
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

24 Sep 1973

Memory Utilization for a Dynamically Microprogrammed Memory Utilization for a Dynamically Microprogrammed

Computer Computer

Paul D. Stigall
Missouri University of Science and Technology, tigall@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
P. D. Stigall, "Memory Utilization for a Dynamically Microprogrammed Computer," Proceedings of the
Annual International Symposium on Microarchitecture, MICRO, pp. 80 - 82, Association for Computing
Machinery, Sep 1973.
The definitive version is available at https://doi.org/10.1145/800203.806240

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/800203.806240
mailto:scholarsmine@mst.edu

MEMORY UTILIZATION FOR A DYNAMICALLY MICROPROGRAMMED COMPUTER*

Paul D. Stigall
Department of Electrical Engineering and Computer Science

University of Missouri-Rolla, Rolla, Missouri 65401

Abstract: A particular, dynamically microprogrammed computer (proposed by Tucker and
Flynn in Commun. of ACM, April 1971) is considered with respect to main memory and micro-
memory utilization. A dependency is shown between memory utilization and utilization of
the arithmetic and logic unit.

An equation is derived to express the average microinstruction execution time in
micromemory cycles. From this equation, it has been determined that for an example repre-
senting instruction buffering and branch anticipation will reduce the average execution
time by 5 percent, while a good data management or interleaving memory modules example
will decrease it by 59 percent.

Introduction T ucker-Flynn Processor i(5)

Microprogramming covers a broad spec-
trum of computer interests, such as hard-
ware and systems, logic design, languages,
and simulation. Thus an all inclusive
definition of microprogramming is exten-
sive and detailed (1). This study consid-
ers two important properties of mioropro-
grammed systems: fast storage (2) and
simple logic processing units. Tradition-
ally, fast storage has consisted of read-
only memories (1)(3), while more recent
memory developments have stimulated dynam-
ically microprogrammed systems (4)(5)
which use fast read-write memories.

In many respects, the static micro-
programmed system can be considered a sub-
set of the dynamic case. That is, a
static system consists of one fixed set of
microinstructions, whereas, a dynamic sys-
tem can consist of different sets. Hope-
fully, the dynamic aspect will be helpful
in leading to a more flexible computer
architecture and more efficient interfaces
between hardware and software.

The structure and memory utilization
considered in this paper is for the
Tucker-Flynn (5), dynamically micropro-
grammed processor. This processor is a
sequential, instruction-driven computer
with two levels of read-write memory, main
memory and micromemory. The micromemory
speed is approximately ten times faster
than the main memory.

~(This work was supported in part by NSF
Grant GJ-32596.)

The Tucker-Flynn, dynamically micro-
programmed processor is differentiated from
other processors by a uniform addressing
scheme for the main memory and micromemory.
Each memory consists of 64-bit words with
the micromemory memory being limited to 4K
in size. The accumulator, instruction ad-
dress register, 16 general purpose regis-
ters, and 16 data mask registers are ad-
dressed as part of the micromemory, which
includes them in the common addressing
scheme.

The arithmetic and logic portion is
composed of a two-input, 64-bit, parallel
adder and a single input shifter/masker.
The shifting--masking occurs on the output
of the shifter--of data is performed in
parallel with data addition.

Because the microinstruction format is
horizontal or minimally-encoded, it permits
an explicit view of the data use. The 64-
bit format, which is broken into specific
fields, each with its own interpretation.
The first 32 bits indicate the control gat-
ings necessary to execute ~he operation,
whereas, the last 32 bits specify two
operand fields.

Microinstruction Execution

One method of viewing the execution of
a microinstruction for the Tucker-Flynn
processor is in terms of accesses to main
memory, micromemory, and special words as
well as in the arithmetic and logical oper-
ations. This view is presented in Fig. i,
in which critical dependency is indicated
either by adjacency, an arrow, or both.

80

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800203.806240&domain=pdf&date_stamp=1973-09-24

The broken lines indicate that either main
memory or micromemory can be accessed.
Special words, like the assumulator, are
initially assumed to have the same access
time as micromemory. Also, sequencing,
address calculation, and arithmetic and
logical execution are assumed to each take
one micromemory cycle. At this point, no
consideration has been given to multiple
accesses to memory modules or to simulta-
neous addititions.

Fig. 2 is a simplification of Fig. 1
and is based on the assumption that the
microinstruction address register, the ac-
cumulator, the general purpose registers,
and the data mask registers are implement-
ed by high speed registers with simulta-
neous outputs available. The addressing
structure of these registers would still
be common with main memory and micromemo-
ry. No consideration at this point has
been given to multiple accesses to main
memory and micromemory or to simultaneous
additions.

Fig. 3 introduces the restrictions of
single additions and single acggsses.
That is, only one addition can be perform~
ed at a time and only one word, in both
main memory and micromemory, can be ad-
dressed at a time. One observation from
Fig. 3 is that after the initial micro-
instruction has been executed, the micro-
memory and adder are utilized continuous-
ly except for accesses to main memory.
That is, micromemory and adder utilization
would be i00 percent with accesses only to
micromemory except for the first and last
microinstruction. If an access to main
memory occurs, micromemory would be com-
pletely idle, and the adder would be idle
for a period equal to the difference bet-
ween the main memory and micromemory cycle
time. This still assumes that the addi-
tion time is similar to the micromemory
cycle time.

The average microinstruction execu-
tion time (AET) measured in the micromem-
ory cycles can be determined from Fig. 3
as follows:

AET = (NMA.R+2.NiA+N2A).MAT~NMI+2.NiI+N2I
N.MIT N

where N =
NMA =

R =

NMI =

NiA =

NII=

N2A =

N2I =

number of microinstructions
number of microinstructions
fetched from main memory
improvement of main memory
fetching by instruction buf-
fering and branch anticipation
number of microinstructions
fetched from micromemory
number of operand l's fetched
from main memory
number of operand l's fetched
from micromemory
number of operand 2's fetched
from main memory
number of operand 2's fetched

from micromemory
MAT = main memory cycle time
MIT = micromemory cycle time

Because operand 1 is fetched and stored two
micromemory cycles later, NIA and NiI are
multiplied by two in the AET equation. All
microinstructions, which lead to N=NMA+NMI=
NiA+NiI, are either in main memory or
micromemory. By the structure of the
Tucker-Flynn processor, operand 2 need not
be fetched each time but as a worst case
N=N2A+N2I. Operand 1 is fetched each time,
because it is used in the mask operation
and output word.

The Tucker-Flynn processor proposes a
micromemory ten times faster than main mem-
ory. In terms of the AET equation, this
would mean MAT/MIT=I0. With this ratio, a
considerable difference exists between
upper and lower bounds, that is 40 vs 4
(for R=I) ahd 31 vs 4 (for R=MIT/MAT~. If
NMA/N=0.1, NMI/N=Dq'9 and (NiA+N2A)/N=
(NII+N21)/N=0.5 is considered achievable by
normal programming means, then with no in-
struction buffering and branch anticipation
18.4 is obtained, whereas, with instruction
buffering and branch ~ntiCi~ation, it only
reduces to 17.5 or a 5 percent reduction.
If NMA/N=(NiA+N2A)/N=0.1 and NMI/N=(NiI+
N2I)/N=0.9 is considered achievable by good
data management or interleaving memory
modules, a 59 percent reduction can be ob-
tained over the third case without imple-
menting instruction buffering and branch
anticipation.

Conclusions

In deriving an equation to represent
the average microinstruction execution time
for the Tucker-Flynn, dynamically micro-
programmed processor, the following points
were noted:

i) The microinstruction address register,
the accumulator, the general purpose regis-
ters, and the data mask registers were as-
sumed to be accessable from high speed reg-
isters simultaneously.
2) A single adder can be used for sequenc-
ing, effective address calculation, and
arithmetic and logical operations.
3) Only one word can be addressed at a
time in the memory which consists of both
main memory and micromemory.

For the Tucker-Flynn processor, with
its mioromemory ten times faster than main
memory, it has been determined that in-
struction buffering and branch anticipation
will only decrease the average execution
time by 5 percent for a particular example.
On the other hand, an example representing
good data management or interleaving of
memory modules can yield a considerably
greater reduction of 59 percent.

8]

References

[1] S. S. Husson, Microprogramming Princi-
ples and Practices, Prentice-Hall,
Englewood Cliffs, N. J., 1970.

[2] M. J. Flynn and R. F. Rosin, "Micro-
programming: an introduction and a
viewpoint," IEEE Trans. Comput. vol.
C-20, pp. 272-731, July 1971.

[3] P. M. Davies, "Readings in micropro-
tramming," IBM Syst. J., vol. ii,

[4]

[5]

pu. 16-40, 1972.
R. W. Cook and M. J. Flynn, "System
design of a dynamic microprocessor,"
IEEE Trans. Comput., vol. C-19,
p. 213-222, Mar. 1970.
A. B. Tucker and M. J. Flynn, "Dynamic
microprogramming: processor organiza-
tion and programming," Commun. Assoc.
Comput. Mach., vol. 14, pp. 240-250,
Apr. 1971.

i fetch IAR I SEQ I store IAR I I

~eteh M~ "h fetch R. C~A fetch O~h I ~S~" ' I I l~;~
fetch I~j CEA fetch

~1 fetch M i

I fetch ACC I

start next microin-
struction

EXE store OPl

I ~ h - - - t

I store ACC {

IAR: Microinstructionaddress register
t MI: Microinstruction, either in main memory or micromemory

ACC: Accumulator
SEQ: Sequencing, either IAR+_ jump or IAR + 1
R : One of sixteen general purpose registers

x
M : One of sixteen data mask registers x
CEA: Calculate effective address, R x + operand displacement
OPI: Operand 1
OP2: Operand 2
EXE: Arithmetic and logic execution

Figure 1. Microinstruction execution sequence.

fetch MI f---4 ~
([SEQ [fetch O P I ~

CEA fetch OP2

start next microinstruction

EXE store OP1

Figure 2. Microlnstruction execution sequence with high speed
registers.

fetch MI

SEQ fetch next MI CEA

I I 5~ I I--

I I S t-----t (I I

I o~A i fetch

Figure 3. Microinstruction execution sequence with high speed registers,
a single adder, and a single port memory.

82

	Memory Utilization for a Dynamically Microprogrammed Computer
	Recommended Citation

	tmp.1680207050.pdf.Pi9rw

