253,317 research outputs found

    Internationalizing the Curriculum

    Get PDF

    Purposive Teaching Styles for Transdisciplinary AEC Education: A Diagnostic Learning Styles Questionnaire

    Get PDF
    With the progressive globalisation trend within the Architecture, Engineering, and Construction (AEC) industry, transdisciplinary education and training is widely acknowledged as being one of the key factors for leveraging AEC organisational success. Conventional education and training delivery approaches within AEC therefore need a paradigm shift in order to be able to address the emerging challenges of global practices. This study focuses on the use of Personalised Learning Environments (PLEs) to specifically address learners’ needs and preferences (learning styles) within managed Virtual Learning Environments (VLEs). This research posits that learners can learn better (and be more readily engaged in managed learning environments) with a bespoke PLE, in which the deployment of teaching and learning material is augmented towards their individual needs. In this respect, there is an exigent need for the Higher Educational Institutions (HEIs) to envelop these new approaches into their organisational learning strategy. However, part of this process requires decision-makers to fully understand the core nuances and interdependencies of functions and processes within the organisation, along with Critical Success Factors (CSFs) and barriers. This paper presents findings from the development of a holistic conceptual Diagnostic Learning Styles Questionnaire (DLSQ) Framework, comprised of six interrelated dependencies (i.e. Business Strategy, Pedagogy, Process, Resources, Systems Development, and Evaluation). These dependencies influence pedagogical effectiveness. These finding contribute additional understanding to the intrinsic nature of pedagogy in leveraging transdisciplinary AEC training within organisations (to improve learner effectiveness). This framework can help organisations augment and align their strategic priorities to learner-specific traits

    Disaster Resilience Education and Research Roadmap for Europe 2030 : ANDROID Report

    Get PDF
    A disaster resilience education and research roadmap for Europe 2030 has been launched. This roadmap represents an important output of the ANDROID disaster resilience network, bringing together existing literature in the field, as well as the results of various analysis and study projects undertaken by project partners.The roadmap sets out five key challenges and opportunities in moving from 2015 to 2030 and aimed at addressing the challenges of the recently announced Sendai Framework for Disaster Risk Reduction 2015-2030. This roadmap was developed as part of the ANDROID Disaster Resilience Network, led by Professor Richard Haigh of the Global Disaster Resilience Centre (www.hud.ac.uk/gdrc ) at the School of Art, Design and Architecture at the University of Huddersfield, UK. The ANDROID consortium of applied, human, social and natural scientists, supported by international organisations and a stakeholder board, worked together to map the field in disaster resilience education, pool their results and findings, develop interdisciplinary explanations, develop capacity, move forward innovative education agendas, discuss methods, and inform policy development. Further information on ANDROID Disaster Resilience network is available at: http://www.disaster-resilience.netAn ANDROID Disaster Resilience Network ReportANDROI

    Education for sustainable development: draft guidance for UK higher education providers, for consultation

    Get PDF

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change
    corecore