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Abstract

Statistical Approaches for Binary and Categorical Data

Modeling

Fahdah Abdullah Alalyan

Nowadays a massive amount of data is generated as the development of technology

and services has accelerated. Therefore, the demand for data clustering in order to

gain knowledge has increased in many sectors such as medical sciences, risk assessment

and product sales. Moreover, binary data has been widely used in various applications

including market basket data and text documents analysis. While applying classic

widely used k-means method is inappropriate to cluster binary data, we propose an

improvement of K-medoids algorithm using binary similarity measures instead of Eu-

clidean distance which is generally deployed in clustering algorithms. In addition to

K-medoids clustering method, agglomerative hierarchical clustering methods based

on Gaussian probability models have recently shown to be efficient in different appli-

cations. However, the emerging of pattern recognition applications where the features

are binary or integer-valued demand extending research efforts to such data types.

We propose a hierarchical clustering framework for clustering categorical data based

on Multinomial and Bernoulli mixture models. We have compared two widely used

density-based distances, namely; Bhattacharyya and Kullback-Leibler. The merits of

our proposed clustering frameworks have been shown through extensive experiments

on clustering text, binary images categorization and images categorization.

The development of generative/discriminative approaches for classifying different

kinds of data has attracted scholars’ attention. Considering the strengths and weak-

nesses of both approaches, several hybrid learning approaches which combined the

desirable properties of both have been developed. Our contribution is to combine

Support Vector Machines (SVMs) and Bernoulli mixture model in order to classify

binary data. We propose using Bernoulli mixture model for generating probabilistic

kernels for SVM based on information divergence. These kernels make intelligent
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use of unlabeled binary data to achieve good data discrimination. We evaluate the

proposed hybrid learning approach by classifying binary and texture images.
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Chapter 1

Introduction

1.1 Background

A huge amount of data is generated every day due to today’s technologies such as

the Internet and professional cameras. Consequentially, automatic techniques have

been required to be innovated in order to analyze data efficiently and extract hidden

knowledge [15]. Learning techniques can be grouped into two families: supervised and

unsupervised learning. While training data are required for supervised approaches,

unsupervised models are needed when data are unlabeled. This makes unsupervised

problems more challenging and difficult than supervised ones [50, 79]. Clustering

is among the significant unsupervised tasks that have been discussed and caught

scientists’ attention [38]. The main goal of data clustering is to predict and find the

groups/classes for each data object from unlabeled data. On the other hand, selecting

appropriate representations for data is one of the central problems in machine learning

and data mining [72]. Binary data, for instance, play an essential role in multiple

fields such as computer vision, image processing, machine learning and data mining

[16]. Binary data has been widely used in data analysis applications such as market

basket data modeling and document clustering [59, 50, 22].

Although K-means algorithm has been developed over 50 years ago, it is still

the most popular clustering algorithm because it is easy to implement, simple, and

efficient [50]. Simplicity and speed are the major advantages of applying K-means in

order to partition the number of objects to known classes. However, there are some

limitations since classic K-means is not appropriate for all kinds of data because of
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its dependency on using Euclidean distance [10]. This shortcoming is also valid for

binary data which is the simplest form of categorical data [69]. In order to overcome

the limitations of K-means, K-medoids has been proposed in the past as a potential

solution [79]. In our work we propose a K-medoids algorithm for binary data clustering

based on binary sequences similarity measures instead of Euclidean distance.

Moreover, in many domains, classes that are represented by different modes in

the mixture are indeed generalizations of each other [75]. Examples include biological

taxonomy, phylogenetic, internet newsgroups and emails where clusters may have one

or more sub-clusters [36, 45]. In this case, the structure of clustering is hierarchical

since each data point and cluster can be represented as leave and internal node of den-

drogram (tree), respectively [45, 94]. Agglomerative algorithms have been primarily

used for hierarchical structure solutions [43, 41, 55, 57, 81, 92]. Generally, Euclidean

distance is used to measure the distance between any two clusters [45]. However,

there are some limitations to the traditional hierarchical clustering. For instance, the

difficulty of finding a theoretical justification for which distance measure to choose

specifically for structured data such as images. Our proposed work has overcame the

limitations of the traditional hierarchical clustering. We propose an agglomerative

algorithm based on Multinomial and Bernoulli mixture models.

Learning approaches are generally divided into two groups, namely, generative

(ex. mixture models) and discriminative approaches such as Support Vector Machines

(SVMs) [12]. The advantages of using the two approaches are different, as well as the

limitations vary from one approach to another. The idea of hybrid approaches is to

combine the desirable capabilities of both approaches such that we can capture the

substantial properties of the data to classify, taking into consideration prior knowledge

of the problem domain [71]. A generative/discriminative approach for binary data

has been proposed in [74], where the Bernoulli mixture model has been considered for

generating probabilistic kernels based on the Kullback–Leibler divergence. The aim

of our work is to propose and compare different probabilistic kernels based on the

Bernoulli mixture model. We propose two generative kernels based on information

divergence in probability density function (PDF) space, namely, Bhattacharyya and

Rényi divergence and compare them with Kullback–Leibler divergence.
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1.2 Contributions

The main objective of this thesis is to study the efficiency of categorical data clustering

using hierarchical clustering and K-medoids for clustering binary data. In addition to

clustering, binary vectors classification using a hybrid learning approach is included

in our study. The contributions are listed as follows:

• Binary Data Clustering Using K-medoids Clustering Method Based

on Binary Sequences Similarity Measures

We propose a K-medoids algorithm for binary data clustering based on binary

sequences similarity measures instead of Euclidean distance. We have consid-

ered two challenging applications, namely; text clustering and binary images

categorization to show the merits of the proposed framework. This work has

been published in IEEE International Conference on Control, Decision and In-

formation Technologies, 2019 [2]

• Categorical Data Clustering Using Hierarchical Clustering Approach

Based on Multinomial and Bernoulli Mixture Models

An agglomerative algorithm based on Multinomial and Bernoulli mixture mod-

els is proposed. The distances between the clusters (components) are measured

using Bhattacharyya and Kullback-Leibler distances. Efficiency of proposed

model is tested for results on two real-world applications namely text clustering

and images categorization using the bag of visual words model. This con-

tribution has been published in IEEE International Symposium on Industrial

Electronics, 2019 [3].

• Binary Vectors Classification Using Hybrid Learning Approach Based

on SVM and Bernoulli Mixture Model

We introduce and compare different probabilistic kernels based on the Bernoulli

mixture model. We address the problem of classifying data that consist of bags

of binary vectors by incorporating the Bhattacharyya and Rényi kernels based

on the Bernoulli mixture model into SVMs. We validate the proposed hybrid

model in classifying binary and texture images. This work has been accepted

by IEEE International Conference on Systems, Man, and Cybernetics, 2020 [4].
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1.3 Thesis Overview

� Chapter 1 introduces the concepts of data clustering and hybrid models for clas-

sification and a brief overview of several concepts related to our contributions.

Moreover, we explain the motivation behind our research.

� Chapter 2 , we explain in detail K-medoids method to cluster binary data using

different binary sequences similarity measures. The efficiency of our extension

to the K-medoids algorithm is validated by two applications namely: text clus-

tering and binary images categorization.

� Chapter 3, we discuss in details a hierarchical clustering framework in case

of Bernoulli and Multinomial mixture models. The experiments with two ap-

plications, including text document clustering and images categorization are

described and discussed.

� Chapter 4 describes and compares different probabilistic kernels based on the

Bernoulli mixture model into SVMs. The model has been tested with the prob-

lem of classifying binary and texture images.

� Chapter 5 concludes and summarizes our contributions.
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Chapter 2

An Improved K-medoids

Algorithm Based on Binary

Sequences Similarity Measures

In this chapter, we detail our proposed K-medoids algorithm for binary data cluster-

ing. We handle K-means’ limitation, which is inappropriate to cluster binary data,

with a K-medoids algorithm. We evaluate our model against two real-world applica-

tions like text document clustering and binary images categorization.

2.1 K-means

K-means algorithm is a clustering approach which has been widely used in various

applications, such as image segmentation and information retrieval [44, 50, 87]. K-

means is based on hard assignment which means each data object is assigned to

one class [50]. Moreover, K-means has been used as an initialization step for other

algorithms such as Expectation-Maximization (EM) [78], due to its simplicity and

efficiency [69]. The classic K-means approach is based on Euclidean distance which

is used to calculate the minimum distance between each data object and cluster

centroids [44]. Each data object is assigned to the nearest mean which represents the

class. Simplicity and speed are the major advantages of applying K-means in order

to partition the number of objects to known classes. However, each run may provide

different results depending on the initialization step [79]. In addition, the dependency
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on using Euclidean distance is not appropriate for all kinds of data. For example,

using K-means for mixed or categorical datasets would be inappropriate [10]. This

limitation is also valid for binary data [69]. In addition, the sensitivity to outliers

is another limit [85]. In order to overcome these problems, a potential solution,

as K-medoids, has been proposed in the past [79]. K-medoids method is based on

choosing the most central data object located in a given class as a medoid acting as

representative of the class. Thus, the main difference between the K-means and the

K-medoid algorithms is that the first is based on the mean as a cluster representative

while the second is based on the median [86, 1].

2.2 The Extensions for K-means and K-medoid al-

gorithms

Some extensions and modifications have been made in the past to improve the effi-

ciency of K-means and K-medoids algorithms. The extensions for K-means are made

in many different ways. For instance, Fuzzy c-means was proposed to handle soft

assignment such that each data object can be assigned to more than one class with

different posterior probabilities [50]. The goals for the improvement were different

as well as the purposes. For instance, taking into account the kind of the data was

the main motivation in [78], while the speed was the main purpose for the modifi-

cation shown in [69]. Indeed, in [78] the authors have compared different distances

integrated within the K-means algorithm to cluster proportional data. Their ex-

periments showed that Aitchison distance gives the best performance among other

distances [78]. In order to accelerate K-means algorithm, the authors in [69] have

used sparse distance.

In addition, partitioning around medoids (PAM) is one extension of K-medoids

algorithms [70]. PAM is a powerful clustering method, but it is not efficient for

large datasets because of its complexity. As a result, Another work proposed a new

algorithm which calculates the distance once for each iteration. This improvement

reduces the computing time which eliminates the drawback of PAM [70]. Even though

Euclidean distance is not appropriate for categorical data [10], such as binary data, an

improvement of the K-means algorithm has been used to cluster large binary datasets

by assuming that applying Euclidean distance to binary data is acceptable. Scalable

6



K-means and Incremental K-means have been used to accelerate the algorithm for

clustering binary data streams [69].

An extension of K-medoids algorithm is proposed in this work in order to improve

its performance using binary sequences similarity measures instead of Euclidean dis-

tance. Indeed, many researchers have taken elaborate efforts to deploy binary sim-

ilarity and dissimilarity (distance) measures in pattern analysis problems such as

classification, and clustering in various fields. For instance, Jaccard similarity mea-

sure, as one of the similarity measures, has been used to cluster ecological species [49].

Other applications for binary similarity measures have been applied to different fields

such as biology [48, 67], image retrieval [80], geology [47], and chemistry [29]. Re-

cently, binary similarity measures have been actively used to solve the identification

problems in biometrics such as iris images [28], and handwritten character recognition

[27, 26].

2.3 Proposed Method

This section will give a description of an extension of K-medoids algorithm to handle

binary data clustering via applying different similarity measures. Applying K-medoids

directly instead of K-means is not enough for improving binary data clustering. Thus,

our objective is to find alternative similarity measures that are applicable to binary

data instead of Euclidean distance. Consequently, we have applied and tested 21 sim-

ilarity measures out of 76 binary sequences similarity measures which are mentioned

in [29].

Let X = {X1, . . . , XN}, to be a dataset with N instances where each is a D-

dimensional binary vector representing a document, or a binary image. K-medoids

method has been used in the proposed model in order to assign binary values to

medoids instead of assigning non-binary values to centroids using K-means approach.

The main idea of K-medoids is assigning a real data object, which is a binary vector,

to be a medoid Mj for each class j, j= {1,. . . ,K} while K represents the number of

classes which is given as input.

The main goal of K-medoids clustering method is increasing the similarity between

data objects within the same class and dissimilarity between the data objects from

different classes [70]. This goal is achieved by calculating a similarity measure between

7



Table 1: Binary similarity measures

Similarity measures Expression

Dice 2C
N1+N2

2nd Kulcz C(N1+N2)
2(N1N2)

Otsuka C√
(N1N2)

Sorgenfrei C2

N1N2

No. Feat. Diff E1 + E2

Sokal Dist (a)
√

E1+E2

N1+N2−C+C0

Sokal Dist (b)
√

1− C+C0

N1+N2−C+C0

each data object Xi in X and each medoid Mj, as:

Dij = V(Xi,Mj) (1)

where V(Xi,Mj) is a similarity measure. As a result, similarity matrix S which has

size N ×K is generated.

In our proposed model, we have tested 21 similarity measures which have been

mentioned in [89]. Table 1 shows the best 7 similarity measures that we will consider

in this contribution. The mathematical symbols in Table 1 are defined as follows:

• N1 represents the number of (1)s in the first vector.

• N2 represents the number of (1)s in the second vector.

• C0 represents the number of (0)s which appears simultaneously in both vectors.

• C represents the number of (1)s which appears simultaneously in both vectors.

• E1 represents the number of (1)s in the first vector which corresponds to (0)s

in the second vector.

8



Algorithm 1 The proposed K-medoids clustering algorithm.

INPUT: A dataset X , number of clusters K.
Set Cost ← inf.
repeat
Set the medoid Mj for each class j randomly.
for j = 1→ K do

for i = 1→ N do
Calculate the similarity measure between each data object Xi and each medoid

Mj .
end for

end for
Assign all data points Xi to K clusters by applying Eq.(2).
Calculate the new cost by applying Eq.(3).
if new cost < cost then

Update the medoid Mj for cluster j.
Assign each data point to the class with the nearest medoid.

end if
until No change in the cost.

• E2 represents the number of (1)s in the second vector which corresponds to (0)s

in the first vector.

We calculate the minimum distance for each data object Xi to the nearest medoid

Mj, such that:

Ii = minDij (2)

Each data point Xi is, thus, assigned to the class with the nearest representative Mj

in order to increase the similarity for data objects within the same class. Updating

new medoids is the next step which requires calculating the cost based on the sum of

distances from all objects to their medoids, as:

C =
N∑
i=1

Ii (3)

Then, the current medoid in each cluster will be updated by replacing with the new

medoid. Moreover, calculating the cost will be repeated until finding the minimum

cost which represents the optimal selection of medoids. The complete clustering

algorithm is summarized in (Algorithm 1).

9



2.4 Experimental Results

We have applied our framework to different text and binary image datasets and

compared the performance with using the Euclidean distance. Moreover, the proposed

framework compares the accuracies which are calculated from the confusion matrices.

We have considered 20 runs of our algorithm and reported the average accuracy.

2.4.1 Text Documents Clustering

Two text datasets have been applied in order to validate the quality of our algorithm

based on the accuracy of the resulting confusion matrices. DBWorld e-mails 1 is a

text dataset which has 64 documents, characterized by 4702 words/vocabulary, and

partitioned into 2 classes (spam and no-spam). In addition, we have evaluated the

performance of our proposed approach on Classic 400 2 has 400 documents, with a

vocabulary size of 6205 words categorized in 3 classes (Medline, CISI, and Cranfield).

The clustering results of the two datasets are shown in Table 2.

Each document in both datasets has been represented as a fixed length binary

vector [58]. Moreover, the preprocessing has been applied using Rainbow package

[65]. The first step in our preprocessing is removing all stop and rare words from

the vocabulary. Afterward, we perform the feature selection, then each document is

represented as a binary vector which contains binary values (0s or 1s) correspond to

the presence of a given word [21, 63].

As shown in Table 2, our algorithm has been successfully used for clustering

text documents using the binary similarity measures. In DBWorld e-mails dataset,

Euclidean distance gives 59.38% accuracy. No. Feat. Diff, Sokal Dist (a), and Sokal

Dist (b) distances give the same result. The best quality of clustering which is 87.50%

has been achieved using 2nd Kulcz distance in our algorithm. Otsuka and Sorgenfrei

1https://archive.ics.uci.edu/ml/datasets/dbworld+e-mails#
2http://www.dataminingresearch.com/index.php/tag/dataset-2

Table 2: Clustering results (average accuracy %) for the two text datasets.

Datasets Euclidean Dice 2nd Kulcz Otsuka Sorgenfrei No. Feat. Sokal(a) Sokal(b)
DBWorld 59.38% 62.50% 87.50% 73.44% 73.44% 59.38% 59.38% 59.38%

Classic 400 40.75% 59.50% 61.25% 56.50% 59.25% 43.75% 40.75% 40.75%
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https://archive.ics.uci.edu/ml/datasets/dbworld+e-mails##
http://www.dataminingresearch.com/index.php/tag/dataset-2


Table 3: Confusion Matrix using Euclidean Distance for DBWorld e-mails dataset
Yes No

Yes 3 26
No 0 35

Table 4: Confusion Matrix using 2nd Kulcz for DBWorld e-mails dataset.
Yes No

Yes 25 4
No 4 31

similarity measures show the same performance which is 73.44% while Dice shows

62.50%.

In the case of Classic 400, the clustering accuracy achieved using the Euclidean

distance is 40.75%. Once again, both Sokal Dist (a) and Sokal Dist (b) have provided

a similar performance to the one achieved using Euclidean distance. However, No.

Feat. Diff distance gives a slight improvement in the accuracy which is 43.75%. The

best accuracy achieved for this dataset is 61.25% using 2nd Kulcz distance. Moreover,

Dice, Otsuka , and Sorgenfrei similarity measures show improved performance with

accuracies equal to 59.50%, 56.50%, and 59.25%, respectively.

To summarize, 2nd Kulcz distance commonly gives the best accuracy for both

text datasets while Euclidean, and No. Feat. Diff , Sokal Dist (a), and Sokal Dist (b)

distances usually provide the lowest accuracy. The improvement of our algorithm is

clearly expressed in text documents clustering result using 2nd Kulcz, Dice, Otsuka,

and Sorgenfrei similarity measures.

Moreover, we measure the intra-class performance based on the confusion matrices

when using Euclidean and the best performing similarity measures are shown in Table

3- 6. Each entry (i, j) of the confusion matrix denotes the number of documents in

class i that are assigned to class j. According these tables, it is clear that the 2nd

Kulcz perform better than Euclidean distance for both datasets.

Table 5: Confusion Matrix using Euclidean Distance for Classic 400 dataset.
Medline CISI Cranfield

Medline 7 0 93
CISI 19 0 81

Cranfield 29 15 156

11



Table 6: Confusion Matrix using 2nd Kulcz for Classic 400 dataset.
Medline CISI Cranfield

Medline 84 7 9
CISI 84 3 13

Cranfield 33 9 158

2.4.2 Binary Images Categorization

The proposed model has been applied to two binary image datasets namely; 99 Shape

[76], and MPEG [51] datasets. Each binary image is represented as a binary vector

that contains (0s or 1s) correspond to the two colors used in the image which are black

and white. The 99 Shape is a binary image dataset which contains 9 classes. It consists

of 99 binary images of size 128×128. We considered a subset which is composed of

the 5 pixels classes considered (Dude, Fish, Fly, Hand, and Tool) as shown in Figure

1. The subset contains 11, 8, 7, 11, and 11 binary images, respectively. The second

binary image dataset is MPEG-7 composed of 13 classes where each class contains

20 binary images, with a total of 1400 binary images of size 256×256 pixels. In our

experiment, we consider a subset which is composed of the 4 classes (Frog, Hummer,

Key, and Apple) as shown in Figure 2.

The binary images clustering results are summarized in Table 7. In 99 Shape

database, Euclidean distance gives 60.42% accuracy. The best performance of clus-

tering which is 83.33% has been achieved by applying our algorithm using both No.

Feat. Diff and Sokal Dist (a) similarity measures. Sokal Dist (b) similarity measure

shows 81.25% a quite lower than No. Feat. Diff and Sokal Dist (a) similarity mea-

sures. Concerning MPEG-7, an accuracy of 57.50% was achieved using Euclidean

distance. Using the binary similarity measures, the performance of K-medoids has

been improved to 91.25% in case of using No. Feat. Diff, Sokal Dist (a), and Sokal

Dist (b) distances.

It is noteworthy that No. Feat. Diff, Sokal Dist (a) similarity measures commonly

Table 7: Clustering results (average accuracy %) for the two binary image datasets.

Datasets Euclidean No. Feat. Diff Sokal Dist (a) Sokal Dist (b)
99 Shape 60.42% 83.33% 83.33% 81.25%

MPEG-7 57.50% 91.25% 91.25% 91.25%
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Table 8: Confusion Matrix using Euclidean Distance for 99 Shape dataset.
Dude Fish Fly Hand Tool

Dude 10 0 0 0 1
Fish 0 0 8 0 0
Fly 1 4 2 0 0

Hand 0 3 1 6 1
Tool 0 0 0 0 11

Table 9: Confusion Matrix using Sokal Dist (a) for 99 Shape dataset.
Dude Fish Fly Hand Tool

Dude 10 0 0 0 1
Fish 0 8 0 0 0
Fly 0 2 5 0 0

Hand 0 1 3 6 1
Tool 0 0 0 0 11

reach the best accuracies for both binary images datasets, while Euclidean commonly

gives the lowest accuracy. The improvement of our algorithm is clearly expressed in

binary images categorization using No. Feat. Diff, Sokal Dist (a) similarity measures.

The confusion matrices have been used to compare the performance of the K-

medoids algorithm. Table 10 and Table 11 show the results for clustering MPEG-

7 dataset using Euclidean distance and No. Feat. Diff. Moreover, the algorithm

performance in categorizing 99 Shape dataset using Euclidean distance and sokal dist

(a) are shown in Table 8 and Table 9, respectively. We can notice that the intra-class

accuracies have been improved using No. Feat. Diff and sokal dist (a) similarity

measures.

Figure 1: The considered subset of the 99 Shape database which is composed of the
5 classes.
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Figure 2: The considered subset of MPEG-7 Shape Database which is composed of 4
classes. The first row shows samples of the Frog class, the second row shows samples
of the Hummer class, the third row shows samples of the Key class, and the fourth
row shows samples of the Apple class.

Table 10: Confusion Matrix using Euclidean Distance for MPEG-7 dataset.
Frog Hummer Key Apple

Frog 6 0 0 14
Hummer 0 20 0 0

Key 0 0 20 0
Apple 19 0 1 0

Table 11: Confusion Matrix using No. Feat. Diff for MPEG-7 dataset.
Frog Hummer Key Apple

Frog 14 0 0 6
Hummer 0 20 0 0

Key 0 0 20 0
Apple 0 0 1 19
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Chapter 3

Model-Based Hierarchical

Clustering for Categorical Data

In this chapter, we introduce hierarchical clustering algorithm based on Multinomial

and Bernoulli mixture models. We discuss the hierarchical clustering framework in

the case of Bernoulli and Multinomial mixture models. Extensive experiments on

clustering text and image as two real-world applications have shown our proposed

model’s merits.

3.1 Hierarchical Clustering

The hierarchical clustering can be addressed either in divisive (top-down) or agglomer-

ative (bottom-up) approaches [92, 94]. Agglomerative algorithms have been primarily

used for hierarchical structure solutions [43, 41, 55, 57, 81, 92]. The agglomerative

tree algorithm using (top-down) mode is based on partitioning data points from a sin-

gle cluster that contains all the data points to more than one cluster where each data

point has its own cluster [94]. The traditional bottom-up agglomerative algorithm

starts by treating each data point as a separate cluster then two clusters which are

the closets will be repeatedly merged as we move up the hierarchy [45, 94]. In general,

the distance between any two clusters is measured using Euclidean distance [45]. On

the other hand, the traditional hierarchical clustering has some limitations. First, a

theoretical justification is difficult to find for which distance measure to choose, par-

ticularly for structured data such as images. In addition, the failure of clustering data
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points which are near the mean of each cluster. Moreover, the traditional hierarchical

clustering approach does not provide any guidance for choosing the correct number

of classes to prune the tree [55, 45].

Some previous works have been proposed to overcome these limitations including

the probabilistic methods and Bayesian hierarchical clustering [45]. In [82], the au-

thors proposed marginal likelihoods which are based on hidden Markov model struc-

ture to merge similar clusters. In Bayesian hierarchical clustering, marginal likelihood

has been used in order to avoid overfitting and decide which clusters are suitable

for merging [45]. In addition, Gaussian probability models have been used in [39],

where the optimal clusters are chosen based on the maximum-likelihood pair which

is merged at each stage. Gaussian hierarchical clustering has shown good results in

different applications, such as clinical data clustering [7], social sciences, geophysi-

cal sciences, financial, and industrial data [39]. Moreover, measuring the similarity

between components of mixture model based on discrete data densities has been ap-

plied for hierarchical image categorization [92]. The proposed work has overcame the

limitations of the traditional hierarchical clustering.

3.2 Hierarchical Clustering Framework

Hierarchical clustering solutions have been primarily obtained using agglomerative

algorithms [81, 42], in which objects are initially assigned to their own cluster and

then pairs of clusters are repeatedly merged until the whole tree is formed. We

are proposing a hierarchical clustering algorithm based on the probabilistic distance

between the components of finite mixture models. Probabilistic distance measures

between two probability distributions are significant metrics to evaluate the similarity

for data of statistical nature. If the parameters of two Probability Density Functions

(PDF) are known, or can reliably be estimated, a quantitative value can be calculated

to assess how far or close the two distributions are from each other [25].

Let X = {X1, . . . , XN}, to be an observed dataset with N instances, where each

is a D-dimensional random vector Xn = (x1, . . . , xD) representing an image or doc-

ument. Finite mixture models have been used to model a sample from a population

which is composed of finite subpopulations, where the whole model is formed by a

weighted sum of the densities [66]. A finite mixture model decomposes a probability
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function P (X|Θ), into the weighted sum of K cluster probability functions where

Pj(X|θj) denotes the probability of the jth component. Thus, the joint probability

of the finite mixture model is given by:

P (X|Θ) =
K∑
j=1

pjPj(X|θj) (4)

where Θ = (θ1, . . . , θK , p1, . . . , pK) denotes all parameters, each pj is the mixing

proportion of cluster j satisfying (0 < pj < 1),
K∑
j=1

pj = 1. The Maximum Likelihood

Estimate (MLE) solution is a method to estimate the parameters Θ [32] by applying

Expectation Maximization (EM) approach [35]. The EM algorithm has two steps

which are the expectation (E-step) and the maximization (M-step). The two steps

are iteratively processed until convergence. In the expectation step, the probability

of a vector Xn to be assigned to class j, called the posterior probability, is computed

and given by:

ẑnj = P (j|Xn, θj) =
pjP (Xn|θj)∑K
j=1 pjP (Xn|θj)

(5)

In the M-step, we update the model parameter estimates according to:

Θ = arg max
N∑
n=1

K∑
j=1

ẑnj log(pjP (Xn|θj)) (6)

Each update to the parameters resulting from an E step followed by an M step

is guaranteed to increase the log likelihood. When the change in the log likelihood

function, or alternatively in the parameters, falls below some threshold, the algorithm

meets the convergence condition and each data point then will be assigned to cluster

which maximize its posterior probability.

Afterwards, the hierarchical approach will be applied by start merging the closest

two clusters according to some probabilistic distances as we will show in the next

subsections. In this work, the Battacharya and Kullback-Leibler distances have been

used to measure the distance between two distributions. Bhattacharyya distance has

been usually used to measure the similarity and separability of two distributions in

classification problems [90]. Given that Bhattacharyya distance has the desirable

properties of being computationally simple, it has been extended to measure the dis-

tance between two Gaussian distributions in Gaussian mixtures [54, 62]. In addition,
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Kullback Leibler (KL) Divergence is a common similarity measure between two den-

sity distributions in statistics. In fact, Kullback Leibler (KL) distance is frequently

used in Gaussian Mixture Models (GMMs), and it has been used in many pattern

recognition applications such as speech and image clustering [46].

The input to the hierarchical algorithm is an K ×K similarity matrix, where K

is prespecified number of clusters. The approach involves finding the least dissimilar

pair of clusters in the current clustering, the shortest distance, and merge them into a

single cluster to form the next clustering level with K − 1 clusters. While all objects

are in more than one cluster, the similarity will be updated and the closest pair of

clusters will be merged repetitively. The complete hierarchical clustering algorithm

is summarized in (Algorithm 2).

3.2.1 Hierarchical Mixture of Multinomial

The majority of the published work on unsupervised clustering has concentrated on

continuous data, however, some research works considered modeling discrete data

as an important component in many applications of data mining, machine learning,

image processing, and computer vision [15, 14]. The Multinomial distribution is

commonly used for modeling discrete variables [10]. Consider, for example, document

clustering where each document is represented as a vector of counts (bag of words

representation) [64]. Following a Multinomial distribution with parameters vectors

θ = (θ1, . . . , θD), the probability of a random vector of counts X = (x1, . . . , xD), is

defined as:

p(X|θ) =
(
∑D

d=1 xd)!∏D
d=1 xd!

D∏
d=1

θxdd (7)

The Battacharya distance and the Kullback-Leibler distance to measure the distance

between two distributions/clusters. The Battacharya distance between two multino-

mial distributions P (X|θj1) and P (X|θj2) is computed as:

B
(
P (X|θj1), P (X|θj2)

)
= −

D∑
d=1

xd log
D∑
d=1

√
θdj1θdj2 (8)

The Kullback-Leibler distance between two multinmoial distributions is given by:

KL
(
P (X|θj1), P (X|θj2)

)
=

D∑
d=1

θdj1 log
θdj1
θdj2

(9)
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3.2.2 Hierarchical Mixture of Bernoulli

Binary data has been used in various applications and fields such as machine learning,

and computer vision where binary variables are used rather than continuous or dis-

crete variables [16, 10]. Bernoulli mixture model is widely used for clustering binary

vectors in many applications such as handwritten digit recognition, shape and visual

scenes categorization [63, 22]. A multivariate Bernoulli distribution with parameters

µ = (µ1, . . . , µD) for a binary vector X = (x1, . . . , xD), is:

P (X|µ) =
D∏
d=1

µxdd (1− µd)1−xd (10)

The Battacharya distance between two Bernoulli distributions P (X|µj1) and P (X|µj2),
is given by:

B
(
P (X|µj1), P (X|µj2)

)
= −

D∑
d=1

log
(√

µdj1µdj2 +
√

(1− µdj1)(1− µdj2)
)

(11)

The Kullback-Leibler distance between two Bernoulli distributions is calculated as:

KL
(
P (X|µj1), P (X|µj2)

)
=

D∑
d=1

µdj1 log
µdj1
µdj2

+ (1− µdj1) log
(1− µdj1)
(1− µdj2)

(12)

3.3 Experimental Results

We have applied our framework to perform hierarchical clustering for different text

and image datasets using the Bhattacharyya (BH) and Kullback-Leibler (KL) dis-

tances in case of Multinomial and Bernoulli mixture models.

3.3.1 Text document clustering

Three text datasets have been tested and the accuracies, which were computed based

on the confusion matrices, were compared for validating the clustering quality of our

algorithm. The first dataset is 7Sectors 1, which has 4,581 HTML articles partitioned

1http://www.cs.cmu.edu/~webkb/
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Algorithm 2 The proposed Hierarchical Clustering algorithm.

INPUT: A dataset X , prespecified number of clusters K.
While K > 1
Initialize all the parameters.
E-Step: compute the posterior probability P (j|Xn, θj) using Eq.(5).
M-Step: update the model parameter estimates Θ using Eq.(6).
Assign data points to clusters based on the maximum posterior probability.
for i = 1→ K do

for j = i+ 1→ K do
Calculate the distance between cluster i and cluster j.

end for
end for
Find the minimum (non-zero) distance.
Update the labels to merge the closest clusters.
K = K − 1
end

into 7 classes (Materials, Energy, Financial, Health Care, Technology, Transportation,

and Utilities). The second dataset is WebKb4 2 which has 4,199 web pages partitioned

into 4 clusters (Course, Faculty, Project, and Student). Lastly, NIPS 3 dataset which

has 391 documents in 9 different clusters. The experiment results for clustering the

three datasets using Multinomial and Bernoulli mixture models were compared in

Table 12. The preprocessing has been applied to the three text datasets using the

Rainbow package [65]. Each document has been represented, using the bag of words

approach, as a fixed length counts vectors. Moreover, the documents have been

represented as binary vectors to be used for evaluating the Bernoulli framework. As

shown in Table 12, the Bhattacharyya (BH) and Kullback-Leibler (KL) distances have

been successfully used for hierarchical clustering of text documents in Multinomial

and Bernoulli distributions.

2http://www.cs.cmu.edu/~webkb/
3https://cs.nyu.edu/~roweis/data.html

Table 12: Hierarchical Clustering (HC) results (average accuracy %) for the three
text datasets.

Multinomial Bernoulli
Datasets Accuracy HC KL HC BH Accuracy HC KL HC BH
7 Sectors 49.18% 70.35% 70.35% 73.56% 97.00% 97.00%
WebKb4 86.33% 96.74% 96.74% 90.64% 97.45% 97.45%
NIPS 79.03 % 90.28% 90.28% 82.10% 97.95% 94.63%
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Figure 3: Dendrogram for hierarchical clustering using mixture of Multinomial dis-
tributions showing the closest clusters in 7 Sectors based on KL distance.

In Multinomial model, the clustering of 7Sectors dataset using mixture approach

gives 49.18% accuracy, while the hierarchical clustering based on KL and BH gives

70.35% which shows an improvement of performance using our framework. In addi-

tion, the clustering of WebKb4 and NIPS datasets show higher accuracies using our

framework compared to the accuracy of using mixture model clustering. For instance,

the accuracy of the hierarchical clustering of WebKb4 is 96.74% based on KL and BH

distances between two multinomial distributions.

Moreover, the hierarchical clustering based on Bernoulli distribution has achieved

an excellent performance. Indeed, the clustering of 7Sectors and WebKb4 datasets us-

ing Bernoulli mixture approach gives accuracies of 73.56%, and 90.64%, respectively.

On the other hand, applying hierarchical clustering using Kullback-Leibler and Bhat-

tacharyya distances to 7Sectors and WebKb4 datasets gives around 97%, while it

gives a quite lower performance for NIPS dataset by using Bhattacharyya distance.

To summarize, the improvements have been achieved using hierarchical clustering

based on KL and BH distances for the both distributions in text clustering.

We have demonstrated the tree result from the hierarchical clustering of 7Sectors

using Multinomial model based on KL and BH distances in Fig. (3) and (4), respec-

tively. We can see that different distances have considered the similarity between

clusters differently. For instance, after merging Health Care and Technology clusters

to Financial cluster using Bhattacharyya, the Financial cluster was the closest to

Energy cluster. In contrast, the Financial cluster was first merged to Transportation

cluster as the closest cluster, then Transportation was found to be the most similar
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Figure 4: Dendrogram for hierarchical clustering using mixture of Multinomial dis-
tributions showing the closest clusters in 7 Sectors based on Bhattacharyya distance.

Table 13: Average accuracy of each level of the tree in NIPS dataset based on
Bernoulli mixture.

KL BH
9 Clusters 82.09% 82.09%
8 Clusters 84.91% 86.70%
7 Clusters 83.88% 88.74%
6 Clusters 83.63% 92.07%
5 Clusters 82.86% 93.60%
4 Clusters 85.93% 92.32%
3 Clusters 78.77% 93.09%
2 Clusters 97.95% 94.62%

to them.

Furthermore, the accuracy of each level after merging the similar clusters in NIPS

dataset using Bernoulli model is shown in Table 13. We can see that the performance

has been improved from 82.09% (first level), which expressed the accuracy of mixture

model clustering, to 97.95% and 94.62% (last level) based on KL and BH distances,

respectively. The performance was slightly improved from the first level to the last

level using BH distance while it was steadily improved using KL distance. According

to previous results, it is clear that the hierarchical clustering performs better than

mixture model clustering in both Multinomial and Bernoulli distributions.
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3.3.2 Images Categorization

For this application, we have used the bag of features approach for representing the

images as a vector of count, or binary, values as this approach has been successfully

applied in computer vision applications. For instance, visual words have been ana-

lyzed as low-level image features in order to learn and categorize images in [21]. Two

datasets were used as follows. The first dataset is a subset of the extensive Scene

UNderstanding (SUN) database [88], that contains 899 categories and 130, 519 im-

ages. We have used 1, 849 natural scenes belonging to six categories (458 coasts, 228

river, 231 forests, 247 field, 518 mountains, and 167 sky/clouds). The average size of

the images is 720×480 (landscape format) or 480 (portrait format). Example images

from each class are shown in Fig. (5). The Second dataset is KTH-TIPS 4 which is

called Textures under varying Illumination, Pose and Scale. KTH-TIPS contains 81

images which are divided into 10 classes (materials) as shown in Fig. (6). The size

of images is 200 x 200 pixels.

Each dataset was splitted randomly into two halves; one for constructing the

vocabulary and one for representation. We used Scale-Invariant Feature Transform

(SIFT) [60] to detect the key points and compute the descriptors. After extracting

the features from the first half, they are used to generate a codebook by quantizing

the descriptors into a number of homogeneous clusters using a k-means algorithm,

where the centroid of each cluster is treated as a visual word. Then, in each novel

image, the extracted descriptors are assigned to the closest visual word (Euclidean

distance) resulting in a histogram of frequencies that can be also binarized. The

results of hierarchical clustering for SUN and KTH-TIPS datasets based on KL and

BH distances in Multinomial and Bernoulli mixtures are shown in Table 14.

4http://www.nada.kth.se/cvap/databases/kth-tips/documentation.html

Figure 5: A Subset of The SUN which is composed of the 6 clusters.
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Figure 6: Samples of each class in KTH texture dataset.

Table 14: Hierarchical Clustering (HC) results (average accuracy %) for the two
image datasets.

Multinomial Bernoulli
Datasets Accuracy HC KL HC BH Accuracy HC KL HC BH
KTH 78.57% 97.42% 97.42% 78.57% 97.71% 95.42%
SUN 29.19% 82.29% 67.39% 24.53% 71.73% 86.95%

In Multinomial model, the accuracies of clustering KTH-TIPS and SUN datasets

using mixture model are 78.57% and 29.19%, respectively. The accuracies of hier-

archical clustering are based on both distances are 97.42% for KTH-TIPS. However,

the proposed algorithm gives 82.29% and 67.39% for SUN data based on KL and BH

distances, respectively. In Bernoulli model, the performance of hierarchical clustering

for SUN dataset, for instance, is improved from 24.53% to around 71% and 86% using

KL and BH, respectively.

Fig. (7) and (8) show the dendrograms of hierarchical clustering using KTH-TIPS

Table 15: Average accuracy of each level of the tree in SUN dataset based on
Multinomial mixture.

KL BH
6 Clusters 29.19% 29.19%
5 Clusters 46.58% 46.58%
4 Clusters 52.17% 56.21%
3 Clusters 73.91% 64.90%
2 Clusters 82.29% 67.39%
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Figure 7: Dendrogram for hierarchical clustering using mixture of Bernoulli distribu-
tions showing the closest clusters in KTH based on Bhattacharyya distance.

Figure 8: Dendrogram for hierarchical clustering using mixture of Bernoulli distribu-
tions showing the closest clusters in KTH based on KL distance.

dataset in Bernoulli distribution based on Bhattacharyya and Kullback-Leibler. The

two dendrograms are different such as after Aluminum Foil and Brown Bread are

merged to one cluster, Cracker is merged to Aluminum Foil based on Bhattacharyya

while Sponge is the closest cluster to Cracker based on Kullback-Leibler distance.

On the other hand, the average accuracy of each level of the Dendrogram for SUN

dataset in Multinomial mixture is shown in Table 15. For each level of merging,

the accuracy is increased and expressed similar percentages for both distances except

the last 2 levels where the percentages are quite different. The last level accuracy is

82% using KL, and 67% using BH, which are significant improvements compared to

29.19% in first level.
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Chapter 4

A Hybrid Approach Based on

SVM and Bernoulli Mixture Model

for Binary Vectors Classification

In this chapter, we detail our findings when Support Vector Machines (SVMs), as a

powerful classification tool, and Bernoulli mixture model are combined in order to

classify binary data. First we discuss hybrid learning approach and the finite Bernoulli

mixture model and then we present the proposed hybrid generative/discriminative

learning approach and all related details about the proposed kernels. Finally, we

demonstrate the merits of the proposed approach for the problem of classifying binary

and texture images.

4.1 Hybrid Generative/Discriminative Learning Ap-

proach

Extracting classification rules from samples is an important procedure and a challeng-

ing task in various machine learning, pattern recognition and computer vision applica-

tions. Learning approaches are generally divided into two groups, namely, generative

and discriminative approaches [12]. The objective of using generative learning ap-

proaches is the estimation of class conditional distributions P (X|j) for j = 1, . . . , K,

where K is the overall number of classes [11, 20]. In contrast, the goal of applying

discriminative approaches is to estimate the classification function j = f(X) instantly
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from the data [73]. Discriminative models are based on two phases: training and clas-

sification phases. In the training phase, the boundaries between several categories as

classes are defined through maximizing the margin between data. A new unseen data

will be assigned to a class based on the side of the boundary, which mapped the data

[9]. Even though there are different advantages of using the two approaches, the lim-

itations vary from one approach to another. For example, constructing the decision

boundaries leads to excellent classification performance when using discriminative

approaches while missing and incomplete data can effectively be handled by gener-

ative approaches due to their efficiency in handling uncertainty. However, failing to

provide an acceptable clustering or classification performance for new data is limiting

traditional generative or discriminative approaches. A great comprehension of the

strengths and weaknesses of each approach leads to an increasing interest in hybrid

approaches. Combining the desirable capabilities of both approaches is the idea of

hybrid approaches. For example, the data’s substantial properties can be captured

to classify while prior knowledge of the problem domain is taking into consideration

[71].

Hybrid generative/discriminative learning approaches have been successfully im-

plemented to improve the classification process by incorporating prior knowledge of

the data involved in several applications. For instance, powerful models to classify

proportional data have been proposed in [18, 17], where generative kernels for SVM

were generated from Dirichlet, generalized Dirichlet and Beta-Liouville mixture mod-

els. Moreover, hybrid learning approach for mixed data has been developed based

on a hidden Markov model [37]. Furthermore, the Langevin mixture model has been

used to classify spherical data using a hybrid learning approach [6]. Recently, Za-

mzami and Bouguila proposed hybrid methods, based on a novel Multinomial Scaled

Dirichlet [91], and based on mixtures of exponential family approximation to other

powerful generative models for count data modeling [93].

4.2 Finite Bernoulli Mixture Model

Bernoulli mixture model is generally used for clustering binary data in many ma-

chine learning and computer vision applications [16, 10], such as visual scenes, shape

categorization, and handwritten digit recognition [63, 22]. A multivariate Bernoulli
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distribution with parameters θ = (θ1, . . . , θD) for a D-dimensional binary vector

X = (x1, . . . , xD), is given by:

P (X|θ) =
D∏
d=1

θxdd (1− θd)1−xd (13)

Let X = {X1, . . . , XN} be a dataset of binary vectors, where N represents the

number of instances or observations, e.g., images. Finite mixture models are applied

to model samples collected from a finite number of sub-populations. The form of the

whole model is formed by a weighted sum of the densities [66]. A probability function

P (X|Θ) is decomposed into the sum of K components probability density functions

which are weighted. Thus, the probability of the finite mixture model is presented

by:

P (X|Θ) =
N∏
n=1

K∑
j=1

πjP (Xn|θj) (14)

where Θ = (θ1, . . . , θK , π1, . . . , πK) indicates all the latent variables of the mixture

model while the mixing proportion of a cluster j is denoted by πj and satisfies (0 <

πj < 1),
K∑
j=1

πj = 1. A widely used method for estimating the set of parameters Θ is the

Maximum Likelihood Estimate (MLE) solution [32] where Expectation Maximization

(EM) algorithm is applied [35]. The EM algorithm consists of two steps which are

the expectation (E-step) and the maximization (M-step) that iteratively run until

convergence. The posterior probability is calculated in the expectation step, where

a vector Xn is assigned to class j that maximizes its posterior probability [3]. The

computation of the posterior probability is given by:

ẑnj = P (j|Xn, θj) =
πjP (Xn|θj)∑K
j=1 πjP (Xn|θj)

(15)

For updating the model parameters, we maximize the log likelihood function in

the M step according to:

Θ = arg max
N∑
n=1

K∑
j=1

ẑnj log(pjP (Xn|θj)) (16)

Maximizing the previous equation, results in the updated parameter θj, and πj,

such that:
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πj =

N∑
n=1

ẑnj

N
(17)

θj =

N∑
n=1

ẑnjxn

N∑
n=1

ẑnj

(18)

4.3 The Proposed Hybrid Learning Approach

Support Vector Machines (SVMs) are powerful tools widely used for supervised learn-

ing in classification and regression problems [8, 19]. The SVM classifier was originally

introduced in [84], and significantly has an increased popularity because of its advan-

tages such as good generalization, global solution, the number of tuning parameters

and their solid theoretical foundation. Therefore, the development of efficient SVMs

implementations leads to extend its application [33, 61, 68]. Even though SVMs are

considered as powerful tools, the choice of the kernel function K : X × X → R for

non-separable data is a challenging task [24]. The kernel function is responsible for

measuring the similarity between input vectors. When the data are not considered

linearly separable, the kernel function can be used to map the data into a high di-

mensional feature space. Therefore, the computation of the inner product value of

the transformed data in the feature space is simplified [9, 77]. In general, Radial

Basis Function (RBF) and sigmoid are widely used kernel functions [56]. In most of

the applications, it was indicated that the best choice is not the classic SVM kernels

[5, 23, 13]. Generating the kernel function directly from data can achieve better re-

sults. Generating SVM kernels based on information divergence between distributions

is one of the successful approaches. As a similarity measure between input vectors, a

given kernel should capture the intrinsic properties of the data to classify, and take

into account prior knowledge of the problem domain.

Let a considered dataset has a set of objects (e.g. images) O = {O1, . . . , ON},
where each image Oi represents a sequence of feature vectors XOi

= {XOi1
, ..., XOiT

}.
Each individual image XOi

is represented by a bag of pixel vectors of a set of local de-

scriptors [40, 52]. Therefore, each image has its own size T. Let XOi
= {XOi1

, ..., XOiT
}

and X ′Oi
= {X ′Oi1

, . . . , X ′OiT
} to be two multimedia objects O and O′, respectively
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represented as sequences of feature vectors. The model of two objects are based on

two probability density functions P (X|Θ) and P ′(X|Θ′), respectively. The idea to

generate kernel functions to be computed in the PDF space instead of the original

sequence space.

The Kullback–Leibler Kernel: measures the dissimilarity between P (X|Θ)

and P ′(X|Θ′), as two probability distributions based on using Kullback–Leibler (KL)

divergence, and it is given by:

K(P (X|Θ), P ′(X|Θ′)) = exp
[−fKL(P (X|Θ), P ′(X|Θ′))2

2σ2

]
(19)

where σ is a constant value which can be changed based on the data while

fKL(P (X|Θ), P ′(X|Θ′)) is KL divergence proposed in [74], is given by:

fKL(P (X|Θ), P ′(X|Θ′)) =
D∑
d=1

xd log
xd
x′d

+ x′d log
x′d
xd

(20)

The Bhattacharyya kernel: has a main advantage of nonlinear flexibility. The

Bhattacharyya kernel between P (X|Θ) and P ′(X|Θ′) has been originally proposed in

[53]. In the case of Bernoulli distribution, it is given by:

KB(P (X|Θ), P ′(X|Θ′)) =
D∏
d=1

[(θdθ
′
d)
ρ + (1− θd)ρ(1− θ′d)ρ] (21)

where θ is the parameters of the Bernoulli distribution, while ρ is a constant which

is equal to 1
2
.

The Rényi divergence: The Rényi divergence [83] between P (X|Θ) and P ′(X|Θ′)
in the case of Bernoulli distribution is given by:

KR(P (X|Θ), P ′(X|Θ′)) =
1

α− 1
ln

D∑
d=1

(xd)
α

(x′d)
α−1 (22)

where α is a constant value which can be changed based on a data satisfying α 6= 1.

When α = 1 the Rényi divergence intends to be Kullback–Leibler divergence [83].

The proposed hybrid approach involves several steps to be performed in order

to achieve an optimal performance. The first step is the initialization step; where
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Algorithm 3 The proposed hybrid learning approach algorithm.

INPUT: A dataset X , prespecified number of clusters K.
Initialize all the parameters:
Apply the K-Means to get the parameters.
Apply the Method-of-Moment for initializing the parameters of Bernoulli mixture model
Θ = (θ1, . . . , θK , π1, . . . , πK).
E-Step: compute the posterior probability P (j|Xn, θj) using Eq.(15).
M-Step: update the model parameter estimates Θ using Eq.(18) and Eq.(17).
Assign data points to clusters based on the maximum posterior probability.
for i = 1→ K do

for j = i+ 1→ K do
Calculate the kernel between component i and j using Eq.(19), (21) or Eq.(22).

end for
end for
Feed the SVM classifier by the Kernel matrix. end

a K-Means algorithm is used for initializing the mixing weight parameter π, and θ

parameters are initialized using the method of moments where the number of classes

K is chosen based on the best experiment when K = {2, . . . , 7}. The second step is

learning the mixture model by using the Expectation-Maximization (EM) algorithm

for estimating the parameters. The following step is based on computing the dissim-

ilarity between each two mixture components, which generates the kernels. Finally,

the kernel matrices are feed to the SVM classifier to discriminate the data vectors.

The proposed hybrid learning approach is summarized in Algorithm (3).

4.4 Experimental Results

In this section, we have evaluated the hybrid approach based on SVM and Bernoulli

mixture model using different generative kernels to classify binary vectors. The vari-

able vectors have been given as feature vectors which contain (0s or 1s) correspond

to black and white pixels in binary images, or bit-plane-level features under varying

illumination, pose and scale for texture images. In our experiments, the 1-versus-all

training approach has been used with performing 10-fold cross-validation. The ac-

curacy of overall well-classified elements has been used as a measure of the model

performance based on averaging the results of 10 independent runs. Moreover, we

have compared the proposed hybrid learning approach with a pure discriminative

approach, such as SVM with classic kernels and pure generative approach, i.e., the
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Bernoulli mixture model (BMM).

4.4.1 Binary Images Categorization

The proposed framework has been applied to subsets of two binary image datasets,

namely, 99 Shape [76], and MPEG [51]. The considered subsets are shown in Figure

(1) and Figure (2).

The results for classifying the binary images using the proposed hybrid approach

are summarized in Table 16. In our experiments, the constant values used are σ=6

and α=6 which were selected by experiments for Kullback–Leibler (KL) and Rényi

kernels, respectively. In the 99 Shape dataset experiment, the best classification per-

formance with an accuracy of 73.50% has been achieved in the case of applying the

Kullback–Leibler (KL) kernel. Then, Bhattacharyya and Rényi kernels show aver-

age accuracies of 68.00% and 62.50%, respectively, which are quite lower than the

once achieved using Kullback–Leibler (KL) kernel. On the other hand, the classifica-

tion results using SVM with standard kernels such as Radial Basis Function (RBF)

and sigmoid give 27.00% and 54.50% accuracy, respectively, and with the Bernoulli

mixture model, we get 22.91%.

Concerning MPEG-7, the achieved accuracies of SVM with RBF and sigmoid ker-

nel, and with the Bernoulli mixture model are 20.75%, 42.25%, and 35.00%, respec-

tively. Feeding the SVM with probabilistic kernels based on measuring the divergence

between two distributions has improved the classification rate to 70.00% using Kull-

back–Leibler (KL) divergence, 63.75% and 52.50% using Bhattacharyya and Rényi

kernels, respectively. It is remarkable that the best accuracies have been achieved us-

ing Kullback–Leibler (KL), Bhattacharyya, and Rényi kernels for both binary image

Table 16: Binary image categorization performance (average accuracy %) using dif-
ferent techniques.

Approach 99 Shape MPEG-7
BMM+ Kullback–Leibler (KL) 73.50% 70.00%
BMM+ Bhattacharyya 68.00% 63.75%
BMM+ Rényi 62.50% 52.50%
SVM (RBF kernel) 27.00% 20.75%
SVM (Sigmoid kernel) 54.50% 42.25%
BMM 22.91% 35.00%
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datasets.

4.4.2 Texture Images Categorization

For this application, we have used the bit-plane probability (BP), which is based on

the product of Bernoulli distributions (PBD) for transforming texture image datasets

as wavelet subband histograms, where each bit-plane contains binary bits (0 or 1), as

proposed in [30]. Subsets of two texture image datasets have been used to validate

the model. The first texture image dataset is KTH-TIPS 1. The complete KTH-

TIPS dataset contains 10 classes each has 81 images of size 64 × 64 pixels. In our

experiment, we have selected a subset of 5 classes, which are Aluminium foil, Brown

bread, Corduroy, Cotton, and Cracker, as shown in Fig. (9). The second texture

image dataset is called DTD dataset [31], which has 47 classes. The total number

of 120 texture images of size 64 × 64 pixels are assigned to each class. We have

considered a subset with 4 classes, including Dotted, Fibrous, Flecked, and Freckled,

as shown in Fig. (10).

In order to compare our framework with a pure generative approach, i.e., BMM

and discriminative techniques, we need to represent each image as a single vector with

binary variables. Hence, we considered the bag of visual words approach [34], then

the histogram of frequencies has been binarized (each visual word has a value of 1 if it

appears in the image and zeroes otherwise [21]). For creating the BovW representa-

tion, we have split each dataset into two halves; one for constructing the vocabulary,

and the second for representation. The extracting features from the first half, the

1http://www.nada.kth.se/cvap/databases/kth-tips/documentation.html

Figure 9: Samples of 5 classes (Aluminium foil, Brown bread, Corduroy, Cotton, and
Cracker) in KTH texture dataset.
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Figure 10: Samples of 4 classes (Dotted, Fibrous, Flecked, and Freckled) in DTD
texture dataset.

wavelet subband histograms in our case, have been clustered using a k-means algo-

rithm where the centroids are considered as the visual words (W1 . . .WD). For each

image in the second half, Euclidean distance is calculated to assign each extracted

wavelet subband histogram feature to the closest visual word. Consequentially, each

texture image will be presented as a histogram of frequencies, which can be bina-

rized in order to train a Bernoulli mixture model. The results for texture images

classification are summarized in Table 17.

In the KTH-TIPS dataset, the assigned constant values when using Kullback–Leibler

(KL) is σ=2, and when using Rényi kernels α= 17 which were selected experimen-

tally. The accuracy for classifying the texture images using the Bernoulli mixture

model is 20.00%, while in the case of using SVM with RBF kernel is 32.04%. The

classification performance is improved using the proposed approach, where the ac-

curacy has been greatly enhanced to 57.23% and 49.51% using the Bhattacharyya

and Kullback–Leibler (KL), respectively. Moreover, the result of using Rényi kernel

has significantly better performance than using the Bernoulli mixture model or SVM

with the classic RBF kernel. The results of using Bhattacharyya and Kullback–Leibler

Table 17: Texture image categorization performance (average accuracy %) using dif-
ferent techniques.

Approach KTH-TIPS DTD
BMM+ Kullback–Leibler (KL) 49.51% 40.20%
BMM+ Bhattacharyya 57.23% 44.37%
BMM+ Rényi 34.27% 37.29%
SVM (RBF kernel) 32.04% 35.83%
SVM (Sigmoid kernel) 34.16% 35.83%
BMM 20.00% 25.00%
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(KL) kernels in classifying DTD have shown a considerable improvement in the per-

formance with an accuracy of 44.37% and 40.20%, respectively comparing to the

accuracy achieved in the case of using Bernoulli mixture model which is 25.00%. Fur-

thermore, the accuracy achieved using the Renyi kernel is 37.29%, which is slightly

better than the accuracy in the case of using classic kernels such as RBF and Sigmoid.

The results of both applications suggest that the classification performance of the

proposed hybrid approach using generative kernels based on information divergences

has the ability to integrate prior knowledge regarding the nature of data involved in

the problem and thus grants good data discrimination.
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Chapter 5

Conclusion

This thesis has developed different clustering and classification approaches to improve

the accuracy of clustering and classifying categorical data, specifically binary data.

In chapter 2, we have proposed an extension of the K-medoids algorithm to cluster

binary data using different binary sequences similarity measures. Clustering binary

data is important due to its existence in different applications. Two applications

have been used to validate the proposed framework. The best performance has been

achieved by using 2nd Kulcz and No. Feat. Diff similarity measures for text doc-

uments clustering and binary images categorization, respectively. The accuracy has

been improved up to 91.25% in categorizing binary images and up to 87.50% in clus-

tering text documents which is a significant improvement compared to the existing

approach. We then conclude that using similarity measures instead of Euclidean

leads to improve the performance of K-medoids for clustering binary data. There

are some limitations of this work include handling data with large number of features

and/or classes, as well as the randomly initialized medoids which give different results

for each run. The proposed framework can be used in the parameter initialization

for Expectation-Maximization (EM) algorithm with binary data instead of K-means

which is usually used in the initialization step.

Then, in chapter 3, we have proposed a hierarchical clustering approach based

on Bhattacharyya and Kullback-Leibler distances to cluster categorical data based

on Multinomial and Bernoulli mixture models. The proposed framework has been

applied to two real world applications, namely, text clustering and image catego-

rization. The comprehensive performance analysis has shown that Bhattacharyya
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and Kullback-Leibler distances can be efficiently used to measure similarity between

two discrete distributions. The proposed approach can be applied to many other

applications which involve hierarchy structure and count or binary data.

Finally, in chapter 4, we have proposed a hybrid learning approach based on two

probabilistic kernels, namely, Bhattacharyya and Rényi kernels from the Bernoulli

mixture model to classify binary vectors. The objective of developing the hybrid

learning approach is to combine a generative model, i.e., the Bernoulli mixture model,

with a supervised learning technique, namely Support Vector Machines (SVMs). The

Bernoulli mixture model is used to generate probabilistic kernels which are computed

to feed the SVM classifier. We validated the proposed learning approach via two dif-

ferent applications that involve binary and texture image categorization. The results

demonstrate that the proposed algorithm is a powerful tool that provides better accu-

racie than either fully generative or discriminative techniques. The best classification

performance has been achieved by using Kullback–Leibler (KL) and Bhattacharyya

kernels for binary and texture images categorization, respectively.

The experiments with proposed frameworks are motivating and proves to be a bet-

ter solution than classic K-means, traditional hierarchical clustering and fully genera-

tive or discriminative techniques for binary data. Future works might include making

the fusion approach to handle mixed data that contains binary data. The efficient

propagation and aggregation of Bernoulli mixture models (BMMs) in a decentralized

fashion in a network is called gossip-based computation, which might be proposed in

future work to improve estimates over time.
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