIVE-OR connections appear in the feedback logic
(Figure (5.1)). M-sequences can be produced on the basis of
equation (5.2) by simulating the hardware methods just discussed.

A typical microcode program, when using a 2901 system, might

POUER DENSITY SPECTRUM
n-SEQUENCE

LENGTH=127

CODE RATE= 0.01KBps

0.50 0.7 1.00

S(w)

0.25

]
.00 40.00 80.00 120.00 160.00 200.00
W

FIGURE(S.5a) m—-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

8. POWER DENSITY SPECTRUM
- a-SEQUENCE
LENGTH=127
CODE RATE= 0.01KBps
w
~
[=]
=3
U)d
(Tp]
q -+
(=]
8.
“=-200.00 -100.00 0.00 100.00 200.00 300.00

W
FIGURE(5.5b) m—SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUN

POWER DENSITY SPECTRUM
a—SEQUENCE

LENGTH=127

CODE RATE= 0.1KBps

0.50 0.7 1.00

S(w)

0.25

=]
“b.00 400.00 800.00 1200.00 1600.00 2000,00
W

FIGURE(S.53) m—SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

POWER DENSITY SPECTRUM

1.00

S(w)

a-SEQUENCE
LENGTH=127
CODE RATE= 0.1KBps

wn

r‘: L

[=]

B

[=]

wn

N

2

8

©-2000.00 -1000.00 0.00 1000,00 2000.00 3000.00

W
FIGURE(S.Sb) m—SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

POWER DENSITY SPECTRUM
n—SEQUENCE

LENGTH=127

CODE RATE= 1KBps

0.50 0.75 1.00

S(w)

0.25

[=]

8
“h.00 400.00 800.00 1200.00 1600.00 2000.00
w (X107h

FIGURE(S.Sa) m—SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

S(w)

S. POMER DENSITY SPECTRUM
=T -SEQUENCE
LENFTH=127
CODE RATE= 1KBps
2
s
]
a1
[7p]
2
g |
=-2000.00 -1000.00 -0.00 1000.00 2000.00 3000.00

w (X107
FIGURE(S.5b) m—SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

38 POWER DENSITY SPECTRUM
-~ w—-SEQUENCE

LENGTH=127

CODE RATE= 10KBps

0.50 0.75

S(w)

0.25

8
.00 400.00 800.00 1200.00 1600.00 2000.00
W (X1079

FIGURE(S.5a) m—SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

POWER DENSITY SPECTRUM
a—SEQUENCE

LENGTH=127

CODE RATE= 10KBps

1.00

0.75

S(w)
0.50

0.25

.00

=-2000.00 -1000.00 0.00 100000 2000.00 3000.00
w (X1079)

FIGURE(S.5b) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

POUWER DENSITY SPECTRUM
a—SEQUENCE

LENGTH=127

CODE RATE= 100KBps

0.50 0.75 1.00

S(w)

0.25

2

(=]

.00 400.00 800.00 1200,00 1600.00 2000.00
W (X1073)

FIGURE(S.5a) m—SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

POWER DENSITY SPECTRUM

1.00

a-SEQUENCE
LENGTH=127
CODE RATE= 100KBps
(gl
~J4
[=1
=8.
m [=]
(7p]
N1
[=]
3.
=-2000.00 -1000.00 -0.00 100000 2000.00 3000.00

W (X1079)
FIGURE(5.5b) m—-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUNM.

POWER DENSITY SPECTRUM
n—SEQUENCE

LENGTH 127

CODE RATE= 200KBps

0.50 0.7 1.00

S(w)

0.25

S
“b.00 800.00 1600.00 2400.00 3200.00 4000.00
W (X1073)

FIGURE(S.5a) m—SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

POWER DENSITY SPECTRUM

1.00

a—-SEQUENCE
LENGTH=127
CODE RATE= 200KBps
w
~ 4
(=]
=31
5o
e]
o
[=]
2
“-4000.00 -2000.00 0.00 2000.00 4000.00 6000.00

v (X1079)
FIGURE(5.5b) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

store the contents of the shift register in one or two work-space
registers depending on the length of the sequence, or in
successive memory words. When this is done, it is advantagous to
assign a second register or memory word, containing the
associated feedback coefficients, to each register storage
location. When a certain register cell is connected to the
EXCLUSIVE OR adder, the corresponding feedback bit in the
feedback register is set to 1; otherwise, the feedback word bit
contains 0. To calculate the feedback input to the shift
register, feedback coefficients must be ANDed with the shift
register content, and the number of binary ONEs in this result
must be counted. For counting the number of ONEs, table look-up
can be used. The feedback input will be 0, for an even number of
ls, otherwise 1. A successive bit isolation (masking) and
EXCLUSIVE-OR operation may also be used to calculate the feedback
input but it can be very time-consuming for multi-feedback tap
organisations. The above approach can be compared as shown in
table (5.6) by counting the number of microcycles per bit of the

output sequence.

number of microcycles code bit rate
per bit
successive bit 15 200KBps
isolation
Hamming weight 6 500KBps
function

Table (5.6)

5-10

A parallel implementation allows especially fast generation
of m-sequences. Working in parallel, several bytes of fast PROM
are toaded with a predefined and debugged code sequence and with
a number of | shifted replicas of itself, where | is the word
length of the processor, here, B8-bits. In general, 2"-1 word
locations of PROM are required to store all the possible phase
patterns of a code sequence of length 2™-1. Several factors
make the parallel structure a good basis for effective software
implementation. The PROM store can be arranged to match the word
length of the processor and, therefore, every location produces
8-bits of the desired sequence in one clock cycle and shifting
can be performed by incrementing a cyclic counter in a direct
addressing mode. In this particular application, the parallel
output structure is easy to manipulate in signal processing
functions in which the code sequence takes part of it, such as,
spreading, acquisition synchronisation, and despreading
operations. It is important to note that with the parallel
structure, increasing the processor word length leads to faster
generators. Appendix B shows typical values (in Hex) for
m-sequences of period 127, that were produced using the 2901

simulator, to be loaded in a PROM table look-up.

5.4 Sequence Inversion Keying (SIK) Modulation

Spread spectrum communications refers to a class of
modulation methods by which the narrow-band information (data) is
transmitted via a modulated signal having much greater bandwidth.
Much of the literature refers to the direct sequence modulated

signal that is produced by a multiphase phase shift keying (PSK)

5-11

modulation by a code sequence carrying the data (6), (7). The
way in which the data is imbedded in a code sequence is called
code modification or sequence inversion keying (SIK) modulation
(77). This form of modulation means that we must change the code
in such a way that the data is imbedded in it and can only be
detected by an authorised terminal knowing the original code. In
addition, the required code properties - good autocorrelation,
low crosscorrelation, and the distinct spectrum - should be
maintained. This process is achieved by digitising the data
(principally voice) to be sent and modulo-2 adding it to the code
sequence. This process has the effect of inverting the code each
time a transition accurs in the data stream. The data transition
rate could either be asynchronous with respect to the code
sequence clock, or synchronous, in which case the number of data
bits to be transmitted for each sequence period are restricted by
the process gain and the system thresholding sources. One of
these thresholds is the correlation detector threshold, that will
be discussed later. For purposes of simplicity, in this project,
we consider the transmission process as completely binary. SIK
may be performed in the 2901 system based transmitter as follows;
data bits are synchronised by recognising the all 1l's state of
the m-sequence generator and starting a data bit at that time. A
cyclic counter is counted to determine the start of subsequent
data bits. A typical example was implemented in which a 7-stage
m-sequence generator produces a sequence whose length is 127
(Figure (5.3a)) bits. In this example, the data bit rate was
chosen to be the repetition rate of the m-sequence. Because the

length of the sequence is a prime number, the data bit is divided

5-12

into 16 data bytes where 15 bytes are of complete length (8-bits)
and the 1l6th byte was masked in order to isolate the required
number of bits. In this case the cyclic counter is reset to zero
after each sequence period. Thus the transmission of alternate
0's and 1l's of data is provided. Each bit of data, in this

example, can take 48-64 microcycles in order to be transmitted.

The practical advantage of using asynchronous data is
simplicity of the implemented interface between the data source,
which may be a front end-processor, and the transmitter.
Asynchronous data bits are random in length, this makes the

synchronisation problem much more difficult.

5.5 Synchronisation

Despreading or demodulation of the spectrum-spreading
modulation requires good synchronisation between the coded signal
arriving at the receiver and the receiver's reference code.
Synchronisation, here, means that the received signal and the
reference code are accurately timed in both their code phase and
their rate of bit generation, and should remain so. Changes in
code phase and/or code rate are due to propagation path length
changes, Doppler frequency shift, and nonaccurate frequency
sources in both the transmitter and receiver. Good
synchronisation requires that code phase alignment of the two
codes within approximately one code bit (chip) must be achieved
and maintained. The synchronisation process is usually regarded
as consisting of two parts; coarse synchronisation (which is also
called initial synchronisation or acquisition) and fine

synchronisation (tracking). Initial acquisition may be defined

5-13

as the process of: firstly, adjusting the relative phase and rate
of the reference code and the received signal to within the
pull-in range of the tracking. Secondly, activating the tracking
phase. Tracking is the process of maintaining a synchronised
condition and initiating the acquisition process if tracking
subsequently fails. Those parts of the receiver concerned with
acquisition and with tracking can be mostly digital, excluding
those systems which use direct transmission of very high rate
code sequences (multiple Mbps) for which analogue correlation
techniques (by using surface acoustic wave (SAW) (9) and charge

coupled devices (CCD) filters (78)) are necessary.

5.5.1 Initial Acquisition Techniques

When the communication link is first established or after a
loss of contact, an acquisition process must take place. In this
process, the receiver sequence generator is brought into
synchronism with the incoming sequence and the tracking loop is
locked in. A number of methods have been implemented for
acquiring pseudonoise signals which can be used in the receivers
of spread spectrum systems, The type of acquisition method to be
chosen should make full use of the attractive correlation
properties of the m-sequence in order to reduce the delay errors
between local and received code sequences. Ward (16), and others
have described a technique, known as sequential estimation, which
depends on estimating n (the number of shift-register stages)
sequential bits of the incoming signal and loading them into the
receiver shift register in order to obtain an estimate of the

present state of the input. Through correlating the received

sequence with that generated locally for an examination period

5-14

T,y @ decision is made as whether the correct estimate has been
loaded or not. In case of correct decision, acquisition occurs
and a tracking mode is entered. In case of an erroneous
estimate, a new estimate is made and the procedure is repeated.
If a data ONE is being transmitted or if a data transition occurs
during the n-bit estimate, an incorrect estimate will be
obtained. These effects will be more detrimental when higher
data-bit rates are being used. In the second method, which is
usually referred to as the sequential detection method (79), a
precalculated bias is added to the correlated code and integrated
for a variable length of time until the threshold is exceeded,
indicating only noise is present (local code out of phase). This
method is especially appealing when a strict acquisition time
requirement is imposed. These methods require a significant
amount of hardware logic circuits and the data processing
requirements for these methods exceed the capability of a 2901
microprocessor unit. Alternatively, 'sliding' correlation
process (which is also called the serial search process (80)), in
which the phase of the reference code is slipping while
cross-correlating it against the received signal until the
cross-correlation output rises to a value which exceeds a certain

threshold and the sweep is halted, is almost always employed.

One of the most useful techniques, which makes use of the
serial search process, employs a synchronisation preamble to be

sent at the beginning of each transmission. This preamble is a

special code sequence (72), which can be short (the only

difference between them and the code sequences used after

5-15

acquisition is the length) to allow a search through all possible
code positions in a reasonable time. The disadvantages of the
preamble synchronisation method is that, its relatively short
sequence length tends to be more vulnerable to false

correlations.

The serial search method is very accurate but it is slow
because it involves correlation over a complete period of the
sequence, and the repetition of this for successive time-shifts
until the peak is found. Fortunately, correlation over a

partial-period (segment) of the sequence is adequate (81).

The receiving system, in searching for synchronisation,
operates its code sequence generator at a rate slightly faster
(or slower) than the transmitter's code generator such that the
receiver code slips past the received signal. One way of
achieving this using a microprocessor is by interfacing a
microprocessor system to a voltage-controlled oscillator (VCO)
and sequence generator in hardware. In that case a DAC is needed
in order to send the chosen value of the voltage to the VCO which
causes a frequency offset (search rate) between the local clock
rate and the clock rate of the transmitter. This method is
awkward and a compromise is needed between a small frequency

offset which causes a Ior‘lg SVBI’GQE-SEQI‘Ch til‘ﬂB, and a large

frequency offset, for which the cross-correlation peak is small
and liable to be missed (false dismissal) unless a low threshold
is set, and as will be seen shortly leads to a false acquisition

(false alarm) in the presence of noise (80). The drawbacks are

also that it depends on the machine to be used which, in some

5-16

cases, is too slow.

In this case, the whole system was implemented within the
microprocessor system which was also used to drive the clock at
both the transmitter and receiver, as will be seen in the next

chapter.

5.5.2 Correlation Process
The performance of the 2901 system in achieving the
acquisition process depends strongly on the partial

crosscorrelation function

M M-1
Cas (i,7) = ngoaim Bl (5.12)

which represents the correlation of M symbols a, 8.4
S ai+M 1 of the receiver's replica with the M symbols

s of the received sequence, such

i+1 ? Sialar ottt SiiM-lsr
that M < L. In the case M=L the quantity cas(i,r) is
independent of the initial i, and correlation analysis becomes a
relatively simple deterministic problem. A theoretical analysis
of the relation between L and M as a function of i, and
car:(i,r) is not available to our knowledge. Instead, many
search trials were made using the 2901 simulator in order to
choose a reasonable value for M. Notice that ca;d(i, 1) is
simply a comparison of the i-th binary weight bits of the
received signals s(t,t) and the replica a(t). This comparison
can be performed by computing the number of agreement bits

between a_ and s T From that point of view the 2901 based
n n+

correlator system is effective because it can be expanded to

accommodate variations in the sequence length L. The 2901 system

5-17

computes the number of agreement bits between two 8-bit binary
sequences in 3 microcycles, e.g., a 127-symbol crosscorrelation
takes a total of 48 microcycles (16 u.sec) to be computed. The
phase slipping process is achieved either by phase shifting the
receiver's code periodically by 1 chip increments each time and
carrying out the comparison with a stored sample of the received
sequence, or by matching the incoming sequence with a fixed
segment (< L) of the receiver's code until the proper point of
synchronisation is reached. In this case, the time spent at peak
correlation is minimum but the threshold, as will be seen

shortly, is higher.

Recognising the peak in the correlation function is an
inherent part of the acquisition process after which the receiver
starts its local code tracking before the received and local
codes drifts apart. Because the low rate binary data, which is
modulating the subcarrier, is unknown, the peak in the
correlation function may be maximum positive or maximum negative
depending upon the phase of the received signal as shown in
Figure (5.7). Therefore it is necessary to test whether the peak
is above a positive threshold or below a negative threshold. An
accurate but a very long computing time search method was
implemented using the 2901 simulator in order to choose the
optimal values required to be set as a threshold. Figure (5.8a)
provides a description of the method used to detect the
correlation peak in the microprogram design. The correlation
values are arranged without truncation such that the peak

magnitude lies in the range of the 8-bit two's complement integer

5-18

140.00

CROSSCORRELATION FUNCTION
DATA-0

70.00 105.00

CROSSCORRELATION

35.00

|
|
|
|
|
|
!

.00

.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00
K-SHIFT

FIGURE(S.7a) EFFECT OF DATA POLARITY ON CORRELATION PEAK (DATA-0).

CROSSCORRELATION FUNCTION
DATA-1

40.00

=5.00

CROSSCORRELATION
~50.00

-95.00

140.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00
K-SHIFT

FIGURE(S.7b) EFFECT OF DATA POLARITY ON CORRELATION PERK (DATA-1).

+127

FIGURE (5.8) CORRELATION PEAK DETECTION

(a) ALTERNATIVE VALUES FOR CORRELATION PEAK
(b) PEAKS AFTER ADDING THRESHOLD.

and the threshold is added to the correlation values. The values
will change as a result of the overflow properties of twao's
complement arithmetic as shown in Figure (5.8b)., If the peak
exceeds the threshold, in either direction, the result is
negative. This requires only one microinstruction when it coded
directly into 2901 system. Note that the lower the setting of
the threshold , Y, the more assurance that a peak will be
recognised. Note also, however, that lowering the threshold
increases the noise lying above threshold, which increases the

false alarm rate as shown in Figure (5.9).

5.6 Tracking

As a result of the acquisition process the receiver's code
and the sequence embedded in the incoming signal are exactly
matched in time. In order to maintain that synchronism, the
receiver must cause its own code bit rate to match the incoming
code bit rate (usually within one chip). In principle, a
dithering loop (82), and delay-lock loop (83), (B4) are often
used for doing this, in which case, the output of the acquisition
correlator will indicate the loss of synchronisation when the
peak falls below the threshold. However, in an implementation
such as this and because of the serial nature of the signal
processing of the microprocessor implementation, it would be

impractically slow to operate both the acquisition and tracking

processes simultaneously.

The delay-lock loop uses an actuating error signal derived
from received and local sequences to control the receiver's code

bit rate. Operation of the delay-lock loop was first discussed

5-19

by Spilker (83). A survey of the basic properties and main parts

of the delay-lock loop that are useful for the purpose of this

thesis will be given in this section.

5.6.1 Delay-Lock Loop Correlator

Figure (5.10) shows the basic block diagram of the
delay-lock loop correlator, which will be assumed to be in the
locked-on situation. The backbone of the circuit is a local
n-stage feedback shift register which generates time-displaced
versions of a binary m-sequence a(t). It is convenient to denote

sequences with a delay and advance of kT by a and a,

k k

respectively, e.g.

a = a(t-kT), a, = a(t+kT) and ag = a(t)

Each of the versions a, and a, which have amplitudes +1 is
correlated with the input signal
r{t) = s(t+u) + n(t)

where u is the delay-error. This terminology stems from the use
of the delay-lock loop in tracking and ranging systems where the
delay between a transmitted and a received sequence is a measure
of the distance between target and transmitter/receiver. The
difference between the correlator output signals is obtained by a
subtraction device which, together with the multiplier and
summation forms the crosscorrelation network. Using the
shift-and-multiply properties of m-sequences, it can easily be
shown that the contribution of these sequences to the long time
summation output of the crosscorrelation network is proportional
to

D,r{u) = R (u+T) = R (u-T) (5.13)

5-20

INPUT SEQUENCE b

2 >

FIGURE (5.10) BASIC DIAGRAM OF DELAY-LOCK LOOP CORRELATOR.

where Ra(u) is the autocorrelation function of the pseudonoise
sequence in question which has a base width of 2T, and DZT(u)
is an N-shaped error signal made up of two copies of this
autocorrelation function, with a relative shift of 2T, one being
inverted with respect to the other as shown in Figure (5.11).
Thus for |u[{ 2T, the function DZT(u) provides a discriminator
characteristic or error-signal to control a VCO to maintain the
alignment between the two sequences by minimising u. In this way
a closed loop is obtained. If properly designed the loop tends
to the locked-on state, for which Ju] < T. If, at any time, the
delay-error u exceeds one bit time (|u| > T) the loop losses lock,
and the acquisition processs has to be reinitiated. In practice,
the period of sequences used is normally long (for example,
Ward's ranging system (77) uses 15-stage shift register which
produces a sequence whose length is 32767 tracking bits). The
time elapsed before reacquisition may also be long, during which
time a substantial block of transmitted data may be lost. A
variety of methods by which the error curve can be widened to
accomodate a displacement greater than T without losing lock
have been discussed (85), (86). Although these methods have a

higher threshold, permitting a larger offset to be used, the

probability of false dismissal may be increased.

5.6.2 Implementation

Direct implementation of the delay-lock loop correlator
circuit of Figure (5.10) with SIK having equally probable data
zeros and ones means that the N-shaped error curve (Figure

(5.11)) may or may not be inverted, depending upon whether the

5-21

RSQ(UOT)

1 u

= (L-)T

(@)
=R, (u-T1)

& A (LT ——

r-'[...

(b)

L {e)

FIGURE (5.1) (a) AND (b) AUTOCORRELATION FUNCTION OF

BINARY SEQUENCE (PN)
(c) DELAY-LOCK DISCRIMINATOR CHARACTERISTIC.

data is 1 or 0. One way to overcome this which has been
described (77), (84) involves duplicating the delay-lock loop
correlator, and rectifying and combining their outputs together
with an appropriate bias such that either correlation or
anticorrelation at a multiplier produces a negative feedback
loop. In this case, by adding (modulo-2) the data obtained after
despreading to the sequences Sy and S.1 prior to the loop
correlator, this dependence of the error curve on the data
polarity is avoided, this may be recognised as follows:

Equation (5.13) can be rewritten as

s(t) = m(t+u) a(t+u) + n(t) (5.14)
and this is correlated with

mlt) a, - m(t) a_y

where m(t) represents the estimated low-rate data. As a result

of the term
m(t+u) M) = 1

the correlator outputs are unaffected by the modulation. This
method is a straightforward implementation using microprocessors;
occasional errors in data despreading due to data-transmission

errors and interference can be tolerated because of the smoothing

effect of the correlation process.

The tracking correlator was implemented using the 2901
microprocessor system by generating the local sequences, a
and a_, using PROM and replacing the multipliers by

EXCLUSIVE-OR operations.

5-22

5.7 Conclusion

In this chapter, direct sequence system configurations for
data transmission have been described. One method to data
modulate a pseudonoise code sequence is SIK. The only
restriction on the data patterns transmitted, in case of short
code lengths, is that the word length must be equal to the period
of the m-sequence. The accurate performance of the acquisition
and tracking system which has been discussed is due to the
excellent properties of the m-sequence, based on the use of a
delay-lock loop correlator. The use of a bipolar bit-slice
microprocessor system to generate the pseudonoise sequence
required as a subcarrier and to control the acquisition and
tracking modes is effective because it can be expanded to
accommodate variations in the sequence length. In addition, it
offers the advantage of being able to define the parts of the

spread spectrum receiver by software.

5-23

CHAPTER 6

Transmitter and Receiver Design

6.1 Introduction

The advances in digital electronics have come to the point
of making circuitry and systems reasonably small, reliable, and
inexpensive so as to enable practical implementations of spread
spectrum techniques for the transmission of digital information.
The suitability of microprocessor systems for the implementation
of digital correlation and the synchronisation of spread spectrum
receivers has been demonstrated in chapters 2 and 5. The extent
to which microprocessors may be used in the implementation has
been investigated in chapter 3 and 4, because of the flexibility
that should follow from defining the procedures by software.
Relatively high throughput requirements (processing of greater
than 1 kbits/sec digital information) and several special
function requirements dictated the selection of a bit-slice

microprocessor for use in this case (other than general-purpose

microprocessors).

This chapter describes how the 2901 microprocessor can be
applied to perform the signal processing for the spreading,
synchronising, and despreading of the transmitter and the
receiver in real time. In order to achieve this it is necessary
to adapt the way of executing the various operations to the
computational capabilities of the microprocessor. This has been
done by the derivation of suitable algorithms which specify the

different functions that have to be performed. Both the

transmitter and receiver designs are based on the 2901 system.

6.2 Transmitter

The complete microprocessar configuration of the transmitter
is represented in Figure (6.1). This hardware is generally
divided into five parts, namely, a 2901 microprocessor system
controlled by microprograms, external memories, programmable
divide by n counter, buffer memory and a test box. The 2901
system which was described in chapter 2 and 3, is the core of
this transmitter. The microprocessor includes eight 1/2 kbyte
bipolar PROMSs containing the transmitter software. The external
memories is composed of PROMs. Two IC's PROM store the code
sequence samples. These are addressed by the microprocessor
through the data bus and the stored values are fed out to the
same bus. The programmmable divider uses the main clock of the
microprocessor to generate the clock required to shift the data
to be transmitted serially out from the buffer memory, FIFO (see
Figure (3.10)). It provides square pulses at rates of fc/256 -
f (fc = 3MHz) as selected by the test box switches. Finally

c
a few latches, two bus transceivers and a test box complete the

system design.

The tasks performed by the transmitter fall into three broad
categories:
(1) data acquisition
(2) spreading by SIK modulation

(3) transmitting data.

It was found that a single 2901 system unit was not able to

perform the RF carrier modulation and all of the required tasks

g DATA OUT
o] A)
l 84/, ai/, Bz/f
40 CONTROL BITS
Y Z -
ai« % T 30 T T T
290 LATCH LATCH
TEST-BOX
CROPROCE SSOR
SYSTEM FIFO
N
PROGRAMMABLE,
b - PROM Lo S ER
pa
¥ 8l ¥ 8 |4 | SERIAL DATA
7 1 out *
> DATA IN 7
2 D

FIGURE (6.1) 2901 MICROPROCESSOR CONFIGURATION

FOR THE TRANSMITTER.

mentioned above simultaneously in the available time. One of the
main reasons for this was that the RF carrier modulation waveform
must be generated continuously, while simultaneously spreading
incoming data. In view of this, it was assumed that the RF
modulation would be achieved by some other means and the
remaining tasks were performed by this system without a separate
hardware multiplier. Figure (6.2) shows a side view of the

transmitter.

6.2.1 Data acquisition

The facility to interface the 2901 system with a host
computer or an external data source was available, and consisted
of a set of latches (plus circuits to actually carry out the
transfers, control flip-flops, and interrupt handling circuitry)
to enable the assembly of 16-bit data and address words under
microprogram control. The address word latches may be counters
so that the address can be incremented for each new data word.
This facility was capable of accommodating both asynchronous and
synchronous data (see section 5.4) by which the transmitted

signal spectrum is made to be dependent only on the clock rate of

the code generator.

In principle the baseband data to be communicated is
digital, coming either from a data terminal or digitised voice or
video. In order to measure the maximum rate of the error-free
data to be transmitted, the binary data was, firstly, simulated
by software before it was modulo-2 added with a code sequence

just as any other binary data stream would be. The data bit

length was chosen to be equal to a multiple integer of the length

FIGURE(6.2) TRANSMITTER HARDWARE (SIDE).

of the sequence in arder to overcome the correlation loss

problem. Therfore, it was felt, at this stage, that error control

coding was not mandatory.

6.2.2 FIFO on transmit

The input/output buffer memory, FIFO, interconnection and
operation has been described in chapter 3 which provides the
means for the microprocessor system to interact with the
communication link. The microprocessor loads the FIFO with a few
bytes of modulated data which is clocked into the FIFO from the
8-bit bus by activating "data transfer" (T6) and checking the
state of "data request" (SD) to ensure that the FIFO is not full.
The transmit signal (Cé) is then activated and latched in order
to permit the clock to strobe data out of the FIFO serially into
the link and it is only necessary the processor refills the FIFO

from time to time.

6.3 Spreading

Consideration was given to the possibility of generating the
code sequence using a purely software approach. However, the
overhead required in adopting this approach represented a
considerable proportion of the overall processing time. A
compromise was needed between a pure software generation which
results in a long processing time, and a hardware one using the
available MSI packages (73). A look-up table stored in an

external PROM (two of 825131 types) was used to generate samples

of the code sequences, the code has been fully described in

chapter 5 of this thesis. The table consists of L bytes of

6-4

samples each of which is stored as an unsigned 8-bit number, The
table may be regarded as circular; the index of the current byte
is always calculated modulo-L. The speed limitation on
implementing this approach is due to the rate at which the data
can be extracted from the FIFO in which case up to 1 MBps can be
generated. Because the transmitter functions are entirely
software controlled, it is possible to implement any sequence

length by simple software modification.

Sequence inversion keying (SIK) or binary biphase phase
shift keying (BPSK) in which the data to be transmitted is
modulo-2 added to the code sequence, was adopted as the
modulation scheme for the system. In theory, data and code
sequences need not be synchronised, one problem of this is that
it may be possible for anyone to read the data directly from a
clean copy of the received signal. Systems which have coincident
data and code sequence clocks are often said to have a data
privacy feature (71). In this case, the data bits are completely
hidden by the randomness of the code and this implies that the
data bits cannot be extracted without first obtaining a detailed
knowledge of the specific code sequence being used. In order to
achieve a privacy feature in information transmission, and to
simplify the transmitter and receiver structure, it is necessary

for the spreading factor R defined as the ratio of the data and

code symbol durations
R = Tm / Tr.:

to be integer, and for the data and code waveforms to change

phase synchronously (87).

Therefore, we can write the transmitted signal equation as
o)
s(t) = d(t)a(t) = GZD dy/RErECty (kT) (6.2)
c

where d(t) and a(t) are the data and code waveforms given,

respectively, by

dit) = i
(t) _derectTnEt kT) (6.3)
a(t) ig akrectTc(t-ch) (6.4)

where {k/R} denotes the integer part of k/R, d, and a_ are
the data and code sequences whose elements belong to the set {U,l}
and the notation rect(T)(t) is used here to denote a square
T-second pulse of unit amplitude centred at the time origin.
Hence the data clock rate is l/Rth of the spreading code clock
rate. This difference in clock rates (R is large) is necessary
to produce spread spectrum effects. In this case R was chosen
equal to L, i.e. one entire period of code sequence was

contained in each data symbol.

6.4 Transmitter software

To implement the transmitter, 218 microinstructions were
needed. The initialisation and display handling take another 85
instructions, so the total microprogram was 7Kbits. Utmost care
was taken, to ensure that the part of the microprogram that deals
with the actual transmitter (data synchronising, modulation, and
data transmission), is carried out at the highest possible speed.
As many functions as possible were performed in parallel. A

listing of the transmitter microprogram is shown in the listing

in Appendix B.

To test the transmitter operation, the software was
initially set up to generate a code sequence of length 127, The
photographs of Figure (6.3) (a), and (b) show the transmitter
output sequence in different cases of code clock rate. A charge
coupled device (CCD) was available which, with its interface
circuitry, allows the power spectrum of an analogue input
waveform to be evaluated from a 512 point transform by the Chirp
Z-transform algorithm (see chapter 2) in real time. This was
used to display the power spectrum of this sequence, the result
of which is shown in Figures (6.4) (a), and (b). Figure (6.5)
shows the power spectra of the data information before spreading.
The software was then configured to permit transmission of
spreading signal with bandwidth approximatly equals to twice the
code rate. The power spectra obtained from this signal is shown
in Figure (6.6). It has been emphasised in the illustrations
that the spectral power envelope of a direct sequence signal
follows a ((sinx)lx)2 distribution. This is the expected
result, for any good set of Fourier transform pairs (88) will
show that the frequency function corresponding to a square pulse
is (sinx)/x (which is a voltage distribution function) and code
modulation produces a series of pulses. Because the power
envelope is function of the voltage squared, the ((sinx)/x)2
power spectrum results. Also due to the balanced property of
the m-sequence, the spectral line at zero frequency of P(w) is of
reduced amplitude. It should be noted that spectrum analyser
does not display phase information, only amplitude. Observation

of any pseudonoise code sequence will show that it is made up of

(a) fc = 14KBps.

e b bt b ettt il b b b -

— PPPPE = P PP Pl PR P P pmp e

(b) ff." = 1MBps.

FIGURE(6.3) TRANSMITTER m-SEQUENCE OWUT.

(a) One sided

(b) Two sided

FIGURE(6.5) POWER SPECTRA FOR LOW DATA RATE (INFORMATON).

FIGURE(6.6) POWER SPECTRA FOR TRANSMITTED PN SIGNAL.

FIGURE(6.6) POWER SPECTRA FOR TRANSMITTED PN SIGNAL.

a series of variable-period pulses, which could be viewed as
half-period sequence waves. These square wave half-periods vary
in duration from one code clock bit to n bits for an m-sequence.
Each of these half-periods has a (sinx)/x spectrum associated
with it. As a code sequence modulates a direct sequence
transmitter, the output spectrum is actually a composite made up
of a series or group of spectra produced by the various half-wave
components of the code. Because the pulse of shortest duration
in the code sequence is equal in length to the code sequence
clock period, Tc’ it follows that the frequency spectrum for
the composite modulation containing this code sequence must have
a main lobe bandwidth such that its first nulls fall at the code
clock rate. Reinforcing this expectation is the fact that the
distribution of single ones and zeros in the code sequence is
such that they outnumber all other pulse lengths. Chapter 5 has
included a discussion of the distribution of the runs in an
m-sequence. The number of frequency sets available is a function
of the length of the code. For an n-bit sequence generator there
are n+1 frequency sets, and the spacing of individual frequency

components is as narrow as L/Rc.

6.5 Receiver

The computational requirements in the receiving
microprocessor for direct sequence modulation were considerably
greater than for the transmitter. The major problem in the
despreading was the synchronisation process for which it was
necessary to compute the crosscorrelation function of a locally

generated sequence which would enable the relative

6-8

time-displacement of the received and local sequences to be
found, and hence, would permit initial acquisition. Practically,
computing the whole crosscorrelation function would require a
long processing time, however, it was envisaged that the use of a
bit-slice microprocessor would permit the computation of the

correlation function in the required time.

After acquisition, a tracking signal is introduced to
maintain the codes in synchronism. Additional circuit may be
activated at this time to check that the received signal has
remained above threshold, which would not be the case if a noise
signal had temporarily exceeded the threshold. If the

confirmation fails, the acquisition phase would be resumed.

Figure (6.7) shows a block diagram of the receiving
microprocessor for both acquisition and tracking processes. The
2901 microprocessor includes 1/2 kbyte of PROMs containing the
receiving system software. The programmable divide by n counter,
buffer memory, and the test box are similar to that were used at
the transmitter. The external memory section consists of RAM and
PROMs. One RAM IC (type TMM2016P), having a capacity of 2kx8
bits and an access time of 100 n.sec was used to provide Zk of
continuous memory capable of operating with clock frequencies in
excess of 3 MHz. This RAM was used for data information in which
the address word latch is a counter to enable the address to be
incremented for each new access word. A look-up table stored in
the external PROMs (8 of 825131 type) were used to generate
samples of a binary m-sequence ag (reference), a delay

time-displaced version a_; (late), an advance time-displaced

8 . DATA OUT
D 2 Z D
Y 40, CONTROL BITS
— D>
< J I
ADDRESS e L g
COUNTER 7 LATCH
2901 8y Tx Sy LATCHES
MICROPRDCESSOR
SYSTEM N AV
TEST BOX Fus BUFFER | [fProcranmasLe
e I 2
s 2 g LATE | |ReFerence|| Eearwy
7
AV
1 RAM FIFO
D r SERIAL
f
% “ B DATA IN
w4 A4 A4 >

FROM

FIGURE(6.7) 2901

MICROPROCESSOR CONFIGURATION FOR THE RECEIVER.

version a (early) (see chapter 5), and an 8 bit Hamming
weight function. The Hamming weight function was implemented to
provide a fast digital correlation capability in conjunction with
the ALU exclusive-nor operation. The data bus interface is
provided by two bi-directional tri-state buffers. The two
control lines, transmit enable (TE) and receive enable (RE),
allow three possible functions: data is passed from the processor
to the external circuitry or from the RAM/PROMs to the processor,
or both sides of the buffer enter the high impedance state.
Figures (6.8) (a), (b), (c), and (d) show an interior views of

the receiver.

The tasks performed by the receiving microprocessor fall

into three main categories:

(1) initial acquisition

(2) tracking

(3) data recovery (readout).
In this discussion, it is assumed that the input /is/consists of a
pseudonoise sub-carrier which is BPSK modulated by the binary
data. The RF carrier demodulation process may be achieved by

other means.

6.5.1 FIFO on receive

The input data sequence is serially clocked into the FIFO
input register using the clock output which is generated by the
programmable divider having a frequency ratio equals, fcl256 -
f. which is exactly equal to that ratio to be used at the

transmitter. When the input register is full then inbuilt logic

automatically requests that the word be dropped down the stack

6-10

Wr‘-._..._..___ e P s o e — NRpp— P,

FIGURE(6.8a) RECEIVER HARDWARE (SIDE).

i

LCIXLE

- gk X

EYXYIIXI N

FIGURE(6.8b) RECEIVER HARDWARE (FRONT).

FIGURE(6.8d) PROM/RAM BOARD.

towards the output register. "data request" (tied to input
register full on the most significant FIFO (see Figure (3.10))
will go low briefly as this request is made and then honoured.
If the line stays low then the FIFO is full and an error
condition has been reached. Provided that the processor removes
words from the FIFO faster than they are received then no
problems should occur. The FIFO places a signal on "data accept"
which loads the contents of the output register onto the B8-bit
data bus. By clocking TOP (transfer out parallel) then the FIFO
will be emptied onto the bus. "data available" (tied to output

register empty 'S8') will indicate the state of the FIFO.

The advantages of using a FIFO buffer in this case was to
ensure a good synchronisation between the incoming sequence clock
rate and microprocessor system clock. In addition to this, one
of the most powerful tools in enhancing the data processing
capability, the pipline processing technique, was inherent when
utilising the FIFO. While the arithmetic operation on one set of

data was performed, the read-in of the next set of data were

executed concurrently.

6.5.2 Search/lock strategy

A functional diagram of the receiving system during
synchronisation is shown in Figure (6.9). The diagram is divided
into the three functions that were necessary for acquisition and
tracking, i.e., a search/lock strategy to control all
opertations, a correlator detector to recognise when
synchronisation has occurred, and an error-signal generation for

a delay lock loop (DLL) correlator. The performance of

6-11

RECEIVED

SIGNAL

CROSS-

CORRELATION

—PPEAK DETECTOR

4
d, | DIGITAL CORRELATION DETECTOR

LOOP

——») [oe)> 1

T

COMPARE
THRESHOLD

NO YES

SEARCH
DECISION

YNCH
REFERENCES M-SEQUENCE
CODE GEN.
LOCK
% < DELAY - LOCK
LOOP
EARLY ATE
DELAY LOCK

Y

DESPREADER DATA

g}

FIGURE (6.9) FUNCTIONAL DIAGRAM OF THE SYSTEM DURING
SYNCHRONISATION.

correlator detector and the behaviour of the DLL have been
discussed in chapter 5. In this section the intent is to realise
the microprocessor implementation of synchronisation process

including the interaction between the search and track modes.

Since rapid acquisition was desirable, the computation time
of the crosscorrelation function should be as small as is
practical. As mentioned previously, crosscorrelation over a
subsequence will result in a fast search through the phase
uncertainty region, but a low probability of detecting (PD) the
correct synchronisation when it occurs. Conversely, an accurate
computation over the whole sequence length will result in a slow
search but a high probability of detecting the correct phase.
The scan rate in this case was chosen slow enough (equal to Tc)
that the probability of detection PD is equal to 1.

The received sequence is denoted by
r(t) = s(t+1) + n(t) (6.5)

where n(t) represents additive channel noise, s(t) is simply a
pseudonoise subcarrier which is SIK modulated by binary data as
it was described by equation (6.2) (it will be assumed that s(t)
was used to modulate a radio frequency (RF) carrier usually by
using multiphase phase shift keying (BPSK or QPSK), and then
removed from the RF carrier prior to the crosscorrelation, this
can be achieved by using a harmonic sampling technique (89)
implemented with the aid of a pre-processor). The quantity 'T'
represents the error (delay) in synchronising the received
sequence with the replica. The received sequence initially may

arrive having any phase with respect to the receiver replica.

6-12

The receiving system computes correlation according to equation

(5.12), assuming the effect of s(t), i.e.

c(T) = '_ila(nT) s(nT_+7) (6.6)
e c c
Single bit correlation, such as this, involves the multiplication
of two functions followed by summation of the resulting products.
The exclusive-nor multiplication logic which is the type of logic
required for comparison, since it produces a 'l' whenever two
corresponding bits agree and a '0' when they don't, was used.
That is, c(7) is a binary correlation that was computed with very
high speed (3(L+1)/8 microcycle) by an exclusive-nor operation
with the aid of the Hamming weight function which was generated
by using PROM. This operation is typically very difficult in FIS
programmable processors. The receiving microprocessor performs a
127-bits correlation in 48 microcycle (16 u.sec). By this
method, the receiver can identify a correlation during a period
of time less than Tm’ the reciprocal of the data rate. For a
time uncertainty of 7 =Tu, there are 'Tu/Tc possible
synchronisation points, each one of which must be tested for a
is

time Ts' The maximum synchronisation time, Tsync’

therefore proportional to

Ve SOOI T, (6.7)

The resultant of the correlation was then compared with a preset
threshold Y (Y > (L+1)/2) before updating the phase position of
the local sequence, synchronisation presence is then indicated

when the correlation peak outputs exceed the threshold (in some

6-13

cases two consecutive peaks occurring would be required to
indicate synchronisation in order to minimise the probability of

false alarm P, (90)).

An error signal generation mode was then introduced in order
to maintain synchronisation (tracking) to within the range :Tc.
It was felt that fine tracking to within a fraction of iTc
range would require the VCO function to be implemented in
hardware outside the microprocessor and it was not possible to
control the VCO without incurring a serious penalty in increased
execution time. Instead, the three level error signal was
obtained using a software technique by subtraction of two binary
correlators which is given by

L-1

e = ngo(snaml = snan_l) (6.8)

where a was a priori modulated by the estimated data as was

discussed in chapter 5, i.e.,

8., =84 ™M (mod 2) (6.9)

For example, in the case of a 127-bit code sequence, every
summation of the tracking correlator output 'e' takes 144
microcycles (as shown in the listing in Appendix B). The
resultant 'e' was first compared with a predefined deviation
range, +d 0 -d, representing the error curve. For that specific
example, these values are +4 0 -4 if the levels of the binary
sequence are 0 or 1, that may be estimated by running the
transmitter-receiver microprograms on the 2901 simulator. If e

lies within this range, the current reference code sequence was

6-14

then used to despread the incoming signal. If 'e' exceeds this
deviation and remains within the range, +2d 0 -2d, the sign of
'e'’ was used to indicate the direction of which the reference
code will slide, accelerating if 'e' is plus and retarding if 'e'
is minus. Accordingly, the reference code address counter was

modified in the form;
new address = old address + (L+1)/8 (mod L)

Finally, if 'e' was heavily out of range or the track
modification failed in two consecutive trials which means that a
synchronisation loss has arise, then the search mode may be

reinitiated.

As described, this software technique cannot establish
correct phasing between the incoming bit stream and the receiver.
This is not a serious limitation for signals with short
interpulse intervals such as this for which the receiver can
clock in each data bit anytime during its valid state, i.e., at

any phase within a fairly broad range.

The above strategy, which was the basis for the receiver
microprogram, may be summarised as shown in state/transition form
in Figure (6.10). Beginning with the first test of a phase
position (cell), a miss will result in immediate rejection of the
cell and a phase step to the next cell. A hit will cause the
microprogram to enter the lock mode. A miss in state 2 of the

track mode will cause a return to the search mode.

6-15

REJECT CELL

ADJUST CODE
PHASE

MISS

&

ENTER SEARCH
MODE

S

HIT

HIT

MISS

SEARCH

HIT

ENTER LOCK
MODE

STATE 1
eef+d,0, -d}

MISS

STATE 2
ee{+2d,0:2d)

FIGURE(6.10) A SEARCH/LOCK STRATEGY.

6.5.3 Receiver Software

Table (6.1) presents a processor loading summary for the
receiver implementation. This implementation was coded using the
2901 microcode (see Appendix B). The budget presented in Table
(6.1) represents the worst-case loading of a 200 Kbps PN signal.
These figures demonstrate the throughput capability and relative
efficiency of the 2901 microprocessor system. The worst case
processing load is approximately 70% of capacity, and 50% of

program and data memory.

222 instruction per data bit at 200 Kbps (BPSK)

Acquisition mode Tracking mode
initialisation 38 DLL correlator 60
correlation 64 despreading 16
peak detection 8
data readout 36

146 76

Acquisition mode = 146/222 = 70%
-Tracking mode = 76/222 = 35%

TABLE (6.1) RECEIVER LOADING SUMMARY.

6.6 Clock Frequency Effects

One of the prime sources of uncertainty for synchronisation
in the system was the clock rate error due to drift of the clock
frequency generator outputs which were used to control the rate
of code signal to be transmitted and the receiving sequence. The
preceding discussion assumed that the transmitter's and the
receiver's clocks were synchronised during the search mode, i.e.,

that each pulse of the receiver's clock would load in the

6-16

sequence bit immediatly following the one loaded on the previous
clock cycle. If the transmitter clock runs faster than the
receiver clock, the receiver will periodically miss a sequence
bit of the incoming signal. In contrast, a fast receiver clock
occasionally loads a single bit twice in succession. These
"missed-bit" and "doubled-bit" errors have a serious effect on
the initial acquisition process. Any clock rate error is
cumulative in code phase error; that is, a one-bit cumulative
shift during the search time. These can be avoided only if the
two clocks are synchronised. A typical clock and
clock-adjustment hardware system comprises (91), (92) a VCO, a
counter, a digital-to-analogue converter, and a simple voltage
matching circuit. In that case, the number of bits between frame
synchronisation pulses is counted and converted to a voltage,
which is used to adjust the clock rate. If the number of
receiver frame bits is smaller than the standard transmitted
frame length, the clock is accelerated proportionately. Bit
synchronisation systems such as this could not be wused in this
case, because they are applicable only to signals whose frame
size is either fixed or varies according to a pattern known to
the receiver, and must include periodic frame synchronisation
patterns. One method that could overcome this clock drift
accumulation problem during the search mode was implemented using
a sampling technique. The system performance can be improved by
setting the receiver clock rate equal to ch, where n=2m+l is
an odd integer. If the number of sampled 0's exceeds the number
of sampled 1's in a block of n sampled digits, then the receiver

announces a 0, and otherwise it announces a 1. Thus an error

6-17

occurs when m+l or more samples out of n=2m+l are incorrect.
This method coincides with the Nyquist criterion (24) for which
the received data must be sampled at twice (at least) the signal
bandwidth (ZRC). Although in principle, the choice of n to be
odd integer (rather than n=8) could be implemented with the
microprocessor, the execution time would then have to be so long
as to make this method useless. During tracking, the receiver
clock requires only minor periodic adjustments to maintain
synchronism with the transmitter clock which can be achieved

using the track correlator.

6.7 Data recovery

The receiver signal was the data-modulated sequence to which
noise had been added, as will be discussd in the next chapter.
Since the delay-lock loop closely tracks the incoming sequence,
the receiver's reference code and the received sequence were very
nearly synchronous and either correlate or anticorrelate
depending on whether a data 0 or 1 was being received. Two
different ways exist for the form of the data on the sequence,
these are unipolar and bipolar. A unipolar form has the values
0, 1 whereas a bipolar form has the values -1, +1. Practically,
a bipolar sequence has no dc component so that all its power is
modulated by data (77). In this case the input signal was
limited to provide 0 and +4 volt levels (TTL levels). Since the
reference sequence was also at these levels, a simple
exclusive-or operation was used to recover the data information
from the received sequence. If the received sequence and the

reference were anticorrelated, the data output is a '1' level.

6-18

If the inputs are correlated the output is '0' level. This
output data was displayed and analysed using the logic analyser
as well as the test box (experimental results will be discussed
in the next chapter) and shows complete agreement between the

recoverd data with that of the transmitter.

6.8 Conclusion

The real-time realisation of the baseband signal processing
requirements at the transmitter and the receiver of PN spread
spectrum communication system using the 2901 bit-slice
microprocessor sytem, together with an external digital circuitry
has been investigated. The use of a memory buffer 'FIFO' in data
manipulation has shown to be effective. The flexibility and high
throughput in computing the correlation functions, and defining
the error signal which is required to control the tracking mode
by software have been described and experimental figures have
been shown using a 127-bit sequence length. The effects on
synchronisation uncertainty due to clock drifts has been
described and are shown to be minimised by using sampling

techniques. In addition, a data readout method was provided.

6-19

CHAPTER 7

System Performance & Experimental Results

7.1 Introduction

Direct sequence (PN) spread spectrum system performance in
the presence of noise and interference has been analysed (93),
(94), (95) and formulas have been developed for different forms
of interfering signals (such as Additive White Gaussian Noise
(AWGN), impulsive noise, and intersymbol interference). These
formulas show the fact that the effect of the interfering signal
is reduced by increasing the spreading ratio and hence by process
gain (the ratio of clock rate of the PN code to the information
data rate). That is, by increasing the clock rate of the PN
code, the receiver will be able to demodulate the incoming signal
in higher levels of interference. Various limitations exist with
respect to increasing the code rate, and hence expanding the
bandwidth ratio, arbitrarily so that process gain may be
increased indefinitely. At present, integrated circuits are
available which allow limited code generation at rates up to 300
Mbps. As code rates become higher, operating errors will become
inversely lower, but on the other hand, high-speed logic circuits
are sensitive to noise and are more liable to error. Also,
high-speed digital circuits consume large amounts of current and
their power dissipation is high. These reasons, in addition to
the problems of spectrum occupancy, equipment implementation, and
propagation constraints, tend to limit the code rates used for

signal spreading. Data rate reduction to improve process gain is

limited by the tendency to speed up the information transfer and
by the stability of the transmission link. However, there is a
difference in high-speed codes used for spectrum spreading and in
high-speed data. The difference in the two, results from the
errors in the system; that is, an error (or errors) up to some
correctable limit may be tolerated in a data-modulated system,
whereas an error in a code sequence would completely disable the

code-modulated system until resynchronisation occurs.

Any significant degree of crosscorrelation between the
receiver's local reference and an interfering signal can detract
from performance. An important problem in the design of PN
systems lies in using codes that are too short for the rejected
interference levels. The shorter codes when multiplied with
interference tend to produce correlations that are not at all
noiselike. Therefore a synchronisation detector in such a system
is likely to give poor performance when it has been assumed that
correlator output products due to interference are
characteristically Gaussian. A good rule of thumb for selecting
a minimum code length in a PN system is to choose the sequence
used (7): code bit rate/code length >f . ~where f_. is the
lowest frequency of interest in the information being modulated.
That is, the code repetition rate should not fall in the
information passband. Otherwise, code/interference crossproducts
may fall into the demodulated signal band, so reducing receiver
output SNR. Such crossproducts can also greatly increase the

incidence of false synchronisation recognition.

This chapter discusses the performance of the receiving
system in the presence of noise. It may be desirable to
incorporate some filtering at the input of the receiver to
minimise the effects of high level interference, however this may
cause bandlimiting influences. It is shown that local code
synchronisation errors become the dominant factor in the error

rate when the system bandwidth increases.

7.2 System Performance

It has been mentioned that a major system performance
measurement associated with the design of a PN spread spectrum
system is the processing gain (Gp) which is the difference
between output and input signal-to-noise ratio (SNR) in the
receiver processor. This can be written, in the presence of

AWGN, as (7)
(7.1)

where Bss is the bandwidth in hertz of the transmitted spread
spectrum signal and Bd is the minimum bandwidth that would be
required to send the information if we did not need to imbed it
in the larger bandwidth for protection. This can be represented
as the ratio of chip rate to the data rate, assuming that the
code chip rate is much greater than that of the data. The
process gain expression of equation (7.1) shows the ratio of SNR
improvement, which is directly related to the bit error
probability in this case, at the output of the despreading
correlator for a specified input SNR to the correlator. This
does not imply that in presence of AWGN the SNR at the output of

the spread spectrum system, prior to data demodulation, is

greater by a factor Gp compared with a narrowband scheme. It
can be observed that for a spread spectrum system since the
front-end bandwidth is much higher than the data bandwidth, the
noise power at the input of the correlator (despreading)
processor, is much larger than the output. In other words, for a
fixed signal power, the SNR before despreading is less than the
output SNR by the process gain GD. Thus there is no ambiguity
in the meaning and existence of process gain in a spread spectrum
system. However, in the presence of narrowband interference an
improvement in signal to noise ratio at the output of a spread
spectrum system will result. This is because the output signal
to noise ratio is Gp times larger than for the narrowband
scheme. Since the input noise power in this case is power
limited, the spread spectrum scheme, in despreading the signal,
spreads the noise power over a bandwidth comparable to the
front-end. In general, it may not be possible to construct such

an implementation.

The ability of the receiving microprocessor to efficiently
despread the spread spectrum signal, as measured by acquisition
time and bit error rate, is directly related to the performance
of the algorithms under actual operational conditions. The
quantisation of signals (which will not be discussed here)
required by the finite register length and processor
computations, tend to degrade the performance of the algorithms.
As a first step in evaluating the performance, a microprogram was
developed on the 2901 simulator. The simulator helped to

determine the implementation of processor functions, as well as

7-4

to expose certain weak areas in the algorithms which could
significantly degrade performance. For example, when the
acquisition algorithm was simulated, it become apparent that a
threshold could not be found which would give acceptable
performance. If the threshold was low, the algorithm tended to
detect too early. As the threshold was raised, the peak point in
the correlation where synchronisation is declared had an
increasing effect on performance. The results of the simulation
led to refinements of the algorithms and aided the development of

the receiver microprogram.

The performance of the receiving system is measured in terms
of :
(1) the speed of synchronisation; and
(2) the bit error rate (BER) or the probability of error in the

data at the output of the demodulator.

Missing synchronisation can be attributed to two major
causes; the first is the probability of not detecting the
correlation peak due to the channel noise. The second, is the

large error in symbol timing due to clock drifts.

7.2.1 Acquisition Time Measurements

The local clock at the receiver samples the incoming
sequence at a reqular intervals and loads a one or a zero, into
the FIFO depending on whether the level of the signal is greater
than or equal to zero at that instant. Note that the sampling
clock and microprocessor instruction cycle were coherently
related, Ii.e. f = fU/r. In this discussion we will assume

that Ts’ the sampling period is regular and equals Tc (code

7-5

chip duration), i.e.

Tc = rTO (7.2)

where T0 is the microinstruction cycle (330 n.sec.), and r is a
dividing ratio (1< r <255). For the present, the local clock f.
will be assumed to have the same frequency as the incoming
sequence clock (the effects of clock instability, and the
additive noise will be considered later). In this system, a
single correlator based on the 2901 microprocessor system was
used to achieve acquisition using the sliding correlation
technique (see chapter 5). Initially the output phase k of the
local PN generator is set to k=0 and a partial correlation was
performed by examining a period of A chips. The procedure steps
through all possible states of the local PN sequence until the
state is found which correlates with the input. The maximum
synchronisation time is given by equation (6.7) and is repeated

here for convenience;

Tone = (Ty /TOT, (7.3)

where T3 is the search time at each code chip. Equation (7.3)
means that the product of the number of cells and the expected
search time per cell determines the maximum expected search time
required to achieve synchronisation. It should be noted that the
above equation ignores the effects of frequency uncertainty due

to Doppler shift (5). The search time Ts can be expressed as:
T ="TuT (7.4)

where T_ is denoted by the examination time which is a function

7-6

of the partial correlation period A (the number of chips examined
during each search). Depending upon the statistics of the time

uncertainty, the average uncertainty time Tu may be less than

A xTC (a<<L);

Tsync Tt e'0 (7.5)

therefore the average acquisition time (A = L/2), which is
defined as the expected value of the time which elapsed between
the initiation of the acquisition and its completion, can be

estimated as

1

= 2™ T.T (7.6)

0 0

Tocq = L/T,T

which is identical to that obtained by Holmes and Chen (96). On

the other hand, the time required to load one data bit was
T = L.T (707)
e

where Tm is the data bit duration. The ratio of the average

acquisition time to the time required to receive one data bit,

therefore, can be written as;

& 7.8
Tacq}Tm - Te/2r (7.8)

Equation (7.8) is the key to the receiver performance and its
limitation. Note that equation (7.5) has ignored the fact that
the noise will occasionally cause a false in-lock indication
(false alarm), and also occasionally will cause a true lock to go

unnoticed (false dismissal). These parameters, the probability

of false alarm P, and the probability of false dismissal Peo

that depend on the SNR at the receiver input and on the

acquisition threshold level, were very difficult to measure in
this case. These effects can be minimised by choosing the

acquisition threshold level to be high enough (= L/2).

It would appear from equation (7.5) that decreasing Te’
which means a short partial correlation process, would continue
to decrease the acquisition time. However, a factor which
becomes important when the correlation period 'A' is made short,
is a form of self-noise at the correlator output. When the
summation period is long, the result of cross-correlating the
signal and the reference sequence is approximately zero when they
are out of phase. However, as the summation period is made
shorter, occasionally the period which was chosen, although the
phase was incorrect, will correlate rather well with the incoming
signal over a short time, this will cause the self-noise false
alarm probability to increase. Note that there is no self-noise
false dismissal because an ideal choice of 'A' produces no

self-noise at the correlator output.

It was mentioned in section (6.6), that the effect of the
clock frequency difference, due to instability of the transmitter
and/or the receiver clock, is that occasionally the input
sampling process misses an input bit or samples the same bit
twice. The allowable difference frequency fd before acquisition

is
fy < fc/L (7.9)

For larger difference frequencies, it is not possible to achieve

acquisition no matter what the relative phases of the sequences

are during the sampling process. Since the initial phases of the
sequences are uniformally distributed, the probability of
achieving acquisition varies linearly with fd/(fch) so that
the average acquisition time when this effect is included

becomes:

n-1
Tacq =2 .TeTU / (]-Lfd/fc) (7.10)

A group of measurements was performed using different clock
frequencies with 127-bit biphase modulated sequence. Acquisition
times were measured using a test box and a Hewlett-Packard Model
1615A logic analyser. The examination period can be adjusted by
suitable choice of A. A reset circuit contained a manually
operated switch which starts the receiver microprogram from any
address location. The logic analyser was used to measure the
relative time from the moment of reseting the switch (INITL)
until the end of the acquisition phase. This time included that
required for loading the FIFO. In order to measure acquisition
times without degradation due to clock instability, the receiver
clock bus also was taken from the transmitter clock. This
effectively bypassed the tracking loop. For particular settings
of the sequence length (127-bit) and the correlation period A\ =
L, the threshold setting which gave optimum probability of
detection was found (63 (decimal)), and that threshold setting
was generally used for all runs. Predicted acquisition time
using equation (7.5) agrees closely with the results where the
transmitter clock was used also for the receiver. When a
delay-lock tracking loop was used so that the clocks were

independent, acquisition times were expected to be about 70

percent longer.
7.2.2 Bit Error Rate Measurements

In a small area experiment such as this which is a single
cell binary communication system, co-channel and adjacent channel
interference can be ignored. Interference due to both other
spread spectrum users and conventional users is not possible in
this case. Also, channel distortion due to path attenuation,
fading, multipath distortion, and Doppler shifts were neglected.
In built-up areas man-made impulsive interference from machinary,
fluorescent lights, power switching appliances, is common. It is
not readily apparent how immune or not PN spread spectrum binary
communication system may be to such noise. The shorter duration
of those pulses suggests that, although they are wideband, the
energy is limited and a correlation type despreading process may

render it insignificant.

The bit error-rate (BER) or the probability of error (PE)
performance of the system depends primarly on the strength and
nature of the noise (errors) which corrupts the received signal
and on the effect of the clock frequency difference between the

incoming sequence and the receiver (see chapter 6).

Experimently the BER is measured and defined by equation

(7.11)
BER = Ne/Nt = NJ/Rt (7.11)

where Ne is the number of bit error in time interval ty an

is the data bit rate, and tm is a measuring time interval,

7-10

1.e., error counting time. For a random, stationary error
generation process and sufficiently long measurements interval

tm’ the measured BER gives an estimate of the true probability

of error PE.

Evaluation of BER of non-operational (out of service)
channels is a well-known measurement technique. A preliminary
experiment was performed where the bit error rate was measured
with a 127-bit code sequence which is transmitted through a wire
communication link. The receiving microprocessor computes BER by
comparing the recovered bits with a stored replica of the
transmitted data bits. Error rates were counted for the case
where the receiver clock line was open and using the transmitter
clock for both the transmitter and receiver. The main problem
associated with simple out of service BER measurements is that it
is not feasible to evaluate the performance of operating in a
service system carrying the unknown digital data stream. The
measurement duration and the error rate count for a short time
tm might also cause serious difficulties. For example, to

9

evaluate a F’Ezlﬂ' for a meaningful statistical estimate, at

least 10 bit errors have to be counted, the measurement had to

5

last for t = 10° sec (nearly 30 hrs), which was an

m
impractical time in the case of dynamic operation. Many
techniques have been reported in the literatures to evaluate the
BER of in service or on-line monitering channels such as;

(1) test sequence interleaving

(2) parity check coding

(3) code violation detection

7-11

(4) pseudo-error detection

Those techniques require a feasible data readout equipment which

exceeds the capability of the receiving microprocessor.

As it was mentioned earlier in chapter 6, data readout can
be achieved by using a post-processor which is also may be used
for counting the error rate. In this case, the test box and the
logic analyser were used for data readout and error rate
counting. The total numbers of errors accumulated at the end of
the measurement period tm was displayed on front panel LED's

attached with the test box.

7.3 Noise Channel Simulation

The channel is the medium used to transmit the signal from
the transmitting to the receiving point. It may be a wire link
or a band of radio frequencies. During transmission, or at the
receiving point, the signal may be perturbed by noise or
distortion. In principle, distortion can be corrected by applying
the inverse operation, while a perturbation due to noise cannot
always be removed, since the change of the signal is not the same
during transmission (1), In binary communication sytems, the
channel accepts 0's and 1l's at its input and usually reproduces
them at its output. Occasionally, however, because of noise and
other channel impairments, the output digits do not agree with

the input digits and errors have occured.

In order to permit accurate tests on the system, a digital
pseudonoise simulator that generates pseudonoise with good
accuracy and impulsive noise with random pulses was required.

The use of digital techniques to generate the noise makes it easy

7-12

to repeat the measurements. Since the generator can be
controlled using software or hardware, it can be used in
operational measurement and since a digital output of the noise
may also be available the generator can act as a main or a
peripheral unit that simulates the channel. For these reasons,
the microprocessor was found to be the lower cost choice for

achieving these requirements.

An experiment is described in this section, in which this

technique was used to investigate the performance.

7.3.1 The microprocessor

The choice of a suitable microprocessor device was
considered very carfully. A device was required having a
comprehensive instruction set, fast execution speed, and for
which support facilities were available. The Motorola MC6B03
(97) satisfied these requirements and was chosen in view of the
following merits:

(1) The MC68B03 is object code compatible with the M6800 (98)
instruction set and includes improved execution times of key
instructions (80 basic instructions and 7 addressing modes). In
addition, new instructions have been added; these include 16-bit
operations and a hardware multiply.

(2) M6B00 cross-assembler and several flexible development
systems (a triple disc drive and interface board to facilitate
high speed file access, and an EPROM programming card allowing
machine code programs to be transfered from RAM to 2 Kbyte EPROMs
under software control) were available on the department's M6800

computer which were used for developing the MC6803 software.

7-13

(3) Software packages, components, and good documentation were
readily available for the Mé&800.

(4) Execution time is fast (normal clock frequency = 1MHz;
average instruction time is approximatly = 4 cycle).
The MCé6803 is an 8-bit microcomputer having an 8-bit data bus and
a 16-bit address bus. It has a 128 byte of RAM and seven
internal registers: the A accumulator (8-bit), the B accumulator
(8-bits), the D accumulator (16-bits), a program counter
(16-bits), a stack pointer (l16-bits) and a condition code
(status) register (8-bits). The device provides an 8-bit port
and a 5-bit port for interfacing to peripheral devices. It
contains an on-chip 16-bits programmable timer which may be used
to perform measurements on an input waveform while independently
generating an output waveform. The MC6803 contains an
asynchronous serial communications interface (SCI). The device
requires only the addition of a ROM and an external crystal for

microcomputer unit (MCU) normal operation.

7.3.2 Hardware Description

The constituent components of the 6803 microprocessor card
are shown in the circuit diagram of figure (7.1). The 74LS373
transparent octal D-type latch was used in conjunction with
Address Strobe (AS), to latch the least significant address byte.
Address strobe signals the time to latch the address so the lines
can output data during the 'E' pulse. This signal was also used
to disable the address from the multiplexed bus allowing a
deselect time before the data is enabled to the bus. The MCé6803

software was contained in a 2716-type EPROM, occupying memory

7-14

05——1 | I

|
16 26 1Y STBY Ve AS EO0 @ AD e V@O
INPUT _Lla L PH DI /A - @ A ~’wm
QUTPUT v Piz 2 > a A2 Q2
CL(I:K 1A2 S w2 —LDJ———(P &A: Di E Qi A3 Q3
GND &~ DS Qs A QL
BoAL = NS g
» AT _lm p 08 AT 5y @
6803 :s A

3K3 iRQI N: ql'o
PGM
GND
e Lol

XTAL2
—q XTAL}

+5
:l T25uf D@ .:"Es—lﬁ % d
im

CLOCK

|
/

4MHz

FIGURE(7.1) THE 6803

MICROPROCESSOR CARD.

I

between FBOO-FFFF. Memory decoding and control was performed by
3-gates. The R/W line is ANDed with the E signal to provide an
output enable (OE) which was used by the EPROM. The input/output
port (P10-P17) was buffered by an octal tri-state buffer, type
741.5244. The reset line was not buffered. The 6803 would come
out of reset when RESET is at a level above about 4 volts. The
system clock was derived from a 4 MHz crystal, giving a 1 u.sec

instruction cycle time. The 'E' signal was therefore 1 MHz.

7.3.3 Implementation

The MC6803 microprocessor software was required to (a) read
the serial output data from the transmitting microprocessor, (b)
generate the noise or interference signal and mix it with the
incoming signal, and (c) send the perturbed signal to the
receiver. After system initialisation, the transmitted signal
which was represented by equation (6.2) (assuming a normalised

unit power) was read using one bit of the 8-bit I/O port. Two

other bits were used for clock input and perturbed data output.

Two main types of noise were implemented; pseudonoise binary
sequence and impulsive noise. The use of a pseudonoise binary
sequence, which was discussed in chapter 5, as a noise source
results in a simple hardware realisation of the additive noise
with parameters that can be modified using software. Since we
were using a one-bit word length as an I/0, this saves the use of

A/D and D/A converters.

Impulsive noise, on the other hand, has been used frequently

for testing the performance of the communication systems (99).

This can be reasonably modelled as a time series of impulses at

7-15

the receiver input;

N
n(t) = .Zl b,8(t-t.) (7.12)

where the strengths (amplitude spectral densities) bi’ N, and
time of occurence 1:i of these impulses are random variables.
In this case, the occupation time of the impulse noise, when it
occurs, was assumed to be 1 percent. This implied that with the
noise bit of the same duration as the signal bit (in practice
this sort of noise, when it occurs, may last to up to few msec.
so that errors in data transmission appear in bursts separated by
ralatively long intervals), the average number of noise pulses to
the number of signal bits is 0.01. However, this ratio was
considered over a range 0.001 to 0.1, i.e. a factor of ten
either way. For the sake of simplicity, and the speed
requirements, two assumptions were considered in the software
design. First, the noise pulse duration was considered to be an
integer number of the code chip (2 1). Second, the transmitter
clock was used by the 6803 in order to read the data samples
under software control. By this method, the maximum data rate

was dependent mainly upon the speed of the 6803.

7.4 Experimental Results

The equipment designed for experimental verification of the
preceding sections is shown in block diagram form in Figure
(7.2). The designs were made on the basis of simplicity or
convenience and of the maximum effeciency of using the 2901
system in developing the digital signal processing requirements,

as was discussed in the preceding section and in the previous

7-16

TEST BOX

AN
2901 MC 6803
TRNSMITTER CHANNEL ERROR
SIMULATOR

TEST BOX

bV

—— ——— ———————— i ————————————— —

- — ——— —— ——— ———— — ——— —— — —— ———— — -

2901
RECEIVER

1615A
LOGIC ANALYSER

FIGURE(7.2) ERROR MEASUREMENTS EQUIPMENT,

chapters. The transmitter and receiver microprograms were tested
under real-time conditions using a test box and the
Hewlett-Packard model 1615A logic analyser. The trace
specification of the 1615A logic analyser was set up to present a
two-dimensional view of the microinstruction address vs. the
2901 data output. This display allowed verification of the

algorithms to be made at a glance.

Throughout all the measurements which were performed, the
127-bit (n=7) sequences was used, this length being chosen to
provide a useful processing gain whilst retaining a respectable
data rate. It should be noted that the system is capable of
implementing longer sequences by slight modification of the
software. It was assumed that, for timing computation, the
receiver presupposes random arrival time of the binary PN signal.
Acquisition of reference code and received signal is confirmed in

a time equivalent to one data bit.

(a) Signal without errors

Under ideal operation conditions (without data perturbation)
the worst case (=127) average synchronisation time was estimated
to be 1.032 msec., this employs a sequence clock during
acquisition of more than 100 Kchips/sec result in corresponding
data rate of approximately 1K baud, i.e. a processing gain of 20
dB. It can be expected that system performance will be identical
to that predicted in the 2901 system simulation. The minimum
value that A can have was around L/3, below which the probability
of correct detection was very low. For A equal to L/2 it can be

expected that a performance improvement ratio of about 2 to 1

7-17

will result. After acquisition, and for the case where the
transmitter and receiver clocks were derived from the same
generator, the receiver was capable of despreading a PN signal of
data rate 3.9K baud corresponding to a code rate of 500
Kchips/sec which is the maximum transmitting clock rate. For the
case where the delay-lock tracking loop was operating, this rate
reduces to 200 Kchips/sec result in corresponding data rate of

1.5K baud.

(b) Signal with errors

Data synchronisation was described above with the assumption
that there would be no errors in the transmitted signal as
received. Now the transmitter was supplying the receiver with a
binary PN signal to which errors (noise) had been added by using
the MC68B03 noise simulator. The performance of the receiver when
the signal was subjected to impulsive errors can be represented
in the graph shown in Figure (7.3). The graph shows that if the
error rate were as poor as 1x10'3 (one error every 1000 chips),
the probability of achieving synchronisation was above 0.9. This
probability did not drop to 0.5 until the error rate rises to 0.1
(one error every 10 chips). Synchronisation had failed
completely when the error rate reached 0.3. Note that the peak
detection threshold setting was at 63 (decimal), which
corresponds to a very low false alarm probability, and the
spreading ratio was 127. This type of noise can either be
designed as a single pulse every few code chips or a group of
error pulses in succession forming a burst of errors every data

interval. Note also, that the pulses were considered to have

7-18

CHIP ERROR PROBABILITY
.001 .01 J

e

ALNIBVE0dd NOILVSINOMHONAS 3002

FIGURE(7.3) CODE SYNCHRONISATION VS. BIT(CHIP) ERROR PROBABILITY.

.01

constant amplitude (TTL level) and in all cases have the same
level as that of the transmitted signal. Therefore, the data
error probability was mainly due to the duration of occurance of
the noise pulses. However, it was noticed that errors in the
data bit and synchronisation loss were related (depend upon the
tracking threshold level), if we assume that an error in one code
chip or more does not mean an error in the data bit. Several
cases of the interfering PN code were performed experimently
using the 2901 simulator, e.g. with different code lengths, and
with maximal and nonmaximal codes. It was noticed that the worst
case (synchronisation fail) can occur provided that the actual
code and the interference are correlated, i.e., they are of
exactly synchronised clocks. As a result of the relativly long
time overhead which was spent for the generation of the
interfering code using the MC6803, the data rate had to be
reduced. This was a serious limitation (the nonequal speed of the
2901 and the MC6B03) to examining the receiver performance at

normal data rates subject to PN code interference.

7.5 Conclusion

This chapter has discussed the receiver performance, which
is measured in terms of the synchronisation time and the BER,
under real-time tests using a wire communication link. The
important link parameters include the code rate and length, the
code clock uncertainty, and the data rate. The theoretical
acquisition time has been shown to agree closely with experiments
for the case where false alarm and false dismissal probabilities
are ignored. Indeed, quite rapid acquisition has been

demonstrated in this case. Experimental results have been

7-19

presented using a 127-bit PN signal. The system is capable of
acquiring synchronisation during an average time equal to 516
u.sec. This enables the system to use a spreading code with a
processing gain of approximatly 20 dB during synchronisation, and
considerably larger than that during data transfer. A noise
channel simulator, based on the MC6803 microprocessor, has been

described and implemented to examine the receiver behaviour in

the presence of an erroneous data environment.

7-20

CHAPTER 8
Conclusion

The emphasis of this work has been on the applications of
bit-slice microprocessors to the design and implementation of the
correlation process and other signal processing requirements in
spread spectrum and other related communication applications. It
is shown that those parts of the receiver which previously
required large amounts of expensive analogue or discrete
equipment can be realised at lower cost and with increased

flexibility using all digital techniques.

Spectrum spreading is one of the most important tools that
we have to prevent communications jamming. It can also be used
for several other purposes: rejecting unintentional interference,
lowering the probability of a transmission being intercepted by
an unintended receiver, combating multipath problems, and
providing multiple access to a communications system shared by a

number of users.

Previously, spread spectrum systems were expensive and were
therefore employed to a very limited extent only in areas where
communications must be maintained in difficult environments,
particulary in the presence of intentional interference. Because
of the high cost of communication satellites links and
susceptability of military communications to jamming, spread
spectrum techniques have been employed extensively in military

satellite communications. Examples of these systems are notably

NAVSTAR GPS (100), SKYNET (71), and others. Most of the above

8-1

uses have been handicapped by the difficulty and expense of
implementation and the problems of synchronisation. During that
time most spread spectrum systems were implemented using digital
integrated circuits. In the analogue domain SAW and CCD devices
have been introduced with the major advantage of these two
technologies being the considerable speed that can be obtained

compared to IC implementation.

The recent developments in VLSI devices and, in particular,
the microprocessors have enabled substantial reductions to be
made in both the size and the cost of new digital signal
processing techniques. This may allow spread spectrum systems to
be designed and implemented in small, powerful, functional
blocks, which may alleviate many of the problems associated with
present system applications. Recently microprocessors has been
found to be efficient to implement the post-correlation signal
processing- demodulation, detection and tracking, especially for
low rate signals (101). Relatively little work has been
published on the direct applications of microprocessors to the
correlation process, this is because of their restricted
bandwidths. However, little use is made of bit-slice
microprocessors when compared to fixed-wordlength,
fixed-instruction-set microprocessors, because their application
is more complex and requires longer development periods. Spread
spectrum bandwidth must be large to obtain a significant
performance improvement. This means that the sequence rate must
be fast and so very fast microprocessors will be required when

they are used to perform spread spectrum correlations (code

acquisition). This problem has been exemplified in this thesis
which also has described some of the methods used to overcome

this problem.

The implementation described in this thesis demonstrates
some of the advantages obtained by the use of bit-slice devices
instead of fixed-wordlength, fixed-instruction-set
microprocessors. These advantages include flexibility -wordlength
is easily increased without loss of speed- and high-speed
operation owing to the use of the bipolar technology and

pipelining techniques.

A real-time binary communication system has been described
in which bit-slice microprocessor may be assessed as to its
suitability for implementing direct sequence spread spectrum
techniques. Some considerable attention has been paid to the
signal processing requirements of PN spread spectrum systems, for
spectral analysis, code modulation, and demodulation. This has
included investigations into fast transformation using
microprocessor techniques, in addition to a study of the chirp-Z
transformation using a charge coupled device. The flexibility
and high throughput in computing the correlation functions, and
defining the error signal, which was required to control the
tracking mode, by software have been demonstrated. The
experimental results which have presented using a 127-bit
sequence length show that the 2901 based correlator system is
efficient because it can be expanded to accomodate variations in
the sequence length. The effects on synchronisation uncertainty

due to clock drifts has been described and shown to be minimised

8-3

by using sampling techniques. The acquisition time has been
analysed and a formula has been obtained which coincides with
that obtained by Holmes and Chen (96). This has been shown to
agree closely with experiments in the case where the false alarm
and false dismissal probabilities are ignored. The receiver
system is capable of achieving synchronisation during an average
time equal to 512 u.sec which enables the system to use a

spreading code with a processing gain of approximately 20 dB.

Although analogue devices using SAW and CCD technologies are
finding new uses in spread spectrum communications, still digital
signal processing has many advantages over alternative
techniques. These advantages include higher reliability,
insensitivity to temprature changes and component tolerances,
greater accuracy and repeatability, and a higher level of

flexibility because they are programmable.

We hope that this thesis has illustrated the potential of
applications of VLSI technology to the implementation of
effective, low-cost systems in the field of spread spectrum
communications. Future work in the field of spread spectrum
communications will take advantage of advances in VLSI technology
and the large number of signal processing algorithms which have
been developed in the last two years. The architectures of the
latest microprocessors, ALU/register chips, and signal processing
components are implementing more digital signal processing
operations on the chip. Furthermore, these are allocating more
chip area to interface buses for greater programming flexibility.

An examples of these components are the recent Advanced Micro

8-4

Devices and TRW families products (46), (17). The availability
of such digital devices at relatively low cost will undoubtedly
increase the interest in developing a new microprogrammable
processors which can be derived by wider horizontal microcodes
word and employ more parallel ALUs. This will offer higher
throughput in processors, but at the price of software
complexity. The other alternatives which can be used are the
parallel and pipelined procesor techniques which may offer speed

advantages, but they are limited in flexibility.

APPENDIX A

REFERENCES

(1) Shannon, C.E.,"Communication in the Presence of Noise",
Proceedings IRE, Vol.37, Jan.1949, pp.10-21.

(2) Costas, J.P.,"Poisson, Shannon, and Radio Amateur",
Proceedings IRE, Vol.47, December 1959, pp.2058-2068.

(3) Golomb, S.W., Shift Register Sequences, Holden-Day, Inc.,
1967.

(4) Lange, F.H., Correlation Techniques, Princeton, NJ:Van
Nostrand, 1966.

(5) Chan, C.R., Spread Spectrum Communications, "Applications and
State-of-the-Art Equipments", AGARD-NATO Lecture Series NO.58,
1973, pp.(5-1)-(5-110).

(6) Dixon, R.C., Spread Spectrum Techniques, IEEE Press, New
York, 1976.

(7) Dixon, R.C., Spread Spectrum Systems, John Wiley & Sons,
Inc., 1976.

(8) Scholtz, R.A.,"The Origins of Spread Spectrum
Communications", IEEE Transactions on Communications, Vol.COM-30,
No.5, May 1982, pp.822-854.

(9) Grant, P.M.,"The Potential Application of Analogue Matched
and Adaptive Filters in Spread Spectrum Communications", The
Radio and Electronic Engineer, Vol.52, No.5, May 1982,
pp.246-258.

(10) MacWilliams, F.J., and N.J.Sloane,"Pseudo-Random Sequences
and Arrays", Proceedings of the IEEE, Vol.64, No.12, December
1976, pp.1715-1730.

(11) Sarwate, D.V., and M.B.Pursley,"Crosscorrelation Properties

of Pseudorandom and Related Sequences", Proceedings of the IEEE,

Vol.68, No.5, May 1980, pp.593-619.

(12) IEEE Transactions on Communications, Special Issue on Spread
Spectrum Systems, August 1977.

(13) Rappaport, S5.5.,"On Practical Setting of Detection
Thresholds", Proceedings of the IEEE, Vol.57, August 1969,
pp.1420-1421.

(14) Bair, W.P., K.Dostert, and M.Pandit,"A novel, Spread
Spectrum Receiver Synchronisation Scheme Using a SAW-Tapped Delay
Line", IEEE Transactions on Communications, Vol.COM-30, No.5, May
1982, pp.1037-1047.

(15) Bair, W.P., M.Pandit, and H.Grammuller,"Combined Acquisition
and Fine Synchronisation System For Spread Spectrum Receivers
Using A Tapped Delay Line Correlator", AGARD Conference
Proceedings No.230, June 1978, pp.5.9.1-5.9.12,

(16) Ward, R.B., and K.P.Yiu,"Acquisition of Pseudonoise Signals
by Recursion-Aided Sequential Estimation", TEEE Transactions on
Communications, Vol.COM-25, August 1977, pp.784-794.

(17) "TDC1023J Monolithic Digital Correlator” Preliminary
Information, TRW LSI Products, TRW Inc., 1980.

(18) Cooley, J.W., and J.W.Tukey,"An Algorithm for Machine
Calculation of Complex Fourier Series", Mathematics of
Computation, Vol.19, No.9, 1965, pp.297-301.

(19) Cooley, J.W., P.A.W.Lews, and P.D.Welsh,"Application of the
Fast Fourier Transform to Computation of Fourier Integrals,
Fourier series, and Convolution Integrals”, IEEE Transactions on
Audio and Electroacoustics, Vol.AU-15, June 1967, pp.79-84.

(20) Winograd, S.,"Some Bilinear Forms Whose Multiplicative
Complexity Depends on the Field of Constants”, IBM T.J., Waston

Res. Ctr., IBM Res. Rep., NY, RC 5669, Oct.1975.

A-2

(21) Winograd, S.,"On computing the Discrete Fourier Transform",
Proc.Nat.Acad.Sci., U.S.A, Vol.73, April 1976, pp.1005-1006.

(22) Agarwal, R.C,, and C.S.Burrus,"Number Theoretic Transforms
to Implement Fast Digital Convolution" Proceedings of the IEEE,
Vol.63, No.4, April 1975, pp.550-560.

(23) Agarwal, R.C., and J.W.Cooley,"New Algorithms for Digital
Convolution", IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol.ASSP-25, No.5, October 1977, pp392-410.

(24) Brigham, E.O., The Fast Fourier Transform, Prentice-Hall,
Inc., New Jersy, 1974.

(25) Gold, B., and C.M.Rader, Digital Processing of Signals,
McGraw-Hill, New York, 1969.

(26) Silverman, H.F.,"An Introduction to Programming the Winograd
Fourier Transform Algorithm (WFTA)", IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol.ASSP-25, No.2,
April 1977, pp.152-165.

(27) Rabiner, L.R., and B.Gold, Theory and Applications of
Digital Signal Processing, Printice-Hall, 1975, pp.419-433,

(28) Agarwal, R.C., and C.S.Burrus,"Fast Convolution Using Fermat
Number Transforms with Application to Digital Filtering", IEEE
Transactions on Acoustics, Speech, and Signal Processing,
Vol.ASSP-22, No.2, April 1974, pp.87-97.

(29) Martin, S.C., and B.J.Stanier,"Microprocessor Implementation
of Number Theoretic Transforms", Electronic Circuits and Systems,
Vol.3, No.l, January 1979, pp.21-26.

(30) Moore, C.H.,"FORTH: A New Way to Program A Mini-computer",
Astron. Astrophys. Suppl.15, 1974, pp.497-511.

(31) "microFORTH PRIMER", FORTH, Inc., Manhattan Beach, CA,

A3

August 1978.

(32) Leventhal, L.A., 8080/8085 Assembly Language Programming,
Adam Osborne & Associates, Inc., California 1978.

(33) Burns, R., and D.Sauitt,"Micrnpragramming and Stack
Architecture Ease the Minicomputer Programmer's Burden",
Electronics, Vol.46, 15 February 1973.

(34) Texas Instruments, TMS-9900 System Development Manual, Texas
Instruments Incorporated, 1976.

(35) Mick, J., and J.Brick, Bit-Slice Microprocessor Design,
McGraw-Hill Book Company, 1980.

(36) Broderson, R.W., C.R.Hewes, and D.D.Bass,"A 500-stage CCD
Transversal Filter for Spectral Analysis", IEEE Journal of
Solid-State Circuits, Vol.5C-11, No.1, February 1976, pp.75-84.

(37) Rabiner, L.R., R.W.Schafer, and C.M.Rader,"The Chirp
Z-Transform Algorithm", IEEE Transactions On Audio &
Electroacoustic, Vol.AU-17, June 1969, pp.86-92.

(38) Benjamin, R.,"Real-time Spectrum Analysis Using Hardware
Fourier and Chirp-Z Tranasformation", The Radio & Electronic
Engineer, Vol.49, No.2, February 1979, pp.101-107.

(39) Buss, D.D., R.L.Veenkant, R.W.Broderson, and
C.R.Hewes,"Comparison Between the CCD CZT and the Digital FFT",
in Proc.Int.Conf.Applications of Charge-Coupled Devices, San
Diago, CA, Oct.1975, pp.267-281.

(40) Kosonocky, W.F., and J.Saver,"The ABCs of CCDs", Electronic
Devices, Vol.23, April 1975, pp.58-63.

(41) Hewes, C.R., R.W.Broderson, and D.D.Buss,"Applications of

CCD and Switched Capacitor Filter Technology ", Proceedings of

the IEEE, Vol.67, No.10, October 1979, pp.1403-1415.

A-4

(42) White, D.E., Bit-Slice Design: Controllers and ALUs, New
York: Garland STPM Press, 1981.

(43) The Am2900 Family Data Book. Advanced Micro Devices Inc.,
Sunnyvale, California, 1979.

(44) Myers, G.J., Digital System Design with LSI Bit-Slice Logic.
New York: John Wiley & Sons, Inc., 1980.

(45) Kraft, George D., and Wing N.Toy, Mini/Microcomputer
Hardware Design: Bell Telephone Laboratories Inc., 1979.

(46) Bipolar Microprocessor Logic and Interface Data Book.
Advanced Micro Devices Ine., Sunnyvale, California, 1981.

(47) Gibson, Glenn A., and Yu-Cheng Liu, Microcomputers for
Engineers and Scientists, Prentice-Hall International, Inc.,
Englewood Cliffs, N.J., 1980.

(48) MOS and Bipolar ROM/PROM. Signetics Corporation, Croydon,
Surrey, 1975.

(49) Schottky and Low-Power Schottky Data Book, Advanced Micro
Devices, Inc., Sunnyvale, California, 1977.

(50) The TTL Data Book for Design Engineers, Texas Instruments,

U.S, 1980.

(51) Peatman, John B., Microcomputer-Based Design, McGraw-Hill,

Inc., Tokyo, 1977.

(52) Artwick, Bruce A., Microcomputer Interfacing. ~New Jersey:

Prentice-Hall, Inc., 1980.

(53) Bipolar Memory Data Book, Fairchild Camera & Instrument

Corporation, Mountain View, California, 1979.
(54) Kraft, George D., and Wing N.Toy, Microprogrammed Control

and Reliable Design of Small Computers, Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1981.

(55) Agrawala, A.K., and T.G.Rauscher, Foundations of
Microprogramming: Architecture, Software and Applications.
Acadimec Press, New York, 1976.

(56) Rauscher, T.G., and P.M.Adams, "Microprogramming: A Tutorial
and Survey of Recent Developments", IEEE Transactions on
Computers, Vol.C-29, No.1, January 1980, pp.2-20.

(57) Andrews, M.,"A Bit-Slice Architecture for Microprogrammable
Machines", SIGMICRO Newsletters, Vol.7, September 1976, pp.5-8.
(58) Lau, S.Y.,"Bit-Slice Microprogramming Saves Software
Compatibility", EDN, Vol-23, Mar 5, 1978, pp.42-46.
(59)idem,"Bit-Slice Microprogramming Saves Software
Compatibility," EDN, Vol-25, Mar 20, 1978, pp.68-74.

(60) Opler, A.,"Fourth-Generation Software", Datamation, Vol.13,
January 1967, pp.22-24.

(61) DesRochers, G.,"Microprogramming Helps Squeeze More from
your Equipment Dollar", EDN, Sept 20, 1976, pp.102-105.

(62) Agrawala, A.K., and T.G.Rauscher,"Microprogramming:
Perspective and Status ", IEEE Transactions on Computers,
Vol.C-23, No.8, August 1974, pp817-837.

(63) Redfield, S.R.,"A Study in Microprogrammed Processors: A
Medium Sized Microprogrammed Processor", IEEE Transactions on
Computers, Vol.C-20, No.7, July 1971, pp.743-750.

(64) Webb, J.T., Coral 66 Programming, Manchester, NCC
Publications, 1978.

(65) Richie, D.M., and K.Thompson,"The UNIX Time-Sharing System",
The Bell System Technical Journal, Vol.57, No.6, July-August

1978, pp.1905-1929.

(66) Powers, V.M., and J.H.Hernandez,"Microprogram Assemblers for

A-6

Bit-Slice Microprocessors", Computer, Vol.11, No.7, 1978,
pp.108-120.

(67) Spracklen, C.T., ASWE Serial Highway Simulator, Report,
Durham University, 1978.

(68) PRO LOG M900/920 PROM Programmer, Computer Interface
Handbook, PRO-LOG Corporation, Monterey, California, 1978.

(69) Leventhal, L.A., 6809 Assembly Language Programming,
Osborne/McGraw-Hill, California, 1981.

(70) Texas Instruments, The Optoelectronics Data for Design
Engineers, Texas, 1976.

(71) "Spread Spectrum Communications," AGARD Lecture Series
no.58, National Technical Information Services AD-766-914, July
1973.

(72) Golomb, S.A., Digital Communications: with Space
Applications, Prentice-Hall, Inc., Englewood Cliffs, N.J, 1964.

(73) National Semiconductor, Television /Radio, Santa Clara,
California, 1978.

(74) Cumming, LG.," Autocorrelation Function and Spectrum of a
Filtered Pseudorandom Binary Sequences", IEEE Transactions on
Computers, Vol.C-20, No.3, March 1971, pp.270-281.

(75) Knuth, D.E., The Art of Computer Programming, vol.2,
Addison-Wesley, Reading, Mass, 1980.

(76) Camp, Warren V., and T.G.Lewis, "Implementing a Pseudorandom

Number Generator on a Minicomputer", IEEE Transactions on

Software Engineering, Vol.SE-3, No.3, May 1977, pp.259-262.
(77) Ward, R.B.,"Digital Communications on a Pseudonoise Tracking
Link Using Sequence Inversion Modulation”, IEEE Transactions on

Communication Technology, Vol.Com-15, No.l, February 1967,

pp.69-78.

(78) Grieco, D.M.,"The Application of CCD's to Spread Spectrum
Systems", IEEE Transactions on Communications, Vol.COM-28, No.9,
September, 1980.

(79) Alem, W.K., and C.L.Weber,"Acquisition Techniques of PN
Sequences", NTC'77 Conference Record, pp.35:2-1 - 35:2-4.

(80) Sage, G.F.,"Serial Synchronisation of Pseudonoise Systems",
IEEE Transactions on Communication Technology, 1964, pp.123-127.
(81) Lindholm, J.H.,"An Analysis of Pseudo-Randomness Properties
of Subsequences of Long m-sequences", IEEE Transactions on
Information Theory, Vol.IT-14, No.4, July 1968. pp.569-576.

(82) Hartmann, H.P.,"Analysis of Dithering Loop for PN Code
Tracking", [EEE Transactions on Aerospace and Electronic Systems,
Vol. AES-10, January 1974, pp.2-9.

(83) Spilker, J.J.,"Delay-lock Tracking of Binary Signals", [EEE
Transactions on Space Electronics and Telemetry, March 1963,
pp.1-8.

(84) Gill, W.J.,"A Comparison of Binary Delay-lock Tracking Loop
Implementations”, IEEE Transactions on Aerospace and Electronic
Systems, Vol.AES-2, No.4, July 1966, pp.415-424.

(85) Davies, A.C., and Al-Rawas,"Error-Signal Generation for
Pseudonoise Tracking Loop", Electronic Circuit and Systems,
Vol.2, No.6, November 1978, pp.189-19Z.

(86)idem,"Synchronisation of a Spread Spectrum Receiver by a

Microprocessor control system"”, The Radio and Electronic

Engineer, Vol.49, No.6, June 1979, pp.306-310.
(87) Holmes, J.K., Coherent Spread Spectrum Systems, John Wiley &

Sons, Inc., New York, 1982.

A-8

(88) "Spectrum Analysis" Hewlett-Packard Journal, July 1964.

(89) Cheung, R.P., J.Hovey, L.N.Ma, and T.J.Stephens,"LSI Digital
Correlation Detector", NAECON'74 Record, 1974, pp.617-622.

(90) Hopkins, P.M.,"A Unified Analysis of Pseudonoise
Synchronisation by Envelope Correlation", IEEE Transactions on
Communications, Vol.COM-25, No.8, August 1977, pp.770-778.

(91) Stremler, F.G., Introduction to Communication Systems,
Addison-Wesley, Reading MA, 1977.

(92) Lindsey, W.C., and M.K.Simon, Telecommunication Systems
Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1973.

(93) Davies, N.G.,"Performance and Synchronisation
Considerations", 'Spread Spectrum Communications', AGARD Lecture
series No.58, National Information Services AD-766-914, July
1973, PP.(4-1)-(4-24).

(94) Hopkins, P.M., and R.S.Simpson,"Probability of Error in
Pseudonoise (PN)- Modulated Spread Spectrum Binary Communication
Systems", IEEE Transactions on Communications, Vol.COM-23, No.4,
April 1975, pp.467-472.

(95) German, E.H.,"A comment on: Probability of Error in
PN-Modulated Spread Spectrum Binary Communications Systems", IEEE
Transactions on Communications, Vol.COM-26, No.6, June 1978,
pp.932-934,

(96) Holmes, JK., and C.C.Chen,"Acquisition Time Performance of
PN Spread Spectrum Systems", IEEE Transactions on Communications,

Vol.COM-25, No.8, August 1977, pp.778-784.
(97) 'Motorola MC6803 Advance Information', Motorola

Publications, 1979.

(98) 'Motorola M6800 Microprocessor Programming Manual', Motorola
Publications, 1978,

(99) Jain, V.K., and S.N.Gupta,"Digital Communication Systems in
Impulsive Atmospheric Radio Noise", IEEE Transactions on
Aerospace and Electronic Systems, Vol.AES-15, No-2, March 1979,
pp.228-236.

(100) Blair, P.K.,"Receivers for the NAVSTAR Global Positioning
System", IEE Proc., Vol.127, Part-F, No.2, April 1980,
pp.163-167.

(101) Cahn,C.R., D.K.Leimer, C.L.Marsh, F.J.Huntowski, and
G.D.Larve,"Software Implementation of Spread Spectrum Receiver to
Accommodate Dynamics", IEEE Transactions on Communications,

Vol.COM-25, No.B, August 1977, pp.832-840.

A-10

APPENDIX B

PROGRAM LISTINGS

Listings for chapter 2

(1) FORTRAN optimal short Rectangular Transforms
(2) FORTH digital correlation using Intel 8080 system

(3) FORTH digital correlation using TMS9900

APFENDIX 3

pPTIMAL SHORT CORRELATION ..N=2
USING RECTANGULAR TRANSFIRM ALGORITHM
1
. INTEGER A(2), B(2), MC2), Y(2), XC2), F(2)
DATA Xy H /70y 24 64 2/
M16CIVAL) = MOD(CIVAL,65535%)
A.H TRANSFORMATICN TRANSFORMS H-SEQUENCES TO RECT.ARR2LY

M16CCH(1) + H(2))/2)
M1ACCH(L1) = H(2))/2)

a1
aC2>

B,X TRANSFORMATION TRANSFORMS X-SEQUENSES TG RECT.ARR2Y
3¢1) M16CX(1) + X(2))
8(2) M16CX(1) = X(2))

CORRELATION NPERATION IN THZ ORIGIMAL COMAIN BECOMES
ELEMENT-BY-ELEVMENT MULTIPLICATION IN THE TRANSFIRM DNMAIN

| DO 10 K = 1, 2
MCK) = M1ECACK)I=B(K))
Lo CONTINUE
DPER. C DENOTES THE INVERSE RECT. TRANSFORM TFIS IS
REPRESENTED 8Y C CAed “X°B.X)
! Y(1) = M1A(CNM(C1) + M(2))
[vY(2) = M158(NM(C1) - M(C2))
| WRITE (6,20) Y
20 FORMAT (C°YCl)=", I3, 20X, “Y(C2)="y, I3
| STQP
' END
Stesle e s st e s s o o s ok ok o o ok st o e o sk s st s e e ok e e sk e et ok e sevle e e sl e e e e die s s ke
OPTIMAL SHORT CORPELATION +.N=3
USING RECTANGULAR TRANSFORM ALGORITHM

INTEGER X(C3), H(3), AC4), B8C4)y Y(3)y N(4), 47y AHF1
M16CIVAL) = MODCIVAL,565536)

DATA X, H /1y 2y 35 5y 0y 2/

HE = M16CHC1) + HC2) + H(3))

INV3 = 43691

% % A=ELEMENTS = s

AC1l) = M16(CKFFXINV3)
AC2) = M16(FC1) = H(2))
AC3) = M16(CH(3) = H(2))

HF1 = M16CCHC1) = H(2)) + (H(3) = H(2)))
AC4) = M18CRFIXINV3)
* % B-ELEMEANTS = =%

B(1) = M16(Xx(C1) + X(2) + X(3))

8C2) = M16(X(C1) - X(3))

3(3) = M16(Xx(2) - X(3))

BC4) = M15CCXC1) - X(3)) + (X(2) = X(3)))

0010K=19‘+
MCK) = M16CACK)#=B(K))
! CONTINUE

=

Y(1)
Y(2)
Y(3d

sTae
END

sToP
END

DATA
HE =
INVS

b0 FORMAT (TS,

WRITE (6,20)

M16CMC1) + (NM(2) = M(4)))
ML6CNMCL) = (M(2) = M(&)) = (¥(3) = MC&I))
M16CMC1) + (M(3) = M(4)))
WRITE (64920) (KyYC(K)ysK=1,3)
3C7YC7511,°

=7, 17,2X%X))

(53, 3(5)y Y(4)

DIMENSION X(4), HC4), A
REAL M(5)
DATA Xy H /ZZay “ay lay 3y 4.
A-ELEMENTS
ACLl) = CCHCL1Y + HC3)) + (H(4)
AC2) = (CHC1) + H(2)) = (H(4)
AC3) = (H(1l) = H(C3)) 7/ 2.
AC4) = ((HC1) = HC3)) - (H(4)
AC5) = (C(HC1) = HC3)) + (H(4)
3-ELEMENTS
5C1) = (X(1) + x(3)) (x(2)
8(2) = (X(C1) + x(3)) - (xX(C2)
3(3) = (X(C1) - x(3)) + (x(2)
5(4) = X(1) - X(3)
B(5) = Xx(2) = X(4)
00 10 K = 1, S
MCK) = ACK) = B(K)
0 CONTINUE
Y(1) = (MC1) + MC2)) + (M(3)D
Y(2) = (MC1l) = M(C2)) + (M(3)
Y(3) = (MC1) + M(C2)) - (M(3)
Y(4) = (MC1) = M(2)) - (M(3)

(K'Y(K)’K=1 l"‘)
[0 FORMAT (TS5, 4(C°Y(“3I1ly°)="3F6.0,2X))

RECTANGULAR TRANSFIRM

Xs H /1,

= 52426

2y

INTEGER AC10), BC10),
M16CIVAL) = MMD(IVAL,65536)
3y 4y

COMPUTE THE A=-ELEMENTS

AC1
ac2)

M16CFF%INVS5)
M16CFC1) = H(2))

M

C10),

+

X(5),

+ 4

Sy 5y 0y
M16CHC1) + HC2) + H(3) + H(4) + H(5))

5-. Qo'

H(2)))
A¢2)))

H(2)))
H(2)))

X(4))
X(&4))
X(4))

M(5))
M(4))
M(5))
M(4))

«N=5

3y 1y

APFENDIX 3

ale wly wle whowle Wb ate Wle whe ale oty wls afs whe wls wts Wle e wis ale ol aly ahe afe wh wle ' afe W als wle afe W ale ofe te ale ale sl Wl WP Wf ale W Wy
veste sl ole sl sle s e sleve s o i sk e djevle e dle o et e e e el sl e le s S ave g devante sl el S e feveshdla et] sk

)PTIMAL SHORT CORRELATION .. N=4
JSING RECTANGULAR TRANSFORM ALGIRITHM

53 e et s e stk S o s s e e o e e et sl e i ol e Sealclete) S
OPTIMAL CORRELATION ALGORITHM
USING

H(5)y Y(5), HF, FKF1

4/

APFENDIX d

AC3) = M16(F(5) - H(2))

ACa) = M16(HC&) - H(2))

ACS) = M16(K(2) - H(2))

AC6) = M16CC(H(1) = H(2)) + (H(5) - H(23))

ACT) = M16C(H(4) = H(2)) + (H(3) = KH(2)))

ACB) = M16(C(CAC1) = H(C2)) + (HC&) - H(2)))

AC9) = ML16CCH(5D = H(2)) + (H(3) - H(2)))

HF1 = M16CCCHC1) = F(2)) + (H(E) = KH(2))) + ((H4C4) = H(2)) + (H(3)

1 - H(2))))
AC10) = M16(HF1:=INVE)

COMPUTE THE B-ELEMENTS

BC1) = M16(X(1) + X(2) + X(3) + X(4) + X(5))

8(2) = M16(x(1) = X(5))

5(3) = M16(Xx(2) = XxX(5))

B(4) = M16(X(C2) - X(5))

B(5) = M16(X(4) - X(5))

B8C(6) = M16C(X(1) - X(5)) + (X(2) - X(5)))

BCT) = M16(C(X(3) - X(5)) + (X(C4) - X(3)))

5C(3) = M16(C(X(1) = X(5)) + (X(3) - X(5)))

BC9) = M16CCX(2) = X(5)) + (X(C&) = X(5)))

BC10) = M16CCCXCL) = X(5)) + (X(2) = X(5))) + C(X(Z) - X(35)) + (X(C

14) - X(5))))

07 10 K = 1, 10
MCK) = M1ECACKD=B(K))
L0 CONTINUE

YC1) = M16CCMCL) = MC10)) + (4€2) = MCE)) = M(e) + M(TI)

YC2) = ML16CCM(1) = MC10)) = (€M€2) = M(5)) = M(3) + ¥(hK))

YC3) = M16CCMC1) - MC10)) + (M(3) - M(4)) - MC2) + M(9))

YC5) = M16CCMC1) - M(C10)) - (M(3) = M(4)) = "(5) + M(9))

Y(4) = MI6CCMCL) + MC1D) + 2%M(1) + M(1) - Y(1) = v(2) - Y(2)
15))

WRITE (64520) (KyY(K)yK=1,5)
F0 FORMAT (T5, S5C°Y(C"3Ily)="43I7,2X))
STAP
END
***ﬁ#*#¢$$$#n¢$#&n&$n$$$$$$$$$$$$$#¢$*¢¢$*$$$ﬁ
PPTIMAL SHORT CORRELATION ALGORITKM USING RECT. TRANS,
«FOR REAL DATA SEQUENCE ..N=6

N vedes o vevede

ODIMENSION H(4)y X(6)y YC(6)y ACB), 3(3)
REAL M(R)
DATA Xa M lTey Das Esa 3¢y Doy Dey bey 9.y 3y . ey 3./

AC1) = CCHC1) = H(5)) + (H(4) = H(2))) / 6.

AC2) = CCHCE) = H(5)) + (H(3) = H(2))) / 6.

AC3) = A(C2) - AC1)

AC4) = (CCHC1) - H(5)) = C(HC&) = H(2))) / 6.

AC5) = (CHCE) + H(5)) = (H(3) + H(2))) 7/ 6.

AC6) = AC4) + ACS

ACTY = (EH%I) +CH25)) ~ (HCK) + HC4D) + (H(3) = H(ZI)d) 7 5.

Y(

1,
MCK) = ACK) % 3(K)
po CONTINUE

YC1) = CCMC1) = M(C2)) = (MC2) + M(32)) + ((M(a) = M(5)) = (M(S)

IM(6))) + (M(7) + 1(2))

YC2) = CCMC1) + M(3)) + (MC2) + MC3))) = ((M(4) = M(B)) + (M(5) =

IMC6))) — (MCT) - M(8))

Y(3) = =C(MC1) = AC(2)) + (M(1) + M(3))) = ((H(Ce) = FM(5)) + (H(4)

1 M(6))) + (NM(T) + M(8))

YC4) = CCMC1) = MC2)) = (MC2) + M(3))) - ((M(4) = F(5)) - (M(5) -

IMC6))) = (MCT7) = M(B))

YC5) = CCMC1) + M(C3)) + (MC2) + M(3))) + ((M(&4) = F(6ID) + (M(5) -

1MC6))) + (M(T) + M(B))

APFENDIX

AC8) = C(CHC1) + H(5)) + (H(A) + HC4)) + (H(3) + H(2))) 7/ K.
8(1) = (X(1) - X(3)) + (X(C&4) - X(6))

B(2) = (X(2) = X(3)) + (X(5) - X(5K))

§(3) = 8(1) = B(2)

BC&4) = (XC1) = X(3)) = (XC&4) = X(K))

B(5) = (X(2) + X(3)) - (X(5) + X(h))

B(6) = B(&4) + B(5)

BCT) = (X(C12 + X(3)) = (X(2) + X(&)) + (X(5) = x(5))

8C8) = (X(1) + X(3)) + (X(2) + ¥X(4)) + (X(CE) + X(62)

D2 10 K = 8

YC6) = =CCMCL) = MC2)) + (MC1) + M(2))) + ((C4Cse) = M(5)) + (MC4) -

1 M(6))) - (NMCT) = M(B))

WRITE (6420) (KyY(K)yK=1,6)
P0 FORMAT (TS5, 6C°Y(311,y)="9yF6.0,2X))

ST2P

END

e st oo s e e o S steste s 2 ol 2 ok s ot e s ok e e sle dleeste sl e sleate e slesl e e e efe e e ne e s NS R A
PTIMAL SHCRT CCRRELAATION +eN=T
PING RECTANGULAR TRANSFIRM ALGORITHHM

INTEGER H(T7)y XCT7)s AC19), B(19)y U(B)y Y(T), M(19),
M16CIVAL) = MODCIVAL,AK5536)
DATA Xy H /4y 59 25 0y 6y Iy 09 69 0y 55 4, 3y 0, 1/

r*ELEMENT
AC2) = M16(CK(1) - H(2))

AC3) = M16CFCT) - HC2))
AC4) = M16(CKH(R) - K(2))
AC5) = M14(KH(S) = H(2))
AC6) = M16CKFC(C4) - HC2))
ACT) = M16CKC2) = H(C2))
AC3) = M16CAC2) + A(CS5))
AC9) = M16CAC2) + A(6))
AC10) = M16CAC4) + ACT))
AC1l1) = M16CAC2) + AC3))
AC12) = M16(CA(C3) + AC4))
AC13) = M16(CAaC2) + AC4D)D
AC14) = M16CACS) + ACED)D
AC15) = M16CAC6) + ACTI)

I--rvd-ﬂowﬁ * *

sk %

HA

AC16) = M16CA(5) + A(CT))
AC1T) = M16CAC11) + AC(Cla))
AC18) = M16CAC12) + AC15))

HA = M15CACE) + AC1%))
INVT = 28087

AC19) = MNDC(HAXINVT465535)
ACLl) = M146(CAC19) + H(2))

‘ELEMENTS

3¢2) = M1A(Xx(C1l) = X(T7))
B(3) = M16(x(C2) = X(7))
B(4) = M16(X(3) = X(T7))
B(5) = M16(Xx(4) - X(T))
3(6) = M16(X(5) - X(7))
BCT) = M16(X(6) = X(7))
3(8) = M1A(EB(2) + B(5))
B(9) = M16(CEB(C2) + 8(6))
8C10) = M16(B(4) + B(T))
B(11) = M16(B(2) + B(3))
B(12) = M16(B(3) + RB(4))
3C13) = M16(8(2) + 2(4))
8(14) = M16(B(5) + 2(6))
3(15) = M16(8B(6) + B(7))
5(16) = M16(B(5) + 8(7))
8C17) = M16(B(11) + B(1l4))
8(18) = M16(BC12) + 3(15))
3(19) = M16(B8(8) + 3(13))

8C1) = M16CBC19) + XCT) + CCXCT) + X(7)) + 2:X(T7)) + 2%X(7))

FLEMENT-BY-ELENMENT MULT.

D0 10 K = 1, 19
M(K) = M1€CACK)*=B(K))
[0 CONTINUE

UC1) = M16CM(1) = MC19))

UC2) = M16(MC2) = M(6))

UC3) = M16CN(5) + MCT))

UC4) = M16CNC2) + M(4))D

UCS) = M16CM(3) - MCTD)

UC6) = M1A(NM(2) + MC4) + M(S5) + MC6) - M(3))

UCT) = M16CLCL) = UC4))

UCB) = M16CUCL) + UC6))

YC1) = M16CUC1) + UC2) = UC3) - MC4) + MC10) + M(143)
YC2) = M16CUC1) = UC2) = UC3) = M(3) + M(11) + M(1€))
Y(3) = M16CLCT) + UC5) = M(6) + MC12) + M(15))

Y(4) = M16CLCT) = UCS) = M(5) + M(8) + 4(12))

YC5) = M16(CUCB) + MC2) - MC8) = MC11) - M(14) + MC17))
YCT) = M16CLCB) + MCT) = MC10) - M(12) - M(15) + *(18))
Y(&6) = M16CCMCL1) + M(C1D) + (2::M(1) + 24MC1)) + M(1) - YC1) - Y(C2)

1= Y(3) = Y(C&4) = Y(5) = YCT»
WRITE (6,20) (KyYC(K)yK=1,T7)

) FORMAT (T5, 7C°YC"yI1,°)="5IT,2X))
sTap

APFENDIX 8

END
oo H2 S sl e e e s o el Sl o e e e e e e e e sle e e Yewie st s e e e sevee e s e ve s sl et e v
NE-TO-ONE MAPFING USING CHINZSE REMAINDER THECREM (€

INTEGER X(15), Y(15)
INTEGER XX(%y3)

APFENDIX 8

DATA X /1y 29 24y 449 59y 69 79 89 99 19y 11, 12, 13, 14, 15/

D0 20 I1 = 1, 3
DO 10 I2 = 1, 5
IT = 10 % I1 + 6 = I2 - 1
XX(I2,I1) = XCMCOCIIHN135) + 1)

NVERSE CRT

YCMODCIIL1S) + 1) = XX(CI2,I1)
0 CONTINUE
0 CONTINUE

WRITE (6430) CCXXCIygJd)yJ=143),1I=1,5)
WRITE (€,30) Y
0 FORMAT (T&, 3C10X,I4))
STaP
END
s e et o e st e o sl e o ot o o e sl o s e e
AST CORRELATICN USING RE
Wl- FACCTOR ALGCRITHM . .

Nove S Yesese S srderie e mecleh o deveslecesionle g esfeste

sesle veseve s
NGULAR TRANSFCEM
=3%5

O H
- #
Z X 3%

INTEGER XClE), HC15), YC(15)s XX(5453), FH(593)y YY(1C,3)
INTEGER A1(C1043)y B1(C1043)y A2(C10,44), B2C(10,4), A48C10,4)
INTEGER A1F, AlF1, A2F, A2F1, Z1(5), V1(3), 22(3), V2(3)
INTEGFR W(C4)y WW(10)y Y1(5,3)

M16CIVAL) = MCDCIVAL,55536)

DATA X /4' 3, 2’ 1, 29 3! by 3’ 2! 1! 2' 3' "' 3' </
DATA H /1, 2y 3, 23 1y 19 29 3y 29 1, 1, 2y 3y 2y 1/

[NE-TO-ONE MAPFING USING C.R.T

DO 20 I1 = 1, 3
DO 10 I2 = 1, §
IT = 10 %= I1 + & = I2 - 1
XXCI24I1) = XCMCDCIIL15) + 1)
HH(I2,I1) = H(MCDCII,15) + 1)
0 CONTINUE
[0 CONTINUE
[ORRELATTION OF COLUMNS . . APPLICATION OF RECT. TRANSF.
LGORITHM TO THE 5-POINT COLUMN CCRRELATICN
HIS GIVES Al % H
INVS = 52426
DO 40 JJ = 1, 3

DO 30 II = 1y 5
Z1CII) = HHCIIsJJ)
VICII) = XX(CIIsJJd)

0 CONTINUE

APFENDIY 3

:IRST A-ARRAY . (A1 = H)
A1F = M16(CZ1C1) + Z1(C2) + 21(2) + Z1C4) + Z1(s5))
A1C14JJ) = M16CAL1F%INVS5)
JT1 = M16(CZ21C1) - 11C2))
JT2 = M16(Z1(5) = 11(2))
JT3 = M16(CZ1Ca) - 21(C2))
JTa = M16CZ1C3) - 11(2))
A1(2,JJ) = JT1
81(3,JJ) = JT2
A1(4,JJ) = JT3
A1(54,JJ) = JT4
A1(6yJJ) = M16CUT1 + JT2)
AL(T,JJ) = M16(JUT2 + JT4)
A1(8,JJ) = MLl6CJUTL + JT3)
A1C9,4JJ) = M16CJUT2 + JT4)
ALF1 = MIECCJTY + JT2) + (JT2 +« JT4))

A1C10,JJ) = M16CALF1=INVS)

‘IRST B=ARRAY . . (31 = X)

81(1,JJ) = M16(V1(C1l) + V1(2) + V1(3) + V1Cse) + V1(5))

NS1 = M16(CV1C1l) = V1(5))

NS2 = M16(CV1(C2) - V1(5))

NS3 = M16(V1(3) - V1(5))

NS&4 = M16(CVIC4) = V1(5))

81(2,JJ) = NS1

81(3,JJ) = NS2

B1(44JJ) = NS3

B1(54JJ) = NS«

81(64JJ) = M16(NS1 + NS2)

B1(74JJ) = M16(NS2 + NS4)

B1(ByJJ) = M16(NS1 + NS3)

B1(9,JJ) = M16(NS2 + NS4)

81C10,JJ) = M16CCNS1 + NS2) + (MS2 + NS&))
I CONTINUE

‘ORRRELATION CF ROWS ..APPLICATICN OF RECT. TRANSF.
iILGORITHM TO THE 3-20INT RIW CORRELATION
'HIS GIVES oo A2CAl %* H)& o«
00 70 J = 10
00 S0 I = 1, 3
22¢1) A1CJyI)

V2(I) 81CJ,yI)
CONTINUE

o n e
-

INV3 = 43¢91

A2F = M16(Z2C1) + Z2(C2) + 12(3))
A2CJy1) = M16(CA2F=INV3)

NT1 = M16(C22C1) - Z2(2))

NT2 = M16(22¢3) = 22(2))

A2CJy2) = NT1

A2CJy3) = NT2

A2F1 = M1&(NT1 + NT2)

APFENDIX 3

82CJs4) = M16CA2F1%INV3)
|s2-cLement. LB2¢B1 = X0

B2CJy1) = M16(V2(1) + Vv2(2) + v2(3))
NSS1 = ML1é(CV2(1l) - V2(3))

NSS2 = M1é(v2(2) - v2(3))
B2(Jy2) = NSS1

B2CJy3) = NSS2

8B2(Jy4) = M1E(NSS1 + NSS2)

SLEMENT=BY=-ELENENT MULT. (42.481.H X 82.81.X)

00 60 K = 1, ¢
WCK) = B2CJ,K) # 82CJ,K)
40 CONTINUE

7PER., C2 REDUCES THE DIMENSINNALITY 0OF (AZ.Al.H X 832,E1.Y)

M16(W(2) = wW(4))

M16(W(2) = W(&)D

M16C(W (1) + *71)
M16(W(C1) = MQ1 - “Q2)
M16CW (1) + M22)

MQ1
MQ2
YYCJylD
YY(J,y2)
YYCJ,y3D
70 CONTINUE

JPER. C1CC2.CA2 Al H X 82 B1 X) REDUCES THE DIMENSIINALITY
JF THE COLUMNS

DO 90 KK = 1, 2
00O 80 LL = 1, 10
WWCLL) = YY(CLL,KK)

| £ CONTINUE

M1 = M16ChW(1) - WW(C10D)
M2 = M16CwWW(2) — WW(5))
M3 = M16CWW(3) - WW(4))
YIC1yKK) = M16CM1 + M2 = WW(C4) + wWW(7))
YIC2,KK) = M16CM1 = M2 = WW(3) + WW(ED)
Y1(3,KK) = Mle(M1l + M3 - WW(2) + WACgl)
Y1(5,KK) = M16(CM1 = M3 - WW(5) + WWCS))

NN = M16C2%WW(1))
Y1C44KK) = MI6CWWCL) + WW(1l) + NN + wW(1l) - Y1(1,KK) = Y1(2,KK)

1 = Y1(3,KK) = Y1(5,KK))
0 CONTINUE

UNE-TO-ONE MAPPING USING INVERSE CeReTe

00 1101 ‘wrEy 3
00 100 42 = 1, 5
LLL = 10 % J1 + 6 % J2 - 1
! YCMODCLLL,15) + 1) = Y1(J2,J1D
ﬁ CONTINUE
‘) CONTINUE

APEFENDIX

(100 POINTS OIGITAL CORRELATION USING NIRSCT METH]N
FOR INTEL 8080 WRITTEN IN FIRTH OP2CGRAMMING LANGUAGE)
¢ %/ IS USED TO MLLTIPLY 16-3TT BY 1£4-8IT aYC DJIVIDE
THE RESULT 32-81T BY 16-3IT NUMBER)
CCTAL CODE HLCE#*#2 XCHG 4 CAD XCHG FC IS H DAL H INX
RET THEN H DAC RET
CNDE DV 20 A MVI PEGIN PSw PUSH A XRA S KLDE=:2 CALL RAL
H PUSH B DAD O ACI 2 CPI ¢ QUESTIIN JNC RAR FC IF 52 InX
SP INX D INX ELSE H PGP THREN PSW PJP A DCR ®7 =ML RET
CJDE %/ & PepPC CALL T PUSH A D MOV A CRA F™ IF TCC THzZH
XCHG $ PPD CALL D PUSH A D #OV A 2RA FM IF T(CD ThZY 3 0
MoV C E MOV 0 O LXI 20 A MVI BEGIMN & HLDE:X2 CALL FC IF
XCHG B DAD XCHG FC IF Y4 INX THEN THEN A CCR FZ SAC D PJSH
PPD CALL D PUSH A D MOV A JRA F2 IF TCC THEN 3 0O MZIV
E MOV D PIP XCHG XTHL XCH5 s DV CALL 4 PUS+ B CAD H4 °P0OF
QUESTICN JC A 2 MCV A CRA $ QUESTICN JUM 3 FOP FS4 PCP
POP H XRA FM IF D INX THEM 3 XRA4 FM IF TCD THEN
PSD JMP
(DEFINE THE VARIBBLES ANC/OR ARRAY USED .« «)
CCTAL 4 ARRAY ANSWER 7 CCONSTANT STATLS 0 INTEGSR CELAY
6 CONSTANT CONVERT 0 INTEGER MAXNS 0 TINTEGER MINNZ
200 CONSTANT M 400 CONSTANT NH NN ARRAY 1CATA i ARRAY 20£TA
NN ARRAY CORREL N ARRAY SINK 174 CINSTANT OJ°PTION
(CLEAR TEMP STAORE #%ANSWER¥™ o)
! LERD ANSWER EMPTY ;
(%? MULTIPLY ANC STORE THE RESULT IN ANSWEP 32 2IT)
CCTAL COCE %? s PFD CALL ¢ PPH CALL A L MCV ¢ =ML CALL
XCHG ANSWER H LXI A M MOV E ADD M a4 MNV K INX A ¥ MOV O ACC
M A MOV H INX O A MVI M ACC ™ A M2V A XRA H INX M A4 ¥2V RET
(ROUTINE INPUT GET CATA INTO ARRAY 1CATA = ZCATA .)
CODE INPUT A XRA CONVERT CUT 14 & MVI CONVERT OUT XTHL XTHL
A XRA CONVERT OQUT BEGIN STATUS IN 14 ANI 14 CPI E7 END & TN
CMA E A MOV O D MVI s PSD CALL 2 IN CMA E A MCV O D MV I
$ PSC JMP
(STORE DATA IN 1CATA ARRAY & 2DATA ARRAY . . o)
{ GETINPUT NN O DC INPUT I 1DATA + 2 I DUP 7JPTION > IF 2[RJP
ELSE 2DATA + ? THEN CELAY 2 MSEC 2 +LCOP |
(CORRELATION PART . « DIRECT METHOD)
* SHIFT + 1DATA + 3 3
COEFFICINT N O COJ DUP I SHIFT I 2DATA + 2 %7 2 +L02P
RQP

“ T s) s

c
! TRANSFER 4 0 DC DUP I ANSWER + 23 SWAP 23 1+ LCCP DRIP
! XCORREL N 0 DO ZERC T CCEFFICUNT I 2 * CIRRSL + TRANSEER
2 +LOoopP $ ¢ CoMax O NN O CO I 1+ CDRREL + 3 2CVER < IF SkAP I
4 / LDOCATION 2 THEN DROP & +L0O0P MAXN3 ?

C ROUTINE COFACTOR IS SCALING ROUTINE « o)

: COFACTOR NN 0 DC MAXN3 3 I 1+ CORREL + &

SINK + 2 4 +LCOP 3

(DISPLAY CORRELATICN FUNCTION)

COOE QUTPUT § PPD CALL A £ MIV CMA 7 OUT RET
{ 2TEST 377 € DO I OUTPUT 12 MSEC LICP 3

! SCOPE BEGIN DUP LIMITS CJ I 38 NUTPUT 2 +LCI? C 3D
END 2DROP 3

3717 =/ 1 2 /

yteyt 2vDOU

9

APFENDIX 9

FORMAT TO WRITE THE RESULT. .)

TEST LOCATION 2B 4 == CCRREL +

1TEST &4 0 DO OLP I TEST + 323 SWA® 28 1+ LCOP CRIP 3
: vV STRING # CORREL IN BYTES ¢ SAY CRLF COPREL ERINTR® CRLF
STRING “ MAXIMUM NUM3ER = “ SAY ANSWER 1TSST AMSWER PRINTR

CRLF STRING A LOCATION IS A SAY LOCATION 2 CRLF

STRING " SINK IN BYTES "™ SAY CRLF STNK PRINT CRLF 3

(THIS VRSION USIANG SCALED INPYUT DATA MAX,. "C. =32 . .)

(ROUTINE =2 IS NC LCNGSR USSEN IN THIS VERSICN . .=/)

CECIMAL 0 INTEGER ANSWER 28 CONSTANT 92PTICN 7 CONSTANT STATUS

& CONSTANT CONVERT C INTEGER 1DMAXN 0 IMTEGSR 27MAXN 0O INTEGRER
COMAXN 40 CONSTANT N 50 CCHNSTANT NN 0 INTEGER COMIN

N ARRAY SINK N ARKAY CORREL NN ARRAY 17ATA N ARRAY 20ATA

CODE 1IN A XRA CONVERT JUT 1 A MVI CCNVERT LT XTHL XTHL & XRA
CONVERT OUT BEGIN STATUS IH 1 ANI FMZ EMC 5 IN CMA 5 4 MCV 0O 9O
MVI $§ PSD JMP CJOE 2IN A XR2A CONVERT GLT 1 4 MVI COWVERT QUT
XTHL XTHL A XRA CCNVERT CLT B3EGIN STATUS IN 1 4AMI FNZ SNC 6 IN
CMA E A MOV C O MVI $ PSC JMP : 10DGET ~NH 0O O9C 1IN I 1DATE + 2 &
MSEC 2 +LOOP § & 20DGET % O DD 2IN I 2DATA + ? & FMSEC 2 +LCOP 3
! GETDATA NN O DO 1IN I 1CATA + 2?2 2IN I DUP CPTICH > IF 2rRNP
ELSE 2DATA + ? THEN 4 MSEC 2 +LOCP 3

MAXN O SWAP LIMITS DO I @ MAX 2 +L0OAP ;

1DLOC 1DATA MAXAN 1CMAXN 2 ;3 : 20LOC 2DATA MAXM 2DMAXN % 3
MAX. ELEMENT OF DATA SELZUENCE 32)

1DFACTOR LIMITS OC 10MAXN 2 I & 32 %/ I 2?2 Z +LCOP
2DFACTOR LIMITS DOC 1DMAXN @ I 2 32 %/ I ? Z +LCCP
T OPTION 3 > 3 : 1D + DUP T IF JROP 0 ELSE 2DATA + 2 THEN
POINT N O CO DUF T 10 I 2DATA + 3 % ANSWER 42 2 +L0J0P (RIP
XCCGRREL N 0 DO € ANSWER ? I POINT ANSWER 3 N T - 7/ I CCPREL +
2 +L00OP ; : COLOC CORREL MAXN COMAXN ? 3

TEMPOR N O DO I CORREL + 2 I SINK + 2 2 +LT2? 3

COFACTOR LIMITS OC COMAXN & I & 255 =%/ I ? 2 +LC3IP j
MINNB 255 SWA® LIMITS CC I @& MIN 2 «L0OO0P 3

FINE CORREL MINNB COMIN ? ;

! SUBTRACT LIMITS DO I 2 COMIN 2 = I 2?2 2 +L0NCP |
CODE QUTPUT § PPC CALL A £ "QV CMA T ZUT RET

! TEST 256 0 DO I OUTPUT 19 MSEC LOJOP ;

: SCOPE BEGIN JUP LIMITS 03 I 28 NUTPUT 2 +LCIP C DUTPUT 2VOU
END 2DROP ;

- se =8 N

#8 %8 sa #s) S8 s e S am SN 8 e

APFENDIX 8

(100 POINTS CORRELATION LSING DIRECT METHID FO2 T4$39990
SYSTEM WRITTEN IN FORTH PRIGRAMMING LANCUAGE)

(DEFINITIONS OF VARIABLES AND ARRAYES)

HEX 64 CONSTANT A C3 CONSTANT NN 42 CONSTANT 0PTINY
0 INTEGER MAXN3 N INTEGER LJICATION 0 IMTEGER DELAY
4 ARRAY ANSWER 4 ARRAY TEMPIR NN ARRAY 1INPUT
N ARRAY 2INPUT N ARZAY SIMK NN ARPAY CJ2REL

(ROUTINES 1IN, 2IYy 1GET AND 2GET CCNVERT & STORE NATA)

CODE 1IN 280 OC LI 2 SBZ 2 537 229 0C LI BEGIN 2 T3 FNE

END 320 0C LI O 4 CLR 8 C & STCR 0 4 SWP3 & PUSH 2:TyRYy

CODE 2IN 280 OC LI 2 S8Z 2 SBO 220 OC LI 3EGIN 2 T8 ®=NE

END 330 0C LI 0 4 CLR 8 0 4 STCR 0 &4 SWPB & FUSH RZITURYN
$ 1GET NN O CC 1IN I 1+ 1INPUT + ? DELAY & "SEC 2 +LCOP
: 2GET N 0 DO 2IN I 1+« 2INPUT + 2?2 DSLAY @ MSEC 2 +L0OJP

(I/0 & GETI/0 STCRE DATA I'l ARRAY PCINT BY POINT)

CO0E Is/0 230 OC LI 2 S3Z 2 $8Z 2 S39 3 S30

220 0C LI BEGIN 2 T8 FNE IF 3 T3 THEN FME ENC 33C 0C LI

0 4 CLR 8 0 & STCR 0 4 SWPB3 4 PUSH 320 0C LI

0 4 CLR 8 0 4 STCR 0 4 SwPB & PUSH RETURN

GETIZ/O NN O DO I/f I 1+ 1INPUT + 2 I 0OUP IPTIIN > IF 2C°3?

ELSE 1+ 2INPUT + ? THEN CELAY 3 MSEC 2 +L00° 3

(%M MULTIPLY 2X16-BIT NC.)

(%/M MULTIPLY 2X16=-BIT ANJ,., & DIVIDE 3Y 16-2IT AT.)

(%/ COMPLETE st/WV)

(%M#% MOD 16 MULTIPLY)

HEX CODE =M 0 S CLR O 1108 MAVY 05 0 1 M2V 8000 1 ANCI

FNE IF 0 5 NEG THEN 2 0 1 2 0 MCV 9 5 0 1 “CV 3C00 1 ANCI

FNE IF 0 6 NEG 0 S DEC THEN 5 0 & MPY 0 9 0 ¢ MOV FNE IF

0 5 NEG THEN 1 OE 0 & MOV 2 2 0E 0 5 MOV RSTURN

CODE #/M 0 9 CLR € 1 1 OE MOV 0 2 0 1 MAav 80CO 1 ANDI FHE IF

0 2 NEG O 9 INC TFEN 2 O 1 2 05 ¥OV 0 3 C 1 rvOV 8000 1 ANCI

FNE IF 0 3 NEG 0 S DEC THEW 2 0 3 MPY 9 9 0 § MIV FNE IF

0 2 NEG THEN 4 0 1 2 OE MCV 0 4 0 1 M3V 8000 1

ANDI FNE IF Q0 4 NEG

0 9 DEC THEN 2 0 4 DIV 0 6 0 9 MOV SNE IF O 2 NEG THEN

10604 MOV 2 205 0 3 MOV 4 2 05 0 2 MOV RETURN
%/ %/M 2DROP 3 s % =M SWAP DRCP 3

C %? MULTIPLY ANC SUMMING THE RESULTS IN ANSKER)

CIDE %2 0 1 3 0F ¥IV O 2 2 OFE MOV 2 0 1 MPY

ANSWER 5§ LI 3 50 3 A FIC I 1 5 INC THEN 1 £ 0 2 A RETURN

(THIS VERSION CONMPUTE CCRRELATION SLNCTION LSING DIRECT

METHOD b)

PRINTS LIMITS CO I 33 , LOOP CRLF 3

TEST DUP ANSWER + 3B SWAP 1+ ANSWER + a2 3

1TEST DQUP TEMPOR + ROT SWAP 2?8 14 T=ZHMPOR + ?3 3

TRY 4 0 DO I TEST I 1TEST 2 +LOOP 3

SHIFT + 1INPUT + 3 ; + IERC ANSWER EMPTY §
COEFFICINT N 0 C3J DUP I SHIFT I 2INPUT + 2 %2 2 +L00P
ROP 3

#s se I #e se we we se e

TRANSFER 4 0 DO ODUP I TEMOOR + 23 SWAP 2?3 1+ LCO? ORIP =
XCORREL N 0 D3 ZFRO I COSFFICINT TRY I DUF + CCRREL +
TRANSFER 2 +LQDP 3

¢ THIS VERSION TRENSFORMS THE WORD LENTH TO 8-3IT)

APFENDIX 3

IN ORDER TO FIT O/A CUNVERTSER)
: 1T 2DUP + CUP 1+ CIRREL + 33 ROT SINK + 2?8 2+ CORP3ZL + 23 ;
: 2T 1+ SINK + ?B 3
: STORE N 0 DO T 1T I 27 2 +L722J° ;

FIT N 0 DO I SINK + DUP 28 I 1+ SINK + CU® 3B 2RIT 2?3
SWAP ?B 2 +LOOP 3
: COMAX O N ¢ D7 I SINK
THEN DROP 2 +LO0JP MAXNB
: COFACTOR N 0 DO MAXNS
2 +L00P ;
CO0F QUTPUT 240 O0C LI 4 PCP 0 4 SWP3 2 0 4 LZC
: SCOPE BEGIN DUP LIMITS 02 I 1+ 38 CUTPUT 2 +
?2V0U END 2DRCP 3
(FORMAT TO WRITE THZ OUTPUT 2M VIUD
i FMT LOCATION 1+ 3B 4 % CCRREL + ;3
1FMT 4 0 CO DJUF I FM4T + 28 SwWaP 2?8 1+ LOJP DRCP
v STRING # CORREL IN BRYTES # SAY CRLF CORREL PRINT3
CRLF STRING "™ MAXIMLM NUMBER = " SAY ANSWER 1FMT ANSWER
PRINTB CRLF STRING A LOCATION IS A SAY LOCATICN ? CRLF
STRING 8 SINK IN BYTES 8 SAY CRLF SINK PRINT CRLF ;
(CYCLIC CORRELATIOIN RIUTINE)
HEX 8 CONSTANT N 0 INTEGER ANSWER
N ARRAY Z N ARRAY X Y ARRAY Y
! ZERD 0 ANSWER 2 3 ¢ SHIFT X + 1
¢ COEF N 0 CO DUF I + N NOD SHIFT
ANSWER +2 2 +L00OP DRCP 3
: CORREL N 0 DO ZERC I CCSEF ANSWER 2 I Z + 2?2 2 +L23P 3
(DEFINE MOD I + X)
CODE +INDEX 0 2 1 0F MOV 2 0 2 2 0E A 3 2 CI
-8 2 AI THEN 1 O0E 0 2 "9V RETURN
¢ INDEX +INDCEX ShAP DRIP ; :
C N=2 OPTIMAL SHORT CURRELATION USING RECT. TRANSFIRM)
HEX 4 ARRAY HH &4 ARRAY XX

2 20VER < IF SwaP I 2 7 LOCATICAN ?

B) 2 +

;
I SINK + 3 FE %/ I STNK + 2

TURM

RZ
<P 0 OUTELT

Q
L3

4 -

Y + 3 &

-

€ ARRAY AA & ARRAY MV 6 ADRAY WW
P 1STEP 2 HH + 2 2DUP 2 Aa + 2 HH 3 + 2/
4 AN 4 2 HH 2 - 2 7 AA 2 3
P 2STEP XX 2 2DUP 2 AA + & = 2 MM ¢ 2 2 XX + 3 + 4 Aa 4
S % 4 MM + 2 2 XX + @ - AA 9 % MM 2 3
! 3STEP 2 MM + 2 4 MWW + 2 4 M4 + 3 MM 2 = 2 Wd ¢ 72 MM 3
4MM + @ 4+ 2 MM + 2 - WW 2 3
* CORL 1STEP 2STEP 2STEP 3
(N=3 OPTIMAL SHORT CORRELATIAON USING RECT. TRANSEIRM)
FEX 6 ARRAY HH & ARRAY XX 6 ARRAY YY
8 ARRAY MM 3 ARRAY AA 8 ARRAY 28
1STEP 2 HH + 2 CUP HH & ROT - DUP 2 4A + ? & rAh ¢ 2 ROT
DUP & AA + 2 + 43691 #M% 6 AA + 2?2 FH 2 &4 HF ¢ i 2 HH +
+ + 5 .
43691 xMx AA ? 3 i e B T

2STEP 4 XX + 2 CUP XX 3 ROT - CupP 2 38 ¢ 22 !
UP 4 83 +« 2 4+ 6 BB + 7 XX 2 2 XX + 2 & XX ¢ 2 + ¢4 33 ? :
3STEP 8 0 OO T 04 + 3 I 88 + 2 Mz I Mv + 2 2 +LJ0P 3
4STEP 6§ MM 4 2 CUP 2 MM + 3 R0T = CUP MM 2 & YY 2 & W1 + 3

ROT = DUP MM 3 ¢ 4 YY + 2 + MM 3 SWaP = 2 YY & 23

* CORL 1STEP 2STEF 3STEP 4STEP |
(N=5 gpTIMAL SHORT CURRELATION USING RECT.

s as 3 #a B) | ==

TRANSFIRM)

CECIMAL 10 ARRAY FH 10 4RRAY XX
20 ARRAY 828 20 ARZ2AY MM

: 1SS 2 HH + 2 2DLP 2LU? HH 3z DUP RAOT -

2 DUP ROT = & AA + ? + RCT A H4 + 3 CuUP

4 HH + 2 DUP ROT = 2 AA + 2 + 52423 #Wx

: 1STEP 1

g AL + 3

ROT + 524
: 255 8 X
2 DUP ROT
+ SWAP 5

: 2STEP 2
BB + 2 DU
+ 18 B3 +
3STEP 2

6 MM +
MM + 23
B MM +

Y = &

s =C | I~ 4+ == as

a
CORL 1STEP 2STEF 2STEP 4STEP 3

1C
2¢C
2 AA
RCT =
Aa ?

APF=NDIX 8

AQRAY YY
ARRAY A7

4 7 + PIT R/ HH «

5 AA + 7 + SyAP

-
L]

SS 2 AA + I DUP 4 AA + 2 DUP ROT + [UP 10 AA + % SWAP
DUP ROT 4 16 AA + ? 6 AA + g DUP RIT + CUP 12 a¢ + ?

29 %Mx 18 AA + 2 + 14 AA + 2
X 4+ I 2DL® 2DUP XX 3 DUP ROT

SS 2 B9 + 1 LUP 4 82 + 3 DUP ROT +

"
L

2 83 4 2 4+ RCT 2 XX +
- & BB + ?2 + RPOT 4 XX + 3 CUP ROT -
XX + 3 DLP R0T - 3 8B + ? + 83

b T
H L]

P ROT + 156 88 + ? 5 B5 + 3 CUP RCT +

2 14 P33 & 2 3
0 0 COI AA + 3 I 33 + I =M%

4STEP MM 3 18 MM + & - 2D4YP DJUP 2 M

- 12 MV + @ 4+ YY 2 - 4 WM
MM 4 @ = CUP RCT + 2 MM +
- 15 MM 4 3§ 4+ 8 YY + 2 M

L33 IS L

YY + 2 = & YY ¢+ &2 - % YY + a

]

+
b]
-
-
=

T

-

G (Rl e 2

cuP 10 35 + T SWAP 3

QUP 12 B3 + 7 RBT

pp s 2 2 &L9ge §
4+ 2 % MM + 3 - DUF RIT

o L

44 3+ 2%+ 2

-
- 14 MM + 2 + 4 YY + ?

20LP +

SWEP NUYP 2 #ME + +

6 YY + 2 3

Listings for chapter 5

(1) PN sequence generator microprogram

redisters are - tP9————-1s2

ta~-———msa
th———--1srfi
te——=-msdi
r0——--fsr
r3-—---lenth
r7-——--red
rb----1line
gsl----skir
s3—-——--sdnac
sf-———szern

labels are !-strt at location 000
outl a3t location 030

shift at location 050

out?2 at locastion 070

Z RAORROKOKOK 80K 8 0K KK 5 K K O 0K K 3K K Kk K K KK KK OR K0K 08 0K % ok K K KOk K K K K X0k XK
/

/ title noise! sseudo rendom secuence senerator
/

A BORIOKOR ORS00 K KK KK K KK KO K KOF 5K KK 30K 3K0K0K K K K K K KK KKK Kk K K KOk ook
/ assidgrments

“Zlsa = 19

Amsa = ta

Zlsdi = tih

“Zmsdi = tco

“sdnac = «3

Zline = rb

“fer = r0

Zlenth = 3

Zezero = sf

Zskir = sl

Zreg = r?7

7 RORKOKOKKOK KRR K 0K 0K KK ok 8 808 30K K K K KK K KOK 0K K K K K 0K K 8

/ this aldorithms maskindg bit-7 and bit-1, bw

/ ex—or and loading bit-one.

/ outrut = the outrut seceuernce

/ lsa = 1. s. address

/ msa = ms. s+ address of ctore ram simulztor

/ l1lsdi = 1, s. data inrut

/ msdi = m, s. data inFut

/ sdnac = €3 skir if data not accerted

/ skir = skir alwaus

0N~ NdUMN=O

10
11
12
13

14
15
16
17
i8
19
20
21
22
23
24
25

000
001
010
011
020
021

030
031
040

041

050
051
060
061

070
071
080
081
090
091
0A0
0Al
OEkO
OER1
oco
0C1

000A137010
0009137010
950C137010
FE02337110
A003337110
7F00337111

005E104030
0005337110
0807337110

0000037110

000E304130
002E352110
00B0030110
0005433110

0700137013
3F0015611F
8000366110
002015211F
8000366110
0000533110
000331313F
0000001131
0000137011
000731313F
0500137011
0300137010

outl?

shift

out2}

/ length = the secuence lendgth
/ szero = skip if zero
/ redg = counter initialluy(07)
/ 5 = the rresent 8-bits of the sequence
/ skir = ckir zlwaus
/ ***ttt*tt**tt********t**********t*t*****tt*
Xbedgin
msa=#00
lsa = #00
msdi=%#55
r2=#fe
lenth=%#a20
fsr=%7f ,
Xeven
ledi=0+r5
rS=%00
red=#08
/ +e initizte the counter
c=%#00
Xeven
line=0+fsr
Jine=r2 msk line
a=line ior @
rS5»@=0 ior rS ,
Xeven
branch out?2 » sdnac
O=#3f msk fer » czero
fer=#80 xor fsr
0=r2 msk fsr »
fsr=#80 mor far
fsr=0 ior fer »

skir Zinitizlization

Zoutrut to ram

down

s5Tero

down
lenth=0_lenth-1 ,

GZEero
a=0+a » skir

branch strt

reg=0_red-1 » szero

branch shift
branch outi
Xend

Listings for chapter 6

(1) Transmitter microprogram

(2) Receiver microprogram

redisters are !- té-—---fifo

tf-—=-contril
ro-——-tems
rl=-===count
rS—----bygyte
r7----ceso
rb----data
re-=---add
re-———gnsn
§l-==-gkir
s8~——-skfe
sd-—--siffl
sf-—==~szero

\abels are i-start at location 000
estx0 at location 001
testxl at location 071
Lst0 at location 090
testx? at location OE1
tstl a3t location 110
datt at location 141
13t+0 at location 1Al
33ta0 at location 1CO
4at00 at location 200
ctx at location 220
datal at location 240
dd0 at location 270
gntx a3t location 291
@lll at location 311
ct«00 at loeastion 360
rstrt at location 3FO
invil at location 460
ct:01 a3t location 4RO
ctx10 at locastion 510
inv0l at location 580
ch02 at location SEO
ctx02 at location 640
invi2 at location 4RO
chi2 at location 700
ctx12 at location 760
inv03 at location 700
ch03 at location 830
ctx03 at location 890
invl3 at location 900

chl13 at location 950

ctxl3 at location 9EO
inv04 at location A20
ch04 at location A70
ctx04 3t location ADO
invi4 at location EA40
chl4 2t location B%0
ctx14 2t location EFO
inv00 2t location C60
error0 at location CIO
loor0 2t location CEO
errorl at location CFO
loorl a3t location NOO

VAR 22222 +233 33343338238 3338 8233333338338 343483843334483437 -4
/
/ direct secuence srread srectrum microrrogram
/

VAR 222323333222 33403 330333338 33333334283834322322333333F83%1
/ assignments

Zekir = 51

“szero = sf

Zeconmtrl = tf

Zfifo = té

Zekfe = =8

Zciffl = sd

%“add = rc

“Zdatz = rb

Ztemr = 10

Acrso = r7

“count = ril

Xbgyte = rd

iZrnd€gn = re

VAR $3 233338323342 343338433 842303333834 3438323332438344 1
/ data! either 0 or 1 one bit rer sequence reriod

/ rngn! the Fe.res.d and the modulated data transmitted
/ temr ! B-bit of secuence

/ te | disrlay the modulated data

/ td } the p.r.s.d bute

/ tbh { the low rate datz information

/ inrput dats are loaded to the fifo (0s1)» 1-bit everu one
/ se@uence reriod

/ count! counter to load the dzts

/ crso § clock rulse serial ineut

SO B IR -

£ 0

000

001

010
011

020
021

030
031
040
041
050
051
060
061
070
071
080
081

090
091

0AO
0Al
OBO
OB1

0040107037

0007337110
010F13701F
0000103131
Cnoo137011
0077307130
0007103030
0000337110
7F01337110
0605337110
000C337110
000E337110
070F137010
0000103138
Cn00137011
000C103030
002E307130
00EDN104030

0900137010
00E46104030

000C303100
001C12210F
0000103131
000C337110

start!

test«0?

testi?

tstO!

skir ¢

szZero
siffl @

sl skir zlwaus

sf skir if zero

sd skir if fifo full

skfe { s8 skir if fifo emrtyu

fifo ! fifo inrut redister

contrl ! control flads (tf)

OEXOKOKOKOKIOKIOOEX start OROODIOROOOEKOEOKKOKE XK E

NANNNNNN N

/the prodram starts with en instruction which by loading
/the rrodgram counter (10) 2nd skirring to give 32 0 1l.s.b

/not skirring to dgive 1 l.s.b 3llows a3 branch to anvy location
/in the rrom.

Xbedgin
t0=f440 » s7

/+ithe external redicter (f7) is used to load the
/Frodrammzble divide by n counter

/ to test the tranmsmitter oreration the microrrogram ic

/ set ur to dgenerate & code sequence of length 127
/

crso=%00

contrl=%401 » szero /should be no skir
0=0+temr » skir

branch error0

crso=T74+0

t7=0+cerso / load rrodrammable counter
temr=%00
count=%7f
bute=%#06
a2dd=%00
rrign=#00
contrl=4%07 / fifo master reset
0=0+temr » skfe /should skir

branch error0

tec=0+add

Frngn=f24+0 / read m—-secuence of lendgth 127
td=0+pngn / dicsrlay m-sequence

Xeven

branch tst0 » siffl / check fifo full
fifo=0+pnan / load fifo

/ address modulo 127

add=0+add+1
O=count-zdd »
0=04+temr »
add=#00

initially

/no. of butes in the riris.d From

szero
ckip

oco 000531313F
oci1 0700137011

byte=0_hyte—-1 » =zero

branch test:1

/ start transmittins
contrl=%#0&é » czero /chould be no skie
0=0+temr » skir
branch error0

/ variable m—cecuence clock rate

oD0 060F13701F
on1 0000103131
OEO0 CDO0137011

41
42
43
44
45
46
47
48
49
S0
o1
92

o3
54

99

OE1 0077307130 testx2: crso=f7+4+0

OF0O 0007103030 t7=0+4+crso

OF1 000C103030 tc=0+add

100 O002E307130 rrndn=7f2+0

101 O0OED104030 td=0+rndn
Xeven

110 1100137010 +tstil: branch tstl

111 OOE6104030 fifo=0+rns=n

120 000C303100 add=0+add+1

12 001C12210F O=count-add

130 0000103131 0=0t+temr » skir

131 000C337110 add=%#00

140 OEO00137010 branch test:2
/
V2 $3333383 3333383343332 24033383333333333800883223054388234 %0
/esdata transmit microrrodgram
V2333333334333 3334¢238235333333388333338222038202442230022434:
/
/ the microrrodgram tramsmitte an slternative zero and one detas bitce
/

141 0007337110 datt:: crso=%00

150 O010F13701F contrl=%401 szero /should be no skir

151 0000103131 0=0+temr

160 CDOO137011 branch error0®

161 0077307130 crso=f7+0

170 0007103030 t7=0+crso

171 0000337110 temr=%00

i80 O070F137010 contrl=%07 /fifo master reset

ig1i 0000103138 0=0+temr » skfe /should ckir

190 CIDO0O0137011 branch error0

1921 0500337110 temer=#05

1A0 1005337110 bute=#10
/ dierlzy data =zero

iA1 OOOE337010 datx0: data»tb=#00

10 0077307130 crso=f740

iB1 0007103030 t7=04+crso

Xeven

56

57
o8
59

60
61
62
63

64
65
66
67
68
4H9
70

71

72
73
74
75
76
77

78
79
80
81
82

83

ico

i1C1
100
iD1

1E0
1E1
1FO
1F1

200
201
210
211
220
221
230

231

240
241
250
251
260
261

270
271
280
281
290

291

1C00137010D
00E6104030
0005313130
000031313F
1C00137011
0&60F13701F
0000103131
Cnoo137010

200013701F
00E6104030
000531313F
2000137010
0077307130
0007103030
1005337110

FFOR337010

240013701D
00B46104030
000531313F
2400137010
1005337110
000E337010

270013701D
00E6104030
000531313F
2700137010
2200137011

0007337110

84 2A0 O010F13701F

data0:?

datQo0:

ctx!

datal!l

ddO?

gntx?

branch data0 »
fifo=0+data
bute=0_bute-1
temr=0_temr—-1 »
branch data0
contrl=%#046 » szero
O0=04+temr » ckir
branch error0
Xeven
branch dat00 »
fifo=0O+data
bute=0_bute-1 »
branch dat00
crso=f740
t7=04crs0
buete=%#10

/ disrlau data one
datartb=#ff
Xeven
branch datal »
fifo=0+data
bute=0_bute-1 »
branch datal
bute=#10
datartb=%00
Xeven
branch dd0 »
fifo=0+datsa
bute=0_byute-1 »
branch ddo0
branch ctx

/

VA3 23333338238 34¢3303¢3 883333833383 34344240343244434¢%41

/+edenersl transmit microrrodram

/+ethe modulztion ture used is seuence inversion

/+ethe data bit rperiod

/(i.e. the srreading ratio is 127)

V2333233333042 3333333883 83¢3 3333388884333 22488833480342432

/ the microrrodgram is then configured to rermit transmiscion

/ of srreadindg sidgnal

/

/ adJust the transmitter clock reste outrut

crso=%#00
contrl=%401 »

siffl

€£Zero

sZero

sZero

siffl

sZero

siffl

sZero

keind(sik)

czero /should be no skir

i ecual 127 times the rn-chir duration

85
Bé

88
89

?1
92
93
94
25

?6
97
98
?9
100

101
102
103
104
105
106

107

108
109

110
111
112
113
114
115
116
117

2a1
2E0
2B1
2C0

2C1
2D0
20
2E0
2E1
2F0
2F1

300
301
310
311
320

321
330
331
340
341
350

351

360
361

370
371
380
381
3920
391
3A0
3A1

0000103131
CDo0137011
0077307130
0007103030

0000337110
7F01337110
000C337110
000E337110
070F137010
0000103138
CD00137010

OF05337111
0000103130
7F00337110
000C103030
002E307130

O000E15211F
000C303101
0500337111
3100137010
O00E337010
00EN104030

OOBE362010

3600137010
00E&£104030

0005313130
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030

all1ls

ct:00}

O0=0+temr »

skir

branch error0

crso=f7+4+0
t7=0+4+crso
/ initiali
temr=#00
count=%#7f
add=#00
rngn=%00

cation

contrl=#07 /fifo master reset

0=0+temr » skfe / should skir

branch erro
/

/ data bits are

/ at that

/++ check the 211 1’s

bute=#0f »
0=0+tems
temp=%#7f
te=0+add
rngn=f240

/

O=temr msk
add=0+a3dd+1
temr=%05 »
branch alll
datar»tb=%#00
td=04+rnsn

ro

time

cekir

Fhgn ¢ SZEro

y skir
skiF

‘ewnchronised’

ctate

e e (7F)

/ disrlay the transmitted sidnal

rrngnyte=data Mor Fndn

Xeven
branch ctx0
fifo=0+Fnsn

/ a cuclic counter is counted to determime the start of subsecuent

/ data bit
bute=0_bute
add=0+add+1
O=count-add
0=0+temr »
add=%#00
tc=0+add
rngn=72+0
td=0+rndn

0 » ciffl
S
-1

» SZero
skir

a2

date

by recodnising the zl11 one‘s
/ state of the m-secuence denerator and starting

bit

118
119
120

121
122
123
124
125

126

127

128

129

130
131

132
133
134
L35
136
137
138
139
140
141
142
143
144
145
146

147
148
149

3E0
3E1
3Co

3C1
3no
3D1
3EO
3E1

3F0
3F1
400
401
410
411
420
421
430
431
440
441
450
451
460
461
470
471
480
481
490

491
4A0
4A1

OORE362010
000031313F
3600137011

060F13701F
0000103131
CF00137010
0077307130
0007103030

3F0013701D
00E6104030
000531313F
0000103131
4600137011
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
O0ED'104030
O0OEBEJ362010
3F00137010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030

800E337010
O0RE362011
0000103130

retrtd

invii?d

/ sik or brsk in which the data to be tramncemitted is modulo-2

/ (exclusive-or) added to the code secuerice ie the modulztion
/ scheme for this sustem

Frrndgnrte=data or Fngn
temp=0_temr-1 » szero
branch ctx00
/ start transmiscion
contrl=4#06 » szero /should be no skis
0=0+temr » skir
branch erroril
crso=f740
t7=0+crFrso
/

/ because the lendgth ofthe seeuence is a rrime rnumber (127)

/ the dzta bit ic divided into 16 dzta butes where 15 butes are
/ of comrlete lendgth (8-bits) and the 1é6th bute mzcsked in order

/ to isolezte the recuired rumber of bits
Xeven

branch retrt »
fifo=0+Frn4dn
bute=0_bute-1 »
0=0+temr » skir
branch invii
add=0+edd+1
O=count-add »
0=0+temr »
add=%#00
tc=0+add
rrngn=f2+4+0
td=04+Fndn
rrndnsyste=datas xor Fngn
branch rstrt
add=0+add+1
O=count-add »
0=0+temr »
add=#00
te=0+add
rngn=f240
td=0+Frndn
/ last bute =
datar»tb=%#80
rngnste=data xor pndn »
0=04+temr

Xeven

siffl

sZero

«zTero
skir

ezero
skifF

10000000

ckip

150

151
152
153
154
155
156
157
158
159
160
161

162
1463
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187

188
189
190

4E0

4R1
4co
4C1
400
4n1
4E0
4E1
4F0
4F1
200
901

510
511
520
521
530
531
540
w41
S50
551
560
561
§70
971

580
981
590
991
BA0
9Al
SEO
SkE1
sco
SC1
SDo
o

SEO
SE1
SFO

4E0013701D

00E&6104030
0F05337110
FFOB337010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
O0ED104030
OOBE362010

510013701D
00E4104030
000531313F
0000103131
5800137011
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00EN104030
OOBE342010
5100137010

JFOBR337010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00EN104030
OOBE362011
0000103130
0077307130
0007103030

SE0013701D
00E6104030
OF05337110

ctx01:

ctx10

inv01l}

ch02:

branch ctx01

fifo=0+Fnsd€n
bute=#0f

datartb=#ff
add=0+add+1

r =iffl

O=count-add » szero

0=0+temr ,»
add=#00
tc=0+addg
Fngn=f2+0
td=0+Fnsn

skipr

Fngnyte=data xor rn=n

Xeven

branch ctx10 » ciff]

fifo=0+4+Frnsn

bute=0_byte-1

0=0+temr .
branch invo1l
add=0+add+1

O=count-zdd ,

0=0+temr .,
add=%00
tc=0+add
Prgn=7f2+0
td=0+rnrdgn

' SZero

skip

&Fero

skig

Fngnrte=deta xor endan

branch ct:10
/ 1last bute
datastb=43f
add=0+add+1
O=count-add

= 00111111

sZero

0=0+temr » skipr

a3dd=%#00
te=0+add
Fngn=1f240
td=04+rnsn
Fhgnyte=data
0=0+temr
crso=f74+0
t7=0+ceso
Xeven
branch ch02
fifo=0+rnsgn
bute=%#0f

HOT FRhdgn oy

siffl

ckir

191

192

193
194
195
196

197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231

SF1

600
601
é10
611
620
621
630
631

640
641
650
651
660
661
670
671
680
681
690
691
6A0
6A1

46RO
6B1
6CO
6C1
600
601
6EQ
4E1
6F0
6F1

700
701
710
711
720
721
730
731

000E337010

000C303100
001C12210F
0000103131

000C337110
000C103030
002E307130
00ED'104030
OORE362010

640013701D
00E6104030
000531313F
0000103131
6B00137011
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030
OORE362010
6400137010

EQOB337010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030
OORE342011
0000103130

7000137010
00E6104030
OF05337110
FFOR337010
000C303100
001C12210F
0000103131
000C337110

ctx02:

invi2}

ch12:

data,tb-#00

add=0+add+1
O=count-azdd ,
0=0+temr ,»
add=#00
te=0+3dd
pngn=7f240
td=0+rnsn
Frndgnyte=dzta xor endn

Xeven
branch ctx02 ,
fifo=0+rnsan
buyte=0_bhute-1
0=0+temr » skir
branch invi?2
add=0+4+a3dd+1
O=count-zdd ,
0=0+temr .
add=#00
tc=0+3dd
Fhngn=1240
td=0+rnsdn
Fhgnste=data xor epndn
branch ctx0?

/ last bute =
datastb=%e0
add=0+add+1
O=count-zdd »
0=0+temr »
add=%00
tc=0+2add
Fhgn=f2+4+0
td=0+rnsn
Fngnrte=data xor rren
0=04+temsr

Xeven
branch chi2 ,
fifo=0+rnan
bute=#0f
datartb=#ff
add=04+a3dd+1
O=count-add »
0=0+tems »
a3dd=#00

szero
skip

ciffl

SZero

SzZero
skir

szZero
skip

siffl

szero
skir

11100000

232
233
234
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249

250

251

252
253
254
265
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272

740 000C103030

741 002E307130
750 OOEN104030
751 OOBE362010
760 760013701D
761 O00E&6104030
770 000531313F
771 0000103131
780 7000137011
781 000C303100
790 001C12210F
791 0000103131
7A0 000C337110
7A1 000C103030
7B0 002E307130
7E1 O0OED104030
7CO0 OOBE3462010
7C1 7600137010
7D0 OFOE337010
711 000C303100
7EQ0 001C12210F
7E1 0000103131
7F0 000C337110
7F1 000C103030
800 O0O02E307130
801 O0O0ED104030
810 OOEE362011
811 0000103130
820 0077307130
821 0007103030
830 830013701D
831 O0O0E6104030
840 O0F05337110
841 OOOEK337010
850 000C303100
851 001C12210F
860 0000103131
861 000C337110
870 000C103030
871 002E307130
880 O0OED104030

ctx12?

invOo3:

ch03!

te=0+3dd
Fhngn=f2+0
td=0+ernsn
Fndnste=data xor rndn
Xeven

branch ctx12 , <iffl
fifo=0+rnsdn
bute=0_bhyte-1 ,
0=0+temr » ckie
branch inv03
8dd=0+add+1
=count-add .,
0=0+temr
add=%#00
tc=0+adqg
PRgEn=f240
td=0+rndn
Fngnyste=data xor rns=n
brarnch ctx12

/ last bute= 00001111
datastb=%#0f
add=0+add+1
O=count-add »

sZero

ezero
skir

szero
0=04+temr » ckisr
add=#00
te=0+add
rrsgn=Ff240
td=04rnsdn

Fhgnyte=dzta Hor endgn
0=0+tems
crso=f740
t7=0+crso
Xeven
branch ch03
fifo=0+rnsn
bute=%#0f
datar»tb=%#00
add=0+add+1
O=count-add » szero
0=0+temr » skir
add=#00
tc=0+add
PRgn=7f2+4+0
td=0+rndn

r siffl

273 881 OOERE362010 pndnyte-datz xor rndn
Xeven
274 B0 8900137010 ctx03: branch ctx03 » siffl
275 891 O00E&6104030 fifo=0+rndn
276 BAO 000531313F bute=0_buyte-1 » szero
277 8A1 0000103131 O0=0+temr » ckir
278 BBO 9000137011 branch invi3
279 BE1 000C303100 add=0+add+1
280 BCO 001C12210F O=count-add » <zero
281 8C1 0000103131 0=0+temr » skis=
282 8DO0 000C337110 a3dd=%#00
283 8D1 000C103030 tc=0+add
284 BEO O002E307130 rRgn=f240
285 B8E1 OOED104030 td=0+rndgn
286 BFO0 OOEBE362010 rrngnste=dates xor Frngn
287 B8F1 B900137010 branch ctx03
Xevern
/ last bute = 11111000
288 900 FBOER337010 inmvid: datartb=%#f8
289 901 000C303100 add=0+add+1
290 910 001C12210F O=count-add » cszero
291 911 0000103131 0=0+tems » skir
292 920 000C337110 add=#00
293 921 000C103030 te=0+add
294 930 002E307130 rrgn=7f2+0
“99 931 O00ELN104030 td=0+rnisn
296 240 OOBRE3S62011 rrignrte~data Mor Frrgn » ckip
297 941 0000103130 0=04+tems
Xeven
298 950 9500137010 chid; branch chl13 » siffl
299 991 00E6104030 fifo=0+rndgn
300 960 OF05337110 bute=#0f
301 961 FFOR337010 datartb=#ff
302 970 O000C303100 add=0+add+1
303 971 001C12210F O=count—-add » szero
304 980 0000103131 0=0+temr » skir
305 981 000C337110 add=%00
306 990 000C103030 te=0+add
307 991 002E307130 engn=f240
308 9A0 O0OED104030 td=0+rnsdn
309 9A1 OORBE362010 rndnrte=datas xor FrRdn
Xeven
310 9BO0 9R0013701D ctx13: branch ctxi3 eiffl
311 9E1 OO0E&104030 fifo=04+Frndn

312 CO 000531313F byte=0_hute-1 , srFero
313 9C1 0000103131 0=0+temr , ckis
314 9DoO A200137011 branch inv04
315 901 000C303100 add=0+a3dd+1
316 ©9EO 001C12210F O=count-a2dd , szero
317 9E1 0000103131 0=0+temr » skis
318 9F0 000C337110 add=4#00
319 9F1 000C103030 te=0+add
320 A00 002E307130 Fngn=7r2+0
321 A01 O0O0ED104030 td=0+rns=gn
322 A10 OOERE342010 Pngnste=dats xor enan
323 Al11 9E00137010 brznch ct:13
Xeven
/ last bute = 00000011
324 A20 030B337010 inv0o4! datartb=#03
325 A21 000C303100 add=0+add+1
326 A30 001C12210F O=count-add , szero
327 A31 0000103131 0=0+temr » shkip
328 A40 000C337110 add=%#00
$29 A41 000C103030 tc=0+add
330 AS50 O002E307130 FRgn=1240
331 AS1 O00ED104030 td=04rnsn
332 AL0 O0RE342011 Fnanste=data xor rrngn skip
333 As61 0000103130 O0=04+tempr
Xeven
234 A70 A700137010 cho4! branch ch04 » siffl
335 A71 O00E4104030 fifo=0+rnsn
336 ABO OF05337110 bote=#0f
337 ABtl O00E337010 datartb=400
338 A90 000C303100 8dd=0+add+1
339 A%91 001C12210F O=count-a2dd » czero
340 AAO 0000103131 0=0+temr s skipr
341 Aati 000C337110 add=%00
342 AEBO 000C103030 te=0+add
343 AB1 002E3207130 Frngn=f2+40
344 ACO OOEDN104030 td=0+rnsn
345 AC1 OOBE342010 rngnrte=data xor engn
Xeven
346 ADO ADOO13701iD ctx04! branch ctx04 ciffl
347 AD1 0O0E4104030 fifo=0+rndn
348 AEO 000531313F bute=0_byte-1 , szero
349 AE1 0000103131 0=0+temr » skir
350 AFO B400137011 branch invi1sa
351 AF1 000C303100 add=0+4+add+1

S52
353
354
355
356
357
358
359

3460
361
3462
363
3464
365
366
367
368
349

370

371

3722
373
374
375
376
377
/8
379
380
381

382
383
384
385
386
387
388
389
320
391

HOO

EBO1

EB10
E11
B20
B21
B30
B31

E40
B4l
EBSO
BS1
B&60O
k61
E70
E71
k80
k81

E%0

E?1

BAO
EAl

EEO
ER1
ECO
BC1
EDO
EDl1
REO
RE1

EF O
EBF1
coo
co1
Cio0
Ci1
C20
c21
C30
C31

001C12210F

0000103131
000C337110
000C103030
002E307130
00ED104030
OOBRE362010
AD00137010

FEOB337010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030
OORE3462011
0000103130

E?0013701D
00E46104030
0F05337110
FFOB337010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
O0EN104030
O0BE362010

BF0013701D
00E46104030
000531313F
0000103131
C600137011
000C303100
001C12210F
0000103131
000C337110
000C103030

invi4}

chi4:

ctx14:

O=count-sdd ,
O0=0+tems ,»
add=#00
te=0+3dd
Frgn=7f240
td=0+rnsn
FRgnste=data xor rnen
branch ctx04

Xeven

/ last bute = 11111110
datastb-#fe
add=0+add+1
O=count-add sZero
0=0+temr » skip
add=#00
tc=0+add
Fhsgn=7f240
td=0+rnan
Fhndriste=data xor rngn y
0=0+tems
Xeven
branch chi4 ,
fifo=04+rnsan
bute=%#0f
datartb=%ff
add=0+4+add+1
O=count-azdd ,
0=0+temr
add=%#00
tc=0+4+add
Frngn=f240
td=0+rngn
Fngnste=data
Xevern
branch ctxi14 ,
fifo=0+rnsan
buyte=0_bute-1 ,
0=0+temr » skifr
brarnch inv00
add=0+3dd+1
O=count-add » czero
0=0+temr » skir
add=%00

tc=0+add

szero
skir

cskip

siffl

srero
skig

HOT Phgn
siffl

£eZero

392
3923
394
395

396
397
398
399
400
401
402
403
404
405
406
407
408
409

410
411

412
413

414
415

4146

cC40
Cc41

cSo
CS51

Cé60
Cé1
C70
C71
c8o
c81
c?0
C?1
CAO
CAl
CEO
CEl
cco
cri

cno
cni

CEO
CEl

CFoO
CF1

noo

O002E307130
OOEN104030
OORE362010
EF00137010

000B337010
OF05337111
0000103130
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030
O0RE362010
0077307130
0007103030
3F00137010

CE00137011
0000103130

CDo0137011
0000103130

Do00137011
0000103130

CF00137011

inv00:

errorQ!?

loorO1}

errori?

loori?

FRgn=f2+0
td=0+Frnsgn
rngny te=data xor epndn
branch ctx14
/ last bute =
datartb=%#00
bute=#0f
0=0+tempr
3dd=0+add+1
O=count-add » szero
0=0+temr » skir
add=#00
tc=0+add
pndn=f24+0
td=0+rndn
Frrnigns te=data
crso=f740
t7=04crso
branch rstrt
/ error routines
Xeven
branch loor0
0=0+temr
Xeven
branch error
0=04+temr
Xeven
branch loorl
0=04+temr
Xeven
branch errorl
Yend

ckir

HOr Fhngn

00000000

redisters are :- fl-——=-ramrd

f2—-——-refrd
f3-——-errd
fS==--promrd
fé~=-=fifrd

f8====1trd
tS-=--rromad
t9----1s5a

tb==--ramut
te-—=-refad
td-—--erad
te——--1tad
tf-—--contril
r0----teme
ri----count
r2-—---refce
r3-——--erly
r4-——-adgmnt
rS=----const
ré-—--—-thred
r7-—-—--cersi

rB-—---l1ate
r9——-=~1add
rb----data
rd-===dsmnt
re-—---hyute
rf-———-ories
§l-———-gkir
sB-———gkfe
sb—=~~sipluys
sd——~-siffl
sf-—--szero

labels are !-start at location 000
ssrx at location 070
tdat at location 080
rxff 3t location ORO
eror0 at locatiorn ONO
strt a3t location 190
Fnx0 a3t location 1E1
tffO0 at locastion 210
Phi0 at location 2E0O
adn at location 310
#hil at location 340

cal at location 3E1

true at location 441
xcal at location 491
ntve at location 4E1
corrl at location 510
dserd at location 571
1 at location SEO
chfe at location 600
track at locastion 6RO
erorl at location 7CO
dsrx0 at location 871
rsrx a3t location 8C1
tfifrx at location 8FO0
sec0 at location 991
rfram at location 9F1
weal at location A90
rrocs0 at locastion AD1
chthr at location RB31
modthrd at location EBI1
mirnus a3t location ED1
colrt =t location COO
demod at location Cé1
rroms a3t locationm CAO
drff at location CFO
corrnet at locationm DAO
eror2 at location ERO

7 B OROK OK 8 3 K KK K KO KK K F XK o 30Ok KOk K 8k JKOK R OK F 50K kO KKK 0K XOKOK X KoK K K X
; srread srectrum correlator receiver microsrogram
; 1383333343320 2032230422480 232 300040822248 2224224 921
ﬁassisnments

/ 4448800

Xszero = sf

Zskir = s1
Lskfe = <8
Zsiffl = =d
Asirlus = sb
Xlsa = L9

Zrromad = t5
Zramwt = tb
Zcontrl = tf

Zramrd = f1
Zrromrd = £S5
Zfifrd = f&
Zrefad = tec
Xrefrd = f2

Ztemr = r0

Zcount = ri
Xdatz = rb

Xcepsi = r7

Xbyte = re

Xrefce = r2
Xerluy = r3

Zlate = rB

Zerrd = 3

Zerad = td

Zltad = te

Zltrd = f8

Zagmnt = r4
Xladd = r9

Zdsmnt = rd
Zthred = ré
Zconst = rS5
Zones = rf

/

VAR ¢ 233448338338 4434483343333333338338338 3433333333333 3843%3
/the rrodram starts with an instruction which by loadinsg
/the rrogram counter (10) and skirring to give @ 0 l.s.b
/not skirring to dive 1 l.s.b allows 2 branch to any
/location in the rrom.

/ szero- skip if zero

/ skir - skir slwaus

/ skfe - skir if fifo empty

/ siffl - skir if fifo full

/ sirlus - skir if outrut rositive

/ ramwt - write into ram

/ ramrd - read from rem

/ fifrd - read from fifo

/ cprsi - fifo clock rulse serial inrut

/ contrl - control fladgs (tf)

/ rromad - hamming weidght function address
/ promrd - hamming weight function outrut
/ refad - reference rF.n.g address

/ refrd - references rF.n.g data

/

erad - erly address

0 000 0040107037

cCoENITUDEN-

10
11

13

14

001
010
011
020
021
030
031
040
041
050
051
060
061

070
071

0008337110
0009337110
0000037110
FFO03337110
070F137010
0000103138
ono00137010
0007337110
010F13701F
0000103131
onoo137010
0008103030
0009103030

0077307130
0007103030

start!

SSTM

/ errd - erluy data

/ 1tad - late address
/ ltrd - late data

/

/

Xbedin

t0=r440 » s7

/the external regicter (f7) is used to load the
/prodrammable divide buw n counter
/

3322222222203 8230223282 0832230232422223 23233332383 %:

«odata test microrrodram.

0232232233203 2333042323332 82332223083833243333332222333

t8 disrlays the correct recirtion of (ff)s
the correct recirtion of (00).
the inrut datas secuernce is serially clocked into
fifo inrut redicter using the clock outrut into the
denerated by the rrogrammable counter.
initizlisation

rB=%#00

r?=%#00

a=#00

r3=%ff

contrl=%#07 /fifo master reset

0=0+temr » cskfe / should cskir

branch eror0

crsi=%$00 /initizlise rrosirammable divider

contrl=401 » szero /chould be no skir

0=0+temr » skir

branch eror0

t8=0+r8

t2=04r9

/ load the divider fector

/ the fifo rlzces a signal on the (data accert)

/
/
/
/
/
/
/ the rFrodram tests
/
/
/
/
!
/

which

the correct recirtion of the data.
t? dicsrlzys

the

loads

/ the contents of the outrut redister onto B-bit data bus.

Xeven

cesi=f740
t7=04+cFrsi

/ test fifo emrty
Xeven

16.

17
18
19

21
22
23
24
25

26
27

080

081

090
091
0A0
0A1
0BO
OEB1
0Cco
oCc1

ono
on

OEO
OE1
OFO
OF1
100
101
110
111
120
121
130
131
140
141
150
151
160

0800137018

0066307130

006312210F
OE00137010
0008303000
0700137010
006012010F
0700137010
0009303000
0700137010

0000103130
0D00137010

000E337010
000D337010
000F337110
0000337110
0008337010
0805337110
0003337110
7F01337110
070F137010
0000103138
7C00137011
0007337110
010F13701F
0000103131
7C00137011
000C337110
0077307130

tdat?

ruffe

erorQ:

branch tdat »-
ré=f&+0
O=ré6-r3 » szero
branch rxff
r8,t8=0+rB8+1
branch ssrx
O=ré-a » szero
branch ssrx
r?:t9=04r%2+1
branch ssrx
Xeven
0=0+temr
branch eror0

sk.fe

b3 33334333823 3433334334333424242338333343383234343303%84%:
general fn srread srectrum receiver microrrodram

0K K KK K OF K 0K % K0k 30k K o 2K K 8 38 Kk K o 3K 8 o 0K K o8 50K 0K K K K K K KKK XKOE KO XKk
the rrogram contains an instruction which by loadind
a programmable counter (f7)y an skir control fladg (s6)
and skipring to test the modulated datar rnot skirrind
to test the seauence without modulation

(f4) ic used to load the value (thred).

t8: disrlaue the modulzting dats

td! should disrlav (BO)

te! tumrling disrplzy (00:,7f)

rerte=%#00

rds»td=%00

ones=#00

temer=%00

r8rtB8=#00

const=%#08

erlu=%#00

count=%#7f /rno.of butes in the F.r.s.d rFrom

contrl=%07

0=0+temr » skfe /should skir

branch erorl
crsi=%$00
contrl=#01 » szero
0=0+temr » skir
branch erorl
rc=%00

cersi=f74+0

NANNNNNNNNNNNNN

/<hould be no skir

45
44
47
48
49

o1
o2
S93
54
55
56
97
o8
59
60

61
62
63
64
65

66

68
&9
70
71
72
73
74
75

161

170

171
180
181
190
191
1A0
1Al
1BO
1B1
ico
1C1
1Dno
im
1E0

1E1
iFO
iF1
200
201

210
211
220
221
230
231
240
241
250
251

0007103030

0004337110
7F08337110
4106337110
1E00137011
0077307130 strt!
0007103030
4106337110
7F08337110
0004337110
0000337110
000E137010
000C303100
001C12210F
0000103131
000C337110

0009337010 rpnx03
000C103030
0022307130
1000037110
O000BR337110

2100137018 +tffO?2
006B307130
000B103030
002B372110
000001113F
0000103131
2B00137011
00B5104030
005F307130
O00FE304130

t7=04+cpsi
agdmnt=#00
late=%7f
thred=#41
branch Fnx0
crsi=f740
t7=04cprsi
thred=#41
late=#7f
agmnt=%#00
dsmnt=%#00
te=#00
re=0+rc+i
O=count-rec » ezero
0=0+temr » skir
rc=#00

AR 222222823322 2222323322 82832283222 08223233033224322492230224433%1¢7

£

/ acauisition rhase

/

VAR 2222023232332 02002323 8834200 3383330303323222343043232233324325 29"

/+intialize the address counter (19).

laddrlsa=#00
refad=0+rc
refce=refrd+0
a=%10
data=#00

/

/
/
/
/

/ increament each time
Xeven

branch tff0 » skfe
data=fifrd+0
ramwt=0+data
data=refce xunr dats
a=0_a-1 » szero
O0=0+temr » skir
branch rhi0
rromad=0+data
ones=promrd+0
bute=0+ones

see+ correlation FProcess. s

this rrodram comrutes the rnumber of
shiftingd the receiver’s code reriodiczllw bw 1 chir

agreement bite while

76

77
78
79
80

82
83

85
86
87
88
89
2?0
21
92
?3
94
?5
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

260

261
270
271
280
281
290
291
2A0
2A1
2B0O
2B1
2C0
2C1
200
201
2E0
2E1
2F0
2F1
300
301
310
311
320
321
330
331
340
341
350
391
360
361
370
371
380
381
390
321
3A0
3A1
3RO
3R1

O00F4302130

00SE322100
OOEDN302130
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
2100137010
8000337110
000B332110
00B5104030
005F307130
O0FE304130
000F313130
00FA4302130
00SE322100
00ED302130
1000037110
0009337010
3E00137011
001B307130
002B372110
000001113F
0000103131
3A00137011
00EBS5104030
00S5F307130
OOFE304130
00F4302130
005E322100
O0ED302130
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
3100137010
8000337110
000B332110
00BS5104030
005F307130

rhiO?

asgn:

rhil?

agamnt=ornes+aamnt
byte=const-bute
dsmnt=buytet+dsmnt
rc=0+rc+1
O=count-rc »
0=0+temr »
rc=%#00
refad=0+rc
refce=refrd+0
branch tff0
temr=%#80

data=temr ior data
rromad=0+data
ones=rromrd+0
buyte=0+ones
ones=0_ones-1
agsmnt=onest+agmnt
bute=const-bute
dsmnt=butetdsmnt
a=%#10

ladd,1lsa=#00

branch cal
data=remrd40
data=refce xnr data
a=0_a-1 » czero
0=0+temr » skir
branch rhil
rromad=0+dats=
ones=rromrd+0
byte=0+ones
agmnt=onestadmnt
bute=const-bute
dsmnt=bytet+dsmnt
rc=0+rc+1
O=count-rc »
0=0+temr
rc=%#00
refad=0+4+rc
refce=refrd+0
branch adgn
temr=%#80

data=tems ior data
rromad=0+dzta
ones=rromrd+0

eFero
skip

szZero
y skir

‘120 3C0O OOFE304130 bute=0+eones

121 3C1 000F313130 ones=0_ones-1

122 300 O0OF4302130 agsmnt=ones+agmnt

123 3D1 O00SE322100 bute=const-bute

124 3E0 OOED302130 dsmnt=butet+dsmnt

125 3E1 004D322100 cal: demnt=agmnt-dsmnt

126 3F0 O0OODE304034 buteste=0+dsmnt » sé
/
/+«ssearch for correlation reak
/
/ recognisind the correlation reak is an inherent rart of
/ the acauisition rrocess. the rezk may be maximum rositive
/ or maximum nesativey the microrrodram tests whether the reak
/ is above a rositive threshold or below 2 nedgative threchold.
/

127 3F1 0106337111 thred=%#01 » skip

128 400 4400137010 branch true

129 401 006D30203R dsmntytd~thred{dsmnt » sirlus

130 410 7F00337111 temr=%#7f » skir

131 411 5100137010 branch corrl

132 420 O000E12210F O=temr-bute » szero

133 421 0000103131 0=04+temr » ckir

134 430 5700137010 branch dserd
/
/+sta disrlavus the number of errors in detecting the corr.
/ peak.
/

135 431 000A303000 rarta=0+rz+1

136 440 1200137011 branch strt

137 441 0000103132 +true! 0=0+temr » s2

138 450 4900137010 branch xcal

/ the correlation values ere zrranded such that the resak
/ amrlitude lies in the rande of 8-bits two’s comrlement
/ the values will chaenge as a3 result of the overflow

/ prorerties of two’s comrlement.

/
132 451 004D30203R demntrtd=thredtdemnt » sirlus
140 4460 5700137010 branch derrd
141 461 O00DO10413F 0=04dsmnt » =zero
142 470 0000103131 0=0+temr » skip
143 471 5700137011 branch dserd
144 480 O000B31313F late=0_late-1 » szero
145 481 5100137010 branch corrl

146 490 1900137011 branch strt

147
148
L49
150
191
92
S3
54
55
Sé
97
58
59
60
61
62
63
64
65
.66
L67
L68
L&69
L70
171
172
173
174

175
176
177
178
179
180
181
182

491
4A0
4A1
4BO
4F1
4CO
4C1
4D0
4D1
4E0
4E1
4F0
4F1
500
501
910
511
520
521
530
531
540
S41
550
551
560
961
570

571
s80
581
590
591
SA0
SA1l
SEO

00D030413F
4E00137010
51003046138
5700137010
000010313F
0000337111
5700137011
000E31313F
5100137010
1900137011
300030613E
5700137010
000E31313F
5100137011
19200137010
0004337110
000D337110
1000037110
0009337010
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
0077307130
0007103030
3100137011

xcall

ntve?!

corrl!

1000037110 dsrrd:
0077307130
0007103030
0009337110
000A337110
0004337110
000D337110

000C303100 1Fni

temr=0+dsmnt » <irlus
branch ntve
temr=#51+temr
branch dserd
0=0+temr » szero
temr=#00 » cskir
branch dseprd
bute=0_byute-1 »
branch corrl
branch strt
temr=$30+temr »
branch deprd
bute=0_bute-1 »
branch corrl
branch strt
admnt=4#00
dsmnt=400

a=%$10
laddrlsa=%#00
rc=0+rc+1
O=count-rc » szero
0=0t+temr » skir
rc=%#00

refad=0+rc
refce=refrd+0
crsi=Ff740
t7=0+4+crsi

branch agn

sirlus

sZero

sirlus

EZETO0

VAR 3234433833433 3333333333303383283433323383283323033

/+.despread and tracking rhase

13333344238 23333383333333333422832283883824232332394 4

an error signal senerated mode is introduced in the same
desrreading the trackins correlator is

imrlemented by derneratind the local secuences (early and
late)s using prom’s and rerlacins the multirlier by exclusive

rhase with

NN NNN

or oreration.
a=%10

crsi=f740
t7=0+4+crsi

r?=%$00

ra=#00

r4=%#00

rd=$00
rc=0+rc+1

183
184
185
186
187

188
189

190
191

192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215

SR1

sco
SC1
sSDho
Shi

SEO
SE1

SFO
SF1

600
601

610
611
620
621
630
631
640
641
650
651
660
661
670
671
680
681
690
691
6A0
6A1

6EB0O
6B1

001C12210F

0000103131
000C337110
000C103030
0022307130

00CN104030
0033307130

00CE104030
0088307130

6000137018
006B307130

00B2362110
0028104030
000001113F
0000103131
6800137011
O00RB8372110
0085104030
005F307130
O00FE304130
00F4302130
005SE322100
00ED302130
00B3372110
0035104030
005F307130
OOFE304130
00F2302130
00SE322100
00EA302130
SBE00137010

8000337110
00BRB372110

chfe!

track!

O=count-rc

sy szZero
0=0+temr » ckir
rc=%#00

refad=0+rc

refce=refrd+0

/ early denerator

erad=0+rc
erlu=errd+0

/ late denerator

1tad=0+rc
late=1trd+0
/

/+.retreave data from fifo

/

Xeven
branch chfe
data=fifrd+0

/

/IO

/

refce=data xor refce

t8=0+refce
a=0_c-1 »

O0=04temr »
branch track

skfe

start desrpread

sZero
skir

late=data »nr late

rromad=0+1zte
ones=rromrd+0

bute=04+o0nes
r4=ones+r4

bute=const-bute

rd=buytetrd

erlu=data xnr erly

rromad=0+erly
ones=rromrd+0

bute=0+ores
r?=ones+r?

bute=const-bute

ra=butet+ra
branch 1rfn
/

/ earlu-lzte correlation rrocess

temr=#80

late=dataz xnr lzte

216
217
218
219
220
221

“I70d
PrMp Y

223
224
225
226
227
228
229
230
231

232
233
234

235
236
237
238
239
240
241
242
243
244

24%

246
247

248
249

aHCO
AL
&N0
6
6EO
6E 1

6F0

6F 1

700

701
710
711
720
721
730
731
740
741
750

751
760
761
770
771
780
781
790
791
7A0
/A1

7ER0
7R1

7C0
7C1

00332110
0085104030
005F 307130
O0OFE304130
000F313130
00F4302130
00SE322100
OOED302130
00R3372110
0003332110
0035104030
005F307130
O00FE304130
000F313130
00F2302130
00SE322100
00EA302130
0040322100
009A322100

00AD32210F
0400337111
5700137011
0000103134
1900137010
O0DN030213F
0000103121
5700137010
080032610F
0000337111
5700127011

1900137011
0000103130

0000103130
7C00137010

erorl?

late=tomy
rromad=0+1ale
ones=rFromrd+0
bute=0+ones
ones=0_ones—1
r4=onecs+nr4
bute=const-bute
rd=butetrd
erluy=datsa

itor

xnr

rromad=0terlu
ones=rromrd+0Q
byte=0+ones
ones=0_ones-1
r2=ones+r?
bute=const-hute
ra=bute+rs
rd=r4-rd
ra=r%-ra

/

/ error signal
/
rd=ra-rd » “zZero
tem==%#04 » chkir
branch dserd
O0=0+temr » <&
branch strt
teme=rdt+tems
O0=0+temr » shkir
branch dserd
temr=$08-temr
temr=%400 » skis
brench dsrrd

Zesfa3lse aloarm
branch strt
0=0+temsr

Xeven

0=0+temr

branch erorl

SNNNNN

late

erlw
erlu=temr ior erlwv

sa20ero

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285

7D0
701
7E0
7E1
7F0
7F1
800
801
810
811
820
821
830
831
840
841
850
851
860
861
870
871
880
881
890
891
BAO
8A1
8RO
8E1
8CO

8C1
=3 Lo)
8D1
8EO
B8E1

000E337010
0000337010
000F337110
0000337110
0008337010
0805337110
0003337110
7F01337110
070F137010
0000103138
EB00137011
0007337110
010F13701F
0004337111
EB00137011
000C337110
0077307130
0007103030
7F08337110
4106337110
8C00137010
0077307130
0007103030
4106337110
7F08337110
0004337110
o00D337110
000C303100
001C12210F
0000103131
000C337110

0009337010
000C103030
0022307130
1000037110
000R337110

derx0?}

FTSTX:

¥

VA £ £33 3333333333234 2343224423383 333383333343443383F %2
/ PR—reciever miCcrorProgsram,..version—ii

VAR £ 3 3322433332333 8332033323383 3333343 2332334320334 3¢833¢8¢2%:
/ in this versio the case of outo-increment ram address

/ is elimenated., to test the hardware method
/

rerte=#00

rd»td=#00

ones=#00

temr=%00

r8,t8=%#00

const=%08

erlu=#00

count=%77

contrl=%07

0=0+temr » skfe /should be

branch eror?2

crsi=#00

contrl=4#01 » szero /should be no skir

admnt=%#00 » skir

branch eror2

rc=%#00

cersi=f740

t7=04crsi

late=%7f

thred=#41

branch Fprsrx

crsi=f74+0

t7=0+cprei

thred=%#41
late=4#7f

agsmnt=%00

dsmnt=#00
rc=0+rc+l

O=count-rc »

0=0+temr »
rc=%00
/Z+initialize the address counter (L9).
laddrlesa=%#00

refad=0+rc

refce=refrd+0

a=%10

data=%#00

skir

czero
skirF

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

8F0
B8F1
g00
901
?10
?11
?20
921
230
?31
240
241
950
251
260
961
970
971
280
981
2?90
??1
?A0
?A1
?EBO
?B1
?CO
?C1
Do
701
?EO
FE1
?F0
PF1
AOO
AD1
Al10
All
A20
A21
A30
A3l
A40

8F00137018
006B307130
000B103030
0028372110
0009303000
000001113F
0000103131
9900137011
00B5104030
005F307130
00FE304130
00F4302130
005E322100
00ED302130
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
8F00137011
8000337110
000B332110
00BS5104030
00SF307130
O0OFE304130
000F313130
00F4302130
00SE322100
00EDN302130
1000037110
0009337010
ADO0137010
001EK307130
002R372110
0009303000
000001113F
0000103131
A?00137011
O00ES104030
00SF307130
O00FE304130
00F4302130

tfifr:!

sec0!

rfram?

Xeven

branch tfifrx »
data=fifrd+0
ramwt=0+data

data=refce xnr data

laddrlsa=0+1add+1
a=0_a-1 » szero
0=0+temr » skir
branch seal
rromad=0+datz
ones=rromrd+0
bute=04+0ones
agmnt=onest+zagmnt
bute=const-bute
dsmnt=bytet+dsmnt
rc=0+rc+i
O=count-rc
0=0+temr
rc=%#00
refad=0+rc
refce=refrd+0
branch tfifrx
temr=#B0

data=temr ior datez
rromad=0+data
ones=rromrd+0
bute=0+ones
ones=0_ones-1
agmnt=oncs+asmnt
bute=const-bute
dsmnt=bytet+dsmnt
a-%#10

ladd»1sa3=%00
branch Frocs0
data=ramrd+0
data=refce xnr data
laddrlsa=0+1ladd+l
a=0_a-1 » szero
0=0+temr » skipr
branch cseal
rromad=0+data
ones=rromrd+0
bute=0+ones
admnt=onestadmnt

szero
skir

ckfe

329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
3446
347
348

349
350
351
352
353
354
355
356

357
358
359
360
361
362
363
364
365
366
367
348
3469

A41

ASO
AS1
A0
Ab1
A70
A71
ABO
AB1
A?0
A?1
AAD
AA1
ARO
AR1
ACO
AC1
ADO
AD1
AEO

AE1
AFO
AF1
BOO
BO1
E10
E11
B20

B21
B30
B31
B40
B41
BS0
BS51
B60O
Bé1
B70
B71
B8O
k81

005E322100

00ED302130
000C303100
001C12210F
0000103131

000C337110
000C103030
0022307130
?F00137011

8000337110

000E332110

00B5104030
005F307130
OOFE304130
000F313130
00F4302130
005E322100
00ED302130
0040322100
00DE304034

01046337111
B300137010
006D30203B
7F00337111
€C000137010
000E12210F
0000103131
C400137010

0004303000
8700137010
0000103132
BB00137010
006030203k
C600137010
00D010413F
0000103131
C600137011
000831313F
C000137010
8700137010
000030413k

seal!

ProcsQ?

chthr!

modthrd?

byte=const-bute
dsmnt=byte+dsmnt

re=0+rc+1

O=count-rc » szero
skip

0=0+temr ,
rc=#00
refad=0+rc
refce=refrd

+0

branch rfram

temr=%#80

data=temr ior data
Fromad=0+data
ones=promrd+0

bwte=0+ones

ones=0_ones-1
agmnt=onest+agmnt
bute=const-bute
dsmnt=bute+dsmnt
dsmnt=agmnt-dsmnt
butesrte=0+dsmnt » sé
/+ detect correlation reak
skir

thred-%01 ,
branch chth

r

dslntrtd-thred+dsnnt » sirlus
skipr

temp=%7+ ,
branch cole
O=temp-bute
0=0+temes ,

/esta dicrlzus the no.

/ reak,

t

sFero

skip
branch demod

rarta=0+ra+1
branch dsru0

0=0+tems ,

s2

branch modthrd
dsantrtd=thred+dsmnt » girlus
branch demod

0=0+dsmnt

* sSzZero

0=0+temr » skip
branch demod

late=0_1late-1

branch colet
branch dsrx0

temer=0+dsmnt sirlus

' szZero

of errors in detecting the corr.

' 370 E90

371
372
373
374
375
376
377
378
379
380
381
382
383
384
3895
386
387
388
389
390
391
392
393
374
395
396

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

B?1
BAO
RA1l
BEO
BB1
BCO
BC1
EBDO
BD1
BEO
BE1
BFO
BF1
coo
co1
Ci0
Ci1
C20
c21
c30
C31
C40
Ca1
C50
CS1
Cs60

Cé1
c70
C71
c80
ce1l
C?0
C91
Ca0
CA1l
CBO
CE1
Cco
CcC1
cDo
cDi

EDO0137010
510030613F
C600137010
000010313F
0000337111
C600137011
000831313F
C000137010
8700137010
300030613F
Cé600137010
000E31313F
0000103131
8700137011
0004337110
0000337110
1000037110
0009337010
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
0077307130
0007103030
F00137010

1000037110
0077307130
0007103030
0009337110
000A337110
0004337110
000N337110
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
00CD104030
0033307130

minus?

colrt:

demod §

FTrOoms i

branch minus

temr=#S1+temr » sirlus

branch demod

0=0+temr » =zero

temr=8#00 » skir

branch demod

late=0_late~-1

branch colrt
branch dsrx0

temr=#30+temr »

branch demod

byte=0_bwte-1

0=0+temr » ckir

branch dsrx0
admnt=#00
dsmnt=#00
a=%10
laddr1sa=%#00
re=0+4re+l

SFZeTo

cirlucs

szero

O=count-rc » szero
O0=0+temr » skir

rc=400
refad=0+rc

refce=refrd+0

crei=f740
t7=04+crsi
branch rfram
/.l
/
a=%10
crsi=f740
t7=04cesi
r?=%00
ra=%00
r4=%00
rd=%00
rc=04+rc+1

track rhase

O=count-rc » cszero

0=0+temr »
rc=400
refad=0+4+rc

refce=refrd+0

erad=0+4+rc
erlu=errd+0

skir

412
413

414
415

416
417
418
419
420
421
422
423
424
425
4246
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452

CEO
CE1l

CFo
CF1

noo
noi
D10
D11
D20
021
D30
n31
40
D41
nso
D51
D60
D61
nzo
071
080
D81
Deo
ne1
Ao
DAl
DEO
DE1
nco
nci
noo
0 Lh}
DEO
DE1
DFoO
DF1
EQO
EO1
E10
E1l1
E20

00CE104030
0088307130

CF00137018
006ER307130

O0EB2362110
0028104030
000001113F
0000103131
DA0C0137011
00EB372110
0085104030
005F307130
00FE304130
00F4302130
00SEZ22100
00ED302130
00B3372110
0035104030
005F307130
O0FE304130
00F9302130
00SE322100
00EA302130
CA00137010
8000337110
00EB372110
0008332110
0085104030
00SF307130
O0FE304130
000F313130
00F4302130
005E322100
00ED302130
00B3372110
0003332110
0035104030
005F307130
O0FE304130
000F313130
00F9302130

drff:

cornet!

1tad=0+rc

late=1trd40

/++ retreave daota from fifo

Xeven
branch drff ,
data=fifrd+0
/++ start desereading
refce=data xor refce
t8=0+refce
c=0_e-1 » szero
0=0+temr s ckip
branch cornct
late=datas xnr late
Fromad=0+1lzate
ones=rromrd+0
bute=0+4orcs
r4=ones+r4
byte=const-bute
rd=bute+rd
erly=data unr erly
Fromad=0+erly
ones=rromrd+0
byte=0+ones
r9=ones+r%
bute=const-bute
ra=bhutetra
branch rroms
temr=%#80
late=data xnr late
late=temr ior late
Fromad—0+late
ones=rromrd+0
bute=0+4+ones
ones=0_ones-1
r4=ones+r4
bute=const-hute
rd=bute+rd
erluy=data unr erlu
erluy=temr ior erlu
Fromad=0+erly
ones=rromrd40
byte=04ones
ones=0_ones~-1
r?=ones+r9

skfe

453
454
455
456
457
458
459
460

461
442

463

464

465

466

467

468
469

470
471

E21

E30
E31
E40
E41
ESO
ES1
E&0
Eé61
E70
EZ1
EB0
EB1
E90
E?1

EAO
EAl

EEO
EBE1

00SE322100

00EA302130
0040322100
009A322100
00AD32210F
0400337111
C600137011
0000103136
8700137011
00D030213F
0000103131
C600137010
080032610F
0000337111
€C600137011

8700137010
0000103130

0000103130
EE00137010

eror2!

bute=const-bute

ra=butetra
rd=r4-rd
ra=r9-ra
rd=re-rd » szero
temr=%#04 » skir
branch demod
0=0+temr » <é
branch dsrx0
teme=rdttems »
0=0+temr » skir
branch demod
temr=#08-temr »
temr=%00 » <ckir
branch demod
/+efalse zlarm
branch desrx0
0=0+temr

Xeven

0=0+temr

branch eror2

Xend

s5Zero

SZero

