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ABSTRACT

We report on a scheme for incorporating vertical radiative energy transport into a fully relativistic, Kerr-metric model of optically 
thick, advective, transonic alpha disks. Our code couples the radial and vertical equations of the accretion disk. The flux was computed 
in the diffusion approximation, and convection is included in the mixing-length approximation. We present the detailed structure of 
this “two-dimensional” slim-disk model for a  = 0.01. We then calculated the emergent spectra integrated over the disk surface. The 
values of surface density, radial velocity, and the photospheric height for these models differ by 20%-30% from those obtained in the 
polytropic, height-averaged slim disk model considered previously. However, the emission profiles and the resulting spectra are quite 
similar for both types of models. The effective optical depth of the slim disk becomes lower than unity for high values of the alpha 
parameter and for high accretion rates.
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1. Introduction

M odeling accretion flows onto b lack holes is crucial for under­
standing the energetic emissions observed from  m any sources, 
both Galactic and extragalactic (e.g., X -ray binaries, ULXs, 
AGNs). The accreting matter com m only settles into a disk-like 
configuration in which angular m om entum  is transported out­
wards as a result o f shear in the differentially rotating fluid, al­
lowing mass to be accreted onto the central com pact object. O f 
particular interest are sources such as the low-mass X -ray b ina­
ries in which m atter is transferred onto the X -ray source from 
a binary com panion, usually a late-type star. W hen containing 
a b lack hole, these sources undergo irregular outbursts (last­
ing several months or years) that are analogous to the outbursts 
observed in dw arf novae, and are thought to be related to the 
viscous-therm al instability, which leads to an enhanced transfer 
o f angular m om entum  in the accreting fluid (Lasota 2001).

In outburst, the source is a luminous X -ray em itter and as the 
lum inosity decays from  the outburst m axim um  to minimum, the 
disk is thought to follow a sequence of quasi-stationary states, 
w hose spectra can be derived from  steady-state models of accre­
tion disks. A t high luminosities describing the inner regions of 
such accretion disks by the m ost-often used “thin disk” models 
is no longer valid. A  description of such disks in terms of “slim 
disk” models is m ore appropriate.

Following the approach of Shakura & Sunyaev ( 1973), in 
the “standard" discussion of stationary disk structure one as­
sumes that there is no radial advection of heat (the flow is “ra ­
diatively efficient”), the radial pressure gradients are negligible,

and the distribution of angular m om entum  is Keplerian. A ll of 
these assumptions hold for very thin disks, including the orig­
inal Shakura & Sunyaev ( 1973) model (henceforth SS) and its 
general-relativistic version (NT), which was developed for the 
Kerr geom etry by N ovikov & Thorne ( 1973). However, it has 
long been realized that not all disk-like accretion flows satisfy 
these assumptions In p articular, slim disks (e.g., A bram ow icz 
et al. 1988) form a stable branch of accretion, in which advection 
of entropy is im portant and the disk is not necessarily geom et­
rically thin. These solutions are particularly relevant to sources 
with high accretion rates, and they converge to the standard case 
in the low accretion rate limit.

In the case of thin disks, m ethods for treating the radiative 
transfer and com puting the vertical structure of the disk have 
been developed by Shaviv & W ehrse ( 1986) and H ubeny ( 1998) 
and applied by, e.g., Davis & H ubeny (2006), Idan et al. (2008), 
and Rózariska & M adej (2008). These have not yet been applied 
to slim disks. Until recently, the properties of slim disk models 
have been represented with quantities averaged over the verti­
cal structure of the disk. This paper presents im proved advective 
steady-state models of accretion, in which the vertical structure 
of the “slim  disk” is explicitly taken into account.

Recently, Sadowski (2009) revisited slim disk models with 
an im proved num erical code, while Sadowski et al. (2009) per­
formed a prelim inary study of the slim disk vertical structure. 
W hile our present w ork is based on these two papers, it breaks 
with the long tradition of com puting the radial dependence of 
disk quantities, including the em ergent flux F (r), before the ver­
tical structure is analyzed. In this paper, by closely coupling the
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radial properties o f the disk to its vertical structure, we offer a 
m ore consistent treatm ent of the slim disk. A  sim ilar approach 
has been taken by Dotan & Shaviv (2010) in their discussion of 
winds from  Super-Eddington slim disks in a pseudo-Newtonian 
potential.

The high lum inosities observed in the bright X -ray sources 
imply there is an effective m echanism  of angular m om entum  
transport in the accreting fluid, and much w ork has been de­
voted to M HD sim ulations of one such m echanism, the magneto- 
rotational instability (M RI). For thin disks, the effectiveness of 
angular m om entum  transport is conveniently param etrized by 
the alpha param eter that was introduced by Shakura & Sunyaev 
(1973). Observations of systems in which variability is driven 
by accretion disk instabilities suggest rather high values of a  
for fully ionized disks, much higher than the value a  = 0.001 
that was adopted in the original slim -disk article (Abramowicz 
et al. 1988). Sm ak ( 1999) has already showed that one has to 
take a  «  0.2 to describe hot disks in dw arf novae. As reviewed 
by King et al. (2007), the value of a  in hot, fully ionized disks 
has to be ~ 0 .1-0 .4 , whereas in cold protostellar and FU Urionis 
disks, much lower values of this param eter are required ~0.01 
and ~ 0 .001-0 .0 0 3 , respectively. N um erical sim ulations give a 
value of a  ~  0.01 for ionized disks, ten tim es lower than sug­
gested by observations, and it probably reflects the lim itations 
of the present M RI calculations (King et al. 2007). However, the 
apparently observational determ inations of a  m entioned above 
are in fact strongly m odel-dependent. In the case of dwarf-novae, 
for example, these determ inations assume that outbursts are de­
scribed well by the therm al-viscous instability m odel. However, 
the case of the epitom e dwarf-nova SS Cyg shows that such 
a description m ight be inadequate (Schreiber & Lasota 2007; 
Sm ak 2010), putting presum ably observational determinations 
into doubt. Therefore, one cannot exclude that the numerical 
sim ulations are correct after all.

In this paper we adopt the value a  = 0.01. With such a low 
value of a , the resulting disk models are optically thick ( r eff > 
1), thus allowing a simplified treatm ent o f radiative transfer. We 
treat the vertical energy transport in the diffusive approxim ation 
for the radiative flux (and account for vertical convection in the 
m ixing-length approxim ation).

We begin the body of the paper with a b rief discussion of the 
model, then both the radial and the vertical equations of disk 
structure are presented. In Sect. 3 we describe the num erical 
m ethod used to solve the problem . The radial structure of the 
solutions is described in Sect. 4 .1 , while the vertical profiles of 
various disk quantities are discussed in Sect. 4 .2 . By com paring 
our results with previous work, we find that, with a judicious 
choice of param eters, a standard polytropic slim disk model can 
be m ade to approxim ate our full solution. A nalytical formulae 
for the appropriate values of the param eters can be found in 
Sect. 5 . Finally, in the last section we discuss the lim itations of 
the model and its possible applications.

2. Slim-disk structure

Slim disks are alpha disks. Like Shakura-Sunyaev disks they are 
based on the assumption that the dissipation m echanism s oper­
ating in accretion flows m ay be described by a viscous stress 
tensor whose leading com ponent is proportional to the pressure.

Slim disk solutions, again just like the SS and N T solu­
tions, are obtained by solving vertically averaged (or height- 
integrated), radial equations of motion. Thus, steady slim disks, 
like the SS and N T ones, neglect the vertical structure of flow, 
and describe essentially flat fluid configurations. A lthough an

Page 2 o f 14

expression for the radial dependence of disk thickness is ob­
tained, the slope of the disk surface is usually neglected in the 
discussion of em ergent spectra, w here a plane-parallel atm o­
sphere is typically considered for the purposes of com puting ra ­
diative transfer in the vertical direction.

In the case of slim disks, the radial equations of struc­
ture are a set o f ordinary differential equations (ODEs). For 
a detailed account o f these Kerr-metric equations (and state- 
of-the-art traditional slim -disk models), see Sadowski (2009), 
who followed previous w ork beginning with Lasota ( 1994), and 
considered subsequent im provem ents (Abram owicz et al. 1996, 
1997; Gam m ie & Popham  1998). The set o f equations is closed 
by including relations describing vertical hydrostatic equilib­
rium  and vertical transport o f energy. By solving these equations 
with appropriate boundary (or regularity) conditions, one obtains 
the radial profiles of the central temperature, Tc(r), surface den­
sity, 2 (r), the height-integrated pressure, P(r), the half-thickness 
of the disk, h(r), a radial velocity V (r), the em erging flux of ra­
diation, F (r), and certain other physical quantities.

In this paper we are taking a first step towards construct­
ing truly three-dim ensional slim disk models, by solving a set 
o f differential equations describing the vertical structure of the 
disk. The resulting z-dependence of physical quantities is used to 
com pute certain coefficients that enter the radial equations and 
that up till now have been estim ated with algebraic expressions. 
We refer to the resulting models as “two-dim ensional (2-D) slim 
disk” solutions, although it has to be understood that in con­
trast to the thin-disk solutions of Urpin ( 1984) and K luzniak & 
Kita (2000), the actual m eridional flow has not been com puted 
in this paper, but the average radial velocity alone has been con­
sidered in the structure equations. However, the models are now 
self-consistent in the sense that the vertical averages of physi­
cal quantities that form  the coefficients o f the radial ODEs do 
correspond to the vertical structure considered in the radiative 
transfer calculation -  in previous w ork the vertical structure of 
the radiative atm osphere was considered a posteriori, and it had 
no influence on the radial structure of the disk.

2.1. Basic assum ptions,  parameters, a n d  coefficients

We assum e an axially symmetric, stationary fluid configuration 
in the Kerr metric, w ith fixed values of the b lack hole (BH) mass, 
M, and spin, a, param eters and the fluid disk is sym m etric under 
reflection in the equatorial plane of the metric. M atter is sup­
plied at a steady rate, M, through a boundary “at infinity” and 
angular m om entum  is rem oved through the same boundary (in 
practice, we use the N T solution for the outer boundary condi­
tion), whereas zero torque is assum ed at the BH horizon. We 
assum e that no mass or angular m om entum  crosses the disk sur­
face. We neglect the loss of angular m om entum  to both wind and 
radiation. We do not consider self-irradiation of the disk and as­
sum e that the m agnetic pressure m ay be neglected. Neglecting 
the incom ing radiation m ay not be justified for super-Eddington 
accretion rates for which the disk is geom etrically thick.

A  fraction, (1 + / adv(r))-1, o f the entropy generated locally 
by dissipative processes is released into the radiation field, while 
the rem ainder is advected by the gas.

A  unique solution to the slim -disk model can only be found 
if certain additional assum ptions are made. We m ake the follow­
ing arbitrary choice. We neglect the vertical variation (z depen­
dence) o f the velocity field, considering only its height-averaged 
value; thus, the velocity is always directed radially inwards and 
is a function of the radial coordinate alone. Similarly, we assume 
there is no z variation of the advection factor / adv(r). D issipation
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and angular m om entum  transport are given by the alpha pre­
scription (Shakura & Sunyaev 1973), with a constant value of 
a .  We assume that the dissipation rate is proportional to the total 
pressure, p . For a m ore detailed statement, see Eq. ( 13) and the 
com m ent following it. Calculations are carried out for the value 
a  = 0.01.

We are looking for 2-D slim -disk solutions at a definite value 
of mass accretion rate for a given Kerr metric. Thus, for a fixed 
value of a ,  there are three fundam ental param eters describing a 
given slim -disk solution: M , a, and M.

In the structure equations, we take G = c = 1 and m ake use 
of the following expressions involving the BH spin:

A = r2 -  2 M r  + a2,

A = r4  + r 2 a 2 + 2 M ra 2 ,
C = 1 -  3 r- 1 + 2 a ,r - 3 /2 

D  = 1 -  2 r- 1 + 2 a 2 r - 2 
H  = 1 -  4a„r- 3 /2 + 3a 2 r - 2

(3)

where u  = 2 M a r/A  is the angular velocity of the fram e drag­
ging.

The radial gas (three-)velocity, V , as m easured by an ob­
server co-rotating with the fluid at a fixed value of r, is given 
by the relation (Abram owicz et al. 1996)

X+ h
h p  dz, while the height-integrated

X+h
h p  dz. The total pressure is the sum of gas 

and radiation pressures, p  = p gas + p rad. We adopt an equa­
tion of state corresponding to the choice p gas = k p T /(pm p), and 
p rad = a T 4/3 , with k  the Boltzm ann constant, mp the proton 
mass, and a the radiation constant (no confusion with the spin 
param eter m ay arise). The m ean m olecular w eight is taken to be 
p  = 0.62, but see the com m ent following Eq. (21). The height- 
integrated energy density is

F 4 J

p+h
T  4 dz,

'0
(6)

2 +h

m  = 2 F
p T  dz ,

0
(7)

n3 = e / p , (8)
h

p z2 dz . (9)

A ll integrals in this section are taken at a fixed value of r . Here, 
T (z ) is the gas tem perature, and Tc is its value at the equatorial 
plane, T (0) = Tc.

The vertical epicyclic frequency squared, which can be 
thought of as the vertical com ponent of gravity, is (Kato 1993),

( 10)

( 11)

( 1)

(2)

2.2. Vertical structure equations

We describe the vertical structure of an accretion disk in the op­
tically thick regim e by the following equations:

(i) H ydrostatic equilibrium  (Kato et al. 2008),

with a ,  = a /M  and r, = r/M .
We use the Boyer-Lindquist system  of coordinates and in ­

troduce the vertical coordinate z = r cos Q. The metric near the 
equatorial plane takes the form  (A bram ow icz et al. 1996),

2t  -p  dz
( 12)

where Q ± is defined in Eq. ( 10) . A lthough other expressions 
for the right-hand side of Eq. (12) can be found in the lit­
erature (e.g., Abram owicz et al. 1997, includes vz + 0), the 
form  above is appropriate for our scheme, in which the ver­
tical structure is precalculated before any inform ation about 
the radial variables becom es available. Thus, in Eqs. ( 10) and 
( 12), we assume Keplerian angular velocity [M /(C r3)]1/2, as 
well as vz = 0 in hydrostatic equilibrium.

(ii) The energy generation equation. We assume that the vertical 
flux of energy inside the disk F  is generated according to

(4) (13)

where ur is the contravariant radial com ponent o f the fluid 4- 
velocity and has the dim ension of physical velocity. The disk

(5)

where y  = 5 /3 .
The following averages (moments) enter the radial equations 

as coefficients o f certain terms:

Strictly speaking, this does not correspond to a constant a  
prescription, as the term  (3 /2 )(M /r3)1/2, which is derived 
from  Keplerian strain, departs somewhat from  the value that 
would follow from  the actually com puted distribution of an­
gular m om entum  (cf., Fig. 1). However, as the departure for 
sub-Eddingtonian accretion rates is small, we expect Eq. ( 13) 
to afford a good approxim ation. N ote that / adv = 0 corre­
sponds to the N T disk (going over into the Shakura-Sunyaev 
disk in the nonrelativistic lim it o f thin disks), / adv > 1 char­
acterizes advection-dom inated disks, while / adv < 0 de­
scribes those disk regions where the advected heat is being 
released. The am ount o f heat advected g adv = / advF (h ) .

(iii) Energy transport. The structure of the disk has to be such 
that the actual value o f the divergence of the flux corresponds 
to Eq. ( 13). Radiative transport is com puted in the diffusive 
approxim ation

(14)

while convective transport is com puted in a m ixing-length 
approxim ation. Energy is transported in the vertical direction 
through diffusion of radiation or convection according to the 
value of the therm odynam ical gradient, which can be either 
radiative or convective. Accordingly, we take

(15)
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ni ,  . fi c
We also define

f j  = 1 + - .  
na

d r  = df2 + 4 w  -  t)2 + —d r  + d r,
A r 2 A

V l ^ l l - V 2 = urgl!2 = ^ , AT _ 3D !  ap WM\1/2 
dZ ~  2C \1  + / adv / V r5"/ '

£  = £ ( w r  + 3ft- ) t e

^  1 6 r r 3 d r
T ( z )  = ~ — ------ — ,

3 Kp dz

d l n r  = ( Vrad, for Vrad < Vad
d ln  p  \  Vconv, for Vrad > Vad
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with the adiabatic gradient given by a derivative at constant 
entropy: Vad = (d  ln T /d  ln p )S.
The radiative gradient Vrad is calculated in the diffusive ap­
proxim ation,

Hm l = 1.0Hp ,

The convective gradient is defined by the formula

V conv =  V ad +  (V rad — V ad )y(y +  w)

where y is the solution of the equation

2.3. Radial structure equations

The radial sector o f the model is described by four laws of con­
servation and a regularity condition:

(16)

where k r  is the Rosseland mean opacity, and <r is the Stefan- 
Boltzm ann constant. A t the equatorial plane we apply the 
boundary conditions described in point (iv) below.
W hen the tem perature gradient exceeds the value of the adi­
abatic gradient, we have to consider the convective energy 
flux. The convective gradient Vconv is calculated using the 
m ixing length theory introduced by Paczyriski ( 1969). We 
take the following m ixing length,

(i) M ass conservation,

M  = - 2 n 2 ru r .

(ii) Conservation of angular momentum,

M  A 1/2A1/2r
— U - £ i n )  = -------------- aP,
2n  r

(17)

with pressure scale height Hp defined as (H am eury et al. 
1998)

(18)

(19)

(20)

with the typical optical depth for convection Tml = pKRH ml, 
and w given by

The therm odynam ical quantities Cp, Vad and (d  ln p / d  ln T)p 
are calculated using standard form ulae (e.g., Chandrasekhar 
1967) assuming solar abundances (X  = 0 .70, Y = 0 .28) and, 
when necessary, taking the effect o f partial ionization of gas 
on the gas m ean m olecular weight into account .
We use Rosseland mean opacities k r (including the p ro­
cesses of absorption and scattering) taken from  Alexander 
et al. ( 1983) and Seaton et al. ( 1994). Following other au­
thors (e.g., Idan et al. 2008), we neglect expansion opacities, 
in agreem ent with our neglect o f vertical velocity gradients. 

(iv) We set the following boundary conditions. A t the equatorial 
plane (z = 0) we set F (0) = 0, in accordance with the as­
sumption of reflection symmetry, while at the disk surface, 
T (h) = 0, we follow the Eddington approxim ation (M ihalas 
1982) and require F (h )  = ^ T f f  = 2^ T4(h).
In practice, for a fixed r, and prescribed values of Tc and / adv, 
a trial value of the central density, pc, is assum ed and the

(22 )

(23)

where L  = u$ is the specific angular m omentum, L in is a 
constant, whose value is to be specified later, and r  is the 
Lorentz factor (G am m ie & Popham  1998):

(iii) Conservation of radial momentum,

where

(24)

(25)

and Q  = u$/u* is the angular velocity with respect to a sta­
tionary observer, Q  = Q  -  u  is the angular velocity with 
respect to an inertial observer, Q± = ± M 1/2/( r 3/2 ± a M 1/2) 
are the angular frequencies of the corotating and counterro- 
tating Keplerian orbits and R  = A /(r2A1/2) is the radius of 
gyration.
The value of P  is taken from  vertical structure solutions for 
given values of 2  and Tc,

P  = y2—  'ŁTe + riĄaTi-,  
p m p 3

(26)

hence, the radial derivative of the height-integrated pressure 
takes the form

^ = ( 4 - 3 / ^ + / ^  
d r  H dr H dr

+(1 - P ) ą n i  + /!2 i p ,
d r d r

(27)

with /3 = r]2 (k/pmp)'LTc/P.
(iv) Energy conservation.

The advective cooling is defined following Kato et al. (2008) 
in terms of the vertically integrated quantities, as

(28)

equations are integrated in z  until p (z .) = 10-16 g cm -3 (as a 
stand-in for the disk surface, z. = h). If  F (h )  and T (h) fail 
to satisfy the surface boundary condition, the assumed value 
of p c is adjusted, and the integration is repeated, until the 
condition F (h )  = 2 a T 4(h) is met. Convergence is usually 
attained in a few iterations. The em ergent flux of radiation at 
any given r is then F  = F (h).

U sing mass conservation (Eq. (22)) and hydrostatic equilib­
rium  (Eq. (12)), the expression can be rewritten as

(29)

Just like P, the advective cooling term, Qadv, and the coef­
ficients n3, n4 are all determ ined from the vertical structure 
solutions.
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_  3 pkr T
rad “  1 6 c r ^ 0 2

Hp = —  -----—-----------
pO]_z + ^Jpp£l1_

r n 1 -C2r2F“ = --------- 1--------
1 -  V2 A

v  dy _ _ \__dP
1 -  V2 dr r 2  d r  ’

M A  (Q  -  Q+ )(Q  -  Q- ) m  = ------------------:---------£ _ ---------£_
r 3A 0 + 0 “ 1 -

9 t2 i + wic + w2u -  w = 0,
4  3  +  T m l '  '

gadv = I  l {mr{E + p)) _ _ f  ^
r  d r  d r  j -h dz

^ adv M  / P  d l n P  P  d l n 2
2 n r2 \  2  d l n r  2  d l n r

P  d l n  _ 2  d l n  \+ m ------------- + O  | 71a---------- 1 •
~ 2  d In r  d In r  )
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The m anipulation of the last term  in Eq. (28) was as follows: Typically, Do vanishes close to the black hole, as L  approaches
Lin.

To obtain a solution one has to solve this system of two ordi­
nary differential equations, together with the following regular­
ity conditions at the sonic radius rs , defined by the same condi­
tions:

N  Irs = Do Irs = 0, (34)

3. Numerical method

3.1. Vertical structure

The set o f ordinary differential equations describing the vertical 
structure, i.e., Eqs. (12), (13) and ( 15) together with appropriate 
boundary conditions are solved for a given BH spin on a three­
dim ensional grid spanned by the radius r, the central tem perature 
Tc, and the advection factor / adv. For a given set o f these param ­
eters, we start the integration from  the equatorial plane (z = 0), 
and the solution satisfying the outer boundary condition is found 
as described at the end of Sect. 2 .2 . The resulting quantities de­
scribing the vertical structure (Tc, 2 , Qadv, P , n1, n2, n3, and n4), 
together with r , are printed out to tables for subsequent use in 
interpolation routines. As it turns out, the first two of these p a­
ram eters, Tc and 2, can be used to uniquely determ ine all the 
other quantities characterizing the vertical structure, including 
/ adv (see Fig. 2 ).

Calculating the full grid of vertical solutions for a single 
value of BH spin takes about 5 h on a 4-CPU  workstation.

3.2. Radial structure

By a series of algebraic m anipulations of Eqs. (22)- (24), and 
(29), we obtain the following set of two ordinary differential 
equations for V (r) and Tc(r)

(30)

as well as outer boundary conditions given at som e large radius 
r o u t . The solution between the outer boundary and the sonic point 
is found using the relaxation technique (Press 2002), with L in  

treated as the eigenvalue of the problem . The sonic point for 
a t. = 0 is located at 5.9M  for accretion rate 0.01M E d d  and at 
5.0M  for 2 .0M E d d . To start the relaxation process we have to 
provide a trial solution that is obtained by a m ethod sim ilar to 
the one described in Sadowski (2009) assuming the N ovikov & 
Thorne ( 1973) outer boundary conditions. Once the trial solu­
tion is found, one can start the relaxation process with a free 
inner boundary corresponding to the location of the sonic point. 
To find the solution inside the sonic point we make a small step 
inward to cross the critical point and then integrate down to BH 
horizon using a Runge-K utta m ethod of the fourth order. In this 
work we use 25 mesh points spaced logarithm ically in the radius 
on the section between the sonic point and r o u t  = 1000M. This 
particular num ber o f grid points is enough to resolve all disk fea­
tures. We have verified that the results are accurately reproduced 
with a denser grid.

The param eters linked to the vertical structure (P, Qa d v , n i , 
n2 , n3 , and n4 ) for given 2  and Tc  are linearly interpolated from 
pre-calculated tables of the vertical structure solutions (for any 
value of V , 2  is determ ined directly from  mass conservation, 
Eqs. (4 ), (22)). The radial derivatives d ln n 1 / d l n  r, d l n  n2 / d l n  r, 
d l n  n3 / d l n r ,  and d l n n 4 / d l n r  are evaluated num erically from 
the n1 , n2 , n3 , and n4  profiles in the previous iteration step. A 
relaxed solution is obtained in a few iteration steps. Once a so­
lution outside the sonic point is found we num erically estimate 
the radial derivatives of V  and Tc  at the sonic point using values 
given at r > rs and use these derivatives to start direct integration 
inside the sonic point.

The solution thus obtained m ay then be used as a trial so­
lution when looking for the relaxation solution of another slim 
disk, i.e., when one of the three fundam ental param eters (M, a, 
M ) has a slightly different value. Each relaxation step takes ap­
proxim ately 5 seconds on a single-CPU workstation.

with N 1 and D 0 given by

(31)

(32)

(33)

4. Results

In the following two sections we present and discuss both the 
radial and vertical structure of slim  accretion disks. A ll the solu­
tions, if  not stated otherwise, were com puted assuming a  = 0.01 
and M  = 10 M 0 .

4.1. Disk radial structure  

Angular momentum

The angular m om entum  profiles for our accretion disk solutions 
near a nonrotating BH are presented in Fig. 1. Results for two 
values of mass accretion rate are shown, M  = 0.1M E d d  and 
2.0M E d d , w here M E d d  = 16LE d d /c 2  is the critical accretion rate 
that for a disk around a nonrotating BH approxim ately corre­
sponds to the Eddington luminosity, LE d d . For the lowest accre­
tion rates the profiles follow the Keplerian profile and reach its 
minimal value (L i n  in Eq. (23)) at the m arginally stable orbit
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Fig. 1. Angular momentum (u$) in a Schwarzschild slim disk for two 
accretion rates. For very low accretion rates the angular momentum fol­
lows the Keplerian profile (dotted line) down to the ISCO. For high 
accretion rates the flow is super-Keplerian between the “center” of the 
disk at rcen and the “potential spout” at rpot. The vertical dot-dashed line 
on this and subsequent figures denotes the location of the ISCO.

Fig. 2. The Tc-2 plane at r = 20M for a nonrotating BH (a, = 0). The 
dotted lines connect solutions for the vertical structure of slim disks 
that have the same value of the advection parameter / adv. The locus of 
standard (radiatively efficient, f adv = 0) disk solutions is shown with 
the thick dotted line. The solid thick line represents the vertical slim- 
disk solutions for different accretion rates (indicated by triangles), and 
the dashed line presents corresponding solutions of the conventional 
polytropic slim-disk model (see Sect. 5). The difference between the 
two lines in the low M  limit corresponds to the difference in 2 between 
the two models (see Fig. 17).

(ISCO, Bardeen et al. 1972). The higher the accretion rate, the 
stronger the deviation from  the Keplerian profile. The disk is 
sub-Keplerian at large distances and super-Keplerian at m oder­
ate radii. The Keplerian profile is crossed again at a point located 
inside the m arginally stable orbit, and corresponding to w hat is 
usually called “the cusp” or “the potential spout” . For a detailed 
study of the physics o f the inner edge of a see A bram owicz et al. 
(2010).

S-curves

Figure 2 presents slim disk solutions at r = 20M  on the Tc-2 
plane, for a nonrotating BH. Solutions of the polytropic, height- 
averaged models are presented for com parison; for detailed d is­
cussion see Sect. 5 . The locus of solutions for various values of 
the mass accretion rate has the shape of the so-called “S-curve” 
(A bram owicz et al. 1988). The lower, gas-pressure dom inated 
branch accurately follows the track of radiatively efficient so­
lutions ( f adv = 0). The middle, radiation-pressure dom inated 
branch is reached at M  -  0.1M Edd. As advection becom es sig­
nificant, the slim -disk solution leaves the f adv = 0 track and 
moves to higher advection rates (S-curve). A round Ml = 5M Edd, 
the solutions enter the upper advection-dom inated branch cor­
responding to f adv > 1.0 (m ore than 50% of heat stored in the 
accreted gas). A t Ml = 20M Edd this rate alm ost increases up to 
80% ( f adv -  4.0).

Surface density

Profiles o f the surface density for 2-D slim -disk solutions for 
a non-rotating BH are presented in the upper panel of Fig. 3 . 
D ifferent regim es, corresponding to different branches of the 
“S-curve” on the (2, Tc) plane are visible. For large radii the sur­
face density increases with increasing accretion rate (the lower 
gas-pressure dom inated branch), while this relation is oppo­
site for m oderate radii (the m iddle radiation-pressure dom inated

branch). For accretion rates M >  5.0M Edd the upper advection- 
dom inated branch would be reached. The local m axim a in the 
surface density profiles (discussed in detail in, e.g., Sadowski 
2009) are visible for m oderate accretion rates (~0.5M Edd). The 
bottom  panel o f Fig. 3 presents corresponding profiles of the ra ­
dial velocity V  as m easured by an observer corotating with the 
fluid.

The surface density dependence on BH rotation is presented 
in Fig. 4 . The profiles are shifted to lower radii as the inner edge 
of the disk moves inward for higher BH spins. The outer parts of 
the accretion disk are insensitive to the metric.

Optical depth

In the top panel o f Fig. 5 we plot the total optical depth of the 
vertical slim disk solutions for different accretion rates (a, = 0). 
The total optical depth

ph
Ttot = Kr P dz,

Jo

w here the total opacity coefficient kr , which includes the pro­
cesses of absorption and scattering, is closely related to the 
surface density. Indeed, the radial profiles of the optical depth 
shown in Fig. 5 follow the corresponding profiles o f surface den­
sity. Any differences in the profiles com e from the dependence of 
the opacity coefficient on local density and tem perature. Outside 
the ISCO the total optical depth is always large ( r tot > 103).

The diffusive approxim ation for radiative transport m ay only 
be used if  photons are absorbed, otherw ise LTE cannot be estab­
lished. In a scattering-dom inated atmosphere, the effective opti­
cal depth is then the relevant quantity to be used in checking for 
the self-consistency of the diffusive approxim ation. The bottom  
panel o f Fig. 5 presents corresponding profiles of the effective 
optical depth, which is estim ated in the following way:

r>h _________
Teff = V(*R “  *es)*R P dz 

JQ
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Fig.3. Profiles of the surface density (upperpanel) and corresponding 
values of radial velocity V (bottom panel) of a slim disk for a nonrotat­
ing BH. Solutions for different accretion rates are presented.

where Kes = 0.34 cm 2g-1 is the mean opacity for Thomson 
electron scattering. For M  > 0.3M Edd the inner region of the 
disk becom es radiation-pressure dom inated (it enters the m id­
dle branch on the corresponding S-curve), the surface density 
decreases with increasing accretion rate, and electron scattering 
begins to dom inate absorption. Therefore, the effective optical 
depth decreases with increasing accretion rate and reaches val­
ues Teff < 1 in the inner parts of the disk for accretion rates 
above 1.0MEdd. As a result, for M  > 1.0MEdd, the diffusive ap­
proxim ation can no longer be applied, and our present approach 
to solving for the disk structure breaks down. In Fig. 6 we exhibit 
the dependence of the effective optical depth on the value of a . 
In general, Teff is inversely proportional to a  (as is the surface 
density). A t lower accretion rates (M  < 0.1M Edd) the effective 
optical depth rem ains large even for high values of a .

Flux profiles

Profiles of the flux em itted from  the disk surface (F  = r T f f ) in 
the case of a nonrotating BH are presented in Fig. 7 . Results cor­
responding to accretion rates from  0.01 up to 5.0MEdd are shown. 
For the lowest rates the em ission from  inside the m arginally sta­
ble orbit is negligible as expected in the standard accretion disk 
models. This is no longer true for higher accretion rates, and 
the advection of energy causes significant emission from  smaller 
radii (A bram owicz et al. 2010). For super-Eddington accretion 
rates the em itted flux continues to grow with a decreasing radius

Fig. 4. Profiles of the surface density for slim disks at a constant accre­
tion rate (M = 0.1MEdd) and various BH spins.

even inside the m arginally stable orbit. Radiation com ing from 
the direct vicinity of the black hole is suppressed by the gravi­
tational redshift (the g-factor). Therefore, an observer at infinity 
will observe a m axim um  in the profile of the effective tem pera­
ture even for the highest accretion rates.

The increase in the advective flux with increasing accretion 
rate is clearly visible in Fig. 8 . The ratio of the heat advected to 
the am ount of energy em itted is presented for different accretion 
rates. For very low accretion rates these profiles approach the 
lim it of a radiatively efficient disk ( / adv = 0), and the advection 
com ponent becom es significant for higher accretion rates. Some 
part (up to 30% at r = 20M  for 2.0M Edd) of the energy generated 
at m oderate radii is advected with m atter and radiated away at 
r < 10M. This causes the significant change in the em itted flux 
profile at the higher accretion rates visible in Fig. 7 .

In Fig. 9 we present the em itted flux profiles for different 
BH angular m om enta at a constant accretion rate Ml = 0.1M Edd. 
These profiles coincide at large radii w here the influence of the 
BH rotation is negligible; however, the higher the BH spin, the 
closer to the horizon the m arginally stable orbit. Therefore, in 
the case of rotating BHs, the accreting m atter can m ove much 
deeper into the gravity well, com pared to nonrotating BHs. This 
effect leads to an increase in the disk lum inosity and hardening 
of its spectrum, which can be inferred from  Fig. 9 -  the higher 
the spin, the higher the disk luminosity, and the higher the flux 
(which corresponds to the effective temperature).

Photosphere location

The flux observed at infinity m ay be obtained by perform ing ray 
tracing of photons em itted from the accretion disk (see Sect. 5). 
Scattering in the layer above the photosphere m ust also be taken 
into account. An accurate calculation requires detailed knowl­
edge of atm ospheric properties, including the location of the 
photosphere. This is particularly im portant when accretion rates 
are high and the disk is no longer geom etrically thin (Sadowski 
et al. 2009).

In Fig. 10 we plot the profiles for the z -location of the photo­
sphere, Hphot, obtained in our model at different accretion rates 
for a nonrotating black hole. Clearly, for high accretion rates,
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Fig. 5. Optical depth for a  = 0.01 slim disks around a Schwarzschild 
black hole at different accretion rates. Top panel: the total optical depth 
as a function of the radius. Bottom panel: the effective optical depth as 
a function of the radius. The ISCO is shown at r = 6M. The shaded 
region in the bottom plot indicates the region where the diffusive ap­
proximation is invalid.

M  > 0.1M Edd, the inner regions becom e thicker (effects o f ra ­
diation pressure). For M  = 1.0MEdd, the ratio Hphot/ r  reaches a 
value as high as 0.25. Close to the ISCO the height of the photo­
sphere rapidly decreases because of vigorous cooling (com pare 
Fig. 8). A lthough the rapid change in disk thickness violates the 
assumption of the hydrostatic equilibrium  that we make when 
solving for the disk vertical structure, the accelerations con­
nected with the vertical m otions involved are much lower than 
the vertical com ponent o f gravity. Indeed, the vertical accelera­
tions are close to vrdvz/d r  ~  vrd(vrd H /d r ) /d r  ~  v2sd (H /r ) /d r  ~ 
rQ 3 (H /r)2 ~  Q 2H (H /r) . In deriving this estim ate we liberally 
assum ed that d H /d r  ~  1 and used the fact that the rapid de­
crease in disk height occurs near the sonic point, while the speed 
of sound vs is approxim ately rO ±(H /r). Thus the acceleration 
terms m odifying Eq. ( 12) would be smaller than the gravita­
tional acceleration by a factor of a few percent: (H /r)  ~  10-1 . In 
Fig. 12 we plot the dynam ical and gravitational com ponents of 
the vertical equilibrium  equation at the photosphere. It is clear 
that the former is at least 10 times smaller than the latter at the 
sonic radii for M  < MEdd. Therefore, in all likelihood, our re ­
sults correctly describe the disk structure that would be obtained 
w ithout assuming strict hydrostatic equilibrium.

In Fig. 11 we present radial photosphere profiles, at a 
fixed accretion rate and different values of the BH spin. The

Fig. 6. Profiles of the effective optical depth of a Schwarzschild slim 
disk for three values of viscosity (a = 0.01, 0.05, and 0.1), calculated 
for two accretion rates, 0.1 MEdd (dashed lines) and 1.0MEdd (solid lines).

Fig. 7. Flux emitted from the surface of a slim disk at five accretion 
rates onto a Schwarzschild black hole. At high accretion rates signifi­
cant emmision from within the ISCO is clearly visible in the figure.

photospheric heights coincide for large radii. In the inner regions 
of the disk, the height o f the photosphere increases with BH spin, 
reflecting the increased lum inosity and radiation pressure.

4.2. Vertical structure

In Fig. 13 we present a vertical cross-section of a Schwarzschild 
slim disk for M  = 0.01M Edd. A t this accretion rate the disk is 
radiatively efficient and no advection of entropy is expected. The 
top panel presents the radial profiles of the photosphere and the 
disk surface (defined as a layer with p  = 10-16 g/cm 3).

The total optical depth reaches values as high as ~ 20000 
on the equatorial plane and decreases m onotonically towards the 
photosphere at t  = 2 /3  (Fig. 13, second panel from  the top). 
W ithin the m arginally stable orbit, the total optical depth signif­
icantly decreases, as shown in Fig. 5 .
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Fig. 8. Profiles of the advection coefficient f adv for different accretion 
rates (Schwarzschild black hole).

Fig. 9. Flux profiles at fixed accretion rate (M = 0.1ME(1d) for five 
values of BH spin.

The third panel o f Fig. 13 presents the tem perature, which 
decreases with height from  Tc at the equatorial plane to Teff at the 
photosphere. The m axim um  value of the tem perature is attained 
on the equatorial plane at r ~  10M.

D ensity is presented in the fourth panel, and the next panel 
presents the vertical flux that is generated inside the disk ac­
cording to Eq. ( 13). It is set to zero on the equatorial plane by 
reflection symmetry, and then rapidly increases, because in an 
alpha disk the dissipation is proportional to the pressure, which 
reaches its m axim um  on the z  = 0 plane. Close to the disk sur­
face, where pressure is almost negligible, the flux slowly set­
tles down to the em itted value. A t the accretion rate chosen for 
the figure the flux rapidly decreases inside the m arginally stable 
orbit.

The bottom  panel o f Fig. 13 presents the nonm onotonic 
distribution of the term odynam ical gradient (Eq. (15)), which 
ranges between 0.2 and 0.4. Therefore, the d isk’s vertical

Fig. 10. The height of the photosphere at different accretion rates onto 
a Schwarzschild black hole.

Fig. 11. Profiles of photospheric height at a constant accretion rate (M = 
0.1MEdd) and various BH spins.

structure cannot be described by a sim ple polytropic relation. 
M oreover, in the region of the highest tem perature (close to the 
equatorial plane at m oderate radii, r -  20M ), the heat is trans­
ported upw ard through convection.

The vertical structure of an accretion disk with ten times 
higher accretion rate, M  = 0.1M Edd, is presented in Fig. 14. The 
general picture rem ains the same, since the advection of heat is 
still insignificant. However, as the tem peratures increase, the in­
ner disk regions becom e dom inated by radiation pressure. For 
0.1M Edd the convective region extends from  the m arginally sta­
ble orbit up to 300M  and covers m ore than half o f the disk thick­
ness.

The disk structure is significantly different in the case of a 
high accretion rate (e.g., 1.0MEdd), with a significant am ount of 
advection. The vertical cross-sections of the slim  disk are p re­
sented in Fig. 15. The inner regions are dom inated by radiation 
pressure, so the disk geom etrically thickens and the photosphere
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Fig. 12. Comparison of the dynamical (vrdvz/d r  « Vd(VdH/dr)/dr) and 
gravitational ( ¾ H) components of the vertical equilibrium equation at 
the photosphere. The stars denote locations of the sonic radii.

Fig. 13. Vertical structure of a slim disk for M  = 0.01MEdd and a, = 0. 
The top panel presents the surface of the disk (green dashed line), and 
the photospheric surface (red solid line). The other panels present the 
structure of the disk below the photosphere. Top to bottom: total optical 
thickness, temperature, density, vertical flux of energy, and the termo- 
dynamical gradient. The blue solid line in the bottom panel delimits the 
convective region.

Fig. 14. Same as Fig. 13 but for M = 0.1ME d d .

is now higher. The total optical depth mostly follows the surface 
density (com pare Fig. 5), and therefore decreases considerably 
towards the b lack hole in the inner parts of the disk.

The tem perature m axim um  is again located at the equatorial 
plane close to r «  10M. The m axim um  of the effective tem per­
ature (corresponding to the vertical flux shown in the fifth panel 
(com pare also Fig. 7 ) is shifted inwards, down to r «  8M.

The fourth panel of Fig. 15 presents the density distribution. 
Despite the fact that the surface density m onotonically increases 
outwards (see Fig. 3), p  has two m axim a in the equatorial plane: 
at r «  200M  and r «  6M. Finally, the bottom  panel presents the 
term odynam ical gradient distribution. For such a high accretion 
rate, the convective zone extends nearly to the photosphere for 
r < 200M  and is present up to r = 2000M .

In Fig. 16 we present the density in the m eridional plane 
for three different accretion rates. The equatorial plane lies in 
the m iddle of each plot. The violet boundaries denote the pho­
tosphere. The two m axim a of density at the equatorial plane for 
M  = 1.0M Edd) are clearly visible also in this representation, as 
are some other features discussed above.

5. Comparison with height-averaged slim disk 
solutions

In this section we com pare our 2-D slim disk solutions, where 
the radial structure equations are coupled to those for the ver­
tical structure, with the standard polytropic slim disk model,
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Fig. 15. Same as Fig. 13 but for M  = 1.0MEdd.

integrated quantities and their values on the equatorial plane 
(e.g., 2  = 2p0H  instead of 2  = 2INp 0H,  w here IN is defined 
in Eq. (37)) In this work, we also use a m ore general form  of the 
energy equation (com pare our Eq. (29) with Eq. (6) in Sadowski 
2009).

Let us assume the polytropic equation of state with the po ly­
tropic index N : p  = K p l +l/N. The vertical integration of the hy ­
drostatic equilibrium  formula, Eq. ( 12), gives

(35)

(36)

One can now calculate analytical formulae for n  to n4 
(Sect. 2.3):

(37)

(38)

In this approach we do not solve the vertical structure con­
sistently, so we need to make som e additional assumptions 
about the vertical equilibrium  of forces and radiation transfer. 
Following other authors, we sim plify the hydrostatic equilib­
rium  (Eq. (12)) by applying a finite difference approximation 
and write

H h l l  = (2N  + 3 ) - -  
2

(39)

One has to rem em ber that disk thickness, H , defined in this way 
is not the exact location of the photosphere. Therefore we intro­
duce a factor f H relating these quantities,

Hphot = f HH . (40)

Fig. 16. Meridional profiles of density for three accretion rates: M = 
0.01 (top), 0.1 (middle) and 1.0MEdd (bottompanel) in (r,z) coordinates. 
The violet boundaries show the location of the photosphere. The black 
hole is described by = 10 M0, and a, = 0.

in which the slim -disk equations and properties are averaged 
over the thickness of the disk (e.g., Kato et al. 2008). We note 
here that the slim disk solutions presented in one of our p re­
vious papers (Sadowski 2009) did not follow the polytropic 
formalism, assuming different relations between the vertically

Assuming that radiation is transported in the vertical direction 
through diffusion, the radiative flux is given by

(41)

Under the one-zone approxim ation one obtains the following 
form ula for the total flux em itted from  disk surface,

(42)
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N  = 3.0

f H  = 1.0 
f F  = 1.0

Fig. 17. Comparison of the flux, disk thickness (the height of the photo­
sphere for models presented in this paper and of the zero-density surface 
for 1-D polytropic models) and surface density profiles calculated us­
ing the 2-D (this paper, solid lines) and the usual polytropic (N = 3, 
dotted lines) slim disk models for a = 0.1. The solutions for two ac­
cretion rates (0.1 and 1.0MEdd) are presented with thick and thin lines, 
respectively.

where factor f F  has been introduced to account for inaccura­
cies arising from  this approxim ation, as well as from  the dom i­
nance of the disk convection in certain regions (as discussed in 
Sect. 4 .2 ). Now, advective cooling takes the form

j j Ay 2 d O  64^ TCg a d v  =  / a d v F  =  _ a P _y_ f  . (43)
r3 d r  32 k

Usually, the following values of N , f H  and f F  are assumed:

(44)

In Fig. 17 we com pare radial profiles o f the flux, photospheric 
height and surface density of the 2-D slim disk model described 
in this paper (consistently taking its vertical structure into ac­
count) with profiles obtained for the polytropic, height-averaged,

Fig. 18. The upper panel presents spectral profiles of the 2-D and poly­
tropic solutions for two accretion rates (0.1 and 1.0MEdd), at inclination 
angle i = 70o and distance d = 10kpc. The bottom panel presents ratios 
of the corresponding spectra (of 2-D to polytropic solutions) for both 
accretion rates.

slim disk, as presented in this section with param eters defined in 
Eq. (4 4 ). The com parison was carried out for two accretion rates 
(0.1 and 1.0MEdd), with a  = 0.01. For the lower accretion rate 
(0.1MEdd), the disk is radiatively efficient (advective cooling is 
negligible), and therefore both flux profiles alm ost coincide and 
correspond to the N ovikov & Thorne solutions. However, the 
disk photosphere location in the polytropic model turns out to 
be overestimated by m ore than 20% in the region corresponding 
to the m axim al em ission. The profiles of the surface density do 
not coincide either, the 2-D  solutions giving values ~25%  lower 
than the corresponding polytropic solutions (com pare Fig. 2 ).

For the higher accretion rate (1.0MEdd), the flux profiles re ­
main sim ilar (up to 1%). However, as advection becom es im por­
tant, the em ission is shifted inwards with respect to the Novikov 
& Thorne profile. The photosphere location in the polytropic 
model is overestim ated by ~30%  and the surface density by 
-2 0 % .

A question arises as to whether such differences in the flux, 
photosphere, and surface density profiles affect the resulting disk 
spectrum. In Fig. 18 w e present spectral profiles and their ra ­
tios (2-D to polytropic) for two accretion rates. The spectra 
were calculated with ray-tracing routines (Bursa 2006) using 
the BHSPEC package (Davis et al. 2005), assuming the incli­
nation angle i = 70° and distance to the observer d  = 10kpc. 
As BHSPEC gives tabulated solutions of the full, frequency- 
dependent, radiative transfer equations for the disk vertical struc­
ture taking the Com pton scatterings into account in the disk at­
mosphere, the spectra presented in Fig. 18 are not those of a 
sim ple m ulti-color blackbody. However, one should be aware 
that using BHSPEC for calculating spectral color correction is 
not consistent with the assum ed vertical structure (calculated 
or height-averaged) because it is based on a stand-alone disk 
model.

The general shape of the spectra is similar for both types 
of slim disk models, because the emission profiles nearly coin­
cide. However, the spectra are not identical. The bottom  panel
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of Fig. 18 presents ratios of the spectral profiles of the corre­
sponding solutions for each accretion rate. They all coincide att 
low energies (<0.1keV), while for higher energies the discrepan­
cies are as large as 3% for 1.0MEdd at 5 keV. These differences 
are atributed to (slightly) different profiles of the flux, the pho­
tosphere, and the surface density. We conclude that the proper 
treatm ent of the vertical structure hardly affects the spectra of 
slim disks for this range of accretion rates (M  < MEdd) and the 
viscosity param eter (a  < 0.01).

We end this section by giving fitting form ulae for N, / H, 
and /F , which approxim ate the full num erical 2-D solutions de­
scribed in this paper with a polytropic slim disk model. An ad­
vantage of using these form ulae lies in avoiding the need to per­
form  tim e-consum ing calculations of the vertical structure and 
avoiding num erical problem s connected to interpolation in the 
vertical solutions grid. The form ulae for the polytropic model 
param eters for a  = 0.01 are

N  = 3.25 x  S n

/ h  = 0.63 x S h  (45)
/ f  = 0.94 x  S f ,

where the spin correction coefficients S n , S h , and S f  are given 
by

S n  = 1 + 0.002 (6 -  W M ) ,
S h  = 1 + 0.003 (6 -  W M ) ,
S f  = 1 + 0.064 (6 -  W M ) .

Here, rms is the radius of the m arginally stable orbit. For a non­
rotating BH, at the radius r = 7M  (corresponding to the highest 
disk effective tem perature), the fitting form ulae are accurate to 
1% for the em itted flux, the photospheric height and the surface 
density.

6. Discussion

M otivated by a desire to explain and fit the observed spectra of 
accreting black holes in binary systems to theoretical models, 
we have developed a 2-D m odel of optically thick slim disks. 
These should be particularly relevant to transient binaries. In 
quiescence, their inner disk regions are described well by op­
tically thin advection-dom inated accretion flows (ADAFs; see 
e.g., Lasota et al. 1996; Dubus et al. 2001). However, a few 
black hole systems (e.g., GRS 1915+105 and LM C X-3) have 
been observed in therm al states corresponding to disk lum inosi­
ties higher than 0.3LEdd (M cClintock & Rem illard 2003; Steiner 
et al. 2010), and m odeling these require optically thick models 
going beyond the standard thin disks.

In this w ork we present a 2-D slim disk model, in which 
the radial and vertical structures are coupled. Such an approach 
eliminates arbitrary factors that influence solutions of the usual 
polytropic slim disk model. The results were obtained under two 
key assumptions: an alpha disk was assum ed (dissipation propor­
tional to pressure), with a uniform  value of a , and the fraction 
of the generated entropy that is advected was com puted at every 
radius under the assum ption that this fraction does not vary with 
the height above the disk plane (Eq. ( 13)). Both of these assum p­
tions seem arbitrary, and we can offer no physical motivation for 
the (conventional) choice we made.

U nder these assumptions and for the value a  = 0.01 of the 
viscosity parameter, we com puted and presented the detailed 
structure of 2-D slim disks, param etrized by the mass accretion 
rate, and the two Kerr metric param eters, M  and a . Somewhat

surprisingly, the spectra observed at infinity from  such disks 
differ by only a few percent from  those obtained from  previ­
ously considered slim disk models (in which the equations and 
structure correspond to a height average over a polytropic at­
m osphere). Such differences are unlikely to introduce any large 
corrections to spin m easurem ents based on X -ray continuum  
fits m ade with corresponding height-averaged polytropic models 
of slim disks. However, already the latter produce significantly 
softer spectra in the sub-Eddington regim e than the N ovikov & 
Thorne model. For high luminosities, fits based on slim disk 
models m ay therefore provide higher values of the b lack hole 
spin param eter than corresponding fits based on the k e r rb b  
model (e.g., Shafee et al. 2006). This issue will be discussed 
in detail in a forthcom ing paper (Bursa & Sadowski, in prep.).

One has to be aware that the model o f vertical structure p re­
sented here is only an approxim ation of the real physical p ro­
cesses taking place in disk interiors. The diffusion approxim a­
tion and the convection treatm ent in the m ixing length approach 
are known to successfully describe m edia with large effective 
optical depths but break down when the disk becom es optically 
thin. We have shown that the effective optical depth of slim ac­
cretion disks m ay drop below unity for super-Eddington lum i­
nosities and sufficiently high values of a . For such conditions, a 
m ore sophisticated model of radiation transfer should be im ple­
m ented. However, for a  < 0.01 and L  < LEdd the assumptions of 
this w ork are self-consistent. For higher values of a  their range 
of applicability is lim ited to lower luminosities (e.g., to 0.5L Edd 
for a  = 0.1). Kerr-metric slim disks with low effective optical 
depth w ere discussed by Beloborodov ( 1998), who finds them  to 
be significantly hotter than the optically thick ones. We have al­
ready started im plem enting a radiative transfer schem e valid for 
disks with small effective optical depths into the scheme intro­
duced in this work. It will be presented and discussed in a future 
paper.

A nother rem ark is connected to the fact that one can expect 
winds to be blown out of the disk surface at super-Eddington 
luminosities. Such a phenom enon m ay significantly change the 
disk structure, e.g., its thickness. This feature of slim disks, not 
described in our calculations, has recently been cleverly modeled 
by Dotan & Shaviv (2010).
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