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Abstract— In this paper, a disturbance observer is proposed
for nonlinear systems with high order disturbance, where
not only disturbance but also its high order derivatives are
estimated. The relationship of the proposed observer with the
existing results is discussed. Then, the result is further extended
to the case of minimal-order output-based disturbance observer
design for linear systems subject to high order disturbances.
Two practical examples about actuator fault diagnosis for
a nonlinear missile system and disturbance estimation for a
double-effect pilot plant evaporator system with unobservable
states are provided to illustrate the effectiveness of the proposed
approaches.

Index Terms— Disturbance observer, Fault diagnosis, High
order disturbance, Minimal order, Nonlinear systems.

I. INTRODUCTION

Disturbance observers (DOs) have received considerable
attention in the past three decades due to their versatile
applications in the fields of disturbance rejection control
[1–5], fault diagnosis [6–8], etc. In classical DO design
(see, [1, 2] among many others), disturbances are usually
assumed to be unknown constants due to the fact that little
prior information [9] on disturbances may be available. As a
result, the disturbance estimation accuracy and consequently
disturbance rejection performance may not be satisfactory in
the presence of more complicated disturbances and parameter
uncertainties.

To this end, there is a trend in DO design to take the
disturbance model information into account. There are two
approaches available to model unknown disturbances. The
first one is using a neutrally stable exogenous system to
represent non-vanishing disturbances (see, [10] for output
regulation theory, and [4, 11] for DO based control (DOBC)
theory). Although step disturbance and periodic disturbances
with known period can be represented by neutrally stable exo-
systems, general disturbances can not be generated. The other
approach is using a time series expansion (or polynomial)
to approximately represent the disturbance (see, [12–14]
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among many others), based on which a so-called High Order
Disturbance Observer (HODO) can be designed. This paper
focuses on the latter disturbance modelling approach for high
order disturbance estimation.

The concept of HODO was originally proposed in fre-
quency domain [12] and further discussed in recent literature
[15] for robust stability analysis. In those papers, the high
order derivatives of disturbances are assumed to be limited,
based on which the DOs are designed using the Q−filter
approach. Although the frequency-domain approach has mul-
tiple merits including being concept-simple and suitable with
standard transfer function analysis tools, the disadvantages,
as highlighted in [13], are that they can only be applied to
a class of linear systems and unable to deal with transient
performance. To this end, [6, 13, 14, 16–18] considered the
HODO problem using the state-space approach. In [16], the
concept of proportional multiple-integral observer (PMIO)
was used to obtain the state estimate, while [6] considered
the problem of simultaneous state and disturbance/fault esti-
mation for linear descriptor systems, which can be seen as the
full-order HODO for linear descriptor system. [17] considers
the problem of state and disturbance estimation for linear
systems based on the concept of generalized extended state
observer (ESO) and later [18] shows that this approach can
obtain better control performance than the classical ESO [19]
as demonstrated by a DC motor control experiment due to
the fact that a better disturbance estimation can be achieved
by taking more disturbance model information into account.

Recently, Kim et al [13] pioneered HODO design for non-
linear systems assuming that all the states are directly mea-
surable. Then, they further extended the results to minimal-
order output-based constant disturbance estimation for linear
systems. Since then, this approach has received considerable
attention and has been applied in many control applications
such as Permanent-Magnet Stepper Motors control [20], out-
put regulation [21], etc. However, there are still two remaining
problems in this promising approach. First, the information
of the derivative and higher order derivatives of the distur-
bances can not be obtained in [13] and these information
is indispensable in mismatched disturbance rejection control
(see, [22, 23], etc.) Secondly, the minimal-order output-based
disturbance observer for linear systems in [13] can only
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effectively handle constant disturbances rather than general
high order disturbances due to the specific structure of the
nonlinear DO, i.e., involving multiple integral action.

This paper addresses the aforementioned two problems.
First, for a general nonlinear system with high order dis-
turbances, a HODO is designed assuming all the system
states are directly measurable. Second, the relationship of the
proposed HODO with the existing results is discussed. Then,
the result is further extended to the case of minimal order
output based HODO design for linear systems subject to high
order disturbances. Finally, the actuator fault diagnosis for
a nonlinear missile system and disturbance estimation for a
linear double-effect pilot plant evaporator with unobservable
states are used to evaluate the proposed HODO for both linear
and nonlinear systems.

II. PROBLEM STATEMENT

This paper considers the nonlinear systems with distur-
bance,

ẋ = f(x, u; t) + g(x)d, (1)

where x ∈ Rn, u ∈ Rm, d ∈ R, f(·), g(x) are known
nolinear functions, u is the control inputs and d denotes the
lumped system disturbances, which may include parameter
uncertainties, external disturbances and system faults [24].
Following [2, 13], all the system states are assumed to be
directly measurable.

Following previous study on the topic of HODO design
in both frequency domain [12] and time-domain [13], the
disturbance is supposed to have a bounded rth derivative,

|d(r)| ≤ µ, (2)

where µ ∈ R is a bounded constant.
The objective is to estimate the disturbance d and its

derivative and higher order derivatives under the disturbance
assumption (2) for general nonlinear system (1).

III. HODO FOR NONLINEAR SYSTEM

In this section, a nonlinear DO for high order disturbance
estimation will be investigated, which can be seen as the
extension of the existing results in [2, 4]. It is divided
into three parts including disturbance modelling, observer
structure and observer gain design.

A. Disturbance modelling
To fully take the disturbance model into account when

designing the DO, a linear model is used to represent the
disturbance under the disturbance assumption (2), given by{

ω̇ = Sω +Dd(r),
d = Lω,

(3)

where the system matrices S,D,L have the following specific
structures.

S =

[
O(r−1)×1 Ir−1

0 O1×(r−1)

]
, D =

[
O(r−1)×1

1

]
,

L = [1, O1×(r−1)].
(4)

Remark 1: The disturbance d generated by system (3)
can accurately represent polynomial disturbances, such as
constant, ramp, parabolic disturbance, etc. [12, 13]. It can
also approximately represent other time-varying disturbances
with bounded approximation error, where the estimation error
is reflected by the bounded d(r) in (3).

B. HODO design

Inspired by the nonlinear DO theory [2, 4], the HODO
is designed in this section based on reduced-order observer
theory, which can also explain the disturbance observer in
[2, 4] using a new perspective. We first combine the state
system (1) and the disturbance system (3) such that an
extended system can be obtained, given by{

ẋ = f(x, u; t) + g(x)Lω,
ω̇ = Sω +Dd(r).

(5)

The philosophy of reduced-order observer is to directly
estimate the unmeasurable extended states using the measur-
able states. However, to obtain a good disturbance estimation
performance, both the state model and disturbance model
should be taken into account. To this end, we derive a
new reduced-order extended state dynamic to be estimated.
Define a nonlinear invertible transformation with p(x) to be
determined later

z =

[
z1

z2

]
=

[
x

−p(x) + ω

]
,

Then the dynamics of z can be obtained, given by

ż1 = f(z1, u; t) + g(z1)L[z2 + p(z1)],

ż2 = −∂p(z1)
∂z1
{f(z1, u; t) + g(z1)L[z2 + p(z1)]}

+ S[z2 + p(z1)] +Dd(r).
(6)

Define l(z1) = ∂p(z1)
∂z1

, then Eq. (6) is equivalently represented
by,

ż2 = [S − l(z1)g(z1)L]z2
+ Sp(z1)− l(z1)[f(z1, u; t) + g(z1)Lp(z1)]︸ ︷︷ ︸

Tk

+Dd(r),

(7)
where the known term Tk can be seen as the lumped known
input to z2 dynamic.

An observer estimating z2 can be designed for system (7),

˙̂z2 = [S − l(z1)g(z1)L]ẑ2 + Tk, (8)

where l(z1) is designed such that S−l(z1)g(z1)L is asymptot-
ically stable. When ẑ2 is available, we can obtain the estimate
of ω and consequently d̂ and d̂(i), given by

ω̂ = ẑ2 + p(z1),

d̂ = Lω̂,

d̂(i) = Liŵ, with Li = [0, · · · , 1︸︷︷︸
ith

, · · · , 0].
(9)

The estimation error dynamic eω = ω − ω̂ is governed by

ėω = (S − l(z1)g(z1)L)eω +Dd(r). (10)



Remark 2: Comparing the disturbance estimation error dy-
namic (10) with that of [2, 4], we can obtain the following
conclusions. Firstly, if an accurate disturbance model is
available (for example neutrally stable model in [4]), we can
obtain an exponentially asymptotic estimate of the distur-
bance. Secondly, when the disturbance model information is
not available (such as in [2] and this paper), an approximated
disturbance model can still be used (bounded derivative in [2]
and bounded high order derivative in this paper) to obtain the
disturbance estimate possibly with small estimation error.

C. The design of p(x)

The general design procedure of p(x) has been proposed
in [4]. However, due to the specific structures of the matrices
S and L in (4), we can design p(x) using the following
procedure.

From the error (10) in conjunction with the definition of
l(z1) = ∂p(z1)/∂z1, the design of p(x) starts with the design
of l(z1). We define an intermediate variable l̄(z1) of full row
rank such that l(z1) = l∗ l̄(z1) and l̄(z1)g(z1) = I . Then, (10)
reduces to

ėω = (S − l∗L︸ ︷︷ ︸
S̄

)eω +Dd(r). (11)

Due to the specific structure of S and L, i.e., the pair (S,L)
is in observability canonical form, we can design l∗ as

l∗ =
[
l1, · · · , lr

]T
, (12)

such that the solutions of P (s) := sr + l1s
r−1 + · · ·+ lr−1s+

lr = 0 lie in the left half-plane (LHP). When l∗ and so l(z1)
are available, we can obtain p(x) based on the relationship
l(z1) = ∂p(z1)/∂z1.

We further analyse the effect of design parameters on the
disturbance estimation performance. Firstly, the system (11)
is a bounded-input-bounded-output (BIBO) system due to the
stability of S̄ := S − l∗L, which means the disturbance
estimation error ew is always bounded in the presence of
bounded d(r). We then derive the transfer function from d(r)

to eω . Without loss of generality, we only consider the transfer
function from d(r) to the disturbance estimation error eω1,
i.e., the first element of eω , which can be obtained from the
following linear system{

ėω = S̄eω +Dd(r),
eω1 = Leω.

(13)

The transfer function from d(r) to eω1 is given by

G(s) = L(sI − S̄)−1D =
Ladj(sI − S̄)D

det(sI − S̄)
. (14)

Using the property

Ladj(sI − S̄)D = det(

[
sI − S̄ D
−L 0

]
),

Eq. (14) can be calculated as

G(s) =
1

sr + l1sr−1 + · · ·+ lr−1s+ lr
, (15)

which means the disturbance estimation performance can be
exactly analysed using the transfer function (15) and the
steady-state disturbance estimation error is given by ess =
d(r)/lr.

To further simplify the observer gain design and facilitate
the analysis of the relationship of observer order r and
disturbance estimation performance, the polynomial P (s) can
be chosen in a special form P (s) = (s + p)r, where p can
be seen as the observer bandwidth. Then the transfer function
(15) reduces to:

G(s) = 1/(s+ p)r, (16)

with the steady-state disturbance estimation error

ess = d(r)/pr.

That means: (i) when the observer order r is fixed, the distur-
bance estimation error upper bound monotonously decreases
with the observer bandwidth p; (ii) an observer with a higher
order does not necessarily result in a smaller estimation error
and the observer order r should be chosen such that d(r)/pr

is as small as possible.

IV. RELATIONSHIP WITH THE EXISTING RESULTS

In this section, the relationship of the proposed HODO with
the existing results will be discussed including the linear case
in [14] and the nonlinear cases in [2, 13].

A. Relationship with linear case in [14]

In [14], a HODO is designed for linear system under the
assumption that all the states are directly measurable. We
will show that it is actually a linear version of the proposed
HODO. Without loss of generality, a second order HODO in
[14] for a simple system ẋ1 = u+d is considered, where the
observer takes the following form:


d̂ = p1 + l1x1,

ṗ1 = −l1(u+ d̂) +
ˆ̇
d,

ˆ̇
d = p2 + l2x1,

ṗ2 = −l2(u+ d̂),

(17)

where lis are designed such that the solutions of the polyno-
mial s2 + l1s+ l2 are in LHP.

Substituting d̂ and ˆ̇
d into the dynamics of p1 and p2, (17)

can be put into an equivalent form, given by[
ṗ1
ṗ2

]
︸ ︷︷ ︸

˙̂z2

= (

[
0 1
0 0

]
︸ ︷︷ ︸

S

−
[

l1
l2

]
︸ ︷︷ ︸
l(z1)

[
1 0

]︸ ︷︷ ︸
L

)

[
p1
p2

]
︸ ︷︷ ︸

ẑ2

+

[
0 1
0 0

]
︸ ︷︷ ︸

S

[
l1
l2

]
x1︸ ︷︷ ︸

p(z1)

−
[

l1
l2

]
︸ ︷︷ ︸
l(z1)

( u︸︷︷︸
f(z1,u;t)

+
[
1 0

]︸ ︷︷ ︸
L

[
l1
l2

]
x1︸ ︷︷ ︸

p(z1)

)

(18)



The estimate of d and ḋ can be put into the following form

[
d̂
ˆ̇
d

]
︸ ︷︷ ︸

ω̂

=

[
p1

p2

]
︸ ︷︷ ︸

ẑ2

+

[
l1
l2

]
x1︸ ︷︷ ︸

p(z1)

,

d̂ =
[

1 0
]︸ ︷︷ ︸

L

ω̂;
ˆ̇
d =

[
0 1

]︸ ︷︷ ︸
L1

ω̂.

(19)

Comparing (18) and (19) with (8) and (9), we can see that
the HODO in [14] is the linear version of the proposed HODO
with l(z1) being selected as constant gain l(z1) = [l1, l2]T .

B. Relationship with nonlinear cases

In [2], a DO was proposed for general nonlienar system
with constant disturbance, which is equivalent to the first-
order HODO proposed in this paper. The paper can be seen as
its extension to the case of high order disturbance estimation.
Besides, the paper also presents a reduced-order observer
perspective to the DO in [2].

In [13], a DO is proposed to estimate higher order dis-
turbances in the time series expansion for nonlinear system.
However, the approach proposed in this paper is quite dif-
ferent from that of [13]. Firstly, [13] focuses on obtaining
the estimate of disturbance, this paper focuses on obtaining
the estimate of disturbance and its high order derivatives.
Secondly, the proposed approach can be easily extended to
the case of minimal-order output-based high order disturbance
estimation for linear systems (as shown in Section V), which
can not be easily achieved by the approach in [13] due
to the presence of integral terms in the observer structure.
Thirdly, the order of the proposed HODO is higher than that
of [13], since the information of the high order derivatives
of the disturbance is involved in derivation of the disturbance
estimate.

V. EXTENSION TO OUTPUT-BASED HODO

Consider a linear system with disturbances{
ẋ = Ax+Bu+Dd,
y = Cx,

(20)

where the disturbances d are of multiple dimension and each
element of it is supposed to satisfy (2). An extended system
including the state dynamics (20) and disturbance dynamic
(3) can be obtained as follows:

[
ẋ
ω̇

]
=

[
A DL
O S

] [
x
ω

]
+

[
B
0

]
u+

[
O
D

]
d(r),

y =
[
C O

] [ x
ω

]
.

Then we can obtain the estimate of ω using the Luenberger
observer theory under the observable condition (see, [17, 19]),
which can be seen as the full order HODO, since all the states
are involved in derivation of the disturbance ω. However,
when the observability of the extended system is not satisfied,
this approach can not be directly applied.

In addition, for the purpose of fast disturbance estimation,
especially fault estimation in the field of fault diagnosis [7],

an observer with lower dimension is more desirable since low
computation power and short computation time are required.
To this end, there is no need simultaneously estimating the
whole extended state vector but only the disturbances vector
d. Unfortunately, in most cases, to obtain the disturbance
estimate, part of the original state vector x has to been
estimated such that the existence condition of the observer
is satisfied.

We transform the minimal order disturbance estimation
problem into functional observer design problem and so the
existing tool in [25] can be used. To this end, we define a
functional matrix with specific structure

L =

[
L0 O
O I

]
, and x̄ = [xT , ωT ]T , (21)

where L0 is a matrix to be designed. To obtain the estimate of
ω, only Lx̄ rather than x̄ are needed to be estimated. So the
problem of HODO has been transformed into the problem of
functional observer design, i.e., estimating Lx̄. Its existence
condition and the design process can be solved using the tools
in [25]. Besides, further detailed discussion on this topic will
be provided in the future work.
Remark 3: Since in functional observer based HODO, not
all the states x are needed to be estimated in derivation of the
disturbance estimate, the existence condition of the proposed
HODO can be more easily satisfied compared with that of
the classical generalized ESO [17, 18], where the necessary
condition of it is that the pair (A,C) is observable.

VI. SIMULATION STUDY

In this section, application examples of actuator fault
diagnosis for a nonlinear missile system and disturbance
estimation for linear unobservable double-effect pilot plant
evaporator system are given to illustrate the effectiveness of
the proposed approach.

A. Nonlinear case: missile actuator fault diagnosis

In this subsection, the problem of actuator fault diagnosis
through fault estimation approach [7] for a nonlinear mis-
sile system is considered. Following [3, 7], the longitudinal
dynamic of a missile with actuator fault fa is given by

ẋ = f(x) + g1(x)u+ g2(x)fa, (22)

where x = [α; q; δ] denote the angle of attack (degrees),
pitch rate (degrees per second) and tail fin defection (degrees).
The definition of f(x), g1(x), g2(x) and normal control input
u are referred to [3]. We can see that the non-linear missile
system (22) falls into the nonlinear system structure (1) and
so the HODO can be designed using (8) and (9).

A fault profile is designed in Fig. 1 (real line), which in-
cludes step fault (1-3 sec), ramp fault (3-5 sec), second-order
polynomial fault (5-7 sec) and sine function fault 2sin(2t) (7-
10 sec). Three kinds of HODO with different observer order
are compared including first-order HODO (the same as [2]),
second-order and third-order HODO. The observer gain l(x)
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and the nonlinear function p(x) are designed such that the p
in (16) is 10 and are given as follows respectively:

l1(x) =
[
0 −0.0763 0

]
, p1(x) = −0.0763q;

l2(x) =

[
0 −0.1526 0
0 −0.7628 0

]
, p2(x) =

[
−0.1526q
−0.7628q

]
;

l3(x) =

 0 −0.2288 0
0 −2.2885 0
0 −7.6283 0

 , p3(x) =

 −0.2288q
−2.2885q
−7.6283q

 .

The initial states of the observers are supposed to be zero and
the simulation results are shown in Fig. 1, where the upper
plots depict the fault estimate performance (real red line for
actuator fault, blue dash line (first-order HODO), green dash
dotted line (second-order HODO), dark dotted line (third-
order HODO) fault estimate) and the lower plot show the
corresponding fault estimation error.

We can see from Fig. 1 that: i) the first-order HODO
(the same as that of [2]) can exponentially estimate constant
disturbance but is subjected to estimate error for disturbances
with non-zero derivative; ii) the second-order HODO can
exponentially estimate disturbances with zero second-order
derivative but is subject to estimate error for disturbances with
non-zero second-order derivative; iii) the third-order HODO
can exponentially estimate disturbances with zero third-order
derivative but is subject to estimate error for disturbances
with non-zero third-order derivative; iv) by increasing the
order of HODO, the HODO can also effectively estimate low-
frequency disturbance.

B. Linear case: double-effect pilot plant evaporator

In order to show the effectiveness of the proposed output-
based HODO for linear systems and its advantages over
the traditional ESO [19] and generalized ESO [17, 18], the
example from [26] is illustrated in this section. The plant is
a double-effect pilot plant evaporator represented by a fifth-

order linear model with the system matrices given by

A =


0 0 −0.0034 0 0
0 −0.041 0.0013 0 0
0 0 −1.1471 0 0
0 0 −0.0036 0 0
0 0.094 0.0057 0 −0.051

 ,

B =


−1 0 0
0 0 0
0 0 0.948

0.916 −1 0
−0.598 0 0

 , D =


0 1

0.062 −0.132
0 −7.189
0 0
0 0

 ,

C =

[
1 0 0 0 0
0 1 0 0 0

]
.

We can check that the pair (A,C) is not observable, which
means the traditional ESO [19] and full-order HODO [17,
18] can not be applied any more. However, if we select the
functional matrix L0 as

L0 =
[

0 0 1 0 0
]
,

we can verify that the existence conditions for functional
observer of Lx̄ in [25] are satisfied, which means the HODO
in this paper is still applicable.

In the following simulation study, only first-order and
second-order HODO are performed to illustrate the prin-
ciple of the proposed HODO. Since we have formulated
the HODO design problem into a special functional ob-
server problem, the functional observer tool in [25] can
be borrowed to facilitate our observer design. The poles
of functional observer matrix F for first-order HODO and
second-order HODO are designed as −3.1,−3.2,−3.3 and
−3.1,−3.2,−3.3,−3.4,−3.5, respectively.

The initial values of the system state are selected as x0 =
[0, 0, 2, 1, 1]T , the initial values of the first-order and second-
order HODO are selected as zero vectors. The profile of
disturbance d1 is shown in the upper plot of Fig. 3, and d2

is chosen as d2 = −d1. The simulation results of first-order
and second-order HODO for the estimate of x3 and d1 are
shown in Figs. 2 and 3 respectively.

We can see from the Figs. 2 and 3 that the first-order
HODO can asymptotically estimate both the state and dis-
turbance for step disturbance but result in estimation error
for ramp disturbance; while the second-order HODO can
asymptotically estimate both the state and disturbance in the
presence of both step disturbance and ramp disturbance. This
means that the disturbance estimation performance can be
improved by properly incorporating more disturbance model
information.

VII. CONCLUSIONS

This paper considers the problem of high order disturbance
observer design for both linear and nonlinear system. The
derivative and high order derivatives of disturbances are
obtained by the proposed approach. We also establish the
relationship of the proposed approach with the existing re-
sults. Finally, practical examples in the field of fault diagnosis
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for a nonlinear missile system and disturbance estimation
for a linear double-effect pilot plant evaporator systems with
unobservable states are provided to illustrate the effectiveness
of the proposed approach. The detailed discussion on the
minimal-order output-based HODO design for linear systems
will be provided in future study.
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