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This paper tackles the problem of simultaneous estimation of the state and the unknown disturbance of an MIMO disturbed system
and designs the disturbance rejection controller according to the estimation information. Through a series of transformations, we
can transform the original system into two subsystems and then propose a sliding mode observer and a descriptor system form
observer, respectively. Our algorithm can simultaneously estimate the state and the unknown disturbance. The estimation error
is shown to be bounded within a small region. Moreover, the controller algorithm developed in this paper can effectively avoid
the peaking phenomenon. Finally, the feasibility and the performance using the proposed method are analyzed and demonstrated
with two simulated examples.

1. Introduction

Disturbances coming from the environment often constitute
an annoyance in the operation of dynamic systems. Dis-
turbance rejection control (DRC), in which the controller
is designed to suppress the disturbance’s effect, is the
major concern in the design of feedback control systems.
Since external disturbances are usually not accessible for
measurement, in the early development of disturbance
rejection control, high gain control is used to suppress the
unknown disturbance. Examples of high-gain controllers
include the geometric control algorithm [1], the singular
perturbation control laws [2], and the sliding mode control
schemes [3]. When the system is minimum phase and
has relative degree one, Lin and Saberi [4] have shown
that the system can be semiglobally stabilizable via linear
static high-gain output feedback. However, high-gain control
has drawbacks such as easy control saturation as well as
peaking of both state and control. Moreover, the peaking
phenomenon can easily excite the unmodelled high-order
dynamics [5]. Hence, the implementations of high-gain DRC
in real-world applications are usually constrained.

There is another DRC method in which an observer
algorithm is first proposed to estimate the unknown distur-
bance and then cancel the disturbance’s effect by the control

input. The advantage of this approach is that the disturbance
canceling control does not need to be high gain. There are
various formulations related to the unknown disturbance
estimation. According to the transfer function approach,
the disturbance observer is known to be very effective
in compensating disturbances [6–8] and is very popular
for robust motion control [9–11]. However, the transfer
function approach cannot be used in MIMO cases, while the
state space approach can be employed. Another approach
for disturbance estimation involves designing a joint state
and disturbance observer, where observers are constructed
to simultaneously estimate both the state and the unknown
disturbance. This approach was first developed in the study
of unknown input observer [12–14]. In previous research
[15–19], sliding mode methods have been developed from
the concepts of sliding surface design and equivalent control.
The so-called sliding mode observer (SMO) has been applied
to the observer problem for robust estimation of the system
state. In order to obtain perfect estimation, two necessary
and sufficient conditions are required for the existence of a
stable observer in the abovementioned approaches [12–16].
The first is that the system must be minimum phase (with
respect to the relation between the output and unknown
input), that is, the invariant zeros of the system must be
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located in the left-half plane. The second is a rank condition
in which the relative degree of the transfer function matrix
from the unknown input to the system output is one. These
two important conditions limit the practical applications of
the abovementioned approaches. Moreover, these previous
studies did not consider the issue of measurement noise.

For the linear system having both unknown distur-
bance and measurement noise, we develop an observer
design method, which can be successfully implemented in
systems with unstable invariant zeros. With reference to
[15, 20–23], our observer design combines SMO with the
descriptor system approach. After introducing a coordinate
transformation to the original system, a normal SMO and
a descriptor form system observer which is the type of
proportional derivative (PD) observer are first designed,
respectively. When the sliding motion is guaranteed, the
auxiliary information can be obtained by passing the switch-
ing term in SMO through the continuous approximation.
Although the system has both unknown input and sensor
noise, we can simultaneously estimate the state and the
unknown disturbance using the proposed algorithm. The
derivative and proportional gains are employed to attenuate
the effect of disturbance and to ensure robust stability of
the estimation error dynamics, respectively. As a result, the
estimation error is shown to be bounded in a small region.
Based on the estimations of both state and disturbance, we
finally design the disturbance rejection controller. Unlike the
high-gain controller, the response of control input in our
disturbance rejection controller does not have the drawback
of peaking at the transient time. Moreover, the proposed
observer algorithm does not require the derivative of the
output.

In the next section, a class of linear systems having both
unknown disturbances and sensor noises is first introduced
with three assumptions in relation to the system matrices.
Section 3 describes a series of system transformations which
can transform the original system into two subsystems.
Section 4 develops the observer design for estimating simul-
taneously the system state and the unknown disturbance
when the system is minimum phase. Moreover, the distur-
bance rejection controller is also presented in this section.
The same controller design problem is examined in Section 5
but the system has unstable invariant zeros. To verify the
developed disturbance rejection controller, two numerical
examples are demonstrated in Section 6. Finally, Section 7
gives concluding remarks.

2. Problem Formulation

Consider an MIMO system with both unknown disturbance
and measurement noise

ẋ(t) = Ax(t) + Bu(t) + Dde(t),

y(t) = Cx(t) + Fn(t),
(1)

where x ∈ Rn, u ∈ Rm, de ∈ Rl, n ∈ Rk, and y ∈
Rp are the system state vector, the control input vector,
the unknown disturbance vector, the measurement noise

vector and the system output vector, respectively. Note that
since matrices B and D may have different dimensions,
the feedback control cannot completely eliminate the effect
of disturbance on the system. It is more reasonable to
estimate the disturbance on the control channel than to
estimate the disturbance itself because we can use the control
input to improve the disturbance rejection performance. To
emphasize the advantage of DRC, we are concerned with
the input disturbance where the disturbance comes into the
system through the same channel as the control input (the
so-called matching condition [3]). Hence, the plant can be
rewritten as

ẋ(t) = Ax(t) + B(u(t) + d(t)),

y(t) = Cx(t) + Fn(t),
(2)

where d ∈ Rm is the unknown disturbance vector. Without
loss of generality, we assume that rank(B) = m and
rank(F) = k where p ≥ k + m and n ≥ p. The
objectives of this paper are to propose an observer method
that can simultaneously estimate the system state and
the unknown disturbance and to design the disturbance
rejection controller according to the estimation obtained.
The observer is an auxiliary dynamic system which can
effectively estimate the system state at any instant in
time. Unfortunately, the unknown disturbance brings the
standard Luenberger observer additional difficulty in precise
estimation. Busawon and Kabore [24] have further shown
that the conventional Luenberger observer is not adequate
for handling measurement noise. Several authors [12–14]
have proposed the so-called unknown input observer design
methods for estimating accurately the system state. Accord-
ing to the well-established sliding mode control technique,
sliding mode observer methods [15–19] have been developed
to robustly estimate the state. In the abovementioned design
methods, the necessary and sufficient conditions for an
asymptotically stable observer are that the transfer function
matrix between the unknown disturbance and the system
output is minimum phase and has relative degree one.
The two conditions seriously limit the applicability of the
abovementioned approaches. Since the two conditions are
necessary and sufficient, if one of two conditions mentioned
above is not satisfied, the abovementioned observer method
cannot guarantee asymptotical stability. In this paper, we
combine the sliding mode observer with the descriptor
system transformation for simultaneous estimation of both
system state and disturbance. The control law is then
designed to cancel the unknown disturbance according to
the disturbance estimation. With this new mechanism, the
proposed estimation algorithm can be applied to nonmini-
mum phase systems and the controller can effectively avoid
the peaking phenomenon at the transient time. Before intro-
ducing the main results, the following three assumptions of
system (2) are made throughout this paper.

Assumption 1. The pair (C, A) is detectable and the pair
(A, B) is stabilizable.
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Assumption 2. System matrices B and C in (2) satisfy the
following condition:

rank
(

CB
)
= rank

(
B
) = m. (3)

This assumption implies that the transfer function matrix
between the output and the input has relative degree one.

Assumption 3. The unknown disturbance and the measure-
ment noise have the upper bound.

3. System Transformation

For linear systems with unknown inputs in the state and
output equations, previous studies [15, 25] have developed
different design methods under some important conditions
of system matrices. Sharma and Aldeen [25] decoupled the
unknown inputs from the rest of the system through a series
of transformations. Following their work, we develop trans-
formations to decouple the original system for designing the
disturbance rejection controller. Since rank(F) = k, without
loss of generality we assume that the matrix F is decomposed
as

F =
⎡
⎣ 0

F2

⎤
⎦, (4)

where F2 ∈ Rk×k is invertible. It follows from rank(B) = m
that there exists a transformation T1 ∈ Rn×n such that the
matrix B can be partitioned as

T1B =
⎡
⎣B1

0

⎤
⎦, (5)

where B1 ∈ Rm×m is invertible. Let [ C1 C2 ] = CT−1
1 where

C1 ∈ Rp×m and C2 ∈ Rp×(n−m), and then we obtain

rank
(

CB
)
= rank

(
CT−1

1 T1B
)

= rank

⎛
⎝
[

C1 C2

]⎡⎣B1

0

⎤
⎦
⎞
⎠ = rank

(
C1B1

)
= m.

(6)

Since B1 is nonsingular, we can obtain rank( C1) = m from
(6). As a result, the matrix C1 can be partitioned as follows:

C1 =
⎡
⎣C1

C21

⎤
⎦, (7)

where C1 ∈ Rm×m is invertible and C21 ∈ R(p−m)×m. Now we
define the transformation

S =
⎡
⎣ Im 0

−C21C−1
1 Ip−m

⎤
⎦, (8)

which yields
[

Im 0
−C21C−1

1 Ip−m

]
[ C1 C2 ] =

[
C1 C12
0 C2

]
where C12 ∈

Rm×(n−m) and C2 ∈ R(p−m)×(n−m). Finally we introduce a

transformation T2 =
[

Im −C−1
1 C12

0 In−m

]
∈ Rn×n and define

z =
⎡
⎣z1

z2

⎤
⎦ = T−1

2 T1x,

⎡
⎣y1

y2

⎤
⎦ = Sy = SCx = SCT−1

1 T2z,

(9)

where z1 ∈ Rm, z2 ∈ Rn−m, y1 ∈ Rm, and y2 ∈ Rp−m. Note
that two vectors y1 and y2 are measurable. According to the
abovementioned transformation (9), we define

⎡
⎣A11 A12

A21 A22

⎤
⎦ = T2

−1T1AT1
−1T2,

⎡
⎣B1

0

⎤
⎦ = T2

−1T1B,

⎡
⎣C1 0

0 C2

⎤
⎦ = SCT−1

1 T2,

⎡
⎣ 0

F2

⎤
⎦ = SF,

(10)

where F2 ∈ R(p−m)×k is of full rank. As a result, system (2)
can be transformed into the following form:

ż1(t) = A11z1(t) + A12z2(t) + B1(u(t) + d(t)),

ż2(t) = A21z1(t) + A22z2(t),

y1(t) = C1z1(t),

y2(t) = C2z2(t) + F2n(t),

(11)

where A11 ∈ Rm×m, A12 ∈ Rm×(n−m), A21 ∈ R(n−m)×m, and
A22 ∈ R(n−m)×(n−m). This completes the process of system
transformation. To apply DRC, we first propose an observer
structure that utilizes the information of input u and output
y to simultaneously estimate the system state x and the
unknown disturbance d in (2). According to the estimation
obtained, we then design the disturbance rejection controller,
which can effectively avoid the peaking phenomenon in the
transient time.

4. Disturbance Rejection Controller Design for
Minimum Phase Systems

When system (2) is minimum phase and rank(CB) =
rank(B) = m, we are in the position to design the sliding
mode observer and the descriptor system form observer,
which can simultaneously estimate the system state x and
the unknown disturbance d. Although the system has
measurement noise, the proposed algorithm can guarantee
the estimation error to be bounded within a small region.
From the third equation in (11), we know z1 = C−1

1 y1 and
substitute the term into the dynamic equation of z2 to obtain

ż2(t) = A22z2(t) + A21C−1
1 y1(t),

y2(t) = C2z2(t) + F2n(t).
(12)
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System (12) can be transformed into a descriptor system
form

⎡
⎣In−m 0

0 0

⎤
⎦
⎡
⎣ż2(t)

ṅ(t)

⎤
⎦ =

⎡
⎣A22 0

0 −Ik

⎤
⎦
⎡
⎣z2(t)

n(t)

⎤
⎦

+

⎡
⎣A21C−1

1

0

⎤
⎦y1(t) +

⎡
⎣0

Ik

⎤
⎦n(t)

y2(t) =
[

C2 F2

]⎡⎣z2(t)

n(t)

⎤
⎦.

(13)

Augment a vector w1 as w1 = [ z2
n ] ∈ Rn−m+k and define

E1 =
⎡
⎣In−m 0

0 0

⎤
⎦ ∈ R(n−m+k)×(n−m+k),

H1 =
⎡
⎣A22 0

0 −Ik

⎤
⎦ ∈ R(n−m+k)×(n−m+k),

N1 =
⎡
⎣A21C−1

1

0

⎤
⎦ ∈ R(n−m+k)×m,

M1 =
⎡
⎣0

Ik

⎤
⎦ ∈ R(n−m+k)×k ,

Cn =
[

C2 F2

]
∈ R(p−m)×(n−m+k).

(14)

Then we can rewrite system (13) as

E1ẇ1(t) = H1w1(t) + N1y1(t) + M1n(t)

y2(t) = Cnw1(t).
(15)

In the following, two observer algorithms including the
descriptor system observer and the sliding mode observer are
developed to simultaneously estimate the system state x and
the unknown disturbance d. Boutayeb et al. [20] used the
descriptor system approach to design a nonlinear observer
design for simultaneously estimating the system state and
the unknown input. Using the same method, Fernando and
Trinh [21] designed a reduced-order functional observer of
the linear systems with the disturbed input and output. Gao
and Wang [22] developed an observer which can reduce the
effect of measurement noises by descriptor system trans-
formation. Their proposed method involved constructing a
modified PD observer, which can asymptotically estimate the
system state and the output noise at the same time. Before
designing the observer for system (15), the following lemma
demonstrates its detectability.

Lemma 1. If system (2) is minimum phase and rank(CB) =
rank(B) = m, then the descriptor system (15) is completely
detectable, that is,

(1) rank

⎛
⎝
⎡
⎣sE1 −H1

Cn

⎤
⎦
⎞
⎠ = n−m + k, ∀s ∈ C+,

(2) rank

⎛
⎝
⎡
⎣E1

Cn

⎤
⎦
⎞
⎠ = n−m + k.

(16)

System (15) is completely detectable which means that it has
neither unstable finite nor infinite output decoupling zeros [22,
23].

Proof. Since system (2) is minimum phase, it follows that

rank

⎛
⎝
⎡
⎣sIn − A −B

C 0

⎤
⎦
⎞
⎠ = n + m, ∀s ∈ C+. (17)

Using the transformations described in Section 3, we can
obtain

rank

⎛
⎝
⎡
⎣sIn − A −B

C 0

⎤
⎦
⎞
⎠

= rank

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

sIm − A11 −A12 −B1

−A21 sIn−m − A22 0

C1 0 0

0 C2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= n + m, ∀s ∈ C+.

(18)

Since matrices B1 and C1 are invertible, the above equation
becomes

rank

⎛
⎝
⎡
⎣sIn − A −B

C 0

⎤
⎦
⎞
⎠ = rank

⎛
⎝
⎡
⎣sIn−m − A22

C2

⎤
⎦
⎞
⎠ + 2m

= n + m, ∀s ∈ C+.
(19)
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Consequently, we can obtain rank(
[
sIn−m−A22

C2

]
) = n −m, for

all s ∈ C+. From rank(F2) = k, it follows that

rank

⎛
⎝
⎡
⎣sE1 −H1

Cn

⎤
⎦
⎞
⎠ = rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

sIn−m − A22 0

0 Ik

C2 F2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= rank

⎛
⎝
⎡
⎣sIn−m − A22

C2

⎤
⎦
⎞
⎠ + k

= n−m + k, ∀s ∈ C+,

rank

⎛
⎝
⎡
⎣E1

Cn

⎤
⎦
⎞
⎠ = rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

In−m 0

0 0

C2 F2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= n−m + rank(F2)

= n−m + k.

(20)

Hence, system (15) is completely detectable. The proof of the
lemma is complete.

Following the above procedures, we know that system
(11) can be transformed into two subsystems as

ż1(t) = A11z1(t) + A12z2(t) + B1(u(t) + d(t)),

y1(t) = C1z1(t),
(21)

E1w1(t) = H1w1(t) + N1y1(t) + M1n(t),

y2(t) = Cnw1(t).
(22)

For subsystem (22), we design a PD observer as follows:

(E1 + K1Cn)η̇(t) = (H1 + L1Cn)η(t)

+
(

(H1 + L1Cn)(E1 + K1Cn)−1K1 − L1

)

× y2(t) + N1y1(t)

ŵ1(t) = η(t) + (E1 + K1Cn)−1K1y2(t),
(23)

where the gain matrices K1 ∈ R(n−m+k)×(p−m) and L1 ∈
R(n−m+k)×(p−m) are designed in the latter, η ∈ Rn−m+k is the

state of the observer and ŵ1 =
[

ẑ2

n̂

]
∈ Rn−m+k denotes the

estimation of w1. Let K1 =
[

0
K12F+

2

]
where the gain matrix

K12 ∈ Rk×k designed by the user is invertible. From

⎡
⎣In−m 0

0 0

⎤
⎦ +

⎡
⎣ 0

K12F+
2

⎤
⎦[C2 F2

]

= E1 + K1Cn =
⎡
⎣ In−m 0

K12F+
2 C2 K12

⎤
⎦,

(24)

we know that the matrix (E1 + K1Cn) is invertible. Adding
K1ẏ2 in both sides of the first equation in (22) yields

(E1 + K1Cn)ẇ1(t) = (H1 + L1Cn)w1(t) + N1y1(t)

+ K1ẏ2(t)− L1y2(t) + M1n(t).
(25)

Substituting η = ŵ1 − (E1 + K1Cn)−1K1y2 into (22), we can
obtain

(E1 + K1Cn) ˙̂w1(t) = (H1 + L1Cn)ŵ1(t)

− L1y2(t) + K1ẏ2(t) + N1y1(t).
(26)

Let w̃1 = w1 − ŵ1 =
[

z̃2

ñ

]
be the estimation error of w1. It

follows from (25) and (26) that the dynamic equation of w̃1

can be given by

˙̃w1(t) = (E1 + K1Cn)−1((H1 + L1Cn)w̃1(t) + M1n(t))

=
(

(E1 + K1Cn)−1H1 −G1Cn

)
w̃1(t)

+ (E1 + K1Cn)−1M1n(t),

(27)

where G1 = −(E1 + K1Cn)−1L1 ∈ R(n−m+k)×(p−m). By direct
calculation, we have

(E1 + K1Cn)−1M1 =
⎡
⎣ In−m 0

−F+
2 C2 K−1

12

⎤
⎦
⎡
⎣0

Ik

⎤
⎦ =

⎡
⎣ 0

K−1
12

⎤
⎦,

(E1 + K1Cn)−1H1 =
⎡
⎣ In−m 0

−F+
2 C2 K−1

12

⎤
⎦
⎡
⎣A22 0

0 −Ik

⎤
⎦

=
⎡
⎣ A22 0

−F+
2 C2A22 −K−1

12

⎤
⎦,

(28)

and then rewrite (27) as

˙̃w1(t) =
⎛
⎝
⎡
⎣ A22 0

−F+
2 C2A22 −K−1

12

⎤
⎦−

⎡
⎣G11

G12

⎤
⎦[C2 F2

]
⎞
⎠

× w̃1(t) +

⎡
⎣ 0

K−1
12

⎤
⎦n(t).

(29)

As a result, a high-gain K12 is first chosen to reduce the effect
of n and another gain G1 is then designed to ensure the
stability of the error dynamics. The estimation performance
of the developed observer is shown in the following theorem.

Theorem 2. Consider system (22), which is completely
detectable, and design the PD observer as (23). Let ŵ1 =[

ẑ2

n̂

]
= η + (E1 + K1Cn)−1K1y2 be the estimation state

where the dynamics of estimation error is given by (29).
If the measurement noise n is bounded and the matrix
(E1 + K1Cn)−1H1 − G1Cn is stable, then the estimation error
is bounded within a small region.
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Proof. First, we show that the pair (Cn, (E1 + K1Cn)−1H1) is
detectable. From Lemma 1 and

rank

⎛
⎝
⎡
⎣sIn−m+k − (E1 + K1Cn)−1H1

Cn

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣s(E1 + K1Cn)−H1

Cn

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣In−m+k sK1

0 Ip−m

⎤
⎦
⎡
⎣sE1 −H1

Cn

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣sE1 −H1

Cn

⎤
⎦
⎞
⎠,

(30)

it follows that

rank

⎛
⎝
⎡
⎣sIn−m+k − (E1 + K1Cn)−1H1

Cn

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣sE1 −H1

Cn

⎤
⎦
⎞
⎠

= n−m + k ∀s ∈ C+.

(31)

Hence, the pair (Cn, (E1 + K1Cn)−1H1) is detectable and a
gain matrix G1 should be found such that (E1 + K1Cn)−1H1−
G1Cn is Hurwitz. Since L1 = −(E1 + K1Cn)G1, we can
conclude that (E1 + K1Cn)−1(H1+L1Cn) can be stabilized and
complete the proof.

We know from Theorem 2 that the derivative and pro-
portional gains are used to attenuate the effect of disturbance
and to ensure the robust stability of the estimation error
dynamics, respectively. As a result, the estimation error is
shown to be bounded within a small region.

Since the pair (Cn, (E1 + K1Cn)−1H1) is detectable, we
should find the gain matrix G1 to stabilize the matrix
(E1 + K1Cn)−1H1 − G1Cn by solving an observer Riccati
equation:

G1 = 1
β

P1CT
n , P1

(
(E1 + K1Cn)−1H1

)T

+
(

(E1 + K1Cn)−1H1

)
P1 − P1

CT
n Cn

β1
P1 + Q1

= 0,

(32)

where β1 > 0 is a positive scalar and Q1 > 0 is a positive
definite matrix. According to the error dynamics (29), we can
first design K1 to attenuate the effect of noise and then choose
G1 to stabilize (E1 + K1Cn)−1H1 −G1Cn.

For subsystem (21), we use the estimation information of
z2 to design the sliding mode observer as follows:

˙̂z1(t) = −Φ1z̃1 + A11C−1
1 y1(t) + A12ẑ2(t) + B1u(t) + v1(t),

(33)

where v1 = k1(z̃1/‖z̃1‖), z̃1 = C−1
1 y1 − ẑ1 = z1 − ẑ1, Φ1 ∈

Rm×m is a Hurwitz matrix designed by the user, and k > 0 is
a constant. The dynamic equation of estimation error z̃1 can
be obtained by substituting (33) into (21):

˙̃z1(t) = Φ1z̃1(t) + A12z̃2(t)− k1
z̃1(t)∥∥z̃1(t)

∥∥ + B1d(t). (34)

Since the vectors z̃2 and d are bounded, Spurgeon et al.
[3, 16, 19] have shown that an ideal sliding motion takes
place in finite time for a large enough scalar k1. During the
sliding motion z̃1(t) = ˙̃z1(t) = 0, the discontinuous term
v1(t) has to take on an average value to maintain the sliding
motion. From the concept of equivalent control in sliding
mode control, we know

v1eq(t) = A12z̃2(t) + B1d(t), (35)

where v1eq represents the equivalent term required to
maintain the sliding motion. Since the system is in the
sliding mode, passing the term v1 = k1(z̃1/‖z̃1‖) through
a low-pass filter yields v1eq. In practice, an ideal sliding
mode does not exist; hence, the system trajectories chatter
around the sliding manifold [3, 17]. According to Haskara
et al. [17], the discontinuous term v1(t) comprises of the
low-frequency equivalent control and the high-frequency
switching chattering. Passing v1(t) through a low-pass filter
with a bandwidth greater than the system bandwidth but
smaller than the switching frequency, one may obtain the
equivalent term. The use of a low-pass filter for recovering
the equivalent control signal was given by [17]. Continuous
approximation of equivalent injection signal using a small
positive scalar δ > 0 was also implemented in [19]. Since z̃2

is bounded within a known small region from Theorem 2, in
the analysis of [19], we have

x̂(t) = T−1
1 T2

⎡
⎣C−1

1 y1(t)

ẑ2(t)

⎤
⎦,

d̂(t) = B−1
1

(
−k1

z̃1(t)∥∥z̃1(t)
∥∥ + δ

)
≈ d(t).

(36)

As a result, the proposed observer design generates not only

a disturbance estimation d̂, but also a state estimation x̂.
Recall that most disturbance rejection controllers are

of high-gain control design, which has the disadvantage of
peaking phenomenon in control input. An important merit
of the proposed method is that it can avoid the peaking
phenomenon when applied to DRC. In high-gain control

design, the magnitude of the disturbance estimate d̂ will
peak at very large value during the transient time. To avoid
the peaking phenomenon, an ideal control strategy is to
turn on the disturbance rejection controller only after the
disturbance estimation has almost been estimated. Using the

estimations of state x̂ and disturbance d̂ in (36), we can
design with the disturbance rejection control law as

u(t) = −Kx̂(t)−
(

1− tan h

(∥∥z1(t)− ẑ1(t)
∥∥

ε1

))
d̂(t), (37)
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where ε1 > 0 is a design constant and the gain matrix K ∈
Rn×m is designed such that the matrix A−BK is Hurwitz. We
use the saturation action of the control input during a short
time period to avoid the peaking phenomena.

5. Disturbance Rejection Controller Design for
Nonminimum Phase Systems

In order to deal with nonminimum phase systems, Chen [8]
used the well-known H∞ control design to estimate the dis-
turbance in which the proposed design can take into account
not only the robust stability but also sensitivity with respect
to measurement noise. Jo et al. [7] introduced a new filter
design into the traditional disturbance observer structure
and adopted the H∞ synthesis technique. In this section,
we combine SMO with the descriptor system approach in
the observer design with reference to [20–23]. When the
sliding motion is guaranteed, the auxiliary output can be
obtained by passing the switching term in SMO through the
continuous approximation. We integrate the auxiliary output
and the reduced-order system dynamics to produce a new
system which can be written as a descriptor system form. A
PD observer is then designed to simultaneously estimate the
system state and the unknown disturbance.

First, it follows from Section 3 that system (2) can be
transformed into two subsystems; hence, system (11) can be
rewritten as

ż1(t) = A11z1(t) + A12z2(t) + B1(u(t) + d(t)),

ż2(t) = A21z1(t) + A22z2(t),

y1(t) = C1z1(t),

y2(t) = C2z2(t) + F2n(t).

(38)

Since the system is nonminimum phase, it follows from
Lemma 1 that the pair (A22, C2) is not detectable. To obtain
the information of unknown disturbance, we first design the
sliding mode observer as

˙̂z1(t) = A11C−1
1 y1(t)−Φ2z̃1(t) + B1u(t) + v2(t)

= (A11 −Φ2)z1(t) + Φ2ẑ1(t) + B1u(t) + v2(t),
(39)

where v2 = k2(z̃1/‖z̃1‖), z̃1 = z1 − ẑ1 = C−1
1 y1 − ẑ1, and

Φ2 ∈ Rm×m is a Hurwitz matrix designed by the user and
k2 > 0 is a constant. It follows from (38) and (39) that the
dynamics of z̃1 is given by

˙̃z1(t) = Φ2z̃1(t) + A12z2(t)− k2
z̃1(t)∥∥z̃1(t)

∥∥ + B1d(t). (40)

As in the analysis described in Section 4, the discontinuous
term v2(t) has to take on an average value to maintain the
sliding motion, z̃1(t) = ˙̃z1(t) = 0. According to the concept
of equivalent control in sliding mode control, (40) can be
written as

v2eq(t) = A12z2(t) + B1d(t), (41)

where v2eq represents the equivalent term required to
maintain the sliding motion. As in the analysis of the above
section, we use the continuous approximation to obtain

y3(t) = k2
z̃1(t)∥∥z̃1(t)
∥∥ + δ

≈ A12z2(t) + B1d(t), (42)

Consider y3 as the auxiliary output of the dynamics of z2 and
then we have

ż2(t) = A21z1(t) + A22z2(t) = A21C−1
1 y1(t) + A22z2(t)

y2(t) = C2z2(t) + F2n(t)

y3(t) = A12z2(t) + B1d(t),

(43)

or in a matrix form

ż2(t) = A21z1(t) + A22z2(t)

⎡
⎣y2(t)

y3(t)

⎤
⎦ =

⎡
⎣C2 0 F2

A12 B1 0

⎤
⎦

⎡
⎢⎢⎢⎣

z2(t)

d(t)

n(t)

⎤
⎥⎥⎥⎦.

(44)

In the following, we develop an observer algorithm using the
descriptor system approach to simultaneously estimate the
system state z2 and the unknown disturbance d. Define the
following matrices:

w2 =

⎡
⎢⎢⎢⎣

z2

d

n

⎤
⎥⎥⎥⎦ ∈ R

n+k,

E2 =

⎡
⎢⎢⎢⎣

In−m 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ ∈ R

(n+k)×(n+k),

H2 =

⎡
⎢⎢⎢⎣

A22 0 0

0 −Im 0

0 0 −Ik

⎤
⎥⎥⎥⎦ ∈ R

(n+k)×(n+k),

N2 =

⎡
⎢⎢⎢⎣

A21C−1
1

0

0

⎤
⎥⎥⎥⎦ ∈ R

(n+k)×m,

M2 =

⎡
⎢⎢⎢⎣

0 0

Im 0

0 Ik

⎤
⎥⎥⎥⎦ ∈ R

(n+k)×(m+k),

C4 =
⎡
⎣A12 B1 0

C2 0 F2

⎤
⎦ ∈ R(n−m+k)×(n+k),

(45)

and then a descriptor system form of system (44) can be
written as

E2ẇ2(t) = H2w2(t) + N2y1(t) + M2f(t),

y(t) = C4w2(t),
(46)
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where f = [ dT nT ]T ∈ Rm+k. Before designing the observer
for system (46), the following lemma demonstrates its
detectability.

Lemma 3. If the pair (C, A) is detectable, then the descriptor
system in (46) is completely detectable, that is,

(1) rank

⎛
⎝
⎡
⎣sE2 −H2

C4

⎤
⎦
⎞
⎠ = n + k ∀s ∈ C+,

(2) rank

⎛
⎝
⎡
⎣E2

C4

⎤
⎦
⎞
⎠ = n + k.

(47)

Proof. Following the aforementioned transformations, we
have

rank

⎛
⎝
⎡
⎣sIn − A

C

⎤
⎦
⎞
⎠ = rank

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

sIm − A11 −A12

−A21 sIn−m − A22

C1 0

0 C2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

−A12

sIn−m − A22

C2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ + m.

(48)

Since the pair (A11, A21) is detectable, we have

rank(
[ −A12
sIn−m−A22

C2

]
) = n − m, for all s ∈ C+. From

rank(B1) = m and rank(F2) = k, we have

rank

⎛
⎝
⎡
⎣sE2 −H2

C4

⎤
⎦
⎞
⎠ = rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sIn−m − A22 0 0

0 Im 0

0 0 Ik

A12 B1 0

C2 0 F2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

−A12

sIn−m − A22

C2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ + m + k

= n + k ∀s ∈ C+,

rank

⎛
⎝
⎡
⎣E2

C4

⎤
⎦
⎞
⎠ = rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−m 0 0

0 0 0

0 0 0

A12 B1 0

C2 0 F2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= n−m + m + k = n + k.
(49)

Hence, system (46) is completely detectable. The proof of the
lemma is finished.

Let K2 =
[ 0 0

K21B−1
1 0

0 K22F+
2

]
∈ R(n+k)×(n−m+k) where the gains

K21 ∈ Rm×m and K22 ∈ Rk×k designed by the user are
invertible. We substitute K2 into E2 + K2C4 to attain

E2 + K2C4 =

⎡
⎢⎢⎢⎣

In−m 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 0

K21B−1
1 0

0 K22F+
2

⎤
⎥⎥⎥⎦

⎡
⎣A12 B1 0

C2 0 F2

⎤
⎦

=

⎡
⎢⎢⎢⎣

In−m 0 0

K21B−1
1 A12 K21 0

K22F+
2 C2 0 K22

⎤
⎥⎥⎥⎦,

(50)

and know that the matrix E2 + K2C4 is invertible. The PD
observer for descriptor system (46) is designed as

(E2 + K2C4)η̇(t) = (H2 + L2C4)η(t)

+
(

(H2 + L2C4)(E2 + K2C4)−1K2 − L2

)

× y(t) + N2y1(t)

ŵ2(t) = η(t) + (E2 + K2C4)−1K2y(t),
(51)

where η ∈ Rn and ŵ2 =
[

ẑ2

d̂
n̂

]
∈ Rn+k denotes the estimation

of w2. The gain L2 is designed in the latter. Adding K2ẏ in
both sides of the first equation in (46) yields

(E2 + K2C4)ẇ(t) = (H2 + L2C2)w(t) + K2ẏ(t)

− L2y(t) + N2y1(t) + M2f(t),
(52)

and then substituting η = ŵ2 − (E2 + K2C4)−1K2y into (51)
gives

(E2 + K2C4) ˙̂w(t) = (H2 + L2C4)ŵ(t)− L2y(t)

+ K2ẏ(t) + N2y1(t).
(53)

Let w̃2 = w2 − ŵ2 be the estimation error of w2. It follows
from (52) and (53) that the dynamics of w̃2 is given by

˙̃w2(t) = (E2 + K2C4)−1((H2 + L2C4)w̃2(t) + M2f(t))

=
(

(E2 + K2C4)−1H2 −G2C4

)
w̃2(t)

+ (E2 + K2C4)−1M2f(t),

(54)
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where G2 = −(E2 + K2C4)−1L2 ∈ R(n+k)×(n−m+k). Simplify-
ing the last term of (54), we can obtain

(E2 + K2C4)−1M2 =

⎡
⎢⎢⎢⎣

In−m 0 0

B−1
1 A12 K−1

21 0

F+
2 C2 0 K−1

22

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 0

Im 0

0 Ik

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0

K−1
21 0

0 K−1
22

⎤
⎥⎥⎥⎦,

(55)

and then rewrite (54) as

˙̃w2(t) =
(

(E2 + K2C4)−1H2 −G2C4

)
w̃2(t)

+

⎡
⎢⎢⎢⎣

0 0

K−1
21 0

0 K−1
22

⎤
⎥⎥⎥⎦

⎡
⎣d(t)

n(t)

⎤
⎦.

(56)

Theorem 4. Consider system (46) where it is completely
detectable and design the PD observer as (51). The dynamics
of estimation error is given by (56). If the measurement noise
n and the unknown disturbance d are bounded and the matrix
(E2 + K2C4)−1H2 − G2C4 is stable, then we first choose gains
K21 and K22 to reduce the effects of d and n, and then design a
gain G2 to ensure the stability of the error dynamics. Hence, the
estimation error is bounded within a small region.

Proof. We show that the pair (C4, (E2 + K2C4)−1H2) is
detectable. From direct calculation, we derive the following
relationship

rank

⎛
⎝
⎡
⎣sIn+k − (E2 + K2C4)−1H2

C4

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣s(E2 + K2C4)−H2

C4

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣In+k sK2

0 In−m+k

⎤
⎦
⎡
⎣sE2 −H2

C4

⎤
⎦
⎞
⎠

= rank

⎛
⎝
⎡
⎣sE2 −H2

C4

⎤
⎦
⎞
⎠.

(57)

Since the pair (C, A) is detectable, it follows from Lemma 3
that

rank

⎛
⎝
⎡
⎣sIn+k − (E2 + K2C4)−1H2

C4

⎤
⎦
⎞
⎠ = rank

⎛
⎝
⎡
⎣sE2 −H2

C4

⎤
⎦
⎞
⎠

= n + k ∀s ∈ C+.
(58)

As a result, the pair (C4, (E2 + K2C4)−1H2) is detectable and
a gain matrix G2 should be found such that the matrix
(E2 + K2C4)−1H2 − G2C4 is Hurwitz. We can stabilize the
error dynamics of w̃ and complete the proof.

Since the pair (C4, (E2 + K2C4)−1H2) is detectable, simi-
lar to the work of the above section, we should find the gain
matrix G2 by solving an observer Riccati equation:

G2 = 1
β2

P2CT
4 , P2

(
(E2 + K2C4)−1H2

)T

+
(

(E2 + K2C4)−1H2

)
P2 − P2

CT
4 C4

β2
P2 + Q2

= 0,

(59)

where β2 > 0 is a positive scalar and Q2 > 0 is a positive
definite matrix. In our proposed method, the sliding mode
observer (39) is first applied to obtain the auxiliary output y
by passing the switching term v2(t) through the continuous
approximation (42). Then perform the descriptor system
(46) comprising d, n, and the dynamics of z1. Finally, the
PD observer of system (51) is employed to simultaneously
estimate the system state z1 and the unknown disturbance d.

Using the estimations of state x̂ and disturbance d̂, we can
finally design the disturbance rejection control law as

u(t) = −Kx̂(t)−
(

1− tan h

(∥∥z1(t)− ẑ1(t)
∥∥

ε2

))
d̂(t), (60)

where ε2 > 0 is a design constant and the gain matrix K ∈
Rn×m is designed such that the matrix A− BK is Hurwitz.

6. Numerical Examples

Example 5. To demonstrate the effectiveness of the proposed
method, the sensor noise and the unknown disturbance are
introduced into the system and its state space form is given
by

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−3.25 −4.86 4.86 0

1 0 0 1

0 0.3536 0.3536 −5.3571

0 1.95 −1.95 0

⎤
⎥⎥⎥⎥⎥⎥⎦

x(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

2.16

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(u(t) + cos(t))

⎡
⎢⎢⎢⎣

y1(t)

y2(t)

y3(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎦x(t) +

⎡
⎢⎢⎢⎣

0

0

0.5 sin(10t)

⎤
⎥⎥⎥⎦,

(61)
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where the system satisfies three assumptions proposed in
Section 2. Let K12 = 5, β1 = 1, and Q1 = I, we then obtain
the PD observer as

η̇(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−7.5875 2.0188 1 2.0188

49.5806 −16.2230 −5.3571 −16.5766

−28.3729 7.8498 0 9.7998

−47.5618 14.2794 5.3571 14.4330

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
η(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7.5875 0

−49.2270 0

30.3229 0

47.2082 −0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣y2(t)

y3(t)

⎤
⎦ +

[
1 0 0 0

]T
y1(t),

(62)

and the estimation is constructed as

[
x̂2(t) x̂3(t) x̂4(t) n̂(t)

]T = η(t) +

⎡
⎣0 0 0 0

0 0 0 1

⎤
⎦
T⎡
⎣y2(t)

y3(t)

⎤
⎦.

(63)

Finally, the sliding mode observer and the disturbance
rejection controller are designed as

˙̂y1(t) = −1 ỹ1(t) − 3.25y1(t) +
[
−4.86 4.86 0

]
⎡
⎢⎢⎢⎣

x̂2(t)

x̂3(t)

x̂4(t)

⎤
⎥⎥⎥⎦

+ 2.16u(t) + 30 sign
(
ỹ1(t)

)
,

u(t) =−
[

3.7446 26.2338 −35.2773 62.8449
]

⎡
⎢⎢⎢⎢⎢⎢⎣

y1(t)

x̂2(t)

x̂3(t)

x̂4(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

− 1
2.16

(
1− tan h

(
ỹ1(t)
0.05

))
30 ỹ1(t)∣∣ ỹ1(t)
∣∣ + 0.01

.

(64)

Since the states x1, x2, and x3 are available, Figure 1 illustrates
the responses of the estimation state and the true state of x4

using the initial state x(0) = [ 0 0 1 1 ]T and η(0) = 0. The
true and estimation of disturbance are shown in Figure 2.
Although the system has the sensor noise, our method can
obtain better estimation response as seen in these figures.
Figures 3 and 4 are the responses of the system states and
the control input, respectively. Our proposed disturbance
rejection controller does not have the drawback of peaking,
and the disturbance attenuation property is evident. Hence,
the proposed observer is capable of estimating the state when
the underlying system has both unknown disturbance and
measurement noise.
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Figure 1: True and estimation values of x4 for Example 5.
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Figure 2: True and estimation values of disturbance for Example 5.
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Figure 3: Responses of system states x1, x2, and x3 for Example 5.
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Figure 4: Control input for Example 5.
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Figure 5: True and estimation values of x1 for Example 6.
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Figure 6: True and estimation values of x2 for Example 6.

Example 6. To demonstrate the proposed observer design
method in Section 5, we consider the following system:

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4 −0.4 −3.2 −5.3

−2.4 −0.2 −6.4 0.3470

1 −10 −0.25 −1.04

1 −8 3 −0.96

⎤
⎥⎥⎥⎥⎥⎥⎦

x(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

−1.2 −0.4

4 9.3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎝u(t) +

⎡
⎣sin(4t)

cos(t)

⎤
⎦
⎞
⎠,

y(t) =
⎡
⎣0 0 1 0

0 0 0 1

⎤
⎦x(t).

(65)

By direct calculation, we know that the eigenvalues of
the system are {−9.3421,−2.9878, 3.46 ± 0.9983i} and the
invariant zeros of the system between the output and the
unknown disturbance are {0.0378,−4.2378}. As a result,
the system is unstable and has unstable invariant zero.
The conventional UIO [10–13] and SMO [15–17] methods

0 2 4 6 8 10
−1

0

1

2

3

Time (s)

y1

y2

Figure 7: System outputs y1 and y2 for Example 6.

cannot be directly implemented in this system. Following the
design procedures in Section 5, the sliding mode observer
and the continuous approximation are designed as

˙̂y(t) = 3
(

y(t)− ŷ(t)
)

+

⎡
⎣−0.25 −1.04

3 −0.96

⎤
⎦y(t)

+ 15

(
y(t)− ŷ(t)

)
∥∥y(t)− ŷ(t)

∥∥ +

⎡
⎣−1.2 −0.4

4 9.3

⎤
⎦u(t)

y(t) = 15

(
y(t)− ŷ(t)

)
∥∥y(t)− ŷ(t)

∥∥ + 0.01
.

(66)

Designing F2 = 2, β = 1, and Q = I4, and solving an observer
Riccati equation as in the Kalman filter, we can obtain the
gain matrix G. The PD observer can be given by

η̇(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4.1803 1.2661 −0.1393 −0.5914

−0.9390 −13.8822 0.6581 3.9135

18.5277 15.5645 −3.0060 −7.5507

−10.0052 −4.5997 −3.1074 −5.7984

⎤
⎥⎥⎥⎥⎥⎥⎦
η(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0.4864 0.0209

−0.2092 −0.0628

⎤
⎥⎥⎥⎥⎥⎥⎦

y(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

−3.2 −5.3

−6.4 0.3470

61.1548 −8.8694

−31.4644 4.6832

⎤
⎥⎥⎥⎥⎥⎥⎦

y(t).

(67)
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Figure 8: System inputs u1 and u2 for Example 6.

Since x3 = y1 and x4 = y2, we can obtain the estimations of
reduced state and disturbance as

[
x̂1(t) x̂2(t) d̂1(t) d̂2(t)

]T

= η(t) +

⎡
⎣0 0 −0.9728 0.4184

0 0 −0.0418 0.1255

⎤
⎦
T

y(t).

(68)

Finally, the disturbance rejection controller is designed as

u(t) = −
⎡
⎣−1.7106 7.1062 −5.4759 0.9655

−1.6695 5.7243 −4.3594 1.4846

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂1(t)

x̂2(t)

y1(t)

y2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

−
(

1− tan h

(∥∥y(t)− ŷ(t)
∥∥

0.1

))⎡
⎣d̂1(t)

d̂2(t)

⎤
⎦.

(69)

Setting the initial conditions as x(0) = [−1 0 1 1 ]T , ŷ(0) = 0
and η(0) = 0, Figures 5 and 6 are the true and estimation
states. The system responses including the output and the
input are shown in Figures 7 and 8. Figures 9 and 10
are the estimation and real unknown disturbances of d1

and d2, respectively, in which each estimated signal has
approximately traced the real one. The observer design
respecting to the proposed method robustly stabilize the
estimation error dynamics and simultaneously reconstruct
the state and unknown input even if the system is unstable
and has unstable invariant zeros. Unlike the conventional
high-gain disturbance rejection controllers, the control input
in our proposed method does not have the disadvantage
of peaking at the transient time. Moreover, the property of
disturbance attenuation in our algorithm is evident.

7. Conclusions

For a class of MIMO systems with the unknown disturbances
and the measurement noises, this paper has developed an
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Figure 9: True and estimation values of d1 for Example 6.
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Figure 10: True and estimation values of d2 for Example 6.

observer design method consisting of the sliding mode
observer and the descriptor system transformation. The
proposed estimation method can simultaneously reconstruct
the system state and the unknown disturbance even though
the system is nonminimum phase with respect to the
relation between the output and the unknown disturbance.
The robust stability of the estimation dynamics can be
guaranteed and the estimation error is shown to be bounded
within a small region. Compared with conventional high-
gain disturbance rejection controllers, our controller can
avoid the peaking phenomenon and does not require the
derivative of output. Simulation results demonstrate that the
proposed control scheme exhibits reasonably good system
performance.
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