604 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    A Sliding Mode based Cascade Observer for Estimation and Compensation Controller

    Full text link
    The sliding mode observer can estimate the system state and the unknown disturbance, while the traditional single-layer one might still suffer from high pulse when the output measurement is mixed with noise. To improve the estimation quality, a new cascade sliding mode observer containing multiple discontinuous functions is proposed in this letter. It consists of two layers: the first layer is a traditional sliding mode observer, and the second layer is a cascade observer. The measurement noise issue is considered in the source system model. An alternative method how to design the observer gains of the two layers, together with how to examine the effectiveness of the compensator based closed-loop system, are offered. A numerical example is provided to demonstrate the effectiveness of the proposed method. The observation structure proposed in this letter not only smooths the estimated state but also reduces the control consumption

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    Robust Output Feedback Disturbance Rejection Control by Simultaneously Estimating State and Disturbance

    Get PDF
    This paper tackles the problem of simultaneous estimation of the state and the unknown disturbance of an MIMO disturbed system and designs the disturbance rejection controller according to the estimation information. Through a series of transformations, we can transform the original system into two subsystems and then propose a sliding mode observer and a descriptor system form observer, respectively. Our algorithm can simultaneously estimate the state and the unknown disturbance. The estimation error is shown to be bounded within a small region. Moreover, the controller algorithm developed in this paper can effectively avoid the peaking phenomenon. Finally, the feasibility and the performance using the proposed method are analyzed and demonstrated with two simulated examples

    Simultaneous actuator and sensor fault reconstruction of singular delayed linear parameter varying systems in the presence of unknown time varying delays and inexact parameters

    Get PDF
    In this article, robust fault diagnosis of a class of singular delayed linear parameter varying systems is considered. The considered system has delayed dynamics with unknown time varying delays and also it is affected by noise, disturbance and faults in both actuators and sensors. Moreover, in addition to the aforementioned unknown inputs and uncertainty, another source of uncertainty related to inexact measures of the scheduling parameters is present in the system. Making use of the descriptor system approach, sensor faults in the system are added as additional states into the original state vector to obtain an augmented system. Then, by designing a suitable proportional double integral unknown input observer (PDIUIO), the states, actuator, and sensor faults are estimated. The uncertainty due to the mismatch between the inexact parameters that schedule the observer and the real parameters that schedule the original system is formulated with an uncertain system approach. In the PDIUIO, the uncertainty induced by unknown inputs (disturbance, noise and actuator, and sensor faults), unknown delays, and inexact parameter measures are attenuated in H8 sense with different weights. The constraints regarding the existence and the robust stability of the designed PDIUIO are formulated using linear matrix inequalities. The efficiency of the proposed method is verified using an application example based on an electrical circuit.Peer ReviewedPostprint (author's final draft

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system

    Robust Output Feedback Disturbance Rejection Control by Simultaneously Estimating State and Disturbance

    Get PDF
    This paper tackles the problem of simultaneous estimation of the state and the unknown disturbance of an MIMO disturbed system and designs the disturbance rejection controller according to the estimation information. Through a series of transformations, we can transform the original system into two subsystems and then propose a sliding mode observer and a descriptor system form observer, respectively. Our algorithm can simultaneously estimate the state and the unknown disturbance. The estimation error is shown to be bounded within a small region. Moreover, the controller algorithm developed in this paper can effectively avoid the peaking phenomenon. Finally, the feasibility and the performance using the proposed method are analyzed and demonstrated with two simulated examples

    Systems Structure and Control

    Get PDF
    The title of the book System, Structure and Control encompasses broad field of theory and applications of many different control approaches applied on different classes of dynamic systems. Output and state feedback control include among others robust control, optimal control or intelligent control methods such as fuzzy or neural network approach, dynamic systems are e.g. linear or nonlinear with or without time delay, fixed or uncertain, onedimensional or multidimensional. The applications cover all branches of human activities including any kind of industry, economics, biology, social sciences etc

    High order disturbance observer design for linear and nonlinear systems

    Get PDF
    © 2015 IEEE. In this paper, a disturbance observer is proposed for nonlinear systems with high order disturbance, where not only disturbance but also its high order derivatives are estimated. The relationship of the proposed observer with the existing results is discussed. Then, the result is further extended to the case of minimal-order output-based disturbance observer design for linear systems subject to high order disturbances. Two practical examples about actuator fault diagnosis for a nonlinear missile system and disturbance estimation for a double-effect pilot plant evaporator system with unobservable states are provided to illustrate the effectiveness of the proposed approaches
    corecore