118 research outputs found

    Statistical Approaches for Binary and Categorical Data Modeling

    Get PDF
    Nowadays a massive amount of data is generated as the development of technology and services has accelerated. Therefore, the demand for data clustering in order to gain knowledge has increased in many sectors such as medical sciences, risk assessment and product sales. Moreover, binary data has been widely used in various applications including market basket data and text documents analysis. While applying classic widely used k-means method is inappropriate to cluster binary data, we propose an improvement of K-medoids algorithm using binary similarity measures instead of Euclidean distance which is generally deployed in clustering algorithms. In addition to K-medoids clustering method, agglomerative hierarchical clustering methods based on Gaussian probability models have recently shown to be efficient in different applications. However, the emerging of pattern recognition applications where the features are binary or integer-valued demand extending research efforts to such data types. We propose a hierarchical clustering framework for clustering categorical data based on Multinomial and Bernoulli mixture models. We have compared two widely used density-based distances, namely; Bhattacharyya and Kullback-Leibler. The merits of our proposed clustering frameworks have been shown through extensive experiments on clustering text, binary images categorization and images categorization. The development of generative/discriminative approaches for classifying different kinds of data has attracted scholars’ attention. Considering the strengths and weaknesses of both approaches, several hybrid learning approaches which combined the desirable properties of both have been developed. Our contribution is to combine Support Vector Machines (SVMs) and Bernoulli mixture model in order to classify binary data. We propose using Bernoulli mixture model for generating probabilistic kernels for SVM based on information divergence. These kernels make intelligent use of unlabeled binary data to achieve good data discrimination. We evaluate the proposed hybrid learning approach by classifying binary and texture images

    Incorporating complex cells into neural networks for pattern classification

    Full text link
    Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).Computational neuroscientists have hypothesized that the visual system from the retina to at least primary visual cortex is continuously fitting a latent variable probability model to its stream of perceptions. It is not known exactly which probability model, nor exactly how the fitting takes place, but known algorithms for fitting such models require conditional estimates of the latent variables. This gives us a strong hint as to why the visual system might be fitting such a model; in the right kind of model those conditional estimates can also serve as excellent features for analyzing the semantic content of images perceived. The work presented here uses image classification performance (accurate discrimination between common classes of objects) as a basis for comparing visual system models, and algorithms for fitting those models as probability densities to images. This dissertation (a) finds that models based on visual area V1's complex cells generalize better from labeled training examples than conventional neural networks whose hidden units are more like V1's simple cells, (b) presents novel interpretations for complex-cell-based visual system models as probability distributions and novel algorithms for fitting them to data, and (c) demonstrates that these models form better features for image classification after they are first trained as probability models. Visual system models based on complex cells achieve some of the best results to date on the CIFAR-10 image classification benchmark, and samples from their probability distributions indicate that they have learnt to capture important aspects of natural images. Two auxiliary technical innovations that made this work possible are also described: a random search algorithm for selecting hyper-parameters, and an optimizing compiler for matrix-valued mathematical expressions which can target both CPU and GPU devices

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Epälineaarisen visuaalisen prosessoinnin oppiminen luonnollisista kuvista

    Get PDF
    The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.Laskennallisen näön paradigma esittää, että mikä tahansa näkötoiminto - esimerkiksi jonkun esineen tunnistaminen - voidaan toistaa keinotekoisesti käyttäen laskennallisia menetelmiä. Minkälaisia nämä laskennalliset menetelmät voisivat olla, tai minkälaisia niiden tulisi olla? Tässä väitöskirjassa tutkitaan tilastollista lähestymistapaa näkemisen mekanismien muodostamiseen. Sovelletussa lähestymistavassa laskennallista käsittelyä yritetään muodostaa optimoimalla (tai 'oppimalla') siten, että toivotulle käsittelylle asetetaan erilaisia tavoitteita jonkin annetun luonnollisten kuvien joukon suhteen. Väitöskirja koostuu johdannosta ja seitsemästä kansainvälisillä foorumeilla julkaistusta tutkimusartikkelista. Johdanto esittelee väitöskirjan poikkitieteellistä tutkimusaluetta niille, jotka eivät entuudestaan tunne laskennallista näkötutkimusta. Johdannossa käydään läpi visuaalisen prosessoinnin haasteita sekä valotetaan hieman tämänhetkisiä mielipiteitä biologisista näkömekanismeista. Seuraavaksi lukija tutustutetaan työssä käytettyyn tutkimusmetodologiaan, jonka voi pitkälti nähdä koneoppimisen (tilastotieteen) soveltamisena. Johdannon lopuksi käydään läpi työn tutkimusartikkelit. Tämä katsaus on varustettu sellaisilla lisäkommenteilla, havainnoilla ja kritiikeillä, jotka eivät sisältyneet alkuperäisiin artikkeleihin. Varsinaiset tulokset väitöskirjassa liittyvät siihen, minkälaisia yksinkertaisia prosessointimekanismeja muodostuu yhdistelemällä erilaisia oppimistavoitteita, funktioluokkia, epälineaarisuuksia ja luonnollista kuvadataa. Työssä tarkastellaan erityisesti representaatioiden riippumattomuuteen ja harvuuteen tähtääviä oppimistavoitteita, mutta myös sellaisia, jotka pyrkivät edesauttamaan objektintunnistuksessa. Esitämme näiden aiheiden tiimoilta uusia löydöksiä, jotka listataan tarkemmin sekä englanninkielisessä tiivistelmässä että väitöskirjan alkusivuilla. Esitetty väitöskirjatyö tarjoaa lisänäyttöä siitä, että intuitiivisesti mielekkäitä visuaalisia prosessointimekanismeja voidaan muodostaa tilastollisin keinoin. Työ tarjoaa myös joitakin ennusteita ja ideoita liittyen biologisiin näkömekanismeihin
    corecore