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CMAC-Based SMC for Uncertain Descriptor
Systems Using Reachable Set Learning
Zhixiong Zhong, Hak-Keung Lam, Fellow, IEEE, Hao Ying, Fellow, IEEE, and Ge Xu

Abstract—This paper introduces a novel sliding mode
control (SMC) law to achieve trajectory tracking for a class of
descriptor systems with unknown uncertainties. It approximates
the uncertainties by a cerebellar model articulation control
(CMAC) neural network. We formulate the problem of training
the CMAC as a scheme of estimating a reachable set for a
discrete-time nonlinear system. A new online learning algorithm
based on output feedback control of reachable set estimation
is developed and the approximation error is bounded in an
ellipsoidal reachable set. In order to dispel the effect of the
approximation error of the CMAC, we develop a compensation
controller by using the reachable set bounds. Controller gains
and parameters of the learning algorithm are obtained via
linear matrix inequalities (LMIs). Our computer simulation
results show that the proposed CMAC-based SMC technique
can achieve convergent tracking errors. The technique is applied
to a salient permanent magnet synchronous motor (PMSM) in
our lab and demonstrates excellent performance.

Keywords: Uncertain descriptor systems, sliding mode control
(SMC), cerebellar model articulation control (CMAC), reachable
set estimation.

I. INTRODUCTION1

Over the past few decades, sliding mode control (SMC) has2

been regarded as an efficient robust control strategy for various3

classes of uncertain systems, such as uncertain stochastic sys-4

tems [1], [2], uncertain linear systems [3], uncertain nonlinear5

systems [4], [5]. The essence of SMC is to always drive control6

system states toward a given sliding mode surface [6], [7].7

However, when uncertain systems exist unknown dynamics,8

the sliding mode motion can work well only if the information9

of the unknown dynamic is available. Thus the robust use10

of SMC to stability analysis of unknown dynamic systems is11

difficult to be implemented [8]–[10]. Neural networks (NNs)12

are constructed from a plentiful parallel structure, which makes13

them capable of approximating a nonlinear function for an14

arbitrary precision. The utilization of NNs for stability analysis15

of unknown dynamic systems has become widespread and16

effective [11]–[13]. However, in each learning cycle all the17
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weights of NNs need to keep updating, and the essence of 18

such learning is global and time-consuming. Thus, the efficacy 19

of the multilayer NNs is generally limited when considering 20

real-time control issues [14]–[17]. 21

Thanks to the introduction of CMAC model, the fast 22

convergence speed and good generalization capability in the 23

identification and control of complex dynamical systems can 24

be obtained [18]–[20]. The essence of CMAC is constructed 25

from an association-memory network with nonfully connected 26

forms and lapped receptive fields. It has been demonstrated 27

that CMAC can be used for approximating a nonlinear function 28

to any given precision [21]. In traditional CMAC, its receptive 29

field space applies the constant binary function or the triangu- 30

lar basis one in the sense that their derivative characteristics 31

can not be collected. The work of [22] has introduced a new 32

CMAC neural network using a Gaussian basis function with 33

the differentiable characteristic in its receptive field space, 34

where the derivative information is acquired from the input- 35

output relations, and the convergence analysis for the proposed 36

new CMAC network model is performed. Another important 37

topic in training of a CMAC neural network has been presented 38

in the open literature. The gradient descent algorithms such 39

as back propagation (BP), search the parameter weights of 40

the network model toward the steepest descent direction for 41

minimizing the approximation error [23]–[25]. It has been 42

regarded as a basic method for training CMAC model in 43

control system applications. However, the main drawbacks are 44

its slow convergence speed and incapable of obtaining the 45

global minimum [26]. 46

Descriptor systems, are also named as singular systems. 47

They can be utilized to represent these systems, which are dif- 48

ficult to be represented by normal models [27]. Descriptor sys- 49

tems have attracted considerable interests in the literature for 50

a variety of practical applications such as economics, robotics, 51

electrical and chemical systems [28], [29]. Meanwhile, in 52

practical control systems always exist unknown uncertainties, 53

which include unmodeled characteristics, modeling errors and 54

unknown disturbances. These conditions might deteriorate the 55

performance of control systems and even lead to instability. 56

To the best of our knowledge, there is little literature on the 57

SMC design of trajectory tracking for descriptor systems with 58

unknown uncertainties. This motivates our present research. 59

This paper introduces a novel SMC strategy of trajectory 60

tracking for a class of descriptor systems with unknown 61

uncertainties. First, a CMAC neural network is employed to 62

achieve the approximation of the unknown uncertainties in the 63

considered system, and is embedded into the SMC controller. 64

Then, the training problem of the CMAC neural network 65
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model is cast into the estimation scheme of reachable set66

for a discrete-time nonlinear system. A new online learning67

algorithm based on the output-feedback control method is68

developed and the approximation error is bounded in an69

ellipsoidal reachable set. Moreover, based on the obtained70

boundary of reachable set, a compensation controller is utilized71

to remove the negative impact induced by the approximated72

error. After the help of the Lyapunov theory, the convergence73

of both the closed-loop SMC system and the training CMAC74

neural networks can be guaranteed. It will be shown that75

the controller gains and the online learning parameters are76

solved by using the LMI optimization techniques. Finally,77

a simulation application of salient PMSM demonstrates the78

remarkable effectiveness and superiority.79

The main contributions to the CMAC-based SMC scheme80

proposed in this paper are summarized as below:81

i) This paper examines the issue of trajectory tracking for82

a class of descriptor systems with unknown uncertainties.83

We propose a CMAC-based SMC scheme that combines the84

merits of CMAC and SMC. In this scheme, the CMAC85

model is utilized to achieve the approximation of the unknown86

uncertainties and the SMC strategy guarantees the reachability87

of the trajectory error subject to the given sliding mode88

surface. It achieves not only the accurate approximation of89

uncertain dynamics by using CMAC model but also preserves90

the advantages of rapid response and robustness characteristic91

of the SMC technique.92

ii) A new online learning law that is based on the reachable93

set estimation of output-feedback control method is proposed94

for training CMAC model. Our approach differs from previous95

approaches, we do not focus on the widely-used gradient96

descent algorithm learning framework with slow convergence97

speed or non-global minimum. In the online learning set-98

tings, the training problem of CMAC model is cast into the99

estimation framework of the reachable set for discrete-time100

nonlinear system, and the approximation error is bounded in101

an ellipsoidal reachable set.102

iii) The proposed CMAC-based SMC scheme reformulates103

the SMC of trajectory tracking for uncertain descriptor system104

and online learning of the CMAC as a convex optimization105

problem readily solved by the standard LMI toolbox. A high106

tracking accuracy and convergence speed can be guaranteed,107

and the minimum approximation error of the unknown dynam-108

ics can be obtained. Compared with the work of [30]–[32], the109

gradient-descent based learning is used for the online learning110

of CMAC model that yields several learning rates are chosen111

a priori. However, there are no simple methods to choose the112

online learning rates, such that the minimum approximation113

error can be achieved.114

The outline of this paper is arranged as below. Section II115

presents the problem formulation. The CMAC-based SMC is116

considered in Section III. The control of a salient PMSM117

system is used in Section IV to demonstrate the effectiveness118

and superiority of the proposed methods, which is summarized119

by some conclusions in Section V.120

Notations. ℜn×m denotes the real matrix with the n×m di-121

mension and ℜn is the Euclidean space with the n-dimensional122

characteristics. A−1 is the inverse of the matrix A, and AT is123

its transpose. P > 0 represents that the matrix P is positive- 124

definite, and P ≥ 0 means that the matrix P is positive semi- 125

definite. Sym{A} means A+AT , where A ∈ ℜn×n. The term 126

⋆ denotes symmetry, for example
[
A ⋆
B C

]
, where ⋆ = BT . 127

In is n-dimensional identity matrix and 0m×n is the zero 128

matrix with m× n dimension. ∥x(t)∥2 denotes the Euclidean 129

norm of the vector x(t), and ∥x(t)∥∞=supt≥0{|x(t)|}. 130

II. PROBLEM FORMULATION 131

This paper considers a class of descriptor systems with 132

unknown uncertainties as below: 133

Eẋ(t) = Ax(t) +Bu(t) +N(t), (1)
where x(t) ∈ ℜnx and u(t) ∈ ℜnu denote the system 134

state and the control input, respectively. E, A and B are 135

the known system parameters, where E may be a singular 136

matrix with the rank (E) = nr ≤ nx. N(t) ∈ ℜnx is 137

the total unknown uncertainty, which includes unmodeled 138

characteristics, modeled errors and unknown disturbances. 139

This paper aims at designing a tracking control strategy such 140

that the system state x(t) tracks a given trajectory signal xd(t). 141

To do so, we first denote the tracking error as the following 142

form: 143

e(t) = xd(t)− x(t). (2)
Based on the representation of the tracking error (2), we 144

introduce an integral-type sliding surface function as below 145

[33]: 146

s(t) = GEe(t)−
∫ t

0

Kee(s)ds, (3)

where G ∈ ℜnu×nx is a given matrix, which can guarantee 147

that the matrix GB is nonsingular. Ke ∈ ℜnu×nx is a 148

parameterized matrix, which will be designed later. 149

If the unknown uncertainty N(t) can be accurately known, 150

then a perfect controller is expressed as 151

u∗(t) = (GB)
−1

[GEẋd(t)−GAx(t)−GN(t)−Kee(t)] ,
(4)

where the ideal controller u∗(t) ensures ṡ(t) = 0. 152

Note that in practical applications the uncertainty N(t) 153

is generally unknown, thus the ideal controller in (4) is 154

unavailable. In this paper the unknown uncertainty N(t) will 155

be approximated by employing a CMAC neural network 156

model, and a CMAC-based SMC law will be introduced in 157

the following sections, which raise the following two key 158

questions: 159

Q-1. How to design a CMAC approximator with online 160

learning algorithm such that the convergence of approximation 161

error is guaranteed and the approximation error is bounded in 162

an ellipsoidal reachable set? 163

Q-2. How to give a design result of the CMAC-based SMC 164

strategy such that the tracking trajectories are driven onto the 165

predefined sliding mode surface s(t) = 0? 166

Remark 2.1. It is noted that, in each learning cycle of 167

most NNs all the weights should be updated, thus the essence 168

of such kind of learning is both global and slow. CMAC 169

is constructed from an association-memory network with the 170

nonfully connected form and the lapped receptive space. It has 171

been shown that CMAC is able to achieve fast learning, such 172
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that it is suitable for implementing the real-time control [12],173

[18].174

Remark 2.2. Note that, it is difficult to evaluate the training175

performance of the CMAC neural network model by using176

the gradient-descent learning. This paper casts the CMAC’s177

training into the estimation framework of the reachable set for178

discrete-time nonlinear system. In this case, an online learning179

algorithm based on output-feedback control method is used in-180

stead of the gradient-descent method for the CMAC’s training.181

Furthermore, the convergence of CMAC neural network model182

is established and its approximation error can be bounded in183

an ellipsoidal reachable set.184

III. CMAC-BASED SLIDING-MODE CONTROL185

This section first introduces a main controller in which a186

CMAC model is used to achieve the approximation of the187

unknown lumped uncertainty. Then the training problem of188

the CMAC model is formulated into the framework of the189

reachable set estimation for discrete-time nonlinear system,190

and a new online learning algorithm based on output-feedback191

control method is developed. Finally, a compensation con-192

troller is introduced to offset the gap between the unknown193

lumped uncertainty and its approximation.194

A. Framework of CMAC-based SMC195

Eẋ(t) = Ax(t) + Bu(t) +N(t) (1)
x xd

Sliding Surface
Function (3)

e
Main

CMAC
Approximator

Controller (6)

Output-Feedback
Control Law (28)

Compensation
Controller (43)

s

um

uc

u

∆wjk,∆mik, ∆σik

N̂

ds
dt

(12)-(15)

Fig. 1. Framework of the CMAC-based SMC strategy.

Fig.1 depicts the framework of the CMAC-based SMC196

strategy, which consists of the main controller and the com-197

pensation one as follows:198

u(t) = um(t) + uc(t), (5)
where um(t) is the main controller, which is used instead of199

the perfect controller (4). In the main controller, a CMAC200

model integrated into SMC strategy is introduced to achieve201

the approximation of the unknown lumped uncertainty. The202

online learning of the CMAC model is facilitated by using203

an output-feedback-based control law, which ensures that the204

convergence of CMAC model is established and its approx-205

imation error can be bounded in an ellipsoidal reachable206

set; The compensation controller uc(t) is utilized to offset207

the gap between the unknown lumped uncertainty and its208

approximation, which helps the main controller drive the 209

tracking error trajectories of the uncertain descriptor system 210

onto the given sliding mode surface. 211

B. Main controller 212

By introducing the CMAC-based function approximator, 213

we give the following main controller instead of the perfect 214

controller (4): 215

um(t) = (GB)
−1

[
GEẋd(t)−GAx(t)−GN̂(t)−Kee(t)

]
,

(6)
where N̂(t) is the approximation of N(t). 216

Now, by submitting the main controller (6) into the system 217

(1), and taking the derivative of the tracking error, the closed- 218

loop tracking error dynamics is described as 219

Eė(t) =
(
Ā+ B̄Ke

)
e(t) + W̄ (t) , (7)

where

Ā = A− B̄GA, B̄ = B (GB)
−1
,

W̄ (t) = B̄GN̂(t)−N(t) +
(
E − B̄GE

)
ẋd(t)− Āxd(t).

(8)
Based on the resulting closed-loop tracking control system 220

(7), the following result is devoted to solve the design of the 221

matrix parameter Ke. 222

Lemma 1: The tracking error dynamics (7) with the param-
eter matrices {E, Ā, B̄} is robust stable with the H∞ perfor-
mance index ∥e(t)∥2 ≤ γ

∥∥W̄ (t)
∥∥
2

if there exist the matrix
0 < X = XT ∈ ℜnx×nx , and the matrix K̄e ∈ ℜnu×nx ,
such that is minimized γ subject to the following matrix
inequalities:

XTET = EX ≥ 0, (9) Sym
(
ĀX + B̄K̄e

)
XT I

⋆ −I 0
⋆ 0 −γ2I

 < 0. (10)

Moreover, if the above matrix inequalities have a feasible 223

solution then the gain matrix Ke in (6) can be given by 224

Ke = K̄eX
−1. (11)

Proof: The result can be obtained straightly from Lemma 225

2 of [34], whose proof is thus deleted. 226

Remark 3.1. Note that, the matrix inequality in (9) is a 227

positive semi-definite form and the solution used standard LMI 228

technique becomes a difficult task. For a singular matrix E0, 229

where rank (E0) = nr ≤ nx, we can specify the matrices 230

M and N with the nonsingular characteristic to achieve 231

E0 =M

[
I 0
0 0

]
N . Without loss of generality, we consider 232

a special case with the matrix E =

[
I 0
0 0

]
, and then the 233

matrix X is denoted as X =

[
X1 0
X2 X3

]
, where 0 < X1 = 234

XT
1 ∈ ℜnr×nr , X2 ∈ ℜ(nx−nr)×nr , X3 ∈ ℜ(nx−nr)×(nx−nr). 235

In this case, the semi-definite matrix inequality in (9) holds, 236

and the result in Lemma 1 is formulated into LMIs [35]. 237

C. CMAC model 238

The proposed CMAC model includes three mappings and
one output. All functional mappings of the CMAC model are
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shown as follows [12]:

Mapping: I → A, (12)
Mapping: A→ R, (13)
Mapping: R→W, (14)

Output computation: O (I) =WTΓ(I), (15)
where I , A, R and W denote the input, the associative239

memory, the receptive field, and the weighted memory spaces,240

respectively; O is the output. In every mapping space the241

corresponding basic function is introduced as follows:242

1) Mapping I → A: In the input space, I = [I1, I2, · · · , Ini
]243

denotes a ni-dimensional input variable with i ∈ I :=244

{1, 2, . . . , ni}. Each input datum is partitioned to nk neurons245

by virtue of Gaussian basis function, and these neurons246

are placed in the associative memory space A with the set247

k ∈ K:= {1, 2, . . . , nk}. Considering the descriptions above,248

each neuron can be given by249

αik (Ii) = exp

[
− (Ii −mik)

2

σ2
ik

]
, i ∈ I, k ∈ K (16)

where mik and σik denote the mean and the variance relative250

to the input variable, respectively.251

2) Mapping A → R: The receptive field space R has a252

k-layer region, which is called hypercube represented by253

βk (I) =

ni∏
i=1

αik (Ii) , k ∈ K (17)

where βk (I) denotes the general basis function for represent-254

ing the hypercube.255

3) Mapping R → W : Each region in the receptive field256

space R is connected to the weighted memory W with the257

corresponding specific value, that is258

θjk (I) = wjkβk (I) , j ∈ M, k ∈ K (18)
where wjk denotes the weight relative to the k-th hypercube259

in the j-th output, j ∈ M:= {1, 2, . . . , nm}.260

4) Output: The output of CMAC includes nm subspaces,261

and each subspace is the sum of nk particular adjustable262

parameters, which is given by263

Oj (I) =

nk∑
k=1

θjk (I) , j ∈ M. (19)

Thus, the output of CMAC is calculated by264

O (I) =

nm∑
j=1

Oj (I) . (20)

Remark 3.2. Note that, the receptive field space of the265

traditional CMAC applies the constant binary function or the266

triangular basis one in the sense that their derivative character-267

istics can not be collected. Therefore, this paper proposes the268

CMAC used the Gaussian basis function as shown in (12)-(20),269

which overcomes the drawback of using the constant binary270

function or the triangular basis one [36].271

D. Formulation of CMAC training272

In the previous subsection, we have introduced CMAC
model. The following subsections will focus on training C-
MAC model. First, it follows the descriptions from (12)-(20)

showing that the input-output relationship of the CMAC’s
dynamics can be represented as

O (t) =WTΓ(I (t))

= f (wjk (t) ,mik (t) , σik (t) , I (t)) . (21)

Now, we regard ṡ(t) and N̂ (t) as the input and output of
CMAC’s dynamics (21), respectively. Thus, we have

N̂ (t) =WTΓ(ṡ(t))

= f (wjk (t) ,mik (t) , σik (t) , ṡ(t)) . (22)
Using the first-order Taylor approximation [37], it can be

shown that

N̂ (t+ 1) = N̂ (t) +
dN̂ (t)

dwjk
∆wjk (t)

+
dN̂ (t)

dmik
∆mik (t) +

dN̂ (t)

dσik
∆σik (t)

+
dN̂ (t)

dṡ(t)
∆ṡ(t) + ϕ (t) , (23)

where dN̂(t)
dwjk

, dN̂(t)
dmik

, dN̂(t)
dσik

, dN̂(t)
dṡ(t) are the partial derivatives 273

with respect to wjk (t), mik (t), σik (t), ṡ(t), respectively; 274

∆wjk (t) ,∆mik (t) ,∆σik (t) ,∆ṡ(t) are the difference terms, 275

and ϕ (t) is the residual signal. 276

Then, by recalling the sliding surface function s(t) in (3), 277

and taking its derivative, and using the relations of (1), (2) and 278

(6), we have 279

ṡ(t) = Gε (t) , (24)
where ṡ(t) is the derivative information of the sliding surface 280

function, and ε (t) is the approximation error subject to ε (t) = 281

N̂ (t)−N (t) . 282

We further subtract N (t+ 1) to the both sides of (23), then
the following output-feedback control system can be obtained
as:

ε (t+ 1) = ε (t) + B (t)U (t) +W (t) , (25)
Y (t) = Gε (t) , (26)

where

B (t) =
[

dN̂(t)
dwjk

dN̂(t)
dmik

dN̂(t)
dσik

]
,

U (t) =
[
∆wT

jk (t) ∆mT
ik (t) ∆σT

ik (t)
]T
,

W (t) =
dN̂ (t)

d [Gε (t)]
G∆ε (t) + ϕ (t)−∆N (t) ,

∆ε (t) = ε (t+ 1)− ε (t) ,∆N (t) = N (t+ 1)−N (t) ,
(27)

with the following partial derivatives:

dN̂ (t)

dwjk
=

ni∏
i=1

βik(ṡi), βik(ṡi) = exp

[
− (ṡi −mik)

2

σ2
ik

]
,

dN̂ (t)

dmik
=

nm∑
j=1

nk∑
k=1

wjk

ni∏
i=1

[
βik(ṡi)

2 (ṡi −mik)

σ2
ik

]
,

dN̂ (t)

dσik
=

nm∑
j=1

nk∑
k=1

wjk

ni∏
i=1

[
βik(ṡi)

2 (ṡi −mik)
2

σ3
ik

]
. (28)

Remark 3.3. It is noted that when the approximation 283

error ε (t) tends to zero then the weights {wjk (t), mik (t), 284

σik (t)} are around the real values. Therefore, in this case, 285
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the difference terms {∆wjk (t), ∆mik (t), ∆σik (t), ∆ṡ(t)}286

are around zero, which means the residual signal ϕ (t) will be287

around zero.288

Remark 3.4. Note that when using the CMAC model, a289

general question is raised: How to train the CMAC model? In290

the other words, the task is to explore a weight update law for291

refreshing the hypercube weight wjk, and the mean mik, and292

the variance σik in the CMAC model.293

Remark 3.5. Note that the learning problem of CMAC’s294

weights has been formulated into a robust output-feedback295

control framework of the discrete-time nonlinear system as296

shown in (25) and (26). More specifically, the approximation297

error of CMAC model is denoted as the system state ε (t),298

and the learning law of CMAC’s weights is considered as the299

control input U (t), which decides the refresh rates of weight300

values, and the term W (t) is regarded as the disturbance.301

Remark 3.6. For the above-mentioned robust control prob-302

lem, we aim at designing an output-feedback controller with303

reachable set estimation, which ensures the CMAC model is304

robust convergence and its approximation error is bounded in305

an ellipsoidal reachable set.306

E. Online learning law based on output-feedback control307

The previous subsection has formulated the training problem308

of CMAC model into a robust control framework of discrete-309

time nonlinear system as shown in (25) and (26). It is natural310

to specify the online learning law of CMAC model as the311

following output-feedback controller:312

U (t) = KyY (t) , (29)
where Ky is the controller gain, which will be designed later.313

Now, by submitting the controller (29) into the system (25)314

and (26), and taking the relation of (24), the closed-loop315

output-feedback control system is given by316

ε (t+ 1) =
(
I+ K̄y

)
ε (t) +W (t) , (30)

where K̄y = B (t)KyG and W (t) is further assumed to be317

satisfied with the following condition:318

WT (t)W (t) ≤ W̄2, (31)
where W̄ is a constant.319

Here, our aim at designing the online learning law based
on the output-feedback controller as shown in (29) such that
the approximated error dynamics of CMAC in (30) is with the
following reachable set bounding:

S , {ε (t) ∈ ℜnx |ε (t) and W (t) are subject to
(30) and (31), respectively, t ≥ 0} . (32)

The reachable set of the closed-loop output-feedback control320

system in (30) subject to an ellipsoid is given by [38]321

E ,
{
ε (t) | εT (t)Pε (t) < 1, ε (t) ∈ ℜnx

}
, (33)

where P = PT > 0.322

Note that, the learning problem of CMAC’s weights has323

been formulated into a reachable set estimation framework of324

the discrete-time nonlinear output-feedback control system as325

shown in (32). In the following, we first present a formulated326

analysis result for the estimation problem of the reachable set.327

This is derived to answer the first question (Q-1).328

Theorem 1: An online learning law (29) can guarantee 329

the convergence of CMAC’s approximation error with the 330

reachable set in (32), if there exist the matrices {0 < P = 331

PT ∈ ℜnx×nx , G ∈ ℜnu×nx , Ky ∈ ℜnu×nu} and the positive 332

scalars {0 < a < 1, W̄}, such that the following matrix 333

inequality holds, 334 −aP 0 P +GTKT
y BT (t)P

0 −1−a
W̄2 I P

⋆ ⋆ −P

 < 0. (34)

Proof: We firstly define V (t) = εT (t)Pε (t) and 335

∆V (t) = V (t+ 1)− V (t), where 0 < P = PT ∈ ℜnx×nx . 336

Further, the performance index is introduced as below:

J(t) = ∆V (t) + (1− a)V (t)− 1− a

W̄2
WT (t)W (t)

= εT (t+ 1)Pε (t+ 1)− εT (t)Pε (t)

+ (1− a) εT (t)Pε (t)− 1− a

W̄2
WT (t)W (t)

= εT (t+ 1)Pε (t+ 1)− aεT (t)Pε (t)

− 1− a

W̄2
WT (t)W (t)

=
[(
I+ K̄y

)
ε (t) +W (t)

]T
P [⋆]

− aεT (t)Pε (t)− 1− a

W̄2
WT (t)W (t)

=

[
ε (t)
W (t)

]T [ (
I+ K̄y

)T
I

]
P [⋆]

[
ε (t)
W (t)

]
+

[
ε (t)
W (t)

]T [
−aP 0
0 −1−a

W̄2 I

] [
ε (t)
W (t)

]
, (35)

where K̄y = B (t)KyG, and 0 < a < 1 is a constant scalar. 337

It can be seen from (35) that the following matrix inequality 338

holds 339[ (
I+ K̄y

)T
I

]
P [⋆] +

[
−aP 0
0 −1−a

W̄2 I

]
< 0, (36)

which guarantees J(t) < 0. By applying Schur complement 340

lemma [39], the result on (34) can be obtained directly from 341

(36). Thus we complete the verification of the robust stability 342

for the closed-loop control system model in (30). 343

Since J(t) < 0, we have 344

V (t) < 1 + (V (0)− 1) ak. (37)

Note that when ε (0) satisfies V (0) ≤ 1, the inequality in 345

(37) implies V (t) < 1. Thus we complete this proof to the 346

reachable set in (32). 347

It is also noted that the matrix inequality in (34) is nonlinear 348

because of the coupling term B (t)KyGP . For simplicity in 349

the controller design procedure, we can specify the controller 350

gain Ky as 351

Ky = BT (t)
(
B (t)BT (t)

)−1
Ky, (38)

where Ky is a constant controller gain. In this case, the output- 352

feedback control system in (30) is rewritten as 353

ε (t+ 1) = (I+KyG) ε (t) +W (t) . (39)

Based on the new closed-loop error dynamics in (39), 354

an online learning law for updating the CMAC’s weights 355

is given by a parameterized representation of the output- 356

feedback controller gains in terms of the feasible solutions 357
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to the following LMI.358

Lemma 2: An online learning law (29) can guarantee the359

convergence of CMAC’s approximation error with the reach-360

able set in (32), if there exist the matrices {0 < P = PT ∈361

ℜnx×nx , G ∈ ℜnu×nx , K̄y ∈ ℜnx×nu}, and the positive362

scalars {0 < a < 1, W̄}, such that the following LMI holds,363  −aP 0 P +GT K̄T
y

0 −1−a
W̄2 I P

⋆ ⋆ −P

 < 0. (40)

Moreover, if the above LMI has a feasible solution then the364

matrix parameter Ky in (38) can be given by365

Ky = P−1K̄y. (41)
Proof: The result can be obtained straightly from Theo-366

rems 1, whose proof is thus deleted.367

Remark 3.7. Here, our aim at designing the output-feedback368

controller (29) such that the minimum bounding for the369

reachable set of CMAC’s approximation error can be obtained.370

To do so, we borrow the work of [40] to maximize δ with371

the constrain δI < P . By using Schur complement [39], the372

optimization problem can be easily solved as below:373

Minimize δ̄ subject to the constrains:
[
δ̄I I
⋆ P

]
≥ 0 and (40),

where δ̄ = δ−1.374

Remark 3.8. It is noted that when the matrix term375

B (t)BT (t) in (38) is singular, it should be replaced by376

BT (t)
[
B (t)BT (t)+ρI

]−1 with a small positive scalar ρ.377

Remark 3.9. Thanks to the online learning law based on the378

reachable set estimation of output-feedback control as shown379

in (29), the learning law for updating CMAC’s weights is given380

by381

∆wjk (t) =
[
dN̂(t)
dwjk

]T
Φ−1 (t)Ky ṡ(t),382

∆mik (t) =
[
dN̂(t)
dmik

]T
Φ−1 (t)Ky ṡ(t),383

∆σik (t) =
[
dN̂(t)
dσik

]T
Φ−1 (t)Ky ṡ(t),384

where Φ(t) =
[
dN̂(t)
dwjk

] [
dN̂(t)
dwjk

]T
+

[
dN̂(t)
dmik

] [
dN̂(t)
dmik

]T
+385 [

dN̂(t)
dσik

] [
dN̂(t)
dσik

]T
.386

F. Design of compensation controller387

In the previous subsections, we propose the CMAC’s ap-388

proximator and its learning law. We now focus on designing389

a compensation controller, which is used to dispel the effect390

of the approximation error. before moving on we recall the391

approximation error of the unknown lumped uncertainty in392

(24) as below:393

ε (t) = N̂ (t)−N (t) , (42)
where N(t) denotes the unknown uncertainty, and N̂ (t)394

denotes the approximation of N(t) by using the CMAC neural395

network model.396

Here, our aim is to design a compensation controller, which397

will dispel the impact induced by the approximated error. It398

follows from Remark 3.6 that the approximation error can be399

bounded by400

0 ≤ ∥Gε (t)∥∞ ≤ C, (43)
where C is a positive constant.401

Now, we introduce a compensation controller as below: 402

uc (t) = (GB)
−1
Csgn (s(t)) , (44)

where sgn(⋆) denotes a switching sign function. 403

Then, by taking the derivative of the integral-type sliding 404

surface function (3) and submitting the main controller in (6), 405

we have 406

ṡ(t) = Gε (t)−GB (GB)
−1
Csgn (s(t)) . (45)

Based on the sliding mode dynamics (45), we derive a 407

sufficient criteria for designing a CMAC-based SMC law as 408

shown in (5), which drives the tracking error trajectories onto 409

the given sliding mode surface s(t) = 0. This is derived to 410

answer the second question (Q-2). 411

Theorem 2: The main controller (6) and the compensation 412

controller (44) can ensure that the tracking error trajectories of 413

the uncertain descriptor system (1) are driven onto the given 414

sliding mode surface s(t) = 0. 415

Proof: We firstly consider the following Lyapunov func- 416

tion: 417

V (t) =
1

2
sT (t)s(t). (46)

By calculating the derivative of V (t), and using the relation
of (45), we have

V̇ (t) = sT (t)ṡ(t)

= sT (t)Gε (t)− sT (t)Csgn (s(t))
≤ ∥s(t)∥1 ∥Gε (t)∥1 − ∥s(t)∥1 C
≤ 0. (47)

It can be seen from (46) that the V̇ (t) ≤ 0, which means the 418

main controller (6) and the compensation controller (43) can 419

drive the tracking error trajectories onto the specified sliding 420

mode surface s(t) = 0. Therefore, the proof is completed. 421

G. Design procedure for CMAC-based SMC strategy 422

The detailed calculating steps to solve the tracking problem 423

of the considered uncertain descriptor system can be summa- 424

rized as below: 425

1) Use Lemma 1 to obtain the matrix gain Ke and choose 426

the suitable matrix G, and then construct an integral-type 427

sliding surface function in (3) for the system (1); 428

2) Introduce CMAC neural network model with the form of 429

(12)-(15); 430

3) Construct the main controller um(t) as shown in (6); 431

4) Use Lemma 2 to obtain the controller gain Ky , and 432

construct the output-feedback control law in (29) to update 433

the weights {∆wjk (t) ,∆mik (t) ,∆σik (t)} of the CMAC 434

model; 435

5) Use Remark 3.6 to obtain the bounding of the reachable 436

set δ̄ and calculate the constant C in (43); 437

6) Construct the compensation controller uc (t) as shown in 438

(44); 439

7) Apply the main controller and the compensation con- 440

troller as shown in (6) and (44) to the system (1). 441

IV. DEMONSTRATIVE EXAMPLES 442

This section considers a salient permanent magnet syn- 443

chronous motor (PMSM), where its stator inductance is not 444
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equal around the airgap. In the PMSM system, its control is445

generally implemented by using the vector modulation. For446

the control of speed, torque, and position, the big trouble447

that arises, particularly in the regulation of torque relative to448

stator current. Therefore, a new transformation called the d−q449

coordinates is used to depict the relation between the stator450

current and the voltage vector [41].

IGBT
PMSM Inverter

CMAC-Based

SMC Strategy
i
∗

sq

i
∗

sd

Clarke

Transformation

Inverse Clarke

Transformation

Park

Transformation

Inverse Park

Transformation

ia ib ic

iα iβ

isd isq usqusd

uα uβ

Gating Signals

Fig. 2. Control framework of PMSM using the CMAC-based SMC method.

451

Fig. 2 shows the control framework of PMSM using the
CMAC-based SMC method proposed in this paper. In the d−q
coordinates the stator inductance is equal to Ld on the d axis
and is also equal to Lq on the q axis. The evolution of these
d− q currents can be described as follows [6], [41]:

Ld
disd
dt

= −Rsisd − ωrLqisq + usd,

Lq
disq
dt

= −Rsisq − ωrLqisd + usq − ωrψm,

where Ld and Lq are the stator inductance; Rs denotes the452

stator resistance; isd and isq are regarded as the stator current;453

usd and usq are the stator voltage; ωr is the electrical rotor454

frequency; ψm is the rotor flux linkage from the permanent455

magnets.456

Further, we consider the unknown uncertainties ϕ1 and ϕ2
are involved in the d − q currents, respectively. The aim
at controlling the stator currents isd and isq to follow the
references i∗sd and i∗sq with the accuracy and robustness,
respectively. Here, we first define

E =

[
Ld 0
0 Lq

]
, x (t) =

[
isd
isq

]
, xd (t) =

[
i∗sd
i∗sq

]
,

A =

[
−Rs −ωrLq

−ωrLq −Rs

]
, B =

[
1 0
0 1

]
,

u(t) =

[
usd
usq

]
, N (t) =

[
ϕ1

ϕ2 − ωrψm

]
.

Then, the salient PMSM system is depicted by the state-space457

formulas as shown in (1).458

In this simulation, the system parameters are Ld = 0.3562H,459

Lq = 0.5298H, Rs = 0.2762, Ω, ωr = 50Hz. The detailed460

calculating steps to solve the current tracking problem of the461

considered salient PMSM system are summarized as below:462

1) Use Theorem 1 to obtain the controller gain Ke =463

[
−86.7994 16.3123
−24.8099 −131.2388

]
and choose the matrix G = 464[

1 0
0 1

]
, and then construct an integral-type sliding surface 465

function as the form of (3); 466

2) Introduce CMAC network model with the form of (12)- 467

(15); 468

3) Construct the main controller um(t) as the form of (6); 469

4) Give a = 0.9 and W̄ = 0.0476 and use Lemma 1 to 470

obtain the controller gain Ky =

[
−1 0
0 −1

]
, and construct 471

an online learning law based on the output-feedback controller 472

with ρ =0.00001 as follows: 473

U (t) = BT (t)
[
B (t)BT (t)+ρI

]−1
KyGε (t) ,

where B(t) is defined in (27); 474

5) Use Remark 3.6 to obtain the reachable set bounding 475

δ = 0.0153 and calculate the bounding C = 0.2010 in (43); 476

6) Construct the compensation controller uc (t) as the form 477

of (44); 478

7) Give the initial conditions of the control system as 479

x (0) = [0.5,−0.5]T , xd(t) = [0, 0.8∗sin (5t)]T . Note that the 480

choice of xd can be different according to the torque (refer to 481

[42] for details). We assume that the unknown uncertainties 482

ϕ1 = 0.2 sin 10t and ϕ2 = 0.2 cos 10t. Now, we apply 483

the integral-type sliding surface function, the CMAC neural 484

network model, the main controller, and the compensation 485

controller. When using the proposed CMAC’s learning with 486

the output-feedback control method, the currents of the d− q 487

coordinates and their references are shown in Figs. 3 and 4, 488

respectively. In each cycle of learning, the updated weights of 489

CMAC neural network model can be shown in Fig. 5. Fig. 6 490

shows the response of the CMAC-based sliding mode control 491

input. However, when considering the CMAC model with the 492

gradient-descent based learning [30]–[32], Figs. 7 and 8 show 493

the responses of the d−axis and q−axis currents and their 494

references, respectively. Define the convergence performance 495

as
∑n

i=1 ∥e(i)∥2 /n, where n is the number of iterations. 496

Fig. 9 plots the convergence performances of CMAC for the 497

reachable set learning law proposed in this paper and the 498

gradient-descent based learning law proposed in [30]–[32]. It 499

is easy to see that the high accuracy and convergence speed to 500

the tracking responses of the d−q currents can be realized by 501

using the CMAC-based SMC method proposed in this paper. 502

Remark 4.1. Note that the work of [30]–[32] proposes 503

the gradient-descent based learning for the training of C- 504

MAC neural network without convergence analysis. The main 505

drawbacks of the method are its slow convergence speed 506

and its inability to ensure global minimum. Moreover, this 507

method introduces the learning rates subject to some positive 508

scalars to be searched or manually prescribed. Taking different 509

learning-rate values may lead to instability of CMAC model. 510

To effectively train the CMAC model, this paper formulates 511

the training problem of CMAC model into the estimation 512

framework of the reachable set for discrete time nonlinear 513

system. An online learning law based on the output-feedback 514

control method is developed and the approximation error of 515

CMAC model is bounded in an ellipsoidal reachable set. 516

Remark 4.2. It is also noted that the proposed CMAC- 517
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Fig. 3. Responses of the d−axis current using CMAC’ learning based on
the output-feedback control method.
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Fig. 4. Responses of the q−axis current using CMAC’ learning based on
the output-feedback control method.

based SMC carries the advantages of both the reachable set518

method and the SMC technique at the same time. In this sense,519

the training of CMAC model is robust convergence with the520

minimum approximation error by using the online learning521

law (29), and the SMC strategy ensures the reachability of522

the system trajectories subject to the given sliding mode523

surface. Figs. 3-4 have shown that the methods proposed in524

this paper achieve the fast response and high-accuracy tracking525

performance against unknown dynamics in comparison with526

the gradient-descent based learning proposed in [30]–[32].527

V. CONCLUSIONS528

The issue of SMC trajectory tracking for uncertain descrip-529

tor systems with unknown dynamics has been examined. The530

CMAC-based SMC scheme was developed and all the control531

gains and the online learning parameters are obtained by calcu-532

lating a set of LMIs. The effectiveness of the proposed CMAC-533

based SMC scheme is illustrated by controlling a salient534

PMSM system. The simulation result shows that the methods535

proposed in this paper achieve the fast response and high-536

accuracy tracking performance against unknown dynamics in537

comparison with the gradient-descent based learning proposed538

0 0.1 0.2 0.3 0.4 0.5
-200

-150

-100

-50

0

50

100

150

Fig. 5. The updates of CMAC weights using the online learning algorithm
based on the output-feedback control method.

0 1 2 3 4 5
-40

-20

0

20

40

60

Fig. 6. Responses of the CMAC-based sliding mode control input.

in [30]–[32]. Further studies would focus on more effective 539

neural-learning algorithms using the robust control method for 540

identification and control of nonlinear systems. 541
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