523,375 research outputs found

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    A control volume scheme using compact integrated radial basis function stencils for solving the Richards equation

    Get PDF
    A new control volume approach is developed based on compact integrated radial basis function (CIRBF) stencils for solution of the highly nonlinear Richards equation describing transient water flow in variably saturated soils. Unlike the conventional control volume method, which is regarded as second-order accurate, the proposed approach has high-order accuracy owing to the use of a compact integrated radial basis function approximation that enables improved flux predictions. The method is used to solve the Richards equation for transient flow in 1D homogeneous and heterogeneous soil profiles. Numerical results for different boundary conditions, initial conditions and soil types are shown to be in good agreement with Warrick's semi-analytical solution and simulations using the HYDRUS-1D software package. Results obtained with the proposed method were far less dependent upon the grid spacing than the HYDRUS-1D finite element solutions

    Relativistic slim disks with vertical structure

    Get PDF
    We report on a scheme for incorporating vertical radiative energy transport into a fully relativistic, Kerr-metric model of optically thick, advective, transonic alpha disks. Our code couples the radial and vertical equations of the accretion disk. The flux was computed in the diffusion approximation, and convection is included in the mixing-length approximation. We present the detailed structure of this "two-dimensional" slim-disk model for alpha=0.01. We then calculated the emergent spectra integrated over the disk surface. The values of surface density, radial velocity, and the photospheric height for these models differ by 20%-30% from those obtained in the polytropic, height-averaged slim disk model considered previously. However, the emission profiles and the resulting spectra are quite similar for both types of models. The effective optical depth of the slim disk becomes lower than unity for high values of the alpha parameter and for high accretion rates.Comment: 15 pages, 18 figures (2 new), A&A in pres

    Multipole structure of compact objects

    Full text link
    We analyze the applications of general relativity in relativistic astrophysics in order to solve the problem of describing the geometric and physical properties of the interior and exterior gravitational and electromagnetic fields of compact objects. We focus on the interpretation of exact solutions of Einstein's equations in terms of their multipole moments structure. In view of the lack of physical interior solutions, we propose an alternative approach in which higher multipoles should be taken into account

    Coupling system design and project planning: discussion on a bijective link between system and project structures

    Get PDF
    This article discuss the architecture of an integrated model able to support the coupling between a system design process and a project planning process. The project planning process is in charge of defining, planning and controlling the system design project. A benchmarking analysis carried out with fifteen companies belonging to the world competitiveness cluster, Aerospace Valley, has highlighted a lack of models, processes and tools for aiding the interactions between the two environments. We define the coupling as the establishment of links between entities of the two domains while preserving their original semantic, thus allowing information to be collected. The proposed coupling is recursive. It enables systems to be decomposed into subsystems when designers consider complexity to be too high, and can also decompose projects into sub-projects. The coupling enables systematically links to be drawn between project entities and system entities. In this paper, we discuss the different possibilities of linking system and project structures during the design and the planning processes. Firstly, after presenting the results of the industrial analysis, the different entities are defined and the various coupling modes are discussed
    corecore