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Summary
In this article, robust fault diagnosis of a class of singular delayed linear parame-
ter varying systems is considered. The considered system has delayed dynamics
with unknown time varying delays and also it is affected by noise, disturbance
and faults in both actuators and sensors. Moreover, in addition to the aforemen-
tioned unknown inputs and uncertainty, another source of uncertainty related
to inexact measures of the scheduling parameters is present in the system. Mak-
ing use of the descriptor system approach, sensor faults in the system are added
as additional states into the original state vector to obtain an augmented sys-
tem. Then, by designing a suitable proportional double integral unknown input
observer (PDIUIO), the states, actuator, and sensor faults are estimated. The
uncertainty due to the mismatch between the inexact parameters that schedule
the observer and the real parameters that schedule the original system is for-
mulated with an uncertain system approach. In the PDIUIO, the uncertainty
induced by unknown inputs (disturbance, noise and actuator, and sensor faults),
unknown delays, and inexact parameter measures are attenuated in H∞ sense
with different weights. The constraints regarding the existence and the robust
stability of the designed PDIUIO are formulated using linear matrix inequalities.
The efficiency of the proposed method is verified using an application example
based on an electrical circuit.

K E Y W O R D S
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1 INTRODUCTION

Fault diagnosis has become an active area of research during the past decades. Although this branch of control system
theory was born in the realm of safety-critical systems such as airplanes and nuclear reactors; nowadays it has become an
essential part of many industrial systems due to the need for high efficiency in addition to safety and reliability. Although
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faults can happen in different places in a control loop, sensor and actuator faults are more common and the diagno-
sis of sensor and actuator faults has been the subject of many researches. Many methods have been proposed for fault
diagnosis. However, in the control systems community, the model-based fault diagnosis methods have been attracted
much attention due to their formulation similarity with the kind of mathematics which is involved in classical control
systems designs. Observer-based methods are the most popular methods in the model-based fault diagnosis strategies.
Unknown input observers (UIOs)1,2 have the ability to decouple the effect of unknown inputs in the estimation error
of the observer. On the other hand, proportional-integral (PI) observers3–5 can reconstruct the actuator faults in addi-
tion to decouple the other unknown input signals such as disturbance and noise. Also, some other types of observers
such as proportional-integral-derivative (PID) observer, adaptive observer, learning observer and various types of sliding
mode observers (SMOs) have been designed and utilized in the literature for fault detection, isolation and reconstruc-
tion tasks. The interested reader is referred to the recent survey papers in the topic.6,7 Some methods perform fault
detection, fault isolation and fault reconstruction in different stages. But recently, a new strategy has become prevalent
which performs the three stages in a direct fault diagnosis manner in which the faults are detected and isolated based on
their estimated values.8,9 On the other hand, in the last years, the descriptor approach has been used to estimate some
variables in addition to the system states by augmenting the original system states with the additional states and then
by designing a suitable observer.8,10,11 This method can be applied for fault reconstruction by considering the faults as
additional states.

The systems under consideration in the current study are singular delayed linear parameter varying (SDLPV) sys-
tems.12 These systems have a great potential to model a broad class of real applications.13,14 It is known that most real
systems, either natural or man-made, are described by means of nonlinear models. During the last decades, these nonlin-
ear models have been widely approximated by linear ones with the assumption that the system works near an operating
point. Based on this linearization method, various methods have been applied for analysis and control of these systems.
However, the assumption of small operating range is violated in some applications where the operation of the system
is not confined in a single operating point. In these applications, the linear modeling strategy does not lead to satisfac-
tory results. Linear parameter varying (LPV) systems which have been proposed by Shamma15 as a generalization of
gain-scheduling systems are a remedy for this challenge. The LPV approach transforms the nonlinear system to a model
with linear structure by embedding the nonlinearities in some varying parameters; thus, the obtained model is valid in a
wide area of operating conditions. Thus, LPV systems have a linear structure but the matrices of the model are varying
according to the parameters changes. In recent years, many researchers have focused to solve various open problems for
this type of systems. The interested reader is refereed to review papers16,17 and references therein. Singular LPV systems
are a class of LPV systems which can model the algebraic constraints between the states in addition to their dynamic rela-
tions. These systems can model the behavior of many applications, such as distillation columns and bioreactors.11,18 The
fault diagnosis of singular LPV systems has just been recently studied. Constant actuator fault detection and isolation via
proportional integral observer has been addressed.5 These results have been extended to fault estimation of time-varying
actuator faults by a suitable adaptive observer.19 The same authors have designed SMO for fault diagnosis in these sys-
tems.20 A robust observer for sensor fault diagnosis in the presence of unmeasurable gain scheduling functions has been
designed.11 Various problems in the domain of fault diagnosis and fault tolerant control of singular LPV systems are still
unsolved and need to be addressed by researchers.

Time delay which occurs in dynamics of many systems is a source of instability and poor performance. The analysis of
time-delay systems is different in comparison to the systems without delay.21–23 These systems do not have a characteristic
equation in a polynomial form. Their characteristic equation is transcendental so there are no finite number of poles in
these systems. Thus, some approaches like those which are based on classical pole placement cannot be applied. Recently,
singular LPV systems with time delay have attracted the attention of researchers12 because of the powerful modeling
in their structure. Some results have been published recently related to fault diagnosis for this type of systems. Sensor
fault diagnosis is addressed using a UIO8 and actuator fault diagnosis is considered using proportional integral observer9

and using an adaptive observer.24 However, there are still some problems unsolved. One of the problems which has not
been addressed yet is the simultaneous actuator and sensor fault diagnosis in these systems. Because of the importance
of this problem, it is one of the hot topics in the fault diagnosis community and to the best of authors’ knowledge, it is
not addressed for SDLPV systems and currently is an open issue. Also, the existence of various unknown inputs such as
disturbance and noise and uncertainties like inexactness of measured scheduling parameters and unknown delays that
may exist in these especial type of systems increases the complexity of this problem.

The problem which is considered in this article is the simultaneous actuator and sensor fault diagnosis in SDLPV
systems. The problem of simultaneous actuator and sensor fault diagnosis has been tackled with defining a filtered



version of the system measurements and by designing a suitable robust adaptive observer in LPV systems25 and by
designing a suitable proportional integral observer for quasi-LPV (qLPV) systems.26 This problem has been addressed
by constructing an augmented state variable and designing an appropriate observer for descriptor systems27 and by
designing a descriptor reduced order SMO in time-delayed systems.28 In our study, sensor faults are considered as addi-
tional states and by using descriptor approach, the original system plus the static relations is converted to a higher
order SDLPV system. Then, by designing a suitable proportional double integral unknown input observer (PDIUIO),
the actuator fault vector and the augmented state vector which includes the sensor fault vector are robustly estimated
in the presence of unknown inputs and uncertainties. Adding more integral terms to design proportional multiple inte-
gral (PMI) observers can help to estimate unknown input signals with the polynomial form of any degree4 but at the
price of increasing design complexity. Recently, this kind of observers has been applied for unknown input estimation
in Takagi–Sugeno fuzzy systems.29 The idea of adding multiple integrals is also applied in SMO design for LPV sys-
tems.30 The designed PDIUIO in this article has the advantage of not needing to assume that the actuator faults to be
piecewise constant which is normally needed in the design of traditional proportional integral unknown input observers
(PIUIOs); thus, it can be applied for diagnosis of a broader class of faults. The assumption which is needed for designing
the PDIUIO is that the second derivative of actuator faults should be almost zero that is satisfied for piecewise constant
faults (including abrupt faults), incipient faults and slow time-varying faults. The presented method is also easily extend-
able to design proportional multiple integral unknown input observer (PMIUIO) for SDLPV systems. The selection of
the double integral case in the current study provides a suitable tradeoff between the class of actuator faults that can
be reconstructed and the complexity of the observer. Another advantage of the presented method is that by making use
of both descriptor approach and integral terms, direct diagnosis of simultaneously actuator and sensor faults has been
made possible.

In our study, it is assumed that the system has unknown time-varying state delays. Designing observers for systems
with time-varying delays has attracted the attention of researchers because of its application in systems such as communi-
cation systems and network control systems. Functional interval observer has been designed for fractional-order systems
with time-varying delays31 and distributed observers in the presence of time-varying delays are designed for large-scale
LTI systems.32 Designing PDIUIO in the case considered in this article presents additional challenges because the knowl-
edge about the delay values is needed in formulating the delayed terms in the observer structure and also it is needed
in constructing the related Lyapunov–Krasovskii functional for proving the stability of observer error dynamics. State
estimation in the presence of unknown delays has been achieved by a functional SMO in linear systems23 and by a non-
linear delayed observer in nonlinear systems.22 Different with these approaches; in this article, the uncertainty induced
by unknown delays is modeled as a disturbance signal and it is attenuated in H∞ sense. The problem of simultaneous
actuator and sensor fault diagnosis in SDLPV systems is addressed with the assumption that the available information on
the scheduling parameter signals is inexact. This additional challenge is overcome by converting the original system into
an uncertain system. The induced uncertainty due to inexact parameters is robustly attenuated. The design procedure of
PDIUIO for SDLPV systems with the mentioned assumptions is provided as a solution to a convex optimization problem
with a set of linear matrix inequalities (LMIs) constraints.

The main contributions of this work are summarized as follows:

• Designing PDIUIO for SDLPV systems having multiple unknown time varying delays in the presence of disturbance,
noise and inexact scheduling parameters.

• Simultaneous reconstruction of actuator and sensor faults with the designed PDIUIO.
• Verifying the obtained results in simultaneous reconstruction of actuator and sensor faults in an electrical circuit

example modeled as an SDLPV system.

The rest of this article is organized as follows. The problem formulation is presented in Section 2. A suitable PDIUIO
is proposed in Section 3. Robust exponential stability of SDLPV systems is presented in Section 4. The design of the
PDIUIO for SDLPV systems and also the state and fault estimation based on this observer is presented in Section 5. An
electrical circuit example is used to illustrate the efficiency of the proposed method in Section 6. Section 7 draws the main
conclusions and presents future research paths.

Notations: A standard notation is used in this article. R is the set of real numbers. C is the set of complex numbers.
For a matrix X , XT indicates its transpose. X−1 is the inverse and X+ is the pseudo inverse of X . In is the n-dimensional
identity matrix. 0 as a sub-block of matrices means a zero block with appropriate dimension. * is used to show the elements
induced by symmetry in a symmetric matrix. sym{X} is a short notation for X + XT . For a symmetric matrix X , X > 0



(X < 0) shows that it is positive (negative) definite. For a square integrable function x(t), its L2-norm is defined as ||x(t)||2 =√

∫ ∞0 x(t)Tx(t)dt.

2 PROBLEM FORMULATION

In this article, a class of SDLPV systems is considered as follows:

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Eẋ(t) =
( s∑

k=0
Ak(𝜃(t))x (t − 𝜏k(t))

)

+ B(𝜃(t))u(t) + R(𝜃(t))d(t) + F(𝜃(t))fa(t),

y(t) = Cx(t) + Df fs(t) + Dnn(t),
𝜏0(t) = 0,
0 ≤ 𝜏k(t) ≤ 𝜏km, k = 1, … , s,
�̇�k(t) ≤ 𝜇k < 1, k = 1, … , s,
x(t) = 𝜙(t), −𝜏m < t < 0,

(1)

where x(t) ∈ R
n0 , u(t) ∈ R

ku , y(t) ∈ R
m, d(t) ∈ R

kd , n(t) ∈ R
kn , fa(t) ∈ R

kfa , and fs(t) ∈ R
kfs are the vectors of state

variables, input signals, output signals, exogenous disturbances, output noises, actuator faults and sensor faults,
respectively. In (1), E ∈ R

n0×n0 is a constant square matrix that may be rank deficient (rank(E) = r ≤ n0). Ak(𝜃(t)) for
k = 0, … , s, B(𝜃(t)), R(𝜃(t)), and F(𝜃(t)) are matrices with appropriate dimensions which depend affinely on the time
varying parameter 𝜃(t) ∈ R

l that is assumed to be real time measurable. C, Df , and Dn are constant matrices with
appropriate dimensions. 𝜏k(t) for k = 1, … , s are unknown time varying delays and 𝜏0(t) = 0 is related to the undelayed
part of dynamics in (1). 𝜏km and 𝜇k for k = 1, … , s are the upper bounds on delay and delay derivative values, respec-
tively. 𝜏0m = 0 is considered in this article for having simple notation. 𝜏m = maxk 𝜏km is the maximum of all delay upper
bounds. 𝜙(t) is a continuous vector-valued initial function.

Assumption 1. The time varying parameter vector belongs to the following hyperbox:

𝛺 =
{

𝜃(t)|𝜃m
k
𝜃

≤ 𝜃k
𝜃
(t) ≤ 𝜃M

k
𝜃

for k𝜃 = 1, … , l
}

, (2)

in which 𝜃m
k
𝜃

and 𝜃M
k
𝜃

define the minimum and maximum bounds of the parameter 𝜃k
𝜃
(t).

Definition 1 (33). The matrix pencil (E,A) is regular if det(sE − A) is not identically zero.

Definition 2 (33). The matrix pencil (E,A) is impulse-free if deg(det(sE − A)) = rank(E).

Definition 3 (12). System (1) is regular and impulse-free if all the 2s matrix pencils generated from
(

E,A0(𝜃(t)) +
∑s

k=1𝛼kAk(𝜃(t))
)

in which each 𝛼k can be 0 or 1 are regular and impulse-free for the all domains of 𝜃(t)
defined in (2).

Definition 4 (12). System (1) is admissible if it is regular, impulse free and stable.

Assumption 2 System (1) is assumed to be admissible.

The matrices of SDLPV system (1) depend on the time varying parameter vector 𝜃(t). In this article, this system is
transformed to a polytopic representation as follows:

⎧
⎪
⎨
⎪
⎩

Eẋ(t) =
h∑

i=1
𝜌i(𝜃(t))

[( s∑

k=0
Akix (t − 𝜏k(t))

)

+ Biu(t) + Rid(t) + Fifa(t)
]

,

y(t) = Cx(t) + Df fs(t) + Dnn(t).
(3)

In (3), the system (1) is represented as a weighted summation of h = 2l singular delayed LTI subsystems which are defined
in the vertices of the hyperbox (2).



Aki, Bi, Ri, and Fi are matrices related to the ith subsystem (i = 1, … , h) located in the ith vertex of the hyperbox and
the corresponding weights of the subsystems, 𝜌i(𝜃(t)) satisfy the following constraints:

0 ≤ 𝜌i(𝜃(t)) ≤ 1, i = 1, … , h, (4)
h∑

i=1
𝜌i(𝜃(t)) = 1. (5)

In order to reconstruct the sensor faults in (3), the state vector is augmented with the sensor fault vector to constitute a
new state vector:

x̃(t) =

[
x(t)
fs(t)

]

. (6)

By using the new state vector (6), system (3) can be transformed to:

⎧
⎪
⎨
⎪
⎩

Ẽ ̇x̃(t) =
h∑

i=1
𝜌i(𝜃(t))

[( s∑

k=0
Ãkix̃ (t − 𝜏k(t))

)

+ B̃iu(t) + R̃id(t) + F̃1ifa(t) + F̃2ifs(t)
]

,

y(t) = C̃x̃(t) + Dnn(t),
(7)

where

Ẽ =

[
E 0
0 0

]

, Ã0i =

[
A0i 0
0 −Ikfs

]

, Ãki =

[
Aki 0
0 0

]

(for k = 1, … , s),

B̃i =

[
Bi

0

]

, R̃i =

[
Ri

0

]

, F̃1i =

[
Fi

0

]

, F̃2i =

[
0

Ikfs

]

, C̃ =
[
C Df

]
.

Remark 1. The order of augmented system (7) is n = n0 + kfs and all the matrices are with appropriate dimensions.

The following conditions are assumed for the augmented system (7):

Assumption 3. The triple matrix
(

Ẽ, Ã0i, C̃
)

is R-observable for i = 1, … , h24:

Rank

[
sẼ − Ã0i

C̃

]

= n, ∀s ∈ C. (8)

Assumption 4. The triple matrix
(

Ẽ, Ã0i, C̃
)

is impulse-observable for i = 1, … , h24:

Rank
⎡
⎢
⎢
⎢
⎣

Ẽ Ã0i

0 Ẽ
0 C̃

⎤
⎥
⎥
⎥
⎦

= n + Rank(Ẽ). (9)

3 PDIUIO FORMULATION AND DESIGN

In this section, for the augmented system (7), a suitable PDIUIO is proposed:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ż(t) =
h∑

j=1
𝜌j(𝜃(t))

[( s∑

k=0
Nkjz (t − 𝜏km) + Lkjy (t − 𝜏km)

)

+ Gju(t) +Wjf̂a0(t)
]

,

̂x̃(t) = z(t) +H2y(t),
ŷ(t) = C̃ ̂x̃(t),
̇f̂ a0(t) =

h∑

j=1
𝜌j(𝜃(t))Λ0j(y(t) − ŷ(t)) + f̂a1(t),

̇f̂ a1(t) =
h∑

j=1
𝜌j(𝜃(t))Λ1j(y(t) − ŷ(t)),

z(t) = 0, −𝜏m < t < 0,

(10)



where ̂x̃(t) ∈ R
n, ŷ(t) ∈ R

m, and z(t) ∈ R
n are the vectors of augmented state (including the original states and the sensor

faults) estimate, output estimate and observer state, respectively. f̂a0(t) and f̂a1(t) are the estimates of the actuator faults
and the estimates of their derivatives, respectively. Since the exact knowledge of the scheduling parameters may not
be available in real applications, the proposed PDIUIO is scheduled according to the weights calculated based on 𝜃(t)
(the inexact measure of the parameter vector). Nki, Lki, Gi, Wi, Λ0i, Λ1i, and H2 are PDIUIO matrices with appropriate
dimensions and obtained using the design procedure presented in the following.

Remark 2. In the proposed observer the maximum bounds of delays are utilized for delayed terms since their real values
are not known.

Remark 3. The strategy presented in this article can be extended for the design of PMIUIO. However, for the simplification
of presentation, the case of double integral is presented here.

The uncertainty caused by the mismatch between the inexact measured parameters and the real parameters is taken
into account by extending the method proposed by Ichalal et al.34 and converting system (7) to the following uncertain
system:

⎧
⎪
⎨
⎪
⎩

Ẽ ̇x̃(t) =
h∑

i=1

h∑

j=1
𝜌i(𝜃(t))𝜌j(𝜃(t))

[( s∑

k=0

⌣Akijx̃ (t − 𝜏k(t))
)

+ ⌣Biju(t) + R̃id(t) +
⌣F1ijfa(t) + F̃2ifs(t)

]

,

y(t) = C̃x̃(t) + Dnn(t),
(11)

where the following notation is used
⌣Akij = Ãkj + ΔÃkij, ΔÃkij = Ãki − Ãkj, (12)

⌣Bij = B̃j + ΔB̃ij, ΔB̃ij = B̃i − B̃j, (13)

⌣F1ij = F̃1j + ΔF̃1ij, ΔF̃1ij = F̃1i − F̃1j. (14)

The state estimation error is:
e(t) = x̃(t) − ̂x̃(t), (15)

which according to (10) and (11) is reformulated as:

e(t) = x̃(t) − z(t) −H2C̃x̃(t) −H2Dnn(t) =
(

In −H2C̃
)

x̃(t) − z(t) −H2Dnn(t). (16)

By introducing H1 ∈ R
n satisfying the following constraint:

H1Ẽ = In −H2C̃. (17)

Equation (16) is converted into:
e(t) = H1Ẽx̃(t) − z(t) −H2Dnn(t) (18)

and subsequently the error dynamics is described by:

ė(t) = H1Ẽ ̇x̃(t) − ż(t) −H2Dnṅ(t). (19)

Substituting (10) and (11) in (19) results:

ė(t) =
h∑

i=1

h∑

j=1
𝜌i(𝜃(t))𝜌j(𝜃(t))

[ s∑

k=0

(

H1

(

Ãkj + ΔÃkij

)

x̃ (t − 𝜏k(t)) − Nkjz (t − 𝜏km)

− Lkjy (t − 𝜏km)
)

+H1

(

B̃j + ΔB̃ij

)

u(t) +H1R̃id(t) +H1

(

F̃1j + ΔF̃1ij

)

fa(t)

+ H1F̃2ifs(t) −Wjf̂a0(t) − Gju(t)
]

−H2Dnṅ(t) (20)



and after some manipulations, the following relation is derived:

ė(t) =
h∑

i=1

h∑

j=1
𝜌i(𝜃(t))𝜌j(𝜃(t))

[ s∑

k=0

(

Nkje (t − 𝜏km) +
(

H1Ãkj − LkjC̃ − NkjH1Ẽ
)

x̃ (t − 𝜏km)

+
(

NkjH2 − Lkj
)

Dnn (t − 𝜏km) +H1ΔÃkijx̃ (t − 𝜏km)
)

+
s∑

k=1

(

H1

(

Ãkj + ΔÃkij

) (
x̃ (t − 𝜏k(t)) − x̃ (t − 𝜏km)

))

+
(

H1B̃j − Gj

)

u(t)

+ H1ΔB̃iju(t) +H1R̃id(t) +H1F̃1jfa(t) −Wjf̂a0(t) +H1ΔF̃1ijfa(t) +H1F̃2ifs(t)
]

−H2Dnṅ(t). (21)

By imposing the following constraints on (21):

H1Ãkj − LkjC̃ − NkjH1Ẽ = 0, (22)

Gj = H1B̃j, (23)

Wj = H1F̃1j, (24)

the error dynamics is transformed into:

ė(t) =
h∑

i=1

h∑

j=1
𝜌i(𝜃(t))𝜌j(𝜃(t))

[ s∑

k=0

(

Nkje (t − 𝜏km) +
(

NkjH2 − Lkj
)

Dnn (t − 𝜏km)

+ H1ΔÃkijx̃ (t − 𝜏km)
)

+
s∑

k=1

(

H1

(

Ãkj + ΔÃkij

) (
x̃ (t − 𝜏k(t)) − x̃ (t − 𝜏km)

))

+ H1ΔB̃iju(t) +H1R̃id(t) +Wjefa0(t) +H1ΔF̃1ijfa(t) +H1F̃2ifs(t)
]

−H2Dnṅ(t), (25)

where efa0(t) is the actuator fault estimation error defined as:

efa0(t) = fa(t) − f̂a0(t). (26)

Similarly, the estimation error of actuator fault derivative is defined as:

efa1(t) = ḟ a(t) − f̂a1(t). (27)

Assuming that the actuator fault second derivative is almost zero (f̈ a(t) ≅ 0), according to (10) and (27), the dynamics of
actuator fault derivative estimation error is obtained:

ėfa1(t) = −
h∑

j=1
𝜌j(𝜃(t))Λ1j(y(t) − ŷ(t)) = −

h∑

j=1
𝜌j(𝜃(t))Λ1j

(

C̃e(t) + Dnn(t)
)

. (28)

The dynamics of actuator fault estimation error using (10) and (26) is obtained:

ėfa0(t) = efa1(t) −
h∑

j=1
𝜌j(𝜃(t))Λ0j(y(t) − ŷ(t)) = efa1(t) −

h∑

j=1
𝜌j(𝜃(t))Λ0j

(

C̃e(t) + Dnn(t)
)

. (29)

The constraints (17) and (22)–(24) will be considered in the design procedure of the proposed PDIUIO. The constraint
(17) is formulated as the following matrix equation:

[

H1 H2

]
[

Ẽ
C̃

]

= In. (30)



Assumption 5. The following rank is assumed to be satisfied for unknown input decoupling

Rank

[
Ẽ
C̃

]

= n.

Under Assumption 5, the solution of matrix equation (30) is:

[

H1 H2

]

=

[
Ẽ
C̃

]+

+ K
⎛
⎜
⎜
⎝

In+m −

[
Ẽ
C̃

][
Ẽ
C̃

]+⎞
⎟
⎟
⎠

, (31)

in which
[

Ẽ
C̃

]+

is the pseudo inverse of
[

Ẽ
C̃

]

calculated by:

[
Ẽ
C̃

]+

=
⎛
⎜
⎜
⎝

[
Ẽ
C̃

]T [
Ẽ
C̃

]
⎞
⎟
⎟
⎠

−1[
Ẽ
C̃

]T

(32)

and K ∈ R
n×(n+m) is a factor that adds additional degree of freedom in designing the PDIUIO which can be freely chosen

to satisfy other restrictions on the problem. H1 and H2 in (31) are partitioned as follows:

H1 = H10 + KX1, (33)

H2 = H20 + KX2, (34)

where

H10 =

[
Ẽ
C̃

]+

T1, (35)

H20 =

[
Ẽ
C̃

]+

T2, (36)

X1 = XT1, (37)

X2 = XT2, (38)

considering that T1 =
[

In
0m×n

]

, T2 =
[

0n×m
Im

]

, and X = In+m −
[

Ẽ
C̃

] [
Ẽ
C̃

]+

.

Now, some new variables are introduced in order to facilitate the design of PDIUIO:

Kkj = Lkj − NkjH2. (39)

Thus, (22) can be formulated as:
Nkj = H1Ãkj − KkjC̃, (40)

which by substituting (33) is transformed into:

Nkj = H10Ãkj + KX1Ãkj − KkjC̃. (41)

By substituting (39) in (25), the PDIUIO error dynamics becomes

ė(t) =
h∑

i=1

h∑

j=1
𝜌i(𝜃(t))𝜌j(𝜃(t))

[ s∑

k=0

(

Nkje (t − 𝜏km) − KkjDnn (t − 𝜏km) + H1ΔÃkijx̃ (t − 𝜏km)
)

+
s∑

k=1

(

H1

(

Ãkj + ΔÃkij

) (
x̃ (t − 𝜏k(t)) − x̃ (t − 𝜏km)

))

+ H1ΔB̃iju(t) +H1R̃id(t) +Wjefa0(t) +H1ΔF̃1ijfa(t) +H1F̃2ifs(t)
]

−H2Dnṅ(t). (42)



In order to analyze the convergence of the error dynamics computed in (28)–(29) and (42) which includes uncertainty
due to both unknown delays and inexact measured parameters, the following augmented system is constructed:

⎧
⎪
⎨
⎪
⎩

⌢E �̇� (t) =
h∑

i=1

h∑

j=1
𝜌i(𝜃(t))𝜌j(𝜃(t))

[ s∑

k=0

⌢N kij𝜁 (t − 𝜏km) +
⌢R wij

⌢w (t)
]

,

⌢e =
⌢

C 𝜁 (t),
(43)

in which the following notations are used:

𝜁 (t) =
[

e(t)T efa0(t)
T efa1(t)

T x(t)T
]T
, (44)

⌢w (t) ≔

[
⌢w 1(t)
⌢w 2(t)

]

,
⌢w 1(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u(t)
d(t)
fa(t)
fs(t)
n(t)

n (t − 𝜏1m)
⋮

n (t − 𝜏sm)
ṅ(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
⌢w 2(t) =

⎡
⎢
⎢
⎢
⎣

x̃ (t − 𝜏1(t)) − x̃ (t − 𝜏1m)
⋮

x̃ (t − 𝜏s(t)) − x̃ (t − 𝜏sm)

⎤
⎥
⎥
⎥
⎦

, (45)

⌢e =
[

e(t)T efa0(t)
T
]T
, (46)

and the coefficient matrices are

⌢E =

[
In+2kfa

0
0 Ẽ

]

, (47)

⌢N 0ij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

N0j Wj 0 H1ΔÃ0ij

−Λ0jC̃ 0 I 0
−Λ1jC̃ 0 0 0

0 0 0 Ã0i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,
⌢N kij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Nkj 0 0 H1ΔÃkij

0 0 0 0
0 0 0 0
0 0 0 Ãki

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(for k = 1, … , s), (48)

⌢

C =
[

In+kfa
0
]

, (49)

⌢R wij =
[
⌢R 1

wij
⌢R 2

wij

]

, (50)

where

⌢R 1
wij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H1ΔB̃ij H1R̃i H1ΔF̃1ij H1F̃2i −K0jDn −K1jDn · · · −KsjDn −H2Dn

0 0 0 0 −Λ0jDn 0 · · · 0 0
0 0 0 0 −Λ1jDn 0 · · · 0 0
B̃i R̃i F̃1i F̃2i 0 0 · · · 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⌢R 2
wij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H1

(

Ã1j + ΔÃ1ij

)

· · · H1

(

Ãsj + ΔÃsij

)

0 · · · 0
0 · · · 0
0 · · · 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.



4 ROBUST EXPONENTIAL STABILITY OF SDLPV SYSTEMS

For the stability analysis of the uncertain SDLPV system (43), the following theorem is presented:

Theorem 1. The following SDLPV system is considered:

⎧
⎪
⎨
⎪
⎩

Eẋ(t) =
h∑

i=1
𝜌i(𝜃(t))

[( s∑

k=0
Akix (t − 𝜏k(t))

)

+ Rwiw(t)
]

,

z(t) = Cx(t) + Dww(t),
(51)

in which w(t) is a L2-norm bounded input signal and z(t) is the measured output signal. All the matrices are with compatible
dimension and the other assumptions are similar to the definition of system (3). For a given 𝛾 > 0, if there exist matrices P
and Qk > 0 for k = 1, … , s such that the following conditions hold for i = 1, … , h:

PTE = ETP ≥ 0, (52)

i∑
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑i
11 PTA1i · · · PTAsi PTRwi CT

∗ − (1 − 𝜇1) e−2𝛼𝜏1m Q1 · · · 0 0 0
∗ ∗ ⋱ ⋮ ⋮ ⋮
∗ ∗ ∗ − (1 − 𝜇s) e−2𝛼𝜏sm Qs 0 0
∗ ∗ ∗ ∗ −𝛾2I DT

w
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (53)

where
∑i

11 = PTA0i + AT
0iP + 2𝛼PTE + Q1 + · · · + Qs, then, system (51) is exponentially stable with the decay rate of 𝛼 ≥ 0

for w(t) = 0 and the attenuation condition ||z(t)||2 < 𝛾||w(t)||2 holds for zero initial conditions.

Proof. The following Lyapunov–Krasovskii functional is considered:

V (t, xt) = xT(t)PTEx(t) +
s∑

k=1
∫

t

t−𝜏k(t)
xT(𝜆)Qke2𝛼(𝜆−t)x(𝜆)d𝜆, (54)

in which PTE = ETP ≥ 0, Qk = QT
k > 0 for k = 1, … , s and xt ≔ x(t + 𝜔) where 𝜔 ∈ [−𝜏m, 0]. The following index is

considered:

J =
∫

∞

0

[
z(t)Tz(t) − 𝛾2w(t)Tw(t)

]
dt. (55)

Showing J < 0 in the case of zero initial conditions proves ||z(t)||2 < 𝛾||w(t)||2. By adding the term ∫ ∞0 V̇ (t, xt) dt +
V (t, xt)|t=0 − V (t, xt)|t=∞ that equals to zero and also adding and subtracting 2𝛼V (t, xt); the index J in (55) is reformulated
as:

J =
∫

∞

0

[
z(t)Tz(t) − 𝛾2w(t)Tw(t) + V̇ (t, xt) + 2𝛼V (t, xt)

]
dt

−
∫

∞

0
2𝛼V (t, xt) dt + V (t, xt)|t=0 − V (t, xt)|t=∞ . (56)

Since V (t, xt)|t=0 = 0 and V (t, xt)|t=∞ ≥ 0, the following inequality is deduced:

J ≤
∫

∞

0

[
z(t)Tz(t) − 𝛾2w(t)Tw(t) + V̇ (t, xt) + 2𝛼V (t, xt)

]
dt. (57)

The time derivative of the Lyapunov–Krasovskii functional (54) can be calculated as follows:



V̇ (t, xt) =
h∑

i=1
𝜌i(𝜃(t))Sym

{

xT(t)PTA0ix(t) + xT(t)PTRwiw(t) +
s∑

k=1

(
xT(t)PTAkix (t − 𝜏k(t))

)
}

+
s∑

k=1

{

xT(t)Qkx(t) − (1 − �̇�k(t)) xT (t − 𝜏k(t))Qke−2𝛼𝜏k(t)x (t − 𝜏k(t)) − 2𝛼
∫

t

t−𝜏k(t)
xT(𝜆)Qke2𝛼(𝜆−t)x(𝜆)d𝜆

}

. (58)

By considering the upper bounds on delay values and delay rates and the convex property of the parameters,
respectively, as stated in (1) and (5), the inequality (57) is converted into:

J ≤
∫

∞

0

h∑

i=1
𝜌i(𝜃(t))𝜉(t)TΞi

𝜉(t)dt, (59)

where 𝜉(t) =
[
x(t)T x(t − 𝜏1(t))T · · · x(t − 𝜏s(t))T w(t)T

]T and

Ξi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξi
11 PTA1i · · · PTAsi PTRwi + CTDw
∗ − (1 − 𝜇1) e−2𝛼𝜏1m Q1 0 0 0
∗ ∗ ⋱ ⋮ ⋮
∗ ∗ ∗ − (1 − 𝜇s) e−2𝛼𝜏sm Qs 0
∗ ∗ ∗ ∗ DT

wDw − 𝛾2I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (60)

where Ξi
11 = PTA0i + AT

0iP + 2𝛼PTE + Q1 + · · · + Qs + CTC. The inequalities Ξi
< 0 for i = 1, … , h assures J < 0. Refor-

mulating the inequalities Ξi
< 0 by applying Schur complement lemma will result in inequalities (53), thus the attenu-

ation condition ||z(t)||2 < 𝛾||w(t)||2 for system (51) is proved which is analogous to H∞ performance. Now, the following
submatrix of

∑i is considered

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑i
11 PTA1i · · · PTAsi
∗ − (1 − 𝜇1) e−2𝛼𝜏1m Q1 · · · 0
∗ ∗ ⋱ ⋮
∗ ∗ ∗ − (1 − 𝜇s) e−2𝛼𝜏sm Qs

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (61)

which is negative definite due to negative definiteness of
∑i and is equivalent to V̇ (t, xt) + 2𝛼V (t, xt) < 0 for the

non-actuated dynamics. Thus, the exponential stability is also proved. ▪

The following two results are special cases of Theorem 1:

Corollary 1. If in system (51), Dw = 0, then LMI (53) in Theorem 1, becomes

Ξ
i
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ
i
11 PTA1i · · · PTAsi PTRwi
∗ − (1 − 𝜇1) e−2𝛼𝜏1m Q1 0 0 0
∗ ∗ ⋱ ⋮ ⋮
∗ ∗ ∗ − (1 − 𝜇s) e−2𝛼𝜏sm Qs 0
∗ ∗ ∗ ∗ −𝛾2I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (62)

where

Ξ
i
11 = PTA0i + AT

0iP + 2𝛼PTE + Q1 + · · · + Qs + CTC, (63)

which is obtained by applying Dw = 0 in (60).



Corollary 2. If Dw = 0 and E = I in system (51) which reduces to a delayed LPV system, then the constraint (52) in Theorem
1 reduces to P being a symmetric positive definite matrix and LMI (53) becomes similar to LMI (62) just differing in the (1, 1)
block which is formulated as follows:

Ξ
i
11 = PTA0i + AT

0iP + 2𝛼P + Q1 + · · · + Qs + CTC. (64)

5 MAIN RESULT

In this section, the stability of the proposed PDIUIO is addressed with the aid of the stability criteria obtained for SDLPV
systems in the previous section.

Theorem 2. Considering system (7), an exponential decay rate 𝛼 and an attenuation weighting factor 𝜂, if there exist sym-
metric positive definite matrices P1, Q1k, and Q2k for k = 1, … , s and matrices P2, M, and Mkj for k = 0, … , s, j = 1, … , h
and positive scalar 𝛾 obtained as the solution to the following optimization problem:

min
P1,P2,Q1k ,Q2k ,M,Mkj

𝛾 (65)

subject to the following LMIs for i = 1, … , h and j = 1, … , h:

PT
2 Ẽ = ẼTP2 ≥ 0, (66)

Ω
ij
=

⎡
⎢
⎢
⎢
⎣

Ω
ij
11 · · · Ω

ij
16

∗ ⋱ ⋮
∗ ∗ Ω

ij
66

⎤
⎥
⎥
⎥
⎦

< 0, (67)

where

Ω
ij
11 = Sym

⎧
⎪
⎨
⎪
⎩

P1

⎡
⎢
⎢
⎢
⎣

H10Ã0j H10F̃1j 0
0 0 Ikfa

0 0 0

⎤
⎥
⎥
⎥
⎦

+M
[

X1Ã0j X1F̃1j 0
]

−M0j

[

C̃ 0 0
]
⎫
⎪
⎬
⎪
⎭

+ 2𝛼P1 + Q11 + · · · + Q1s +
⎡
⎢
⎢
⎢
⎣

In 0 0
0 Ikfa

0
0 0 0

⎤
⎥
⎥
⎥
⎦

,

Ω
ij
12 = P1

⎡
⎢
⎢
⎢
⎣

H10ΔÃ0ij

0
0

⎤
⎥
⎥
⎥
⎦

+MX1ΔÃ0ij,

Ω
ij
13 =

[

Γkij||k=1 · · · Γkij||k=s

]

,

Γkij =
⎡
⎢
⎢
⎢
⎣

P1

⎡
⎢
⎢
⎢
⎣

H10Ãkj 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

+M
[

X1Ãkj 0 0
]

−Mkj

[

C̃ 0 0
]

P1

⎡
⎢
⎢
⎢
⎣

H10ΔÃkij

0
0

⎤
⎥
⎥
⎥
⎦

+MX1ΔÃkij

⎤
⎥
⎥
⎥
⎦

,

Ω
ij
14 =

⎡
⎢
⎢
⎢
⎣

P1

⎡
⎢
⎢
⎢
⎣

H10ΔB̃ij

0
0

⎤
⎥
⎥
⎥
⎦

+MX1ΔB̃ij P1

⎡
⎢
⎢
⎢
⎣

H10R̃i

0
0

⎤
⎥
⎥
⎥
⎦

+MX1R̃i P1

⎡
⎢
⎢
⎢
⎣

H10ΔF̃1ij

0
0

⎤
⎥
⎥
⎥
⎦

+MX1ΔF̃1ij P1

⎡
⎢
⎢
⎢
⎣

H10F̃2i

0
0

⎤
⎥
⎥
⎥
⎦

+MX1F̃2i

⎤
⎥
⎥
⎥
⎦

,



Ω
ij
15 =

⎡
⎢
⎢
⎢
⎣

−M0jDn −M1jDn · · · −MsjDn −P1

⎡
⎢
⎢
⎢
⎣

H20Dn

0
0

⎤
⎥
⎥
⎥
⎦

−MX2Dn

⎤
⎥
⎥
⎥
⎦

,

Ω
ij
16 =

⎡
⎢
⎢
⎢
⎣

P1

⎡
⎢
⎢
⎢
⎣

H10Ã1i

0
0

⎤
⎥
⎥
⎥
⎦

+MX1Ã1i · · · P1

⎡
⎢
⎢
⎢
⎣

H10Ãsi

0
0

⎤
⎥
⎥
⎥
⎦

+MX1Ãsi

⎤
⎥
⎥
⎥
⎦

,

Ω
ij
22 = Sym

{

PT
2 Ã0i

}

+ 2𝛼PT
2 Ẽ + Q21 + · · · + Q2s,

Ω
ij
23 =

[

Γkij
|
|
|k=1

· · · Γkij
|
|
|k=s

]

, Γkij =
[

0 PT
2 Ãki

]

,

Ω
ij
24 =

[

PT
2 B̃i PT

2 R̃i PT
2 F̃1i PT

2 F̃2i

]

, Ω
ij
25 = 0, Ω

ij
26 = 0,

Ω
ij
33 = diag

{

Γ̃1, … , Γ̃s

}

, Γ̃k =

[
−Q1ke−2𝛼𝜏km 0

0 −Q2ke−2𝛼𝜏km

]

,

Ω
ij
34 = 0, Ω

ij
35 = 0, Ω

ij
36 = 0,

Ω
ij
44 = diag

{

−𝛾Iku ,−𝛾Ikd ,−𝛾Ikfa
,−𝛾Ikfs

}

, Ω
ij
45 = 0, Ω

ij
46 = 0,

Ω
ij
55 = diag

{
−𝛾Ikn , … ,−𝛾Ikn

}
, Ω

ij
56 = 0,

Ω
ij
66 = diag

{
−𝜂𝛾In, … ,−𝜂𝛾In

}
.

Then, the robust state and fault estimator (10) with exponential decay rate 𝛼 and the best achievable attenuation level
𝛾 =

√
𝛾 for attenuating disturbance, noise, faults and the uncertainty induced by inexact measured parameters and with

attenuation level
√
𝜂𝛾 for attenuating the uncertainty induced by unknown delays exists. The matrices Λ0j and Λ1j for

j = 1, … , h that are the integrator gain and double integrator gain of the PDIUIO (10) are calculated from:

Λ0j =
[

0kfa×n Ikfa
0kfa

] (
P−1M0j

)
, (68)

Λ1j =
[

0kfa×n 0kfa
Ikfa

] (
P−1M0j

)
. (69)

Also, the matrices K and Kkj for k = 0, … , s and j = 1, … , h can be determined as follows:

K =
(

P
[

In 0n×kfa
0n×kfa

]T
)+

M, (70)

K0j =
[

In 0n×kfa
0n×kfa

] (
P−1M0j

)
, (71)

Kkj =
(

P
[

In 0n×kfa
0n×kfa

]T
)+

Mkj (for k = 1, … , s), (72)

and the matrices Nkj, Gj, Wj, H2, and Lkj are calculated from (41), (23), (24), (34), and (39), respectively.

Proof. Corollary 1 is applied to system (43). To do so, the following block diagonal matrices for constructing the
Lyapunov–Krasovskii functional (54) is used:

P =

[
P1 0
0 P2

]

, (73)

Qk =

[
Q1k 0

0 Q2k

]

(for k = 1, … , s), (74)



where P1,Q1k ∈ R
(n+2kfa)×(n+2kfa ) and P2,Q2k ∈ R

n×n. According to (47), the condition (52) is equivalent with P1 = PT
1 ≥ 0

and PT
2 Ẽ = ẼTP2 ≥ 0 for system (43). Then, the state space matrices of system (43) as stated in (47)–(50) are substituted in

(62) and (63) and next some reformulations are applied on them. The upper left blocks of the augmented matrices defined
in (48) are reformulated as follows:

⎡
⎢
⎢
⎢
⎣

N0j Wj 0
−Λ0jC̃ 0 I
−Λ1jC̃ 0 0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

H10Ã0j H10F̃1j 0
0 0 I
0 0 0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

K
0
0

⎤
⎥
⎥
⎥
⎦

[

X1Ã0j X1F̃1j 0
]

−
⎡
⎢
⎢
⎢
⎣

K0j

Λ0j

Λ1j

⎤
⎥
⎥
⎥
⎦

[

C̃ 0 0
]

, (75)

⎡
⎢
⎢
⎢
⎣

Nkj 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

H10Ãkj 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

K
0
0

⎤
⎥
⎥
⎥
⎦

[

X1Ãkj 0 0
]

−
⎡
⎢
⎢
⎢
⎣

Kkj

0
0

⎤
⎥
⎥
⎥
⎦

[

C̃ 0 0
]

(for k = 1, … , s). (76)

Also, ⌢R wij is reformulated in a similar manner. Then, by considering 𝛾 and 𝛾
√
𝜂 as attenuation levels for attenuating

⌢w 1(t) and ⌢w 2(t), respectively; a set of non-LMIs are obtained since there exist multiplicative terms of some unknown
variables. To resolve the nonlinearities in the obtained matrix inequalities, the following change of variables are
applied:

M = P
[

KT 0 0
]T
, (77)

M0j = P
[

KT
0j ΛT

0j ΛT
1j

]T
, (78)

Mkj = P
[

KT
kj 0 0

]T
(for k = 1, … , s), (79)

𝛾 = 𝛾2
, (80)

which results in the set of LMIs (67). In system (43), the delay values are constant (𝜏km), so 𝜇k = 0 is considered
while applying (62) to system (43). According to Corollary 1, the robust exponential convergence of the state and
fault estimator is guaranteed. When the optimization problem (65) under LMI conditions (66) and (67) is solved;
according to (77)–(79), Λ0j and Λ1j are calculated from (68)–(69), K and Kkj are calculated from (70)–(72), respec-
tively. Then, the matrices Nkj, Gj, Wj, H2, and Lkj of PDIUIO are calculated from (41), (23), (24), (34), and (39),
respectively. ▪

Remark 4. The attenuation weighting factor 𝜂 in Theorem 2 provides additional degree of freedom to consider different
weights on attenuating the uncertainty induced by unknown delays versus attenuating other unknown inputs.

Remark 5. Theorem 2 involves a non-strict LMI since it contains the equality constraint (66). This may cause numerical
problems and can be avoided by parameterizing P2 as 2 = P2Ẽ + SV where P2 > 0 and V ∈ R

(n−r)×n are the parameters
and S ∈ R

n×(n−r) is any full column rank matrix which satisfies ẼTS = 0.
33

Corollary 3. Theorem 2 may be simplified to consider the case which the scheduling parameters of the system (1) are exactly
measured. So, there will be no mismatch between the scheduling parameters of PDIUIO (10) and system (1) in this situa-
tion. Following the material presented before Theorem 2 and in its proof, the following simplification in this case should be
applied: the LMI (66) is omitted and in LMI (67); Ω

ij
12, the second block in Γkij (of the block Ω

ij
13), the first and third blocks

in Ω
ij
14, Ω

ij
22, Ω

ij
23, Ω

ij
24, Ω

ij
25, Ω

ij
26 and the second block in block diagonal matrix Γ̃k (of the block Ω

ij
33) will be removed. Obvi-

ously, the corresponding blocks symmetric to these blocks will be removed and the zero blocks’ dimensions will be modified
correspondingly. After these simplifications, optimization problem (65), subject to the simplified version of LMIs (67) for
j = 1, … , h is solved and according to other unchanged parts of Theorem 2, the unknown matrices of the PDIUIO may be
calculated.

Remark 6. Theorem 2 states PDIUIO design conditions for SDLPV systems with inexact scheduling parameters. A similar
proposition can be established for PDIUIO design conditions for SDLPV systems with unmeasurable parameters. This is
done by replacing 𝜌i(𝜃(t)) and 𝜌j(𝜃(t)) with 𝜌i(x(t)) and 𝜌j(x̂(t)), respectively, in the corresponding formulations.



Algorithm 1. Design of PDIUIO for simultaneous state estimation and both actuator and sensor fault reconstruction in
SDLPV systems with multiple unknown time varying delays in the presence of inexact parameters

Step 1. Convert system (1) to polytopic form (3), construct the augmented system (7) and then convert system (7) to
the uncertain system (11).

Step 2. Check Assumptions 2–5.
Step 3. Calculate H10, H20, X1, and X2 from (35)–(38), respectively.
Step 4. Solve the optimization problem (65) under constraint (66) and the set of LMIs (67) and obtain the scalar 𝛾

and the matrices P1, P2, Q1k, and Q2k (for k = 1, … , s) and matrices M and Mkj (for k = 0, … , s, j = 1, … , h).
Step 5. Calculate Λ0j and Λ1j (for j = 1, … , h) from (68) and (69), respectively.
Step 6. Calculate K and Kkj (for k = 0, … , s and j = 1, … , h) from (70)–(72), respectively.
Step 7. Calculate H1 and H2 from (33) and (34), respectively.
Step 8. Calculate matrices Nkj and Lkj (both for k = 0, … , s and j = 1, … , h) from (41) and (39), respectively.
Step 9. Calculate Gj and Wj (both for j = 1, … , h) from (23) and (24).

6 EXAMPLE

6.1 Description

In this section, an electrical circuit example19 is used to evaluate the efficiency of the proposed methods. The circuit is
depicted in Figure 1. This circuit has four meshes and the currents inside the meshes are shown with i1(t), i2(t), i3(t), and
i4(t). The circuit has two voltage sources, eight resistors and two inductors. The numerical values of the elements are listed
in Table 1 which are similar to the selection of Rodrigues et al.19 As expressed in Table 1, the resistors R1 and R6 are variable
resistors which their resistances vary subject to the variation of exogenous parameters 𝜃1(t) and 𝜃2(t), respectively. These
two parameters’ range of variations are 𝜃1(t) ∈ [−0.5, 0.5] and 𝜃2(t) ∈ [−1, 1]. The circuit model is obtained by applying
Kirchhoff voltage law (KVL) to its meshes. Thus, the following equations are obtained:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

L1
di1
dt
+ R1i1 + R3 (i1 − i3) + R5 (i1 − i4) = 0,

L2
di2
dt
+ R7 (i2 − i4) + R4 (i2 − i3) + R6i2 = 0,

R2i3 − v1(t) + R4 (i3 − i2) + R3 (i3 − i1) = 0,
R8i4 − v2(t) + R5 (i4 − i1) + R7 (i4 − i2) = 0.

(81)

It is considered that there are some delays in transmitting the input commands to the voltage sources due to com-
munication channel. The voltage source vector is v(t) =

[
v1(t) v2(t)

]T and considering the communication delay 𝜏(t), it
relates to input vector as v(t) = u(t − 𝜏(t)). The delay is time-varying and unknown but it is known that 𝜏(t) ∈ [0.4, 1]. The

F I G U R E 1 Electrical circuit example

T A B L E 1 Numerical values of the circuit elements

Element L1 L2 R1 R2 R3 R4 R5 R6 R7 R8

Value 0.3 0.65 10+ 𝜃1(t) 17 3 5 2 27+ 𝜃2(t) 8 10

Unit H H Ω Ω Ω Ω Ω Ω Ω Ω



state vector is selected as x(t) =
[
i1(t) i2(t) i3(t) i4(t)

]T . The voltages across the resistors R5, R7, and R4 are measured.
Thus, applying Ohm’s Law the following set of output equations is obtained:

⎧
⎪
⎨
⎪
⎩

y1(t) = vR5 = R5 (i4 − i1) ,
y2(t) = vR7 = R7 (i4 − i2) ,
y3(t) = vR4 = R4 (i2 − i3) .

(82)

The output vector is y(t) =
[
y1(t) y2(t) y3(t)

]T . The circuit’s model can be summarized as:
{

Eẋ(t) = A(𝜃(t))x(t) + Bu(t − 𝜏(t)) + Rd(t) + Ffa(t),
y(t) = Cx(t) + Df fs(t) + Dnn(t),

(83)

where the matrices of the model are.

E =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0
1 0
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, F =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, R =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.3
0.2
−0.3

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

A(𝜃(t)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−R11+𝜃1(t)
L1

0 R3

L1

R5

L1

0 −R22+𝜃2(t)
L2

R4
L2

R7
L2

R3 R4 −R33 0
R5 R7 0 −R44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

C =
⎡
⎢
⎢
⎢
⎣

−R5 0 0 R5

0 −R7 0 R7

0 R4 −R4 0

⎤
⎥
⎥
⎥
⎦

, Df =
⎡
⎢
⎢
⎢
⎣

0
2
0

⎤
⎥
⎥
⎥
⎦

, Dn =
⎡
⎢
⎢
⎢
⎣

0.1
0.3
0.2

⎤
⎥
⎥
⎥
⎦

,

and
R11 = R1 + R3 + R5, R22 = R4 + R6 + R7, R33 = R2 + R3 + R4, R44 = R5 + R7 + R8.

In system (83), a fault on the first actuator (voltage source) and another fault on the second sensor is considered. Also,
as it is seen in (83) the system is affected by disturbances and noise. System (83) is a singular LPV system with delayed
inputs. By choosing the inputs as auxiliary states and also using them as additional outputs like

x(t) =
[

i1(t) i2(t) i3(t) i4(t) u1(t) u2(t)
]T
, (84)

y(t) =
[

y1(t) y2(t) y3(t) u1(t) u2(t)
]T
, (85)

the following singular LPV system with state delay is obtained:
{

E ̇x(t) = A0(𝜃(t))x(t) + A1x(t − 𝜏(t)) + Bu(t) + Rd(t) + Ffa(t),
y(t) = Cx(t) + Dnn(t) + Df fs(t),

(86)

where

E =

[
E 0
0 0

]

, A0(𝜃(t)) =

[
A(𝜃(t)) 0

0 −Iku

]

, A1 =

[
0 B
0 0

]

,

B =

[
0

Iku

]

, R =

[
R
0

]

, F =

[
F
0

]

, C =

[
C 0
0 Iku

]

, Dn =

[
Dn

0

]

, Df =

[
Df

0

]

.

System (86) is a SDLPV system in the form of (1). It should be converted to polytopic representation (3) in order to
apply the methodologies proposed in this article. There are two varying parameters in the system (86) and hence there are



four subsystems in the polytopic representation. Matrices A0i and weights 𝜌i(𝜃(t)) of different subsystems (for i = 1, … , 4)
are calculated as follows

A01 = A0(𝜃(t))
|
|
| 𝜃1(t) = 𝜃m

1

𝜃2(t) = 𝜃m
2

,

A02 = A0(𝜃(t))
|
|
| 𝜃1(t) = 𝜃M

1

𝜃2(t) = 𝜃m
2

, (87)

A03 = A0(𝜃(t))
|
|
| 𝜃1(t) = 𝜃m

1

𝜃2(t) = 𝜃M
2

,

A04 = A0(𝜃(t))
|
|
| 𝜃1(t) = 𝜃M

1

𝜃2(t) = 𝜃M
2

,

and
𝜌1(𝜃(t)) = 𝛼1(t)𝛼2(t),
𝜌2(𝜃(t)) = (1 − 𝛼1(t)) 𝛼2(t),
𝜌3(𝜃(t)) = 𝛼1(t) (1 − 𝛼2(t)) ,
𝜌4(𝜃(t)) = (1 − 𝛼1(t)) (1 − 𝛼2(t)) , (88)

where 𝛼1(t) =
𝜃

M
1 −𝜃1(t)
𝜃

M
1 −𝜃

m
1

and 𝛼2(t) =
𝜃

M
2 −𝜃2(t)
𝜃

M
2 −𝜃

m
2

.

6.2 Results

Now, a PDIUIO is designed for system (86) following the steps of Algorithm 1. Assumptions 2–5 that are needed for the
design of PDIUIO are satisfied for system (86). Solving the optimization problem is carried out via YALMIP toolbox35

using SeDuMi solver.36 The parameters 𝛼 = 0 and 𝜂 = 100 are chosen. The minimum value obtained for attenuation level
is 𝛾opt = 0.5073. The matrices Λ0j and Λ1j for j = 1, … , 4 are obtained as follows.

Λ01 = [1.2570e+05 7.2151e+03 −7.7269e+04 −4.1997e−02 − 3.9494e−02],
Λ11 = [7.5318e+01 4.3234e+00 −4.6300e+01 −2.4676e−05 − 2.4525e−05],
Λ02 = [1.2413e+05 5.9794e+03 −7.9550e+04 7.8762e−02 −9.3033e−02],
Λ12 = [7.4379e+01 3.5829e+00 −4.7666e+01 4.7683e−05 −5.6606e−05],
Λ03 = [1.2405e+05 5.9165e+03 −7.9665e+04 8.6080e−02 7.6668e−02],
Λ13 = [7.4331e+01 3.5452e+00 −4.7736e+01 5.2068e−05 4.5080e−05],
Λ04 = [1.2408e+05 5.9398e+03 −7.9622e+04 2.8771e−02 −8.5414e−02],
Λ14 = [7.4349e+01 3.5591e+00 −4.7710e+01 1.7728e−05 −5.2041e−05].

The obtained matrices K0j and K1j for j = 1, … , 4 are

K01 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.9183e+02 −1.7855e+01 1.2786e+02 9.9988e−05 4.7380e−05
−3.2520e+02 −1.7994e+01 1.9977e+02 8.6689e−05 1.2534e−04

7.1971e+02 4.8137e+01 −4.5259e+02 −2.6460e−04 −2.0620e−04
−1.5328e+03 −9.0677e+01 9.4595e+02 5.3577e−04 4.7576e−04
−9.4533e−05 1.7314e−05 2.1281e−05 1.0110e+00 8.1350e−07
−3.5037e−05 1.4082e−05 −3.6779e−06 4.9364e−06 1.0110e+00

7.3551e+02 7.8556e+01 −5.0390e+02 −4.1469e−04 −1.5378e−04

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,



K02 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.8776e+02 −1.4468e+01 1.2942e+02 −1.1112e−04 1.4050e−04
−3.3225e+02 −1.2816e+01 2.0894e+02 −2.4713e−04 2.7374e−04

7.1607e+02 3.9205e+01 −4.6572e+02 4.3179e−04 −5.1429e−04
−1.5064e+03 −7.7065e+01 9.7321e+02 −9.5369e−04 1.1358e−03
−2.2912e−05 3.7276e−06 5.9093e−06 1.0110e+00 8.1349e−07
−7.2040e−06 4.0183e−06 −2.5780e−06 3.0095e−07 1.0110e+00

7.2172e+02 7.1150e+01 −5.1914e+02 3.7370e−04 −5.0057e−04

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K03 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.8883e+02 −1.4187e+01 1.2987e+02 −1.1937e−04 −1.6878e−04
−3.3205e+02 −1.2501e+01 2.0904e+02 −2.7350e−04 −1.8196e−04
7.1512e+02 3.9091e+01 −4.6652e+02 4.6970e−04 4.7568e−04
−1.5068e+03 −7.6032e+01 9.7485e+02 −1.0415e−03 −9.6456e−04
−2.4822e−05 3.9372e−06 6.5134e−06 1.0110e+00 8.1349e−07
−1.1739e−05 4.8977e−06 −1.6110e−06 −5.5348e−07 1.0110e+00
7.2459e+02 7.0658e+01 −5.2120e+02 3.9382e−04 6.7722e−04

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K04 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.8768e+02 −1.4421e+01 1.2956e+02 −1.9787e−05 1.3479e−04
−3.3232e+02 −1.2531e+01 2.0898e+02 −1.1375e−04 2.4513e−04
7.1538e+02 3.9196e+01 −4.6627e+02 1.4102e−04 −4.7675e−04
−1.5058e+03 −7.6560e+01 9.7411e+02 −3.3515e−04 1.0462e−03
−2.2941e−05 3.6979e−06 5.9521e−06 1.0110e+00 8.1350e−07
−6.7810e−06 3.9295e−06 −2.7337e−06 1.6177e−06 1.0110e+00

7.2003e+02 7.1697e+01 −5.2011e+02 2.5784e−05 −4.9149e−04

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K11 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.4397e−07 −3.1480e−07 1.5031e−07 1.4898e−01 6.2216e−01
−1.6038e−06 5.2095e−07 2.0366e−08 −9.2219e−01 −5.8183e−01
−1.5270e−06 5.0233e−07 9.9185e−09 −7.4435e−01 −5.0169e−01

2.7023e−06 −5.8891e−07 −4.6769e−07 −7.3212e−02 5.2211e−01
1.4203e−07 −3.7757e−08 −1.4377e−08 −2.6454e−07 2.0176e−06
−1.0469e−07 3.9136e−08 −6.3750e−09 −2.0874e−06 5.3501e−07
−1.6277e−05 4.7977e−06 9.4111e−07 −4.0643e+00 −4.7169e+00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K12 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7.9867e−06 −1.0667e−06 −2.3933e−06 1.4900e−01 6.2213e−01
1.3110e−06 −1.3861e−07 −4.4752e−07 −9.2218e−01 −5.8183e−01
2.2123e−06 −3.6600e−07 −5.5710e−07 −7.4435e−01 −5.0170e−01
6.8617e−06 −8.3633e−07 −2.1763e−06 −7.3192e−02 5.2209e−01
−5.9537e−07 8.2953e−08 1.7326e−07 −6.1417e−07 2.3989e−07
7.5425e−08 5.0202e−08 −1.1302e−07 −7.2216e−07 4.5679e−07
−2.5564e−05 3.2152e−06 7.9590e−06 −4.0644e+00 −4.7169e+00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,



K13 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.9773e−06 −1.0001e−06 2.9893e−06 1.4900e−01 6.2215e−01
−1.4060e−06 2.2654e−08 6.6895e−07 −9.2219e−01 −5.8182e−01
−2.7625e−07 −1.6635e−07 3.8759e−07 −7.4434e−01 −5.0168e−01
−2.3229e−06 −1.0363e−06 2.7163e−06 −7.3194e−02 5.2210e−01
−3.1376e−07 −4.3269e−08 2.2179e−07 1.6983e−06 9.4272e−07
−1.2613e−07 3.2784e−08 1.3889e−08 −7.2930e−07 −1.0203e−06

7.8706e−06 4.4730e−06 −1.0647e−05 −4.0644e+00 −4.7169e+00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K14 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.5461e−06 −5.6470e−07 7.3658e−08 1.4898e−01 6.2216e−01
1.0377e−06 −2.1378e−07 −1.9812e−07 −9.2220e−01 −5.8183e−01
1.2298e−06 −2.9405e−07 −1.7378e−07 −7.4436e−01 −5.0169e−01
1.9122e−06 −6.3836e−07 1.1197e−09 −7.3213e−02 5.2211e−01
−1.0603e−06 1.4844e−07 3.0749e−07 −1.0247e−06 3.9948e−07
5.8641e−07 −4.9540e−08 −2.1891e−07 2.9828e−07 −1.9213e−07
−2.9603e−06 1.5596e−06 −8.5753e−07 −4.0643e+00 −4.7170e+00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The other matrices of polytopic PDIUIO are calculated based on these values following the steps of Algorithm 1 and due
to space limitation are not presented.

6.3 Simulation

The presented electrical circuit and the designed polytopic PDIUIO has been simulated. In the simulation, the parameter
variations are 𝜃1(t) = 0.5 sin(0.3t) and 𝜃2(t) = cos(0.8t). The inputs change according to u1(t) = 5 + cos(0.03t) and u2(t) =
5 + sin(0.02t). The measurement noise which also corrupts the scheduling parameter measurements is a zero-mean noise
with maximum amplitude of 0.1. The disturbance which acts on the actuators (voltage sources) is a zero-mean noise with
maximum amplitude of 0.2. Different scenarios are applied to evaluate the performance of the proposed method. In the
first scenario, two abrupt actuator and sensor faults are considered as follows:

fa(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 120,
1, 120 ≤ t < 320,
0, 320 ≤ t,

fs(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 220,
0.8, 220 ≤ t < 420,
0, 420 ≤ t.

The state estimation and fault reconstruction results are depicted in Figures 2 and 3, respectively. From Figure 2, it can be
observed that robust state estimation has been done successfully despite the presence of various kinds of unknown inputs
such as disturbance, noise, actuator and sensor faults and also the uncertainty due to inexact measures of parameters and
unknown delays in the system. Figure 3 shows that the simultaneous actuator and sensor faults have been successfully
reconstructed despite the presence of various sources of unknown inputs and uncertainty. It should be noted that even
though the two faults are overlapping, the designed polytopic PDIUIO has achieved a robust reconstruction of the two
faults with no cross sensitivity between the faults which is very important in the estimation of simultaneous occurring
faults.

In the second scenario, two incipient faults occur in the system as follows:

fa(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 120,
t−120

200
, 120 ≤ t < 320,

0, 320 ≤ t,

fs(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 220,
t−220

200
, 220 ≤ t < 420,

0, 420 ≤ t.

The fault reconstruction results are depicted in Figure 4. It can be seen that the incipient faults are robustly esti-
mated despite the presence of unknown inputs and the uncertainty caused by unknown delay and inexact measures of
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F I G U R E 3 Actuator and sensor faults and their estimates in the first scenario

parameters. The estimate of each fault is decoupled from the other fault which is observed in the moments
when the two faults are both present in the system. Fault diagnosis (including three phases of detection, isola-
tion and identification) is achieved directly via the provided fault estimates. The early diagnosis of incipient faults
as achieved in this scenario is a principal requirement for the successful operation of an active fault tolerant
controller.

In the third scenario, two time-varying faults happen in the system as follows:

fa(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 120,
sin(0.05t), 120 ≤ t < 320,
0, 320 ≤ t,

fs(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 220,
sin(0.08t), 220 ≤ t < 420,
0, 420 ≤ t.

The fault reconstruction results are depicted in Figure 5. It is seen that the faults have been reconstructed robustly
with an acceptable performance in the presence of unknown inputs and uncertainty due to unknown delay and
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F I G U R E 5 Actuator and sensor faults and their estimates in the third scenario

inexactness of parameter measures even in the interval of 220–320 s when the two faults exist simultaneously in the
system.

As a fourth scenario, a comparison is done to evaluate the proposed scheme in attenuating the uncertainty caused by
inexactness of the scheduling parameters measurements. In this scenario, a PDIUIO is designed based on Corollary 3 for
the case of exact measurements of the scheduling parameters but it is applied to a setup similar to the first scenario in
which the scheduling parameters measurements are noisy. The result of the actuator and sensor faults reconstruction is
depicted in Figure 6. Comparing Figure 6 with Figure 3 reveals that the uncertainty due to inexactness of the schedul-
ing parameters measurements is not attenuated in the fault estimates in Figure 6 and the fault estimates are very noisy
reflecting the existent noise in the scheduling parameters measurements. However, these noisy effects are attenuated in
Figure 3 and the successfulness of the proposed scheme (Theorem 2) to cope with inexactness of scheduling parame-
ters measurements is evident. The obtained results in the fourth and first scenario are also compared numerically with
mean square error (MSE) measure. The MSE of actuator fault estimation in the fourth scenario and in the first scenario
are 0.0199 and 0.0017, respectively, that clearly shows the successfulness of Theorem 2 over Corollary 3 in reduction of
MSE of actuator fault estimation in the first scenario compared to the fourth scenario. The MSE of sensor fault estima-
tion in the fourth and first scenario are 0.0012 and 0.0002, respectively, that reveals the reduction of MSE in the first
scenario compared to the fourth scenario. It should be highlighted that in the case of inexactness of parameter measure-
ments; in addition to lower robustness achieved by a PDIUIO designed based on Corollary 3, the stability will not be
guaranteed.



F I G U R E 6 Actuator and sensor faults and their estimates in the fourth scenario

7 CONCLUSION

In this article, a class of SDLPV systems was considered. The considered system is a singular LPV system which has
delayed dynamics derived by multiple unknown time varying state delays. Simultaneous state estimation and actuator
and sensor fault diagnosis in the presence of disturbance and noise in these systems was achieved by constructing a
suitable PDIUIO. To do this, the sensor faults have been used as additional states to construct an augmented system
making use of descriptor system approach. The delayed parts of the observer were run by the delay upper bounds instead
of the real values which are not available. In the considered problem, scheduling parameters of the system were assumed
to be measured inexactly. So, the observer is scheduled with these inexact measured parameters and to deal with this
situation, the original system is converted to an uncertain system in order to address the uncertainty due to inexactness
of parameter measures. The uncertainty due to unknown delays and inexact parameters plus other unknown inputs is
attenuated using H∞ theory and the design of PDIUIO is formulated as an optimization problem with LMI constraints.
The efficiency of the results was demonstrated by an electrical circuit example. Faults in the system are tolerable until the
system works in the polytope that the system has been designed in it. Outside this region, the system may become unstable.
The characterization of the tolerable fault size for this kind of system is one of the future research trends. Applying the
obtained results in this article to design an active fault tolerant controller is part of the future research.
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