456 research outputs found

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation

    Methods for Improving Performance in Consumer Grade GNSS Receivers

    Get PDF
    Viimeisten kolmen vuosikymmenen aikana satelliittinavigointi on kehittynyt ammatti ja sotilaskäyttäjien tekniikasta kaikkien saatavilla olevaksi tekniikaksi. Varsinkin viimeisen 15 vuoden aikana, kun vastaanottimet alkoivat pienentyä ja halpenivat, on lisääntynyt määrä yrityksiä, jotka toimittavat GPS-laitteita satoihin erilaisiin sovelluksiin. Kaikille moderneille tekniikoille on myös tyypillistä, että tutkimukseen ja siihen liittyvään vastaanottimien kehittämiseen on käytetty valtavasti rahaa, mikä on johtanut huomattavaan parantumiseen vastaanottimen suorituskyvyssä. GPS-vastaanottimien kehitystyön lisäksi uusien maailmanlaajuisten satelliittinavigointijärjestelmien, kuten venäläisen GLONASS, kiinalaisen BeiDou- ja eurooppalaisen Galileo-järjestelmien käyttöönotto tarjoaa entistä enemmän mahdollisuuksia suorituskyvyn parantamiseen. Sekä GPS että nämä uudet järjestelmät ovat myös ottaneet käyttöön uudentyyppisiä signaalirakenteita, jotka voivat tarjota parempilaatuisia havaintoja ja siten parantaa kaikkien vastaanottimien suorituskykyä. Lopuksi menetelmät, kuten PPP ja RTK, jotka aiemmin olivat varattu ammattikäyttäjille, ovat tulleet kuluttajamarkkinoille mahdollistaen ennennäkemättömän suorituskyvyn jokaiselle satelliittinavigointivastaanottimien käyttäjälle. Tässä opinnäytetyössä arvioidaan tämän kehityksen vaikutusta sekä suorituskykyyn että vastaanottimen arkkitehtuuriin. Työssä esitellään yksityiskohtaisesti FGI:ssä kehitetyn ohjelmistopohjaisen vastaanottimen, FGI-GSRx:n. Tämän vastaanottimen avulla on työssä arvioitu miten sekä uudet konstellaatiot että uudet nykyaikaiset signaalit ja niitten seurantamenetelmät vaikuttavat suorituskykyyn ja vastaanotin arkkitehtuuriin. Tämän lisäksi on arvioitu PPP- ja RTK-tarkkuuspaikannusmenetelmien vaikutus FinnRefCORS-verkkoa käyttäen useiden erityyppisten vastaanottimien kanssa, mukaan lukien kuluttajalaatuiset vastaanottimet. Tulokset osoittavat, että enemmän konstellaatioita ja signaaleja käytettäessä paikannusratkaisun tarkkuus paranee 3 metristä 1,4 metriin hyvissä olosuhteissa ja yli 10-kertaiseksi tiheästi rakennetuissa kaupungeissa, jossa käytettävissä olevien signaalien määrä kasvaa kertoimella 2 käytettäessä kolmea konstellaatiota. Uusia moderneja modulaatiotekniikoita, kuten BOC-modulaatiota, käytettäessä tulokset osoittavat Galileo-ratkaisun tarkkuuden paranevan lähes 25%:lla ja esitelty uusi signaalinkäsittelymenetelmä lisää tällaisen tarkkuuden saatavuutta 50%:sta lähes 100%:iin. Lopuksi tarkkuuspaikannusmenetelmien tulokset osoittavat, että 15 cm:n tarkkuus on saavutettavissa, mikä on merkittävä parannus verrattuna 1,4 metrin tarkkuuteen. Näiden parannusten saavuttamiseksi on olennaista, että itse vastaanotin on mukautettu hyödyntämään näitä uusia signaaleja ja konstellaatioita. Tämä tarkoittaa, että nykyaikaisten kuluttajamarkkinoiden vastaanottimien suunnittelu on haastavaa ja monissa tapauksissa ohjelmistopohjainen vastaanotin olisi parempi ja halvempi valinta kuin uusien mikropiirien kehittäminen.For the last three decades, satellite navigation has evolved from being a technology for professional and military users to a technology available for everyone. Especially during the last 15 years, since the receivers started getting smaller and cheaper, there has been an increasing number of companies delivering Global Positioning System (GPS) enabled devices for hundreds of different kind of applications. Typical for any modern technology, there has also been an enormous amount of money spent on research and accompanied receiver development resulting in an immense increase in receiver performance. In addition to the development efforts on GPS receivers the introduction of new global navigation satellite systems such as the Russian Globalnaja Navigatsionnaja Sputnikovaja Sistema (GLONASS), the Chinese BeiDou, and the European Galileo systems offers even more opportunities for improved performance. Both GPS and these new systems have also introduced new types of signal structures that can provide better quality observations and even further improve the performance of all receivers. Finally, methods like Precise Point Positioning (PPP) and Real Time Kinematic (RTK) that earlier were reserved for professional users have entered into the consumer market enabling never before seen performance for every user of satellite navigation receivers. This thesis will assess the impact of this development on both performance as well as on receiver architecture. The design of the software defined receiver developed at FGI, the FGI-GSRx, is presented in detail in this thesis. This receiver has then been used to assess the impact of using multiple constellations as well as new novel signal processing methods for modern signals. To evaluate the impact of PPP and RTK methods the FinnRef Continuously Operating Reference Station (CORS) network has been used together with several different types of receivers including consumer grade off the shelf receivers. The results show that when using more constellations and signals the accuracy of the positioning solution improves from3 meters to 1.4 meters in open sky conditions and by more than a factor 10 in severe urban canyons. For severe urban canyons the available also increases by a factor 2 when using three constellations. When using new modern modulation techniques like high order BOC results show an accuracy improvement for a Galileo solution of almost 25 % and the presented new signal processing method increase the availability of such an accuracy from 50 % to almost 100 %. Finally, results from precise point positioning methods show that an accuracy of 15 cm is achievable, which is a significant improvement compared to an accuracy of 1.4 m for a standalone multi constellation solution. To achieve these improvements, it is essential that the receiver itself is adapted to make use of these new signals and constellations. This means that the design of modern consumer market receivers is challenging and in many cases a software define receiver would be a better and cheaper choice than developing new Application Specific Integrated Circuit (ASIC)’s

    PERFORMANCE EVALUATION OF LOW-COST PRECISION POSITIONING METHODS FOR FUTURE PORT APPLICATIONS

    Get PDF
    In recent times, a lot of research has been conducted to improve the accuracy of various positioning systems. The motivation behind this trend is to ensure high quality GNSS services for various applications. In particular, emphasis has been placed on improving the level of accuracy of consumer grade GNSS receivers. Significant improvements in the quality of signal reception of these receivers would enable low-cost solutions for asset management in for example, harbor areas. Research in Receiver Autonomous Integrity Monitoring - Fault Detection and Exclusion (RAIM-FDE) algorithms give users the ability to exclude satellites with degraded signals, hereby improving the performance of the GNSS solution. This research investigates and evaluates the performance of various customer grade GNSS positioning systems intended for port applications. Various high precision techniques such as Precise Point Positioning and Real-Time Kinematic were conducted and accuracy levels were noted on Multi-band receivers, Single frequency receivers, and GNSS-enabled smartphone. Our final conclusion suggests optimal low-cost GNSS solutions for asset monitoring and management

    Survey on Signal Processing for GNSS under Ionospheric Scintillation: Detection, Monitoring, and Mitigation

    Get PDF
    Ionospheric scintillation is the physical phenomena affecting radio waves coming from the space through the ionosphere. Such disturbance is caused by ionospheric electron density irregularities and is a major threat in Global Navigation Satellite Systems (GNSS). From a signal processing perspective, scintillation is one of the most challenging propagation scenarios, particularly affecting high-precision GNSS receivers and safety critical applications where accuracy, availability, continuity and integrity are mandatory. Under scintillation, GNSS signals are affected by amplitude and phase variations, which mainly compromise the synchronization stage of the receiver. To counteract these effects, one must resort to advanced signal processing techniques such as adaptive/robust methods, machine learning or parameter estimation. This contribution reviews the signal processing landscape in GNSS receivers, with emphasis on different detection, monitoring and mitigation problems. New results using real data are provided to support the discussion. To conclude, future perspectives of interest to the GNSS community are discussed

    Contributions to high accuracy snapshot GNSS positioning

    Get PDF
    (English) Snapshot positioning is the technique to determine the position of a Global Navigation Satellite System (GNSS) receiver using only a very brief interval of the received satellite signal. In recent years, this technique has received a great amount of attention thanks to its unique advantages in power efficiency, Time To First Fix (TTFF) and economic costs for deployment. However, the state of the art algorithms regarding snapshot positioning were based on code measurements only, which unavoidably limited the positioning accuracy to meter level. The present PhD research aims at achieving high-accuracy (centimetre level) snapshot positioning by properly utilizing carrier phase measurements. Two technical challenges should be tackled before such level of accuracy can be achieved, namely, satellite transmission time inaccuracy and the so-called Data Bit Ambiguity (DBA) issue. The first challenge is essentially originated from the lack of absolute timing accuracy in the receiver, as only the coarse time information is available from an external assistance module and its error can be up to a few seconds. Applying a conventional Coarse Time Filter (CTF) can increase this timing accuracy to millisecond level. However, this is still not enough for carrier-phase based positioning since the satellite position errors introduced by such timing errors range up to one meter, which certainly impedes the carrier phase Integer Ambiguity Resolution (IAR). A method is proposed to set a global time tag and correspondingly construct the pseudoranges with full period corrections. The second challenge is caused by the fact that snapshot measurements are generated based on the results of the correlation between the received signal and the local replicas. Multiple replicas are typically produced in snapshot positioning following the Multi Hypothesis (MH) acquisition architecture. It may happen that more than one local replica (i.e. hypothesis) result in the maximum correlation energy. Hence, we need to identify the actual secondary codes or data bit symbols encoded in the received signal, i.e. to resolve the DBA. Particularly, when the local replica is generated with exactly opposite symbols to the actual ones, the resulting carrier phase measurement contains a Half Cycle Error (HCE) and impedes also the IAR step. A method has been proposed in this PhD to resolve the DBA issue for pilot signals with encoded secondary codes. This method attempts to form a consensus among all satellites regarding their secondary codes under the assistance of their flight time differences. A different approach has been developed for data signals. It amends the carrier phase HCEs one after another by an iterative satellite inclusion procedure. This approach uses the Real Time Kinematics (RTK) LAMBDA Ratio Factor (LRF) as an indicator to evaluate the potential existence of the HCEs. The present PhD focuses on implementing the so-called Snapshot RTK (SRTK) technique. As in the classic RTK technique, SRTK cancels most of the measurement errors through the Double-Differenced (DD) process. The workflow details of SRTK are explained incorporating the aforementioned new algorithms. Several experiments were performed based on real world signal recordings and the results confirm the feasibility of obtaining SRTK fix solutions. The performance of SRTK is numerically demonstrated under different parameters of signal bandwidth, integration time and baseline distance. The SRTK fix rates can reach more than 90% in most of the scenarios, with centimetre-level positioning errors observed in the fixed solutions. It can be concluded that upon the implementation of the global time tag method, high accuracy snapshot positioning becomes feasible with the SRTK technique and its performance varies depending on the SRTK configuration. The algorithms developed for the DBA issue and carrier phase HCEs also prove to effectively improve the performance of SRTK.(Español) El posicionamiento instantáneo es la técnica para determinar la posición de un receptor del Sistema Global de Navegación por Satélite (GNSS) utilizando solo un intervalo muy breve de la señal recibida. En los últimos años, esta técnica ha recibido una gran atención gracias a sus ventajas únicas en eficiencia energética, tiempo hasta la primera posición (TTFF) y reducidos costes económicos para la implementación. Sin embargo, el estado del arte de los algoritmos relacionados con el posicionamiento de señales instantáneas utilizaron solo medidas de código, lo que inevitablemente limitó la precisión del posicionamiento a al nivel del metro. La presente Tesis Doctoral tiene como objetivo lograr un posicionamiento instantáneo de alta precisión (nivel centimétrico) mediante las medidas de fase de la portadora. Para ello, deben abordarse dos desafíos técnicos antes de que se pueda alcanzar ese nivel de precisión: resolver la inexactitud del tiempo de transmisión del satélite y el llamado problema de ambigüedad de bit de datos (DBA). El primer desafío se origina esencialmente por la falta de precisión de tiempo absoluto en el receptor, ya que solo está disponible la información del tiempo aproximado desde un módulo de asistencia externo y su error puede ser de hasta unos segundos. Así, se propone un método para establecer una etiqueta de tiempo global y construir correspondientemente los pseudorangos con correcciones de período completo. El segundo desafío se debe al hecho de que las mediciones instantáneas se generan en función de los resultados de la correlación entre la señal recibida y las réplicas locales. Las múltiples réplicas generalmente se producen en el posicionamiento de instantáneas siguiendo la arquitectura de de adquisición de el Múltiples Hipótesis (MH). Por lo tanto, se necesita identificar los códigos secundarios reales o los símbolos de bits de datos codificados en la señal recibida, para resolver el DBA. En particular, cuando la réplica local se genera con símbolos exactamente opuestos a los reales, el resultado de la medición de la fase de la portadora contiene un error de medio ciclo (HCE) e impide también la resolución de ambigüedad entera (IAR). Se ha propuesto un método en esta Tesis Doctoral para resolver el problema de DBA para señales piloto con códigos secundarios. Este método intenta formar un consenso entre todos los satélites con respecto a sus códigos secundarios bajo la asistencia de sus diferencias de tiempo de vuelo. Un enfoque diferente ha sido desarrollado para señales que contienen datos del mensaje de navegación. Se modifica los HCE de la fase de portadora uno tras otro mediante un procedimiento iterativo de inclusión de satélites. Este método utiliza el factor de relación LAMBDA (LRF) utilizado en posicionamiento relativo en tiempo real (RTK) como indicador para evaluar la existencia potencial de los HCE. La presente tesis doctoral se centra en implementar la técnica denominada Snapshot RTK (SRTK). Se realizaron varios experimentos basados ?en ?señales del mundo real. Las grabaciones y los resultados confirman la viabilidad de obtener soluciones SRTK con IAR. El rendimiento de SRTK es numéricamente demostrado bajo diferentes parámetros tales como el ancho de banda de señal, tiempo de integración y distancia de línea de base. Las tasas de fijación IAR de SRTK pueden alcanzar más del 90% en la mayoría de los escenarios, observándose errores de posicionamiento centimétricos en las soluciones fijas. Se puede concluir que tras la implementación del método de etiqueta de tiempo global, que el posicionamiento de instantáneas de alta precisión se vuelve factible con la técnica SRTK y las prestaciones varían dependiendo de la configuración. Los algoritmos desarrollados para la resolución de DBA y los HCE de fase portadora también demuestran que mejoran efectivamente el rendimientoCiència i tecnologies aeroespacial

    Performance of precise marine positioning using future modernised global satellite positioning systems and a novel partial ambiguity resolution technique

    Get PDF
    The International Maritime Organisation (IMO) established a set of positioning requirements for future Global Navigation Satellite System (GNSS) constellations in IMO resolution A.915. It is important to be able to determine if these requirements can be met, and what shore infrastructure would be required. This thesis describes the collection of data in a marine environment and the analysis of these data with regards to the requirements. The data collection exercise was held at the beginning of May 2008 and saw THV Alert navigate into Harwich Harbour whilst Global Positioning System (GPS) observation data were recorded from onboard the vessel and from shore-based reference stations. Additional data were obtained from nearby Ordnance Survey reference stations, and two total stations were used to track the vessel’s passage to provide a truth model. Several modernised GPS satellites were tracked. The data were processed under different scenarios, using software developed at UCL, and the positioning performance was analysed in the context of the IMO requirements. Potential performance improvements from modernised GPS and Galileo were then discussed. Providing integrity through single-epoch real-time kinematic positioning, required to meet the strictest IMO requirements, is particularly difficult. The identification of phase observation outliers is not possible before the integer ambiguities are resolved, but an undetected outlier could prevent successful ambiguity resolution. It will not always be necessary to fix all the ambiguities to achieve the required positioning precision, particularly with a multi-GNSS constellation. This thesis introduces a new algorithm for partial ambiguity resolution in the presence of measurement bias. Although computationally intensive, this algorithm significantly improves the ambiguity resolution success rate, increasing the maximum baseline length over which the highest requirements are met with dual-frequency GPS from 1 km to 66 km

    GPS/INS Integrity in Airborne Mapping

    Get PDF
    The quality of the laser point cloud georeferencing in airborne laser scanning missions is largely related to the quality of the GPS solution. The latter is obtained by post- processing the differential carrier-phase measurements in order to reach the required accuracy. This implies that errors or unacceptable quality in the gathered data that cause problems for the ambiguity resolution in the post- processing step are detected much later. The objective of this thesis is to investigate new concepts of GPS data quality monitoring and to improve the GPS solution by using RAIM and WAAS/EGNOS integrity enhancement techniques. To do that, quality check algorithms based on indicators such as the signal-to-noise ratio, the cycle slip detection results or the phase tracking loop output are proposed and successfully tested. Furthermore, a new global quality check algorithm based on RAIM and cycle slip detection has been designed and tested with a focus on the chances to resolve correctly the ambiguities during the carrier-phase post-processing. The algorithms are implemented in a real- time quality check tool developed in a C/C++ environment whose performance shows that the provided quality indications enhance the GPS integrity by providing crucial information on the signal quality during the flight. This information enables problematic epoch identification and warns immediately the mission operator about problematic flightlines that should be flown again. This avoids final product quality degradation or expensive mission repetition. The thesis also presents the design of an RTK- GPS on-board solution via radio communication channel. The design has been tested during a flight and the results show that a sub-decimetric accuracy can be reached by this mean. The potential of using such a solution is high since this provides ultimate integrity test for phase data. Also, as the final laser point cloud has been georeferenced quite accurately using the real-time sensor observations and Kalman filtering, the economical gain of avoiding post- processing is substantial

    Ambiguity resolution of single frequency GPS measurements

    Get PDF
    This thesis considers the design of an autonomous ride-on lawnmower, with particular attention paid to the problem of single frequency Global Navigation Satellite System (GNSS) ambiguity resolution. An overall design is proposed for the modification of an existing ride-on lawnmower for autonomous operation. Ways of sensing obstacles and the vehicle's position are compared. The system's computer-to-vehicle interface, software architecture, path planning and control algorithms are all described. An overview of satellite navigation systems is presented, and it is shown that existing high precision single frequency GNSS receivers often require time-consuming initialisation periods to perform ambiguity resolution. The impact of prior knowledge of the topography is analysed. A new algorithm is proposed, to deal with the situation where different areas of the map have been mapped at different levels of precision. Stationary and kinematic tests with real-world data demonstrate that when the map is sufficiently precise, substantial improvements in initialisation time are possible. Another algorithm is proposed, using a noise-detecting acceptance test taking data from multiple receivers on the same vehicle (a GNSS com- pass configuration). This allows a more demanding threshold to be used when noise levels are high, and a less demanding threshold to be used at other times. Tests of this algorithm reveal only slight performance improvements. A final algorithm is proposed, using Monte Carlo simulation to account for time-correlated noise during ambiguity resolution. The method allows a fixed failure rate configuration with variable time, meaning no ambiguities are left floating. Substantial improvements in initialisation time are demonstrated. The overall performance of the integrated system is summarised, conclusions are drawn, further work is proposed, and limitations of the techniques and tests performed are identified
    corecore