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Preface 

In the last decade, the algorithms for the processing of the visual information have
greatly evolved, providing efficient and effective  solutions to cope with the variability
and the complexity of real-world environments. These achievements yield to the
development of Machine Vision systems that overcome the typical industrial 
applications, where the environments are controlled and the tasks are very specific,
towards the use of innovative solutions to face with everyday needs of people. In 
particular, the Human-Centric Machine Vision can help to solve the problems raised
by the needs of our society, e.g. security and safety, health care, medical imaging,
human machine interface, and assistance in vehicle guidance. In such applications it is
necessary to handle changing, unpredictable  and complex situations, and to take care
of the presence of humans. 

This book focuses both on human-centric applications and on bio-inspired Machine
Vision algorithms. Chapter 1 describes a method to detect the 3D orientation of human 
eyes for possible use in biometry, human-machine interaction, and psychophysics
experiments. Features’ extraction based on wavelet moments and moment invariants
are applied in different fields, such as face and facial expression recognition, and hand 
posture detection in Chapter 2. Innovative tools for assisting medical imaging are 
described in Chapters 3 and 4, where a texture classification method for the detection 
of calcification clusters in mammography and a technique for the screening of the
retinopathy of the prematurity are presented. A real-time mice scratching detection
and quantification system is described in Chapter 5, and a tool that reliably determines 
the presence of micro-organisms in water samples is presented in Chapter 6. Bio-
inspired algorithms are used in order to solve complex tasks, such as the robotic
cognitive autonomous navigation in Chapter 7, and the transformation of image filters 
by using complex-value neural networks in Chapter 8. Finally, the potential of
Machine Vision and of the related technologies  in various application domains of 
critical importance for economic growth is reviewed in Chapter 9.

Dr. Fabio Solari, Dr. Manuela Chessa and Dr. Silvio P. Sabatini 
PSPC-Group, Department of Biophysical and Electronic Engineering (DIBE) 

University of Genoa 
Italy
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The Perspective Geometry of the Eye:
Toward Image-Based Eye-Tracking

Andrea Canessa, Agostino Gibaldi, Manuela Chessa,
Silvio Paolo Sabatini and Fabio Solari

University of Genova - PSPC Lab
Italy

1. Introduction

Eye-tracking applications are used in large variety of fields of research: neuro-science,
psychology, human-computer interfaces, marketing and advertising, and computer
science. The commonly known techniques are: contact lens method (Robinson,
1963), electro-oculography (Kaufman et al., 1993), limbus tracking with photo-resistors
(Reulen et al., 1988; Stark et al., 1962), corneal reflection (Eizenman et al., 1984;
Morimoto et al., 2000) and Purkinje image tracking (Cornsweet & Crane, 1973; Crane & Steele,
1978).

Thanks to the recent increase of the computational power of the normal PCs, the eye tracking
system gained a new dimension, both in term of the technique used for the tracking, and
in term of applications. In fact, in the last years raised and expanded a new family of
techniques that apply passive computer vision algorithms to elaborate the images so to obtain
the gaze estimation. Regarding the applications, effective and real-time eye tracker can
be used coupled with a head tracking system, in order to decrease the visual discomfort
in an augmented reality environment (Chessa et al., 2012), and to improve the capability
of interaction with the virtual environment. Moreover, in virtual and augmented reality
applications, the gaze tracking can be used with a display with variable-resolution that
modifies the image in order to provide a high level of detail at the point of gaze while
sacrificing the periphery (Parkhurst & Niebur, 2004).

Grounding the eye tracking on the image of the eye, the pupil position is the most outstanding
feature in the image of the eye, and it is commonly used for eye-tracking, both in corneal
reflections and in image-based eye-trackers. Beside, extremely precise estimation can be
obtained with eye tracker based on the limbus position (Reulen et al., 1988; Stark et al., 1962).
Limbus is the edge between the sclera and the iris, and can be easily tracked horizontally.
Because of the occlusion of the iris done by the eyelid, limbus tracking techniques are
very effective in horizontal tracking, but they fall short in vertical and oblique tracking.
Nevertheless, the limbus proves to be a good feature on which to ground an eye tracking
system.

Starting from the observation that the limbus is close to a perfect circle, its projection on the
image plane of a camera is an ellipse. The geometrical relation between a circle in the 3D

1



0

The Perspective Geometry of the Eye:
Toward Image-Based Eye-Tracking

Andrea Canessa, Agostino Gibaldi, Manuela Chessa,
Silvio Paolo Sabatini and Fabio Solari

University of Genova - PSPC Lab
Italy

1. Introduction

Eye-tracking applications are used in large variety of fields of research: neuro-science,
psychology, human-computer interfaces, marketing and advertising, and computer
science. The commonly known techniques are: contact lens method (Robinson,
1963), electro-oculography (Kaufman et al., 1993), limbus tracking with photo-resistors
(Reulen et al., 1988; Stark et al., 1962), corneal reflection (Eizenman et al., 1984;
Morimoto et al., 2000) and Purkinje image tracking (Cornsweet & Crane, 1973; Crane & Steele,
1978).

Thanks to the recent increase of the computational power of the normal PCs, the eye tracking
system gained a new dimension, both in term of the technique used for the tracking, and
in term of applications. In fact, in the last years raised and expanded a new family of
techniques that apply passive computer vision algorithms to elaborate the images so to obtain
the gaze estimation. Regarding the applications, effective and real-time eye tracker can
be used coupled with a head tracking system, in order to decrease the visual discomfort
in an augmented reality environment (Chessa et al., 2012), and to improve the capability
of interaction with the virtual environment. Moreover, in virtual and augmented reality
applications, the gaze tracking can be used with a display with variable-resolution that
modifies the image in order to provide a high level of detail at the point of gaze while
sacrificing the periphery (Parkhurst & Niebur, 2004).

Grounding the eye tracking on the image of the eye, the pupil position is the most outstanding
feature in the image of the eye, and it is commonly used for eye-tracking, both in corneal
reflections and in image-based eye-trackers. Beside, extremely precise estimation can be
obtained with eye tracker based on the limbus position (Reulen et al., 1988; Stark et al., 1962).
Limbus is the edge between the sclera and the iris, and can be easily tracked horizontally.
Because of the occlusion of the iris done by the eyelid, limbus tracking techniques are
very effective in horizontal tracking, but they fall short in vertical and oblique tracking.
Nevertheless, the limbus proves to be a good feature on which to ground an eye tracking
system.

Starting from the observation that the limbus is close to a perfect circle, its projection on the
image plane of a camera is an ellipse. The geometrical relation between a circle in the 3D

1



2 Will-be-set-by-IN-TECH

space and its projection on a plane can be exploited to gather an eye tracking technique that
resorts on the limbus position to track the gaze direction on 3D. In fact, the ellipse and the
circle are two sections of an elliptic cone whose vertex is at the principal point of the camera.
Once the points that define the limbus are located on the image plane, it is possible to fit
the conic equation that is a section of this cone. The gaze direction can be obtained computing
which is the orientation in space of the circle that produces that projection (Forsyth et al., 1991;
Wang et al., 2003). From this perspective, the more the limbus detection is correct, the most
the estimation of gaze comes to be precise and reliable. In image based techniques, a common
way to detect the iris is first to detect the pupil in order to start from a guess of the center of the
iris itself, and to resort on this information to find the limbus (Labati & Scotti, 2010; Mäenpää,
2005; Ryan et al., 2008).

Commonly in segmentation and recognition the iris shape on the image plane is considered to
be circular, (Kyung-Nam & Ramakrishna, 1999; Matsumoto & Zelinsky, 2000) and to simplify
the search for the feature, the image can be transformed from a Cartesian domain to a polar
one (Ferreira et al., 2009; Rahib & Koray, 2009). As a matter of fact, this is true only if the iris
plane is orthogonal to the optical axis of the camera, and few algorithms take into account
the projective distortions present in off-axis images of the eye and base the search for the iris
on an elliptic shape (Ryan et al., 2008). In order to represent the image in a domain where the
elliptical shape is not only considered, but also exploited, we developed a transformation from
the Cartesian domain to an “elliptical” one, that transform both the pupil edge and the limbus
into straight lines. Furthermore, resorting on geometrical considerations, the ellipse of the
pupil can be used to shape the iris. In fact, even though the pupil and the iris projections
are not concentric, their orientation and eccentricity can be considered equal. From this
perspective, a successful detection of the pupil is instrumental for iris detection, because it
allows for a domain to be used for the elliptical transformation, and it constrains the search
for the iris parameters.

The chapter is organized as follows: in Sec. 3 we present the eye structure, in particular related
to pupil and iris, and the projective rule on the image plane; in Sec. 4 we show how to fit
the ellipse equation on a set of points without any constraint or given its orientation and
eccentricity; in Sec. 5 we demonstrate how to segment the iris, resorting on the information
obtained by the pupil and we show some results achieved on an iris database and on the
images acquired by our system; in Sec. 6 we show how the fitted ellipse can be used for gaze
estimation and in Sec. 7 we introduce some discussions and we present our conclusion.

2. Related works

The study of eye movements anticipates the actual wide use of computers by more than
100 years, for example, Javal (1879). The first methods to track eye movements were quite
invasive, involving direct mechanical contact with the cornea. A first attempt to develop
a not invasive eye tracker is due to Dodge & Cline (1901) which exploited light reflected
from the cornea. In the 1930s, Miles Tinker and his colleagues began to apply photographic
techniques to study eye movements in reading (Tinker, 1963). In 1947 Paul Fitts and his
colleagues began using motion picture cameras to study the movements of pilots’ eyes as
they used cockpit controls and instruments to land an airplane (Fitts et al., 1950). In the
same tears Hartridge & Thompson (1948) invented the first head-mounted eye tracker. One
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reference work in the gaze tracking literature is that made by Yarbus in the 1950s and 1960s
(Yarbus, 1959). He studied eye movements and saccadic exploration of complex images,
recording the eye movements performed by observers while viewing natural objects and
scenes. In the 1960s, Shackel (1960) and Mackworth & Thomas (1962) advanced the concept
of head-mounted eye tracking systems making them somewhat less obtrusive and further
reducing restrictions on participant head movement (Jacob & Karn, 2003).

The 1970s gave an improvement to eye movement research and thus to eye tracking. The
link between eye tracker and psychological studies got deeper, looking at the acquired
eye movement data as an open door to understand the brain cognitive processes. Efforts
were spent also to increase accuracy, precision and comfort of the device on the tracked
subjects. The discovery that multiple reflections from the eye could be used to dissociate
eye rotations from head movement (Cornsweet & Crane, 1973), increased tracking precision
and also prepared the ground for developments resulting in greater freedom of participant
movement (Jacob & Karn, 2003).

Historically, the first application using eye tracking systems was the user interface design.
From the 1980s, thanks to the rapid increase of the technology related to the computer, eye
trackers began to be used also in a wide variety of disciplines (Duchowski, 2002):

• human-computer interaction (HCI)
• neuroscience
• psychology
• psycholinguistics
• ophthalmology
• medical research
• marketing research
• sports research

Even if commercial applications are quite uncommon, a key application for eye tracking
systems is to enable people with severe physical disabilities to communicate and/or interact
with computer devices. Simply by looking at control keys displayed on a computer monitor
screen, the user can perform a broad variety of functions including speech synthesis,
control, playing games, typing. Eyetracking systems can enhance the quality of life
of a disabled person, his family and his community by broadening his communication,
entertainment, learning and productive capacities. Additionally, eyetracking systems have
been demonstrated to be invaluable diagnostic tools in the administration of intelligence
and psychological tests. Another aspect of eye tracking usefulness could be found in the
cognitive and behavioural therapy, a branch of psychotherapy specialized in the treatment of
anxiety disorders like phobias, and in diagnosis or early screening of some health problems.
Abnormal eye movement can be an indication of diseases in balance disorder, diabetic
retinopathy, strabismus, cerebral palsy, multiple sclerosis. Technology offers a tool for
quantitatively measuring and recording what a person does with his eyes while he is reading.
This ability to know what people look at and don’t look at has also been widely used in
a commercial way. Market researchers want to know what attracts people’s attention and
whether it is good attention or annoyance. Advertisers want to know whether people are
looking at the right things in their advertisement. Finally, we want to emphasize the current
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and prospective aspect of eye and gaze tracking in game environment, either in rehabilitation,
an entertainment or an edutainment context.

A variety of technologies have been applied to the problem of eye tracking.

Scleral coil

The most accurate, but least user-friendly technology uses a physical attachment to the front
of the eye. Despite the older generation and its invasivity, the scleral coil contact lens is still
one of the most precise eye tracking system (Robinson, 1963). In this table-mounted systems,
the subject wears a contact lens with two coils inserted. An alternate magnetic field allows
for the measurement of horizontal, vertical and torsional eye movements simultaneously. The
real drawback of this technique is its invasivity respect to the subject, in fact it can decrease
the visual acuity, increase the intraocular pressure, and moreover it can damage the corneal
and conjunctival surface.

Electro-oculography

One of the least expensive and simplest eye tracking technologies is recording from skin
electrodes, like those used for making ECG or EEG measurements. This method is based
on the electrical field generated by the corneo-retinal potential, that can be measured on the
skin of the forehead (Kaufman et al., 1993). The orientation of this field changes with the
rotation of the eyes, and can be measured by an array of electrodes placed around the eyes.
The electrical changes are subsequently processed to relate them with the movements of the
eyes. Beyond the limited precision of this technique, there are some problems to be faced, as
the contraction other than the eye muscles (like facial or neck) and eye blinking, that affect
the electric potential related to eye movements, or as a correct and stable coupling of the
electrodes, that ensures a measure of the field that is constant and reliable over time.

Most practical eye tracking methods are based on a non-contacting camera that observes the
eyeball plus image processing techniques to interpret the picture.

Optical reflections

A first category of camera based methods use optical features for measuring eye motion.
Light, typically infrared (IR), is reflected from the eye and sensed by a video camera or
some other specially designed optical sensor. The information is then analyzed to extract
eye rotation from changes in reflections. We refer to them as the reflections based systems.

• Photo-resistor measurement
This method is based on the measurement of the light reflected by the cornea, in proximity
of the vertical borders of iris and sclera, i.e. the limbus. The two vertical borders of the
limbus are illuminated by a lamp, that can be either in visible light (Stark et al., 1962) or
in infra-red light (Reulen et al., 1988). The diffuse reflected light from the sclera (white)
and iris (colored) is measured by an array of infra-red light photo-transducers, and the
amount of reflected light received by each photocell are functions of the angle of sight.
Since the relative position between the light and the photo-transducers needs to be fixed,
this technique requires a head-mounted device, like that developed by (Reulen et al., 1988).
The authors developed a system that, instead of measuring the horizontal movements
only, takes into account the vertical ones as well. Nevertheless, the measures can not be
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effectuated simultaneously, so they are performed separately on the two eyes, so that one
is used to track the elevation (that can be considered equal for both the eyes), and one for
the azimuth.

• Corneal reflection
An effective and robust technique is based on the corneal reflection, that is the reflection of
the light on the surface of the cornea (Eizenman et al., 1984; Morimoto et al., 2000). Since
the corneal reflection is the brightest reflection, its detection is simple, and offers a stable
reference point for the gaze estimation. In fact, assuming for simplicity that the eye is a
perfect sphere which rotates rigidly around its center, the position of the reflection does
not move with the eye rotation. In such a way, the gaze direction is described by a vector
that generates from the corneal reflection to the center of the pupil or of the iris, and can
be mapped to screen coordinates on a computer monitor after a calibration procedure.
The drawback of this technique is that the relative position between the eye and the light
source must be fixed, otherwise the reference point, i.e. the corneal reflection, would move,
voiding the reliability of the system. This technique, in order to be more robust and stable,
requires an infrared light source to generate the corneal reflection and to produce images
with a high contrast between the pupil and the iris.

• Purkinje images
The corneal is the brightest reflection created by the eye, but it is not the only one. The
different layers of the eye produce other reflections, the Purkinje images, that are used in
a very accurate eye tracking techniques (Cornsweet & Crane, 1973; Crane & Steele, 1978).
From the first image to the fourth, the Purkinje images are respectively the reflection from
the outer surface of the cornea, from the inner surface of the cornea, from the anterior
surface of the lens, and finally the reflection from the posterior surface of the lens. Special
hardware is required to detect the Purkinje images beyond the first, but such image allow
the estimation of the three-dimensional point of regard.

In the last decades, another type of eye tracking family became very popular, thanks to the
rapid increase of the technology related to the computer, together with the fact that it is
completely remote and non-intrusive: the so called image based or video based eye tracker.

Image based

These systems are based on digital images of the front of the eye, acquired from a video camera
and coupled with image processing and machine vision hardware and software. Two types
of imaging approaches are commonly used: visible and infrared spectrum imaging (Li et al.,
2005). This category of eye tracker algorithms is based on the geometric structure of the eye
and on the tracking of its particular features: the pupil - the aperture that lets light into the
eye, the iris - the colored muscle group that controls the diameter of the pupil, and the sclera,
the white protective tissue that covers the remainder of the eye. A benefit of infrared imaging
is that the pupil, rather than the limbus, is the strongest feature contour in the image. Both the
sclera and the iris strongly reflect infrared light while only the sclera strongly reflects visible
light. Tracking the pupil contour is preferable given that the pupil contour is smaller and
more sharply defined than the limbus. Furthermore, due to its size, the pupil is less likely to
be occluded by the eyelids. Pupil and iris edge (or limbus) are the most used tracking features,
in general extracted through the computation of the image gradient (Brolly & Mulligan, 2004;
Ohno et al., 2002; Wang & Sung, 2002; Zhu & Yang, 2002), or fitting a template model to the
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and prospective aspect of eye and gaze tracking in game environment, either in rehabilitation,
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limbus are illuminated by a lamp, that can be either in visible light (Stark et al., 1962) or
in infra-red light (Reulen et al., 1988). The diffuse reflected light from the sclera (white)
and iris (colored) is measured by an array of infra-red light photo-transducers, and the
amount of reflected light received by each photocell are functions of the angle of sight.
Since the relative position between the light and the photo-transducers needs to be fixed,
this technique requires a head-mounted device, like that developed by (Reulen et al., 1988).
The authors developed a system that, instead of measuring the horizontal movements
only, takes into account the vertical ones as well. Nevertheless, the measures can not be
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An effective and robust technique is based on the corneal reflection, that is the reflection of
the light on the surface of the cornea (Eizenman et al., 1984; Morimoto et al., 2000). Since
the corneal reflection is the brightest reflection, its detection is simple, and offers a stable
reference point for the gaze estimation. In fact, assuming for simplicity that the eye is a
perfect sphere which rotates rigidly around its center, the position of the reflection does
not move with the eye rotation. In such a way, the gaze direction is described by a vector
that generates from the corneal reflection to the center of the pupil or of the iris, and can
be mapped to screen coordinates on a computer monitor after a calibration procedure.
The drawback of this technique is that the relative position between the eye and the light
source must be fixed, otherwise the reference point, i.e. the corneal reflection, would move,
voiding the reliability of the system. This technique, in order to be more robust and stable,
requires an infrared light source to generate the corneal reflection and to produce images
with a high contrast between the pupil and the iris.

• Purkinje images
The corneal is the brightest reflection created by the eye, but it is not the only one. The
different layers of the eye produce other reflections, the Purkinje images, that are used in
a very accurate eye tracking techniques (Cornsweet & Crane, 1973; Crane & Steele, 1978).
From the first image to the fourth, the Purkinje images are respectively the reflection from
the outer surface of the cornea, from the inner surface of the cornea, from the anterior
surface of the lens, and finally the reflection from the posterior surface of the lens. Special
hardware is required to detect the Purkinje images beyond the first, but such image allow
the estimation of the three-dimensional point of regard.

In the last decades, another type of eye tracking family became very popular, thanks to the
rapid increase of the technology related to the computer, together with the fact that it is
completely remote and non-intrusive: the so called image based or video based eye tracker.

Image based

These systems are based on digital images of the front of the eye, acquired from a video camera
and coupled with image processing and machine vision hardware and software. Two types
of imaging approaches are commonly used: visible and infrared spectrum imaging (Li et al.,
2005). This category of eye tracker algorithms is based on the geometric structure of the eye
and on the tracking of its particular features: the pupil - the aperture that lets light into the
eye, the iris - the colored muscle group that controls the diameter of the pupil, and the sclera,
the white protective tissue that covers the remainder of the eye. A benefit of infrared imaging
is that the pupil, rather than the limbus, is the strongest feature contour in the image. Both the
sclera and the iris strongly reflect infrared light while only the sclera strongly reflects visible
light. Tracking the pupil contour is preferable given that the pupil contour is smaller and
more sharply defined than the limbus. Furthermore, due to its size, the pupil is less likely to
be occluded by the eyelids. Pupil and iris edge (or limbus) are the most used tracking features,
in general extracted through the computation of the image gradient (Brolly & Mulligan, 2004;
Ohno et al., 2002; Wang & Sung, 2002; Zhu & Yang, 2002), or fitting a template model to the
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image and finding the best one consistent with the image (Daugman, 1993; Nishino & Nayar,
2004).

3. Perspective geometry: from a three-dimensional circle to a two-dimensional
ellipse

If we want to resort on the detection of the limbus for tasks like iris segmentation and eye
tracking, it is necessary good knowledge of the geometrical structure of the eye, in particular
of the iris, and to understand how the eye image is projected on the sensor of a camera.

3.1 Eye structure

As it is evident from Fig. 1, the human eye is not exactly a sphere, but it is composed of two
parts with different curvatures. The rear part is close to a sphere with radius ranging from
12 to 13 mm, according to anthropomorphic data. The frontal part, where the iris resides, is
formed by two chambers, the anterior and the posterior one which are divided by iris and lens.
The iris, the pupil, and the anterior chamber are covered by the cornea, that is a transparent
lens with fixed focus. The crystalline lens is a lens with variable curvature that changes the
focal distance of the eye in order to obtain on focus image of the object of interest on the retina.
The cornea (about 8 mm in radius) is linked to a larger unit called the sclera (about 12 mm in
radius) by a ring called the limbus, that is the external edge of the iris. The most important
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Fig. 1. Structure of the human eye. In the image the main parts related to the presented
algorithm, and in particular the pupil plane (magenta line) and the iris plane (green line) are
highlighted.

function of the iris is to work as a camera diaphragm. The pupil, that is the hole that allows
light to reach the retina, is located in its center. The size of the pupil is controlled by the
sphincter muscles of the iris, that adjusts the amount of light which enters the pupil and falls
on the retina of the eye. The radius of the pupil consequently changes from about 3 to 9 mm,
depending on the lighting of the environment.

The anterior layer of the iris, the visible one, is lightly pigmented, its color results from a
combined effect of pigmentation, fibrous tissue and blood vessels. The resulting texture of the
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iris is a direct expression of the gene pool, thus is unique for each subject like fingerprints. The
posterior layer is very darkly pigmented, contrary to the anterior one. Since the pupil is a hole
in the iris, is the most striking visible feature of the eye, because its color, except for corneal
reflections, is dark black. Pigment frill is the boundary between the pupil and the iris. It is the
only visible part of the posterior layer and emphasizes the edge of the pupil.

The iris portion of the pigment frill is protruding respect to the iris plane of a quantity that
depends on the actual size of the pupil. From this perspective, even if the iris surface is not
planar, the limbus can be considered lying on a plane (see Fig. 1, green line). Similarly, the
pupil edge lies on a plane that is a little bit further respect to the center of the eye, because of
the protrusion of the pupil (see Fig. 1, magenta line). For what concerns the shape of the pupil
edge and the limbus, for our purpose we consider them as two co-axial circles.

3.2 Circle projection

Given an oriented circle C in 3D world space, this is drawn in perspective as an ellipse. This
means that if we observe an eye with a camera, the limbus, being approximated by a circle,
will project a corresponding perspective locus in terms of the Cartesian coordinates of the
camera image plane which satisfy a quadratic equation of the form:

f (x1, x2) = z1x2
1 + z2x1x2 + z3x2

2 + z4x1 + z5x2 + z6 =

=
�

x2
1; x1x2; x2

2; x1; x2; 1
�T

[z1; z2; z3; z4; z5; z6] =

= dTz = 0 (1)

in which the column vectors d and z are, respectively, termed the dual-Grassmannian and
Grassmannian coordinates of the conics, and where 4z1z3 − z2 > 0 to be an ellipse. In
the projective plane it is possible to associate to the affine ellipse, described by Eq.1, its
homogeneous polynomial w2 f (x/w, y/w) obtaining a quadratic form:

Q(x, y, w) = w2 f (x/w, y/w) = z1x2 + z2xy + z3x2 + z4xw + z5yw + z6w2 . (2)

Posing Eq.2 equal to zero gives the equation of an elliptic cone in the projective space. The
ellipse in the image plane and the limbus circle are two sections of the same cone, whose
vertex is the origin, that we assume to be at the principal point of the camera. The quadratic
form in Eq.2 can also be written in matrix form. Let x be a column vector with components
[x; y; w] and Z the 3x3 symmetric matrix of the Grassmannian coordinates:

Z =

⎡
⎣

z1 z2/2 z4/2
z2/2 z3 z5/2
z4/2 z5/2 z6

⎤
⎦

Then:
Q(x) = QZ(x) = xTZx (3)

where the subscript means that the associated matrix to the quadratic form is Z. Together with
its associated quadratic form coefficients, an ellipse is also described, in a more intuitive way,
through its geometric parameters: center (xc, yc), orientation ϕ, major and minor semiaxes
[a,b]. Let see how to recover the geometric parameters knowing the quadratic form matrix Z.
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image and finding the best one consistent with the image (Daugman, 1993; Nishino & Nayar,
2004).

3. Perspective geometry: from a three-dimensional circle to a two-dimensional
ellipse

If we want to resort on the detection of the limbus for tasks like iris segmentation and eye
tracking, it is necessary good knowledge of the geometrical structure of the eye, in particular
of the iris, and to understand how the eye image is projected on the sensor of a camera.

3.1 Eye structure

As it is evident from Fig. 1, the human eye is not exactly a sphere, but it is composed of two
parts with different curvatures. The rear part is close to a sphere with radius ranging from
12 to 13 mm, according to anthropomorphic data. The frontal part, where the iris resides, is
formed by two chambers, the anterior and the posterior one which are divided by iris and lens.
The iris, the pupil, and the anterior chamber are covered by the cornea, that is a transparent
lens with fixed focus. The crystalline lens is a lens with variable curvature that changes the
focal distance of the eye in order to obtain on focus image of the object of interest on the retina.
The cornea (about 8 mm in radius) is linked to a larger unit called the sclera (about 12 mm in
radius) by a ring called the limbus, that is the external edge of the iris. The most important
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Fig. 1. Structure of the human eye. In the image the main parts related to the presented
algorithm, and in particular the pupil plane (magenta line) and the iris plane (green line) are
highlighted.

function of the iris is to work as a camera diaphragm. The pupil, that is the hole that allows
light to reach the retina, is located in its center. The size of the pupil is controlled by the
sphincter muscles of the iris, that adjusts the amount of light which enters the pupil and falls
on the retina of the eye. The radius of the pupil consequently changes from about 3 to 9 mm,
depending on the lighting of the environment.

The anterior layer of the iris, the visible one, is lightly pigmented, its color results from a
combined effect of pigmentation, fibrous tissue and blood vessels. The resulting texture of the
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iris is a direct expression of the gene pool, thus is unique for each subject like fingerprints. The
posterior layer is very darkly pigmented, contrary to the anterior one. Since the pupil is a hole
in the iris, is the most striking visible feature of the eye, because its color, except for corneal
reflections, is dark black. Pigment frill is the boundary between the pupil and the iris. It is the
only visible part of the posterior layer and emphasizes the edge of the pupil.

The iris portion of the pigment frill is protruding respect to the iris plane of a quantity that
depends on the actual size of the pupil. From this perspective, even if the iris surface is not
planar, the limbus can be considered lying on a plane (see Fig. 1, green line). Similarly, the
pupil edge lies on a plane that is a little bit further respect to the center of the eye, because of
the protrusion of the pupil (see Fig. 1, magenta line). For what concerns the shape of the pupil
edge and the limbus, for our purpose we consider them as two co-axial circles.

3.2 Circle projection

Given an oriented circle C in 3D world space, this is drawn in perspective as an ellipse. This
means that if we observe an eye with a camera, the limbus, being approximated by a circle,
will project a corresponding perspective locus in terms of the Cartesian coordinates of the
camera image plane which satisfy a quadratic equation of the form:
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[z1; z2; z3; z4; z5; z6] =
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in which the column vectors d and z are, respectively, termed the dual-Grassmannian and
Grassmannian coordinates of the conics, and where 4z1z3 − z2 > 0 to be an ellipse. In
the projective plane it is possible to associate to the affine ellipse, described by Eq.1, its
homogeneous polynomial w2 f (x/w, y/w) obtaining a quadratic form:

Q(x, y, w) = w2 f (x/w, y/w) = z1x2 + z2xy + z3x2 + z4xw + z5yw + z6w2 . (2)

Posing Eq.2 equal to zero gives the equation of an elliptic cone in the projective space. The
ellipse in the image plane and the limbus circle are two sections of the same cone, whose
vertex is the origin, that we assume to be at the principal point of the camera. The quadratic
form in Eq.2 can also be written in matrix form. Let x be a column vector with components
[x; y; w] and Z the 3x3 symmetric matrix of the Grassmannian coordinates:

Z =

⎡
⎣

z1 z2/2 z4/2
z2/2 z3 z5/2
z4/2 z5/2 z6

⎤
⎦

Then:
Q(x) = QZ(x) = xTZx (3)

where the subscript means that the associated matrix to the quadratic form is Z. Together with
its associated quadratic form coefficients, an ellipse is also described, in a more intuitive way,
through its geometric parameters: center (xc, yc), orientation ϕ, major and minor semiaxes
[a,b]. Let see how to recover the geometric parameters knowing the quadratic form matrix Z.
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The orientation of the ellipse can be computed knowing that this depends directly from the
xy term z2 of the quadratic form. From this we can express the rotation matrix Rϕ:

Rϕ =

⎡
⎣

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

⎤
⎦

If we apply the matrix RT
ϕ to the quadratic form in Eq.3, we obtain:

QZ(R
T
ϕx) =

�
RT

ϕx
�T

Z
�

RT
ϕx

�

= xTRϕZRT
ϕx

= xTZ�x
= QZ� (x) .

We obtain the orientation of the ellipse computing the transformation Z� = RϕZRT
ϕ which

nullifies the xy term in Z, resulting in a new matrix Z�:

Z� =

⎡
⎢⎣

z1 0 z�4/2

0 z�3 z�5/2

z�4/2 z�5/2 z�6

⎤
⎥⎦

This is characterized by the angle ϕ:

ϕ =

⎧⎨
⎩

1
2 arctan

�
z2

z1−z3

�
(z1 − z3) > 0

1
2 arctan

�
z2

z1−z3

�
+ π

2 (z1 − z3) < 0

Once we computed Z�, we can obtain the center coordinates of the rotated ellipse resolving
the system of partial derivative equations of QZ�(x) with respect to x and y, obtaining:

⎧⎨
⎩

∂xQZ� ([x�; y�; 1])|x�=x�
c
= 0

∂yQZ�([x�; y�; 1])
��
y�=y�

c
= 0

�
2z1x�c + z4 = 0

2z3y�c + z5 = 0

resulting in ⎧
⎨
⎩

x�c = − z�4
2z�1

y�c = − z�5
2z�3

Then, we can translate the ellipse through the matrix T,

T =

⎡
⎣

1 0 x�c
0 1 y�c
0 0 1

⎤
⎦
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to nullify the x and y term of the quadratic form:

Z�� = TTZ�T

Z�� =

⎡
⎢⎣

z��1 0 0

0 z��3 0

0 0 z��6

⎤
⎥⎦

Z�� represents the canonical form of the ellipse:

z��1 x2 + z��3 y2 + z��6 = 0 .

Now the major and minor semiaxes of the ellipse will be:

a =

�
− z��6

z��1

b =

�
− z��6

z��3

and the (xc, yc) are the center coordinates in the original reference frame (x, y):
⎡
⎣

xc
yc
1

⎤
⎦ = Rϕ

⎡
⎣

x�c
y�c
1

⎤
⎦

3.3 Pupil and Iris projection

Pupil and iris move together, rotating with the eye, so are characterized by equal orientation in
the space. As shown in Fig.2, the slight difference in position between the pupil and iris plane
cause the two projective cones to be not coaxial. Though this difference is relatively small, this
fact reflects directly on the not geometrical correspondence between the center coordinates of
the two projected ellipses on the image plane: pupil and limbus projections are not concentric.
From Fig.2, it is also evident that, for obvious reasons, the dimensions of the two ellipse, i.e.
the major and minor semiaxes, are very different (leaving out the fact that pupil changes its
aperture with the amount of light). On the other side, if we observe the shape of the two
ellipses, we can see that there are no visible differences: one seems to be the scaled version of
the other. This characteristic is enclosed in another geometric parameter of the elliptic curve
(and of the conic section in general): the eccentricity. The eccentricity of the ellipse (commonly
denoted as either e or �) is defined as follow:

e = ε =

�
a2 − b2

a2 =

�
1 −

�
b
a

�2

where a and b are the major and minor semiaxes. Thus, for ellipse it assumes values in the
range 0 < ε < 1. This quantity is independent of the dimension of the ellipse, and acts as
a scaling factor between the two semiaxes, in such a way that we can write one semiaxis as
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3.3 Pupil and Iris projection

Pupil and iris move together, rotating with the eye, so are characterized by equal orientation in
the space. As shown in Fig.2, the slight difference in position between the pupil and iris plane
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�
a2 − b2
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�
1 −

�
b
a

�2

where a and b are the major and minor semiaxes. Thus, for ellipse it assumes values in the
range 0 < ε < 1. This quantity is independent of the dimension of the ellipse, and acts as
a scaling factor between the two semiaxes, in such a way that we can write one semiaxis as
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Perspective view Top view

Side view Image Plane

Fig. 2. Cone of projection of limbus (red) and pupil (blue) circles. For sake of simplicity, the
limbus circle is rotated about its center, that lies along the optical axis of the camera. The axis
of rotation is vertical, providing a shrink of the horizontal radius on the image plane. On the
image plane, the center of the limbus ellipse, highlighted by the major and minor semiaxes, is
evidently different from the actual center of the limbus circle, that is the center of the image
plane, and is emphasized by the projection of the circle radii (gray lines).

function of the other: a = b
√

1 − ε2. In our case, pupil and limbus ellipses have, in practical,
the same eccentricity: we speak about differences in the order of 10−2. It remains to take
into account the orientation ϕ. Also in this case, as for the eccentricity, there are no essential
differences: we can assume that pupil and limbus share the same orientation, unless errors in
the order of 0.01◦.

4. Ellipse fitting on the image plane

4.1 Pupil ellipse fitting

The ellipse fitting algorithms presented in literature can be collected into two main groups:
voting/clustering and optimization methods. To the first group belong methods based on
the Hough transform (Leavers, 1992; Wu & Wang, 1993; Yin et al., 1992; Yuen et al., 1989),
on RANSAC (Rosin, 1993; Werman & Geyzel, 1995), on Kalman filtering (Porrill, 1990;
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Rosin & West, 1995), and on fuzzy clustering (Davé & Bhaswan, 1992; Gath & Hoory, 1995).
All these methods are robust to occlusion and outliers, but are slow, heavy from the memory
allocation point of view and not so accurate. In the second group we can find methods based
on the Maximum Likelihood (ML) estimation (Chojnacki et al., 2000; Kanatani & Sugaya,
2007; Leedan & Meer, 2000; Matei & Meer, 2006). These are the most accurate methods, whose
solution already achieves the theoretical accuracy Kanatani-Cramer-Rao (KCR) limit. First
introduced by Kanatani (1996; 1998) and then extended by Chernov & Lesort (2004), KCR limit
is for geometric fitting problems (or as Kanatani wrote “constraint satisfaction problems”) the
analogue of the classical Cramer-Rao (CR) limit, traditionally associated to linear/nonlinear
regression problems: KCR limit represents a lower bound on the covariance matrix of the
estimate. The problem related to these algorithms is that they require iterations for non
linear optimization, and in case of large values of noise, they often fail to converge. They
are computationally complex and they do not provide a unique solution. Together with
ML methods, there is another group of algorithms that, with respect to a set of parameters
describing the ellipse, minimizes a particular distance measure function between the set of
points to be fitted and the ellipse. These algorithms, also referred as “algebraic” methods,
are preferred because they are fast and accurate, notwithstanding they may give not optimal
solutions. The best known algebraic method is the least squares, or algebraic distance
minimization or direct linear transformation (DLT). As seen in Eq.1, a general ellipse equation
can be represented as a product of vectors:

dTz = [x2; xy; y2; x; y; 1]T [a; b; c; d; e; f ] = 0 .

Given a set of N point to be fitted, the vector d becomes the N × 6 design matrix D

D =

⎡
⎢⎢⎣

x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...

x2
N xN yN y2

N xN yN 1

⎤
⎥⎥⎦

The least square fitting implies to minimize the sum of the squared distance (or algebraic
distance) of the curve to each of the N points:

argminz

�
�Dz�2

�
. (4)

Obviously, Eq.4 is minimized by the null solution z = 0 if no constraint is imposed. The most
cited DLT minimization in eye tracking literature is (Fitzgibbon et al., 1996). Here the fitting
problem is reformulated as:

argminz

�
zTSz

�
subject to zTCz = 1 (5)

where S = DTD is the scatter matrix, and C the 6 × 6 constraint matrix:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −2 0 0 0
0 1 0 0 0 0

−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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The problem is solved by a quadratically constrained least squares minimization. Applying
the Lagrange multipliers and differentiating, we obtain the system:

{
Sz − λCz = 0
zTCz = 1

(6)

solved by using generalized eigenvectors. Halir & Flusser (1998) found some problems
related to the Fitzgibbon et al. (1996) algorithm:

• the constraint matrix C is singular
• the scatter matrix S is also close to be singular, and it is singular when ideally the points’ set

lies exactly on an ellipse
• finding eigenvectors is an unstable computation and can produce wrong solutions.

Halir & Flusser (1998) proposed a solution to these problems breaking up the design matrix
D into two blocks, the quadratic and the linear components:

D = [D1 D2]

Next, the scatter matrix S becomes:

S =

[
S1 S2
ST

2 S3

]

The constrained matrix C:

C =

[
C1 0
0 0

]

The Grassmanian coordinate vector z of the conic is split in:

z =

[
z1
z2

]

Similarly the eigensystem problem presented in Eq. 6 can be divided into two equation:

S1z1 + S2z2 = λC1z1

ST
2 z1 + S3z2 = 0 (7)

from which we have:
z2 = −S−1

3 ST
2 z1

and, substituting in Eq. 7, obtaining:

(S1 − S2S−1
3 ST

2 )z1 = λC1 z1

C−1
1 (S1 − S2S−1

3 ST
2 )z1 = λ z1

Mz1 = λ z1 . (8)

It was shown that there is only one elliptical solution ze
1 of the eigensystem problem in

Eq.8, corresponding to the unique negative eigenvalue of M. Thus, the fitted ellipse will be
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described by the vector:

ze =

�
ze

1

−S−1
3 ST

2 ze
1

�
(9)

or equivalently, by the matrix associated to the quadratic form:

Z =

⎡
⎢⎣

ze
1 ze

2/2 ze
4/2

ze
2/2 ze

3 ze
5/2

ze
4/2 ze

5/2 ze
6

⎤
⎥⎦

Recently, Harker et al. (2008) increased the numerical stability by introducing a translation
and scaling factor on the data, to yield a so-called mean free coordinates, and improving the
matrix partitioning. Once obtained the quadratic form coefficients of the ellipse it remains
only to recover the geometric parameters as seen in Sec.3: the center of the coordinates (xc,yc),
major and minor semiaxes (a,b), and the angle of rotation from the x-axis to the major axis of
the ellipse (ϕ).

4.2 Iris ellipse fitting

Once we have fitted the pupil ellipse in the image plane, we can think, as suggested at the
end of Sec.3, to exploit the information obtained from the previous fitting: the geometric
parameters of the pupil ellipse. Now, let see how we could use the orientation and eccentricity
information derived from the pupil. Knowing the orientation ϕ, we could transform the
(xi , yi) data points pairs through the matrix Rϕ, obtaining:

�
x�i
y�i

�
= RT

ϕ

�
xi

yi

�

This transformation allow us to write the ellipse, in the new reference frame, without taking
into account the xy term of the quadratic form. Thus, if we write the expression of a generic
ellipse in (x�, y�) reference frame, centered in (x�c, y�c), with major semiaxes oriented along the
x� axis, we have:

b2(x� − x�c)2 + a2(y� − y�c)2 − a2b2 = 0

a2(1 − ε2)(x� − x�c)2 + a2(y� − y�c)2 − a4(1 − ε2) = 0 .

If we assume x�� = x�
√

1 − ε2 and y�� = y�, reordering the terms in x�� and y�� we have:

a2(x�� − x��c )2 + a2(y�� − y��c )2 − a4(1 − ε2) = 0

z��1 (x
��2 + y��2) + z��4 x�� + z��5 y�� + z��6 = 0

that is the equation of a circle translated from the origin. This mean that the fitting
of an ellipse in (x, y) becomes the fitting of a circle in (x��, y��). The four parameters
vector z�� = [z��1 ; z��4 ; z��5 ; z��6 ] of the circle can be obtained using the “Hyperaccurate” fitting
methods explained by Al-Sharadqah & Chernov (2009). The approach is similar to that
of Fitzgibbon et al. (1996). The objective function to be minimized is always the algebraic
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distance �Dz�2, in which the design matrix D becomes an N × 4 matrix:

D =

⎡
⎢⎢⎣
(x��1

2
+ y��1

2
) x��1 y��1 1

...
...

...
...

(x��N
2
+ y��N

2
) x��N y��N 1

⎤
⎥⎥⎦

subject to a particular constraint expressed by the matrix C. This leads the same generalized
eigenvalue problem seen in Eq. 6, that is solvable choosing the solution with the smallest
non-negative eigenvalue. The matrix C takes into account, with a linear combination, two
constraints, introduced by Taubin and Pratt (Pratt, 1987; Taubin, 1991):

• Taubin: 1
N �∇(Dz��)�2 = 1

• Pratt: z��4
2
+ z��5

2 − 4z��1 z��6 = 1 .

The Pratt constraint, as seen in the Fitzgibbon method, can be put in a quadratic form

z��TCPz�� = 1

constructing the matrix CP as follow:

CP =

⎡
⎢⎢⎣

0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0

⎤
⎥⎥⎦

For the Taubin constraint, tougher mathematics is needed to make the quadratic form explicit:

1
N

��∇(Dz��)
��2

=
1
N

��∂x(Dz��)
��2

+
1
N

��∂y(Dz��)
��2

=
1
N

z��TDx
TDxz�� + 1

N
z��TDy

TDyz��

= z��T
�

Dx
TDx + Dy

TDy

N

�
z��

= z��TCTbz��

where Dx and Dy are, respectively, the partial derivatives of the design matrix with respect to
x�� and y��. Thus CTb is

CTb =

⎡
⎢⎢⎢⎢⎣

4(x��2 + y��2) 2x�� 2y�� 0

2x�� 1 0 0

2y�� 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

where x represents the standard sample mean notation x = 1
N ∑N

i=1 xi. Besides, in
(Al-Sharadqah & Chernov, 2009), deriving the variance of the Taubin and Pratt algebraic fit,
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they verified that expressing the constraint matrix C as follow:

C = 2CTb − CP

produces an algebraic circle fit with essential bias equal to zero. For this reason they called it
hyperaccurate. Once we have obtained the solution z��, we must scale it to the (x�, y�) reference
frame with the scaling matrix Tecc:

Tecc =

⎡
⎢⎣

√
1 − ε2 0 0

0 1 0

0 0 1

⎤
⎥⎦

to obtain

Z� = TT
eccZ

��Tecc

= TT
ecc

⎡
⎢⎣

z��1 0 z��4 /2

0 z��e1 z��5 /2

z��4 /2 z��5 /2 z��6

⎤
⎥⎦ Tecc

=

⎡
⎢⎣

(1 − ε2)z��1 0
√

1 − ε2z��4 /2

0 z��e1 z��5 /2√
1 − ε2z��4 /2 z��5 /2 z��6

⎤
⎥⎦

and then again, rotate Z� to the original frame (x, y), applying to rotation matrix Rϕ:

Z = RT
ϕZ�Rϕ

=

⎡
⎢⎣

z1 z2/2 z4/2

z2/2 z3 z5/2

z4/2 z5/2 z6

⎤
⎥⎦

5. Iris and pupil segmentation

A proper segmentation of the iris area is essential in applications such iris recognition and eye
tracking. In fact it defines in the first case, the image region used for feature extraction and
recognition, while in the second case is instrumental to detect the size and shape of the limbus,
and consequently an effective estimation of the eye rotation. The first step to be achieved for
this purpose is to develop a system that is able to obtain images of the eye that are stable to
different lighting conditions of the environment.

5.1 Pupil detection

• Reflex removal
In order to be able to find correctly both the center of the pupil and the edge between
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tracking. In fact it defines in the first case, the image region used for feature extraction and
recognition, while in the second case is instrumental to detect the size and shape of the limbus,
and consequently an effective estimation of the eye rotation. The first step to be achieved for
this purpose is to develop a system that is able to obtain images of the eye that are stable to
different lighting conditions of the environment.

5.1 Pupil detection

• Reflex removal
In order to be able to find correctly both the center of the pupil and the edge between
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the pupil and the iris, it is fundamental to remove effectively the light reflections on
the corneal surface. Working with IR or near IR light, the reflection on the corneas are
considerably reduced, because the light in the visible power spectrum (artificial lights,
computer monitor, etc.) is removed by the IR cut filter. The only sources of reflections are
the natural light and the light from the illuminator, but working in indoor environment,
the first is not present. The illuminators, posed at a distance of ≈ 10 cm from the corneal
surface, produce reflections of circular shape that can be removed with a morphological
open operation. This operation performed on the IR image I, and it is composed of an
erosion followed by a dilation:

IOP = A ◦ d = (A � d)⊕ d

where d is the structuring element and is the same for both operations, i.e. a disk of size
close to the diameter of the reflections. The operation, usually used to remove small
islands and thin filaments of object pixels, with this structuring elements has also the
effect of removing all the reflections smaller than the disk. The reflections position is
individuated thresholding the image resulting from the subtraction of the original image I
with the opened one IOP. In order not to flatten the image and to preserve the information,
the new image Ir is equal to the original one, except for the pixels above the threshold,
that are substituted with a low-passed version of the original image. Once the corneal
reflection regions are correctly located on the image, they are ignored in the next steps of
the algorithm.

• Detection of the pupil center
The second step in the processing of the eye image is to roughly locate the center of the iris
so to properly center the domain for the pupil edge detection. The Ir is transformed into
a binary image where the darkest pixels, defined by a threshold at the 10% of the image
maximum, are set to 0, while the others are set to 1. In this way the points belonging to the
pupil are segmented, since they are the dark part of the image. In this part of the image,
are eventually present points belonging to the eyelashes, to the glasses frame and to and
other elements that are as dark as the pupil (See Fig. 5).
From the binary image, we calculate the chamfer distance, considering that the pixel
farthest from any white pixel is the darkest one. The dark points due to other than the
pupil, are usually few in number (as for eyelashes) or not far from the white ones (as
for glasses frame). On the other side, the pupil area is round shape and quite thick, so
that the position of the darkest pixel is usually found to be inside the pupil, and it is
approximately the center of the pupil C = [xc, yc]. From this perspective, a diffuse and
uniform illumination is helpful to isolate the correct points and thus to find the correct
pupil center.

• Detection of the edge between pupil and iris
Starting from a plausible pupil center, the capability to correctly locate the pupil edge is
subtended to the domain that we define for the research. From the chamfer distance it is
possible to evaluate the maximum radius Rmax where the pupil is contained. In fact it is
composed of a large number of pupil points centered around (xc, yc), with some points
belonging to eyelashes and other, spread in the image. From this perspective, the Rmax is
computed as the first minimum of the histogram of the chamfer distance. Once the search
domain is defined, the edge between the pupil and the iris can be located computing the
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derivative of the intensity of the image along a set of rays, originating from the center of
the pupil. In such way each ray r can be written with the parametric equation:

r(ρ, t) =
[

x − xc
y − yc

]
= ρ

[
cos(t)
sin(t)

]
= ρu(t)

where t varies between 0 and 2π, and ρ between 0 and Rmax. The directional derivative
along a particular direction t = t∗ on a ray r(ρ, t∗)is:

Dρ Ir =
dIr(r(ρ, t∗))

dρ

For each ray, the edge is identified as the maximum of the derivative. Since it considers
the intensity value of the image along the ray, this method can be sensitive to noise and
reflections, finding false maxima, and detecting false edge points. In order to prevent
the sensitivity to noise, instead of computing the derivative along the rays’ direction, it
is possible to compute the spatial gradient of the intensity, obtaining a more stable and
effective information on the pupil edge. The gradient is computed on the smoothed image
Ĩ = G ∗ Ir, where ∗ is the convolutional product between G and Ir, and G is the 2D Gaussian
kernel used to smooth the image:

∇ · (G ∗ Ir) = ∇ · Ĩ = (
∂ Ĩ
∂x

,
∂ Ĩ
∂y

) (10)

Exploiting the properties of the gradient, the Eq. 10 can be written as ∇G ∗ Ir, that
means that the spatial gradient is computed through the gradient of a Gaussian kernel.
Since the feature we want to track with the spatial gradient is a curve edge, the ideal
filter to locate is not like those obtained by ∇G, but a filter with the same curvature of
the edge. Moreover, since the exact radius of the circle is unknown, and its curvature
depends on it, also the size of the filter changes with the image location. Following this
considerations it is possible to design a set of spatio-variant filters that take into account
both the curvature and the orientation of the searched feature, at each image location, with
the consequence of increasing drastically the computational cost. The solution adopted to
obtain a spatio-variant filtering using filters of constant shape and size, is to transform the
image from a Cartesian to a polar domain. The polar transform of Ir, with origin in (xc, yc)
is:

Iw(ρ, t) = F{Ir(x, y); (xc, yc)}
where F is defined by the mapping from (x, y) to (ρ, t) such that:

{
ρ(x, y) =

√
(x − xc)2 + (y − yc)2

t(x, y) = arctan y−yc
x−xc

where Iw is the warped image in the polar domain. The transform F is invertible, and
defined by the mapping in Eq. 5.1. In such way the searched feature is transformed from a
circle to a straight horizontal line, as for the normalization of the iris image (Ferreira et al.,
2009; Rahib & Koray, 2009), and can be effectively detected considering only the first
component of the spatial gradient (See Fig. 3a), i.e. (∇G)ρ ∗ Iw = ∂ Ĩw/∂ρ. Nevertheless, as
introduced in Sec. 3, the shape of the pupil edge is a circle only when the plane that lies on
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the pupil and the iris, it is fundamental to remove effectively the light reflections on
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considerably reduced, because the light in the visible power spectrum (artificial lights,
computer monitor, etc.) is removed by the IR cut filter. The only sources of reflections are
the natural light and the light from the illuminator, but working in indoor environment,
the first is not present. The illuminators, posed at a distance of ≈ 10 cm from the corneal
surface, produce reflections of circular shape that can be removed with a morphological
open operation. This operation performed on the IR image I, and it is composed of an
erosion followed by a dilation:
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where d is the structuring element and is the same for both operations, i.e. a disk of size
close to the diameter of the reflections. The operation, usually used to remove small
islands and thin filaments of object pixels, with this structuring elements has also the
effect of removing all the reflections smaller than the disk. The reflections position is
individuated thresholding the image resulting from the subtraction of the original image I
with the opened one IOP. In order not to flatten the image and to preserve the information,
the new image Ir is equal to the original one, except for the pixels above the threshold,
that are substituted with a low-passed version of the original image. Once the corneal
reflection regions are correctly located on the image, they are ignored in the next steps of
the algorithm.

• Detection of the pupil center
The second step in the processing of the eye image is to roughly locate the center of the iris
so to properly center the domain for the pupil edge detection. The Ir is transformed into
a binary image where the darkest pixels, defined by a threshold at the 10% of the image
maximum, are set to 0, while the others are set to 1. In this way the points belonging to the
pupil are segmented, since they are the dark part of the image. In this part of the image,
are eventually present points belonging to the eyelashes, to the glasses frame and to and
other elements that are as dark as the pupil (See Fig. 5).
From the binary image, we calculate the chamfer distance, considering that the pixel
farthest from any white pixel is the darkest one. The dark points due to other than the
pupil, are usually few in number (as for eyelashes) or not far from the white ones (as
for glasses frame). On the other side, the pupil area is round shape and quite thick, so
that the position of the darkest pixel is usually found to be inside the pupil, and it is
approximately the center of the pupil C = [xc, yc]. From this perspective, a diffuse and
uniform illumination is helpful to isolate the correct points and thus to find the correct
pupil center.

• Detection of the edge between pupil and iris
Starting from a plausible pupil center, the capability to correctly locate the pupil edge is
subtended to the domain that we define for the research. From the chamfer distance it is
possible to evaluate the maximum radius Rmax where the pupil is contained. In fact it is
composed of a large number of pupil points centered around (xc, yc), with some points
belonging to eyelashes and other, spread in the image. From this perspective, the Rmax is
computed as the first minimum of the histogram of the chamfer distance. Once the search
domain is defined, the edge between the pupil and the iris can be located computing the

16 Human-Centric Machine Vision The Perspective Geometry of the Eye: Toward Image-Based Eye-Tracking 17

derivative of the intensity of the image along a set of rays, originating from the center of
the pupil. In such way each ray r can be written with the parametric equation:
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x − xc
y − yc
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cos(t)
sin(t)
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= ρu(t)

where t varies between 0 and 2π, and ρ between 0 and Rmax. The directional derivative
along a particular direction t = t∗ on a ray r(ρ, t∗)is:

Dρ Ir =
dIr(r(ρ, t∗))
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For each ray, the edge is identified as the maximum of the derivative. Since it considers
the intensity value of the image along the ray, this method can be sensitive to noise and
reflections, finding false maxima, and detecting false edge points. In order to prevent
the sensitivity to noise, instead of computing the derivative along the rays’ direction, it
is possible to compute the spatial gradient of the intensity, obtaining a more stable and
effective information on the pupil edge. The gradient is computed on the smoothed image
Ĩ = G ∗ Ir, where ∗ is the convolutional product between G and Ir, and G is the 2D Gaussian
kernel used to smooth the image:

∇ · (G ∗ Ir) = ∇ · Ĩ = (
∂ Ĩ
∂x
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∂ Ĩ
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) (10)

Exploiting the properties of the gradient, the Eq. 10 can be written as ∇G ∗ Ir, that
means that the spatial gradient is computed through the gradient of a Gaussian kernel.
Since the feature we want to track with the spatial gradient is a curve edge, the ideal
filter to locate is not like those obtained by ∇G, but a filter with the same curvature of
the edge. Moreover, since the exact radius of the circle is unknown, and its curvature
depends on it, also the size of the filter changes with the image location. Following this
considerations it is possible to design a set of spatio-variant filters that take into account
both the curvature and the orientation of the searched feature, at each image location, with
the consequence of increasing drastically the computational cost. The solution adopted to
obtain a spatio-variant filtering using filters of constant shape and size, is to transform the
image from a Cartesian to a polar domain. The polar transform of Ir, with origin in (xc, yc)
is:

Iw(ρ, t) = F{Ir(x, y); (xc, yc)}
where F is defined by the mapping from (x, y) to (ρ, t) such that:

{
ρ(x, y) =

√
(x − xc)2 + (y − yc)2

t(x, y) = arctan y−yc
x−xc

where Iw is the warped image in the polar domain. The transform F is invertible, and
defined by the mapping in Eq. 5.1. In such way the searched feature is transformed from a
circle to a straight horizontal line, as for the normalization of the iris image (Ferreira et al.,
2009; Rahib & Koray, 2009), and can be effectively detected considering only the first
component of the spatial gradient (See Fig. 3a), i.e. (∇G)ρ ∗ Iw = ∂ Ĩw/∂ρ. Nevertheless, as
introduced in Sec. 3, the shape of the pupil edge is a circle only when the plane that lies on
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the pupil’s edge is perpendicular to the optical axis of the camera, otherwise its projection
on the image plane is an ellipse. In this case, a polar domain is not the ideal to represent
the feature, because the edge is not a straight line (See Fig. 3b). In order to represent the
image in a domain where the feature is a straight line, i.e. it can be located with a single
component of the spatial gradient, we developed a transformation from the Cartesian to
an “elliptical” domain:

⎧⎪⎨
⎪⎩

ρ(x, y) =
�
(x� − xc)2 +

(y�−yc)2√
1−e2

t(x, y) = arctan( y�−yc
x�−xc

1√
1−e2 )

where (x�, y�) is the (x, y) domain, rotated of an angle ϕ in such way:

�
x� = x cos(ϕ)− y sin(ϕ)
y� = x sin(ϕ) + y cos(ϕ)

And from the elliptic domain to the Cartesian one:

�
x(ρ, t) = a cos(t)cos(ϕ)− b sin(t)sin(ϕ) + xc
y(ρ, t) = a cos(t)sin(ϕ) + b sin(t)cos(ϕ) + yc

(11)

where ϕ is the orientation of the ellipse, and a = ρ is the major semi-axis, and b = a
√

1 − e2

is the minor one.
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Fig. 3. Image of the pupil in Cartesian domain (top row) and transformed in polar (bottom
row, a-b) and “elliptic” domain (bottom row, c). In image (a) the eye is looking almost toward
the camera producing a circular limbus and pupils edge, while in image (b) and (c) it is
looking at an extreme gaze, producing an elliptical pupil and iris. In the Cartesian images it
is shown the transformed domain (magenta grid), while in the transformed images it is
shown the position of the pupil edge (magenta crosses).
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• Pupil fitting
Since at this step no information is known about the orientation ϕ and eccentricity ε of
the ellipse that describes the edge of the pupil, the points found are used to compute the
ellipse parameters without any constraint, as explained in Sec. 4.1 from Eq. 8-9.
At the first step the two axes are initialized to Rmax and ϕ to zero. Once the maxima have
been located in the warped image Iw, i.e. in the (ρ, t) domain, the Eq. 11 can be used to
transform the points into the Cartesian coordinates system, in order to obtain a fitting for
the ellipse equation of the pupil. In order to exploit the “elliptical” transformation and to
obtain a more precise estimation of the ellipse, the fitting is repeated in a cycle where at
each step the new domain is computed using the a, b and ϕ obtained by the fitting achieved
at the previous step.

5.2 Iris detection

Analyzing both the images in the Cartesian domain Ir and in the warped one Iw (see Fig. 3),
it is evident the high intensity change between the pupil and the iris points. With such a
variation, the localization of the pupil edge is precise and stable even if a polar domain is
used. Much more complicated is the detection of the limbus, for different reasons: first, the
edge between iris and sclera is larger and less defined respect to the edge between pupil and
iris, second, the pupil edge is almost never occluded, except during blinks, while the limbus is
almost always occluded by the eyelids, even for small gaze angles. With the purpose of fitting
the correct ellipse on the limbus, it is mandatory to distinguish the points between iris and
sclera from the points between iris and eyelids.

• Iris edge detection
Following the same procedure used to locate the points of the pupil edge, the image where
the reflections are removed Ir, is warped with an elliptical transformation using Eq. 11.
Differently from the pupil, the domain is designed with a guess of the parameters, because,
as presented in Sec. 3, the perspective geometry allows to use the same ϕ and e found for
the pupil. The only parameter that is unknown is ρ, that at the first step of the iteration is
defined to be within [Rpupil, 3Rpupil ]. In such way it is ensured that the limbus is inside
the search area, even in case of a small pupil.
As in for the pupil edge, the ellipse equation that describes the limbus is obtained by the
maxima of the gradient computed on the warped image. As explained in Sec. 4.2, the
fitting is limited to the search of (xc, yc) and a, because ϕ and ε are those of the pupil.
In order to prevent deformations of the ellipse due to false maxima that can be found in
correspondence of eyelashes or eyebrows, we compute the euclidean distance between the
maxima and the fitted ellipse. The fitting is then repeated not considering the points that
are more than one standard deviation distant from the ellipse.
In order to obtain a more precise identification of the iris edge, no matter if the points
belong to the limbus or to the transition between the iris and the eyelids, the search is
repeated in a loop where the parameters used to define the domain at the current step
are those estimated at the previous one. Differently from the pupil search, the size of the
parameter ρ is refined step by step, halving it symmetrically respect to the fitted ellipse.

• Removal of eyelid points
Once the correct points of the edge of the iris are found, in order to obtain correctly
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the pupil’s edge is perpendicular to the optical axis of the camera, otherwise its projection
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the feature, because the edge is not a straight line (See Fig. 3b). In order to represent the
image in a domain where the feature is a straight line, i.e. it can be located with a single
component of the spatial gradient, we developed a transformation from the Cartesian to
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Fig. 3. Image of the pupil in Cartesian domain (top row) and transformed in polar (bottom
row, a-b) and “elliptic” domain (bottom row, c). In image (a) the eye is looking almost toward
the camera producing a circular limbus and pupils edge, while in image (b) and (c) it is
looking at an extreme gaze, producing an elliptical pupil and iris. In the Cartesian images it
is shown the transformed domain (magenta grid), while in the transformed images it is
shown the position of the pupil edge (magenta crosses).
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• Pupil fitting
Since at this step no information is known about the orientation ϕ and eccentricity ε of
the ellipse that describes the edge of the pupil, the points found are used to compute the
ellipse parameters without any constraint, as explained in Sec. 4.1 from Eq. 8-9.
At the first step the two axes are initialized to Rmax and ϕ to zero. Once the maxima have
been located in the warped image Iw, i.e. in the (ρ, t) domain, the Eq. 11 can be used to
transform the points into the Cartesian coordinates system, in order to obtain a fitting for
the ellipse equation of the pupil. In order to exploit the “elliptical” transformation and to
obtain a more precise estimation of the ellipse, the fitting is repeated in a cycle where at
each step the new domain is computed using the a, b and ϕ obtained by the fitting achieved
at the previous step.

5.2 Iris detection

Analyzing both the images in the Cartesian domain Ir and in the warped one Iw (see Fig. 3),
it is evident the high intensity change between the pupil and the iris points. With such a
variation, the localization of the pupil edge is precise and stable even if a polar domain is
used. Much more complicated is the detection of the limbus, for different reasons: first, the
edge between iris and sclera is larger and less defined respect to the edge between pupil and
iris, second, the pupil edge is almost never occluded, except during blinks, while the limbus is
almost always occluded by the eyelids, even for small gaze angles. With the purpose of fitting
the correct ellipse on the limbus, it is mandatory to distinguish the points between iris and
sclera from the points between iris and eyelids.

• Iris edge detection
Following the same procedure used to locate the points of the pupil edge, the image where
the reflections are removed Ir, is warped with an elliptical transformation using Eq. 11.
Differently from the pupil, the domain is designed with a guess of the parameters, because,
as presented in Sec. 3, the perspective geometry allows to use the same ϕ and e found for
the pupil. The only parameter that is unknown is ρ, that at the first step of the iteration is
defined to be within [Rpupil, 3Rpupil ]. In such way it is ensured that the limbus is inside
the search area, even in case of a small pupil.
As in for the pupil edge, the ellipse equation that describes the limbus is obtained by the
maxima of the gradient computed on the warped image. As explained in Sec. 4.2, the
fitting is limited to the search of (xc, yc) and a, because ϕ and ε are those of the pupil.
In order to prevent deformations of the ellipse due to false maxima that can be found in
correspondence of eyelashes or eyebrows, we compute the euclidean distance between the
maxima and the fitted ellipse. The fitting is then repeated not considering the points that
are more than one standard deviation distant from the ellipse.
In order to obtain a more precise identification of the iris edge, no matter if the points
belong to the limbus or to the transition between the iris and the eyelids, the search is
repeated in a loop where the parameters used to define the domain at the current step
are those estimated at the previous one. Differently from the pupil search, the size of the
parameter ρ is refined step by step, halving it symmetrically respect to the fitted ellipse.

• Removal of eyelid points
Once the correct points of the edge of the iris are found, in order to obtain correctly
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the limbus, it is necessary to remove the maxima belonging to the eyelids. Starting
from the consideration that the upper and lower eyelid borders can be described by
parabola segments (Daugman, 1993; Stiefelhagen & Yang, 1997), it is possible to obtain the
parameters that describe the parabolas. With the specific purpose of removing the eyelid
points, and without requiring to precisely locate the eyelids, it is possible to make some
assumptions.
First, the parabolas pass through the eyelid corners, that slightly move with the gaze
and with the aperture of the eyelids. If the camera is fixed, as in our system, those two
points can be considered fixed and identified during the calibration procedure. Second,
the maxima located at the same abscissa on the Cartesian image respect to the center of the
iris, can be considered belonging to the upper and lower eyelids. The (xi, yi) pairs of these
points can be used in a least square minimization:

argminz

�
�y − Dz�2

�

where D is the N × 3 design matrix:

D =

⎡
⎢⎣

x2
1 x1 1
...

...
...

x2
N xN 1

⎤
⎥⎦

z = [a; b; c] is the parameters column vector that describe the parabola’s equations, and
y = [y1; . . . ; yN ] is the ordinate column vector. The solution can be obtained solving the
linear equation system of the partial derivative of Eq. 12 with respect to z:

z = S−1DTy

where S = DTD is the scatter matrix.
This first guess for the parabolas provides not a precise fitting of the eyelids, but a very
effective discrimination of the limbus maxima. In fact it is possible to remove the points
that have a positive ordinate respect to the upper parabola, and those that have a negative
ordinate respect to the lower parabola, because they probably belong to the eyelids (See
Fig. 6, white points). The remaining points can be considered the correct points of the edge
between the iris and the sclera (See Fig. 6, red points), and used for the last fitting of the
limbus ellipse (See Fig. 6, green line).

5.3 A quantitative evaluation of iris segmentation

In order to evaluate the reliability of the proposed algorithm in a large variety of cases, we
performed an extensive test on the CASIA Iris Image Database (CASIA-IrisV1, 2010). After
that, the algorithm was tested on images taken from a hand-made acquiring system, designed
to obtain images where the eye centered in the image, with the minor number of corneal
reflections possible, and taken in a indoor environment with artificial and diffuse light so to
have an almost constant pupil size.

20 Human-Centric Machine Vision The Perspective Geometry of the Eye: Toward Image-Based Eye-Tracking 21

5.3.1 CASIA Iris Database

CASIA Iris Image Database is a high quality image database realized to develop and to test
iris segmentation and recognition algorithms. In particular, the subset CASIA-Iris-Thousand
contains 20.000 iris images taken in IR light, from 1.000 different subjects. The main sources
of variations in the subset are eyeglasses and specular reflections.

Since the eye position in the image changes from subject to subject, it is not possible to
define the eyelid corner position used to fit the eyelids parabolas. The algorithm was slightly
modified to make it work with CASIA-Iris-Thousand, positioning the ”fixed“ points at the
same ordinate of the pupil center, and at an abscissa that is ±5Rpupil respect to the pupil
center as well.

The correct segmentation of the iris and the pupil may fail for different reasons (See Fig 5).
Concerning the pupil, the algorithm may fail in the detection of its center if in the image
are present dark areas, like in case of non uniform illumination and if the subject is wearing
glasses (a-b). One other source of problems is if the reflexes are in the pupil area and are not
properly removed, because they can be detected as pupil edges, leading to a smaller pupil
(c). Moreover the pupil edge can be detected erroneously if a part of its edge is occluded by
the eyelid or by the eyelashes (d-f). Concerning the iris, since its fitting is constrained by the
pupil shape, if the pupil detection is wrong consequently the iris can be completely wrong
or deformed. Even if the pupil is detected correctly, when the edge between the iris and the
sclera come to have low contrast, for reasons like not uniform illumination, not correct camera
focus, or bright color of the eye, the algorithm may fail in finding the limbus (g-h).

Over the whole set of images, the correct segmentation rate is 94, 5%, attesting a good efficacy
of the algorithm. In fact it is able to segment properly the iris area (See Fig 4) with changhing
size of the puil, in presence of glasses and heavy reflexes (a-c), bushy eyelashes (d-e), iris and
pupil partially occluded (f).

S5001−R−06 S5017−L−03 S5048−R−06 S5044−R−05

(a) (b) (c) (d)
S5145−R−08 S5086−L−03 S5123−R−09 S5175−R−09

(e) (f) (g) (h)

Fig. 4. Examples of correct segmentation on the CASIA Iris Database, on the Thousand
subset. The magenta ellipse defines the pupil contour, while the green one is the limbus. The
red dots represent the points used to compute the limbus ellipse equation, while the white
ones are those removed for their possible belonging to the eyelashes or to wrong estimation
of the edge.
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the limbus, it is necessary to remove the maxima belonging to the eyelids. Starting
from the consideration that the upper and lower eyelid borders can be described by
parabola segments (Daugman, 1993; Stiefelhagen & Yang, 1997), it is possible to obtain the
parameters that describe the parabolas. With the specific purpose of removing the eyelid
points, and without requiring to precisely locate the eyelids, it is possible to make some
assumptions.
First, the parabolas pass through the eyelid corners, that slightly move with the gaze
and with the aperture of the eyelids. If the camera is fixed, as in our system, those two
points can be considered fixed and identified during the calibration procedure. Second,
the maxima located at the same abscissa on the Cartesian image respect to the center of the
iris, can be considered belonging to the upper and lower eyelids. The (xi, yi) pairs of these
points can be used in a least square minimization:

argminz

�
�y − Dz�2

�

where D is the N × 3 design matrix:

D =

⎡
⎢⎣

x2
1 x1 1
...

...
...

x2
N xN 1

⎤
⎥⎦

z = [a; b; c] is the parameters column vector that describe the parabola’s equations, and
y = [y1; . . . ; yN ] is the ordinate column vector. The solution can be obtained solving the
linear equation system of the partial derivative of Eq. 12 with respect to z:

z = S−1DTy

where S = DTD is the scatter matrix.
This first guess for the parabolas provides not a precise fitting of the eyelids, but a very
effective discrimination of the limbus maxima. In fact it is possible to remove the points
that have a positive ordinate respect to the upper parabola, and those that have a negative
ordinate respect to the lower parabola, because they probably belong to the eyelids (See
Fig. 6, white points). The remaining points can be considered the correct points of the edge
between the iris and the sclera (See Fig. 6, red points), and used for the last fitting of the
limbus ellipse (See Fig. 6, green line).

5.3 A quantitative evaluation of iris segmentation

In order to evaluate the reliability of the proposed algorithm in a large variety of cases, we
performed an extensive test on the CASIA Iris Image Database (CASIA-IrisV1, 2010). After
that, the algorithm was tested on images taken from a hand-made acquiring system, designed
to obtain images where the eye centered in the image, with the minor number of corneal
reflections possible, and taken in a indoor environment with artificial and diffuse light so to
have an almost constant pupil size.
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5.3.1 CASIA Iris Database

CASIA Iris Image Database is a high quality image database realized to develop and to test
iris segmentation and recognition algorithms. In particular, the subset CASIA-Iris-Thousand
contains 20.000 iris images taken in IR light, from 1.000 different subjects. The main sources
of variations in the subset are eyeglasses and specular reflections.

Since the eye position in the image changes from subject to subject, it is not possible to
define the eyelid corner position used to fit the eyelids parabolas. The algorithm was slightly
modified to make it work with CASIA-Iris-Thousand, positioning the ”fixed“ points at the
same ordinate of the pupil center, and at an abscissa that is ±5Rpupil respect to the pupil
center as well.

The correct segmentation of the iris and the pupil may fail for different reasons (See Fig 5).
Concerning the pupil, the algorithm may fail in the detection of its center if in the image
are present dark areas, like in case of non uniform illumination and if the subject is wearing
glasses (a-b). One other source of problems is if the reflexes are in the pupil area and are not
properly removed, because they can be detected as pupil edges, leading to a smaller pupil
(c). Moreover the pupil edge can be detected erroneously if a part of its edge is occluded by
the eyelid or by the eyelashes (d-f). Concerning the iris, since its fitting is constrained by the
pupil shape, if the pupil detection is wrong consequently the iris can be completely wrong
or deformed. Even if the pupil is detected correctly, when the edge between the iris and the
sclera come to have low contrast, for reasons like not uniform illumination, not correct camera
focus, or bright color of the eye, the algorithm may fail in finding the limbus (g-h).

Over the whole set of images, the correct segmentation rate is 94, 5%, attesting a good efficacy
of the algorithm. In fact it is able to segment properly the iris area (See Fig 4) with changhing
size of the puil, in presence of glasses and heavy reflexes (a-c), bushy eyelashes (d-e), iris and
pupil partially occluded (f).
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Fig. 4. Examples of correct segmentation on the CASIA Iris Database, on the Thousand
subset. The magenta ellipse defines the pupil contour, while the green one is the limbus. The
red dots represent the points used to compute the limbus ellipse equation, while the white
ones are those removed for their possible belonging to the eyelashes or to wrong estimation
of the edge.
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Fig. 5. Examples of wrong segmentation on the CASIA Iris Database, on the Thousand
subset. The magenta ellipse defines the pupil contour, while the green one is the limbus. The
red dots represent the points used to compute the limbus ellipse equation, while the white
ones are those removed for their possible belonging to the eyelashes or to wrong estimation
of the edge.

5.4 The proposed system

The images available in the CASIA-Iris-Thousand are characterized by a gaze direction that
is close to the primary, and are taken by a camera positioned directly in front of the eye. The
images provided by such a configuration are characterized by a pupil and an iris whose edge
is close to a perfect circle. In fact, since the normal to the plane that contains the limbus
is parallel to the optical axis of the camera, the projected ellipse has eccentricity close to zero.
While the feature to be searched in the image has a circular shape, the technique of re-sampling
the image with a transformation from Cartesian to polar coordinates is an effective technique
(Ferreira et al., 2009; Lin et al., 2005; Rahib & Koray, 2009). In such domain, starting from the
assumption that its origin is in the center of the iris, the feature to be searched, i.e. the circle
of limbus, is transformed to a straight line, and thus it is easier to be individuated than in the
Cartesian domain.

On the other side, considering not only the purpose of biometrics but also the eye tracking, the
eye can be rotated by large angles respect to the primary position. Moreover, in our system, the
camera is positioned some centimeters lower than the eye center in order to prevent as much
as possible occlusions in the gaze direction. The images obtained by such a configuration are
characterized by the pupil and the iris with an eccentricity higher than zero, that increases
the more the gaze direction differs from the optical axis of the camera (see for example Fig. 6,
top-right).

Since the presented eye-tracking system is based on the perspective geometry of the pupil and
iris circle on the image plane, it is important for the system that the relative position between
the eye and the camera stay fixed. On the oder side, for a good easiness of use and freedom of
movement of the subject it is important the the system allows free head movement. For this
purpose, we developed an head mounted device, in order to guarantee both these features.
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5.4.1 Hardware implementation

The head-mounted device is endowed with two cheap USB web cams (Hercules Deluxe
Optical Glass) that provide images at a resolution of 800 × 600 pixels, with a frame rate of
30 fps. The cameras were mounted in the inner part of a chin strap, at a distance of ≈ 60
mm from the respective eye. At this distance, the field of view provided by the cameras,
is [36◦, 26◦], that is more than enough to have a complete view of the eyes. To make them
work in infra-red light, the IR-cut filter were removed from the optics, and substituted with
a IR-pass filter, with cut frequency of 850 nm. To have a constant illumination of the images,
both in daylight or in indoor environments and during night time, the system were endowed
with three IR illuminators, that help to keep constant the contrast and the illumination of the
stream of images.

In fact, the illuminators produce visible corneal reflexes, that are used as reference feature in
other kinds of eye trackers (Eizenman et al., 1984; Morimoto et al., 2000). In our case, since we
are seeking to use the limbus position to track the eye, if the reflex, depending on the position
of the eye falls in its correspondence, it can lead to the detection of a wrong edge, thus to a
wrong gaze estimation. To prevent this case, and considering that the points affected by the
reflexes are few respect to the entire limbus edge, these points are removed at the beginning
of the image elaboration.

5.4.2 Image acquisition and segmentation

The developed algorithm was tested on three sets of images, taken from different subjects. In
each set, the subjects were asked to fixate a grid of points, in order to have the gaze ranging
from −30◦ and −30◦ of azimuth, and from −20◦ and 20◦ of elevation, with a step of 5◦. In
this way each set is composed by 117 images where the gaze direction is known. The azimuth
and elevation angles were defined following a Helmholtz reference frame (Haslwanter, 1995).
The use of a transformation of the image from a Cartesian to an elliptic domain allows the
algorithm to work properly on the segmentation of the pupil and consequently, as explained
in Sec 3, on the segmentation of the iris, even in the cases where the iris is drastically occluded
(see for example Fig. 6, center-right).

Considering that the images are captured in an optimal condition, i.e. in an indoor
environment where the only sources of IR light are the illuminators and the subjects do not
wear glasses, and with the eye correctly centered in the image, the algorithm is able to segment
properly the pupil and the iris in the 100% of the cases.

6. Eye-tracking

Once the iris circle is detected steadily on the image plane, and its edge is fitted with an
ellipse, knowing the coefficient matrix Z of the quadratic form, it remains to estimate the gaze
direction. This can be obtained computing which is the orientation in space of the circle that
produces that projection.

6.1 Tracking

Because Z is a symmetric matrix, it can be diagonalized, leading to a matrix:

Σ = diag(λ1, λ2, λ3)
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Fig. 5. Examples of wrong segmentation on the CASIA Iris Database, on the Thousand
subset. The magenta ellipse defines the pupil contour, while the green one is the limbus. The
red dots represent the points used to compute the limbus ellipse equation, while the white
ones are those removed for their possible belonging to the eyelashes or to wrong estimation
of the edge.

5.4 The proposed system

The images available in the CASIA-Iris-Thousand are characterized by a gaze direction that
is close to the primary, and are taken by a camera positioned directly in front of the eye. The
images provided by such a configuration are characterized by a pupil and an iris whose edge
is close to a perfect circle. In fact, since the normal to the plane that contains the limbus
is parallel to the optical axis of the camera, the projected ellipse has eccentricity close to zero.
While the feature to be searched in the image has a circular shape, the technique of re-sampling
the image with a transformation from Cartesian to polar coordinates is an effective technique
(Ferreira et al., 2009; Lin et al., 2005; Rahib & Koray, 2009). In such domain, starting from the
assumption that its origin is in the center of the iris, the feature to be searched, i.e. the circle
of limbus, is transformed to a straight line, and thus it is easier to be individuated than in the
Cartesian domain.

On the other side, considering not only the purpose of biometrics but also the eye tracking, the
eye can be rotated by large angles respect to the primary position. Moreover, in our system, the
camera is positioned some centimeters lower than the eye center in order to prevent as much
as possible occlusions in the gaze direction. The images obtained by such a configuration are
characterized by the pupil and the iris with an eccentricity higher than zero, that increases
the more the gaze direction differs from the optical axis of the camera (see for example Fig. 6,
top-right).

Since the presented eye-tracking system is based on the perspective geometry of the pupil and
iris circle on the image plane, it is important for the system that the relative position between
the eye and the camera stay fixed. On the oder side, for a good easiness of use and freedom of
movement of the subject it is important the the system allows free head movement. For this
purpose, we developed an head mounted device, in order to guarantee both these features.
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5.4.1 Hardware implementation

The head-mounted device is endowed with two cheap USB web cams (Hercules Deluxe
Optical Glass) that provide images at a resolution of 800 × 600 pixels, with a frame rate of
30 fps. The cameras were mounted in the inner part of a chin strap, at a distance of ≈ 60
mm from the respective eye. At this distance, the field of view provided by the cameras,
is [36◦, 26◦], that is more than enough to have a complete view of the eyes. To make them
work in infra-red light, the IR-cut filter were removed from the optics, and substituted with
a IR-pass filter, with cut frequency of 850 nm. To have a constant illumination of the images,
both in daylight or in indoor environments and during night time, the system were endowed
with three IR illuminators, that help to keep constant the contrast and the illumination of the
stream of images.

In fact, the illuminators produce visible corneal reflexes, that are used as reference feature in
other kinds of eye trackers (Eizenman et al., 1984; Morimoto et al., 2000). In our case, since we
are seeking to use the limbus position to track the eye, if the reflex, depending on the position
of the eye falls in its correspondence, it can lead to the detection of a wrong edge, thus to a
wrong gaze estimation. To prevent this case, and considering that the points affected by the
reflexes are few respect to the entire limbus edge, these points are removed at the beginning
of the image elaboration.

5.4.2 Image acquisition and segmentation

The developed algorithm was tested on three sets of images, taken from different subjects. In
each set, the subjects were asked to fixate a grid of points, in order to have the gaze ranging
from −30◦ and −30◦ of azimuth, and from −20◦ and 20◦ of elevation, with a step of 5◦. In
this way each set is composed by 117 images where the gaze direction is known. The azimuth
and elevation angles were defined following a Helmholtz reference frame (Haslwanter, 1995).
The use of a transformation of the image from a Cartesian to an elliptic domain allows the
algorithm to work properly on the segmentation of the pupil and consequently, as explained
in Sec 3, on the segmentation of the iris, even in the cases where the iris is drastically occluded
(see for example Fig. 6, center-right).

Considering that the images are captured in an optimal condition, i.e. in an indoor
environment where the only sources of IR light are the illuminators and the subjects do not
wear glasses, and with the eye correctly centered in the image, the algorithm is able to segment
properly the pupil and the iris in the 100% of the cases.

6. Eye-tracking

Once the iris circle is detected steadily on the image plane, and its edge is fitted with an
ellipse, knowing the coefficient matrix Z of the quadratic form, it remains to estimate the gaze
direction. This can be obtained computing which is the orientation in space of the circle that
produces that projection.

6.1 Tracking

Because Z is a symmetric matrix, it can be diagonalized, leading to a matrix:

Σ = diag(λ1, λ2, λ3)

23The Perspective Geometry of the Eye: Toward Image-Based Eye-Tracking



24 Will-be-set-by-IN-TECH

H = −30◦ V = 20◦ H = 0◦ V = 20◦ H = 30◦ V = 20◦

H = −30◦ V = 0◦ H = 0◦ V = 0◦ H = 30◦ V = 0◦

H = −30◦ V = −20◦ H = 0◦ V = −20◦ H = 30◦ V = −20◦

Fig. 6. Subset of the images taken from a subject with the IR camera. The subject is fixating to
a grid of nine points at the widest angles of the whole set. The magenta ellipse defines the
pupil contour, while the green one is the limbus. The red dots represent the points used to
compute the limbus ellipse equation, while the white ones are those removed for their
possible belonging to the eyelashes or to wrong estimation of the edge. The blue lines
represent the parabolas used to remove the possible eyelashes points.

with λ1, λ2, λ3 ∈ R. This transformation from Z to Σ is just a change of basis, and thus
Σ may be expressed as Σ = R−1ZR, where R is the matrix changing between the actual
orthonormal basis to a new one, formed by three eigenvectors of Z. The columns of R are the
components of the eigenvectors e1, e2, e3, and the elements λ1, λ2, λ3 of the diagonal of Σ are
the associated eigenvalues. For the Sylvester’s Law of inertia the signature of Σ is equal to that
of Z, (−,+,+); thus only one eigenvalue is negative, and the other are positive. We assume
λ3 < 0 and λ2 > λ1 > 0. If we apply the transformation matrix R to QZ(x), we obtain:

QZ(Rx) = (Rx)TZ(Rx)

= xTRTZRx

= xTΣx
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and consider x� = RTx, the equation of the projective cone in the new basis is:

λ1x�2 + λ2y�2 + λ3w�2 = 0 (12)

which is a cone expressed in canonical form, whose axis is parallel to e3. Now, look for a while
at the intersection of the cone with the plane w = 1

λ2
3
. This is the ellipse:

λ1x�2 + λ2y�2 = 1

whose axes are parallel to e1 and e2, and semiaxis length are
√

λ1 and
√

λ2. If we consider to
cut the cone in Eq.12 with a plane tilted along e1 there exist a particular angle θ which makes
tha plane to intersect the cone in a circle: this circle will be the limbus and θ its tilt angle in
the basis described by the rotation matrix R. As suggested in Forsyth et al. (1991), to find θ it
is possible to exploit the properties of circle to have equal semiaxes or, equivalently, to have
equal coefficient for the x�2 and y�2 terms in the quadratic form. Equality of the x�2 and y�2

coefficients is achieved by a rotation along the x� axis by an angle θ = ± arctan
��

λ2−λ1
λ1−λ3

�
,

which set both the coefficients equal to λ1. The normal to the plane that intersects the cone in
a circle, expressed in the camera coordinate system, is n = RcamRRθ [0; 0; −1], where:

Rθ =

⎡
⎢⎢⎣

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎥⎥⎦

and Rcam is the matrix describing the rotation of the camera with respect the fixed world
reference frame.

6.2 Calibration

Since it is not possible to measure with the desired precision the relative position between
the center of the eye and nodal point of the camera, and particularly the relative orientation,
we developed a calibration procedure with the purpose of estimating the implicit parameters.
The subject is asked to fixate a calibration grid of 25 points in a known position. The grid of
points is designed to make the subject fixate with an azimuth angle between −30◦ and 30◦
with steps of 15◦ , and with an elevation angle between −20◦ and 20◦ with steps of 10◦ .

The calibration procedure is based on a functional whose minimization provides: (1) the eye
position respect to the camera, (2) the camera orientation respect to a fixed reference frame,
(4) the radius of the eye.

6.3 Estimation of the gaze direction

In order to have a validation of the algorithm, the estimation of the fixation angle is computed
over a different set of points respect to the calibration grid. The grid of point used for the test
is designed to make the subject fixate with an azimuth angle between −20◦ and 20◦ with steps
of 5◦, and with an elevation angle between −10◦ and 10◦ with steps of 5◦.
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Fig. 6. Subset of the images taken from a subject with the IR camera. The subject is fixating to
a grid of nine points at the widest angles of the whole set. The magenta ellipse defines the
pupil contour, while the green one is the limbus. The red dots represent the points used to
compute the limbus ellipse equation, while the white ones are those removed for their
possible belonging to the eyelashes or to wrong estimation of the edge. The blue lines
represent the parabolas used to remove the possible eyelashes points.
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orthonormal basis to a new one, formed by three eigenvectors of Z. The columns of R are the
components of the eigenvectors e1, e2, e3, and the elements λ1, λ2, λ3 of the diagonal of Σ are
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and consider x� = RTx, the equation of the projective cone in the new basis is:
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equal coefficient for the x�2 and y�2 terms in the quadratic form. Equality of the x�2 and y�2

coefficients is achieved by a rotation along the x� axis by an angle θ = ± arctan
��

λ2−λ1
λ1−λ3

�
,

which set both the coefficients equal to λ1. The normal to the plane that intersects the cone in
a circle, expressed in the camera coordinate system, is n = RcamRRθ [0; 0; −1], where:

Rθ =

⎡
⎢⎢⎣

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎥⎥⎦

and Rcam is the matrix describing the rotation of the camera with respect the fixed world
reference frame.

6.2 Calibration

Since it is not possible to measure with the desired precision the relative position between
the center of the eye and nodal point of the camera, and particularly the relative orientation,
we developed a calibration procedure with the purpose of estimating the implicit parameters.
The subject is asked to fixate a calibration grid of 25 points in a known position. The grid of
points is designed to make the subject fixate with an azimuth angle between −30◦ and 30◦
with steps of 15◦ , and with an elevation angle between −20◦ and 20◦ with steps of 10◦ .

The calibration procedure is based on a functional whose minimization provides: (1) the eye
position respect to the camera, (2) the camera orientation respect to a fixed reference frame,
(4) the radius of the eye.

6.3 Estimation of the gaze direction

In order to have a validation of the algorithm, the estimation of the fixation angle is computed
over a different set of points respect to the calibration grid. The grid of point used for the test
is designed to make the subject fixate with an azimuth angle between −20◦ and 20◦ with steps
of 5◦, and with an elevation angle between −10◦ and 10◦ with steps of 5◦.
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The error is measured as the angle between the estimated gaze direction and the actual
direction of the calibration points. Over the whole set of 45 points, the algorithm is able to
provide a mean error of ≈ 0.6◦.
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Fig. 7. Azimuthal (horizontal) and elevation (vertical) angles of the grid of fixational points
(blue squares), with respect to the angles estimated by the proposed algorithm (red crosses).

7. Discussion and conclusion

We developed a novel approach for iris segmentation and eye tracking that resorts on the
geometrical characteristics of the projection of the eye on the image plane.

Once that the pupil center is roughly located and the ellipse that describes the pupil is fitted,
the parameters of the pupil ellipse can be exploited to improve the search of the limbus. We
developed a transformation of the image to an elliptical domain, that is shaped by the pupil,
in order to transform the limbus in a straight line, thus easier to be detected. The points
that do not belong to the limbus are removed considering that the border of the superior and
inferior eyelids is well described by two parabolas intersecting at the eyelids intersections.
The similarity of the projections of iris and pupil allows a proper segmentation even if large
parts of the iris are occluded by eyelids. We developed a method that takes into account
the orientation and eccentricity of the pupils ellipse in order to fit the limbus ellipse. The
iris segmentation algorithm is able to work both on an iris image database and on the images
acquired by our system. Since the limbus can be considered a perfect circle oriented in 3D with
respect to the image plane, its imaged ellipse is used to compute the gaze direction finding the
orientation in space of the circle that projects the fitted ellipse.

Even though the iris segmentation demonstrates a good effectiveness in a large variety of
cases and a good robustness to perturbations due to reflections and glasses, the gaze tracking
part is in a preliminary implementation, and many improvements can be implemented in the
current algorithm. In order to restrain the wrong matching of the pupil center, the pupil search
area can be constrained to a circle defined by the pupil points found during the calibration
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procedure. In fact, considering to calibrate the algorithm over the range of interest for the
tracking of the eye, the pupil is searched in an area where it is likely to be, preventing to
detect the initial point on the glasses frame or on other dark regions of the image. Moreover,
since the system is not endowed with a frontal scene camera, it comes to be more difficult both
to calibrate correctly the algorithm and to test it. Currently for the calibration, the subject is
posed manually in the desired position respect to the grid, without any chin rest, and she/he
is asked to remain steady all along the procedure. Without any visual feedback from where
the subject is fixating, any movement between the subject and the grid (due to undesired
rotations and translations of the head, or to physiologic nystagmus) becomes an unpredictable
and meaningful source of error. The next steps of our research are to implement of a more
comfortable and precise calibration procedure, as through a chin rest or a scene camera, and
to extend the system from monocular to binocular tracking.

In conclusion, the proposed method, resorting on visible and salient features, like pupil and
limbus, and exploiting the known geometry of the structure of the eye, is able to provide
a reliable segmentation of the iris that can be in principle used both for non-invasive and
low-cost eye tracking and for iris recognition applications.
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The error is measured as the angle between the estimated gaze direction and the actual
direction of the calibration points. Over the whole set of 45 points, the algorithm is able to
provide a mean error of ≈ 0.6◦.
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Fig. 7. Azimuthal (horizontal) and elevation (vertical) angles of the grid of fixational points
(blue squares), with respect to the angles estimated by the proposed algorithm (red crosses).

7. Discussion and conclusion

We developed a novel approach for iris segmentation and eye tracking that resorts on the
geometrical characteristics of the projection of the eye on the image plane.

Once that the pupil center is roughly located and the ellipse that describes the pupil is fitted,
the parameters of the pupil ellipse can be exploited to improve the search of the limbus. We
developed a transformation of the image to an elliptical domain, that is shaped by the pupil,
in order to transform the limbus in a straight line, thus easier to be detected. The points
that do not belong to the limbus are removed considering that the border of the superior and
inferior eyelids is well described by two parabolas intersecting at the eyelids intersections.
The similarity of the projections of iris and pupil allows a proper segmentation even if large
parts of the iris are occluded by eyelids. We developed a method that takes into account
the orientation and eccentricity of the pupils ellipse in order to fit the limbus ellipse. The
iris segmentation algorithm is able to work both on an iris image database and on the images
acquired by our system. Since the limbus can be considered a perfect circle oriented in 3D with
respect to the image plane, its imaged ellipse is used to compute the gaze direction finding the
orientation in space of the circle that projects the fitted ellipse.

Even though the iris segmentation demonstrates a good effectiveness in a large variety of
cases and a good robustness to perturbations due to reflections and glasses, the gaze tracking
part is in a preliminary implementation, and many improvements can be implemented in the
current algorithm. In order to restrain the wrong matching of the pupil center, the pupil search
area can be constrained to a circle defined by the pupil points found during the calibration
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procedure. In fact, considering to calibrate the algorithm over the range of interest for the
tracking of the eye, the pupil is searched in an area where it is likely to be, preventing to
detect the initial point on the glasses frame or on other dark regions of the image. Moreover,
since the system is not endowed with a frontal scene camera, it comes to be more difficult both
to calibrate correctly the algorithm and to test it. Currently for the calibration, the subject is
posed manually in the desired position respect to the grid, without any chin rest, and she/he
is asked to remain steady all along the procedure. Without any visual feedback from where
the subject is fixating, any movement between the subject and the grid (due to undesired
rotations and translations of the head, or to physiologic nystagmus) becomes an unpredictable
and meaningful source of error. The next steps of our research are to implement of a more
comfortable and precise calibration procedure, as through a chin rest or a scene camera, and
to extend the system from monocular to binocular tracking.

In conclusion, the proposed method, resorting on visible and salient features, like pupil and
limbus, and exploiting the known geometry of the structure of the eye, is able to provide
a reliable segmentation of the iris that can be in principle used both for non-invasive and
low-cost eye tracking and for iris recognition applications.
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1. Introduction  
Recently, there has been an increasing interest on modern machine vision systems for 
industrial and commercial purposes. More and more products are introduced in the market, 
which are making use of visual information captured by a camera in order to perform a 
specific task. Such machine vision systems are used for detecting and/or recognizing a face 
in an unconstrained environment for security purposes, for analysing the emotional states of 
a human by processing his facial expressions or for providing a vision based interface in the 
context of the human computer interaction (HCI) etc..  

In almost all the modern machine vision systems there is a common processing procedure 
called feature extraction, dealing with the appropriate representation of the visual information. 
This task has two main objectives simultaneously, the compact description of the useful 
information by a set of numbers (features), by keeping the dimension as low as possible. 

Image moments constitute an important feature extraction method (FEM) which generates 
high discriminative features, able to capture the particular characteristics of the described 
pattern, which distinguish it among similar or totally different objects. Their ability to fully 
describe an image by encoding its contents in a compact way makes them suitable for many 
disciplines of the engineering life, such as image analysis (Sim et al., 2004), image 
watermarking (Papakostas et al., 2010a) and pattern recognition (Papakostas et al., 2007, 
2009a, 2010b).  

Among the several moment families introduced in the past, the orthogonal moments are 
the most popular moments widely used in many applications, owing to their 
orthogonality property that comes from the nature of the polynomials used as kernel 
functions, which they constitute an orthogonal base. As a result, the orthogonal moments 
have minimum information redundancy meaning that different moment orders describe 
different parts of the image.  

In order to use the moments to classify visual objects, they have to ensure high recognition 
rates for all possible object’s orientations. This requirement constitutes a significant 
operational feature of each modern pattern recognition system and it can be satisfied during 
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specific task. Such machine vision systems are used for detecting and/or recognizing a face 
in an unconstrained environment for security purposes, for analysing the emotional states of 
a human by processing his facial expressions or for providing a vision based interface in the 
context of the human computer interaction (HCI) etc..  

In almost all the modern machine vision systems there is a common processing procedure 
called feature extraction, dealing with the appropriate representation of the visual information. 
This task has two main objectives simultaneously, the compact description of the useful 
information by a set of numbers (features), by keeping the dimension as low as possible. 

Image moments constitute an important feature extraction method (FEM) which generates 
high discriminative features, able to capture the particular characteristics of the described 
pattern, which distinguish it among similar or totally different objects. Their ability to fully 
describe an image by encoding its contents in a compact way makes them suitable for many 
disciplines of the engineering life, such as image analysis (Sim et al., 2004), image 
watermarking (Papakostas et al., 2010a) and pattern recognition (Papakostas et al., 2007, 
2009a, 2010b).  

Among the several moment families introduced in the past, the orthogonal moments are 
the most popular moments widely used in many applications, owing to their 
orthogonality property that comes from the nature of the polynomials used as kernel 
functions, which they constitute an orthogonal base. As a result, the orthogonal moments 
have minimum information redundancy meaning that different moment orders describe 
different parts of the image.  

In order to use the moments to classify visual objects, they have to ensure high recognition 
rates for all possible object’s orientations. This requirement constitutes a significant 
operational feature of each modern pattern recognition system and it can be satisfied during 
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the feature extraction stage, by making the moments invariant under the basic geometric 
transformations of rotation, scaling and translation. 

The most well known orthogonal moment families are: Zernike, Pseudo-Zernike, Legendre, 
Fourier-Mellin, Tchebichef, Krawtchouk, with the last two ones belonging to the discrete 
type moments since they are defined directly to the image coordinate space, while the first 
ones are defined in the continuous space. 

Another orthogonal moment family that deserves special attention is the wavelet moments 
that use an orthogonal wavelet function as kernel. These moments combine the advantages 
of the wavelet and moment analyses in order to construct moment descriptors with 
improved pattern representation capabilities (Feng et al., 2009).  

This chapter discusses the main theoretical aspects of the wavelet moments and their 
corresponding invariants, while their performance in describing and distinguishing several 
patterns in different machine vision applications is studied experimentally. 

2. Orthogonal image moments 
A general formulation of the (n+m)th order orthogonal image moment of a NxN image with 
intensity function f(x,y) is given as follows: 

 ( ) ( )
1 1

, ,
N N

nm nm i j i j
i j

M NF Kernel x y f x y
= =

= ×∑∑  (1) 

where Kernelnm(.) corresponds to the moment’s kernel consisting of specific polynomials of 
order n and repetition m, which constitute the orthogonal basis and NF is a normalization 
factor. The type of Kernel’s polynomial gives the name to the moment family by resulting to 
a wide range of moment types. Based on the above equation (1) the image moments are the 
projection of the intensity function f(x,y) of the image on the coordinate system of the 
kernel's polynomials.  

The first introduction of orthogonal moments in image analysis, due to Teague (Teague, 
1980), made use of Legendre and Zernike moments in image processing. Other families of 
orthogonal moments have been proposed over the years, such as Pseudo-Zernike, Fourier-
Mellin etc. moments, which better describe the image in process and ensure robustness 
under arbitrarily intense noise levels. 

However, these moments present some approximation errors due to the fact that the kernel 
polynomials are defined in a continuous space and an approximated version of them is used 
in order to compute the moments of an image. This fact is the source of an approximation 
error (Liao & Pawlak, 1998) which affects the overall properties of the derived moments and 
mainly their description abilities. Moreover, some of the above moments are defined inside 
the unit disc, where their polynomials satisfy the orthogonality condition. Therefore, a prior 
coordinates’ transformation is required so that the image coordinates lie inside the unit disc. 
This transformation is another source of approximation error (Liao & Pawlak, 1998) that 
further degrades the moments’ properties. 

The following Table 1, summarizes the main characteristics of the most used moment 
families.   

 
Feature Extraction Based on Wavelet Moments and Moment Invariants in Machine Vision Systems 

 

33 

    Ta
bl

e 
1.

 O
rt

ho
go

na
l m

om
en

ts
’ c

ha
ra

ct
er

is
tic

s.
 



 
Human-Centric Machine Vision 

 

32
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patterns in different machine vision applications is studied experimentally. 

2. Orthogonal image moments 
A general formulation of the (n+m)th order orthogonal image moment of a NxN image with 
intensity function f(x,y) is given as follows: 

 ( ) ( )
1 1

, ,
N N

nm nm i j i j
i j

M NF Kernel x y f x y
= =

= ×∑∑  (1) 
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in order to compute the moments of an image. This fact is the source of an approximation 
error (Liao & Pawlak, 1998) which affects the overall properties of the derived moments and 
mainly their description abilities. Moreover, some of the above moments are defined inside 
the unit disc, where their polynomials satisfy the orthogonality condition. Therefore, a prior 
coordinates’ transformation is required so that the image coordinates lie inside the unit disc. 
This transformation is another source of approximation error (Liao & Pawlak, 1998) that 
further degrades the moments’ properties. 

The following Table 1, summarizes the main characteristics of the most used moment 
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Apart from some remarkable attempts to compute the theoretical image moment values 
(Wee & Paramesran, 2007), new moment families with discrete polynomial kernels 
(Tchebichef and Krawtchouk moments) have been proposed, which permit the direct 
computation of the image moments in the discrete domain. 

It is worth pointing out that the main subject of this chapter is the introduction of a 
particular moment family, the wavelet moments and the investigation of their classification 
capabilities as compared to the traditional moment types. 

However, before introducing the wavelet moments, it is useful to discuss two important 
properties of the moments that determine their utility in recognizing patterns.  

2.1 Information description 

As it has already been mentioned in the introduction, the moments have the ability to carry 
information of an image with minimum redundancy, while they are capable to enclose 
distinctive information that uniquely describes the image’s content. Due to these properties, 
once a finite number of moments up to a specific order nmax is computed, the original image 
can be reconstructed by applying a simple formula, inverse to (1), of the following form: 

 ( ) ( )
n n

nm nm
n m

f x y Kernel x y M
max

0 0

ˆ , ,
= =

= ∑ ∑  (2) 

where Kernelnm(.) is the same kernel of (1) used to compute moment Mnm.  

Theoretically speaking, if one computes all image moments and uses them in (2), the 
reconstructed image will be identical to the original one with minimum reconstruction error. 

2.2 Invariant description 

Apart from the ability of the moments to describe the content of an image in a statistical 
fashion and to reconstruct it perfectly (orthogonal moments) according to (2), they can also 
be used to distinguish a set of patterns belonging to different categories (classes). This 
property makes them suitable for many artificial intelligence applications such as 
biometrics, visual inspection or surveillance, quality control, robotic vision and guidance, 
biomedical diagnosis, mechanical fault diagnosis etc. However, in order to use the moments 
to classify visual objects, they have to ensure high recognition rates for all possible object’s 
orientations. This requirement constitutes a significant operational feature of each modern 
pattern recognition system and it can be satisfied during the feature extraction stage, where 
discriminative information of the objects is retrieved. 

Mainly, two methodologies used to ensure invariance under common geometric 
transformations such as rotation, scaling and translation, either by image coordinates 
normalization and description through the geometric moment invariants (Mukundan & 
Ramakrishnan, 1998; Zhu et al., 2007) or by developing new computation formulas which 
incorporate these useful properties inherently (Zhu et al., 2007).  

However, the former strategy is usually applied for deriving the moment invariants of each 
moment family, since it can be applied in each moment family in a similar way. 
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According to this method and by applying coordinates normalization (Rothe et al., 1996) the 
Geometric Moment Invariants (GMIs) of the following form, are constructed:  

 
( ) ( )
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where x y( , )  are the coordinates of the image’s centroid, GMnm are the geometric moments 
and μnm are the central moments defined as: 

 ( )
N N

n m
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x y
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1 1
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− −
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x y
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1 1
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− −

= =
= − −∑ ∑  (6) 

which are translation invariant. The value of angle θ is limited to o o45 45θ− ≤ ≤  and 
additional modifications (Mukundan & Ramakrishnan, 1998) have to be performed in order 
to extent θ into the range o o0 360θ≤ ≤ .  

By expressing each moment family in terms of geometric moment invariants the 
corresponding invariants can be derived. For example, Zernike moments are expressed 
(Wee & Paramesran, 2007) in terms of GMIs as follows: 

  
n s m

i
nm nmk k i j i j

k m i j

s mnZMI B w GMI
i j 2 ,2

0 0

1
π − − +

= = =

⎛ ⎞⎛ ⎞+= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑∑  (7) 

where n is a non-negative integer and m is a non zero integer subject to the constraints n-
|m| even and |m|≤ n and  
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Apart from some remarkable attempts to compute the theoretical image moment values 
(Wee & Paramesran, 2007), new moment families with discrete polynomial kernels 
(Tchebichef and Krawtchouk moments) have been proposed, which permit the direct 
computation of the image moments in the discrete domain. 

It is worth pointing out that the main subject of this chapter is the introduction of a 
particular moment family, the wavelet moments and the investigation of their classification 
capabilities as compared to the traditional moment types. 

However, before introducing the wavelet moments, it is useful to discuss two important 
properties of the moments that determine their utility in recognizing patterns.  

2.1 Information description 

As it has already been mentioned in the introduction, the moments have the ability to carry 
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distinctive information that uniquely describes the image’s content. Due to these properties, 
once a finite number of moments up to a specific order nmax is computed, the original image 
can be reconstructed by applying a simple formula, inverse to (1), of the following form: 
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where Kernelnm(.) is the same kernel of (1) used to compute moment Mnm.  

Theoretically speaking, if one computes all image moments and uses them in (2), the 
reconstructed image will be identical to the original one with minimum reconstruction error. 

2.2 Invariant description 

Apart from the ability of the moments to describe the content of an image in a statistical 
fashion and to reconstruct it perfectly (orthogonal moments) according to (2), they can also 
be used to distinguish a set of patterns belonging to different categories (classes). This 
property makes them suitable for many artificial intelligence applications such as 
biometrics, visual inspection or surveillance, quality control, robotic vision and guidance, 
biomedical diagnosis, mechanical fault diagnosis etc. However, in order to use the moments 
to classify visual objects, they have to ensure high recognition rates for all possible object’s 
orientations. This requirement constitutes a significant operational feature of each modern 
pattern recognition system and it can be satisfied during the feature extraction stage, where 
discriminative information of the objects is retrieved. 

Mainly, two methodologies used to ensure invariance under common geometric 
transformations such as rotation, scaling and translation, either by image coordinates 
normalization and description through the geometric moment invariants (Mukundan & 
Ramakrishnan, 1998; Zhu et al., 2007) or by developing new computation formulas which 
incorporate these useful properties inherently (Zhu et al., 2007).  

However, the former strategy is usually applied for deriving the moment invariants of each 
moment family, since it can be applied in each moment family in a similar way. 
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3. Wavelet-based moment descriptors 
In the same way as the continuous radial orthogonal moments such as Zernike, Pseudo-
Zernike and Fourier-Mellin ones are defined in a continuous form (9), one can define the 
wavelet moments by replacing the function gn(r) with a wavelet basis functions.  

 ( ) ( )jm
nm nM g r e f r rdrd,θ θ θ−= ∫∫  (9) 

Based on Table 1 it can be deduced that by choosing the appropriate function gn(r), the 
Zernike, Pseudo-Zernike and Fourier moments are derived. If one chooses wavelet basis 
functions of the following form 

 ( )a b
r br

aa,
1ψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (10) 

where a b,+∈ℜ ∈ℜ  are the dilation and translation parameters and ( )ψ ⋅ the mother wavelet 
that is used to generate the whole basis. 

Two widely used mother wavelet functions are the cubic B-spline and the Mexican hat 
functions defined as follows: 
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with σ=1. 

The main characteristic of the above wavelet functions is that by adjusting the a,b 
parameters a basis functions consisting of dilated (scaled) and translated versions of the 
mother wavelets can be derived. 

The graphical presentation of the above two mother wavelet functions for the above set of 
their parameters, is illustrated in the following Fig.1 

Since the a,b parameters are usually discrete (this is mandatory for the case of the resulted 
moments), a discretization procedure needs to be applied. Such a common method (Shen & 
Ip, 1999) that also takes into consideration the restriction of r 1≤ , applies the following 
relations. 
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With the above the wavelet basis is constructed by a modified formula of (10) having the form: 

 ( ) ( )m m
mn r r n/22 2 0.5ψ ψ= −  (15) 

It has to be noted that the selection of b0 to 0.5 causes oversampling, something which adds 
significant information redundancy when the wavelet moments are used to reconstruct the 
initial image, but it doesn’t seriously affect their recognition capabilities. Moreover, in order 
to reduce this affection a feature selection procedure can be applied to keep only the useful 
features, by discarding the redundant ones. 

 
(a) 

 
(b) 

Fig. 1. Plots of (a) cubic B-spline and (b) Mexican hat mother wavelet functions. 
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Based on the previous analysis and by following the nomenclature of Table 1, the wavelet 
moments of a NxN image f(x,y) are defined in the unit disc ( r 1≤ ) as follows: 

 ( ) ( )
N N

jq
mnq mn

x y
W r e f r

1 1
,θψ θ−

= =
= ∑∑  (16) 

with r x y y x2 2 , arctan( / )θ= + = . 

The corresponding wavelet moment invariants can be derived by applying the 
methodologies presented in section 2.2. An important property of the radial moments 
defined by (9) is that their amplitudes are rotation invariant. The translation invariants are 
achieved by moving the origin to the mass center (x0,y0) of the image, while scaling 
invariance is obtained by resizing the image to a fixed size having a predefined area (by a 
factor a M area00 /= ) by using the zeroth geometric moment order (M00). 

The inherent properties of the wavelet moments coming from the wavelet analysis (Strang & 
Nguyen, 1997), according to which a signal is breaking up into shifted and scaled versions 
of the base wavelet (mother wavelet), make them appropriate in describing the coarse and 
fine information of an image. This description has the advantage to study a signal on a time-
scale domain by providing time and frequency (there is a relation between scale and 
frequency), useful information of the signal simultaneously. 

4. Experimental study 
In order to investigate the discrimination power of the wavelet moments, four machine 
vision experiments have been arranged by using some well-known benchmark datasets. The 
following Table 2, summarizes the main characteristics of the datasets being used, from 
different application fields (object, face, facial expression and hand posture recognition). 
Moreover, Fig. 2, illustrates six pattern samples from each dataset. 
 

Dataset Type Num. 
Classes

Instances 
/ Class 

Total 
Instances ID Name 

D1 COIL (Nene et al., 1996) computer vision 10 12 120 

D2 ORL (Samaria & Harter, 
1994) face  recognition 40 10 400 

D3 JAFFE (Lyons et al., 
1998) 

facial expression 
recognition 7 30,29,32,31,30,31,30 213 

D4 TRIESCH I (Triesch & 
von der Malsburg, 1996)

hand posture 
recognition 10 24 (only the dark 

background) 240 

Table 2. Characteristics of the benchmark datasets. 

Since the wavelet moment invariants are constructed by applying the same methods as in 
the case of the other moment families and therefore their performance in recognizing 
geometrical degraded images is highly depended on the representation capabilities of the 
wavelet moments, it is decided to investigate only the discrimination power of the wavelet 
moments under invariant conditions.    
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Fig. 2. Six pattern samples of the D1 (1st row), D2 (2nd row), D3 (3rd row) and D4 (4th row) 
datasets. 

The performance of the wavelet moments (WMs) is compared to this of the well-known 
Zernike (ZMs), Pseudo-Zernike (PZMs), Fourier-Mellin (FMs), Legendre (LMs), Tchebichef 
(TMs) and Krawtchouk (KMs) ones. In this way, for each dataset, a set of moments up to a 
specific order per moment family is computed, by resulting to feature vectors of the same 
length. It is decided to construct feature vectors of 16 moments length which correspond to 
different order per moment family (ZMs(6th), PZMs(5th), FMs(3rd), LMs(3rd), TMs(3rd), 
KMs(3rd), WMs(1st) ). Moreover, the wavelet moments are studied under two different 
configurations in relation to the used mother wavelet (WMs-1 uses the cubic B-spline and 
WMs-2 the Mexican hat mother wavelets respectively).  

Furthermore, the Minimum Distance classifier (Kuncheva, 2004) is used to compute the 
classification performance of each moment feature vector. This classifier operates by 
measuring the distance of each sample from the patterns that represent the classes’ centre. 
The sample is decided to belong to the specific class having less distance from its pattern. 
For the purpose of the experiments the Euclidean distance is used to measure the distance of 
the samples from the centre classes, having the following form: 
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The above formula measures the distance between two vectors the pattern p=[p1,p2,p3,…pn] 
and the sample s=[s1,s2,s3,…,sn], which are defined in the Rn space. The following Table 3 
and Table 4, summarize the classification rates (18) of the studied moment families for 
different set of training data used to determine the classes’ centres (percent of the entire data 
– 25%, 50%, 75%, 100%).  

 number of correctclassifiedsamplesCRate
totalnumber of samples

=  (18) 



 
Human-Centric Machine Vision 

 

38

Based on the previous analysis and by following the nomenclature of Table 1, the wavelet 
moments of a NxN image f(x,y) are defined in the unit disc ( r 1≤ ) as follows: 

 ( ) ( )
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1 1
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with r x y y x2 2 , arctan( / )θ= + = . 

The corresponding wavelet moment invariants can be derived by applying the 
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Moment 
Family Datasets 

 D1 D2 D3 D4 
 25% 50% 25% 50% 25% 50% 25% 50% 

ZMs 0.6370 0.7235 0.6576 0.6964 0.2004 0.2055 0.0857 0.1014 
PZMs 0.5912 0.6305 0.6247 0.6657 0.2130 0.2257 0.0906 0.1001 
FMs 0.5720 0.6000 0.6068 0.6354 0.1837 0.1965 0.0746 0.0872 
LMs 0.4713 0.5158 0.7770 0.8124 0.2392 0.2547 0.0686 0.0678 
TMs 0.4688 0.5055 0.7772 0.8073 0.2385 0.2557 0.0689 0.0678 
KMs 0.5079 0.5915 0.3999 0.4193 0.2090 0.2348 0.0759 0.0823 
WMs – 1 0.2829 0.2862 0.2252 0.2228 0.1521 0.1616 0.0715 0.0758 
WMs – 2 0.2723 0.2807 0.2206 0.2219 0.1532 0.1643 0.0682 0.0790 

Table 3. Classification performance of the moment descriptors.                     
 

Moment 
Family Datasets 

 D1 D2 D3 D4 
 75% 100% 75% 100% 75% 100% 75% 100% 
ZMs 0.7543 0.8083 0.7289 0.8175 0.2060 0.2723 0.1150 0.2625 
PZMs 0.6683 0.7417 0.6857 0.7675 0.2385 0.3333 0.1154 0.2958 
FMs 0.6207 0.7000 0.6396 0.7525 0.2098 0.2723 0.0983 0.2792 
LMs 0.5457 0.7833 0.8319 0.8975 0.2562 0.3192 0.0681 0.1625 
TMs 0.5287 0.7833 0.8241 0.8900 0.2719 0.3192 0.0727 0.1583 
KMs 0.5940 0.7250 0.4206 0.5550 0.2383 0.3146 0.0854 0.2750 
WMs – 1 0.2887 0.3000 0.2146 0.2425 0.1717 0.1784 0.0844 0.1542 
WMs – 2 0.2960 0.3083 0.2136 0.2425 0.1702 0.1784 0.0846 0.1500 

Table 4. Classification performance of the moment descriptors. 

From the above results it is deduced that the percent of the dataset used to determine the 
classes’ centres is crucial to the recognition performance of all the moment families. The 
performance of the wavelet moments is very low when compared to the other families. This 
behaviour is justified by the chosen order (1st) that produces less discriminant features. It 
seems that the existence of the third parameter (n=0,1,…,2m+1) does not add significant 
discriminative information to the feature vector, compared to that enclosed by the m and q 
parameters. As far as the performance of the other moment families is concerned, the 
experiments show that each moment family behaves differently in each dataset (highest 
rates: D1(ZMs), D2(LMs), D3(PZMs), D4(PZMs)) with the Pseudo-Zernike moments being 
the most efficient.  

It is worth mentioning that the above rates are not optimized and they can be increased by 
using a more sophisticated classification scheme (e.g. neural classifier) or by constructing 
larger or appropriate selected feature vectors. 

Besides the classification performance of the compared moment families discussed 
previously, it is also interesting to analyse their computational load. In almost all the non 
wavelet moment families (PZMs, FMs, LMs, TMs and KMs) the number of independent 
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moments that are computed up to the pth order is equal to (p+1)2, while in the case of ZMs is 
(p+1)*(p+2)/2 due to some constraints. On the other hand the number of wavelet moments 
that is computed for the pth order is (p+1)2 * (2p+1+1) due to the third parameter (n) of (16) 
defined in (14). From this analysis it is obvious that if a common computation algorithm is 
applied to all the moment families, the time needed to compute the wavelet moments up to 
a specific order (p) is considerable higher.  

5. Discussion – Open issues 
The previous analysis constitutes the first study of the wavelet moments’ classification 
performance in well-known machine vision benchmarks. The experimental results highlight 
an important weakness of the wavelet moments; the computation of many features for a 
given order (due to the third parameter), which do not carry enough discriminative 
information of the patterns. On the other hand, this additional parameter adds an extra 
degree of freedom to the overall computation which needs to be manipulated appropriately. 
The usage of a feature selection mechanism can significantly improve the classification 
capabilities of the wavelet moments by keeping only the useful features from a large pool. In 
this way, the multiresolution nature of the wavelet analysis can be exploited in order to 
capture the discriminative information in different discrimination levels.  

Moreover, it has to be noted that a fast and accurate algorithm for the computation of the 
wavelet moments need to be developed, since their computation overhead is very high, 
compared to the other moment families, due to the presence of the third configuration 
parameter.   
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1. Introduction 
A texture is a pattern represented on a surface or a structure of an object. Classifying a 
texture involves pattern recognition. Integration of texture classification is a one step ahead 
for machine vision application. For the past few decades until now, many researchers from 
various fields have been trying to develop algorithms to do texture discrimination. Alfréd 
Haar created the first discrete wavelet transform (DWT) in Haar (1911) which led to the 
development of the fast Fourier transform (FFT) and the other forms of DWT to detect 
periodic signals. Haralick had developed grey level co-occurrence probabilities (GLCP) with 
statistical features to describe textures (Haralick et al., 1973). The hidden Markov model 
(HMM) is another statistical method used for pattern recognition (Rabiner, 1989). 

The classification process starts with image acquisition to retrieve the partial information 
carried by the test image. The general framework of texture classification is divided into two 
important stages, which are feature extraction and feature selection. Feature extraction is a 
process of transforming a texture into a feature domain based on the intensity distribution 
on a digital image. On the other hand, feature selection is a process of integrating a set of 
conditional statements and routines, so that the computing system can logically decide 
which pixels belong to which texture. 

The texture classification methods are the tools which have been used to assist in medical 
imaging. For example, to classify the breast cancer tumour in Karahaliou et al. (2007) based on 
mammography imagery, to detect abnormalities in patients using Magnetic Resonance 
Imaging (MRI) imagery (Zhang et al., 2008), and precisely segmenting human brain images on 
Computed Tomography (CT) imagery for visualization during surgery (Tong et al., 2008). 

In food science, texture classification techniques aid on improving the quality of food and 
decrease the rate of food poisoning cases.  For instance, a non-supervised method of texture 
classification is proposed to estimate the content of Intramuscular Fat (IMF) in beef on Du et 
al. (2008) and thus improving the meat quality. 

In remote sensing, texture classification is used to analyze satellite Synthetic Aperture Radar 
(SAR) imagery for multiple purposes. The analyzed satellite imagery might be used to 
monitor flood situations (Seiler et al., 2008), large scale construction planning, archeological 
research, weather forecasting, geological study etc.  Texture segmentation is also applied in 
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various fields have been trying to develop algorithms to do texture discrimination. Alfréd 
Haar created the first discrete wavelet transform (DWT) in Haar (1911) which led to the 
development of the fast Fourier transform (FFT) and the other forms of DWT to detect 
periodic signals. Haralick had developed grey level co-occurrence probabilities (GLCP) with 
statistical features to describe textures (Haralick et al., 1973). The hidden Markov model 
(HMM) is another statistical method used for pattern recognition (Rabiner, 1989). 

The classification process starts with image acquisition to retrieve the partial information 
carried by the test image. The general framework of texture classification is divided into two 
important stages, which are feature extraction and feature selection. Feature extraction is a 
process of transforming a texture into a feature domain based on the intensity distribution 
on a digital image. On the other hand, feature selection is a process of integrating a set of 
conditional statements and routines, so that the computing system can logically decide 
which pixels belong to which texture. 

The texture classification methods are the tools which have been used to assist in medical 
imaging. For example, to classify the breast cancer tumour in Karahaliou et al. (2007) based on 
mammography imagery, to detect abnormalities in patients using Magnetic Resonance 
Imaging (MRI) imagery (Zhang et al., 2008), and precisely segmenting human brain images on 
Computed Tomography (CT) imagery for visualization during surgery (Tong et al., 2008). 

In food science, texture classification techniques aid on improving the quality of food and 
decrease the rate of food poisoning cases.  For instance, a non-supervised method of texture 
classification is proposed to estimate the content of Intramuscular Fat (IMF) in beef on Du et 
al. (2008) and thus improving the meat quality. 

In remote sensing, texture classification is used to analyze satellite Synthetic Aperture Radar 
(SAR) imagery for multiple purposes. The analyzed satellite imagery might be used to 
monitor flood situations (Seiler et al., 2008), large scale construction planning, archeological 
research, weather forecasting, geological study etc.  Texture segmentation is also applied in 
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the study of global warming by detecting and estimating the size of the icebergs at the 
North Pole from time to time (Clausi, 2002a).  

Another breakthrough in the advancement of security is in biometric authentication. One of 
the biometric measures is in using the human eye as an identity of a person. The human iris 
contains texture patterns which are unique in nature and thus texture classification 
techniques can be applied on this iris imagery (Bachoo & Tapamo, 2005). 

The first section has briefly introduced the texture classification and its applications. We 
highlighted the importance of texture classification in science. A literature review on the 
current existing methods is discussed in Section 2 and 3. The main challenge of texture 
classification is pointed out. Section 4 explains the theories behind our research 
methodologies. The non-parametric statistics are developed and used to generate statistical 
features from a given textured image. In the feature extraction section, we will provide a 
general formulation for our proposed method called cluster coding and explain briefly the 
parameters being used for texture classification purposes. Furthermore, the solution to solve 
the misclassification problem is also provided. A practical analysis on the digital 
mammogram using our proposed method is shown in Section 5. We will conclude with a 
summary of our contributions in Section 6. 

There are four goals in this chapter which are as follows: - 

a. To show how statistical texture descriptions can be used for image segmentation. 
b. To develop algorithms for feature extraction based on texture images. 
c. To develop algorithms for texture segmentation based on texture features analyzed. 
d. To illustrate the above objectives using an application on a mammogram image. 

2. Feature extraction 
There are several mathematical models which are used to extract texture features from an 
image. This section briefly discusses the five main feature extraction methods, namely 
autocorrelation function (ACF), Gabor filter, DWT, HMM, and GLCP. Besides, some 
combination of methods using different models are also developed to increase the 
robustness of texture segmentation system. We will briefly discuss two hybrid methods; 
these are Gabor wavelet and wavelet-domain HMM. 

Gabor filter is one of the texture descriptors based on the Fourier transform (FT). A discrete 
FT is first taken from the test image to generate a two dimensional (2D) sinusoidal signal. 
For texture recognition, the Gabor filter bank contains a list of sub-bands of different signals 
generated by different textures. After the sub-bands are determined, the 2D signal of test 
image will multiply one of the chosen sub-bands and yield only the frequencies that match 
the sub-band. The product is then transformed back by taking the inverse FT and this leaves 
only the location of the texture feature which matches the signal. The process continues with 
each possible sub-band and produces the locations where the same signals occur (Petrou & 
Sevilla, 2006).  

Gabor filter is useful in adapting sinusoidal signals whereby it can be decomposed into a 
weighted sum of sinusoidal signals. Thus Gabor filter is suitable to decompose textural 
information. Experiments done by Clausi & Deng (2005) stated that the Gabor filter can well 
recognize low and medium frequencies, but it produces inconsistent measurements for high 
frequencies due to the noise in the signal. The feature domain generated by Gabor filters are 
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not distinctive enough for high frequencies and thus could affect the segmentation result 
(Hammouda & Jernigan, 2000). 

Texture pattern can also be modeled as a transitional system using HMM. A Markov model 
assumes a texture pattern have a finite number of states and times. Each probability of a 
state is determined by the previous probability of the state. Three issues can arise from 
HMM observations; these are evaluation, decoding, and learning. HMM evaluation is to 
compare the probabilities of different models which best describe the texture feature. HMM 
decoding is to decompose and provide an estimated basis of texture patterns based on the 
HMM observations. The HMM learning searches for which model parameters best describe 
the texture pattern (Sonka et al., 2007). 

The HMM can generate a consistent measurement for texture patterns based on the best 
probabilities. However, one or more observations which produce undesired probabilities 
could generate disorderly sequences due to the noisy pattern in the test image (Sonka et al., 
2007). 

ACF is another method to describe texture patterns. The function helps to search for 
repeated patterns in a periodic signal. The function also identifies the missing basis of 
texture patterns hidden under the noisy patterns. In using the ACF, the mean of each image 
is adjusted before applying the general formula. Thus we are actually computing the 
normalized auto-covariance function. One can characterize a texture pattern by inferring the 
periodicity of the pattern (Petrou & Sevilla, 2006). 

The ACF feature is well demonstrated and distinctive between textures on a three 
dimensional (3D) graph. In feature selection, inferring the periodicity of a texture feature is 
done by observing several threshold points of the auto-covariance function and then 
counting the number of peaks for each threshold in a fixed variation. This may result in a 
random fluctuation and texture segmentation may fail because of two issues; there is not 
enough information by taking only one dimensional (1D) threshold to compare and an 
appropriate set of standard deviation of the distances between peaks are needed to know 
when the periodicity end. For example, the lagged product estimator and time series 
estimator are proposed to select ACF feature in Broerson (2005). But to appropriately 
characterize the texture pattern by its periodicity is still an active area of research. 

Instead of using the Gabor filter for feature extraction, wavelet is well known today as a 
flexible tool to analyze texture. Wavelet is a function whereby the basic function, namely the 
mother wavelet is being scaled and translated in order to span the spatial frequency domain. 
The DWT is done by the product of a corresponding signal generated by a pattern and the 
complex conjugate of the wavelet, and then integrating over all the distance points 
conveyed by the signal. In texture analysis, a tree data structure namely a packet wavelet 
expansion is used to split the signal into smaller packets and expand a chosen band at each 
level of resolution (Petrou & Sevilla, 2006). 

The DWT can become rotation invariant in texture analysis by taking the logarithm of the 
frequency sub-band. However this will damage the frequency components of the 
corresponding signal generated by a texture pattern and thus may obtain inaccurate result 
(Khouzani & Zadeh, 2005). 

GLCP method is a non-parametric solution whereby the textures are described in a discrete 
domain (Petrou & Sevilla, 2006). GLCP statistics are used to preserve the spatial 
characteristics of a texture. The selection of certain texture is possible as it is based on the 
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the study of global warming by detecting and estimating the size of the icebergs at the 
North Pole from time to time (Clausi, 2002a).  

Another breakthrough in the advancement of security is in biometric authentication. One of 
the biometric measures is in using the human eye as an identity of a person. The human iris 
contains texture patterns which are unique in nature and thus texture classification 
techniques can be applied on this iris imagery (Bachoo & Tapamo, 2005). 

The first section has briefly introduced the texture classification and its applications. We 
highlighted the importance of texture classification in science. A literature review on the 
current existing methods is discussed in Section 2 and 3. The main challenge of texture 
classification is pointed out. Section 4 explains the theories behind our research 
methodologies. The non-parametric statistics are developed and used to generate statistical 
features from a given textured image. In the feature extraction section, we will provide a 
general formulation for our proposed method called cluster coding and explain briefly the 
parameters being used for texture classification purposes. Furthermore, the solution to solve 
the misclassification problem is also provided. A practical analysis on the digital 
mammogram using our proposed method is shown in Section 5. We will conclude with a 
summary of our contributions in Section 6. 

There are four goals in this chapter which are as follows: - 

a. To show how statistical texture descriptions can be used for image segmentation. 
b. To develop algorithms for feature extraction based on texture images. 
c. To develop algorithms for texture segmentation based on texture features analyzed. 
d. To illustrate the above objectives using an application on a mammogram image. 

2. Feature extraction 
There are several mathematical models which are used to extract texture features from an 
image. This section briefly discusses the five main feature extraction methods, namely 
autocorrelation function (ACF), Gabor filter, DWT, HMM, and GLCP. Besides, some 
combination of methods using different models are also developed to increase the 
robustness of texture segmentation system. We will briefly discuss two hybrid methods; 
these are Gabor wavelet and wavelet-domain HMM. 

Gabor filter is one of the texture descriptors based on the Fourier transform (FT). A discrete 
FT is first taken from the test image to generate a two dimensional (2D) sinusoidal signal. 
For texture recognition, the Gabor filter bank contains a list of sub-bands of different signals 
generated by different textures. After the sub-bands are determined, the 2D signal of test 
image will multiply one of the chosen sub-bands and yield only the frequencies that match 
the sub-band. The product is then transformed back by taking the inverse FT and this leaves 
only the location of the texture feature which matches the signal. The process continues with 
each possible sub-band and produces the locations where the same signals occur (Petrou & 
Sevilla, 2006).  

Gabor filter is useful in adapting sinusoidal signals whereby it can be decomposed into a 
weighted sum of sinusoidal signals. Thus Gabor filter is suitable to decompose textural 
information. Experiments done by Clausi & Deng (2005) stated that the Gabor filter can well 
recognize low and medium frequencies, but it produces inconsistent measurements for high 
frequencies due to the noise in the signal. The feature domain generated by Gabor filters are 
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not distinctive enough for high frequencies and thus could affect the segmentation result 
(Hammouda & Jernigan, 2000). 

Texture pattern can also be modeled as a transitional system using HMM. A Markov model 
assumes a texture pattern have a finite number of states and times. Each probability of a 
state is determined by the previous probability of the state. Three issues can arise from 
HMM observations; these are evaluation, decoding, and learning. HMM evaluation is to 
compare the probabilities of different models which best describe the texture feature. HMM 
decoding is to decompose and provide an estimated basis of texture patterns based on the 
HMM observations. The HMM learning searches for which model parameters best describe 
the texture pattern (Sonka et al., 2007). 

The HMM can generate a consistent measurement for texture patterns based on the best 
probabilities. However, one or more observations which produce undesired probabilities 
could generate disorderly sequences due to the noisy pattern in the test image (Sonka et al., 
2007). 

ACF is another method to describe texture patterns. The function helps to search for 
repeated patterns in a periodic signal. The function also identifies the missing basis of 
texture patterns hidden under the noisy patterns. In using the ACF, the mean of each image 
is adjusted before applying the general formula. Thus we are actually computing the 
normalized auto-covariance function. One can characterize a texture pattern by inferring the 
periodicity of the pattern (Petrou & Sevilla, 2006). 

The ACF feature is well demonstrated and distinctive between textures on a three 
dimensional (3D) graph. In feature selection, inferring the periodicity of a texture feature is 
done by observing several threshold points of the auto-covariance function and then 
counting the number of peaks for each threshold in a fixed variation. This may result in a 
random fluctuation and texture segmentation may fail because of two issues; there is not 
enough information by taking only one dimensional (1D) threshold to compare and an 
appropriate set of standard deviation of the distances between peaks are needed to know 
when the periodicity end. For example, the lagged product estimator and time series 
estimator are proposed to select ACF feature in Broerson (2005). But to appropriately 
characterize the texture pattern by its periodicity is still an active area of research. 

Instead of using the Gabor filter for feature extraction, wavelet is well known today as a 
flexible tool to analyze texture. Wavelet is a function whereby the basic function, namely the 
mother wavelet is being scaled and translated in order to span the spatial frequency domain. 
The DWT is done by the product of a corresponding signal generated by a pattern and the 
complex conjugate of the wavelet, and then integrating over all the distance points 
conveyed by the signal. In texture analysis, a tree data structure namely a packet wavelet 
expansion is used to split the signal into smaller packets and expand a chosen band at each 
level of resolution (Petrou & Sevilla, 2006). 

The DWT can become rotation invariant in texture analysis by taking the logarithm of the 
frequency sub-band. However this will damage the frequency components of the 
corresponding signal generated by a texture pattern and thus may obtain inaccurate result 
(Khouzani & Zadeh, 2005). 

GLCP method is a non-parametric solution whereby the textures are described in a discrete 
domain (Petrou & Sevilla, 2006). GLCP statistics are used to preserve the spatial 
characteristics of a texture. The selection of certain texture is possible as it is based on the 
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statistical features. The best statistical features that are used for analysis are entropy, 
contrast, and correlation (Clausi, 2002a). However, further analysis in Jobanputra & Clausi 
(2006) shows that correlation is not suitable for texture segmentation. GLCP statistics can 
also be used to discriminate between two different textures. Boundaries can be created from 
the shift on statistical feature while moving from one texture to another (Jobanputra & 
Clausi, 2006). Clausi & Zhao (2002) also proposed grey level co-occurrence linked-list 
(GLCLL) structure and grey level co-occurrence hybrid histogram (GLCHH) structure in 
Clausi & Zhao (2003) to this non-parametric solution for storing purpose in order to speed 
up the computational time for GLCP feature extraction. 

Wavelet-domain HMM can be described as a finite state machine in the wavelet domain. 
The hidden Markov tree (HMT) can identify the characteristics of the joint probabilities of 
DWT by capturing the scale dependencies of wavelet co-efficient via Markov chains (Fan & 
Xia, 2003). Since this method is based on the wavelet domain, the disorder sequence of 
signal generated by the noise in the texture patterns may weaken the cross-correlation 
between DWT sub-bands (Fan & Xia, 2003). Ming et al. (2008) proposed the wavelet hidden-
class-label Markov random field to suppress the specks of noise, but there are some small 
blobs of noises still appearing in the results of the segmented imagery. 

3. Feature selection 
The texture feature selection stage is the most important part of the texture segmentation 
process because it determines which pixels belong to which texture of an image. The use of 
parameters of a chosen method is crucial to the output of the result.  

K-means algorithm has become a popular clustering method which is used for pattern 
recognition. Given the number of clusters, K, the algorithm will start at a random K number 
of centres. Then, each of the centres will group the features using the closest distances or 
Euclidean distance measures. The locations of the features with the same cluster will 
determine the new centre for each cluster. The process will then repeat until the centre of 
each texture class remains the same. 

K-means algorithm assumes that all clusters are in spherical shape, but it may return 
inappropriate result for non-spherical clusters (Clausi, 2002b). In the real life 2D feature set 
is not always in spherical shape and normally the number of classes is unknown. 

Support vector machines (SVM) algorithm is a slow but highly accurate clustering method. 
The SVM training algorithm was introduced by Boser et al. (1992). The purpose of SVM is to 
map feature vectors into a higher dimensional feature space, and then creating a separating 
hyperplane with maximum margin to group the features. Support vectors (SVs) contain 
highlighted pixels that help to create the margins or boundaries in an image. The higher 
dimensional space is defined by a kernel function. Some of the popular kernels are shown in 
Schölkopf & Smola (2002). A combined GLCP and SVM technique has been proposed for 
two class segmentation with significant result in Khoo et al. (2008). 

Expectation-maximization (EM) algorithm is a statistical estimation algorithm used for finding 
maximum likelihood and estimates of parameters in probabilistic models. The parameters 
involve means, variances, and weights (Tong et al., 2008). The EM algorithm starts by 
initializing the parameters to compute the joint probability for each cluster. The algorithm then 
iterates to re-estimate the parameters and maximize the probability for each cluster until the 
set of convergence values of probabilities are obtained (Bishop, 2006). The convergence 
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probabilities are only dependent upon the statistical parameters, so we must carefully choose 
these parameters, especially the parameters for texture patterns (Diplaros et al., 2007). 

The self-organizing map (SOM) is an unsupervised single layer artificial neural network 
(ANN). In the SOM training environment, a digital image is mapped as a grid. A set of 
neurons will be placed at random grid points where each neuron is stored as a cluster centre 
(Chen & Wang, 2005). SOM clusters regions which have similar pattern and separates the 
dissimilar patterns based on a general distance function (Martens et al., 2008). The SOM 
learning process is similar to the K-means clustering where it iterates until each of the 
cluster centre converges to the centre of the possible texture patterns. 

The advantage of SOM is that the more number of neurons are placed in the grid, the higher 
classification result will be obtained. However, if the numbers of neurons are too large, SOM 
may end up with over classification (Martens et al., 2008). On the other hand, the numbers 
of neurons required is unknown. Furthermore, the classification using SOM may fail at the 
local minimum in training (Abe, 2005). 

4. Methodology 
A texure pattern can be identified by  

a. Counting the number of repetition of its primitive, 
b. Average brightness of the primitive, and 
c. The structural distribution of its primitive. 

In a stochastic texture, it is not possible to determine (a), (b), and (c). To classify this texture, a 
measure of its density has to be computed. Therefore, the statistical modelling of GLCP is used 
to extract textural features. A general classification approach, namely the cluster coding is 
proposed. This approach preserves the textural information of a given textured image. 

4.1 Enhanced two-dimensional statistical features 

Given a textured image, the grey level intensities of the pixel set can be retrieved. A grid with 
equal sized cells is fitted onto the image. For each cell, the grey level intensities of the local 
neighbourhood pixels are taken into consideration when computing the joint probabilities 
density function. The Equation 1 shows the statistical feature for a cell, v(i,j) based on the joint 
probability density function. i and j are the positions of a cell on the image. 
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where F(s,t) represents the frequency of occurrence between grey levels, s and t. G is the 
quantized grey levels which forms a G×G co-occurrence matrix. 

Histogram equalization is applied to achieve higher separability between to different 
textures in the image. The feature set, v is distributed in a frequency histogram in order to 
calculate the cumulative distribution function, cdfk using Equation 2, 
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statistical features. The best statistical features that are used for analysis are entropy, 
contrast, and correlation (Clausi, 2002a). However, further analysis in Jobanputra & Clausi 
(2006) shows that correlation is not suitable for texture segmentation. GLCP statistics can 
also be used to discriminate between two different textures. Boundaries can be created from 
the shift on statistical feature while moving from one texture to another (Jobanputra & 
Clausi, 2006). Clausi & Zhao (2002) also proposed grey level co-occurrence linked-list 
(GLCLL) structure and grey level co-occurrence hybrid histogram (GLCHH) structure in 
Clausi & Zhao (2003) to this non-parametric solution for storing purpose in order to speed 
up the computational time for GLCP feature extraction. 

Wavelet-domain HMM can be described as a finite state machine in the wavelet domain. 
The hidden Markov tree (HMT) can identify the characteristics of the joint probabilities of 
DWT by capturing the scale dependencies of wavelet co-efficient via Markov chains (Fan & 
Xia, 2003). Since this method is based on the wavelet domain, the disorder sequence of 
signal generated by the noise in the texture patterns may weaken the cross-correlation 
between DWT sub-bands (Fan & Xia, 2003). Ming et al. (2008) proposed the wavelet hidden-
class-label Markov random field to suppress the specks of noise, but there are some small 
blobs of noises still appearing in the results of the segmented imagery. 

3. Feature selection 
The texture feature selection stage is the most important part of the texture segmentation 
process because it determines which pixels belong to which texture of an image. The use of 
parameters of a chosen method is crucial to the output of the result.  

K-means algorithm has become a popular clustering method which is used for pattern 
recognition. Given the number of clusters, K, the algorithm will start at a random K number 
of centres. Then, each of the centres will group the features using the closest distances or 
Euclidean distance measures. The locations of the features with the same cluster will 
determine the new centre for each cluster. The process will then repeat until the centre of 
each texture class remains the same. 

K-means algorithm assumes that all clusters are in spherical shape, but it may return 
inappropriate result for non-spherical clusters (Clausi, 2002b). In the real life 2D feature set 
is not always in spherical shape and normally the number of classes is unknown. 

Support vector machines (SVM) algorithm is a slow but highly accurate clustering method. 
The SVM training algorithm was introduced by Boser et al. (1992). The purpose of SVM is to 
map feature vectors into a higher dimensional feature space, and then creating a separating 
hyperplane with maximum margin to group the features. Support vectors (SVs) contain 
highlighted pixels that help to create the margins or boundaries in an image. The higher 
dimensional space is defined by a kernel function. Some of the popular kernels are shown in 
Schölkopf & Smola (2002). A combined GLCP and SVM technique has been proposed for 
two class segmentation with significant result in Khoo et al. (2008). 

Expectation-maximization (EM) algorithm is a statistical estimation algorithm used for finding 
maximum likelihood and estimates of parameters in probabilistic models. The parameters 
involve means, variances, and weights (Tong et al., 2008). The EM algorithm starts by 
initializing the parameters to compute the joint probability for each cluster. The algorithm then 
iterates to re-estimate the parameters and maximize the probability for each cluster until the 
set of convergence values of probabilities are obtained (Bishop, 2006). The convergence 
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probabilities are only dependent upon the statistical parameters, so we must carefully choose 
these parameters, especially the parameters for texture patterns (Diplaros et al., 2007). 

The self-organizing map (SOM) is an unsupervised single layer artificial neural network 
(ANN). In the SOM training environment, a digital image is mapped as a grid. A set of 
neurons will be placed at random grid points where each neuron is stored as a cluster centre 
(Chen & Wang, 2005). SOM clusters regions which have similar pattern and separates the 
dissimilar patterns based on a general distance function (Martens et al., 2008). The SOM 
learning process is similar to the K-means clustering where it iterates until each of the 
cluster centre converges to the centre of the possible texture patterns. 

The advantage of SOM is that the more number of neurons are placed in the grid, the higher 
classification result will be obtained. However, if the numbers of neurons are too large, SOM 
may end up with over classification (Martens et al., 2008). On the other hand, the numbers 
of neurons required is unknown. Furthermore, the classification using SOM may fail at the 
local minimum in training (Abe, 2005). 

4. Methodology 
A texure pattern can be identified by  

a. Counting the number of repetition of its primitive, 
b. Average brightness of the primitive, and 
c. The structural distribution of its primitive. 

In a stochastic texture, it is not possible to determine (a), (b), and (c). To classify this texture, a 
measure of its density has to be computed. Therefore, the statistical modelling of GLCP is used 
to extract textural features. A general classification approach, namely the cluster coding is 
proposed. This approach preserves the textural information of a given textured image. 

4.1 Enhanced two-dimensional statistical features 

Given a textured image, the grey level intensities of the pixel set can be retrieved. A grid with 
equal sized cells is fitted onto the image. For each cell, the grey level intensities of the local 
neighbourhood pixels are taken into consideration when computing the joint probabilities 
density function. The Equation 1 shows the statistical feature for a cell, v(i,j) based on the joint 
probability density function. i and j are the positions of a cell on the image. 
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where F(s,t) represents the frequency of occurrence between grey levels, s and t. G is the 
quantized grey levels which forms a G×G co-occurrence matrix. 

Histogram equalization is applied to achieve higher separability between to different 
textures in the image. The feature set, v is distributed in a frequency histogram in order to 
calculate the cumulative distribution function, cdfk using Equation 2, 
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The general definition for histogram equalization (Gonzalez & Woods, 2006), Hk is 
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where cdfk, a cumulative distribution function is the total number of feature sets and min is 
the minimum for the set of cumulative distribution function. The design process is shown in 
Figure 1. 

Start

If cell reached the pixel block at the bottom right 
corner of the test image

First cell start from the pixel block at the 
upper left corner of the test image

In the local window/ pixel block:
1.For each pixel, get the values of quantized grey level at the current 
and the neighbour position.
2.Assign the values of the pixel pair in step 1 as entry position to the 
GLCM, then increase the position in the matrix by one to become the 
frequency of occurrence between the pixel pair, F(s,t).
3.Repeat step 1 & 2 for other angles used in another GLCM.

Based on the frequencies stored in GLCM,
1.Compute the joint probability density 
function or GLCP.
2.Compute all the selected statistical 
features based on GLCP.

Reset all entries of the 
GLCMs and the GLCP.

Move to the next cell
(Cell sequence started from 

top to bottom, then follow by 
left to right)

NO

YES End

Initialize a GLCM(G×G) for each 
angle used.

1.Compute a grey level intensity, Ii for each pixel on a test 
image.
2.Set a grey level quantization, G value.
3.Compute the corresponding grey level quantized value for 
each Ii.
4.Set the cell size, M×N.
5.Set the distance between pixel pair (fixed to 1).
6.Set the angles to be used.

 
Fig. 1. The flowchart of the GLCP algorithm for feature extraction. 
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4.2 Cluster coding classification 

Figure 2 demonstrates the basic concept of the cluster coding algorithm. The classification 
process is run on a split-and-merge operation. The splitting part is shown in Figure 2(b) and 
2(c), while the merging part is shown in Figure 2(d). 

    
(a)                                   (b)                                   (c)                                   (d) 

Fig. 2. Cluster coding conceptual diagram. (a) Desired segments. (b) Feature A coded in 2 
clusters. (c) Feature B coded in 2 clusters. (c) Summation of codes from (b) and (c). 

Each feature set is split up into coded clusters using the mean shift estimator (MSE). Mean 
shift estimator locate the local maxima of a feature set. The MSE is defined as, 
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where K is the smoothing kernel function. δ1 and δ2 are the shifting parameters of v(i,j). The 
mode seeking of one-dimensional version of feature set is illustrated in Figure 3. In the 
figure, the dotted line is the splitting point at the position 3.5. The flowchart for cluster 
coding is shown in Figure 4. 
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The general definition for histogram equalization (Gonzalez & Woods, 2006), Hk is 
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where cdfk, a cumulative distribution function is the total number of feature sets and min is 
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Figure 1. 
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Fig. 1. The flowchart of the GLCP algorithm for feature extraction. 
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4.2 Cluster coding classification 

Figure 2 demonstrates the basic concept of the cluster coding algorithm. The classification 
process is run on a split-and-merge operation. The splitting part is shown in Figure 2(b) and 
2(c), while the merging part is shown in Figure 2(d). 

    
(a)                                   (b)                                   (c)                                   (d) 

Fig. 2. Cluster coding conceptual diagram. (a) Desired segments. (b) Feature A coded in 2 
clusters. (c) Feature B coded in 2 clusters. (c) Summation of codes from (b) and (c). 
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Fig. 4. The flowchart of the cluster coding algorithm. 

4.3 Correction for misclassification 

Each classified region on the image is identified. Two rules are set, in order to examine the 
region as to whether it is a misclassified blob or a texture class on the image. If the region is 
the texture class, then 
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Rule I: The located region has achieved the minimum population, and 
Rule II: There is no dominated population encircled by it’s neighbourhood region. 

The region reclassifies if there exist a dominated population surrounding its neighbourhood 
region. Figure 5 provides the detail flowchart for this approach. 
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1.The initial pixel start at the top left of 
the image.
2. Set the first pixel as centre pixel .

1. Search all the same and connected pixels 
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are true.

1. Count the size for each label of the edges 
from the edge vector.
2. Determine the label of dominant edge, 
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All the interior pixels are merge to the 
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2. Set the next pixel as centre pixel.
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Fig. 5. The flowchart of the modified flood fill algorithm for cluster merged. 
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5. Results and applications 
The design in Section 4 is developed using C++ programming language and implemented 
on a computer with the specification of 1.66GHz Intel Core 2 Dual processor, 3.37GB DDR2 
RAM memory, and 256MB nVidia Quadro FX 1500M GPU for image display. This section is 
divided into three subsections; the initial tests using artificially created texture images 
followed by the application background and the application results. 

5.1 Initial test  

An initial testing procedure is being carried out to verify the design mentioned in Section 4. 
Three Brodatz’s textures are used to fill the regions as can be seen in Figure 6(a). The 
oriental rattan (D64) is fitted in the Times New Roman font type of the character ‘S’. The 
non-linearity of the ‘S’ shape in Figure 6(a) is intentionally created to add the complexity of 
the classification process. 

  
(a)                                                           (b) 

  
(c)                                                       (d) 

Fig. 6. Brodatz’s textures classification test. (a) Texture mosaic contains handmade paper 
(D57), oriental-rattan (D64), and raffia (D84). (b) Classification with cluster coding. (c) Blobs 
correction with Rule I and II in Section 4.3. (d) Edge detection based on (c). 
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Although there are misclassfied blobs in Figure 6(b), the reclassification has effectively 
corrected the entire classified image as illustrated on Figure 6(c). Figure 6(d) is the final 
classification result based on the edge detection in Figure 6(c). The edges in Figure 6(d) is 
captured by detecting the boundaries between the different classes using both the vertical 
line and horizontal line scans. 

Test Data 
Accuracy (%) 

Euclidean Distance 
K-means Clustering Proposed Method 

Bi-dimensional data sets, 
Hammouche, et al. (2006) 78.7178 97.2484 

Table 1. Comparative performance with K-means Clustering. 

We also perform a quantitative comparison with the Euclidean distance based K-means 
clustering (EDKMC) using the image data sets from Hammouche, et al. (2006) with a 
summary of the accuracy shown in Table 1. The proposed method has achieve less 
classification errors with only 2.7516% as compared to EDKMC errors with 21.2822%. 

5.2 Mammographic scanner 

Mammographic scanner is a specialized device which is used to detect early stage of breast 
cancer. The device makes use of a low dose X-ray, which is a safer way to make diagnosis as 
compared to other vision machines which use higher doses of radiation, such as normal X-
ray and Positron Emission Tomography (PET). 

Besides, the introduction of digital mammography has made it possible to acquire image 
data from the electrical signals of the device for analysis. The classification algorithms can be 
integrated to analyse the image data with the computer. 

The device still emits ionizing radiation, which could cause mutations of human cells. 
Therefore an appropriate design of algorithm is crucial to reduce false positive of diagnosis 
and at the same time reduces the frequencies of scanning. 

5.3 Mammogram results and analysis 

Three possible masses can be seen in the mammogram, which are the calcification clusters, 
cysts, and fibroadenomas. Table 2 explains the details of these masses. The masses need to 
have a multiple viewing observations because the ductal carcinoma or cancer cells might be 
hidden beneath them. Figure 7 shows the examples of masses appearance in mammograms. 
Further diagnosis can be found in Breast cancer - PubMed Health (2011). 
 

Masses Description 
Calcification clusters Calcium salts crystalized in the breast tissue. 
Cysts Fluid-filled masses. 
Fibroadenomas Movable and rounded lumps. 

Table 2. The common masses appearance in mammogram. 
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                                                (a)                                                        (b) 
Fig. 7. Masses appearance in mammograms (Ribes, et al., 2008). (a) A sample of 
microcalcification clusters. (b) A sample of simple cyst. 

  
                                                           (a)                                   (b) 

  
                                                            (c)                                    (d) 
Fig. 8. Mammogram test. (a) A mammogram captured from a woman‘s left breast 
(BreastCancer.org, 2011). (b) Image negative. (c) Areas of macrocalcification clusters using 
the approach in Section 4. (d) Edge detection based on (c). 
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In Figure 7, doctors may have difficulty to spot cancer cells in these masses, particularly the 
calcification clusters in a mammogram. This is because the areas contain textural 
information which are random in nature. Statistical features can be used to measure the 
correlation between the breast tissues and the masses. 

Figure 8(a) shows a women’s left breast. Notice that the breast contains calcification clusters 
scattered around the tissues and there is no sign of cyst or fibroadenomas, as appeared in 
the mammogram. 

Negative image is first obtained to remove the unnecessary dark areas in the mammogram 
(Gonzalez & Woods, 2006), as shown in Figure 8(b). The v(i, j) of the enhanced-GLCP is then 
computed to produce 2D feature space for classification. Finally, the classification is carried 
out using the proposed cluster coding algorithm. 

The propose method highlights the areas of calcification which have the potential spread of 
cancer cells. The end result in Figure 8(d) is optimum since the areas of calcification are in 
the closed boundaries. 

6. Conclusion 
The semantic of cluster coding with MSE is easy to understand and program. The enhanced 
2D statistical features have obtained separability between different textures using histogram 
equalization. The design has been successfully applied in the mammogram for calcification 
clusters detection purpose. This approach can help the doctor or radiologist to focus on the 
critical areas of the mammogram. 
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1. Introduction  
Retinopathy of prematurity (ROP) is an ocular disease of premature infants and it can cause 
blindness on high threshold stages (Early Treatment of Retinopathy of Prematurity [ETROP] 
study, 2003). It affects immature vasculature in the eyes of premature babies (Wittchow.K, 
2003; Mounir Bashour et al., 2008). It can be mild with no visual defects, or it may become 
aggressive with new blood vessel formation (neovascularization) and progress to retinal 
detachment and blindness (International Committee for the Classification of Retinopathy of 
Prematurity [ICCROP], 2005). As smaller and younger babies are surviving, the incidence of 
ROP has increased (Gwenole Quellec et al., 2008; Benson Shu Yan Lam & Hong Yan, 2008). 
All babies who less than 1800g birth weight or younger than 32 weeks gestational age at 
birth are at risk of developing ROP. 

In any neonatal intensive care unit (NICU), the timing of the first evaluation must be based 
on the gestational age at birth. (a) If the baby is born at 23-24 weeks' gestational age, the first 
eye examination should be performed at 27-28 weeks gestational age. (b) If the baby is born 
at or beyond 25-28 weeks' gestational age, the first examination should occur at the fourth to 
fifth week of life. (c) Beyond 29 weeks, the first eye examination should probably occur by 
fourth week life time of baby. 

It is essential that those caring for premature infants know who is at risk of retinopathy of 
prematurity, when screening must begin and how often these infants need to be 
examined. It is also important to know when to treat those infants who develop severe 
retinopathy of prematurity and what long term follow-up is needed to manage other 
complications of retinopathy of prematurity (Shankar, P. M. 1986). The discrimination 
between normal retinal vessels and diseased vessels plays a vital role to detect the ROP as 
shown in Fig. 1. The ROP occurs when abnormal blood vessels develop at the edge of 
normal retinal blood vessel. The ophthalmologists who are trained in ROP have to study 
and analyze the Retcam images.  
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Fig. 1. Normal and Diseased Retinal Blood Vessels image of premature babies.  

ROP is an ideal disease for applications and research in medical imaging for several reasons: 
(a) Clinical diagnosis is based solely on the appearance of disease in the retina. (b) There is a 
universally-accepted, evidence-based, diagnostic classification standard for ROP 
(ICCROP,2005). This ordinal system is used by ophthalmologists to define severe cases of 
ROP that require treatment, as well as cases with high-risk features that warrant particularly 
careful observation. (c) If severe ROP is diagnosed and treated early enough, blinding 
complications may be prevented. (d) ROP continues to be a leading cause of childhood 
blindness throughout the world. (e) Current ROP examination methods are time-intensive, 
frequently impractical, and physiologically stressful to premature infants. (f) Adequate 
ophthalmic expertise is often limited to larger ophthalmic centers, and therefore unavailable 
at the point of care. (g) Pilot studies have suggested that ROP diagnosis using simple 
interpretation of images captured using wide-angle digital retinal cameras may be feasible 
(Attar MA et al., 2005; Ells AL, Holmes JM, Astle WF, et al., 2003; Fierson WM, Palmer EA, 
Petersen RA, et al., 2001 ; Kaiser RS et al., 2001). 

Indirect ophthalmoscope is the goal standard for ROP screening. But in a big way the indirect 
ophthalmoscope has been replaced with Retcam in ROP telescreening. Even though Retcam 
images can be taken by non ophthalmologist, it is difficult for them to interpret the stages of 
ROP. So, the proposed method giving a retinal image processing algorithm through which 
even a non ophthalmologist can give the various stages of ROP. This will provide the effective 
time utilization for the ophthalmologists. They can concentrate on infants who suffered with 
high risk threshold ROP and threshold ROP instead of analyzing all ROP images. 

In this work, an automatic method is proposed to detect various stages of Retinopathy of 
prematurity (ROP) in premature infants and low birth weight infants. It is essential that those 
caring for premature infants should know who is at risk of ROP, when screening must begin 
and how often these infants need to be examined otherwise it can cause blindness. So, ROP 
detection is necessary for both screening the pathology and progression measurement. 
Computerizing this task, which is currently executed manually, would bring more subjectivity 
and reproducibility. The proposed image processing algorithms for predicting the presence 
and stages of ROP are histogram equalization methods, feature extraction, measuring 
curvature by changes in intensity and template matching. The retinal vessels are segmented 
using simple and standard 2-D Gaussian Matched Filter. Segmented vessels are thinned, 
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smoothened and filtered based on local intensity of the vessels. The classification of ROP 
stages has been implemented by trained and tested neural network’s algorithms such as Back 
Propagation Feed Forward network (BPN), Radial Basis Function (RBF) network and the 
combination of both (Kai Chuan Chu & Dzulkifli Mohamad, 2003; Li Min Fu, 1994 ; Laurene 
Fausett, 1999 ; Meng Joo Er, shiqan wu, et al., 2002).  The effectiveness of the proposed 
methods has been verified through machine vision techniques and the trained networks have 
been tested and validated with appropriate ROP input images. The results obtained are 
encouraged by experts and the data have been clearly discriminating the severity of ROP. 
Automatic ROP staging system comprises several advantages, like a substantial time reduction 
of ophthalmologists in diagnosis, a non ophthalmologist can provide stage of ROP, improving 
the sensitivity of the test and a better accuracy in diagnosis. 

The following is the outline of the dissertation work presented in this paper:  

Chapter 2 is devoted to the analysis and classification of ROP based on its severity. The 
common clinical procedure and diagnostic technique to detect the stage of ROP 
development in an infant has been discussed. Different images are provided for the 
illustration of the ROP localization and the feature extraction.  

Chapter 3 deals with the development of generalized design of ROP classification and 
screening system. The design of proposed system model has been extended and a new 
combined model consists of Back Propagation Network (BPN) and Radial Basis Network 
(RBF). 

In Chapter 4 and Chapter 5, various ROP image processing schemes such as image 
enhancement, fine classification, feature extraction, representation and ROP classification have 
been explained by different algorithms such as histogram equalisation technique, 
thresholding, averaging filter, median filter, edge detection and feature extraction.  In the 
proposed neural network model, BPN network is combined with RBF network and the model 
outcomes have been compared and the computational details such as classification rate, and 
the time consumed by them have been evaluated and the results have been tabulated.  

Chapter 6 is proposed to express the results and outcomes of various imaging techniques 
and neural network algorithms. The graphical representation and the tabulated values of 
extracted data provided the scope for the ROP screening. The results have been validated 
with experts and compared with common manual techniques for enhancement and future 
development and modifications 

In chapter 7 proposed ROP image screening schemes and neural network classifiers are 
summarized together with suggestions for further research.  

The acknowledgement and list of references which have been based on this work are given 
at the end chapters of this dissertation. 

2. Retinopathy of prematurity (ROP) 
Retinopathy of Prematurity (ROP) is a fibrovascular proliferative disorder, which affects the 
developing peripheral retinal vasculature of premature infants. It is an avoidable cause of 
blindness in children. The initial signs of ROP are detectable by a few weeks after birth, and 
the condition progresses rapidly thereafter. This means that screening has to be timely, and 
there is only a very narrow window of opportunity for treating. If not treated, the condition 
progresses rapidly to Stage 4 or 5 in approximately 50% of babies (Shah PK, Narendran V, et 
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al., 2009). The visual prognosis for babies with Stage 5 disease (total retinal detachment) is 
very poor, even after complex vitreoretinal surgery. The primary goal of screening is to 
detect all babies with treatable disease in time for treatment to be effective. 

2.1 Classification of ROP 

Blood vessel development in the retina occurs from the optic nerve out towards the 
periphery, that is, from the back of the eye towards the front.  The location of the disease is 
referred by the ICROP (International Classification of Retinopathy of Prematurity) 
classification and is a measure of how far this normal progression of blood vessel 
development has progressed before the disease takes over (Mounir Bashour et al., 2008). 
Generally Zone II disease is more severe than Zone III disease  and Zone I disease is the 
most dangerous of all since progression to extensive scar tissue formation and total retinal 
detachment is most likely in this location. 

From the "flattened" retina shown in Fig. 2, we can see that: 

• Zone I is a small area around the optic nerve and macula at the very back of the eye.  
• Zone II extends from the edge of Zone I to the front of the retina on the nasal side of the 

eye (i.e. nose side) and part way to the front of the retina on the temporal side of the eye 
(i.e. temple side, or side of the head).  

• Zone III is the remaining crescent of retina in front of Zone II on the temporal side of the 
eye.  

Think of the eye as in time sections of a twelve hour clock to classify the stages of ROP. The 
extent of ROP is defined by how many clock hours of the eye's circumference are diseased. The 
numbers around the "flattened" retina in the Fig.2 shows the hours of the clock for each 
eye. For example, 3 o'clock is to the right, which is on the nasal side for the right eye and 
temporal side for the left eye.  Often the disease is not present around all twelve clock hours, 
so a description may often refer to "x" number of clock hours of disease (e.g. nine clock hours 
would mean that three quarters of the circumference of the retina is involved). 

 
Fig. 2. Zone 1 is the most posterior retina that contains the optic nerve and the macula (zone of 
acute vision). Zone 2 is the intermediate zone where blood vessels often stop in ROP. Zone 3 is 
the peripheral zone of the retina, where vessels are absent in ROP, but present in normal eyes. 
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2.2 Stages of ROP based on ICROP 

ROP is a rapidly progressive disease.  It starts slowly, usually anywhere from the fourth to 
the tenth week of life, and may progress through successive stages, from Stage 1 to Stage 5, 
or it may stop at Stage 1 or Stage 2 or mild Stage 3 and disappear completely. The common 
ROP stage classification is shown in Table 1. 

 
Fig. 3. Sequence of ROP Images visualizes Stage 1, Stage 2, Stage 3, Stage 4, Stage 5 and Plus 
Disease. 

Stage 1. Demarcation line: a flat, white, thin line that separates the avascular retina 
anteriorly (toward the retinal periphery) from the vascularized retina posteriorly. 

Stage 2. Ridge the flat line from stage 1 has grown in height, width, and volume and has 
become a pink-white ridge.  

Stage 3. Ridge with extraretinal fibrovascular proliferation: proliferating tissue can be 
continuous with the posterior aspect of the ridge; immediately posterior to the ridge, or 
extending directly into the vitreous.  

Stage 4. Subtotal retinal detachment: dragging vessels and subtotal traction retinal 
detachment can be seen. Stage 4A disease does not affect the macula and has a relatively 
good prognosis for vision; stage 4B disease affects the fovea and usually has a poor 
prognosis for vision. 

Stage 5. Total retinal detachment: funnel-shaped retinal detachment. Anterior and posterior 
portions appear open or narrowed on ultrasonographic scans. 

Plus Disease. The designation “+” is placed after the stage when dilated posterior veins, 
tortuous retinal arteries, vitreous haze, and pupillary rigidity are observed. If plus disease is 
observed in the posterior portion of the retina, patients must be monitored closely, as there 
is high risk of ROP progressing rapidly within a few days and lead to retinal detachment 
and may cause blindness with high risk ROP. 

 
Category Definitions 

Stage 1 
Demarcation line separating the avascular retina anteriorly from the 
vascularized retina posteriorly, with abnormal branching of small vessels 
immediately posterior. 

Stage 2 Intra retinal ridge; the demarcation line has increased in volume, but this 
proliferative tissue remains intraretinal. 

Stage 3 Ridge with extra retinal fibrovascular proliferation. 
Stage 4 Partial retinal detachment. 
Stage 5 Total retinal detachment. 
Plus Disease Two or more quadrants of vessel tortuosity and fullness at the optic nerve 

Table 1. Definitions of ROP Severity Categories  
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Fig. 2. Zone 1 is the most posterior retina that contains the optic nerve and the macula (zone of 
acute vision). Zone 2 is the intermediate zone where blood vessels often stop in ROP. Zone 3 is 
the peripheral zone of the retina, where vessels are absent in ROP, but present in normal eyes. 
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2.2 Stages of ROP based on ICROP 

ROP is a rapidly progressive disease.  It starts slowly, usually anywhere from the fourth to 
the tenth week of life, and may progress through successive stages, from Stage 1 to Stage 5, 
or it may stop at Stage 1 or Stage 2 or mild Stage 3 and disappear completely. The common 
ROP stage classification is shown in Table 1. 

 
Fig. 3. Sequence of ROP Images visualizes Stage 1, Stage 2, Stage 3, Stage 4, Stage 5 and Plus 
Disease. 

Stage 1. Demarcation line: a flat, white, thin line that separates the avascular retina 
anteriorly (toward the retinal periphery) from the vascularized retina posteriorly. 
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good prognosis for vision; stage 4B disease affects the fovea and usually has a poor 
prognosis for vision. 

Stage 5. Total retinal detachment: funnel-shaped retinal detachment. Anterior and posterior 
portions appear open or narrowed on ultrasonographic scans. 

Plus Disease. The designation “+” is placed after the stage when dilated posterior veins, 
tortuous retinal arteries, vitreous haze, and pupillary rigidity are observed. If plus disease is 
observed in the posterior portion of the retina, patients must be monitored closely, as there 
is high risk of ROP progressing rapidly within a few days and lead to retinal detachment 
and may cause blindness with high risk ROP. 

 
Category Definitions 

Stage 1 
Demarcation line separating the avascular retina anteriorly from the 
vascularized retina posteriorly, with abnormal branching of small vessels 
immediately posterior. 

Stage 2 Intra retinal ridge; the demarcation line has increased in volume, but this 
proliferative tissue remains intraretinal. 

Stage 3 Ridge with extra retinal fibrovascular proliferation. 
Stage 4 Partial retinal detachment. 
Stage 5 Total retinal detachment. 
Plus Disease Two or more quadrants of vessel tortuosity and fullness at the optic nerve 

Table 1. Definitions of ROP Severity Categories  
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2.3 Diagnosis of ROP 

ROP is diagnosed from dilated ophthalmoscopic examination by an experienced 
ophthalmologist, and there are accepted guidelines for identifying high-risk premature 
infants who need serial screening examinations. Each image set consisted of 1 to 7 
photographs from a single eye. Because imaging was performed at the bedside under 
typical working conditions, it was not possible to capture a standard set of photographs on 
each infant. The images have captured by Retcam for stage 1, stage 2, stage3, stage 4, stage 5 
and Plus Disease as shown in Fig. 3. 

Each infant underwent two examinations, which are sequentially performed under topical 
anaesthesia at the neonatal intensive care unit bedside: (a) Dilated ophthalmoscopy by an 
experienced ophthalmologist, based on well-known protocols (Kaiser RS et al., 2001; Fetus 
and Newborn Committee, Canadian Paediatric Society, 1998; Siatkowski RM & Flynn JT, 
1998; Schaffer DB, Palmer EA, et al. 1993). The presence or absence of ROP disease, and its 
characteristics when present, were documented according to the international classification 
standard. (b) Wide-angle retinal imaging by an experienced ophthalmic photographer using 
a digital camera system (RetCam-120; MLI Inc., Pleasanton, California), based on guidelines 
established by the manufacturer. 

The examinations are usually performed in the neonatal intensive care nursery where the 
neonatal staff can continue to monitor the baby. The infant will continue to be examined 
every 1 to 2 weeks until one of the following occurs: 

• Development of the normal blood supply to the retina is complete. 
• Two successive 2-week exams show Stage 2 in Zone III.  Infants will then be examined 

every 4 to 6 weeks until the blood supply to the retina is fully developed. 
• ROP is at "low risk prethreshold", just prior to requiring treatment.  Follow-up exams 

will then occur every week until either “high risk prethreshold ROP or Threshold ROP” 
occurs, which requires treatment, or the retinopathy of prematurity disappears. 

• The ROP is disappearing. 

After two successive 2-week exams have shown regression, examinations should be 
continued every 4 to 6 weeks. Once the normal blood supply to the retina is completely 
developed, the infant will continue to be examined every 6 to 12 months by a pediatric 
ophthalmologist to ensure that no further complications of ROP occur. 

3. Materials and methods 
3.1 General design 

Screening for ROP usually begins when the infant is about 4 to 6 weeks of age.  An eye 
doctor (ophthalmologist), who specializes in either retinal disorders (retinal specialist) or 
children's eye diseases (pediatric ophthalmologist), uses a special instrument (an indirect 
ophthalmoscope) which allows a view through its optic lens into the back of the eye to 
examine the retina and determine whether development of the blood vessels is occurring 
normally or not. Before acquiring the retina images through Retcam, the infant is usually 
given some eye drops to make the pupil dilate so that the viewing field is as wide as 
possible.  A light anaesthetic, in the form of numbing eye drops, may also be administered. 

Optimized Imaging Techniques to Detect  
and Screen the Stages of Retinopathy of Prematurity 65 

The general ROP screening system’s flow diagram of the overall process as shown in Fig. 4, 
beginning with retinal image acquisition from the patient through Retcam. This image has 
been enhanced and removes the unwanted noise to obtain the object of interest. The 
required ROP features have been extracted by segmentation techniques and represent the 
image to train the machine to display that the severity of ROP. The error eradication system 
has been developed to obtain the better result. The decision making and classification 
modules used to provide the ROP presence and its stage. Normally the Stage 4 and Stage 5 
ROP could not be treated. So, the present developed scheme has concentrated only on first 
three stages of the disease and Plus disease prognosis of ROP. Automatic ROP stage 
screening system will entail several advantages, like a substantial reduction in the labour 
workload of clinicians, improving the sensitivity of the test and a better accuracy in 
diagnosis by increasing the number of images. 

 
Fig. 4. Block diagram of the ROP detection and screening system. 

The aim of this dissertation work is to design and develop an efficient ROP stage screening 
system. The main objectives of this work are as given below. 

a. To design a ROP image localizer to localize the region of interest from the image. ROP 
image localizer is used for segmenting the required blood vessels region from the input 
image. 

b. To develop a feature extractor for extracting the required classification features. Feature 
extractor is applied for getting the local features such as dilated vessels. 

c. To design a proper recognizer for recognizing the given image, Back Propagation 
network, Combination of BPN and RBF are to be developed for screening and 
recognition.  

3.2 Proposed system model 

Based on the general block diagram, the proposed system is designed. The model of the 
proposed system is given in Fig. 5. 
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Fig. 5. Architecture of the proposed ROP classification and recognition system. 

First, various pre-processing activities have been performed on the image for improving the 
quality of the image. These activities include image resizing, contrast stretching, histogram 
equalization and so on. The method of locating region of interest and dilated blood vessels 
are known as ROP image localization. Then, the local features such as abnormal branching 
of small vessels, Intra retinal ridge, ridge with extra retinal fibrovascular proliferation and 
partial and total retinal detachments are extracted from the region of interest. These values 
are given as the inputs to the neural networks for classification and recognition. Neural 
networks are trained with a set of training samples (Li Min Fu, 1994 ; Laurene Fausett, 1999 ; 
Meng Joo Er, shiqan wu, et al., 2002). The input images are compared with the trained 
samples and the similarity measures have been given as the classification and screening 
result. In this paper, Back Propagation Network (BPN), BPN + Radial Basis Function 
network (RBF) are used for classifying the ROP input images. 

In the next section, we discover the appropriate machine vision techniques to detect the 
various stages ROP and the efficient neural network to classify and recognize the various 
ROP stages. The discussion begins with ideal model and to train the machine to identify the 
problem based on the requirements of the clinicians. 

4. ROP image processing schemes  
4.1 Proposed ROP image localization technique  

ROP image localizer is designed to serve as a pre-processor of ROP stage classification and 
recognition systems for detecting the stage of ROP. The first step in this ROP image 
processing system is detecting the locations of blood vessels in the Retcam images. ROP 
image localization aims to localize the region of interest from the input image where blood 
vessels have been presented. Here the regions of interests are segmented and the regions 
that contain dilated, twisted and tortuosity of blood vessels. Various pre-processing 
activities are done in this stage to make the raw data into usable format.  

A new algorithm is proposed in this proposal for localizing the ROP images, which consists 
of the following steps. 

1. The input image is converted into the gray scale image.  
2. The gray scale image is converted into its binary form.  
3. The dilation operation is performed on the binary image.  The dilation process removes 

the noise encountered in the binary image.     
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4. The dilated image is mapped on to the gray scale image.  
      Let Im denotes the intensity of mapped image 
                   Id denotes the intensity of the dilated image and  
                            Ig denotes the intensity of the gray scale image. 
     Ig ( i, j )      if    Id ( i , j ) = 1 
                                
                              Im ( i, j )  =            
          
                                                              Otherwise 
5. The mapped image has been converted into its binary form.  
6. The required ROP region has been cropped from the binary image. 

For developing a reliable ROP stage screening system, several ROP image processing 
activities have to be done. In this paper, the region on interest has been localized i.e., the 
required tortuosity and dilated vessels have been selected from the given input image using 
the proposed ROP localization technique. Instead of giving the whole image as input, the 
localized ROP image alone be given as input to the feature extractor and it diminishes the 
computational burden. A new algorithm is proposed in this work for extracting the local 
features and these features alone given as inputs to the neural network recognizer and 
classifier. This algorithm reduces the number of inputs to the recognizer as well as the 
training time.  

4.2 Histogram equalization approach 

First, it is necessary to describe the brightness variation in an image using its histogram. 
Then look at operations which manipulate the image so as to change the histogram, 
processes that shift and scale the result by making the image brighter or dimmer, in 
different ways. The intensity histogram shows how individual brightness levels are 
occupied in an image; the image contrast is measured by the range of brightness levels. 

Histogram equalization is a non-linear process aimed to highlight image brightness in a way 
particularly suited to human visual analysis (Russ J. C., 1995; Jia X. & Nixon M. S. 1995; 
Baxes G. A., 1994; Parker J. R., 1994). Histogram equalization aims to change a picture in 
such a way as to produce a picture with a flatter histogram, where all levels are 
equiprobable. In order to develop the operator, it is important to inspect the histograms as 
shown in Fig. 6.  

For a range of M levels, the histogram plots the points per level against level. For the input 
(old) and the output (new) image, the number of points per level is denoted as ( )O l and 

( )N l  (for 0 < l < M), respectively. For square images, there are 2N  points in the input and 
the output image, so the sum of points per level in each should be equal: 

 ( ) ( )M M
1=0 1=0O l = N 1∑ ∑  (1) 

Also, this should be the same for an arbitrarily chosen level p , since the aim is for an output 
picture with a uniformly flat histogram. So the cumulative histogram up to level p  should 
be transformed to cover up to the level q  in the new histogram: 
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 ( ) ( )M M
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 ( ) ( )p p
1=0 1=0O l = N l∑ ∑  (2) 

Since the output histogram is uniformly flat, the cumulative histogram up to level p should 
be a fraction of the overall sum. So the number of points per level in the output picture is the 
ratio of the number of points to the range of levels in the output image: 

 ( )
2

max min

NN l =
N - N

 (3) 

 
Fig. 6. Resulting Histogram applied on ROP image for enhancement. 

So the cumulative histogram of the output picture is: 

 ( )
2

p
1=0

max min

NN 1 = q ×
N - N

∑  (4) 

Equation (2) shows that it is equal to the cumulative histogram of the input image, so: 

 ( )
2

p
1=0

max min

Nq × = 0 1
N - N

∑  (5) 

This gives a mapping for the output pixels at level q , from the input pixels at level p  as: 

 ( )pmax min
1=02

N - Nq = × O l
N

∑  (6) 
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This gives a mapping function that provides an output image that has an approximately flat 
histogram. The mapping function is given by phrasing (6) as an equalizing function i.e., E of 
the level (q)  and the image (O) as 

 ( ) ( ) ( )p p
1=0 1=0E q,O = O l = N l∑ ∑  (7) 

The output image is then 

 x,y x,yN = E(O ,O)  (8) 

The intensity equalized image has much better defined features than in the original version. 
The histogram reveals the non-linear mapping process whereby white and black are not 
assigned equal weight. Accordingly, more pixels are mapped into the darker region and the 
brighter intensities become better spread, consistent with the aims of histogram 
equalization. Its performance can be very convincing for ROP image, since it is well mapped 
to the properties of human vision. 

4.3 Thresholding  

There are more advanced techniques, known as optimal thresholding. These usually seek to 
select a value for the threshold that separates an object from its background. This suggests 
that the object has a different range of intensities to the background, in order that an 
appropriate threshold can be chosen.  

Otsu’s method (Sahoo P. K., Soltani S., Wong, A. K. C. et al., 1988) is one of the most popular 
techniques of optimal thresholding; applied for fine classification of ROP. Essentially, this 
technique maximizes the likelihood that the threshold is chosen so as to split the image 
between an object and its background. This is achieved by selecting a threshold that gives 
the best separation of classes, for all pixels in an image. 

4.4 Averaging filter 

For an averaging operator, the template weighting functions are unity. The template for an 
7 ×7 averaging operator is implemented for the image. The result of averaging the ROP 
image with an 7 ×7  operator shows much of the details of the broad image structure.  

The effect of averaging is to reduce noise, this is its advantage. An associated disadvantage 
is that averaging causes blurring which reduces detail in an image. It is also a low-pass filter 
since its effect is to allow low spatial frequencies to be retained, and to suppress high 
frequency components (Parker J. R., 1994; A.C. Bovik, T.S.Huang, & D.C.Munson, 1983). The 
size of an averaging operator is then equivalent to the reciprocal of the bandwidth of a low-
pass filter it implements. 

The averaging process is actually a statistical operator since it aims to estimate the mean of a 
local neighbourhood. The error in the process is naturally high, for a population of N 
samples; the statistical error is of the order of:  

 meanerror =
N

 (9) 
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The effect of averaging is to reduce noise, this is its advantage. An associated disadvantage 
is that averaging causes blurring which reduces detail in an image. It is also a low-pass filter 
since its effect is to allow low spatial frequencies to be retained, and to suppress high 
frequency components (Parker J. R., 1994; A.C. Bovik, T.S.Huang, & D.C.Munson, 1983). The 
size of an averaging operator is then equivalent to the reciprocal of the bandwidth of a low-
pass filter it implements. 

The averaging process is actually a statistical operator since it aims to estimate the mean of a 
local neighbourhood. The error in the process is naturally high, for a population of N 
samples; the statistical error is of the order of:  

 meanerror =
N

 (9) 
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Increasing the averaging operator’s size improves the error in the estimate of the mean, but 
at the expense of fine detail in the image. The average is of course an estimate optimal for a 
signal corrupted by additive Gaussian noise. The estimate of the mean maximized the 
probability that the noise has its mean value, namely zero.  

According to the central limit theorem, the result of adding many noise sources together are 
a Gaussian distributed noise source. By the central limit theorem, the image noise can be 
assumed to be Gaussian. In fact, image noise is not necessarily Gaussian-distributed, giving 
rise to more statistical operators. It provides better pre-processing in ROP images and offers 
coarse estimation for the features. 

4.5 Gaussian averaging filter 

The Gaussian averaging operator has been considered to be optimal for image smoothing. 
The template for the Gaussian operator has values set by the Gaussian relationship. Let the 
x, y are the ROP image intensity values measured in both the (x,y)  coordinates. The 
Gaussian functions 'g'  at co-ordinates (x,y)  is controlled by the variance 2'σ '  according to: 
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Where, g(x,y)  gives a way to calculate coefficients for a Gaussian template which is then 
convolved with an image. It is clear that the Gaussian filter can offer improved performance 
compared with direct averaging: more features are retained whilst the noise is removed. 
This can lead to better performance in ROP images, since the contributions of the frequency 
components reduce in a controlled manner. 

4.6 Median filter  

The median is another frequently used statistic; the median is the centre of a rank-ordered 
distribution. The median is usually taken from a template centered on the point of interest. 
The median is the central component of the sorted vector (A.C. Bovik, T.S.Huang, & D.C. 
Munson, 1983).  

The median operator is usually implemented using a template; here a 7 ×7  template is 
considered for ROP images. Accordingly, the system process the forty nine pixels in a 
template centered on a point with co-ordinates (x, y). The median is the central component 
of the sorted vector; this is the twenty fifth component since we have forty nine values. 

The median can of course be taken from larger template sizes. It is available as the median 
operator in Mathcad, but only for square matrices. The rank ordering process is 
computationally demanding slow and this has been motivated the use of template shapes 
other than a square. Common alternative shapes include a cross or a line (horizontal or 
vertical), centered on the point of interest, which can afford much faster operation since they 
cover fewer pixels. 

The median filter has a well-known ability to remove salt and pepper noise. This form of 
noise, arising from, say, decoding errors in picture transmission systems, can cause isolated 
white and black points to appear within an image shown in Fig.6. When a median operator 
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is applied, the salt and pepper noise points will appear at either end of the rank ordered list 
and are removed by the median process. The median operator has practical advantage, due 
to its ability to retain edges i.e. the boundaries of shapes in images whilst suppressing the 
noise contamination. 

4.7 Edge detection and feature extraction  

The edges and required features of the ROP image have been detected by the Marr–Hildreth 
approach and Spacek operator (Petrou M. & Kittler J., 1991). 

4.7.1 Marr–Hildreth approach 

This method uses Gaussian filtering. In principle, we require an image which is the second 
differential 2∇  of a Gaussian operator g(x,y) convolved with an image P. This convolution 
process can be separated as:       
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Accordingly, we need to compute a template for 2(g(x,y))∇  and convolve this with the 
image. By further differentiation of (11), we achieve a Laplacian of Gaussian (LoG) operator:  
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This is the basis of the Marr–Hildreth operator. Equation (13) can be used to calculate the 
coefficients of a template which, when convolved with an image, combines Gaussian 
smoothing with second-order differentiation. It has been implemented to calculate template 
coefficients for the LoG operator, the function includes a normalization function, which 
ensures that the sum of the template coefficients is unity, so that the edges in the images are 
not clearly detected in area of uniform brightness. This is in contrast with the Laplacian 
operator (where the template coefficients summed to zero) since the LoG operator includes 
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Increasing the averaging operator’s size improves the error in the estimate of the mean, but 
at the expense of fine detail in the image. The average is of course an estimate optimal for a 
signal corrupted by additive Gaussian noise. The estimate of the mean maximized the 
probability that the noise has its mean value, namely zero.  

According to the central limit theorem, the result of adding many noise sources together are 
a Gaussian distributed noise source. By the central limit theorem, the image noise can be 
assumed to be Gaussian. In fact, image noise is not necessarily Gaussian-distributed, giving 
rise to more statistical operators. It provides better pre-processing in ROP images and offers 
coarse estimation for the features. 

4.5 Gaussian averaging filter 

The Gaussian averaging operator has been considered to be optimal for image smoothing. 
The template for the Gaussian operator has values set by the Gaussian relationship. Let the 
x, y are the ROP image intensity values measured in both the (x,y)  coordinates. The 
Gaussian functions 'g'  at co-ordinates (x,y)  is controlled by the variance 2'σ '  according to: 
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Where, g(x,y)  gives a way to calculate coefficients for a Gaussian template which is then 
convolved with an image. It is clear that the Gaussian filter can offer improved performance 
compared with direct averaging: more features are retained whilst the noise is removed. 
This can lead to better performance in ROP images, since the contributions of the frequency 
components reduce in a controlled manner. 

4.6 Median filter  

The median is another frequently used statistic; the median is the centre of a rank-ordered 
distribution. The median is usually taken from a template centered on the point of interest. 
The median is the central component of the sorted vector (A.C. Bovik, T.S.Huang, & D.C. 
Munson, 1983).  

The median operator is usually implemented using a template; here a 7 ×7  template is 
considered for ROP images. Accordingly, the system process the forty nine pixels in a 
template centered on a point with co-ordinates (x, y). The median is the central component 
of the sorted vector; this is the twenty fifth component since we have forty nine values. 

The median can of course be taken from larger template sizes. It is available as the median 
operator in Mathcad, but only for square matrices. The rank ordering process is 
computationally demanding slow and this has been motivated the use of template shapes 
other than a square. Common alternative shapes include a cross or a line (horizontal or 
vertical), centered on the point of interest, which can afford much faster operation since they 
cover fewer pixels. 

The median filter has a well-known ability to remove salt and pepper noise. This form of 
noise, arising from, say, decoding errors in picture transmission systems, can cause isolated 
white and black points to appear within an image shown in Fig.6. When a median operator 
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is applied, the salt and pepper noise points will appear at either end of the rank ordered list 
and are removed by the median process. The median operator has practical advantage, due 
to its ability to retain edges i.e. the boundaries of shapes in images whilst suppressing the 
noise contamination. 

4.7 Edge detection and feature extraction  

The edges and required features of the ROP image have been detected by the Marr–Hildreth 
approach and Spacek operator (Petrou M. & Kittler J., 1991). 

4.7.1 Marr–Hildreth approach 

This method uses Gaussian filtering. In principle, we require an image which is the second 
differential 2∇  of a Gaussian operator g(x,y) convolved with an image P. This convolution 
process can be separated as:       
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This is the basis of the Marr–Hildreth operator. Equation (13) can be used to calculate the 
coefficients of a template which, when convolved with an image, combines Gaussian 
smoothing with second-order differentiation. It has been implemented to calculate template 
coefficients for the LoG operator, the function includes a normalization function, which 
ensures that the sum of the template coefficients is unity, so that the edges in the images are 
not clearly detected in area of uniform brightness. This is in contrast with the Laplacian 
operator (where the template coefficients summed to zero) since the LoG operator includes 



 
Human-Centric Machine Vision 72

smoothing within the differencing action, whereas the Laplacian is pure differencing. The 
Gaussian operator again suppresses the influence of points away from the centre of the 
template, basing differentiation on those points nearer the centre; the standard deviation, σ  
is chosen to ensure this action. Again, it is isotropic consistent with Gaussian smoothing. 
Determining the zero-crossing points is a major difficulty with this approach. 

4.7.2 Spacek operator 

Canny derived an operator to satisfy performance measures describing maximum signal to 
noise ratio and with good localization and chose a filter functional which maximized a 
composite measure of these parameters, whilst maintaining the suppression of false maxima 
(Trichili H et al., 2002). Essentially, whilst Canny maximized the ratio of the signal to noise 
ratio with the localization, Spacek maximized the ratio of the product of the signal to noise 
ratio and the peak separation with the localization. In Spacek’s work, since the edge was 
again modeled as a step function, the ideal filter appeared to be of the same form as Canny’s 
(Petrou M. & Kittler J, 1991). After simplification, this resulted in a one-dimensional optimal 
noise smoothing filter given by: 

 r r
1 2 3 4f(r) (c sin(r) c cos(r))e (c sin(r) c cos(r))e 1−= + + + +  (14) 

By numerical solution, Spacek determined optimal values for the constants as: c1 = 13.3816, 
c2 = 2.7953, c3 = 0.0542 and c4 = -3.7953. Spacek also showed how it was possible to derive 
operators which optimize filter performance for different combinations of the performance 
factors. In particular, an operator with the best possible noise suppression formulated by 
optimizing the noise suppression performance alone, without the other two measures, is 
given by: 

 c
2sin(πr)f (r) cos(πr) 2r 1

π
= − + +  (15) 

Spacek then showed how these operators could give better performance than Canny’s 
formulation, as such challenging the optimality of the Gaussian operator for noise 
smoothing (in step edge detection) (Petrou M. & Kittler J, 1988). In application, such an 
advantage has been produced better output of ROP image. This is the vital feature used to 
detect the plus disease of ROP. 

One difficulty with optimal smoothing functional expressed in one-dimensional form is 
their extension to become a two-dimensional image operator. For the Spacek operator, one 
approach is to consider (14) as a circularly symmetric functional expressed in terms of 
radius 'r'  and to generate the coefficients of a template smoothing operator in this manner. 

4.8 Image curvature detection   

Edges are perhaps the low-level image features that are most obvious to human vision. They 
preserve significant features, so they can be usually recognized what an image contains 
from its edge-detected version. However, there are other low-level features that can be used 
in computer vision. One important feature is curvature. Intuitively, it is important to 
consider curvature as the rate of change in edge direction (Mokhtarian F. & Mackworth A. 
K., 1986). This rate of change characterizes the points in a curve; points where the edge 
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direction changes rapidly are corners, whereas points where there is little change in edge 
direction correspond to straight lines. Such extreme points are very useful for shape 
description and matching in ROP severity prediction, since they represent significant 
information with reduced data. 

The main problem with this approach is that it depends on the extraction of sequences of 
pixels. In ROP images, it is very difficult to trace a digital curve in the image. This is because 
noise in the data can cause edges to be missed or to be found inaccurately. This problem 
may be handled by using a robust fitting technique. However, the implementation is not 
evident. By using this robust fitting for each image pixel, then the curvature could be 
computed as the inverse ratio of a circle. 

5. Proposed ROP classification using neural networks 
5.1 Proposed BPN and RBF classifier and recognizer model 

After extracting the required ROP features from the Retcam images, a classifier and 
recognizer is needed to screen the severity of ROP. Neural Networks can be applied for such 
problems to classify and recognize through the training and testing of samples. In this 
chapter Back Propagation Network (BPN) and a combined model of BPN and Radial Basis 
Function (RBF) network are proposed as classifiers and recognizers. 

5.2 Back propagation network (BPN) 

Back Propagation Network (BPN) can train multi layer feed-forward networks with 
differentiable transfer functions to perform function approximation, pattern association, and 
pattern classification (Laurene Fausett et al., 1999; Li Min Fu, 1994).  

The BPN is designed in this work with one input layer, one hidden layer and one output 
layer. The input layer consists of six neurons. The inputs to this network are feature vectors 
derived by applying the image processing calculations and algorithms. The network is 
trained using the features extracted from processed Retcam ROP images. 

The Back propagation training takes place in three stages: 

1. Feed forward of input training pattern 
2. Back Propagation of the associated error and 
3. Weight adjustment 

During feed forward, each input neuron receives an input value and broadcasts it to each 
hidden neuron, which in turn computes the activation and passes it on to each output unit, 
which again computes the activation to obtain the net output. During training, the net 
output is compared with the target value and the appropriate error is calculated. From this, 
the error factor is obtained which is used to distribute the error back to the hidden layer. The 
weights are updated accordingly. In a similar manner, the error factor is calculated for 
hidden units. After the error factors are obtained, the weights are updated simultaneously. 
The output layer contains one neuron. The result from the output layer is considered as the 
recognition result. The gradient descent algorithm which ahs been utilized in BPN is 
generally very slow because it requires small learning rates for stable learning. In order to 
avoid this, BPN is combined with Radial Basis Function Network. 
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smoothing within the differencing action, whereas the Laplacian is pure differencing. The 
Gaussian operator again suppresses the influence of points away from the centre of the 
template, basing differentiation on those points nearer the centre; the standard deviation, σ  
is chosen to ensure this action. Again, it is isotropic consistent with Gaussian smoothing. 
Determining the zero-crossing points is a major difficulty with this approach. 

4.7.2 Spacek operator 

Canny derived an operator to satisfy performance measures describing maximum signal to 
noise ratio and with good localization and chose a filter functional which maximized a 
composite measure of these parameters, whilst maintaining the suppression of false maxima 
(Trichili H et al., 2002). Essentially, whilst Canny maximized the ratio of the signal to noise 
ratio with the localization, Spacek maximized the ratio of the product of the signal to noise 
ratio and the peak separation with the localization. In Spacek’s work, since the edge was 
again modeled as a step function, the ideal filter appeared to be of the same form as Canny’s 
(Petrou M. & Kittler J, 1991). After simplification, this resulted in a one-dimensional optimal 
noise smoothing filter given by: 
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c2 = 2.7953, c3 = 0.0542 and c4 = -3.7953. Spacek also showed how it was possible to derive 
operators which optimize filter performance for different combinations of the performance 
factors. In particular, an operator with the best possible noise suppression formulated by 
optimizing the noise suppression performance alone, without the other two measures, is 
given by: 
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Spacek then showed how these operators could give better performance than Canny’s 
formulation, as such challenging the optimality of the Gaussian operator for noise 
smoothing (in step edge detection) (Petrou M. & Kittler J, 1988). In application, such an 
advantage has been produced better output of ROP image. This is the vital feature used to 
detect the plus disease of ROP. 

One difficulty with optimal smoothing functional expressed in one-dimensional form is 
their extension to become a two-dimensional image operator. For the Spacek operator, one 
approach is to consider (14) as a circularly symmetric functional expressed in terms of 
radius 'r'  and to generate the coefficients of a template smoothing operator in this manner. 

4.8 Image curvature detection   

Edges are perhaps the low-level image features that are most obvious to human vision. They 
preserve significant features, so they can be usually recognized what an image contains 
from its edge-detected version. However, there are other low-level features that can be used 
in computer vision. One important feature is curvature. Intuitively, it is important to 
consider curvature as the rate of change in edge direction (Mokhtarian F. & Mackworth A. 
K., 1986). This rate of change characterizes the points in a curve; points where the edge 
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direction changes rapidly are corners, whereas points where there is little change in edge 
direction correspond to straight lines. Such extreme points are very useful for shape 
description and matching in ROP severity prediction, since they represent significant 
information with reduced data. 

The main problem with this approach is that it depends on the extraction of sequences of 
pixels. In ROP images, it is very difficult to trace a digital curve in the image. This is because 
noise in the data can cause edges to be missed or to be found inaccurately. This problem 
may be handled by using a robust fitting technique. However, the implementation is not 
evident. By using this robust fitting for each image pixel, then the curvature could be 
computed as the inverse ratio of a circle. 

5. Proposed ROP classification using neural networks 
5.1 Proposed BPN and RBF classifier and recognizer model 

After extracting the required ROP features from the Retcam images, a classifier and 
recognizer is needed to screen the severity of ROP. Neural Networks can be applied for such 
problems to classify and recognize through the training and testing of samples. In this 
chapter Back Propagation Network (BPN) and a combined model of BPN and Radial Basis 
Function (RBF) network are proposed as classifiers and recognizers. 

5.2 Back propagation network (BPN) 

Back Propagation Network (BPN) can train multi layer feed-forward networks with 
differentiable transfer functions to perform function approximation, pattern association, and 
pattern classification (Laurene Fausett et al., 1999; Li Min Fu, 1994).  

The BPN is designed in this work with one input layer, one hidden layer and one output 
layer. The input layer consists of six neurons. The inputs to this network are feature vectors 
derived by applying the image processing calculations and algorithms. The network is 
trained using the features extracted from processed Retcam ROP images. 

The Back propagation training takes place in three stages: 

1. Feed forward of input training pattern 
2. Back Propagation of the associated error and 
3. Weight adjustment 

During feed forward, each input neuron receives an input value and broadcasts it to each 
hidden neuron, which in turn computes the activation and passes it on to each output unit, 
which again computes the activation to obtain the net output. During training, the net 
output is compared with the target value and the appropriate error is calculated. From this, 
the error factor is obtained which is used to distribute the error back to the hidden layer. The 
weights are updated accordingly. In a similar manner, the error factor is calculated for 
hidden units. After the error factors are obtained, the weights are updated simultaneously. 
The output layer contains one neuron. The result from the output layer is considered as the 
recognition result. The gradient descent algorithm which ahs been utilized in BPN is 
generally very slow because it requires small learning rates for stable learning. In order to 
avoid this, BPN is combined with Radial Basis Function Network. 
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5.3 Combined framework of BPN and RBF 

Radial Basis Function (RBF) neural networks have recently attracted extensive research 
works because of their best approximation property, very compact topology and universal 
approximators and also their learning speed is very fast because of local-tuned neurons. RBF 
networks are used for function approximation (Meng Joo Er, shiqan wu, Juwei Lu, et al., 
2002). In this paper, a RBF neural network is used as classifier and recognizer in the ROP 
screening system and the inputs to this network are the results obtained from the BPN.  So, 
the result obtained from the output layer of BPN is given as the input to the RBF. RBF uses 
the gaussian function for approximation. For approximating the output of BPN, it is 
connected with RBF. 

The RBF neural network has a feed forward architecture with an input layer, a hidden layer 
and an output layer. Fig. 7 shows the combined framework of BPN and RBF.   

 
Fig. 7. Combined Framework of BPN and RBF. 

a1=tansig(IW*p +b)        y=purelin(LW*a+b)a=radbas(||w-p||b) 

where  
a1  = tansig(IW*p+LW+b1)   
y  = purelin(LW*a1+b2)              
a  = radbas(||w-p||b) 
p  = Set of input neurons 
b1         =    bias to the input layer 
b2   = bias to the hidden layer 
b   =   bias to the RBF neuron 
IW   = Weight between Input and hidden layers 
LW  = Weight between hidden and Output layers 
y   =  Output of BPN 
Wi  = Weight vector to RBF 
a  =  RBF output 

The RBF network is simulated by giving the output of BPN as input to RBF.  

6. Results and discussion 
The automatic ROP severity identification methodologies have been developed and 
implemented to analyze the various infant’s ROP images with different stages such as 
stage1, stage 2, and stage 3. Since, the stage 4 and stage 5 are highly critical and almost the 
retina has been detached as shown in Fig. 2, the images of theses stages have not been 

Optimized Imaging Techniques to Detect  
and Screen the Stages of Retinopathy of Prematurity 75 

considered for our present analysis and prediction and also these stages will not provide 
fruitful improvement in the vision system on treatment. All the images have been taken by 
Retcam and are available either in .bmp or .jpeg format with 640X480 sizes. The specific 
image enhancement and smoothening are obtained by the histogram approach and various 
filtering techniques such as averaging and median filter methods. The ROP image localizer 
and other image processing techniques have been implemented and the corresponding 
results for every stage have been obtained as shown in Fig. 8. The feature extraction and 
segmentation of the ROP images have been estimated by applying various operators and the 
exact stage could be identified by the curvature detection approach as shown in Fig. 9.  

Detecting pathological retina images in premature infants is a challenging problem. In the 
proposed methods, the various ROP severities have been identified properly by providing 
the images to the neural network classifier and recognizer. The results in   Table 2 show that 
our method is able to yield an accurate result and is appreciated by experts. The ROP 
intensity levels have been extracted in the images taken from various patients with 
appropriate time interval in terms of prognosis weeks. The ROP diagnosis and treatment are 
the continuous procedure and will extend minimum for a period of six months. Table 2 
shows the four weeks diagnosis of ROP images with various severities in various cases. 

 
Fig. 8. Processed gray scale images of stage 3 and plus diseased ROP, Image smoothened by 
Median filter, Binary filled holes, Canny Filtered Image, Dilated Gradient Mask  

 
Fig. 9. Processed ROP images such as Dilated Image, Eroded Image, Average Filtered Image, 
Median Filtered Image, and Segmented Image 

For the methodologies application, from each case we have considered 10 to 15 images of 
various locations of retinal portion and blood vessels development. Initial four weeks of 
ROP images have been deemed and the averaged ROP intensity level has been calculated by 
a mixture of image processing algorithms. The ROP images have been acquired for every 
case with corresponding time interval.  Follow-up exams will then occur every week until 
either high risk prethreshold ROP or threshold ROP occurs, which requires treatment, or 
procedure continues till the ROP disappears.  

The severity of ROP prognosis in various cases with appropriate time duration has been 
shown in Fig. 10. The proposed method detects the stage 1, Stage 2, stage 3 and plus disease 
ROP intensity levels and the result has been appraised by the ophthalmologists. Based on 
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The RBF network is simulated by giving the output of BPN as input to RBF.  

6. Results and discussion 
The automatic ROP severity identification methodologies have been developed and 
implemented to analyze the various infant’s ROP images with different stages such as 
stage1, stage 2, and stage 3. Since, the stage 4 and stage 5 are highly critical and almost the 
retina has been detached as shown in Fig. 2, the images of theses stages have not been 
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considered for our present analysis and prediction and also these stages will not provide 
fruitful improvement in the vision system on treatment. All the images have been taken by 
Retcam and are available either in .bmp or .jpeg format with 640X480 sizes. The specific 
image enhancement and smoothening are obtained by the histogram approach and various 
filtering techniques such as averaging and median filter methods. The ROP image localizer 
and other image processing techniques have been implemented and the corresponding 
results for every stage have been obtained as shown in Fig. 8. The feature extraction and 
segmentation of the ROP images have been estimated by applying various operators and the 
exact stage could be identified by the curvature detection approach as shown in Fig. 9.  

Detecting pathological retina images in premature infants is a challenging problem. In the 
proposed methods, the various ROP severities have been identified properly by providing 
the images to the neural network classifier and recognizer. The results in   Table 2 show that 
our method is able to yield an accurate result and is appreciated by experts. The ROP 
intensity levels have been extracted in the images taken from various patients with 
appropriate time interval in terms of prognosis weeks. The ROP diagnosis and treatment are 
the continuous procedure and will extend minimum for a period of six months. Table 2 
shows the four weeks diagnosis of ROP images with various severities in various cases. 

 
Fig. 8. Processed gray scale images of stage 3 and plus diseased ROP, Image smoothened by 
Median filter, Binary filled holes, Canny Filtered Image, Dilated Gradient Mask  

 
Fig. 9. Processed ROP images such as Dilated Image, Eroded Image, Average Filtered Image, 
Median Filtered Image, and Segmented Image 

For the methodologies application, from each case we have considered 10 to 15 images of 
various locations of retinal portion and blood vessels development. Initial four weeks of 
ROP images have been deemed and the averaged ROP intensity level has been calculated by 
a mixture of image processing algorithms. The ROP images have been acquired for every 
case with corresponding time interval.  Follow-up exams will then occur every week until 
either high risk prethreshold ROP or threshold ROP occurs, which requires treatment, or 
procedure continues till the ROP disappears.  

The severity of ROP prognosis in various cases with appropriate time duration has been 
shown in Fig. 10. The proposed method detects the stage 1, Stage 2, stage 3 and plus disease 
ROP intensity levels and the result has been appraised by the ophthalmologists. Based on 
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the analysis the treatment could be started and further follow-up examinations could be 
taken place in every week.  

The effectiveness of the proposed ROP localization technique and the ROP severity 
screening algorithm are demonstrated using the computer simulations. The processed ROP 
image database consists of 130 images for 13 different cases of infants. Out of 130 images, 65 
images have been taken for training the BPN and RBF networks. The training database has 
been stored for feature reference and further differentiation. The fine classification of 
various stages of ROP based on the severity could be acquired by modifying the stored 
features of various stages of ROP images. This is the very useful feature of automatic stage 
screening system using neural network. The number of epochs versus the squared error 
graph is shown in the Fig. 11. 

 
Fig. 10. Severity of ROP intensity distribution for different cases 
 

Severity of 
ROP Case Prognosis Period in Weeks

1 2 3 4 

Stage 1 1 3.58587 3.81205 4.82632 4.72649 
2 6.97861 6.39284 5.93572 5.92018 

Stage 2 
3 36.03182 36.61781 37.76183 37.82493 
4 33.52674 34.56846 34.01264 34.92073 
5 27.42039 29.21654 29.56214 24.54281 

Stage 3 

6 14.33021 14.3312 14.87012 14.88023 
7 13.86317 13.86245 13.78453 13.65245 
8 13.78317 12.89521 13.35481 12.8729 
9 12.62624 12.62434 12.34675 12.4392 

10 22.36995 22.33591 22.45786 20.38219 

Plus Disease 
11 34.22109 34.22109 34.45215 32.69103 
12 24.28109 22.62306 22.26518 22.35671 
13 20.10566 20.10566 20.24308 19.73859 

Table 2. Severity of ROP for various cases in proper time interval. 
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Then the Neural Networks are tested with the remaining various stages of ROP images. The 
BPN network predicts 3 cases indistinctly and provides erroneous classification for Stage2, 
Stage 4 and Stage 5. The combined model of BPN+RBF classifies and recognizes all the ROP 
images with proper stage classification except stage 2. The time consumption and the 
classification and recognition rate are tabulated in Table 3. 

 
Fig. 11. Error rate versus number of Epochs (BPN Training) 

  
  
Network 

Training+ Testing time
 (in seconds) 

Recognition Rate 
 (in %) 

BPN 15.5490 98.4 
BPN+RBF  15.5640 99.2 

Table 3. Comparison of BPN+RBF framework over BPN. 

The false positive and the false negative rates of BPN and BPN+RBF networks are listed in 
Table 4. 
 

 Network Number of Images False Classification False Dismissal 
BPN 130 3 0 
BPN+RBF  130 1 0 

Table 4. Results of the proposed method over the whole test set (BPN and BPN+RBF). 

From this result, the proposed model of combined BPN and RBF network has delivered 
better ROP classifiers and recognizers. The outcomes of this hybrid model have been 
evaluated by the experts and which may provide the best analysis of ROP severity. ROP 
severity screening depicts that some stages have rapid difference in its intensity levels in 
time duration and some have negligible levels of variation in its prognosis. Any how based 
on the intensity level, classification and recognition the physician could reach up a solution 
of the necessary method and time period to treat the disease. Then the treatment will reduce 
the prognosis of the disease and has to be verified every time. 
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7. Conclusion 
In this work, proper ROP screening system has been designed to carry out the classification 
and recognition of various severity and stages of ROP. Initially, Back Propagation Network 
(BPN) is used as the recognizer. The features extracted from the different image processing 
algorithms in Chapter 4 are given as the input to BPN. The implementation of zone fitting 
and further enhancement of ROP intensity level will produce predominant result. The 
method introduced here utilizes the well-known framework of commonly using imaging 
techniques which have provided the best ROP database for further processing such as 
classification and recognition. BPN is trained with a set of images and the weights are 
updated. After training, the features of the image has to be tested are given as input. The 
network is simulated using these input values and the result is obtained. The proposed 
method shows a good performance for stage 3 and plus disease images. The ratio of the 
number of images correctly identified the stage of ROP to the total number of images gives 
the recognition result.  

To enhance the performance of BPN, it is combined with RBF. RBF network can 
approximate any type of function. The output obtained from BPN is given as the input to 
RBF. RBF is simulated using this input and the output is acquired which is considered to be 
the Classification and recognition result. From the simulation results, it can be observed that 
the recognition rate of the combined BPN and RBF model is considerably high. The 
effectiveness of the proposed method has been demonstrated through experimentation 
using various ROP diseased cases. 

Still further improvement may be required for the precise classification and identification of 
stage 1 and stage 2. Since, it might be that the exact shape is unknown or it might be that the 
perturbation of that shape is impossible to parameterize (Huertas A. & Medioni G. 1986; 
Mokhtarian F. & Mackworth A. K. 1986; Committee for the Classification of Retinopathy of 
Prematurity,  1984 ; Cryotherapy for Retinopathy of Prematurity Cooperative Group, 1988). 
In these cases, we seek techniques that can evolve to the target solution, or adapt their result 
to the data. This implies the use of flexible shape formulations. The snake model could be 
used to identify the flexible formulations and the results of the same could be delivered to 
the neural network classifiers.  

In future we can combine the proposed methods and different implementations of the snake 
model to detect the flexible patterns. The wavelet based image fusion technique may also be 
utilized to produce better result in stage 1 and stage 2 classes of images. The ROP 
concentration will further be categorized and identified with image registration and fusion 
techniques. The artificial neural network algorithms may also be enhanced by Adaptive 
Resonance Theory (ART1) network and the Learning Vector Quantization (LVQ) network to 
train the system to produce better result and automation of ROP diagnosis in a successful 
manner. This ROP stage classification recognition system will also satisfy the prediction of 
stage 4 and stage 5 with better accuracy. The Graphical User Interface (GUI) based menu 
options will provide user friendly environment for non ophthalmologist so that the time 
consumption of ophthalmologists can be considerably reduced i.e. instead of analyzing all 
Retcam images they provide prominent diagnosis on the infants who have suffered with 
severe stage ROP. 
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1. Introduction

Small laboratory animals such as mice, rats and rabbits play important roles in the news drugs
development for human beings and in disease pathophysiology. Some examples include the
NC mouse used as the model of atopic dermatitis, and the WISTAR rats used as the model of
clinic depression in the forced swim test. However, the behaviors of small animals are usually
very fast and repetitive, and sometimes very difficult to observe by the naked eyes by other
common methods.

Laboratory mice are widely used as the model of human beings’ atopic dermatitis, whose
scratching behavior could be induced by itching. For the itching evaluation experiments in
animal models, automatic quantification system is needed for objective and accurate results.
Mouse scratching is the behavior of rapidly scratches its head or other parts by using its hind
leg. It is also known to be a model behavior of disorders as a major symptom of skin disease
such as atopic dermatitis and other types of dermatitis.

Mice’s scratching is also a periodic behavior inhibited at a frequency of more than 10 times/s,
and it is extremely difficult to detect such rapid movement accurately with the naked eye
or conventional video tracking system. Furthermore, scratching behavior also has to be
distinguished from other behaviors, such as grooming and rearing. Grooming is the mice
groom themselves with their teeth and claws. The usual grooming routine may involve a
mouse scratching itself with the hind feet, then perhaps washing its face or fur with its hands
(spreading saliva on the hands, and rubbing them over the fur), and grooming with the teeth.
Rearing is the mice standing up with hind legs and sometimes with exploration. Frequencies
of grooming and rearing are lower than scratching but also difficult for manual distinguishing
and duration time quantification.

Therefore, for an objective evaluation, it is important to perform the automatic quantification
of mice, thereby enabling drug developers to assess the grade of dermatitis and the efficacy of
new anti-pruritic drugs in laboratory animal experiments.

In this chapter, we describe a real-time mice scratching detection and quantification system
based on a specially designed high-speed vision system. Its recording and processing frame
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1. Introduction

Small laboratory animals such as mice, rats and rabbits play important roles in the news drugs
development for human beings and in disease pathophysiology. Some examples include the
NC mouse used as the model of atopic dermatitis, and the WISTAR rats used as the model of
clinic depression in the forced swim test. However, the behaviors of small animals are usually
very fast and repetitive, and sometimes very difficult to observe by the naked eyes by other
common methods.

Laboratory mice are widely used as the model of human beings’ atopic dermatitis, whose
scratching behavior could be induced by itching. For the itching evaluation experiments in
animal models, automatic quantification system is needed for objective and accurate results.
Mouse scratching is the behavior of rapidly scratches its head or other parts by using its hind
leg. It is also known to be a model behavior of disorders as a major symptom of skin disease
such as atopic dermatitis and other types of dermatitis.

Mice’s scratching is also a periodic behavior inhibited at a frequency of more than 10 times/s,
and it is extremely difficult to detect such rapid movement accurately with the naked eye
or conventional video tracking system. Furthermore, scratching behavior also has to be
distinguished from other behaviors, such as grooming and rearing. Grooming is the mice
groom themselves with their teeth and claws. The usual grooming routine may involve a
mouse scratching itself with the hind feet, then perhaps washing its face or fur with its hands
(spreading saliva on the hands, and rubbing them over the fur), and grooming with the teeth.
Rearing is the mice standing up with hind legs and sometimes with exploration. Frequencies
of grooming and rearing are lower than scratching but also difficult for manual distinguishing
and duration time quantification.

Therefore, for an objective evaluation, it is important to perform the automatic quantification
of mice, thereby enabling drug developers to assess the grade of dermatitis and the efficacy of
new anti-pruritic drugs in laboratory animal experiments.

In this chapter, we describe a real-time mice scratching detection and quantification system
based on a specially designed high-speed vision system. Its recording and processing frame
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rate is much higher than the video signal rate (NTSC 30 fps/PAL 25 fps). The developed
system can discriminate the scratching behavior from other behaviors, such as rearing and
grooming.

For evaluation, we show the performance of our developed system by experimental results
for several laboratory mice in long-time observation. The results also show the objectiveness
and accuracy. We estimated the detection correction ratio and compared the scratching times
of these mice.

2. State of the art

Laboratory mice scratching can be artificial induced by administering factors triggering
itching K. Kuraishi (1995). For scientific purpose, many experiments have been conducted
to evaluate mice scratching. These experiments involve the administration of the compound
48/80 R. C. Benyon (1986), histamine N. Inagaki (1999), and serotonin J. S. Thomsen (2002)
and acetone or ether painting on animals to induce a dry skin T. Miyamoto (2002). However,
all of these experiments have not been evaluated objectively because many of them relied on
manual detection which use naked-eye for observations.

In recent years, some automatic systems are also developed for the objective detection and
quantification of scratching. Inagaki et al. planted a metal marker under the skin of a
laboratory animal N. Inagaki (2003) and reported the benefits of MicroAct. It is a quantitative
scratching analysis system that utilizes magnetic field fluctuations when the metal marker
vibrates violently as a result of scratching. The marker methods are very invasive to animals,
and make it very difficult to obtain an objective result.

It is worth noting that we can consider similarity with human motion, since the vision
based human motion analysis has also been studied by many researchers T. B. Moeslund
(2006). To solve the inherent complexities in general activity recognition and classification,
hierarchical models, spatio-temporal features, temporally aligned pyramid matching and
many other advanced methods have been utilized Y. KYan (2007); J. C. Niebles (2007); D. Xu
(2008); S. Savarese (2008); L. Wang (2008).

However, there are inherent differences in small laboratory animals’ behaviors and primate’s
behaviors. The primate’s behaviors such as human activities are usually contain multiple
patterns and the motion is slow. For purpose, the human behavior recognition may be
used in surveillance, control, and analysis. However, small laboratory animals such as
mice or rats, are observed under constructed environments whose behaviors are usually
simplex, but sometimes high frequency and repetitive. Furthermore, small laboratory animal
behavior detection and quantification are mainly used for new drugs effect evaluation, and
the detection and quantification accuracy and high-throughput are mostly required. Thus the
analysis method should be different from human behaviors’.

To detect some periodic human motions, such as gaits characteristics extraction, quite a few
researches have been conducted A. Sundaresan (2003); X. Yang (2008); M. H. Cheng (2008).
These studies mainly focus on behavior recognition and classification, but all of them based
on 30 fps video images.
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Real-time automatic visual inspection (AVI) systems have also become widely used in
industries. Typical systems such as E. Guerra (2001); L. Zhang (2005) used the methods of
color space transform and three-dimensional techniques, respectively.

However, these systems are characterized by slow frame rates and low resolutions. A
high-speed inspection system presented in I. Ishii (2007) used the coded structured light
projection method, but it could not be a solution for behavior detection.

Elliott et al. have applied frequency analysis to a mouse’s motion data with a magnetic sensor
to extract scratching data G. R. Elliott (2000). However, one of the serious problems associated
with these systems is that a magnetic marker needs to be embedded under the skin of the
animal, thereby inducing stress.

Brash et al. have developed a quantifying system based on a sensitive force transducer
positioned below a recording platform, but it cannot distinguish the individual movements in
one series H. M. Brash (2005).

Umeda et al. have reported on an acoustic scratching counting system K. Umeda (2006). The
acoustic system eliminates the necessity of planting markers in animals; it requires a special
setting to eliminate sound noise because acoustic information is extremely sensitive.

Finally, SCLABA K. Orito (2004) is a vision-based automated scratching detection system. In
the SCLABA method, colored markers are painted on a mouse’s head and toe. Their positions
are extracted from offline 30 fps video images that are not sufficiently fast for accurate
recording of mice scratching. Hence, this system often inaccurately identifies non-scratching
movements as scratching; these include grooming and rearing that are slower than scratching.

3. Mice scratching detection algorithm based on frame-to-frame difference feature

3.1 Frame-to-frame difference feature

Mice scratching, at 10 times per second or more, is a very fast movement for the commonly
available 30 fps video cameras recording. Fig. 1 shows the sample images recorded at 30 fps
in 167 ms, and 240 fps in 21 ms.

Moreover, it is desirable for accurate quantification of mice scratching to detect scratching
patterns by image analysis without any markers on a mouse, because the plant or paint
markers on a mouse is difficult, and the markers themselves can affect the mouse’s behavior
and cause serious problems.

To solve these problems, a non-marker image analysis method has been proposed for
scratching detectionI. Ishii (2008). It is based on the fact that mice scratching involves
periodic movements of the motor components with a frequency higher than that observed
for movements associated with behaviors.

It’s assumed that the video camera employed had a frame rate that was sufficiently fast to
accurately capture the scratching movements. Then the mice scratching could be detected
by extracting high frequency motion components in frame-to-frame difference images. The
evaluation experiments of the proposed method demonstrated that the scratching detection
accuracy was considerably better than conventional analysis methods.
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Fig. 1. Mice scratching sample images.

However, several areas of improvement need to be investigated by laboratory mice
experiments. One of concern is that non-scratching behaviors that involves movements
of the entire body, such as rearing, is occasionally mistaken for scratching because whole
body movements generate high-frequency motion components. Further, the method has not
been implemented as a real-time and long-time detection system. The employed high-speed
camera is offline which can only record a short interval of 6.0 s. This is far from the
requirement of real application.

3.2 Mice scratching detection algorithm

In this chapter, we introduce an improved mice scratching detection algorithm for more
accurate quantification based on a high-speed vision system for calculating frame-to-frame
difference feature at real-time.

Especially we pay attention to the fact that when a mouse scratches, repetitive short-term
pulses are generated in frame-to-frame difference feature. A short-term pulses detection
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method is adopted for extracting scratching behaviors instead of frequency filtering. The
flowchart of our method is shown in Fig. 2 and it can be described as in the following.
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Fig. 2. Mice scratching detection algorithm.

1) binarization

The input image I(x, y, t) at time t is binarized to segment a silhouette image of a mouse from
background. Here θb is a threshold for binarization.

B(x, y, t) =
{

1 (I(x, y, t) > θb)
0 (otherwise)

. (1)

2) frame-to-frame difference
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2) frame-to-frame difference
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F(x, y, t) is calculated as the absolute value of the frame-to-frame differential images between
time t − a and t to extract the motion in the silhouette image. Here a is the time difference in
the differential images. If the mouse moves, the motion area could be observed in F(x, y, t).

F(x, y, t) = |B(x, y, t)− B(x, y, t − a)|. (2)

3) noise reduction by erosion

G(x, y, t) is calculated as a erosion image of F(x, y, t) to reduce edge or isolated noises. The
noise will appear in F(x, y, t) by fluctuated illumination even if there is no motion.

G(x, y, t) = F(x, y, t) ∩ F(x − 1, y, t) ∩ F(x, y − 1, t) . (3)

4) count the nonzero pixels

By counting the number of nonzero pixels in G(x, y, t) as a frame-to-frame difference feature,
the area of movement g(t) is quantified. The G(x, y, t) means whether there is motion or not
at each pixel.

g(t) = ∑
x

∑
y

G(x, y, t). (4)

5) pulse threshold

By thresholding g(t), Sg(t) are calculated as pulses. It shows whether there is motion or not at
time t. Here θc is a threshold to remove small-scale movements. Here, Fig.3 shows the detail
of pulse processing in 5)∼8).

Sg(t) =

{
1 (g(t) > θc)

0 (otherwise)
. (5)

6) short-term pulses detection

Cg(t) are extracted short-term pulses from Sg(t), which contain repetitive short-term pulses
generated in mice scratching and reject other large-scale or long-term pulses generated in
other mice movements. Here d(t) is a duration time of Cg(t) = 1 involving time t, and τ0 is a
threshold to reject long-term pulses.

Cg(t) =

{
1 (d(t) < τ0)

0 (otherwise)
. (6)

7) long-term duration detection Duration time is calculated to detect repetitive short pulses.
First, short intervals are compensated to make the repetitive pulses as a whole one. Here
duration time is a threshold interval to decide whether the repetitive pulses are compensated
as one pulse or not.
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Fig. 3. Pulse processing for scratching quantification.

C1g(t) =
{

1 (d(t) < τ1)
0 (otherwise)

. (7)

Here the scratching is judged when duration time is over than a threshold interval, supposing
that multiple short-term pulses exist in a certain interval when a mouse scratches. Then,
scratching time is extracted by reducing pulses with short duration times.

C2g(t) =
{

1 (d2(t) > τ2)
0 (otherwise)

. (8)

8) scratching time quantification The total scratching time Tscr(t1; t2) between t = t1 and t2 is
counted by integrating the time of C2g(t) = 1, because we can suppose C2g(t) contain only
repetitive short-term pulses related to mice scratching.

Tscr(t1; t2) =
∫ t2

t1

C2g(t)dt. (9)
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scratching time is extracted by reducing pulses with short duration times.

C2g(t) =
{

1 (d2(t) > τ2)
0 (otherwise)

. (8)

8) scratching time quantification The total scratching time Tscr(t1; t2) between t = t1 and t2 is
counted by integrating the time of C2g(t) = 1, because we can suppose C2g(t) contain only
repetitive short-term pulses related to mice scratching.

Tscr(t1; t2) =
∫ t2

t1

C2g(t)dt. (9)
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4. Real-time scratching quantification system

Based on the scratching detection algorithm, a mice scratching quantification system for
real-time and long-time observation is developed. It can quantify the behaviors of a mouse in
a cage without painting markers on it by calculating frame-to-frame differential feature on a
specially designed high-speed vision system INCS1020.

Fig. 4 shows the measurement set-up: the mouse is enclosed in a transparent acrylic cage with
dimensions of 12 cm × 12 cm. The high-speed vision system INCS1020 is installed at a height
of 50 cm from the bottom of the cage. On the background of the transparent cage, we set an IR
flat illuminator IR95-DF from CCS Corporation from Japan, and the dimensions of 30 cm ×
30 cm are larger than those of the bottom of the cage. The peak wavelength in the illuminator
is 950 nm. By introducing the background illuminator, the clear silhouette images of a mouse
can be captured regardless of the kind of mouse. This system also has a feature that adopt to
dark night experimental condition as well as day light condition for scratching quantification,
because a mouse has no vision to the IR light.
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Fig. 6. Internal configuration of INCS1020.

Size 60 mm×60 mm×160 mm
Weight 450 g
Imager Micron MT9V403
Imager Size 659 × 494 pixels
FPGA LSI Xilinx XC2VP100
Processing rate/Resolution 640 × 480 pixels @120 fps

640 × 400 pixels @240 fps
Processed image feature frame-to-frame difference feature
Video signal NTSC 1ch
Lens mount 1/2 inch, C/CS mount
Network 100Base-TX

Table 1. Specification of INCS1020.

INCS(Intelligent Network Camera System)1020 is a high-speed vision system. It is specially
designed for calculating frame-to-frame difference feature for mice scratching.
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designed for calculating frame-to-frame difference feature for mice scratching.
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Fig. 5 shows the images of INCS1020. INCS1020 is configured by four internal functional
boards, i) image sensor board (IMGR board), ii) main processing board(FPGA board), iii)
Image Output board(NTSC board), and iv) Interface board(CPUL board) as shown in Fig. 6.

The IMGR board has a CMOS imager MT9V403 from Micron Technology Inc., and the size
is 659 × 494 pixels.10 bit gray-level video images of 640 × 480 pixels at 240 fps or 640 × 480
pixels at 120 fps can be transmitted from the IMGR board to the FPGA board.

The FPGA board has a FPGA LSI XC2VP100 of Xilinx and frame memories for image
processing that requires image size computation as hardware logics. The processing results
are transmitted to the NTSC board and the CPUL board.

The FPGA board can calculate frame-to-frame difference feature as described subprocessings
Eqs. (1)∼(4) for 640 × 400 pixels image at 240 fps or 640 × 480 pixels at 120 fps.

The NTSC board outputs monitor images to a NTSC video signal output, which can be
selected from an original 10 bit image, a binarized image, or a frame differential image.
The CPUL board has a LAN device and CPU for network communication between external
personal computers(PCs), which can send frame-to-frame difference features to external PC
and control the FPGA board by using setting parameters sent from the external PC.

Then, an external PC can obtain frame-to-frame difference features and send several setting
parameters of INCS1020 by using network connection. Here API functions library is available
for parameter settings and data transmission to control INCS1020, which works on Windows
XP/Vista and Windows 7 both 32 bit and 64 bit.

The specification of INCS1020 are listed in Table 1.

5. Experimental results

We quantified scratching in the behavior of 4 laboratory mice, namely, ICR1, ICR2, ICR3, and
ICR4. The laboratory mouse we used was the ICR mouse which is a Swiss mouse that is
widely used in oncological and pharmaceutical research as well as in studies associated with
atopic dermatitis.

All the 4 ICR mice were administered with 100 mg of compound 48/80 in the heads to induce
frequent scratching. Then they were placed the cage without any further treatment. Then the
frame-to-frame difference was calculated on INCS1020 for 20 min for each ICR mouse, and
the processed images had 640 × 400 pixels recorded at a frame rate of 240 fps. Duration time
of each experiment is 20 min.

In these experiments, parameters were set as follows: the threshold for gray-level video image
binarization, θb, was adjusted for each mouse; the maximum value is 255, and the threshold
value range is 150±30. The frame rate is set at 240 fps, thus the time difference a in the frame
differencing of two consecutive frames is 4.2 ms.

For scratching behavior detection, parameters are suggested by experienced experts: the
threshold for removing small scale movements, θc, was 55 pixels; the threshold for rejecting
long-term pulse, τ0, was 21 ms; the threshold interval for combined pulses, τ1, was 83 ms; and
the threshold for reducing short duration pulses, τ2, was 208 ms. All the parameters except θb
were applied to all the 4 experimental ICR mice.
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No. sc→no gr→sc re→sc oth→sc scr corr
1 0.0 10.3 5.3 0.0 205.3 0.92
2 16.7 0.0 16.8 3.4 461.5 0.92
3 30.4 0.0 5.3 0.0 734.0 0.95
4 0.0 3.0 0.0 0.0 377.0 0.99

Table 2. Evaluation for scratching quantification (unit: s).

Fig. 7 shows the 1-min analysis result from t = 2 to 3 during the 20-min observation for
ICR1: (a) shows the frame-to-frame difference g(t); (b) shows the pulse Sg(t) that determines
the presence or absence of motion; (c) shows the pulse Cg(t) that indicates the automated
detection result for scratching; and (d), shows the manual naked-eye observation results for
scratching, grooming, and rearing.

The start time of this experiment was set to t = 0. The data in 1 min contained 5 periods of
scratching, 1 period of grooming, and several periods of rearing, as shown in Fig. 7(d).
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Fig. 7. Scratching detection result (ICR1, 1 min).
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Fig. 7. Scratching detection result (ICR1, 1 min).
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Fig. 8. Typical behaviors of an ICR mouse.
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Fig. 9. Detection results for scratching (ICR1, 1 s).

Here, “grooming" refers to the actions of licking the fore and hind legs, back, belly, groin, etc.
“Rearing" refers to the mouse action of standing on the hind legs with the forefeet touching a
wall. The snapshots of these typical behaviors are displayed in Fig. 8.

To understand the principle underlying the working of our scratching detection algorithm, we
also show a magnified graph in 1 s with regard to scratching, grooming, and rearing. Fig. 9
shows the detection result for scratching for the duration t = 2m05s40 to 2m06s40, Fig. 10
exhibits the result for grooming for the duration t = 2m00s30 to 2m01s30, and Fig. 11 exhibits
the results for rearing for the duration t = 2m39s60 to 2m40s60. In all the graphs, (a), (b), and
(c) indicate g(t), Sg(t), and Cg(t), respectively.

In Fig. 9, scratching 6 times or more within 1 s generates repetitive short-term pulses in Sg(t),
and the scratching duration in Cg(t) is detected as the pulse from t = 2m05s64 to 2m06s15. In
Fig. 10, no pulse is detected in Sg(t) and no scratching duration is revealed in Cg(t), although
there are repetitive movements.This is because the value of g(t) is not greater than θc. In
Fig. 11, g(t) values are higher than those for θc due to the whole body movement of the mouse
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Fig. 10. Detection results for grooming (ICR1, 1 s).

during rearing. The pulses generated in Sg(t) are mostly long term. However, no scratching
duration is discovered in Cg(t) because most of the pulses are rejected during short-term pulse
detection.
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Fig. 11. Detection results for rearing (ICR1, 1 s).
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Fig. 12. Scratching detection results (ICR1, 20 min).
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Fig. 13. Quantified scratching times.

Fig. 12 displays the result for the entire duration of the analysis from t = 0m00s00 to 20m00s00
for ICR1. For clear exhibition, part (I) and part (II) show the result for each 10 min. Here,
(a), (b), and (c) indicate g(t), Sg(t), and Cg(t), respectively; (d) shows the manual naked-eye
observation results for scratching, grooming and rearing.

The accuracy of scratching detection is evident on comparing Fig. 7 (c), Fig. 12 (c) with Fig. 7
(d), Fig. 12 (d) . The automated scratching detection result Cg(t) in (c) corresponds to the
manual scratching detection result in (d).

The manual detection results contain other behaviors such as grooming and rearing. These
non-scratching behaviors can interfere with the detection of scratching. However, in the
automatic detection results Cg(t), only scratching are abstracted by the proposed algorithm.

Table 2 shows the evaluation for scratching quantification in the behaviors of 4 laboratory
mice. No.1, 2, 3, 4 correspond to ICR1, 2, 3, 4, respectively. The abbreviations used in the
tables are listed in the following: (1) sc→no: the time when scratching motion is detected as
non-scratching motion, (2) gr→sc: the time when grooming is misdetected as scratching, (3)
re→sc: the time when rearing is misdetected as scratching, (4) oth→sc: the time when other
behaviors are misdetected as scratching, (5) scr: manually observed result of total scratching
duration time, we considered as the actual scratching time. (6) corr: correctness ratio of the
scratching detection.

From Table 2, we could compare the behavior difference of each mouse and calculate the
correctness ratio of scratching detection. The ICR1 mouse is active at grooming and rearing,
and for duration of 15.6 s of these behaviors was misdetected as scratching. Thus, the
correctness ratio of ICR1 experiment is 92.4%. The ICR2 and ICR3 mice are particularly active
moving and scratching. Their total scratching times are up to 461.5 s and 734.0 s, while their
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Fig. 12 displays the result for the entire duration of the analysis from t = 0m00s00 to 20m00s00
for ICR1. For clear exhibition, part (I) and part (II) show the result for each 10 min. Here,
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non-scratching motion, (2) gr→sc: the time when grooming is misdetected as scratching, (3)
re→sc: the time when rearing is misdetected as scratching, (4) oth→sc: the time when other
behaviors are misdetected as scratching, (5) scr: manually observed result of total scratching
duration time, we considered as the actual scratching time. (6) corr: correctness ratio of the
scratching detection.

From Table 2, we could compare the behavior difference of each mouse and calculate the
correctness ratio of scratching detection. The ICR1 mouse is active at grooming and rearing,
and for duration of 15.6 s of these behaviors was misdetected as scratching. Thus, the
correctness ratio of ICR1 experiment is 92.4%. The ICR2 and ICR3 mice are particularly active
moving and scratching. Their total scratching times are up to 461.5 s and 734.0 s, while their
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total misdetection times are 39.1 s and 35.7 s, respectively. The correctness ratio of ICR2 and
ICR3 are 92.0% and 95.1%, respectively. Here, we ignore the counteraction of sc→no with
other misdetections, which may help to increase the correctness ratio. The ICR4 mouse likes
grooming and scratching, and the scratching motion is more “standard" than that of the other
3 mice. Thus, misdetection occurred for only 3.0 s from grooming to scratching during the
total 377.0 s scratching time. Thus, the correctness ratio of ICR4 is as high as 99.2%.

In our experiments, the correctness ratios vary from 92.0% to 99.2%, and the mean is 94.7%.
We consider it is sufficiently high for most quantification requirements.

The scratching times for all 4 ICR mice are quantified in Fig. 13, where the bar graphs indicate
scratching times Tscr/min. It confirmed that the mice scratching duration times are quantified
as numerical values, even in real-time and long-time observation.

Results of these experiments also demonstrate that the proposed method is objective and
accurate. The developed system has the ability to automatically detect mice scratching, even
in long periods of observation such as 20 min or even longer.

6. Conclusions

In this chapter, we have developed a real-time scratching behavior quantification system
for laboratory mice; for this purpose, we introduced a specially designed high-speed vision
system that can calculate the frame-to-frame difference for a 640 × 400 pixel image at a rate
of 240 fps. An improved scratching quantification algorithm is implemented in the system
and demonstrated experiment for detecting scratching behavior for 20 min in 4 ICR mice. The
analysis results demonstrate the system’s effectiveness with regard to accurate mice scratching
quantification for real-time and long-time observation.

For next step, the current method will be improved and an automated system will be
developed for objective and quantitative evaluations of laboratory animal behaviors for
practical use such as the development of new drugs for various diseases including atopic
dermatitis.
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T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based human
motion capture and analysis,” Computer Vision and Image Understanding, vol. 104,
no. 2-3, pp. 90–126, Nov. 2006.

Y. Ke, R. Sukthankar, and M. Hebert, “Spatio-temporal Shape and Flow Correlation for Action
Recognition,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, July,
2007.

J. C. Niebles and L. Fei-Fei. “A hierarchical model of shape and appearance for human action
classification,” IEEE Computer Vision and Pattern Recognition, no.17-22, pp. 1–8, June.
2007.

D. Xu and S. F. Chang. “Video Event Recognition Using Kernel Methods with Multilevel
Temporal Alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence
archive, vol. 30, no. 11, pp. 1985–1997, November. 2008.

S. Savarese, A. D. Pozo, J. C. Niebles and L. Fei-Fei, “Spatial-temporal correlations for
unsupervised action classification,” IEEE Workshop on Motion and Video Computing,
Copper Mountain, Colorado, 2008.

L. Wang and D. Suter, “Visual learning and recognition of sequential data manifolds
with applications to human movement analysis,” Computer Vision and Image
Understanding, vol. 110, no. 2, pp. 153–172, May. 2008.

A. Sundaresan, A. R. Chodhury, and R. Chellappa, “A hidden markov model based
framework for recognition of humans from gait sequences,” International Conference
on Image Processing, vol. 2, 2003, pp. 93–96.

X. Yang, Y. Zhou, T. Zhang, G. Shu and J. Yang, “Gait recognition based on dynamic region
analysis,” Signal Processing, vol. 88, no. 9, pp. 2350–2356, Sept. 2008.

M. H. Cheng, M. F. Ho, and C. L Huang, “Gait analysis for human identification through
manifold learning and HMM,” Pattern Recognition, vol. 41, no. 8, pp. 2541–2553, Aug.
2008.

E. Guerra, J. R. Villalobos, “A three-dimensional automated visual inspection system for SMT
assembly,” Computer and Industrial Engineering, vol. 40, pp. 175–190, 2001.

L. Zhang, A. Dehghani, Z. Su, T. King, B. Greenwood, M. Levesley, “Real-time automated
visual inspection system for contaminant removal from wool,” Real-Time Imaging,
vol. 11, pp. 257–269, June. 2005.

I. Ishii, K. Yamamoto, K. Doi, and T. Tsuji, “High-Speed 3D Image Acquisition Using Coded
Structured Light Projection,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 925–930, 2007.

G. R. Elliott, R. A. Vanwersch, and P. L. Bruijnzeel, “An automated method for registering
and quantifying scratching activity in mice: use for drug evaluation,” Journal of
Pharmacological and Toxicological Methods, vol. 44, pp. 453–459, Nov. 2000.

97Automatic Scratching Analyzing System for Laboratory Mice: SCLABA-Real



16 Will-be-set-by-IN-TECH

total misdetection times are 39.1 s and 35.7 s, respectively. The correctness ratio of ICR2 and
ICR3 are 92.0% and 95.1%, respectively. Here, we ignore the counteraction of sc→no with
other misdetections, which may help to increase the correctness ratio. The ICR4 mouse likes
grooming and scratching, and the scratching motion is more “standard" than that of the other
3 mice. Thus, misdetection occurred for only 3.0 s from grooming to scratching during the
total 377.0 s scratching time. Thus, the correctness ratio of ICR4 is as high as 99.2%.

In our experiments, the correctness ratios vary from 92.0% to 99.2%, and the mean is 94.7%.
We consider it is sufficiently high for most quantification requirements.

The scratching times for all 4 ICR mice are quantified in Fig. 13, where the bar graphs indicate
scratching times Tscr/min. It confirmed that the mice scratching duration times are quantified
as numerical values, even in real-time and long-time observation.

Results of these experiments also demonstrate that the proposed method is objective and
accurate. The developed system has the ability to automatically detect mice scratching, even
in long periods of observation such as 20 min or even longer.

6. Conclusions

In this chapter, we have developed a real-time scratching behavior quantification system
for laboratory mice; for this purpose, we introduced a specially designed high-speed vision
system that can calculate the frame-to-frame difference for a 640 × 400 pixel image at a rate
of 240 fps. An improved scratching quantification algorithm is implemented in the system
and demonstrated experiment for detecting scratching behavior for 20 min in 4 ICR mice. The
analysis results demonstrate the system’s effectiveness with regard to accurate mice scratching
quantification for real-time and long-time observation.

For next step, the current method will be improved and an automated system will be
developed for objective and quantitative evaluations of laboratory animal behaviors for
practical use such as the development of new drugs for various diseases including atopic
dermatitis.

7. References

Y. Kuraishi, T. Nagasawa, K. Hayashi, and M. Satoh, “Scratching behavior induced
by pruritogenic but not algesiogenic agents in mice,” Eur J Pharmacol vol.275,
pp.229–233, Mar.1995.

R. C. Benyon, M. K. Church, L. S. Clegg, and S. T. Holgate, “Dispersion and characterization of
mast cells from human skin,” International Archives of Allergy and Immunology, vol. 79,
pp. 332–334, 1986.

N. Inagaki, N. Nakamura, M. Nagao, K. Musoh, H. Kawasaki, and H. Nagai, “Participation of
histamine H1 and H2 receptors in passive cutaneous anaphylaxis-induced scratching
behavior in ICR mice,” European Journal of Pharmacology, vol. 367, pp. 361–371, Feb.
1999.

J. S. Thomsen, L. Simonsen, E. Benfeldt, S. B. Jensen, and J. Serup, “The effect of topically
applied salicylic compounds on serotonin-induced scratching behaviour in hairless
rats,” Clin Exp Dermatol, vol. 11, pp. 370–375, Aug. 2002.

96 Human-Centric Machine Vision Automatic Scratching Analyzing System for Laboratory Mice: SCLABA-Real 17

T. Miyamoto, H. Nojima, T. Shinkado, T. Nakahashi, and Y. Kuraishi, “Itch-associated
response induced by experimental dry skin in mice,” The Japanese Journal of
Pharmcology, vol. 88, pp. 285–292, Mar. 2002.

N. Inagaki, K. Igeta, N. Shiraishi, J. F. Kim, M. Nagao, N. Nakamura, and H. Nagai,
“Evaluation and characterization of mouse scratching behavior by a new apparatus,
MicroAct,” Skin Pharmacology and Applied Skin Physiology, vol. 16, no. 3, pp. 165–175,
May 2003.
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1. Introduction 
The concept of Machine Vision (MV) originates in the early 1950’s and practical MV 
applications appeared in the early 1980’s. Early theoretical work suggested serious 
limitations in computational abilities as the main reason for inefficient use of MV. MV is a 
‘simple’ processing system which receives and combines signals from cameras by 
manipulating images at the pixel level to extract information that can be used in a decision 
making activity to produce the output required. MV has several advantages over systems 
utilising conventional technologies. The attention span of human operators is relatively 
short (Butler, 1980). Camera images are detailed and therefore contain a large amount of 
information. This combined with the computer power available provides a huge potential 
for MV applications. The chapter will provide an overview on the developments and 
historical evolution of the concept of MV applications. This chapter will concentrate on MV 
application to automatic detection of objects with ill defined shape, size, and colour with 
high variability. Objects that change with time have no fixed structure; can present extra 
problems on application of automatic detection using MV. For this type of application, 
current manual detection requires highly specialised and highly trained operators. The 
application of MV will facilitate the detection of these objects with the advantage of fast 
response. It is easy to use, cost effective with consistent and reliable results. The detection of 
micro-organisms and the detection of suspicious activity in humans fall into this category. 
The first example examines development of an automatic system for microscopic 
examination of the recovered deposit for the detection and enumeration of the 
microorganism Cryptosporidium. The second example addresses the application of MV to 
the task of intruder monitoring within the context of visual security systems. The chapter 
will present these two applications to illustrate problems encountered in this type of 
detection. 

In section 2, the chapter presents a general overview of MV applications and discusses some 
problems associated with the application of MV to objects of high variability. Section 3 will 
present software architecture of a MV application and its characteristics.  Section4 will 
discuss MV application to variable objects. Section 5 concentrates on two problems 
associated with this type of application: focus control and error due to changes in 
illumination conditions. In section 6 AI implementation is discussed and in section 7 Two 
MV application examples of detection of highly variable objects as are presented. 
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2. An overview of MV applications 
Computer-based vision and automation tools are used in a wide variety of industrial and 
scientific applications, including electronics, automotive, semiconductor, pharmaceutical, 
and research applications. These systems perform process monitoring, information 
gathering, and “on-the-fly” feedback/control to correct manufacturing problems. Research 
and development into machine vision can be traced back for more than 30 years. The impact 
of new technologies in machine vision, as well as the historical evolution of this concept can 
be extracted from published papers in journal, conferences and industrial applications. This 
field is highly explored at the moment. Table 1 include a list where the generic terms 
identifying MV applications of more than 10 applications have been implemented; there is a 
vast potential for applications in variety of topics. A search in BIDS (BIDS 2011) database, 
using “MACHINE VISION” as keywords revealed 73,773 published articles covering the 
period 1952 to 2011. Of those 73,773 publications found not all present relevance to 
application of MV and most of them cover image processing in general term. 
 

Acoustics Food science Oceanography Robotics Dermatology 
Agriculture Forestry Oncology Sociology Education 
Anatomy Internal medicine Ophthalmology Spectroscopy Engineering 
Astronomy Genetics Optics Surgery Media studies 
Biochemistry Geography Pathology Telecommunications Gastroenterology 
Business Geology Pharmacy Toxicology Geochemistry 
Cardiology Gerontology Physiology Transportation Health care 
Chemistry Immunology Plant science Veterinary Photography 
Communication Infections Polymers Zoology Material science 
Biology Instrumentation Psychology Control systems Mathematics 
Education Mechanics Nuclear medicine Behavioural science Microscopy 
Electrochemistry Metallurgy Rehabilitation Biophysics Management 
Energy & fuels Mining Remote sensing Microbiology Evolutionary 

biology 
Entomology Neurology Reproduction Economics Surgery 
environment dietetics Respiratory 

system 
Cell biology Library science 

Table 1. Subject areas with more than 10 MV applications 

The early papers refer in general to the idea of image processing and pattern recognition in 
general terms. A more refined search in BIDS database, using “MACHINE VISION 
APPLICATIONS” as keywords revealed 1,042 published articles covering the period 1984 to 
2010. Figure 1 shows a graph of the number of applications over a 5 years period between 
1980 and 2010.  

The graph shows a steady increase in the number of applications. In the first 5 years there 
was an increase from 12 applications in late 1980’s to 83 applications in the early 1990’s 
indicating a 7 fold increase.  Since its introduction MV has seen an explosion in the number 
of applications. In the first 10 years the number of application had increased of about 30 
times. In general the steady increase in the number of application is due to the increase in 
computing power, new and better image processing algorithms, better quality in acquisition 
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of images (hardware) and reliability of Artificial Intelligent (AI) tools. To illustrate the 
problems of the detection of living/variable objects from the search in BIDS database the 
articles were classified according to the type of application algorithms/technology. This 
classification is presented in table 2. By sorting these articles according to the different 
algorithms/technology used, a general impression on the technology achievements can be 
approximated. This also provides information of expected development on the MV 
application. 

 
Fig. 1. Number of MV applications between 1980 and 2010. 
 

Field MV Applications % 
General (theoretical) algorithms or technologies 158 15.16% 
Industry related applications 259 24.85% 
Control, Instrumentation 124 11.90% 
Optics, Robotics, computer science 159 15.26% 
Microorganisms, Living cells, variable shape objects 54 5.18% 
Agriculture, Food Industry 135 12.96% 
Flight Control, Car Control, Automatic Tracking, Traffic 
Safety 87 8.35% 

Textile, Leather, Jewellery 66 6.33% 

Table 2. Research Statistics MV applications period 1980-2010 

The vast majority of the research and application in the field of Machine Vision is found in 
the development of general algorithms. The needs of industry strongly influence the type of 
algorithms developed. The industry generally demands algorithms specialised in pattern 
recognition, especially algorithms tolerant to lighting variance and partial (dust) occlusion, 
and occasionally to changes in size (scaling). The industry’s demand for gauging application 
encourages also the development of sophisticated edge detection algorithms, using sub-
pixel accuracy (Hanks, 1998). This is also the main reason why powerful Vision Software 
development platforms such as IMAQ from National Instruments, Visilog from Norpix or 
PatMAX from Cognex Corporation, (these being just a few examples) appear on the market. 
The main benefit that these development environments have provided is that it is no longer 
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2. An overview of MV applications 
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Entomology Neurology Reproduction Economics Surgery 
environment dietetics Respiratory 
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The graph shows a steady increase in the number of applications. In the first 5 years there 
was an increase from 12 applications in late 1980’s to 83 applications in the early 1990’s 
indicating a 7 fold increase.  Since its introduction MV has seen an explosion in the number 
of applications. In the first 10 years the number of application had increased of about 30 
times. In general the steady increase in the number of application is due to the increase in 
computing power, new and better image processing algorithms, better quality in acquisition 

 
Machine Vision Application to Automatic Detection of Living Cells/Objects 

 

101 

of images (hardware) and reliability of Artificial Intelligent (AI) tools. To illustrate the 
problems of the detection of living/variable objects from the search in BIDS database the 
articles were classified according to the type of application algorithms/technology. This 
classification is presented in table 2. By sorting these articles according to the different 
algorithms/technology used, a general impression on the technology achievements can be 
approximated. This also provides information of expected development on the MV 
application. 

 
Fig. 1. Number of MV applications between 1980 and 2010. 
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Table 2. Research Statistics MV applications period 1980-2010 
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the development of general algorithms. The needs of industry strongly influence the type of 
algorithms developed. The industry generally demands algorithms specialised in pattern 
recognition, especially algorithms tolerant to lighting variance and partial (dust) occlusion, 
and occasionally to changes in size (scaling). The industry’s demand for gauging application 
encourages also the development of sophisticated edge detection algorithms, using sub-
pixel accuracy (Hanks, 1998). This is also the main reason why powerful Vision Software 
development platforms such as IMAQ from National Instruments, Visilog from Norpix or 
PatMAX from Cognex Corporation, (these being just a few examples) appear on the market. 
The main benefit that these development environments have provided is that it is no longer 
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necessary to spend long time developing routine algorithms for image processing.  
Algorithms such as threshold, image manipulation, spatial filtering, Binary Large Object 
(BLOB) analysing, edge detection, etc. are ready available.  A vision engineer can 
concentrate on the development of the specific algorithms for each application. Also the 
management of Operating System related tasks are easier to handle and thus time saving. 
The movement of computer vision from the “experimental technology” category into 
industry-strength mainstream applications provides another benefit: the amount of research 
undertaken in the development of more powerful equipment for image acquisition is 
increasing, colour cameras with mega-pixel resolutions being widely available this days. 
The lighting system for machine vision is continuously evolving, different solutions being 
available with respect to the application demand (Braggins, 2000) e.g. Reflective Surfaces, 
Undulating Surfaces, Moving Parts. The fourth place in Machine Vision development of 
algorithms is taken by the agriculture and food industry (13%). The vast majority of these 
algorithms involve particle sorting e.g. Grain, Olives, Apples, etc or quality tests. This 
sorting is usually done using BLOB analysis, but advanced algorithms such as combining 
specific morphological and colour characteristics (Luo et al., 1999) can be found in this field 
and used for other applications. The algorithms involved in Flight Control, Car Control, 
Automatic Tracking, and Traffic Safety are usually highly specialized for these fields and are 
appearing with more frequency. This also applies for algorithms involving texture 
analysing, developed for textile and leather industry. 

The research undertaken in the field of living cells/variable objects represents a total of only 
5.18% of the total machine vision applications. The main reason for this low number of 
applications is the fact that the living cells are not size and shape invariant. On the contrary, 
the size, shape and sometimes even the colour vary during their life cycle. Hence a really 
large number of factors have to be taken into consideration when designing a machine 
vision application in this field. Also in terms of automatic classification the amount of 
artificial intelligence embedded in these applications is relatively complex and high. The "If-
Then, "True-False" logic is usually not suitable, and a different, more advanced approach is 
needed e.g. Fuzzy Logic, Neural Networks. The intelligence embedded in these applications 
is relatively high; however the results can be impressive. The application of machine vision 
to detect this type of objects presents the problems associated with the physical variance of 
living cells and requires the development of specialized algorithms. 

3. Machine vision software architecture   
A proposed architecture may include a block to control the camera/microscope and a block 
to control the image acquisition required to control the hardware. Ideally all controls should 
be done automatically.  The system requires an image processing block with the required 
image processing algorithms to manipulate and analyse images according to the application.  
The algorithms will extract information required to provide an output for decision from the 
system. In many cases the MV should take a decision without human intervention but with 
the aid of an AI application section. The AI block will add computer capability to the MV 
system that exceeds human performance in some cases. A MV’s software architecture 
should include all the elements presented in block diagram in figure 2. The MV should 
provide a way of informing users of the results. The communications block allows 
information to be provided in various forms/formats including remotely to any place 
required.  
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Fig. 2. Machine Vision Software Architecture   

All blocks are accessed and organised by the Application Layer (AL), the MV incorporates a 
Graphical User Interface, providing access to an operator or expert to analyze/confirm 
results if required.  

The MV system presented in figure 2 includes all the features and control algorithms 
required by a MV application. The AI decision section is tailored to a particular application. 

4. MV application to variable objects 
To establish a MV application to variable objects it is necessary to consider the general 
characteristics of the environment in which the MV will operate.  

• in which hierarchy the MV will be used (decision making, alarm, identification...).  
• application type. It can range from very complex systems with a lot of different 

information required to be extracted from images to simple applications with easy 
application.  

• frequency of application (mass samples, batch or single analysis). 
• level of MV automation (manual, semi automatic, automatic, mixed system). 



 
Human-Centric Machine Vision 

 

102 

necessary to spend long time developing routine algorithms for image processing.  
Algorithms such as threshold, image manipulation, spatial filtering, Binary Large Object 
(BLOB) analysing, edge detection, etc. are ready available.  A vision engineer can 
concentrate on the development of the specific algorithms for each application. Also the 
management of Operating System related tasks are easier to handle and thus time saving. 
The movement of computer vision from the “experimental technology” category into 
industry-strength mainstream applications provides another benefit: the amount of research 
undertaken in the development of more powerful equipment for image acquisition is 
increasing, colour cameras with mega-pixel resolutions being widely available this days. 
The lighting system for machine vision is continuously evolving, different solutions being 
available with respect to the application demand (Braggins, 2000) e.g. Reflective Surfaces, 
Undulating Surfaces, Moving Parts. The fourth place in Machine Vision development of 
algorithms is taken by the agriculture and food industry (13%). The vast majority of these 
algorithms involve particle sorting e.g. Grain, Olives, Apples, etc or quality tests. This 
sorting is usually done using BLOB analysis, but advanced algorithms such as combining 
specific morphological and colour characteristics (Luo et al., 1999) can be found in this field 
and used for other applications. The algorithms involved in Flight Control, Car Control, 
Automatic Tracking, and Traffic Safety are usually highly specialized for these fields and are 
appearing with more frequency. This also applies for algorithms involving texture 
analysing, developed for textile and leather industry. 

The research undertaken in the field of living cells/variable objects represents a total of only 
5.18% of the total machine vision applications. The main reason for this low number of 
applications is the fact that the living cells are not size and shape invariant. On the contrary, 
the size, shape and sometimes even the colour vary during their life cycle. Hence a really 
large number of factors have to be taken into consideration when designing a machine 
vision application in this field. Also in terms of automatic classification the amount of 
artificial intelligence embedded in these applications is relatively complex and high. The "If-
Then, "True-False" logic is usually not suitable, and a different, more advanced approach is 
needed e.g. Fuzzy Logic, Neural Networks. The intelligence embedded in these applications 
is relatively high; however the results can be impressive. The application of machine vision 
to detect this type of objects presents the problems associated with the physical variance of 
living cells and requires the development of specialized algorithms. 

3. Machine vision software architecture   
A proposed architecture may include a block to control the camera/microscope and a block 
to control the image acquisition required to control the hardware. Ideally all controls should 
be done automatically.  The system requires an image processing block with the required 
image processing algorithms to manipulate and analyse images according to the application.  
The algorithms will extract information required to provide an output for decision from the 
system. In many cases the MV should take a decision without human intervention but with 
the aid of an AI application section. The AI block will add computer capability to the MV 
system that exceeds human performance in some cases. A MV’s software architecture 
should include all the elements presented in block diagram in figure 2. The MV should 
provide a way of informing users of the results. The communications block allows 
information to be provided in various forms/formats including remotely to any place 
required.  

 
Machine Vision Application to Automatic Detection of Living Cells/Objects 

 

103 

GUI Graphical User Interface 

AL Applica�on Layer 

Hardware Control Detec�on Algorithms Communica�on c 
a 
l 
i 
b 
r 
a 
t 
i 
o 
n 

A 
u 
t 
o 
 
F 
o 
c 
u 
s 
 
C 
o 
n 

t 

r 

o 

l 

Stage Control 

Lens Control 

Filter Control 

Illumina�on Control 

Image Acquisi�on 
Control 

Flat 
Field 
Corre
c�on 

Camera Drivers 

RGB LUT 
Correc�ons 

Digital Storage of Samples 

Common Image 
Processing Algorithms 

Common Morphology 
Algorithms 

Micro organism 
Specific Algorithms 

Advanced Analysis Algorithm 

Shape Feature Extrac�on 

Colour Feature Extrac�on 

A I Decision  

Operator 
Confirma�on 

Image 
Enhancement 
Algorithms 

Results 
Confirma�on 

Alarm Trigger 

 
Fig. 2. Machine Vision Software Architecture   

All blocks are accessed and organised by the Application Layer (AL), the MV incorporates a 
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results if required.  

The MV system presented in figure 2 includes all the features and control algorithms 
required by a MV application. The AI decision section is tailored to a particular application. 

4. MV application to variable objects 
To establish a MV application to variable objects it is necessary to consider the general 
characteristics of the environment in which the MV will operate.  

• in which hierarchy the MV will be used (decision making, alarm, identification...).  
• application type. It can range from very complex systems with a lot of different 

information required to be extracted from images to simple applications with easy 
application.  

• frequency of application (mass samples, batch or single analysis). 
• level of MV automation (manual, semi automatic, automatic, mixed system). 
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Depending on the application an MV topology, architecture and algorithms can be planned. 
Subsequently the relevant outputs variables required for the AI application should be 
selected. It requires experience to find the best combination of outputs variables. Usually it 
is required to work with several algorithms at the same time in order to select the ones that 
perform best. Once the appropriate algorithms are selected they may require to be 
optimised to increase efficiency of the application. 

5. Problems associated with automatic detection of living ‘objects’ 
For both image analysis and image processing, attention has to be paid to errors occurring 
during the image formation and acquisition, as it is far more difficult if not impossible to 
eliminate these errors later using image post processing algorithms. There are limitations 
with respect to the accuracy of the object representation by an acquired image. Both the 
optics which forms the image of the object on the sensor and the digitisation process 
introduce errors (Ellenberger & Young, 2000). There are several phenomena which directly 
influence the acquired image therefore awareness is necessary (Ellenberger & Young, 2000). 
Living objects have high variability over their life cycle. They can change shape, size, colour 
or biological structure. In order to detect these objects advance algorithms need to be 
applied. The success of the advance algorithms application will depend on the elimination 
or reduction of variability of image due to the acquisition of frames. In this context the 
variation of image due to change in illumination and change of focus needs to be reduced. 
Some general problems in image processing affect the detection of objects. In the case of 
living cells, extraction of information to be input to artificial intelligence for the analysis 
requires minimizing these problems, in particular the problem with autofocus and problem 
with illumination. Some solutions are presented in this chapter. 

5.1 Problems associated with autofocus control 

In order for any image processing algorithms to be effective, the quality of the acquired 
image must be optimal. In microscopy one of the most important factors is the focus quality, 
as the even smallest focus deviation produces a blur effect on the acquired image. Therefore 
the focus control must be automated and performed as often as possible. Under these 
circumstances an autofocus algorithm must be employed. The autofocus algorithm must be 
relatively fast, involving the minimum computational effort possible. The image is brought 
to focus on the camera controlling the tuning of focus lenses stage using a stage controller. 
Auto-focus could be achieved by developing a feedback focus controller as exemplified in 
figure 3. This is possible if a measure of the focus quality in a numeric form is extracted 
(focus score). The hill climbing algorithm (Russell & Norvig, 2002) can be iterated with focus 
scores until the best focus is found. 

The focus quality of an image can be linked with the perceived "sharpness" of the acquired 
image, therefore the number and the strength of edges in it. The number of edges can be 
determined using an edge-extraction algorithm. One of the fastest algorithms to extract 
edges in any direction is the Laplacian Edge Detection as it involves only one convolution. 
One problem associated with edge detection algorithms is the noise influence; therefore 
noise reduction algorithms are necessary. A good choice could be a median filter, as it has a 
minimal influence over continuous edges.  
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Fig. 3. Autofocus control 

5.2 Autofocus control implementation 

A series of images of a test pattern are acquired using the minimal resolution possible and 
greyscale representation to minimise the computational effort. These images are shown in 
figure 4, in the acquisition order, with the first 2 being completely out of focus, and the other 
being close to optimal focus: 

   
   frame 1         frame 2           frame 3             frame 4            frame 5               frame 6            frame 7 

Fig. 4. Focus test frame 1 to 7 

From each image the light plane is extracted and a Laplacian Edge Extraction algorithm is 
applied.  The kernel used in this case was   
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. (1) 

One of the resulting images is presented in figure 5(a). 

                                       
                 (a) Test frame Edge information                      (b) Median filter applied 

Fig. 5. Edge extraction 

A median filter defined on a small neighbourhood is applied to minimise the noise effect on 
the final focus score. The result is shown in figure 5(b). Although the extracted edges are 
slightly affected, all continuous edges are still present while most of the background noise 
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5.2 Autofocus control implementation 

A series of images of a test pattern are acquired using the minimal resolution possible and 
greyscale representation to minimise the computational effort. These images are shown in 
figure 4, in the acquisition order, with the first 2 being completely out of focus, and the other 
being close to optimal focus: 
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From each image the light plane is extracted and a Laplacian Edge Extraction algorithm is 
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One of the resulting images is presented in figure 5(a). 
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Fig. 5. Edge extraction 

A median filter defined on a small neighbourhood is applied to minimise the noise effect on 
the final focus score. The result is shown in figure 5(b). Although the extracted edges are 
slightly affected, all continuous edges are still present while most of the background noise 
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has been eliminated. A larger neighbourhood may be considered to improve accuracy, but a 
significant increase in computational time has to be expected. A sum of all pixel values is 
then performed, the result being a single numerical value. By applying this algorithm on 10 
test images the results presented in Table 3 are obtained. By comparing the focus score with 
the test images, it can be seen that they are closely tied up. 

Image Focus Score Image Focus Score 
Frame 1 1317531 Frame 6 5765586 
Frame 2 1374433 Frame 7 5873043 
Frame 3 5374843 Frame 8 5879743 
Frame 4 5902432 Frame 9 5868048 
Frame 5 5756735 Frame 10 5868667 

Table 3. Focus Measure Results 

On the first two images, the score is relatively low, as they are completely out of focus. On 
the last seven the focus score is comparable, with the 4th image obtaining the best result. 
When comparing some of these frames the human eye will have difficulties detecting the 
optimal focus. The focus score will differentiate the best focus in frames that appear to have 
the same focus. The algorithms presented here have the advantage of high processing speed 
in reaching the best focus, in the order of milliseconds in an average PC system. Real time 
software controlled autofocus is possible. 

5.3 Problems associated with illumination  

It is possible to combine several light sources that illuminate the specimen in different ways. 
The monochromatic or narrow band light sources emit light at a single wavelength or a very 
narrow band (e.g. Laser, which is also coherent). Halogen and mercury lamps are broad 
band incoherent light sources. Such an incoherent light source can be converted to quasi 
coherent by closing the aperture to a pinhole (Pawley, 1995). Acquiring images using 
coherent illumination has some advantages and also some disadvantages: a sharp edge will 
show ringing effects and the edge will be shifted into the bright area. Also the images look 
granular (speckle effect), and any aberration or dust on the lens can produce disturbance in 
the image. However, the most important advantage is that resolution achievable can be 
better than with incoherent illumination (Goodman, 1996). One of the most important 
advantages of incoherent illumination is that the image brightness is not changed with 
modifications of the focal position, a very important consideration when auto-focus 
algorithms are employed.  Another significant aspect for a Machine Vision System is the 
Image Representation. Colour images can be represented in several different formats (also 
called Colour Spaces).  

                                             
                   (a) Oocyst under normal illumination            (b) Same image 10% brighter 

Fig. 6. Cryptosporidium oocyst with 10% change in illumination. 
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The most common representation of colours is the RGB colour space, as most image sensors 
provide data according to this model. RGB colour plane is suitable for image capture and 
reproduction, but can be very inconvenient for feature extraction. Problems are noticed 
when minor changes in the lighting conditions occur. Figure 6 shows a sample of a 
microorganism oocyst common in drinking water known as cryptosporidium. In figure 6 
the illumination has been increased by 10% in capturing the image of this cryptosporidium 
oocyst. Figure 7 presents the histogram of the same cryptosporidium oocyst image with 10% 
difference in lighting conditions. The histograms are very different and make it difficult to 
separate the object of interest and its background. 

 
(a) Image normal illumination 

 
(b) Same image with 10% change in illumination 

Fig. 7. RGB histograms 

One solution to overcome this problem is the use of a linear transform from the RGB colour 
space into an alternative model such as HSL – Hue, Saturation and Lightness, or HSI – Hue, 
Saturation and Intensity. Hue refers to the perceived colour (viewed technically as the 
dominant wavelength), saturation refers to the dilution of the colour by white light, and the 
lightness (or value) refers to the sensation of brightness relative to a white reference. The 
advantages of HSL over the RGB colour space are illustrated in figure 8 where the same 10% 
change in lighting condition is applied to the same cryptosporidium oocyst object of the 
previous histograms.  

The results of the histograms indicate that the Saturation plane is slightly affected and the 
Hue plane is relatively unaffected. The HSL space will make it possible to isolate the object 
of interest from the background. The RGB-HSL conversions are computational intensive and 
hardware conversions are preferred. 
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separate the object of interest and its background. 

 
(a) Image normal illumination 

 
(b) Same image with 10% change in illumination 

Fig. 7. RGB histograms 

One solution to overcome this problem is the use of a linear transform from the RGB colour 
space into an alternative model such as HSL – Hue, Saturation and Lightness, or HSI – Hue, 
Saturation and Intensity. Hue refers to the perceived colour (viewed technically as the 
dominant wavelength), saturation refers to the dilution of the colour by white light, and the 
lightness (or value) refers to the sensation of brightness relative to a white reference. The 
advantages of HSL over the RGB colour space are illustrated in figure 8 where the same 10% 
change in lighting condition is applied to the same cryptosporidium oocyst object of the 
previous histograms.  

The results of the histograms indicate that the Saturation plane is slightly affected and the 
Hue plane is relatively unaffected. The HSL space will make it possible to isolate the object 
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(a) Image normal illumination 

 
(b) Same image with 10% change in illumination 

Fig. 8. HSL histograms 

6. Artificial intelligence applied to MV 
In many cases the MV should take a decision without human intervention but with the aid 
of an artificial intelligent (AI) application section. The AI application will depend on:  

• the type of application.  
• the outputs from the vision algorithms.  
• the testing/training samples available. 
• availability of training vectors statically independent. 

Computers already emulate some of the simpler activities of the human mind. They can 
perform mathematical calculations, manipulate numbers and letters, make simple decisions, 
and perform various storage and retrieval functions. In these applications, the computer is 
exceptional and usually exceeds the human mind in performance. Artificial intelligence 
gives computers added computing capability, allowing them to exhibit more intelligent 
behaviour. The most common types of artificial intelligence system are Expert Systems, 
Fuzzy Logic and Artificial Neural Networks (ANN). Providing a set of parameters that 
would completely and undoubtedly describe highly variable objects is extremely difficult. 
Choosing to implement the classification process by means of an ANN seems optimal, as all 
it should achieve is to provide a suitable training set to a carefully chosen neural network.  
Because of the variability of the objects in some cases problems are encountered with this 
type of AI in that there are not sufficient numbers of training samples to train the ANN. 
Under this circumstance confident training cannot be performed successfully. For this type 
of application a more flexible approach is needed to take into account different variation of 
the objects. Fuzzy logic system can in some cases successfully address this issue, as it 
logically implements degrees of membership based on likelihood. Therefore a fuzzy logic 
inference engine is in many cases the preferred AI decision tool in this type of applications. 
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7. Examples of application to variables objects 
Two examples of MV application to objects that are highly variable are presented in this 
section. The first example detects the existence of Cryptosporidium in water and the second 
example detects suspicious activity of humans using Closed Circuit Television (CCTV). 

7.1 Example 1. detection of cryptosporidium in water  

Cryptosporidium has been widely recognized as a serious cause for concern, with a very 
large number of waterborne infections caused by its oocysts. In its transmissive stage – the 
oocyst - is a frequent inhabitant of raw water sources used for the abstraction of potable 
water. Its importance is heightened because, coupled with its low infection dose, 
conventional water treatment process, including chemical disinfection, cannot guarantee to 
remove or destroy oocysts completely. Waterborne transmission is well documented (Smith 
& Rose, 1990, 1998), and can affect a large number of individuals. More than an estimated 
427,000 have been affected in 19 documented waterborne outbreaks (Smith & Rose, 1998). 
Transmission is via an environmentally robust oocyst excreted in the faeces of the infected 
host (Smith & Rose, 1998). At least 21 species of Cryptosporidium have been named (Frazen 
& Muller, 1999). Cryptosporidium parvum is the major species responsible for clinical 
disease in human and domestic animals (Current, 1988; Currents & Gracia, 1991).The 
laboratory diagnosis of Cryptosporidium is dependent upon demonstrating oocysts in the 
sample by microscopy. Here, oocysts must be distinguished from other, similarly shaped, 
contaminating bodies present in the sample, and the microscopic identification of oocysts is 
dependent upon morphometry (the accurate measurement of size) and morphology. The 
current manual is expensive, labour intensive, time consuming and unreliable. 
Cryptosporidium is difficult to identify because of its size and morphology. Regulatory 
bodies from all over the world acknowledge the continuous monitoring of water sources for 
Cryptosporidium as imperative. Many requirements, rules and regulations are in place to 
attempt to address the control of Cryptosporidium which threatens the safety of drinking 
water. As an example the EEC produced a drinking water directive (EEC, 1998). The 
example presented here complies with this directive. The cryptosporidium structure in a 
computer generated model is shown in figure 9. Samples are stained and dried onto 
microscope slides and micro-organisms are detected using fluorescence microscopy. The 
drying process causes oocysts to collapse which in some cases leads to shape distortion and 
the physical release of sporozoites. This made the manual detection difficult. 

 

Nucleus Oocyst 
Wall 

Sporozoite 

 
Fig. 9. Computer generated model of Cryptosporidium 
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Fig. 9. Computer generated model of Cryptosporidium 
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The acquired image of a slide containing Cryptosporidium, viewed under Differential 
Interference Contrast (DIC) is presented in figure 10. Figure 10 shows a sample containing 
cryptosporidium oocysts.  

 
Fig. 10. Water sample containing cryptosporidium oocysts 

Significant contrast is achieved using a highlight details filter and elimination or reduction 
of noise. The binary noise present is efficiently eliminated using the following algorithm: 
(Fernandez-Canque et al, 2008, 2000). 

i. A buffer copy of the image to be cleaned up is generated. 
ii. Two successive erode functions are applied on the original image.  
iii. All pixels from the buffer copy 8-connected to the non-zero pixels from the image are 

added to the image 
iv. Step (iii) is repeated until no pixel is added.  

Figure 11 (a) shows part of the sample with the noise eliminated and with the missing pixel 
reinserted.  

       
                                              (a)                               (b) 

Fig. 11. (a) Sample with threshold images combined (b) Sample final result oocysts 
identified 

The next step is to reinsert the missing pixels within the objects boundaries (Fernandez-
Canque et al, 2000). A closing algorithm is performed, using a kernel size of 5. A NOT 
function is performed, followed by a labelling function. The result is an image which has a 
value of 0 associated with all objects, a value of 1 associated with the background and a 
value greater than 1 for every hole in the objects. By replacing the values greater than 1 with 
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0 and negating the image again we achieve holes filling. All objects too small to be a 
Cryptosporidium are eliminated. This is achieved using the same algorithm as for binary 
noise removal, but with 7 erosion functions applied. Then a distance function is applied, and 
a circle detection algorithm (Danielsson, 1980) is used for Cryptosporidium detection. The 
result is presented in Figure 11(b).An advance analysis algorithm can use different colour 
planes to allow the determination the existence of the 4 nucleus in an oocyst. On the green 
plane, both the wall and the nucleons of the Cryptosporidium are detected. Figure 12(a) 
show the wall and nucleons of a cryptosporidium oocyst after noise is reduced and objects 
of interest are separated from background. 

                                
               (a) Green Plane wall and nucleons         (b) Red plane nucleons 

                                
              (c) Red Plane noise reduced                     (d) Wall: subtraction of green and red plane 

Fig. 12. Green and Red plane  

On the red plane, only the nucleons are detected. This gave an easy method of separation. 
Figure 12(b) shows the red plane after the image is cleaned of noise. On the red plane a look-
up table function was applied. Finally, threshold and binarisation was used, followed by 
noise removal and BLOB closing. Figure 12(c) shows clearly the 4 nucleons to identify 
cryptosporidium. By subtracting the nucleons from the green plane in binary format the 
wall was obtained and measurements were done, this is shown in figure 12(d). The 
morphological characteristics of cryptosporidium can be extracted unequivocally. Image 
processing allows the manipulation of these figures at the pixel level to analyse details of 
very small dimensions. As Cryptosporidium have a diameter in the range of 4 to 6 microns, 
a human operator would find difficult to identify this micro-organism under the 
microscope. This provides a method of identification of cryptosporidium. After the 
completion of the Advanced Analysis the system goes into the next stage – A I Decision 
Making. Expert Systems have problems with flexibility for this application and ANN 
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encounter problems with training. It was found that the use of Fuzzy Logic suits this 
application by mimicking human knowledge based decision making. The classification is 
based on the features extracted by the Advanced Analysis Algorithm and a customisable 
rule base. The proposed approach allows a reliable detection of waterborne micro-
organisms in large quantities of water and outperforms the current manual detection in 
term of cost, time of results, accuracy and reliability (Fernandez-Canque et al., 2009). 

7.2  Example 2: Detection of suspicious activity 

In recent years, the use of surveillance cameras has increased in popularity. This is partially 
due to reduction in cost and technological advances. CCTV systems have become very 
popular in observing public places. Current technology makes provision for an operator to 
examine live surveillance footage from remote locations as they can be transmitted over the 
internet, cables or wireless mediums. In this example the MV application detects suspicious 
activity automatically by studying human posture and observing full trajectories of people 
(Fernandez-Canque et al., 2009). In this study, work has been carried out with the aim of 
achieving fully automatic detection of intruders using a static camera and in real time. 
CCTV has the advantage that relatively large areas can be monitored and intruders can be 
seen as compared to other detection methods. The main use of CCTV is based on reaction to 
a past incident by revising image recorded; the aim of this work is to make the use of CCTV 
more efficient by assessing suspicious activity in an active manner and alert operators to an 
intrusion. By achieving an automatic detection some problems associated with this type of 
surveillance can be avoided. It is known that the span of concentration of any operator is 
very short (Saarinen & Julesz, 1991; Goolkasian, 1991), and there is unreliability due to 
operator’s fatigue and poor detection due to large number of irrelevant images known as 
Eriksen effect( Eriksen & Murphy, 1982; Eriksen & Hoffman, 1972). 

7.2.1 Intruder detection 

To detect an intruder, the background with no intruders present is recorded while the 
camera transmits the video to the computer, and each frame is analyzed. After reduction of 
noise and distortion, frames are compared to the original image of the plain background 
with no intruder present. This process results in accruing the pixels of the object of interest. 
Pixels in this object are counted, large numbers these pixels reflect a significant background 
change, thus an intruder is likely present. If no intruder is detected, the background image is 
replaced with the current frame of the video, which is compared against the next video 
frame as the program repeats this cycle once. A pixel count is then applied to confirm if an 
object has been detected, and finally the parameters can be computed for a bounding box. 
This sequence of steps will encapsulate any detected objects in its bounding box, 
maintaining the original grey-levels of the object. This sequence of actions is illustrated as 
block diagram in figure 13.  

The bounding box contains the coordinates of the intruder. This object of interest within this 
bounding box can be used for further analysis in the detection of suspicious activity. This 
simple process will allow the detection of an intruder. The comparison of frames can be 
efficiently implemented after noise is eliminate or reduced as indicated in the previous 
section. 
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Fig. 13. Block diagram object detection. 

7.2.2  Motion analysis 

A particle analysis is performed on the binary image produced after thresholding.  This 
analysis calculates two measures for each detected object or pixel cluster within the binary 
image. A pixel cluster is a grouping of connected pixels.  The measures calculated are pixel 
area (size) and shape factor. 

Pixel area is the number of pixels of intensity value 1 (white) in a given cluster. X is the 
cluster containing all pixels in the object of interest. The area of an object can be calculated as 
a relative measure with respect to the entire image area. In the discrete case, it is 
approximated by the number of pixels in the object of interest. 

 
,

( ) ( , )i j
i j

A X g x y=∑  (2) 

Where A(X) is the area of the object X, g(xi,yj) = 1 if the pixel lies within the object X and 
g(xi,yj) = 0   otherwise 

The area measure can be used given a binary image to obtain the relative size of the object. 
This measure can give an indication of whether the object is sufficiently large (in relative 
terms) to warrant further analysis.  It can also be weighted by a size factor which 
characterises the area of a single pixel.  In that case, the measure is physically homogeneous 
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to an area. A shape cannot be characterised by a single measure, or even a simple set of 
measures.  Several quantities have been defined to account for specific shape characteristics. 

The shape factor, Fc, is defined as:- 

 
2( )

4 . ( )C
L XF

A Xπ
=  (3) 

Where A(X) is the area of the object X and L(X) is the perimeter of the object, defined below. 

The perimeter designates the length of the object boundary. In the discrete case, the 
perimeter can be simply estimated as the number of points which lie on the object boundary. 
The shape factor measure is invariant to rotation, reflection and scaling.  It has no dimension 
and is equal to 1 for a disk.  It measures the elongation of an object.  An elongated set has a 
higher shape factor.  This measure, with its ability to distinguish the elongated form of a 
human figure, is particularly useful in the object detection process. The area and shape factor 
for all pixel clusters (which are potential objects of interest) within the binary image is 
calculated.  A fixed threshold for each measure is used to select objects for further analysis.  
Any small differences in pixel intensity between the captured frame and the previously 
acquired frame will be effectively removed during the area and shape factor thresholding 
operation. Small differences do not indicate the presence of an object in the frame, but can 
often be attributed to small changes in illumination between successive frame captures.  The 
threshold chosen for each measure is scene dependent. Once the approximate size of objects 
of interest is known relative to the size of the entire image, thresholds can be calculated to 
ensure only object areas greater than the threshold are retained for further analysis.  After 
thresholding, the resulting binary image will contain the pixel clusters corresponding to 
objects meeting the selection criteria. The object detection algorithm is performed on each 
frame acquisition. Detected objects that have met the size, shape and Si factor (as defined in 
equation (7) Fernandez-Canque et al, 2009) criteria are tracked in terms of their position 
within camera images. The tracking algorithms require each object to be represented by a 
single pixel co-ordinate position within the image.  The barycentre of detected objects is used 
to provide the single co-ordinate.  The barycentre of an object is similar to its centre of 
gravity. The resultant co-ordinate position for each object gives a uniform positional locator 
between successive frame captures which is independent of object size and shape. The 
inertia moments define some global characteristics of the object but it is the first order 
moments of inertia which define the barycentre.  They are defined in the discrete case as:- 

 1
1
( )x i

X
M x

A X
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and 
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1
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X
M y
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Where M1x is the first moment of inertia in the x plane.  
 M1y is the first moment of inertia in the y plane 
 A(X) is the area of the object X 
 (xi,yj) is a point in the object 
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The barycentre of each detected object is passed to the tracking algorithm after every frame 
acquisition. The positional locator of each object is passed to the tracking algorithm.  
Subsequent frame acquisitions provide a new positional locator for each detected object. The 
tracking algorithm computes the linear distance from every initially detected object to every 
object detected in the subsequent frame acquisition.  The shortest distance between each 
initially detected object and subsequently detected objects is selected and the object which 
lies the shortest distance from the initial object is then determined to be the same object as in 
the previous frame.  The process is repeated for each frame acquisition thus allowing objects 
to be tracked. The distance, L, between 2 co-ordinate positions is calculated as follows:- 

 2 2
1 0 1 0( ) ( )L X X Y Y= − + −  (6) 

Where 0 0( , )X Y  is the co-ordinate position of the first point 
 1 1( , )X Y  is the co-ordinate position of the second point 

Objects detected between consecutive frames are selected for Si factor analysis.  Each object 
pair cannot always be assumed to be the same object between consecutive frame 
acquisitions. The Si factor provides one method for determining that tracked objects between 
successive frame captures are the same object within the images. The Si factor can be 
calculated as follows:- 
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2
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A X F XSi

− − −
× + ×

=  (7) 

Where       1( )nIA X  is the area of object nX  in Image 1  

                   2( )nIA X  is the area of object nX  in Image 2 

                   1( )c nIF X  is the shape factor of object nX  in Image 1 

                   2( )c nIF X  is the shape factor of object nX  in Image 2 

The Si factor is calculated for all n objects detected and provides a confidence measure to 
determine that objects tracked between images are the same object. The lower the Si factor, 
the more the object detected in the subsequently acquired frame conforms to the size and 
shape characteristics of the object in the previously acquired frame. Thresholds may be set 
for the allowable values of Si factor. The value of such thresholds will vary depending on 
the scene being viewed and the natural variations of objects in the same class that are to be 
detected. Objects detected between successive frames that have a Si factor which lies above 
the threshold can be assumed to be different objects. This provides the capability for the 
tracking algorithm to detect when an object has been lost rather than tracking the incorrect 
object. The Barycentre of each detected object is passed to the tracking algorithm after every 
frame acquisition. Subsequent frame acquisitions provide a new position for each detected 
object. The tracking algorithm computes the linear distance from every initially detected 
object to every object detected in the subsequent frame acquisition. For the external scene, a 
sufficiently large area is covered by the camera to allow object tracking to be verified. The 



 
Human-Centric Machine Vision 

 

114 

to an area. A shape cannot be characterised by a single measure, or even a simple set of 
measures.  Several quantities have been defined to account for specific shape characteristics. 

The shape factor, Fc, is defined as:- 
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Where A(X) is the area of the object X and L(X) is the perimeter of the object, defined below. 
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single pixel co-ordinate position within the image.  The barycentre of detected objects is used 
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Where M1x is the first moment of inertia in the x plane.  
 M1y is the first moment of inertia in the y plane 
 A(X) is the area of the object X 
 (xi,yj) is a point in the object 
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The barycentre of each detected object is passed to the tracking algorithm after every frame 
acquisition. The positional locator of each object is passed to the tracking algorithm.  
Subsequent frame acquisitions provide a new positional locator for each detected object. The 
tracking algorithm computes the linear distance from every initially detected object to every 
object detected in the subsequent frame acquisition.  The shortest distance between each 
initially detected object and subsequently detected objects is selected and the object which 
lies the shortest distance from the initial object is then determined to be the same object as in 
the previous frame.  The process is repeated for each frame acquisition thus allowing objects 
to be tracked. The distance, L, between 2 co-ordinate positions is calculated as follows:- 

 2 2
1 0 1 0( ) ( )L X X Y Y= − + −  (6) 

Where 0 0( , )X Y  is the co-ordinate position of the first point 
 1 1( , )X Y  is the co-ordinate position of the second point 

Objects detected between consecutive frames are selected for Si factor analysis.  Each object 
pair cannot always be assumed to be the same object between consecutive frame 
acquisitions. The Si factor provides one method for determining that tracked objects between 
successive frame captures are the same object within the images. The Si factor can be 
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Where       1( )nIA X  is the area of object nX  in Image 1  

                   2( )nIA X  is the area of object nX  in Image 2 

                   1( )c nIF X  is the shape factor of object nX  in Image 1 

                   2( )c nIF X  is the shape factor of object nX  in Image 2 

The Si factor is calculated for all n objects detected and provides a confidence measure to 
determine that objects tracked between images are the same object. The lower the Si factor, 
the more the object detected in the subsequently acquired frame conforms to the size and 
shape characteristics of the object in the previously acquired frame. Thresholds may be set 
for the allowable values of Si factor. The value of such thresholds will vary depending on 
the scene being viewed and the natural variations of objects in the same class that are to be 
detected. Objects detected between successive frames that have a Si factor which lies above 
the threshold can be assumed to be different objects. This provides the capability for the 
tracking algorithm to detect when an object has been lost rather than tracking the incorrect 
object. The Barycentre of each detected object is passed to the tracking algorithm after every 
frame acquisition. Subsequent frame acquisitions provide a new position for each detected 
object. The tracking algorithm computes the linear distance from every initially detected 
object to every object detected in the subsequent frame acquisition. For the external scene, a 
sufficiently large area is covered by the camera to allow object tracking to be verified. The 
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object detection algorithm is applied to capture sequential frames to determine initially if an 
object has been detected, then to track any such object.   

Pixel clusters obtained from binarised image

Pixel Area and Shape Factor calculated for each cluster

Threshold applied based on Pixel Area and Shape Factor (yields detected object)

Barycentre and Si Factor of Object Calculated

Next frame acquired

Algorithm repeated to obtain Barycentre of next detected object

Pixel distance between objects obtained

Si Factor of objects calculated

Objects with similar Si Factor deemed to be same object between frames

Process repeated as object tracked  
Fig. 14. Block diagram. Object tracking. 

Given the small size of objects in the external scene, the additional processing steps are 
carried out. These steps include the analysis of detected clusters yielding data on object size 
and shape characteristics. Such analysis is not required for an internal scene because any 
detected objects would be sufficiently large in comparison to the total area of the scene that 
errors due to noise could effectively be eliminated by setting large thresholds. However, in 
the external scene, any detected object will yield a small pixel area so setting high thresholds 
would likely cause even objects of interest to be thresholded out. The size and shape 
characteristics can be used to assist in not only detecting objects, but also to subsequently 
track them.  Kalman filter (Kalman, 1960) can provide a good way of tracking an object of 
interest, in the case of identifying the object the use of the Si factor may be more useful. 
Especially when objects of similar characteristics are physically close the Si factor can 
distinguish between objects. A summary in block diagram for the additional series of 
processing steps for the external scene to track an object of interest are specified in figure 14. 
The following example details the application of the outlined algorithms to the external 
scene and also to the task of object tracking. 

The captured image in figure 15 is a car park area, and also contained a pedestrian footpath. 
Figure 15 shows captured frames containing one person.   
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Fig. 15. Frame car park area containing one object of interest: one person  

Figure 16 shows two frames used in the detection of suspicious activity. The example uses a 
sequence of these frames to track a person in this car park. Cluster will appear for objects of 
no interest such as birds, movements of branches, etc. After the detection and elimination of 
unwanted noise, figure 16(c) shows the detected person of the two scenes superimposed.  

   
(a)                                                    (b)                                                   (c) 

Fig. 16. Two consecutive scenes (a) and (b) of a captured sequence of frames from a car park 
scene. In (c) the object of interest is shown for the 2 scenes after detection algorithms have 
been applied. 

For the first frame of figure 16 the object detection algorithm is applied to this image 
producing the thresholded and binarised image for this frame. This frame contains 44 pixel 
clusters.  The area and shape factor for each cluster is calculated.   
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object detection algorithm is applied to capture sequential frames to determine initially if an 
object has been detected, then to track any such object.   

Pixel clusters obtained from binarised image

Pixel Area and Shape Factor calculated for each cluster

Threshold applied based on Pixel Area and Shape Factor (yields detected object)

Barycentre and Si Factor of Object Calculated

Next frame acquired

Algorithm repeated to obtain Barycentre of next detected object

Pixel distance between objects obtained

Si Factor of objects calculated

Objects with similar Si Factor deemed to be same object between frames

Process repeated as object tracked  
Fig. 14. Block diagram. Object tracking. 
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the external scene, any detected object will yield a small pixel area so setting high thresholds 
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track them.  Kalman filter (Kalman, 1960) can provide a good way of tracking an object of 
interest, in the case of identifying the object the use of the Si factor may be more useful. 
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processing steps for the external scene to track an object of interest are specified in figure 14. 
The following example details the application of the outlined algorithms to the external 
scene and also to the task of object tracking. 

The captured image in figure 15 is a car park area, and also contained a pedestrian footpath. 
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Fig. 15. Frame car park area containing one object of interest: one person  

Figure 16 shows two frames used in the detection of suspicious activity. The example uses a 
sequence of these frames to track a person in this car park. Cluster will appear for objects of 
no interest such as birds, movements of branches, etc. After the detection and elimination of 
unwanted noise, figure 16(c) shows the detected person of the two scenes superimposed.  

   
(a)                                                    (b)                                                   (c) 

Fig. 16. Two consecutive scenes (a) and (b) of a captured sequence of frames from a car park 
scene. In (c) the object of interest is shown for the 2 scenes after detection algorithms have 
been applied. 

For the first frame of figure 16 the object detection algorithm is applied to this image 
producing the thresholded and binarised image for this frame. This frame contains 44 pixel 
clusters.  The area and shape factor for each cluster is calculated.   



 
Human-Centric Machine Vision 

 

118 

Table 4 shows the analysis of the detected clusters. The minimum and maximum values for 
area and shape factor show the range of these measures across the 44 detected clusters. 

Threshold selection is determined for a given scene based on the pixel size of the object type 
to be detected. 

This thresholding operation yielded one detected object of area 211 (the largest cluster area), 
shape factor 3.11 and barycentre 102,137. 
 

 Area Shape Factor Barycentre 
Minimum 1 0.47 n/a 
Maximum 211 3.21 n/a 
Threshold 150 2.5 n/a 
Object 211 3.11 102.137 

Table 4. Analysis of Clusters detected 

The pixel clusters which have been filtered out are caused by changes in the image between 
subsequent frame acquisitions.  These clusters can be attributed to the movement of the tree 
branches in the wind. The analysis of each detected cluster and subsequent selection 
operation successfully removes these unwanted particles to leave only the desired object. 
The modified object detection algorithm can now be applied to 2 consecutive frame 
acquisitions. The object tracking algorithm is iteratively applied to each detected object in 
the initially acquired frame.  The first order moments of inertia in the x and y plane are 
calculated for all detected clusters in each frame acquisition, and used as a positional 
reference by the tracking algorithm.  The completion criteria for this algorithm is met when 
the nearest neighbouring cluster to each object in the initially acquired frame is found in the 
subsequently acquired frame. The object detection algorithm, when using the Si factor, is 
more immune to noise.  

A sequence of images is captured from an external scene, figure 17 shows a test scene used. 
To determine suspicious activity the car park image is divided into four distinct areas, as 
shown in figure 17.  The scene has four distinct areas: Area 1 pathways, Area 2 car park, 
Area 3 exit/entrances, Area 4 perimeter area. Risk Index takes values between 0 and 1, 
where 0 represent the lowest risk. For this exercise the areas were given the following risk 
indices: Area 1 risk 0.2, area 2 risk 0.6, Area 3 risk 0.7, and area 4 risk 0.8. The risk indices are 
determined based on the knowledge of the scene and the threat associated with human 
movement within that area. In the image presented, the Risk Indices have been chosen such 
that the higher the Risk Index the greater the risk associated with human movement within 
that area. 

In the experiment conducted, human movement is represented by crosshairs within the 
segmented images. The crosshairs on each segmented image represents the time-series 
motion of a human walker in the image. Figure 17 shows the movement of a person within 
the segmented areas of the scene analysed. 

The aim of analysing the time series motion is to elucidate the information relevant to the 
task of ultimately identifying suspicious activity, and present this data in a format which the 

 
Machine Vision Application to Automatic Detection of Living Cells/Objects 

 

119 

detection system can use. The aim of this experiment is to automatically determine if a given 
activity, identified by the time series motion of a human walker in conjunction with the 
segmented image data, can be interpreted as suspicious. The information used by the 
detection system should incorporate both the walker’s positional data, as well as the Risk 
Index data. 

 
 
Fig. 17. Trajectory of a human walker within a scene  

From this tracking scene information of speed, direction and presence in any zone is 
extracted and presented to a trained ANN for determination of suspicious activity.  

In this experiment, twenty five segmented images are presented, each identifying the path a 
human walker takes within the scene. Figure 18 shows the response of the ANN to the 25 
path samples of people walking patterns in the different areas of the scene analysed 
indicating the degree of suspicious activity for each pattern. 

The ANN results of suspicious activity show a good correlation with the human operator 
response within scenes. This provides a good forewarning role allowing further 
investigation by a human operator. The MV application presented here can provide an 
indication of suspicious activity as the output of the ANN. This ANN response is based on 
the direction of the intruder, the speed of movement, the position on the different risk areas 
and the pattern of movement within the scene. 
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Table 4 shows the analysis of the detected clusters. The minimum and maximum values for 
area and shape factor show the range of these measures across the 44 detected clusters. 

Threshold selection is determined for a given scene based on the pixel size of the object type 
to be detected. 

This thresholding operation yielded one detected object of area 211 (the largest cluster area), 
shape factor 3.11 and barycentre 102,137. 
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subsequent frame acquisitions.  These clusters can be attributed to the movement of the tree 
branches in the wind. The analysis of each detected cluster and subsequent selection 
operation successfully removes these unwanted particles to leave only the desired object. 
The modified object detection algorithm can now be applied to 2 consecutive frame 
acquisitions. The object tracking algorithm is iteratively applied to each detected object in 
the initially acquired frame.  The first order moments of inertia in the x and y plane are 
calculated for all detected clusters in each frame acquisition, and used as a positional 
reference by the tracking algorithm.  The completion criteria for this algorithm is met when 
the nearest neighbouring cluster to each object in the initially acquired frame is found in the 
subsequently acquired frame. The object detection algorithm, when using the Si factor, is 
more immune to noise.  

A sequence of images is captured from an external scene, figure 17 shows a test scene used. 
To determine suspicious activity the car park image is divided into four distinct areas, as 
shown in figure 17.  The scene has four distinct areas: Area 1 pathways, Area 2 car park, 
Area 3 exit/entrances, Area 4 perimeter area. Risk Index takes values between 0 and 1, 
where 0 represent the lowest risk. For this exercise the areas were given the following risk 
indices: Area 1 risk 0.2, area 2 risk 0.6, Area 3 risk 0.7, and area 4 risk 0.8. The risk indices are 
determined based on the knowledge of the scene and the threat associated with human 
movement within that area. In the image presented, the Risk Indices have been chosen such 
that the higher the Risk Index the greater the risk associated with human movement within 
that area. 

In the experiment conducted, human movement is represented by crosshairs within the 
segmented images. The crosshairs on each segmented image represents the time-series 
motion of a human walker in the image. Figure 17 shows the movement of a person within 
the segmented areas of the scene analysed. 

The aim of analysing the time series motion is to elucidate the information relevant to the 
task of ultimately identifying suspicious activity, and present this data in a format which the 
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detection system can use. The aim of this experiment is to automatically determine if a given 
activity, identified by the time series motion of a human walker in conjunction with the 
segmented image data, can be interpreted as suspicious. The information used by the 
detection system should incorporate both the walker’s positional data, as well as the Risk 
Index data. 

 
 
Fig. 17. Trajectory of a human walker within a scene  

From this tracking scene information of speed, direction and presence in any zone is 
extracted and presented to a trained ANN for determination of suspicious activity.  

In this experiment, twenty five segmented images are presented, each identifying the path a 
human walker takes within the scene. Figure 18 shows the response of the ANN to the 25 
path samples of people walking patterns in the different areas of the scene analysed 
indicating the degree of suspicious activity for each pattern. 

The ANN results of suspicious activity show a good correlation with the human operator 
response within scenes. This provides a good forewarning role allowing further 
investigation by a human operator. The MV application presented here can provide an 
indication of suspicious activity as the output of the ANN. This ANN response is based on 
the direction of the intruder, the speed of movement, the position on the different risk areas 
and the pattern of movement within the scene. 
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Fig. 18. Response from the ANN and operator to 25 segmented image samples 

7.2.3 Posture analysis 

 If the person is not moving in areas that are considered a risk, his or her posture may 
indicate suspicious activity. Each image is subjected to a reduction algorithm, producing a 
quantised image, followed by a 16 by 16 data array to be presented to the ANN.  

The ANN used is trained to provide an output for waling, standing and crouching postures. 
Figures 19-21 shows results from a trained ANN to a set of 26 images containing humans in 
these positions.  

 
Fig. 19. Classifier results from the ANN for walking postures 
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Fig. 20. Classifier results from the ANN for standing postures 

 
Fig. 21. Neural Network response for crouching postures. 

Figure 19 shows results for walking postures, Figure 20 for standing postures and Figures 21 
for crouching postures. The ANN has been trained in such way that values on the y-axis 
between 0.3 and 0.6 indicate that a walking posture has been detected. Values between 0.52 
and 0.81 indicate that a standing posture has been detected and values between 0.88 and 
0.95 indicate detection of a crouching posture. 

On the basis of the results obtained for each newly analysed posture, upper and lower limits 
(shown by chain lines) have been set which provide a range of values within which lies a 
high probability that a given posture has been detected.  The walking posture test images 
included various viewing orientations.  In the case of a person walking directly towards or 
away from the camera, difficulties are encountered in determining if the person is standing 
or walking.  These walking postures are very similar in appearance to standing postures 
when presented as a two-dimensional camera image. This similarity, and consequent 
classification difficulty, was predicted for a two-dimensional image system. A number of the 
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Fig. 20. Classifier results from the ANN for standing postures 

 
Fig. 21. Neural Network response for crouching postures. 
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between 0.3 and 0.6 indicate that a walking posture has been detected. Values between 0.52 
and 0.81 indicate that a standing posture has been detected and values between 0.88 and 
0.95 indicate detection of a crouching posture. 

On the basis of the results obtained for each newly analysed posture, upper and lower limits 
(shown by chain lines) have been set which provide a range of values within which lies a 
high probability that a given posture has been detected.  The walking posture test images 
included various viewing orientations.  In the case of a person walking directly towards or 
away from the camera, difficulties are encountered in determining if the person is standing 
or walking.  These walking postures are very similar in appearance to standing postures 
when presented as a two-dimensional camera image. This similarity, and consequent 
classification difficulty, was predicted for a two-dimensional image system. A number of the 
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images in the walking posture data set show a higher than expected value although only 
15% lie outside the upper and lower limits.  The higher values obtained tend towards the 
values expected for a standing posture. The results produced for the crouching postures 
show values which are consistently very close to the expected values. The error in the 
crouching posture data was smaller and more uniform than for the other two posture types.  
The apparent similarity between a few walking and standing postures caused the classifier 
some difficulties.  A crouching posture is easier to identify from a two-dimensional image.  
Since crouching could be interpreted as potentially the most suspicious posture, the system 
developed shows higher performance at detecting the postures of more relevance to the task 
in hand. 

The results are close to the expected response. This can also be used as a warning role as the 
MV can determine whether suspicious activity is present in an open scene under CCTV 
surveillance 

8. Conclusions 
MV application trend indicates that the advance of computation power and hardware 
developments allows the number and type of application to increase substantially in 
particular in the last 15 years.  

The application of MV to variable objects requires the consideration of various factors to be 
accurate. Algorithms are required to obtain clear and detailed morphology including 
advance process using advance algorithms. In this type of application where information 
obtained in different planes it is useful to eliminate problems produced by variation of 
illumination. A good focus control based on a focus score allows the MV application to 
manipulate objects of small dimensions to gather more details of the characteristics of the 
object to be analysed. 

The Machine Vision example presented in this chapter can perform automated analysis to 
determine whether or not micro-organism oocysts are present in treated water. The system 
can reliably determine the presence of micro-organisms and enable samples to be accurately 
and efficiently reviewed by an operator if required. The proposed approach allows a reliable 
detection of waterborne micro-organisms in large quantities of water. This provides an 
industrial system to monitor micro-organisms in the water industry. The implemented 
algorithm complies with the standard operating protocol provided by the water authorities 
in UK and satisfies the EU directive on drinking water quality 

The MV second example presented in this chapter can improve the performance of 
automated analysis to determine whether suspicious activity is present in an open scene 
under CCTV surveillance. The system can determine the presence and movements of a 
person and provide indications of suspicious activity based on pathway taken, speed, 
direction; the system can also provide indication of suspicious activity based on human 
posture analysis. These enable efficient monitoring and accurate review of scenes by an 
operator. The system proposed can provide a warning role to reduce the problem of human 
operator’s fatigue and shortened attention span. This greatly increases the ability to carry 
out properly the task of constant and distant monitoring.  
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show values which are consistently very close to the expected values. The error in the 
crouching posture data was smaller and more uniform than for the other two posture types.  
The apparent similarity between a few walking and standing postures caused the classifier 
some difficulties.  A crouching posture is easier to identify from a two-dimensional image.  
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detection of waterborne micro-organisms in large quantities of water. This provides an 
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The MV second example presented in this chapter can improve the performance of 
automated analysis to determine whether suspicious activity is present in an open scene 
under CCTV surveillance. The system can determine the presence and movements of a 
person and provide indications of suspicious activity based on pathway taken, speed, 
direction; the system can also provide indication of suspicious activity based on human 
posture analysis. These enable efficient monitoring and accurate review of scenes by an 
operator. The system proposed can provide a warning role to reduce the problem of human 
operator’s fatigue and shortened attention span. This greatly increases the ability to carry 
out properly the task of constant and distant monitoring.  
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1. Introduction 
Cognition and perception forms a central basis for human intelligent behaviour. Humans 
are capable of building their own environment and adding several artefacts to it. It allows us 
to detect and localize objects, and based on that to perform tasks or to localize ourselves and 
furthermore to find persons who work e.g. in offices. Every year, since the last two decades, 
people have been forecasting breakthroughs of services robots on the service robot market 
(Siegwart et al., 200, Haegle et al. 2001). Nevertheless the reality is grey. Two of several 
reasons are a relatively high price and an unintelligent behaviour of the robot systems. At 
this point the contribution of this chapter starts. We will present a novel approach, on how a 
mobile robot actively creates a geometric 3D cognitive map with ROS1 and consumer 
hardware, which forms a basis for further intelligent behaviours.  

The 3D maps are created with a mobile robot, in this case a Roomba from iRobot2, a Sick 
laser scanner LMS 1003 and a Canon standard high resolution digital camera. In the first part 
of this chapter we present a new approach to create precise, high resolution, 360° 3D point 
clouds, which are not depending on the surface the robot stands on. Based on the 360° 3D 
point clouds we extract semantic information like floors, walls, ceilings and room 
dimensions (Nuechter et. al. 2005). Furthermore the second part of this chapter shows a 
novel approach on how to solve the localization problem for mobile robots, by reading 
doorplates as non-artificial font based landmarks in indoor environments. We present an 
extended OCR version, to recognize doorplates, and a method to detect doorplate 
candidates, based on reflection values of a 3D point cloud. After the generation of a 3D point 
cloud, the mobile robot actively drives to the doorplate candidates and takes high resolution 
images with a consumer digital camera (Lingemann et. al. 2005). The automatically read 
textual content of the doorplates are added to the doors in a 3D map. Our approach is not a 
single novel algorithm; it is a collection and intelligent integration of known technologies 
and approaches with consumer hardware. This makes it possible to keep the total costs for 

                                                 
1 http://www.ros.org/wiki/ 
2 www.irobot.com/Roomba 
3 http://www.sick.com/group/EN/home/products/product_news/laser_measurement_systems/ 
Pages/lms100.aspx 
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the robot low. A certain highly interesting feature for architects and potential tenants is that 
the robot is able to build up maps which are similar to the maps google streetview creates, but 
indoors. A home inspection can thus be made quickly online without having to be present. 

We have to account several topics to evaluate the state of the art our paper deals with. There 
are a few algorithms to create 2D and 3D-maps, e.g. Gmapping (Grisetti et. al. 2006, Thrun 
et. al. 2005), Karto4, 6D-SLAM (Surmann et. al. 2004) and many more. These algorithms can 
be all put together in one concept called SLAM (Simultaneuos Localization and Mapping). 
Durrant-Whyte & Bailey gives a very good introduction to SLAM in their survey paper 
(Durrant-Whyte & Bailey 2006). SLAM includes all methods that work with 2D or 3D sensor 
data. This sensor data is put together by a comparison method to create a map. Given that 
the last position of the robot, after the scan is taken, is known, the position of the robot in 
map is known too. Therefore the position of the robot is calculated by the adjustment of the 
last measurement. Until now the fastest method to create 3D-Maps, is the continuously 
updated version of the 6D-SLAM method. An example for a mobile robot, which creates 3D-
maps using a two-dimensional laser scanner, is the robot Kurt-3D (Holz et. al. 2010). Our 
current approach updated the former work in many different ways. At First we built a 
cheaper robot, by using a cheaper and lighter 2D scanner with better servos (dynamixels). 
Then secondly, the algorithm to generate 3D scans was optimized (section 4). Furthermore 
we added OCR techniques to get textual information of indoor environments. There are 
already some 3D-sensors which are capable of creating 3D-maps e.g. from Riegel5, Leica6 or 
Zoller&Froehlich7. They are very precise, but also very expensive. Other 3D sensors like the 
Microsoft-Kinect8 are very cheap and useful for navigation, but also very imprecise and 
limited in their field of view. But current research tries to overcome these drawbacks. Stereo 
vision is also useful for robot mapping (Lowe & Little 2001) but cameras have a limited field of 
view and problems to generate dense 3D point clouds (May et. al. 2007). These approaches are 
time consuming and have problems in not structured environments e.g. corridors. 
Nevertheless all of these are used to generate 3D maps. 3D information is not only used to 
build maps, it is also used to find and classify objects and structures. One possible way to 
recognize objects in a point-cloud is to use the RANSAC algorithm9. RANSAC stands for 
Random Sample Consensus and grabs a sample out of the 3D-point-cloud and compares it 
with a mathematical model e.g. a plane equation. With the help of this algorithm, a route to the 
found object can be calculated and the robot is driven to the desired position. 

It is natural for humans, to use visual information to sense the environment around them. 
Humans are capable of finding their path, with the help of their eyes. To make this easier in 
urban environments, there are many landmarks, like signs with street names or house 
numbers. For indoor environments, there are doorplates, direction signs and floor plans. 
With all this in mind, it seems logical to give robots the same capabilities of using those 
landmarks. Unfortunately there is only little work done in this area of robotics. Most work is 
done in the field of video mining (Weinman 2008). Video mining tries to read textual  
                                                 
4 http://www.ros.org/wiki/karto 
5 RIEGL Laser Measurement Systems: http://www.riegl.com 
6 Leica Geosystems: http://www.leica-geosystems.com 
7 Zoller&Fröhlich: http://www.zf-laser.com 
8 http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/download.aspx 
9 http://en.wikipedia.org/wiki/RANSAC 
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Fig. 1. a) Schematic overview of the hardware components and b) mobile robot with the 2D 
laser scanner (Sick LMS 100), the consumer camera (Canon Powershot SX 110 IS, 9-
megapixel, 10x optical zoom) and the servo motors by Dynamixel. The scanner is in the start 
/ end position. For the 3D scan it is turned perpendicular. 
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information out of video streams and first approaches are nearly 20 years old. Currently  
computers have barely reached the reading level accuracy of a second-grade child. Mostly 
the limited resolution of videos makes it difficult to read its text, but the approaches have 
interesting methods to detect text areas. A cogent survey of the document image analysis 
field, as represented by publications in the “Transactions on Pattern Analysis and Machine 
Intelligence”, is given by Nagy. But why is it so difficult? Standard OCR needs around 300 
dpi resolution pictures to achieve good conversion results. A 2-megapixel camera can cover 
an area of 4x6 inches, which is the size of a doorplate. But for a mobile robot it is difficult to 
move a camera so near to the object, that a precise picture can be taken. This lets us come to 
the conclusion that most of the known approaches from books, do not work with real 
mobile robots. A very time consuming way, to solve the problem, is to patch several images 
to one high resolution image (Mirmehdi et. al. 2001). Another solution suggests that robots 
should use a robot arm, to position the camera directly in front of the picture, but this is a 
very expensive way of solving the problem (Prats et. al. 2005). Other groups implement 
special techniques to read a couple of letters or numbers to avoid or substitute standard 
OCR (Baron 2002). Our approach to reading signs is different in a way that we use a real 
cheap mobile robot ($300) with a cheap consumer digital camera ($150), and combine it with 
a standard OCR algorithm, so that we have a really cheap and universal approach. The camera 
has a 10 x optical zoom and 9-megapixel resolution which allow us to focus objects from up to 
3 meters distance at different angles. Distortion of the images could be removed because of the 
high quality and resolution of the images. In the upcoming sections the hardware setup, 3D 
measurement, tangents classification and the OCR approach will be described. 

2. Hardware setup and system design 
Special soft- and hardware is required to create 3D-measuremnts and to further process 
information. Software components are responsible to control the hardware, and in addition 
to store and process sensor data. Hardware components are used to position the robot and 
to capture room measurements. The following software represents libraries or algorithms 
which are used in this work. Some of these libraries and tools are offered by ROS, which 
stands for robot operating system, and comes with a lot of functionalities e.g. hardware 
drivers, visualisation tools and many more. Additionally 6D-SLAM is used, which is an 
extremely efficient SLAM (Simultaneous Localization and Mapping) algorithm to register 
3D point-clouds based on ICP (Iterative Closest Point) (Besl & McKay 1992). 6D-SLAM 
calculates a correction of a transformation of two given 3D point-clouds. Point clouds are 
processed by the PCL (Point cloud library), which represent a library to process x-
dimensional point clouds. To process image information the OpenCV (Open Source 
Compute-Vision library) is used, which contains over five-hundred algorithms for image 
processing. The hardware architecture is build up in many different components.  

It contains a Roomba which is a vacuum cleaner built by iRobot. All hardware components 
are installed on the Roomba. A Netbook is used to deal with the huge amount of 
information processed by the 3D-point-cloud. One of the most important sensors used, is the 
LMS 100 2D-Laserscanner by Sick. It sends out a quick impulse of a laser beam and 
calculates the distance by measuring the time it needs to receive the laser beam. The laser 
scanner is moved by servomotors created by Dynamixel. In this way it is possible to build 
up 3D-maps by rotating the Roomba and the laser scanner. At last it uses a standard Canon 

 
Reading Mobile Robots and 3D Cognitive Mapping 

 

129 

PowerShot SX110 IS digital camera to make an image of a doorplate. Figure 1 shows the 
setup. A video can be found at YouTube.10  

3. 3D-measurement 
A laser scan represents a 2D view of a certain area. To create a 3D laser scan, many two-
dimensional laser scans have to be put together. To do this, the 2D laser scanner has to 
rotate over its own axis and record its laser scan continuously. The laser scans, which are in 
three dimensional spaces, are projected on a plane, which equates the coordinate plane. In 
ROS all laser scans are projected on a xy plane, at which x is equal to zero degrees. 
Furthermore each laser scan has a start and an end value, and the angular resolution 
represents the distance to an object. Afterwards the projected points are transformed into 
the coordinate system and added to the three dimensional point clouds. One task to solve is 
how to move the laser scanner to build up a 3D space. A well-established method is to rotate 
the laser scanner over one of its axis (e.g. Kurt3D). Another method is to align the laser 
scanner to a plane, from which the perpendicular is not 90 degrees to the direction of 
motion, because if this happens, the whole area will not be scanned properly. A third 
method is a combined measurement, where the robot moves and simultaneously the laser 
scanner is rotated over one of its axis. One huge advantage is that there is not much memory 
space required and if the surface is uneven, the scan doesn’t have to be adjusted by the laser 
scanner. The transformation between the different measurements is calculated by the 
servomotors attached to the laser scanner and by the odometry of the robot. The trouble is 
that after calibrating the robot on a surface (e.g. carpet) the 3D scan will work correctly, but 
putting it onto another surface (e.g. wooden floor) will cause irregularities. To solve this 
problem an online correction has to be done. Here in this work the 3rd method is used. The 
laser scanner is perpendicular to the floor and the robot rotates. In a first step the orientation of 
the laser scanner is calculated by its odometry. The Sick LMS 100 laser scanner has a 270 
degree opening angle, which leaves the robot not appearing in the scan taken. So how can 
precise 3D point clouds be acquired, based on imprecise odometry, especially at different 
surfaces? The trick is a reference measurement at the beginning and at the end of the 3D scan. 
Therefore the laser scanner will rotate (90 degrees) to take an initial horizontal 2D scan. After 
the initial scan is taken, the scanner is rotated to its perpendicular position and the robot starts 
turning. Only a 180° robot turn is necessary to take a complete 360° point cloud since the 2D 
laser has an open angle of 270°. Nevertheless the robot also turns 360° and acquires a few more 
perpendicular scans e.g. over a 190° turn and then moves back in its horizontal position. Now 
the second reference scan is taken and compared via ICP with the initial one. The ICP 
algorithm matches these two scans and results with the odometry position error during the 
turn. We estimate that this error is equally distributed during the rotation of the robot and the 
3D point cloud is corrected e.g. reduced or enhanced with perpendicular 2D scans. Figure 2 
visualizes the procedure and figure 3 shows an acquired 360° point cloud.  

In addition to the distance values of the scanner, the reflected values among of light 
(remission values) are also acquired during the 3D scan. These remission values lead to a 
black and white panorama image (Figure 4). The remission value panorama image is used to 
calculate candidate positions of door plates (section OCR). 
                                                 
10 http://www.youtube.com/watch?v=Il_aabmWeW8. 
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PowerShot SX110 IS digital camera to make an image of a doorplate. Figure 1 shows the 
setup. A video can be found at YouTube.10  

3. 3D-measurement 
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scanner to a plane, from which the perpendicular is not 90 degrees to the direction of 
motion, because if this happens, the whole area will not be scanned properly. A third 
method is a combined measurement, where the robot moves and simultaneously the laser 
scanner is rotated over one of its axis. One huge advantage is that there is not much memory 
space required and if the surface is uneven, the scan doesn’t have to be adjusted by the laser 
scanner. The transformation between the different measurements is calculated by the 
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that after calibrating the robot on a surface (e.g. carpet) the 3D scan will work correctly, but 
putting it onto another surface (e.g. wooden floor) will cause irregularities. To solve this 
problem an online correction has to be done. Here in this work the 3rd method is used. The 
laser scanner is perpendicular to the floor and the robot rotates. In a first step the orientation of 
the laser scanner is calculated by its odometry. The Sick LMS 100 laser scanner has a 270 
degree opening angle, which leaves the robot not appearing in the scan taken. So how can 
precise 3D point clouds be acquired, based on imprecise odometry, especially at different 
surfaces? The trick is a reference measurement at the beginning and at the end of the 3D scan. 
Therefore the laser scanner will rotate (90 degrees) to take an initial horizontal 2D scan. After 
the initial scan is taken, the scanner is rotated to its perpendicular position and the robot starts 
turning. Only a 180° robot turn is necessary to take a complete 360° point cloud since the 2D 
laser has an open angle of 270°. Nevertheless the robot also turns 360° and acquires a few more 
perpendicular scans e.g. over a 190° turn and then moves back in its horizontal position. Now 
the second reference scan is taken and compared via ICP with the initial one. The ICP 
algorithm matches these two scans and results with the odometry position error during the 
turn. We estimate that this error is equally distributed during the rotation of the robot and the 
3D point cloud is corrected e.g. reduced or enhanced with perpendicular 2D scans. Figure 2 
visualizes the procedure and figure 3 shows an acquired 360° point cloud.  

In addition to the distance values of the scanner, the reflected values among of light 
(remission values) are also acquired during the 3D scan. These remission values lead to a 
black and white panorama image (Figure 4). The remission value panorama image is used to 
calculate candidate positions of door plates (section OCR). 
                                                 
10 http://www.youtube.com/watch?v=Il_aabmWeW8. 
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Fig. 2. a) Position of the laser scanner while turning the robot (3D scan). b) Start and end 
position of the laser scanner for pose (turning) error estimation. 

 
Fig. 3. a) Scan results without and with pose correction. b) 3D scan with remission values. 

 

 
Fig. 4. Top: Panorama view generated with the remission values of the 3D scan. Bottom: 
Panorama generated by second turn of the robot with the panorama software hugin.11 
                                                 
11 http://hugin.sourceforge.net/ 
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3.1 Classification 

The basic classification is done with the tangent segmentation. The tangent segmentation is 
a method to extract planar surfaces of a 3D point cloud. For each point of the point cloud a 
neighboring point is determined and the angle between these two points is calculated. For 
the determination of the neighboring point the original scan order of the scanner is used e.g. 
the information that the calculation of the 3D point cloud is based out of 2D scans (fig. 2). For a 
point P1 of a 2D scan plan, a candidate point P2 is a point acquired after P1 and the 
Euclidean distance between P1 and P2 is larger than 20cm. A minimal distance between P1 
and P2 is necessary to avoid angle oscillation since the precision of scan values is around 1 cm.  

 
Fig. 5. a) Semantically labeled 3D point cloud from a single 360° 3D scan in an indoor 
environment. Green points mark the floor and ceiling, red and blue points mark the 
different walls, white points are unclassified. 

The following formulas define the calculation of the two angles: 

 Δx = P1x – P2x, Δy = P1y – P2y, Δz = P1z – P2z 

θ1 = arctan ((Δx2 * Δy2)1/2/ Δz), θ2 = arctan (Δx /Δy) 

The first angle represents the angle to the z-axis of the coordinate system and the second 
angle is the angle to the x-axis on the xy plane. Floor and ceiling points belong to angles θ1 

around 0° and 180°, walls belong to angles around -90° and 90°. θ2  is used to determine the 
alignment of walls which allows to detect walls that are perpendicular to each other. 

3.2 Histograms 

Another important information, are the dimensions between walls or floors and ceilings. A 
histogram over the z-values has typically two maxima in indoor environments. One maxima 
represents the floor and the second one the ceiling. Figure 6 shows a typical histogram. Both 
maxima are used to estimate the height of the room.  
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Fig. 6. Histogram over the z values of a 3D scan with 2 maxima. The maxima values belong 
to the floor and ceiling. 

The histograms of the x and y axis could not directly be used as the z values since the robot 
is not aligned to the axis x or y while scanning. To align the walls of the 3D scan along the 
axis the maxima of the histogram over the angles θ are used since most angles are at the 
walls and have to be at -90° or 90°. After the alignment, the length and width could also be 
calculated by computing the difference of the two maxima in the histogram. Figure 7 shows 
an example. 

4. OCR 
Mobile robots have to know exactly where they are in an environment in order to plan 
where to go next. Therefore self-localization is one field of research in autonomous mobile 
robotics. Robots that work in outdoor environments have the advantage of using GPS. In 
indoor environments e.g. office environments humans typically use signs e.g. doorplates to 
localize themselves. Current mobile robotic approaches are focused on laser based SLAM 
techniques (section 3) but real applications need to read the visual signs made by humans. A 
typical order like, “goto Mr. Surmann’s office” can then be executed by the robot. OCR in 
robotics is used to extract doorplate information and convert this information to text using, 
OCR engines. In office buildings doorplates are "natural" landmarks (actually doorplates are 
placed artificially in the environment, but the whole environment of an office, like a 
building is made by humans). Doorplates are used by humans to find their way through the 
corridors and rooms in unknown buildings. 

Most doorplates contain a room number, which usually refers to a unique identifier for one 
room. There could be two or more doorplates with the same room number, if one room has 
more than one door. Often, doorplates contain additional information, like a room 
description, the name of the person who works in the room, or the name of the department, 
where the room is located. To detect a doorplate, a typical digital consumer camera is 
attached to the robot which will take high resolution images of the doorplate (see Fig. 1). 
This camera as well as many other digital consumer cameras can be completely controlled 
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from the notebook via USB. An additional servomotor is attached to the camera to move it 
into the correct position. The camera is detached on the robot, and can be placed in several 
positions. Starting from a very low position (ground), and going up to table height. The 
camera has to be tilted quite a bit, to precisely read the textual information on the doorplate, 
at the bottom position.  

 
Fig. 7. Example of the calculation of the space dimensions. 

  
Fig. 8. a) Example of a typical doorplate (size 15 cm x 12 cm). b) View from the robot 
whereupon the digital camera is mounted at the bottom of the robot.  

To localize the robot we developed two different methods. In the first method the robot only 
uses a digital camera. The robot moves in the environment, stops every two meters and 
scans for doorplate candidates while rotating the camera. If a doorplate candidate is found 
the camera focuses on the doorplate with the optical zoom and takes a full resolution image 
of the doorplate. A video of the approach can be found at YouTube.12 

The second method combines a camera with a 3D scanner. First a 360° 3D laser scan is taken. 
Based on the remission values, the positions of doorplate candidates are extracted. The robot 
moves to all candidates and takes high resolution images, similar to method one. The 
                                                 
12 http://www.youtube.com/watch?v=HQOBXeHXQ-A 
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12 http://www.youtube.com/watch?v=HQOBXeHXQ-A 
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information of the OCR extraction is added to the 3D point cloud. A video of the approach 
can also be found at YouTube13. 

4.1 Candidate search 

The first part of the application is the accurate and reliable recognition of doorplates e.g. for 
a standalone camera based localization. The consumer camera was a Canon Powershot SX 
110 IS with a 9-megapixel CCD sensor and 10x optical zoom. The camera has a weight of 
about 245g and is normally powered with 2 AA-size batteries, but it can also be powered 
alternatively with an external AC power supply. The camera delivers the display images 
(viewfinder) with a size of 320x240 (30hz) online. This viewfinder images are used to 
calculate the doorplate candidates. After that the candidates will be focused and a 9-
megapixel image is taken. For robust candidate detection a simple 3 step filter is 
implemented. First the border color is selected in the YCrCb color space, and then the image 
is binarized with an adapted threshold, and preprocessed with closing and opening 
operations.  

 
Fig. 9. Histogram of doorplate borders in YCrCb color space 

Second, closed line contours are detected and approximated by simple polygons. Third, the 
aspect ratio of the contour area is measured. For our doorplates (15cm x 12 cm) the ratio 
between width and height has to be around 1.25. The filter is implemented with Intels 
OpenCV library and contains only 30 lines of code which could be easily adapted to other 
environments. The main advantage of the filter stage is the processing speed and accuracy. 
                                                 
13 http://www.youtube.com/watch?v=Il_aabmWeW8 
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A core duo with 1.5 Ghz processes the filter in real-time (20ms). The false positive (type I 
error) is 0.01 and the false negative (type II error) is around 0.15 by a true positive of around 
0.85 measured at one corridor with 32 doorplates. 

   
Fig. 10. Example of the filtering process. Left original image, middle binaries image and 
right annotated doorplate. 

In contrast to the first part of the application, which deals with view finder images, the 
second application is different. For the integration of textual information in the 3D point 
cloud the doorplate candidates are calculated based on the panorama images of the 
remission values. Since the remission values directly correspond with the x-y-z values, only 
the region of height, where the doorplates are located is selected. Simple line detections with 
a Sobel operator and open and closing operations extract the doorplates candidates. A test in 
the corridor selects 4 out of 5 doorplates, but the number of experiments is not enough for a 
statistic (fig. 11). 

 
Fig. 11. Selection of doorplates candidates based on 3D scan remission values. The 
candidates are marked red.  

4.2 Doorplate reading 

Two methods have been evaluated for reading the content of the doorplate based on the 
candidate calculation. First the mobile robot, the digital camera and the notebook is used. 
No laser scanner is detached in this version (cheap approach). The robot drives randomly 
through the environment, stops every two meters and searches for doorplate candidates as 
described above. If a candidate is found it is focused with the optical zoom. The size and 
orientation of the doorplate is calculated based on the 3 step filter (see above). After focusing 
the doorplate, a full resolution image is taken. The frame of the doorplate is cut out, based 
on the three stage filter and distorted, based on the hypothesis that the frame should be 
rectangular (see fig 8, 10, 13). Now the OCR process is started with this image. A topological 
map with the local position information at the edges of the graph between the doorplates is 
created (fig 12). 
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Fig. 12. Topological graph of a corridor based on the first camera only approach. The content 
of the doorplates is read and set to the squares. The local odometry of the robot is used to 
mark the edges. If no doorplate is found the square is empty. 

  
Fig. 13. Left: Original image of a doorplate. Right: Automatically corrected and cut out 
image of a doorplate. 
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The second method is evaluated with the mobile robot and the 3D laser scanner (fig. 1). 
After detecting the candidates in the panorama image, and based on the 3D geometrical 
data a good shooting position is calculated e.g. one meter in front of the doorplate. The 
mobile robot drives to all of these positions and takes high resolution images similar to 
method one.14 The driving controller is a simple point based position controller. The content 
of the doorplate is set to the 3D point cloud based on the position of the robot and the 3D 
data of the candidate calculation. For the OCR process we evaluated different OCR engines. 

4.3 Comparison of OCR engines 

A lot of different OCR engines already exist so we define a test set of 46 images to test 
different engines. All of them can be used with the Linux operation system. The following 
table presents the timing results of these tests. 
 

OCR Engine Result Time (total) Average Time (per file) 
Abbyy Finereader Engine 8 for 
Linux[1] 

73.81% 158s 3.43s 
 

Cuneiform 1.0 for Linux[2] 3.55% 100s 2.17s 
GOCR 0.45[3] 22.38% 13s 0.28s 
Ocrad 0.17[4] 23.91%* 9s 0.20s 
OCRopus 0.3.1[5] 45.53% 43s 0.93s 
Tesseract 2.04[6] 49.41%* 22s 0.48s 

Table 1. Comparison of different OCR engines. The results of entries marked with an * have 
been achieved with grayscale images for the OCR process. For these engines, colored images 
produced lower quality results. The total time of each OCR engine relates to 46 test files, 
which have been processed in one batch.  

The 46 images of the test set were taken autonomously by the robot with the help of a 
special application. The images have been automatically preprocessed by the application, 
so the doorplates have been cut out from the larger image and the shearing, which occurs 
because of the angle at which the camera was pointed at the doorplate, has been 
corrected. 

To understand the results of the test and to evaluate or judge them in the right way, it is 
crucial to know how the measurement works. If a human reads a misspelled word, or a 
word with one character missing, he would most probably still understand the meaning of 
the word, this works, because the person who reads it, knows how it would be spelled 
correctly. A robot without any prior knowledge (like a dictionary) about the words can't 
achieve this. Considering this, a relatively strict rule of what is recognized correct and 
incorrect, was defined. To get some kind of reference data, all the images, which should be 
tested, have been reviewed and their content has been written into a text file. Words and 
lines are separated by a blank, in the same order as in the image. The example image as seen 
in figure 8 have the following reference data: 
                                                 
14 http://www.youtube.com/watch?v=Il_aabmWeW8 
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14 http://www.youtube.com/watch?v=Il_aabmWeW8 
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P 0.20 Labor Robotik u. Bildverarbeitung Bereich Allgemeine Mikroinformatik Fachbereich 
Informatik 

For this example the output of the OCRopus engine of this image was: 

Labor 
Robotik u. Bildverarbeitun 
Bereich Allgemeine Nlikroinformatik 
Fachbereich Informatik 

Since it is time consuming to compare each file with its reference by hand, a little program 
was written to do the evaluation. The files get split up into several tokens, which are 
separated by blanks or line brakes respectively. Each token of the reference file, will be 
compared to each token in the OCR output and if it matches one of these, all characters and 
the blank will be counted as correct characters. If the reference token does not match any of 
the output tokens, the whole word and the blank will not be counted as correct characters. 
Table 2 to gives an example.  
 

Reference Token Found / Not found Reason (if not found) Character count 

P Not found Missing in output 2 

0.20 Not found Missing in output 5 

Labor Found  6 

Robotik Found  8 

u. Found  3 

Bildverarbeitung Not found missing 'g' 17 

Bereich Found  8 

Allgemeine Found  11 

Mikroinformatik Not found Wrong characters 16 

Fachbereich Found  12 

Informatik Found  11 

Table 2. Example of an evaluation of a doorplate. As a result 59/99 = 59,6% of the characters 
are correct.  

The result would be 59 found characters of a total of 99 characters, so the output for this one 
file would be only 59.6 %, although only the P 0.20 was lost and the words 
“Bildverarbeitung” and “Mikroinformatik” have been misspelled. In general this is not that 
bad at all, with the rating of only 59.6 % misspelled characters. But overall, it is still a fair 
rating, because in this example some most probably relevant data, the room number, is lost 
completely and it is difficult to distinguish between relevant and irrelevant data, before you 
know the content. Nevertheless a dictionary or word data base or an evaluation based on n-
gram will improve the output.  

The Cuneiform OCR engine had problems with some files. Therefore it was not possible to 
process 24 of the 46 images at all, so the whole content of the corresponding reference files 
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could not be found in the OCR output which leads to the bad rating. Cuneiform shows a 
better performance with manual processed images. The Abbyy OCR engine shows the best 
performance concerning character recognition accuracy, but it is also the slowest engine. In 
this test it is the odd man out, because it is the only commercial engine. All the other engines 
are available for free and are under an open source license. The most promising open source 
OCR engines seem to be Tesseract and OCRopus. With better preprocessing and image 
enhancement, those two engines could deliver even better results (which is already 
implemented in the Abbyy OCR engine). Besides this, both engines are still under 
development. 

 
Fig. 14. Example of the extracted doorplate text mapped to the 3D point cloud in front of the 
door (ROS rviz viewer).  

5. Conclusion 
With a focus to real world indoor robotics we have presented two major things. First we 
have shown that mobile robots can use the same source of information as humans e.g. 
doorplates to localize itself. This is remarkable because only a cheap mobile robot (Roomba, 
$300), a consumer digital camera (Canon, $150) and a notebook (Gigabyte, $300) are needed 
to build a topological map with the textual information of the doorplates. Also remarkable is 
the fact that standard software can be used to implement our approach, mainly OpenCV 
and ROS is used. All modules are available as open source at our svn repository at the 
ROS website. The robot finds doorplates autonomously in its environment. It takes high 
resolution images of those doorplates with a camera and the quality of the images meet 
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the requirements to process them effectively with standard OCR engines to extract the 
textual information. Unfortunately this process currently needs up to 30 seconds, manly 
focusing the doorplates, but there is much more potential for further improvements. 
However, the presented technique is a foundation for visual landmark based SLAM. The 
extracted data of the doorplates can be easily assembled to maps implemented as graphs. 
The maps are enhanced with additional geometric data, for example the distance of one 
doorplate to the other.  

For our second contribution we extended the mobile robot with a 2D laser scanner 
(+$2000) and implemented an approach to acquire precise 3D scans. Odometry based 
position errors are eliminated by two additional horizontal scans at the start and end of 
the 3D scan. Comparison of our approach with a $100.000 Riegl VZ-400 laser scanner 
shows an average accuracy of 0.4 cm for one 3D scan. The acquired 3D point clouds are 
preprocessed to extract walls, ceilings and floors based on the tan segmentation. The OCR 
based reading of the doorplates is adapted to the 3D scan acquisition and the textual 
information is added to the segmented 3D point cloud. Further preprocessing of the 3D 
point clouds like CAD data is necessary. Also the kidnapped robot problem will be 
greatly simplified, because the robot needs to only find one doorplate to know its current 
position very precisely. Another great potential of this solution is the combination with 
e.g. googles search engine. With the help of the Internet, or some kind of local database, 
the robot is able to look up found names to get further information. For example if it reads 
the name of Mr. Surmann, the robot searches the web and parses the website to double-
check if the read room number is correct or to find a corresponding phone number. For 
example afterwards the robot would be able to call Mr. Surmann and inform him about 
what is going on at his bureau. Another problem that can benefit from this technique is 
the anchoring problem. For example the robot does not need to know the exact form of a 
fire distinguisher, if it is red and the robot is able to read "Fire Distinguisher" on it, it 
probably is a fire distinguisher. Current work also includes the generation of HDR 
panorama images to support the tenants application. 
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1. Introduction  
Neural networks expanded to complex domains have recently been studied in the field of 
computational intelligence. Complex-valued neural networks are effective for learning the 
relationships between complex inputs and outputs, and applications to complex analysis 
and complex image processing have been studied (Hirose, 2006). In addition, the 
effectiveness of the computational complexity and the number of training data has been 
confirmed when learning mappings in two-dimensional space (Nitta, 1997). Also, a method 
for complex-valued network inversion to produce an inverse mapping was proposed as a 
related technique using a complex-valued neural network (Ogawa, 2009). We can obtain 
forward mappings and inverse mappings in complex domains using these methods. 

Image filters are important in bio-inspired systems, machine vision, and image processing. 
We can extract relevant information or remove unnecessary information from any given 
image using various image filters (Gonzalez & Woods, 2010; Pratt, 2007). In machine vision, 
image filters are effective for transforming, mapping, and making a required filter adaptive. 
In this work, we propose to adaptively map an image filter using a neural network to make 
an appropriate filter. We show that the mapping requires less training data when using 
complex-valued neural networks. 

In this work, we examine the transformation of image filters using complex-valued neural 
networks. First, we conduct a simulation to learn the transformation, and demonstrate the 
capacity for forward and inverse mapping using complex-valued neural networks. We then 
demonstrate various transformations of image filters, such as Gaussian filters, using 
complex-valued neural networks. In addition, we present the results of image filtering using 
the transformed image filters. 

2. Complex-valued neural networks 
Complex-valued neural networks have recently been used to directly learn and recognize data 
in a complex region. These networks learn complex input–output relationships using complex 
weights and complex neurons. Various models have been proposed for representing these 
networks, such as the multilayer-type neural network (Benvenuto & Piazza, 1992), the self-
organizing map (Hirose & Hara, 2003), and associative memory (Nemoto & Kubono, 1996), 
and a number of applications of these networks have also been studied.  
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Complex-valued neural networks are effective for processing data in a coordinate system 
where the phase rotates or for learning relationships in the frequency domain. Applications 
of complex-valued neural networks include adaptive design of patch antennas (Du et al., 
2002), radar image processing (Hara & Hirose, 2004), and traffic-dependent optimal control 
of traffic signals (Nishikawa & Kuroe, 2004).  

2.1 Complex-valued multilayer neural networks 

In this study, complex-valued multilayer neural networks are used for filter transformation 
based on their capacity for mapping. Complex-valued multilayer neural networks are an 
extension of the usual multilayer neural networks to complex regions. This method 
determines the relationships between complex inputs and outputs using complex neurons 
and complex weights. They are typically composed of an input layer, some hidden layers, 
and the output layers. All functions can be realized in complex-valued multilayer neural 
networks if there is at least one hidden layer and a normal multilayer network. In this study, 
we used a neural network with three layers, namely, input layer, hidden layer, and output 
layer, for simulation.  

In this study, we considered a multilayer neural network based on an error backpropagation 
learning method. This model learns complex input–output relationships using complex 
weights and complex neurons. Complex-valued neural networks are classified on the basis 
of their architecture and the type of neurons found in these networks. For instance, one type 
of complex-valued neural networks is based on the transfer function of the neuron, while 
another consists of real-type neurons. Here, we consider a neuron that independently 
applies a sigmoid function to the real and imaginary parts of the weighted sum of inputs. 
This neuron independently applies a complex sigmoid function to each real part and 
imaginary part, which can be defined as 

 ( ) ( ) ( ) ( )
u

C R I u
ef s f s if s f u
e

1,
1

−

−
−= + =
+

 (1) 

where i and s = sR + isI indicate the imaginary unit and the weighted sum of the neuron 
input, respectively. The architecture of the complex-valued sigmoid neuron is shown in Fig. 
1. The neuron transforms the weighted sum s = sR + isI of the input xn = xnR + ixnI and the 
weight wn = wnR + iwnI to the output fc(s)=f(sR)+if(sI) using the sigmoid function of equation 
(1). In this network, complex-valued neurons are used for the hidden layer and the output 
layer.  

Complex-valued multilayer neural networks are usually used in two phases of learning and 
estimation, as shown in Fig. 2. In the learning phase, we provide the training input and 
output, and model the forward relation using the error backpropagation algorithm. During 
the estimation phase, we obtain the output for a given input by fixing the weights obtained 
in the leaning phase.  

Next, we explain learning in a complex-valued neural network using the error 
backpropagation algorithm, which is enhanced for complex regions. Here, we consider a 
three-layer network with an input layer, a hidden layer, and an output layer. The output 
error E = ER + iEI is defined by the squared error as 
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where y’r = y’rR + iy’rI and yr = yrR + iyrI are the r-th tutorial output and the network output, 
respectively. First, we formulate the weight update procedure between the hidden and 
output layers. The error signal r rR rIiδ δ δ= + from the output layer is calculated by 
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Also, the gradient of the output error for the weight wrk = wrkR + iwrkI between the hidden 
and output layer is expressed by 
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where vk = vkR + ivkI indicates the input from the k-th hidden neuron. Therefore, the weights 
are updated by 
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where εt denotes a training gain. In this way, complex weights are updated between the 
hidden and output layers. Next, we formulate the weight update procedure between the input 
and hidden layers. The error signal k kR kIiδ δ δ= +  from the hidden layer is calculated by 
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Also, the gradient of the output error for the weight wkm = wkmR + iwkmI between the input 
and hidden layer is expressed by 
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where xm = xmR + ixmI indicates the input from the m-th input neuron. Therefore, the weights 
are updated by 

 ( ) ( )new old new old
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where εt is a training gain. In this way, the complex weights between the input and hidden 
layers are updated. The input-output relationship is learned by correcting each complex 
weight according to the above equations. In general, the afore-mentioned weight correction 
is repeated until a prescribed error value or repetition number. The principle of weight 
correction is based on the output error, as shown in Fig. 3.  

The output is estimated from a given input using the learned complex-valued multilayer 
neural network. In the network studied, the output corresponding to the given input can be 
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Complex-valued neural networks are effective for processing data in a coordinate system 
where the phase rotates or for learning relationships in the frequency domain. Applications 
of complex-valued neural networks include adaptive design of patch antennas (Du et al., 
2002), radar image processing (Hara & Hirose, 2004), and traffic-dependent optimal control 
of traffic signals (Nishikawa & Kuroe, 2004).  

2.1 Complex-valued multilayer neural networks 

In this study, complex-valued multilayer neural networks are used for filter transformation 
based on their capacity for mapping. Complex-valued multilayer neural networks are an 
extension of the usual multilayer neural networks to complex regions. This method 
determines the relationships between complex inputs and outputs using complex neurons 
and complex weights. They are typically composed of an input layer, some hidden layers, 
and the output layers. All functions can be realized in complex-valued multilayer neural 
networks if there is at least one hidden layer and a normal multilayer network. In this study, 
we used a neural network with three layers, namely, input layer, hidden layer, and output 
layer, for simulation.  

In this study, we considered a multilayer neural network based on an error backpropagation 
learning method. This model learns complex input–output relationships using complex 
weights and complex neurons. Complex-valued neural networks are classified on the basis 
of their architecture and the type of neurons found in these networks. For instance, one type 
of complex-valued neural networks is based on the transfer function of the neuron, while 
another consists of real-type neurons. Here, we consider a neuron that independently 
applies a sigmoid function to the real and imaginary parts of the weighted sum of inputs. 
This neuron independently applies a complex sigmoid function to each real part and 
imaginary part, which can be defined as 
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where i and s = sR + isI indicate the imaginary unit and the weighted sum of the neuron 
input, respectively. The architecture of the complex-valued sigmoid neuron is shown in Fig. 
1. The neuron transforms the weighted sum s = sR + isI of the input xn = xnR + ixnI and the 
weight wn = wnR + iwnI to the output fc(s)=f(sR)+if(sI) using the sigmoid function of equation 
(1). In this network, complex-valued neurons are used for the hidden layer and the output 
layer.  

Complex-valued multilayer neural networks are usually used in two phases of learning and 
estimation, as shown in Fig. 2. In the learning phase, we provide the training input and 
output, and model the forward relation using the error backpropagation algorithm. During 
the estimation phase, we obtain the output for a given input by fixing the weights obtained 
in the leaning phase.  

Next, we explain learning in a complex-valued neural network using the error 
backpropagation algorithm, which is enhanced for complex regions. Here, we consider a 
three-layer network with an input layer, a hidden layer, and an output layer. The output 
error E = ER + iEI is defined by the squared error as 
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Also, the gradient of the output error for the weight wkm = wkmR + iwkmI between the input 
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where xm = xmR + ixmI indicates the input from the m-th input neuron. Therefore, the weights 
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where εt is a training gain. In this way, the complex weights between the input and hidden 
layers are updated. The input-output relationship is learned by correcting each complex 
weight according to the above equations. In general, the afore-mentioned weight correction 
is repeated until a prescribed error value or repetition number. The principle of weight 
correction is based on the output error, as shown in Fig. 3.  

The output is estimated from a given input using the learned complex-valued multilayer 
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estimated by fixing the weights obtained during learning with a given input and obtaining 
the output.  

 
Fig. 1. A complex-valued sigmoid neuron. 

 
Fig. 2. Two-step estimation with complex-valued neural network. 
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Fig. 3. Iterative correction of weights by error backpropagation learning. 

2.2 Complex-valued network inversion 
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result is determined from a given cause by using a certain fixed mathematical model in 
the forward problem (Groetsch, 1993). We consider the estimation process with the neural 
network from the viewpoint of the direction of the problem. A multilayer neural network 
is a normal solution for the forward problem because it estimates the output from the 
input based on the forward relationship obtained by training. In contrast, an inverse 
problem can be solved using a multilayer neural network inversely with the forward 
relationship obtained during training. 

A normal multilayer neural network can be used to solve the forward problem. Given a 
normal multilayer network where training is completed, the input-output relationship is 
given by y = f (w, x), where x, y, and f are the input vector, the output vector, and the 
function defined by the interlayer weights w of the network, respectively. Given the input 
vector x, the network calculates the output vector y. Linden and Kindermann proposed a 
method for network inversion (Linden & Kindermann, 1989). Using this method, we can 
determine the observed output data y with f fixed after finding the forward relationship f by 
training. Then, the input x can be updated according to the calculated input correction 
signal, based on the duality of the weights and input. The input is actually estimated from 
the output by the iterative updating of the input based on the output error. In this way, the 
inverse problem for estimating input x from output y is solved with a multilayer neural 
network by using the forward relationship inversely. Further, network inversion has been 
applied to image restoration (Valova et al., 1995) and the inverse kinematics of robot arms 
(Ogawa & Kanada, 2010). 

The network is used in two phases, forward training and inverse estimation, to solve the 
inverse problem by network inversion, as shown in Fig. 5. During the training phase, we 
provide the training input x and the training output y and calculate the output error E. 
Then, the weight w is updated by 

 new old
t

Ew w
w

ε ∂= −
∂  (9) 

where εt is the training gain, because the output error is due to maladjustments of the 
weights. The forward relationship is obtained by repeating this update procedure. This 
procedure is based on the usual backpropagation method. During the inverse estimation 
phase, we fixed the relationship obtained during training, given the random input x and the 
test output y, and we calculated the output error E. The input x is then updated by 

 new old
e

Ex x
x

ε ∂= −
∂

 (10) 

where εe denotes the input update gain, because the output error is due to the error of the 
input. The input is estimated from the output by repeating this update procedure. The 
principle of input correction is shown in Fig. 6. 

A complex-valued network inversion is an extension of the principle of the network 
inversion to a complex number. In a complex-valued network inversion, the network 
inversion technique extended to a complex number is applied to a learned complex-valued 
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estimated by fixing the weights obtained during learning with a given input and obtaining 
the output.  
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Fig. 2. Two-step estimation with complex-valued neural network. 

 Training output Y’

input layer

hidden layer

output layer

weights

weights

Training input X

Output Y 
Error E

weights
update

weights
update

 
Fig. 3. Iterative correction of weights by error backpropagation learning. 

2.2 Complex-valued network inversion 

The inverse problem determines the inner mechanism or cause of an observed 
phenomenon. The concept of the inverse problem is shown in Fig. 4. The cause is 
estimated from a fixed model and a given result in the inverse problem, whereas the 

 

    training
  input

forward learning

Learning phase

Estimation phase

   training
 output

   estimated
 output

forward estimating   provided
 input

by multilayer NN

IR iww 11 +

IR iww 22 +

nInR iww +nInR ixx +

)()()( IR sifsfsf +=

IR ixx 11 +

IR ixx 22 +

IR iss +
u

u
IR

e
euf

sifsfsf

−

−

+
−=

+=

1
1)(

)()()(

 
Transformations of Image Filters for Machine Vision Using Complex-Valued Neural Networks 

 

147 

result is determined from a given cause by using a certain fixed mathematical model in 
the forward problem (Groetsch, 1993). We consider the estimation process with the neural 
network from the viewpoint of the direction of the problem. A multilayer neural network 
is a normal solution for the forward problem because it estimates the output from the 
input based on the forward relationship obtained by training. In contrast, an inverse 
problem can be solved using a multilayer neural network inversely with the forward 
relationship obtained during training. 

A normal multilayer neural network can be used to solve the forward problem. Given a 
normal multilayer network where training is completed, the input-output relationship is 
given by y = f (w, x), where x, y, and f are the input vector, the output vector, and the 
function defined by the interlayer weights w of the network, respectively. Given the input 
vector x, the network calculates the output vector y. Linden and Kindermann proposed a 
method for network inversion (Linden & Kindermann, 1989). Using this method, we can 
determine the observed output data y with f fixed after finding the forward relationship f by 
training. Then, the input x can be updated according to the calculated input correction 
signal, based on the duality of the weights and input. The input is actually estimated from 
the output by the iterative updating of the input based on the output error. In this way, the 
inverse problem for estimating input x from output y is solved with a multilayer neural 
network by using the forward relationship inversely. Further, network inversion has been 
applied to image restoration (Valova et al., 1995) and the inverse kinematics of robot arms 
(Ogawa & Kanada, 2010). 

The network is used in two phases, forward training and inverse estimation, to solve the 
inverse problem by network inversion, as shown in Fig. 5. During the training phase, we 
provide the training input x and the training output y and calculate the output error E. 
Then, the weight w is updated by 
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where εt is the training gain, because the output error is due to maladjustments of the 
weights. The forward relationship is obtained by repeating this update procedure. This 
procedure is based on the usual backpropagation method. During the inverse estimation 
phase, we fixed the relationship obtained during training, given the random input x and the 
test output y, and we calculated the output error E. The input x is then updated by 
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where εe denotes the input update gain, because the output error is due to the error of the 
input. The input is estimated from the output by repeating this update procedure. The 
principle of input correction is shown in Fig. 6. 

A complex-valued network inversion is an extension of the principle of the network 
inversion to a complex number. In a complex-valued network inversion, the network 
inversion technique extended to a complex number is applied to a learned complex-valued 
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multilayer neural network to solve inverse problems. As a result, the complex input is 
estimated from a complex output, which is given to a learned complex-valued neural 
network. The network learns the input and output relationship using the error 
backpropagation algorithm extended to the complex region, which is explained in the 
previous section. 

During the inverse estimation phase, the input is estimated from the given output. Thus, the 
provided initial random input is repeatedly updated by the output error, which is 
backpropagated to the input via the fixed weights. To provide an initial random input xm = 
xmR + ixmI, the squared error E = ER + iEI is calculated as  

 ( ) ( )R rR rR R rI rI
r r

E y y E y y2 21 1, ,
2 2

′ ′= − = −∑ ∑  (11) 

where yr = yrR + iyrI and y'r = y'rR + iy'rI indicate the network output and tutorial output, 
respectively. The error signals from the output and hidden layers are also formulated as  
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where vk = vkR + ivkI indicates the input from the k-th hidden neuron to the output neurons. 
Equations (12) and (13) are similar to equations (3) and (6), respectively. The error signal to 
the input layer is then calculated by 
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where xm = xmR + ixmI indicates the input from the m-th input neuron to the hidden neurons. 
The error signal δm = δmR + iδmI indicates a demand for input correction to the m-th input 
neuron, so the complex inputs are iteratively corrected as  

 new old new old
mR mR e mR mI mI e mIx x x x,ε δ ε δ= − = −  (15) 

where εe is the inverse estimation gain. When the error reaches the target, the input 
correction is terminated and the obtained complex input becomes a solution. As a result, the 
complex input can be inversely estimated from the complex output by using the complex 
weight distribution obtained during training. This is similar to correcting the weights or the 
input iteratively during training and inverse estimation. However, the inverse estimation 
uses iterative corrections for a given pattern, which differs from training by repeated 
correction of plural patterns. 
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Fig. 5. Two-step estimation to solve inverse problems by complex-valued network inversion. 
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Fig. 6. Iterative correction of inputs by network inversion. 

2.3 Learning of complex-mapping by complex-valued neural networks 

A multilayer neural network can learn the nonlinear mapping relationships between inputs 
and outputs. A complex-valued multilayer neural network and a complex-valued network 
inversion can estimate, respectively, the forward mapping and the inverse mapping 
between an input and output. In this study, we examined the forward and inverse 
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multilayer neural network to solve inverse problems. As a result, the complex input is 
estimated from a complex output, which is given to a learned complex-valued neural 
network. The network learns the input and output relationship using the error 
backpropagation algorithm extended to the complex region, which is explained in the 
previous section. 

During the inverse estimation phase, the input is estimated from the given output. Thus, the 
provided initial random input is repeatedly updated by the output error, which is 
backpropagated to the input via the fixed weights. To provide an initial random input xm = 
xmR + ixmI, the squared error E = ER + iEI is calculated as  
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where xm = xmR + ixmI indicates the input from the m-th input neuron to the hidden neurons. 
The error signal δm = δmR + iδmI indicates a demand for input correction to the m-th input 
neuron, so the complex inputs are iteratively corrected as  
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where εe is the inverse estimation gain. When the error reaches the target, the input 
correction is terminated and the obtained complex input becomes a solution. As a result, the 
complex input can be inversely estimated from the complex output by using the complex 
weight distribution obtained during training. This is similar to correcting the weights or the 
input iteratively during training and inverse estimation. However, the inverse estimation 
uses iterative corrections for a given pattern, which differs from training by repeated 
correction of plural patterns. 
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estimation problems using these networks. In the complex-mapping problem, it is important 
that learning is related to the mapping of points on a complex plane. A complex-valued 
neural network has the particular advantage of learning a map with a coordinate system 
that rotates. We consider the use of complex-valued neural networks by replacing the 
mapping with a transformation of the rotation with a mapping on a complex plane.  

We consider the problem of mapping a point on a complex plane using a network with an 
input and an output. The network learns the input/output relationship using a given 
complex learning pattern for input and output learning. During the forward estimation of a 
complex-valued multilayer neural network, we provide the input to obtain the output by 
fixing the weights obtained in learning. During the inverse estimation of the complex-
valued network inversion, we provide a complex random input pattern and iteratively 
correct the input from a given complex output pattern by fixing the weights obtained in 
learning.  

Various kinds of information can be expressed by assigning meanings to the coordinates in 
complex mapping problems. In this study, we examined the allocation of the values of 
image filters to a complex plane and performed various conversions. We can generally 
implement filters that achieve non-symmetric filtering and direction-related filtering. These 
are effective tools in machine vision. In this study, we considered the conversion of an 
image filter using complex-valued neural networks. 

We examined the linear transformation of expansion/compression and rotation, and general 
projective conversion, which are important methods for transforming image filters. First, we 
considered a figure g(x, y) in two-dimensional space, where each value of the coordinates (x, 
y) is moved to coordinates (x', y') repeatedly. Generally, a linear transform is expressed by 
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using a matrix expression. Various linear transforms can be executed by choosing the four 
parameters a, b, c, and d. Here, we set the parameters b = c = 0 as 
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to consider the transform of expansion/compression shown in Fig. 7 (a). The parameters a 
and d indicate the rate of expansion/compression in the x-direction and y-direction, 
respectively. Expansion is indicated if these parameters are larger than 1.0, whereas 
compression is indicated if they are lower than 1.0. The transform of rotation is given as 
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where θ denotes the counterclockwise angle around the origin, as shown in Fig. 7 (b). These 
are linear transforms, and they are realized by simple parameter estimation; however, we 
need to learn and estimate these transforms to illustrate the procedure for complex-valued 

 
Transformations of Image Filters for Machine Vision Using Complex-Valued Neural Networks 

 

151 

neural networks used in this study. More general geometric transforms include a projective 
transform. A projective transform is expressed by  

 a x a y ax
a x a y a

11 12 13

31 32 33
,+ +′ =

+ +
a x a y ay
a x a y a

21 22 23

31 32 33
,+ +′ =

+ +
 (19) 

which includes nine parameters aij. An example of a projective transform is shown in Fig. 7 
(c). In this study, we consider these three transforms as geometric transforms on a complex 
plane, and we use them for estimation with complex-valued neural networks.  
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Fig. 7. Examples of geometric transforms: (a) expansion and compression, (b) rotation, and 
(c) projective transforms. 

3. Image filters 
Image filters are an important tool in the fields of bio-inspired systems, robot vision, and 
image processing. Relevant information is extracted or unnecessary information is removed 
from a given image with various image filters. In robot vision, it is useful if the image filter 
can transform or adaptively map when making a necessary filter. In this section, we propose 
to adaptively map an image filter using a neural network to make an appropriate filter. 
Complex-valued neural networks are known to effectively map using less training data. 

A Gaussian function is often used as an expression of the frequency domain of a filter. For 
example, let H(u) denote the 1-D frequency domain Gaussian filter as 

 uH u Ae
2 22( ) σ−=  (20) 

where σ is the standard deviation of the Gaussian function. This function can be used as a 
one-dimensional low-pass filter. Moreover, let H(u, v) denote the 2-D frequency domain 
Gaussian filter as  

 D u vH u v e
2 2( , ) 2( , ) σ−=  (21) 

where ( )D u v u v2 2( , ) = +  and the origin, u = v = 0, is considered as the center of the filter.   

Various filters can be made by applying the Gaussian function using the above-mentioned 
function, which basically provides a low-pass filter. For instance, a high-pass filter is 
produced by assuming H u v1 ( , )− . Moreover, a filter of the lateral inhibition type can be 
produced based on the difference of two Gaussian functions with different standard 
deviations. This is called the DOG function and it can be used as an edge enhancement filter.  
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estimation problems using these networks. In the complex-mapping problem, it is important 
that learning is related to the mapping of points on a complex plane. A complex-valued 
neural network has the particular advantage of learning a map with a coordinate system 
that rotates. We consider the use of complex-valued neural networks by replacing the 
mapping with a transformation of the rotation with a mapping on a complex plane.  

We consider the problem of mapping a point on a complex plane using a network with an 
input and an output. The network learns the input/output relationship using a given 
complex learning pattern for input and output learning. During the forward estimation of a 
complex-valued multilayer neural network, we provide the input to obtain the output by 
fixing the weights obtained in learning. During the inverse estimation of the complex-
valued network inversion, we provide a complex random input pattern and iteratively 
correct the input from a given complex output pattern by fixing the weights obtained in 
learning.  

Various kinds of information can be expressed by assigning meanings to the coordinates in 
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y) is moved to coordinates (x', y') repeatedly. Generally, a linear transform is expressed by 
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using a matrix expression. Various linear transforms can be executed by choosing the four 
parameters a, b, c, and d. Here, we set the parameters b = c = 0 as 

 
x a x
y d y

0
0

′⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (17) 

to consider the transform of expansion/compression shown in Fig. 7 (a). The parameters a 
and d indicate the rate of expansion/compression in the x-direction and y-direction, 
respectively. Expansion is indicated if these parameters are larger than 1.0, whereas 
compression is indicated if they are lower than 1.0. The transform of rotation is given as 
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where θ denotes the counterclockwise angle around the origin, as shown in Fig. 7 (b). These 
are linear transforms, and they are realized by simple parameter estimation; however, we 
need to learn and estimate these transforms to illustrate the procedure for complex-valued 
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neural networks used in this study. More general geometric transforms include a projective 
transform. A projective transform is expressed by  

 a x a y ax
a x a y a

11 12 13

31 32 33
,+ +′ =

+ +
a x a y ay
a x a y a

21 22 23

31 32 33
,+ +′ =

+ +
 (19) 

which includes nine parameters aij. An example of a projective transform is shown in Fig. 7 
(c). In this study, we consider these three transforms as geometric transforms on a complex 
plane, and we use them for estimation with complex-valued neural networks.  
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3. Image filters 
Image filters are an important tool in the fields of bio-inspired systems, robot vision, and 
image processing. Relevant information is extracted or unnecessary information is removed 
from a given image with various image filters. In robot vision, it is useful if the image filter 
can transform or adaptively map when making a necessary filter. In this section, we propose 
to adaptively map an image filter using a neural network to make an appropriate filter. 
Complex-valued neural networks are known to effectively map using less training data. 

A Gaussian function is often used as an expression of the frequency domain of a filter. For 
example, let H(u) denote the 1-D frequency domain Gaussian filter as 

 uH u Ae
2 22( ) σ−=  (20) 

where σ is the standard deviation of the Gaussian function. This function can be used as a 
one-dimensional low-pass filter. Moreover, let H(u, v) denote the 2-D frequency domain 
Gaussian filter as  

 D u vH u v e
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where ( )D u v u v2 2( , ) = +  and the origin, u = v = 0, is considered as the center of the filter.   

Various filters can be made by applying the Gaussian function using the above-mentioned 
function, which basically provides a low-pass filter. For instance, a high-pass filter is 
produced by assuming H u v1 ( , )− . Moreover, a filter of the lateral inhibition type can be 
produced based on the difference of two Gaussian functions with different standard 
deviations. This is called the DOG function and it can be used as an edge enhancement filter.  
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Moreover, an orientation selectivity filter can be produced from the rotated elliptic function 
by compressing and rotating a Gaussian function. This filter can extract a line segment or 
filter an image in a specific direction. A filter with various features can be produced by 
variously compressing and rotating the Gaussian filter. Thus, linear transformations and 
nonlinear transformations can be produced by learning using neural networks. As an 
example, we consider a nonlinear conversion, such as a projective transform. Fig. 8 shows 
examples of the plot of 2-D filter functions related to Gaussian functions: a low-pass filter, a 
high-pass filter, a lateral inhibition filter based on the difference of Gaussian functions, and 
an orientation selectivity filter that is obtained using an elliptical Gaussian function. 
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Fig. 8. Plots of 2-D filter functions related to Gaussian functions: (a) low-pass filter, (b) high-
pass filter, (c) lateral inhibition filter based on the difference of Gaussian functions, and (d) a 
directional filter obtained using an elliptical Gaussian function. 

4. Simulation  
We conducted a simulation of a forward and inverse transform of the filter using forward 
and inverse mappings with a complex-valued multilayer neural network and a complex-
valued network inversion. First, we examined the geometric conversions namely, the 
expansion/compression, rotation, and projective conversions, on a complex plane to 
demonstrate the learning procedure and the estimation of the complex mapping. The result 
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was a transformation of the geometric figure, the movement vector on the complex plane, 
and a conversion of the filter. In addition, we filtered the image with the transformed filter 
and showed the effect of the filter conversion with complex-valued neural networks. 

We use a network with an input and an output, and we considered the problem of mapping 
one point to another on a complex plane. We provided complex input and output patterns 
and made the network learn the input/output relationship during learning. Then, we 
examined the forward estimation of the multilayer neural network and the inverse 
estimation using the network inversion of the learned network. Thus, we obtained an output 
from a given input by using the learned relation as it was and obtained the input from the 
given output by using the learned relation inversely. The network parameters and network 
architecture are presented in Table 1 and Fig. 9, respectively. The following section shows 
the results of the expansion/compression conversion, the rotational transformation, and the 
projective conversion. 

  
       (a)              (b) 
Fig. 9. Network architectures for (a) forward estimation and (b) inverse estimation. 
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Criterion for estimation convergence 0.001 0.001 0.001 0.001 

Table 1. Network parameters. 
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We examined the learning, forward estimation, and inverse estimation of the 
expansion/compression transform on a complex plane with the complex-valued neural 
networks. Both symmetric and non-symmetric transforms along the vertical and horizontal 
axes are important for transforming an image filter such as the orientation selectivity filter. 
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Moreover, an orientation selectivity filter can be produced from the rotated elliptic function 
by compressing and rotating a Gaussian function. This filter can extract a line segment or 
filter an image in a specific direction. A filter with various features can be produced by 
variously compressing and rotating the Gaussian filter. Thus, linear transformations and 
nonlinear transformations can be produced by learning using neural networks. As an 
example, we consider a nonlinear conversion, such as a projective transform. Fig. 8 shows 
examples of the plot of 2-D filter functions related to Gaussian functions: a low-pass filter, a 
high-pass filter, a lateral inhibition filter based on the difference of Gaussian functions, and 
an orientation selectivity filter that is obtained using an elliptical Gaussian function. 
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Fig. 8. Plots of 2-D filter functions related to Gaussian functions: (a) low-pass filter, (b) high-
pass filter, (c) lateral inhibition filter based on the difference of Gaussian functions, and (d) a 
directional filter obtained using an elliptical Gaussian function. 

4. Simulation  
We conducted a simulation of a forward and inverse transform of the filter using forward 
and inverse mappings with a complex-valued multilayer neural network and a complex-
valued network inversion. First, we examined the geometric conversions namely, the 
expansion/compression, rotation, and projective conversions, on a complex plane to 
demonstrate the learning procedure and the estimation of the complex mapping. The result 
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was a transformation of the geometric figure, the movement vector on the complex plane, 
and a conversion of the filter. In addition, we filtered the image with the transformed filter 
and showed the effect of the filter conversion with complex-valued neural networks. 

We use a network with an input and an output, and we considered the problem of mapping 
one point to another on a complex plane. We provided complex input and output patterns 
and made the network learn the input/output relationship during learning. Then, we 
examined the forward estimation of the multilayer neural network and the inverse 
estimation using the network inversion of the learned network. Thus, we obtained an output 
from a given input by using the learned relation as it was and obtained the input from the 
given output by using the learned relation inversely. The network parameters and network 
architecture are presented in Table 1 and Fig. 9, respectively. The following section shows 
the results of the expansion/compression conversion, the rotational transformation, and the 
projective conversion. 
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4.1 Expansion/compression transform 
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expansion/compression transform on a complex plane with the complex-valued neural 
networks. Both symmetric and non-symmetric transforms along the vertical and horizontal 
axes are important for transforming an image filter such as the orientation selectivity filter. 
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Thus, symmetric transforms and non-symmetric transforms are examined here. As the 
learning data, we provided 22 pairs of data that satisfied x ax′ = , y dy′ = , y x= , y x= − , 
where a and d are constants, and (x, y) and (x‘, y‘) are points before and after the transform, 
respectively. We prepared the 11 points x = (-1.0, -0.8, ..., 1.0).  

First, we examined the learning, forward estimation, and inverse estimation of the 
symmetric expansion/compression transform by setting parameters a = d = 0.5. The forward 
mapping vector by forward estimation and the inverse mapping vector by inverse 
estimation are shown in Figs. 10 (a) and (b), respectively. Based on these results, it was 
confirmed that the transform vectors were correctly obtained. In Fig. 11, we show the results 
of the forward and inverse estimation of the expansion/compression transform of a circle, 
whose radius and center are 0.5 and the origin, respectively. Based on these results, it was 
confirmed that the forward and inverse estimations were correctly conducted. In addition, 
Fig. 12 shows the results of the forward and inverse estimation of the 
expansion/compression of the Gaussian function. Based on these results, it was found that 
the expansion/compression is correctly conducted. Therefore, it was shown that a complex-
valued neural network can realize the forward and inverse transforms of 
expansion/compression.  

Next, we examined the learning, forward estimation, and inverse estimation of an 
asymmetric expansion/compression transform by setting parameters a = 1.0, d = 0.2. Fig. 13 
shows the forward mapping vector and the inverse mapping vector obtained by learning. 
Based on these results, it was found that the expansion/compression was applied only 
along the y-axis. Fig. 14 shows the results of the forward and inverse estimation of the 
expansion/compression transform of a circle, whose radius and center are 0.5 and the 
origin, respectively. Based on these results, it was found that the forward and inverse 
estimations of the expansion/compression were correctly shown to be an oval distribution 
of the estimated points. In addition, Fig. 15 shows the results of the forward and inverse 
estimation of the expansion/compression of the Gaussian function. Therefore, it was shown 
that a complex-valued neural network can realize the forward and inverse transforms of the 
asymmetric expansion/compression.  

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re.

Im
.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re.

Im
.

 
               (a)               (b)  
Fig. 10. Transform vector obtained by learning of the symmetric expansion for (a) forward 
estimation and (b) inverse estimation.  
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Fig. 11. Results of symmetric expansion of a circle by (a) forward estimation and (b) inverse 
estimation.  
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Fig. 12. Results of symmetric expansion of a Gaussian function by (a) forward estimation 
and (b) inverse estimation.  
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Fig. 13. Transform vector obtained by the learning of asymmetric expansion with (a) 
forward estimation and (b) inverse estimation.  
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whose radius and center are 0.5 and the origin, respectively. Based on these results, it was 
confirmed that the forward and inverse estimations were correctly conducted. In addition, 
Fig. 12 shows the results of the forward and inverse estimation of the 
expansion/compression of the Gaussian function. Based on these results, it was found that 
the expansion/compression is correctly conducted. Therefore, it was shown that a complex-
valued neural network can realize the forward and inverse transforms of 
expansion/compression.  

Next, we examined the learning, forward estimation, and inverse estimation of an 
asymmetric expansion/compression transform by setting parameters a = 1.0, d = 0.2. Fig. 13 
shows the forward mapping vector and the inverse mapping vector obtained by learning. 
Based on these results, it was found that the expansion/compression was applied only 
along the y-axis. Fig. 14 shows the results of the forward and inverse estimation of the 
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origin, respectively. Based on these results, it was found that the forward and inverse 
estimations of the expansion/compression were correctly shown to be an oval distribution 
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estimation of the expansion/compression of the Gaussian function. Therefore, it was shown 
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Fig. 10. Transform vector obtained by learning of the symmetric expansion for (a) forward 
estimation and (b) inverse estimation.  
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Fig. 11. Results of symmetric expansion of a circle by (a) forward estimation and (b) inverse 
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Fig. 12. Results of symmetric expansion of a Gaussian function by (a) forward estimation 
and (b) inverse estimation.  

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re.

Im
.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re.

Im
.

 
             (a)            (b)  

Fig. 13. Transform vector obtained by the learning of asymmetric expansion with (a) 
forward estimation and (b) inverse estimation.  
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Fig. 14. Results of the asymmetric expansion of a circle by (a) forward estimation and (b) 
inverse estimation.  
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Fig. 15. Results of asymmetric expansion of a Gaussian function by (a) forward estimation 
and (b) inverse estimation.  

4.2 Rotation transform 

We examined the learning, forward estimation, and inverse estimation of the rotation 
transform on a complex plane with complex-valued neural networks. As learning data, we 
provided 22 pairs of data that satisfied y x ysin cosθ θ′ = + , y x= , y x= − , where (x, y) and 
(x‘, y‘) are the points before and after the transform, respectively. We prepared the 11 points 
x = (-0.5, -0.4, ..., 0.5). 

We examined the learning, forward estimation, and inverse estimation of the rotation 
transform by setting parameter θ = 45°. Fig. 16 shows the forward mapping vector and the 
inverse mapping vector obtained by learning. Based on these results, it was confirmed that 
the transform vectors were correctly obtained. Fig. 17 shows the results of the forward and 
inverse estimation of the rotation transform of an ellipse whose major axis, minor axis, and 
center were 0.5, 0.125, and the origin, respectively. Based on these results, it was confirmed  
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             (a)              (b)  
Fig. 16. Transform vector obtained by learning of the rotation with (a) forward estimation 
and (b) inverse estimation.  
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Fig. 17. Results of the rotation of an ellipse by (a) forward estimation and (b) inverse 
estimation.  
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Fig. 18. Results of the rotation of an elliptic Gaussian function by (a) forward estimation and 
(b) inverse estimation.  
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Fig. 14. Results of the asymmetric expansion of a circle by (a) forward estimation and (b) 
inverse estimation.  
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Fig. 15. Results of asymmetric expansion of a Gaussian function by (a) forward estimation 
and (b) inverse estimation.  

4.2 Rotation transform 

We examined the learning, forward estimation, and inverse estimation of the rotation 
transform on a complex plane with complex-valued neural networks. As learning data, we 
provided 22 pairs of data that satisfied y x ysin cosθ θ′ = + , y x= , y x= − , where (x, y) and 
(x‘, y‘) are the points before and after the transform, respectively. We prepared the 11 points 
x = (-0.5, -0.4, ..., 0.5). 

We examined the learning, forward estimation, and inverse estimation of the rotation 
transform by setting parameter θ = 45°. Fig. 16 shows the forward mapping vector and the 
inverse mapping vector obtained by learning. Based on these results, it was confirmed that 
the transform vectors were correctly obtained. Fig. 17 shows the results of the forward and 
inverse estimation of the rotation transform of an ellipse whose major axis, minor axis, and 
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Fig. 16. Transform vector obtained by learning of the rotation with (a) forward estimation 
and (b) inverse estimation.  
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Fig. 17. Results of the rotation of an ellipse by (a) forward estimation and (b) inverse 
estimation.  
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Fig. 18. Results of the rotation of an elliptic Gaussian function by (a) forward estimation and 
(b) inverse estimation.  
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that the forward and inverse estimations were correctly conducted. In addition, Fig. 18 
shows the results of the forward and inverse estimation of the rotation of an elliptic 
Gaussian function. Based on these results, it was found that the rotation was correctly 
conducted. Therefore, it was shown that a complex-valued neural network can realize the 
forward and inverse transforms of the rotation. 

4.3 Projective transform 

We examined the learning, forward estimation, and inverse estimation of a projective 
transform on a complex plane with complex-valued neural networks. As learning data, we 
prepared 22 pair of data on y x=  or y x= −  that satisfied equation (19), where (x, y) and (x‘, 
y‘) were the points before and after the transform, respectively. We prepared the 11 points x 
= (-0.5, -0.4, ..., 0.5).  

First, we examined the learning, forward estimation, and inverse estimation of a projective 
transform by setting the parameters a11 = 3, a12 = 0, a13 = 0, a21 = 0, a22 = 3, a23 = 0, a31 = 0, a32 = 6, 
and a33 = 6. Fig. 19 shows the forward mapping vector and the inverse mapping vector  
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Fig. 19. Transform vector obtained by learning a projective transform with (a) forward 
estimation and (b) inverse estimation.  
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Fig. 20. Results of the projective transform of a circle by (a) forward estimation and (b) 
inverse estimation.  
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obtained by learning. Based on these results, it was confirmed that the transform vectors  
were correctly obtained. Fig. 20 shows the results of the forward and inverse estimation of 
the rotation transform of an ellipse whose major axis, minor axis, and center were 0.5, 0.125,  
and the origin, respectively. Based on these results, it was confirmed that the forward and 
inverse estimations were correctly conducted. In addition, Fig. 21 shows the results of the 
forward and inverse estimation of the rotation of an elliptic Gaussian function. Based on 
these results, it was found that the rotation was correctly conducted. Therefore, it was 
shown that a complex-valued neural network can realize the forward and inverse 
transforms of a projective transform. 
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Fig. 21. Results of the projective transform of an elliptic Gaussian function by (a) forward 
estimation and (b) inverse estimation.  

4.4 Filtering images using transformed filters 

We performed image filtering using the transformed filter estimated in the previous 
simulations and examined the results. We used four transformed filters: an expanded 
Gaussian low-pass filter with forward estimation, an expanded Gaussian low-pass filter 
with inverse estimation, a rotated elliptic Gaussian filter with forward estimation, and a 
rotated elliptic Gaussian filter with inverse estimation. The transformed image spectrum 
I’(u, v) can be described as the product of the transfer function H(u, v) and the original image 
spectrum I(u, v); that is, 

 I u v H u v I u v( , ) ( , ) ( , )′ =  (22) 

The standard image on which the filtering was performed is shown in Fig. 22(a). Fig. 22(b) 
shows simple line segments that indicate the orientation selectivity of the rotated elliptic 
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the rotation transform of an ellipse whose major axis, minor axis, and center were 0.5, 0.125,  
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inverse estimations were correctly conducted. In addition, Fig. 21 shows the results of the 
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Fig. 21. Results of the projective transform of an elliptic Gaussian function by (a) forward 
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4.4 Filtering images using transformed filters 

We performed image filtering using the transformed filter estimated in the previous 
simulations and examined the results. We used four transformed filters: an expanded 
Gaussian low-pass filter with forward estimation, an expanded Gaussian low-pass filter 
with inverse estimation, a rotated elliptic Gaussian filter with forward estimation, and a 
rotated elliptic Gaussian filter with inverse estimation. The transformed image spectrum 
I’(u, v) can be described as the product of the transfer function H(u, v) and the original image 
spectrum I(u, v); that is, 
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The standard image on which the filtering was performed is shown in Fig. 22(a). Fig. 22(b) 
shows simple line segments that indicate the orientation selectivity of the rotated elliptic 



 
Human-Centric Machine Vision 

 

160 

Gaussian filter. The results for the standard image are shown in Fig. 23. Fig. 24 shows a 
magnification of the upper-left part of Fig. 23. Part (a) in Figs. 23 and 24 shows the 
standard image filtered using the expanded Gaussian low-pass filter with forward 
estimation; part (b) shows the case for expanded Gaussian low-pass filter with inverse 
estimation. In Fig. 23 (c) and (d), a striped pattern flowing from upper left to lower right 
and from upper right to lower left, respectively, is observed; this indicates that orientation 
selection was performed. To clearly demonstrate the effects of the orientation selectivity, 
the simple line segments were filtered by transformed elliptic Gaussian filter, as shown in 
Fig. 25. It was found that the line segments at 45° and -45° were selectively extracted, as 
shown in Fig. 25 (a) and (b), respectively. This result confirmed that directional selectivity 
had been achieved. 

The above results confirm that the low-pass filter and orientation selection filter can be 
correctly realized by transforming image filters using a neural network. We can obtain a 
low-pass filter and an orientation selection filter having arbitrary characteristics by 
appropriate scaling and rotation of a Gaussian filter. An advantage of the neural network 
based method is that arbitrary filter characteristics can be obtained by learning of the 
input/output relation. 

The advantage of the transformation of the image filter by a neural network is the adaptive 
composition of the filter by learning. As shown in the above simulation, the use of a neural 
network enables the easy realization of not only linear transformations, such as scaling and 
rotation, but also a nonlinear transformation, namely, projective transformation. Because 
neural networks can obtain a transformation only by a mapping between input and output, 
any transformation is realizable if input and output are known. Moreover, the use of neural 
networks enables the realization of an inverse filter by a network inversion method, which 
can be applied to areas such as image restoration and bidirectional image processing. The 
advantage of transformation by complex-valued neural networks is that the mapping on a 
plane, especially one that has undergone rotation, can be expressed well. Moreover, 
complex-valued neural networks afford lower computational complexity than conventional 
real-valued neural networks because, in the former, two-dimensional information can be 
expressed by a neuron. 

In machine vision, the advantage of filter transformation by the proposed neural network is 
as follows. Neural networks are often used as part of the recognition system in a machine 
vision system. The filter transformation proposed in this work corresponds to the pre-
processing stage in machine vision. Because neural network based pre-processing is 
compatible with a neural network based recognition system, we will be able to integrate the 
pre-processing and recognition system when designing a machine vision system. 
Furthermore, the model of a recognition neural network, such as the neocognitron 
(Fukushima, 1988), includes an orientation selection cell. Therefore, we expect that the 
proposed method can be directly applied to such a model. 

The experimental results indicate that the proposed filter afforded most of the expected 
advantages. The disadvantage of the proposed neural network based method is that its 
computational complexity is slightly high. However, it is expected that this can be resolved 
by further refinement of the computer, system, and calculation method. 
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Fig. 22. Original images used in the simulation: (a) standard image (b) simple line segments. 
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          (c)    (d) 
Fig. 23. Images filtered using (a) an expanded Gaussian low-pass filter with forward 
estimation, (b) an expanded Gaussian low-pass filter with inverse estimation, (c) a rotated 
elliptic Gaussian filter with forward estimation, and (d) a rotated elliptic Gaussian filter with 
inverse estimation. 
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Fig. 23. Images filtered using (a) an expanded Gaussian low-pass filter with forward 
estimation, (b) an expanded Gaussian low-pass filter with inverse estimation, (c) a rotated 
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Fig. 24. Magnified images of the upper left part of Fig. 23. 
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Fig. 25. Image of simple line segments filtered using (a) a rotated elliptic Gaussian filter with 
forward estimation, and (b) a rotated elliptic Gaussian filter with inverse estimation.  

5. Conclusion 
In this study, we showed the mapping ability of a complex-valued neural network and 
proposed its use in the transform of an image filter. We introduced a complex-valued 
multilayer neural network for solving forward problems and a complex-valued network 
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inversion for solving inverse problems and explained each principle of operation in detail. 
Moreover, to demonstrate the mapping ability, we handled complex mapping problems, i.e., 
the linear geometric transforms, namely, expansion/compression, rotation, and projective 
transforms. We confirmed the estimation procedure by simulation. In addition, we applied 
this mapping capacity to the transform of an image filter, and we demonstrated the 
geometric transform of various filters, such as the Gaussian filter. Moreover, we examined 
image filtering with a filter that was transformed using a complex-valued neural network 
and confirmed its effectiveness. 

As the future work, we will apply complex-valued neural networks to nonlinear transforms 
of various image filters. Moreover, we will introduce processing with complex-valued 
neural networks into an actual robot vision system based on the results of this study. 
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Fig. 24. Magnified images of the upper left part of Fig. 23. 
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Fig. 25. Image of simple line segments filtered using (a) a rotated elliptic Gaussian filter with 
forward estimation, and (b) a rotated elliptic Gaussian filter with inverse estimation.  
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1. Introduction  
In this chapter, we overview the potential of machine vision and related technologies in 
various application domains of critical importance for economic growth and prospect.  

Considered domains include healthcare, energy and environment, finance, and industrial 
innovation. Visibility technologies considered encompass augmented and virtual reality, 3D 
technologies, and media content authoring tools and technologies. 

We overview the main challenges facing the application domains and discuss the potential 
of machine vision technologies to address these challenges. 

In healthcare, rising cases for chronic diseases among patients and the urgent need for 
preventive healthcare is accelerating the deployment of telemedicine. Telemedicine as 
defined in the EU commission staff working paper on “Telemedicine for the benefit of 
patients, healthcare systems and society” (COM-SEC, 2009) is the delivery of healthcare 
services at a distance using information and communication technologies. There are two 
main groups of telemedicine applications: (1) applications linking a patient with a health 
professional; and (2) applications linking two health professionals (such as tele-second 
opinion, teleradiology). Machine vision technologies, coupled with reliable networking 
infrastructure, are key for accelerating the penetration of telemedicine applications. Several 
examples will be drawn illustrating the use of machine vision technologies in telemedicine. 

Sustainable energy and environment are key pillars for a sustainable economy. Technology 
is playing an increasing vital role in energy and environment including water resources 
management. This would foster greater control of the demand and supply side of energy 
and water. On the demand side, technologies including machine vision, could help in 
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developing advanced visual metering technologies. On the supply side, machine vision 
technologies could help in exploring alternative sources for the generation of energy and 
water supply. 

In the finance domain, financial crises and the failure of banking systems are major 
challenges facing the coming decade. Recovery is still far from reach entailing a major 
economic slowdown. Machine vision technologies offer the potential for greater risk 
visibility, prediction of downturns and stress test of the soundness of the financial system. 
Examples are drawn from 3D/AR/VR applications in finance. 

Innovation could be seen as the process of deploying breakthrough outcome of research in 
industry. The innovation process could be conceived as a feedback loop starting from 
channelling the outcome of basic research into industrial production. Marketing strategies 
and novel approaches for customer relationship management draw a feedback loop that 
continuously update the feed of breakthrough research in industrial production. In this 
respect, machine vision technologies are key along this feedback process, particularly in the 
visualisation of the potential market and the potential route to market. 

CYBER II technology (Hasenfratz et al, 2003 and 2004) is described in section 6 as a machine 
vision technology that has a potential use in the various application domains considered in 
this chapter. CYBER II technology is based on multi-camera image acquisition, from 
different view points, of real moving bodies. Section 6 describes CYBER II technology and 
its potential application in the considered domains. 

The chapter concludes with a comparative analysis of the penetration of machine vision in 
various application domains and reflects on the horizon of machine vision in boosting 
economic growth. 

2. Machine vision in healthcare 
2.1 Challenges facing the healthcare domain 

All healthcare and scientific authorities worldwide are realising the importance of 
developing global healthcare infrastructures and access, at least at information and 
communication technology levels, for exchange of patient and healthcare data, services 
and to provide wider opportunities for clinical research. The US National Research 
Council (NRC-US, 2008) has stressed the need to invest in information technology and 
infrastructure for efficient communication among players in the global health arena. 
Adopted healthcare models in Australia, Canada, France, Germany, Netherlands, 
Sweden, UK and USA suggested an added value from adopting an integrated health care 
model incorporating international healthcare practices (Banta, 2004). The Irish health 
policy is influenced by the developments at the international level and by the standards 
set by the World Health Organisation (WHO). In recent times, the Irish health policy has 
emphasised the importance of prevention, healthy living, more active lifestyles and 
community-based services and noted that these are highly influenced by globalisation. In 
particular, the 2001 Irish government strategy for the development of primary care 
services proposed a wider availability of general practitioners (GP) services through 
teams and GP co-operatives and the establishment of multi-disciplinary primary care 
teams (Harvey, 2007; Government of Ireland, 2001). 
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In the wider European arena, the policy “Better Healthcare for Europe” is an EU policy, 
research and development agenda involving eHealth policy development, development of 
EU public health portal (EU Portal, 2009; Health-EU) and eHealth interoperability (i.e., 
cross-border interoperability of electronic health records, telemedicine, healthcare and 
society, eHealth Resolution).  

Globalisation is influencing to a large extent social behaviour and fosters a greater diversity 
of local communities. The adoption of open economies, markets and systems created an 
unprecedented impact on the culture and practices of individuals including their health 
knowledge and behaviours. Various research studies has been undertaken to assess the 
impact of globalisation on healthcare. It is widely recognised that globalisation is a complex, 
multidimensional phenomenon that has already influenced the way in which hospitals 
operate and will increasingly impact the healthcare landscape and patients experience 
worldwide. Globalisation is a key context for the study of social determinants of health (e.g., 
the conditions in which people live and work) (Labonté et al, 2007). 

The tools of the modern digital world, in conjunction with the novel technologies, especially 
those in the biological and medical sciences have dramatically changed the potential for 
obtaining and using new information. In the field of global health, the benefits can be seen 
in many ways, e.g. how medical research is conducted; how new information is published, 
stored, retrieved and used; how scientists and clinicians communicate; how diseases are 
monitored and tracked; and how medicine is practiced. In regional development agenda, IT 
solutions for life sciences are considered at a global infrastructural level (Maad et al 2012; 
Maad et al 2009). 

2.2 Potential application of machine vision in healthcare 

Machine vision has a great potential in the advance and development of telemedicine. The 
EU commission working paper on telemedicine (COM-SEC, 2009) defines the main classes 
of telemedicine applications and discusses the potential benefits accruing from the 
implementation of these systems. The benefits can potentially be felt  by many different 
levels of society through the empowerment of individual patients, healthcare systems and 
the EU marketplace more generally. This document also identifies significant barriers to  

 
Fig. 1. The Application of virtual reality assisted medical gesture developed at the ENSAM-
Image Institute. 
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developing advanced visual metering technologies. On the supply side, machine vision 
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successful implementation of consistent levels of telemedicine facilities throughout different 
EU member states.  

A potential application of machine vision in healthcare is the one developed at the Image 
Institute in France. It covers visualization for medical applications, training and assisted 
surgery. Since 2008, the research group is developing applications for medical rehabilitation  
(Van Hanh et al, 2010) using virtual reality and training junior doctors in performing 
surgical gestures (see Figure 1). The Virtual Reality Assisted Triangulation Gesture is one 
the most important project which led to important results obtained in collaboration with 
medical schools in Spain and in France. 

3. Machine vision for sustainable growth 
3.1 Challenges facing sustainable growth 

The Europe 2020 strategic agenda highlighted the extent of the crisis that wiped out 
progress bringing Europe Gross Domestic Product (GDP) growth to -4% in 2009 and 
industrial production to -20% with skyrocketing unemployment levels. The Europe 2020 
Strategy, the EU's growth strategy for the coming decade draws the road to the exit from the 
crisis to a lasting recovery by focusing on three priorities for sustainable growth and jobs: 1) 
growth based on knowledge and innovation; 2) inclusive high employment society; and 3) 
green growth (Europe-2020). 

The Annual G20 World Economic Forum, held in Davos, Switzerland on the 27th of January 
2011 addressed the challenge of global risks, developed risk mitigation strategies and 
captured related opportunities. A Risk Response Network was launched to improve global 
risk management. 

UN secretary general urged the need of revolutionary thinking and policy to bring about 
sustainable economic growth that can both protect the environment and raise living 
standards. He emphasised the global nature of the challenges and the need for a global, 
multinational response. 

The world is facing scarcity in environmental resources. For instance, the world statistics 
on water (UN-Water) reveals that the world average water requirement is about 6,000 
cubic meters per person per year. Water problems create opportunities to develop new 
water producing technologies and industries. Extensive flooding put great pressure on 
developing integrated waste water systems. There is an urgent need to speed up 
investment in water projects. Foreign investors experiencing the negative effects of 
recession on prestigious assets may now be more ready to put their money into sectors 
such as power and water where future demand is assured. Throughout the world, 
governments are realizing water is a scarce resource, especially as population grow and 
emerging market countries industrialise. China recently declared water to be a strategic 
resource and is planning to spend billions of dollars on water infrastructure to underpin 
its rapid growth. 

While abundant oil and gas reserves may provide wealth in Gulf Cooperation Council GCC 
countries, they cannot substitute for that most basic of commodities: water. Forecasts of 
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severe shortages by 2015 are concentrating the mind of officials eager to increase supplies 
and reduce consumption.  

Mobilising the regions capital resources to support joint ventures and private investment in 
water demand as well as water supply could help insure the security and sustainability of a 
commodity vital to health and life as well as prosperity. 

3.2 Potential application of machine vision for sustainable growth 

Machine vision has a great potential in visualizing water and energy demand and could be 
useful in depicting and controlling the supply infrastructure. 

Figure 2 depicts the potential of machine vision in conveying better understanding of the 
water cycle. It shows an animated visualization of the water cycle. The application depicted 
in the figure is developed by WssTP1, the Water supply and sanitation Technology Platform. 
WssTP was initiated by the European Commission in 2004 to promote coordination and 
collaboration of Research and Technology Development in the water industry. Through our 
Strategic Research Agenda we provide strategic answers for the water research future 
challenges. WssTP has 61 members and 210 contributors from Industries, Academics, 
Research, Policy Makers and Water Utilities   

 
Fig. 2. Advanced interactive visualization of the water cycle developed by WssTP 
                                                 
1 http://www.wsstp.eu/content/default.asp?PageId=688&LanguageId=0 
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4. Machine vision in finance 
4.1 Challenges facing the finance domain 

The recent financial crisis and its aftermath motivate our re-thinking of the role of IT as a 
driver for change in the global financial enterprise and a critical factor for success and 
sustainability. We attribute the recent financial crisis that hit the global market, causing a 
drastic economic slowdown and recession, to a lack of state visibility, inadequate response 
to events, and a slow dynamic system adaptation to events. There is evidence that ICT is still 
used mainly as the tool to store and process data, but not yet as a tool to create business 
value and business intelligence capable of counteracting devastating events. 

Machine Vision technologies offer a great potential in supporting the dynamics of global 
financial systems and in addressing the grand challenges posed by unexpected events and 
crisis. Advanced high end state visualization supported by dynamic networking, e-
infrastructures, system adaptation and multimodality can support a greater potential for 
intelligent financial analysis and perception and increase business value of IT. 

4.2 Potential application of machine vision in finance 

Below we describe two potential applications for machine vision in finance:  

1. Financial state visibility application; 
2. financial education  

The technology focus is on 3D Internet technologies (image processing, advanced 
visualisation, augmented and virtual reality).  

4.2.1 Financial state visibility 

The urgent economic problem, linked to the financial crisis, challenges current research and 
technological development. The scale of the fiscal crisis that undermined the credibility of 
the financial system motivates the consideration of “Global Financial State Visibility” as a 
key global challenge that validates research and technological development activities to 
support the engineering dynamics of automatically adaptable software services along the 
“global financial supply chain” (Maad et al, 2010-A; Maad, 2010-B). Financial state could be 
conveyed in various ways: 

• perception the state of financial risk 
• perception of financial events  
• perception of the financial activity  
• perception of the financial system and regulatory framework 

Our aim is to align the prevalent thinking in terms of mediating the financial state using 
reports or static models to mediating the financial state using advanced visualisation and 
interaction technique. Key issues to consider are who will access, manipulate, and govern 
the financial state. Various entities (policy makers, regulators, auditors, accountants, 
investors, consumers, suppliers, producers, individuals) need to access /govern / adapt 
Financial state Visibility depending on service level agreements Service Level Agreement 
SLA (see Figure 3 below). 
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Fig. 3. Actors that need to access /govern / adapt Financial state Visibility  

The Financial state visibility challenge has various dimensions: 

• Domain knowledge dimension: this involves building the financial state knowledge base 
(the development of techniques to store and manipulate the semantic representation of 
the financial state by  various stakeholders including regulators, investors, and central 
banks worldwide); and the visual rendering (using techniques such AR/VR) of the 
financial state knowledge base.  

• Converged ICT and media dimension: this involves the development of an interoperability 
layer at the service infrastructure and interface levels to guarantee instant access to 
financial state via various converged ICT and media devices. 

• Global factors dimension: financial state knowledge is stored and manipulated in different 
languages and different structures and formats. This raises geographical cultural, and 
accessibility technical challenges. Rendering of the financial state needs to adapt to 
“global context on demand”. 

• Governance dimension: There is an urgent need to support the governance of the financial 
state with greater perception and manipulation capability tools.  

Various financial state visibility services, depicted in Figure 8 below, could be developed 
taking into account the above considered dimensions. These services can be grouped into 
various levels and categories: 
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Fig. 4. Financial state visibility services 

4.2.2 Financial education 

This section describes a virtual reality application in financial trading developed by the 
author at the University of Warwick in UK in collaboration with Laboratoire de Robotique 
de Paris (Maad et al, 2001). The virtual reality application, depicted in Figure 5 below, 
involves a user playing the role of a dealer who sets his/her bid/ask spread to attract 
buyers and sellers. The presence of the dealer in the rendered virtual reality scene is a 
simulated presence. As such the virtual reality simulation is fully detached from the real 
world. The user needs to wear a head mounted display to have a feeling of immersion in the 
virtual reality scene. Moreover the interaction with the virtual world is carried out using a 
pair of Pinch™ Gloves. The dealer manipulates bid and ask prices (red and blue cylinders) 
to attract buyers and sellers (informed and uninformed traders).  

While an improved perception of the financial market activity and of the role of the dealer in 
manipulating the true price of a security is gained from the use of Virtual Reality in the 
financial trading application, the isolation from the real world and the constrained 
interaction (the user needs to wear a head mounted display and a pair of Pinch™ Gloves to 
acquire a feeling of immersion in the virtual world) made the experience lived by the user 
(dealer) less realistic (Maad et al., 2001).  
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Fig. 5. The Virtual Reality simulation 

5. Machine vision in innovation 
5.1 Challenges facing Innovation 

The EU policy challenge for smart, sustainable, and green growth (2020 Strategic priorities) 
requires bringing the competences of various sectors together to develop innovative services 
from an end-to-end perspective in ways that may not have been possible before. It has been 
widely acknowledged that the effort required to do this, measured in terms of investment or 
skills, is not within the reach of a single company, a single sector, or a single country. 
Consequently, the complexity of the EU policy challenge largely exceeds the individual 
capabilities of today's European stakeholders (higher education institutions, businesses, 
vertical and application markets and public authorities). There an urgent need in developing 
innovation in education design and delivery, innovation in service modelling and delivery, 
and the promotion of entrepreneurial skill (Digital Agenda-EU, Innovation Union-EU, 
Future Internet-EU). 

5.2 The potential application of machine vision for innovation 

Machine vision has the potential to depict various stages along the innovation process. The 
following figure 6, developed within the framework of the Sprint-Start program2 funded by 
Dublin City Enterprise Board, visualize the challenges facing a new business. In this respect 
three key views of the company are considered: Business, Leadership, Personal.  
                                                 
2 http://www.dceb.ie/networking/sprint-start 
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Fig. 6. Visualization of the various company views (source: Sprint-Start Program funded by 
Dublin City Enterprise Board) 

6. CYBER II: A machine vision technology for various application domains 
This section describes CYBER II technology as a machine vision technology with potential 
application in the various considered domain. Section 6.1 overviews the CYBER II 
technology and section 6.2 unveils its potential in various application domains. 

6.1 Description of CYBER II technology 

The CYBERII project  (Hasenfratz et al 2004; Hasenfratz et al, 2003) aims at simulating, in 
real-time, the presence of a person (e.g. a TV presenter or a teacher) in a virtual 
environment. Novel paradigms of interaction were proposed within the context of the 
project. These paradigms involve full body interaction with the virtual world in real time. 
This goes beyond traditional modes of interaction involving the use of mouse, remote 
control, power gloves, or human sensor equipments.  

The CYBERII project adopts a five steps technique to insert one or several humans in a 
virtual interaction space. It uses the notion of "Active Regions" to initiate the interaction 
with the virtual world. Actions are triggered upon body interaction with "Active Regions". 
This interaction may take the form of touching the "Active Region" and may be technically 
sensed using image analysis techniques that identify a body presence in the "Active Region". 
As described in (Hazenfratz et al., 2004; Hazenfratz et al., 2003), the CYBERII project adopts 
the following five steps : 

• Multi-camera image acquisition, from different view points, of real moving bodies (see 
Figure 7 - left image). 

• Reconstruction, modelling, and motion tracking of the acquired bodies and the 
surrounding environment (see Figure 7 - right image). 

• Rendering of the reconstructed bodies and their surrounding. 
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• The creation of patterns of interaction in the rendered world using "Active Regions" as 
shown in Figure 8. Examples of "Active Regions" in a virtual interaction space include: 
the On/Off Button "Active Region"  (see Figure 8 - left image) and the moving slider 
(see Figure 8 - right image). 

• Data management and distributed parallel computing to meet the real time and realistic 
rendering constraints. 

 

 

Fig. 7. CYBER II technology: image capturing (left image); image-based reconstruction (right 
image) 
 

 
Fig. 8. CYBER II technology: Interaction with: an on/off button (left image); Interaction with 
a slider active region (right image) 

The CYBERII project targets various industries including: (1) the TV industry (e.g. virtual 
sets and online presentations) ; (2) the game industry (e.g. inserting real persons in the game 
world); and education and entertainment (e.g. allowing visits and presentation of remote 
places). The proposed novel paradigm of interaction developed within the scope of the 
CYBERII project, namely full body interaction with active regions, promises universal 
accessibility to media content. For instance, physically impaired users may find a greater 
convenience in full body interaction with a virtual scene instead of interaction with a mouse, 
a keyboard, or a remote control. 

6.2 Use of CYBER II technology in various application domains 

In this section we briefly describe the potential use of CYBER II technology in various 
health, water, finance, and innovation. 
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Fig. 6. Visualization of the various company views (source: Sprint-Start Program funded by 
Dublin City Enterprise Board) 
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• Reconstruction, modelling, and motion tracking of the acquired bodies and the 
surrounding environment (see Figure 7 - right image). 

• Rendering of the reconstructed bodies and their surrounding. 

 
Boosting Economic Growth Through Advanced Machine Vision 

 

175 

• The creation of patterns of interaction in the rendered world using "Active Regions" as 
shown in Figure 8. Examples of "Active Regions" in a virtual interaction space include: 
the On/Off Button "Active Region"  (see Figure 8 - left image) and the moving slider 
(see Figure 8 - right image). 

• Data management and distributed parallel computing to meet the real time and realistic 
rendering constraints. 

 

 

Fig. 7. CYBER II technology: image capturing (left image); image-based reconstruction (right 
image) 
 

 
Fig. 8. CYBER II technology: Interaction with: an on/off button (left image); Interaction with 
a slider active region (right image) 

The CYBERII project targets various industries including: (1) the TV industry (e.g. virtual 
sets and online presentations) ; (2) the game industry (e.g. inserting real persons in the game 
world); and education and entertainment (e.g. allowing visits and presentation of remote 
places). The proposed novel paradigm of interaction developed within the scope of the 
CYBERII project, namely full body interaction with active regions, promises universal 
accessibility to media content. For instance, physically impaired users may find a greater 
convenience in full body interaction with a virtual scene instead of interaction with a mouse, 
a keyboard, or a remote control. 

6.2 Use of CYBER II technology in various application domains 

In this section we briefly describe the potential use of CYBER II technology in various 
health, water, finance, and innovation. 



 
Human-Centric Machine Vision 

 

176 

6.2.1 CYBER II in healthcare 

Preventing the elderly from falling has been a priority on the EU healthcare agenda COM-
SEC (2009). Telemedicine application involving CYBER II technology could be used to track 
elderly motion and report directly any risk of falling.  

Figure 9 shows the use of CYBER II of Multi-camera image acquisition of real moving 
bodies to detect the risk of falling for the elderly. The healthcare professional could be 
monitoring the motion tracking of the elderly and real time data on risk of failure could be 
generated as shown in the healthcare profession screens. 

 

 
 

Fig. 9. CYBER II technology used in healthcare telemedicine to detect the risk of failure of 
the elderly 

6.2.2 CYBER II in water management 

CYBER II technology could be used to provide immersive interaction with utility, for 
instance water data, generated by SCADA systems. SCADA stands for Supervisory 
Control and Data Acquisition. It generally refers to the control system of the industry 
which is a computer system that controls and monitors a process. This process can be 
infrastructure, facility or industrial3. SCADA systems are used in energy and water 
resources management.  

For instance CYBER II interaction with slider active region could be interfaced with SCADA 
System water or energy data to inform the user (the consumer) about his water and energy 
consumption in an interactive way. A slider active region could be the indicator of water 
consumption of the user.  

Figure 10 depicts the potential of CYBER II technology to transform visual data on water 
and energy that may be produced by SCADA systems, into an immersive knowledge 
consumption environment based on CYBER II slider active region techniques. The consumer 
will have better conveyed knowledge about his water and energy consumption levels 
through immersive interaction. 

                                                 
3 Definition extracted from http://www.scadasystems.net/ 
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Fig. 10. CYBER II technology to transform visual data on water and energy into immersive 
knowledge consumption environment based on CYBER II slider active region techniques 

6.2.3 CYBER II finance 

Reference to the AR/VR financial application described in section 4.2.2, advanced 
machine vision in finance could be further deployed using the CYBERII technology to 
extend the functionality of the financial trading application. The CYBER II financial 
application, depicted in Figure 11 and 12 below, involves the insertion of a user (playing 
the role of a financial dealer) in a virtual world, and the use of the technique of sliders 
"Active Regions" to enable the body interaction of the user (dealer) to set his/her bid/ask 
prices for attracting buyers and sellers (Maad et al, 2008). The flow of buyers and sellers 
is abstractly represented by synthetic objects generated in the augmented scene 
following the user interaction with active regions. Figure 6 shows how the technique of 
slider "Active Regions" can help the dealer adjust his quotes to attract buyers and sellers. 
The flow of buyers and sellers is represented by red balls (for sellers flow) and yellow 
balls (for buyers flow). This flow is triggered through body interaction with the sliders 
"Active Regions". This illustrates how the  CYBERII concept of full body interaction with 
a virtual environment and the technique of slider "Active Regions" could be used for 
greater engagement and unconstrained immersion in a virtual world of financial 
indicators. The simulation augments the real world with perceptual knowledge about 
bid-ask spread variation and about the flow of traders (buyers and sellers) as a result of 
this variation.  

6.2.4 CYBER II for innovation 

Similarly, CYBER II technology could be used to immerse the business entrepreneur in a 
virtual immersive environment where he/she can have better perception of the challenges 
facing a new business. CYBER II novel interaction techniques of active regions and slider 
bars can be used to interact with the company the three company views identified in section 
5.2 above as  Business, Leadership, and Personal (see Figure 13 below). 



 
Human-Centric Machine Vision 

 

176 

6.2.1 CYBER II in healthcare 

Preventing the elderly from falling has been a priority on the EU healthcare agenda COM-
SEC (2009). Telemedicine application involving CYBER II technology could be used to track 
elderly motion and report directly any risk of falling.  

Figure 9 shows the use of CYBER II of Multi-camera image acquisition of real moving 
bodies to detect the risk of falling for the elderly. The healthcare professional could be 
monitoring the motion tracking of the elderly and real time data on risk of failure could be 
generated as shown in the healthcare profession screens. 

 

 
 

Fig. 9. CYBER II technology used in healthcare telemedicine to detect the risk of failure of 
the elderly 

6.2.2 CYBER II in water management 

CYBER II technology could be used to provide immersive interaction with utility, for 
instance water data, generated by SCADA systems. SCADA stands for Supervisory 
Control and Data Acquisition. It generally refers to the control system of the industry 
which is a computer system that controls and monitors a process. This process can be 
infrastructure, facility or industrial3. SCADA systems are used in energy and water 
resources management.  

For instance CYBER II interaction with slider active region could be interfaced with SCADA 
System water or energy data to inform the user (the consumer) about his water and energy 
consumption in an interactive way. A slider active region could be the indicator of water 
consumption of the user.  

Figure 10 depicts the potential of CYBER II technology to transform visual data on water 
and energy that may be produced by SCADA systems, into an immersive knowledge 
consumption environment based on CYBER II slider active region techniques. The consumer 
will have better conveyed knowledge about his water and energy consumption levels 
through immersive interaction. 

                                                 
3 Definition extracted from http://www.scadasystems.net/ 

 
Boosting Economic Growth Through Advanced Machine Vision 

 

177 

 
Fig. 10. CYBER II technology to transform visual data on water and energy into immersive 
knowledge consumption environment based on CYBER II slider active region techniques 

6.2.3 CYBER II finance 

Reference to the AR/VR financial application described in section 4.2.2, advanced 
machine vision in finance could be further deployed using the CYBERII technology to 
extend the functionality of the financial trading application. The CYBER II financial 
application, depicted in Figure 11 and 12 below, involves the insertion of a user (playing 
the role of a financial dealer) in a virtual world, and the use of the technique of sliders 
"Active Regions" to enable the body interaction of the user (dealer) to set his/her bid/ask 
prices for attracting buyers and sellers (Maad et al, 2008). The flow of buyers and sellers 
is abstractly represented by synthetic objects generated in the augmented scene 
following the user interaction with active regions. Figure 6 shows how the technique of 
slider "Active Regions" can help the dealer adjust his quotes to attract buyers and sellers. 
The flow of buyers and sellers is represented by red balls (for sellers flow) and yellow 
balls (for buyers flow). This flow is triggered through body interaction with the sliders 
"Active Regions". This illustrates how the  CYBERII concept of full body interaction with 
a virtual environment and the technique of slider "Active Regions" could be used for 
greater engagement and unconstrained immersion in a virtual world of financial 
indicators. The simulation augments the real world with perceptual knowledge about 
bid-ask spread variation and about the flow of traders (buyers and sellers) as a result of 
this variation.  

6.2.4 CYBER II for innovation 

Similarly, CYBER II technology could be used to immerse the business entrepreneur in a 
virtual immersive environment where he/she can have better perception of the challenges 
facing a new business. CYBER II novel interaction techniques of active regions and slider 
bars can be used to interact with the company the three company views identified in section 
5.2 above as  Business, Leadership, and Personal (see Figure 13 below). 



 
Human-Centric Machine Vision 

 

178 

 
Fig. 11. The CYBERII financial application 

 

 
Fig. 12. CYBERII incrustation in a Virtual World of Financial indicators  (illustrative example) 
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Fig. 13. CYBERII interaction with three company views:  Business, Leadership, Personal 

7. Conclusion 
This chapter reflected on the potential of machine vision in various application domains. 
Various examples are drawn for the use of machine vision in the considered domains. The 
chapter reveals that there is a great potential to be harnessed in the use of machine vision 
technologies, including Augmented and Virtual Reality and rich visual media technologies, 
in various application domains.  

Machine vision would support application domains to a various extent in providing: 

• rich medium for education and knowledge building 
• greater visibility of risks and events 
• alternative environment for safe interaction 
• a tool for policy modelling and decision 
• a medium for innovation 

While machine vision found a greater penetration in application domains such as e-health 
and finance, a great potential is foreseen for the application of machine vision in sustainable 
growth and in depicting and advancing the innovation process. 

Various advantages could be drawn from the deployment of machine vision in various 
application domain including enhanced knowledge and perception of state leading to better 
planning and decision support. 
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