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MEMORY UTILIZATION FOR A DYNAMICALLY MICROPROGRAMMED COMPUTER* 

Paul D. Stigall 
Department of Electrical Engineering and Computer Science 

University of Missouri-Rolla, Rolla, Missouri 65401 

Abstract: A particular, dynamically microprogrammed computer (proposed by Tucker and 
Flynn in Commun. of ACM, April 1971) is considered with respect to main memory and micro- 
memory utilization. A dependency is shown between memory utilization and utilization of 
the arithmetic and logic unit. 

An equation is derived to express the average microinstruction execution time in 
micromemory cycles. From this equation, it has been determined that for an example repre- 
senting instruction buffering and branch anticipation will reduce the average execution 
time by 5 percent, while a good data management or interleaving memory modules example 
will decrease it by 59 percent. 

Introduction T ucker-Flynn Processor i(5) 

Microprogramming covers a broad spec- 
trum of computer interests, such as hard- 
ware and systems, logic design, languages, 
and simulation. Thus an all inclusive 
definition of microprogramming is exten- 
sive and detailed (1). This study consid- 
ers two important properties of mioropro- 
grammed systems: fast storage (2) and 
simple logic processing units. Tradition- 
ally, fast storage has consisted of read- 
only memories (1)(3), while more recent 
memory developments have stimulated dynam- 
ically microprogrammed systems (4)(5) 
which use fast read-write memories. 

In many respects, the static micro- 
programmed system can be considered a sub- 
set of the dynamic case. That is, a 
static system consists of one fixed set of 
microinstructions, whereas, a dynamic sys- 
tem can consist of different sets. Hope- 
fully, the dynamic aspect will be helpful 
in leading to a more flexible computer 
architecture and more efficient interfaces 
between hardware and software. 

The structure and memory utilization 
considered in this paper is for the 
Tucker-Flynn (5), dynamically micropro- 
grammed processor. This processor is a 
sequential, instruction-driven computer 
with two levels of read-write memory, main 
memory and micromemory. The micromemory 
speed is approximately ten times faster 
than the main memory. 

~(This work was supported in part by NSF 
Grant GJ-32596.) 

The Tucker-Flynn, dynamically micro- 
programmed processor is differentiated from 
other processors by a uniform addressing 
scheme for the main memory and micromemory. 
Each memory consists of 64-bit words with 
the micromemory memory being limited to 4K 
in size. The accumulator, instruction ad- 
dress register, 16 general purpose regis- 
ters, and 16 data mask registers are ad- 
dressed as part of the micromemory, which 
includes them in the common addressing 
scheme. 

The arithmetic and logic portion is 
composed of a two-input, 64-bit, parallel 
adder and a single input shifter/masker. 
The shifting--masking occurs on the output 
of the shifter--of data is performed in 
parallel with data addition. 

Because the microinstruction format is 
horizontal or minimally-encoded, it permits 
an explicit view of the data use. The 64- 
bit format, which is broken into specific 
fields, each with its own interpretation. 
The first 32 bits indicate the control gat- 
ings necessary to execute ~he operation, 
whereas, the last 32 bits specify two 
operand fields. 

Microinstruction Execution 

One method of viewing the execution of 
a microinstruction for the Tucker-Flynn 
processor is in terms of accesses to main 
memory, micromemory, and special words as 
well as in the arithmetic and logical oper- 
ations. This view is presented in Fig. i, 
in which critical dependency is indicated 
either by adjacency, an arrow, or both. 
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The broken lines indicate that either main 
memory or micromemory can be accessed. 
Special words, like the assumulator, are 
initially assumed to have the same access 
time as micromemory. Also, sequencing, 
address calculation, and arithmetic and 
logical execution are assumed to each take 
one micromemory cycle. At this point, no 
consideration has been given to multiple 
accesses to memory modules or to simulta- 
neous addititions. 

Fig. 2 is a simplification of Fig. 1 
and is based on the assumption that the 
microinstruction address register, the ac- 
cumulator, the general purpose registers, 
and the data mask registers are implement- 
ed by high speed registers with simulta- 
neous outputs available. The addressing 
structure of these registers would still 
be common with main memory and micromemo- 
ry. No consideration at this point has 
been given to multiple accesses to main 
memory and micromemory or to simultaneous 
additions. 

Fig. 3 introduces the restrictions of 
single additions and single acggsses. 
That is, only one addition can be perform~ 
ed at a time and only one word, in both 
main memory and micromemory, can be ad- 
dressed at a time. One observation from 
Fig. 3 is that after the initial micro- 
instruction has been executed, the micro- 
memory and adder are utilized continuous- 
ly except for accesses to main memory. 
That is, micromemory and adder utilization 
would be i00 percent with accesses only to 
micromemory except for the first and last 
microinstruction. If an access to main 
memory occurs, micromemory would be com- 
pletely idle, and the adder would be idle 
for a period equal to the difference bet- 
ween the main memory and micromemory cycle 
time. This still assumes that the addi- 
tion time is similar to the micromemory 
cycle time. 

The average microinstruction execu- 
tion time (AET) measured in the micromem- 
ory cycles can be determined from Fig. 3 
as follows: 

AET = (NMA.R+2.NiA+N2A).MAT~NMI+2.NiI+N2I 
N.MIT N 

where N = 
NMA = 

R = 

NMI = 

NiA = 

NII= 

N2A = 

N2I = 

number of microinstructions 
number of microinstructions 
fetched from main memory 
improvement of main memory 
fetching by instruction buf- 
fering and branch anticipation 
number of microinstructions 
fetched from micromemory 
number of operand l's fetched 
from main memory 
number of operand l's fetched 
from micromemory 
number of operand 2's fetched 
from main memory 
number of operand 2's fetched 

from micromemory 
MAT = main memory cycle time 
MIT = micromemory cycle time 

Because operand 1 is fetched and stored two 
micromemory cycles later, NIA and NiI are 
multiplied by two in the AET equation. All 
microinstructions, which lead to N=NMA+NMI= 
NiA+NiI, are either in main memory or 
micromemory. By the structure of the 
Tucker-Flynn processor, operand 2 need not 
be fetched each time but as a worst case 
N=N2A+N2I. Operand 1 is fetched each time, 
because it is used in the mask operation 
and output word. 

The Tucker-Flynn processor proposes a 
micromemory ten times faster than main mem- 
ory. In terms of the AET equation, this 
would mean MAT/MIT=I0. With this ratio, a 
considerable difference exists between 
upper and lower bounds, that is 40 vs 4 
(for R=I) ahd 31 vs 4 (for R=MIT/MAT~. If 
NMA/N=0.1, NMI/N=Dq'9 and (NiA+N2A)/N= 
(NII+N21)/N=0.5 is considered achievable by 
normal programming means, then with no in- 
struction buffering and branch anticipation 
18.4 is obtained, whereas, with instruction 
buffering and branch ~ntiCi~ation, it only 
reduces to 17.5 or a 5 percent reduction. 
If NMA/N=(NiA+N2A)/N=0.1 and NMI/N=(NiI+ 
N2I)/N=0.9 is considered achievable by good 
data management or interleaving memory 
modules, a 59 percent reduction can be ob- 
tained over the third case without imple- 
menting instruction buffering and branch 
anticipation. 

Conclusions 

In deriving an equation to represent 
the average microinstruction execution time 
for the Tucker-Flynn, dynamically micro- 
programmed processor, the following points 
were noted: 

i) The microinstruction address register, 
the accumulator, the general purpose regis- 
ters, and the data mask registers were as- 
sumed to be accessable from high speed reg- 
isters simultaneously. 
2) A single adder can be used for sequenc- 
ing, effective address calculation, and 
arithmetic and logical operations. 
3) Only one word can be addressed at a 
time in the memory which consists of both 
main memory and micromemory. 

For the Tucker-Flynn processor, with 
its mioromemory ten times faster than main 
memory, it has been determined that in- 
struction buffering and branch anticipation 
will only decrease the average execution 
time by 5 percent for a particular example. 
On the other hand, an example representing 
good data management or interleaving of 
memory modules can yield a considerably 
greater reduction of 59 percent. 
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i fetch IAR I SEQ I store IAR I I 

~eteh M~ "h fetch R. C~A fetch O~h I ~S~" ' I I l~;~ 
fetch I~j CEA fetch 

~1 fetch M i 

I fetch ACC I 

start next microin- 
struction 

EXE store OPl 

I ~ h - - - t  

I store ACC { 

IAR: Microinstructionaddress register  
t MI: Microinstruction, either in main memory or micromemory 

ACC: Accumulator 
SEQ: Sequencing, either IAR+_ jump or IAR + 1 
R : One of sixteen general purpose registers 

x 
M : One of sixteen data mask registers x 
CEA: Calculate effective address, R x + operand displacement 
OPI:  Operand 1 
OP2: Operand 2 
EXE: Arithmetic and logic execution 

Figure 1. Microinstruction execution sequence. 

fetch MI f---4 ~ 
([ SEQ [ fetch O P I ~  

CEA fetch OP2 

start  next microinstruction 

EXE store OP1 

Figure 2. Microlnstruction execution sequence with high speed 
registers.  

fetch MI 

SEQ fetch next MI CEA 

I I 5~  I I--  

I I S t-----t ( I  I 

I o~A i fetch 

Figure 3. Microinstruction execution sequence with high speed registers,  
a single adder, and a single port memory. 
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