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Resumo

A segmentação e a análise de vasos sanguíneos em imagens médicas têm vindo a permitir que os
clínicos consigam avaliar inúmeras condições médicas que têm impacto direto nestas estruturas
(tais como aneurismas e estenoses) e também obter informação sobre algumas doenças sistémicas
(por exemplo, diabetes e hipertensão). Infelizmente, o estudo de redes vasculares é um procedi-
mento moroso e repetitivo. A visão computacional tem vindo a desempenhar um papel importante
no apoio à segmentação e análise de vasos sanguíneos, aumentando a eficiência dos cuidados
de saúde. Apesar do enorme progresso que tem sido alcançado desde os primeiros trabalhos, a
segmentação de vasos sanguíneos está ainda aquém do raciocínio utilizado pelos especialistas hu-
manos e apresenta ainda algumas limitações. Esta tese descreve os desafios existentes e como a
investigação realizada se propõe a lidar com os mesmos.

Uma grande porção da literatura relacionada com este tópico inclui algoritmos que focam um
cenário específico de segmentação de vasos sanguíneos (uma certa combinação de rede vascular
e protocolo de aquisição de imagem). Ter um caso de uso em mente permite utilizar mais con-
hecimento prévio e desenvolver metodologias mais otimizadas. Dois algoritmos para aplicações
específicas são propostos. O primeiro consiste numa metodologia desenvolvida para extrair e
analisar as perfurantes das artérias epigástricas inferiores profundas, vasos que se encontram na
região anterior da parede abdominal. A sua identificação e caracterização são essenciais para o
planeamento pré-cirúrgico dos retalhos estado-da-arte que usam tecido da barriga para reconstruir
a mama. De forma a garantir que a nova mama é irrigada de forma adequada após a re-anastomose,
os cirurgiões precisam de incluir perfurantes com características apropriadas. O segundo caso de
uso visa a segmentação dos vasos sanguíneos em imagens da retina, atingindo um desempenho
competitivo com os métodos estado-da-arte mas utilizando uma rede neuronal profunda mais efi-
ciente, o que é relevante em programas de triagem, onde uma grande quantidade de dados é gerada
num pequeno espaço de tempo.

O desenvolvimento de algoritmos com bom desempenho, e que simultaneamente generalizam
apropriadamente para dados com uma distribuição diferente (por exemplo, outros vasos sanguí-
neos, técnicas de imagiologia diferentes), é um dos desafios-chave atuais na área de segmentação
de vasos sanguíneos, e de facto, na visão computacional de forma geral. Isto é especialmente ver-
dade quando se recorre a técnicas de aprendizagem máquina supervisionada, que são normalmente
as que atingem melhor desempenho mas tendem a funcionar pobremente em dados com diferente
distribuição. De forma a lidar com este problema, a versão profunda de uma metodologia que é
conhecida pela sua intuição e boa generalização, a análise dos valores próprios da matriz Hessiana
em diferentes escalas, é considerada. As experiências mostram que substituir as funções baseadas
em conhecimento prévio por uma rede neuronal profunda permite melhorar o desempenho desta
metodologia tradicional e generalizar melhor do que as metodologias típicas de aprendizagem
profunda.

As redes vasculares podem ser interpretadas como um grafo, uma vez que, exceto o cali-
bre local, elas podem ser aproximadas por um conjunto de arestas (segmentos de vasos sanguí-
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neos) e vértices (bifurcações e terminações). Manter a sua estrutura de grafo correta durante a
segmentação é relevante sempre que uma etapa de caracterização se segue, especialmente se for
automatizada. No entanto, esta propriedade é tipicamente ignorada na literatura, e a falta de métri-
cas adequadas para a sua avaliação é provavelmente um fator. Um índice de similaridade que
é capaz de quantificar de forma objetiva o quão similar são duas redes vasculares do ponto de
vista topológico é proposto. Além disso, investigação sobre técnicas que apoiam a aprendizagem
de modelos neuronais profundos mais robustos topologicamente é também contemplada. Numa
primeira abordagem, uma rede neuronal de duas etapas consistindo numa rede de segmentação
típica seguida de um modelo probabilístico de refinamento é utilizada. Uma segunda metodolo-
gia considera uma nova função de custo, baseada no operador morfológico de fecho, de forma a
penalizar erros que induzem árvores quebradas e aqueles que conectam árvores distintas.

Finalmente, as capacidades dos modelos de contornos ativos estado-da-arte são estendidas,
com o objetivo de permitir que possuam um conjunto finito de regiões com diferentes propriedades
de flexão. Esta rigidez heterogénea ao longo do contorno permite modelar algumas dinâmicas
do contorno do objeto e evitar outras, o que é útil quando algumas das dinâmicas se devem a
ruído ou outros artefatos. Um caso de uso que beneficia deste modelo de contornos ativos é a
segmentação do pulmão, uma vez que se torna possível modelar de forma precisa o seu contorno
medial e, simultaneamente, incluir os nódulos existentes na sua região periférica lateral. Um maior
número de nódulos poderá assim ser identificado e caracterizado. Esta última etapa pode envolver
a análise dos vasos sanguíneos na vizinhança, uma vez que as suas propriedades poderão fornecer
informações relevantes quanto ao tipo de nódulo.



Abstract

The segmentation and the analysis of blood vessels in medical images have been allowing clini-
cians to assess several health conditions that directly impact these structures (such as aneurysms
and stenosis) and also to obtain clues on some systemic diseases (for example, diabetes and hy-
pertension). Unfortunately, the study of vascular networks is typically a time consuming and
repetitive procedure. Computer vision has been playing an important role in supporting the seg-
mentation and analysis of blood vessels, increasing the efficiency of medical care. Despite the
huge progress that has been achieved since the first works, blood vessel segmentation is still far
from matching the rationale used by human experts and is still lacking in some aspects. This thesis
describes the existing challenges and how our conducted research proposes to address them.

A large portion of the related literature comprises algorithms focusing a given blood vessel
segmentation scenario (a combination of a particular vascular tree and imaging acquisition pro-
tocol). Targeting a specific use case allows to more heavily rely on prior knowledge and design
more optimised methodologies. Two application-specific algorithms are proposed. The first one
concerns a framework tailored for the extraction and analysis of the Deep Inferior Epigastric Per-
forators, blood vessels lying in the anterior region of the abdominal wall. Their identification and
characterisation are essential for the preoperative planning of the state-of-the-art flaps using tissue
from the belly to reconstruct the breast. In order to guarantee that the new breast is adequately
vascularised after re-anastomosis, the surgeons need to include blood vessels with proper char-
acteristics. The second one targets the segmentation of blood vessels in retinal images, where
competitive performance is achieved using a more efficient deep neural network design, which is
relevant for screening programs, where large amounts of data are generated in a short amount of
time.

The development of algorithms which perform well, and simultaneously generalise properly
to differently distributed data (for example, other blood vessels or different image acquisition pro-
cedures), is one of the current key challenges of blood vessel segmentation, and in fact, computer
vision overall. This is especially true when using supervised machine learning approaches, which
are typically the best performing ones but tend to work poorly in differently distributed data. To
tackle this issue, a deep version of a framework which is known for being intuitive and gener-
alising well, the eigenvalue analysis of the Hessian matrix at a scale space, is considered. The
experiments show how replacing the state-of-the-art prior knowledge based vesselness functions
by a deep neural network allows to improve the performance of this traditional framework to the
level of deep learning, while generalising better than typical deep learning methodologies.

Blood vessel networks can be interpreted as graph-like structures, since, apart from local cali-
bre, they can be approximated by a set of edges (blood vessel segments) and vertices (bifurcations
and vessel endings). Correctly capturing their graph structure during segmentation is relevant
whenever a characterisation step follows, especially if it is an automated one. Nonetheless, this
property is often overlooked in the literature, and the lack of proper metrics for this evaluation
is probably one factor. A similarity index which can objectively quantify the similarity between
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the topological structure of two blood vessel trees is proposed. Moreover, research on techniques
which can help promoting the learning of deep neural networks which are more robust topological-
wise is also contemplated. In a first approach, a two-stage neural network comprising a typi-
cal segmentation network followed by a probabilistic refinement model is considered. A second
framework includes a novel loss function based on the morphological closing operator in order to
increase the weight of errors inducing disjoint trees and of those merging distinct sub-trees.

Finally, the capabilities of state-of-the-art parametric active contour models are extended, with
the goal of allowing them to have a finite set of contiguous regions displaying different bending
properties. This heterogeneous rigidity along the contour allows to fit some dynamics of the
boundaries of the object while disregarding others, which is useful whenever some of the dynamics
are due to noise or other artefacts. One use case benefiting from this novel active contour model
is the segmentation of the lung, since it enables the simultaneous precise fitting of the medial lung
boundary while including in the segmentation the juxta-pleural nodules that occasionally exist in
the lateral lung boundary. A larger number of nodules will then be candidate for the identification
and characterisation steps. The latter may involve the assessment of the surrounding blood vessels,
as their properties may encode relevant information regarding the type of nodule.
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Chapter 1

Introduction

Blood vessels are the structures responsible for carrying blood throughout the different tissues of

the body. They form such an intricate network that, considering the average human adult, lining

them up would cover a distance of almost 100,000 km [1]. Arteries, the blood vessels taking blood

away from the heart, eventually ramify into arterioles which in turn will occasionally give origin

to very narrow capillaries, micro-vessels whose wall is composed by a single layer of endothelial

cells. Here, substance exchange occurs with the surrounding interstitial fluid, which mediates

exchanges with the neighbouring cells. Oxygen and glucose are some of the molecules leaving

the lumen of the capillaries while carbon dioxide and lactic acid are some of the waste products

of cellular metabolism that are collected. The blood then flows through venules and returns to

the heart via veins. There are two different circulatory circuits, the pulmonary and the systemic

circuits. The first is responsible for taking de-oxygenated blood to the pulmonary alveoli, where

oxygen perfuses red blood cells again. The latter takes oxygenated blood to the different tissues

of the body, being crucial for haemostasis.

An adequate blood flow is only possible when the properties of the vessel walls remain normal.

Any stiffening, narrowing or enlargement may lead to serious medical conditions. Local disten-

sions of the blood vessel wall, usually in the form of an outward bulge, are known as aneurysms

(Figure 1.1a) and occur due to the weakening of the wall. The causes are generally uncertain, but

most likely result from the combination of genetic factors and risk behaviours such as smoking

and high blood pressure [2]. Most aneurysms are asymptomatic and do not pose a threat, however,

those that keep increasing are prone to rupture, leading to fatal haemorrhages in most cases. They

occur mostly in arteries, especially the aorta and the ones in the brain. Vascular stenosis (Fig-

ure 1.1b) is the abnormal narrowing of a vessel, usually caused by the progression of atherosclero-

sis, a process where lipid plaque is accumulated on the wall. This leads to the reduction of blood

flow along the vascular network, and severe cases may cause ischaemia, when insufficient blood

flow reaches the tissues. In addition, in case of plaque rupture, the formation of a blood clot, also

known as thrombus, will be induced and may completely block the bloodstream, possibly causing

a heart attack or a stroke, according to the location where the event occurs [3; 4]. If the throm-

bus detaches from the vessel wall and enters the bloodstream, it gets the designation of embolus,

1
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(a) (b) (c)

Figure 1.1: Blood vessel imaging and examples of different medical conditions: (a) angiography
of the brain vasculature showing an aneurysm (black arrow); (b) angiography of the coronary
arteries showing a vascular stenosis (white arrow); and (c) fundus photo displaying retinal venules
with abnormal excessive tortuosity (highlighted regions).

and may clog a different blood vessel site. One of the medical conditions that arises like this is

pulmonary embolism, where a pulmonary artery is obstructed by an embolus that commonly has

origin in the femoral veins [5]. The build-up of plaque is also not easily predictable, nonetheless

there is a correlation with family history and risk factors such as bad cholesterol levels, smoking,

and diabetes, to name a few [6]. Cardiovascular diseases are the major cause of death worldwide.

In 2017, from the 56 million deaths registered, almost 18 million were due to cardiovascular com-

promise, followed by 9.5 million deaths due to cancer [7]. Ischaemic heart disease and stroke are

the most problematic, nevertheless, according to the World Health Organization, 80% of the cases

could be prevented [8], highlighting the relevance of proper diagnosis and follow up.

The retina, the inner-most layer of the eye, is an extension of our brain and the only portion

of the central nervous system that can be analysed in a non-intrusive manner. The assessment

of the retinal blood vessels allows to obtain insight on several systemic conditions such as hy-

pertension, diabetes, and atherosclerosis [9; 10]. Some studies have shown that there is also a

connection between structural changes on the retinal vasculature and acute events, such as strokes,

which occurred in the past or are about to unfold [11; 12; 13]. Figure 1.1c shows a retinal fun-

dus photo where retinal venules have calibre and tortuosity larger than normal, a sign of vascular

occlusion [10]. Almost 80% of the people having diabetes for more than 15 years suffer from dia-

betic retinopathy, one of the major causes of vision loss worldwide [14]. This becomes even more

frightening due to the number of people living with diabetes, which were 463 million adults in

2019 [15]. Diabetic retinopathy impacts the entire retina, as a result of progressive damage to the

small retinal blood vessels caused by uncontrolled levels of sugar in the blood. Non-proliferative

diabetic retinopathy, the first phase of the disease, generally does not include significant symptoms,

as only micro-level structural changes occur, such as the emergence of micro-aneurysms. How-

ever, with the accumulation of these modifications, the blood flow may become compromised, and

the second phase of the disease - proliferative diabetic retinopathy - is initiated. New blood ves-
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sels emerge as the body response to recover from the reduced blood flow. However, these are very

fragile and rupture easily, bleeding to the vitreous. Additionally, the risk of glaucoma (damage

to the optic nerve) and retina detachment is increased [16]. Vision loss follows this stage of the

pathology, however, fortunately it can be prevented in most cases when they are detected early,

raising the importance of monitoring and screening programmes.

The analysis of blood vessels is also essential in other scenarios. In cancer therapeutics, it is

known that angiogenesis, the process of formation of new blood vessels in a tissue, is promoted

by tumour growth, such that it can be used as an indicator for assessing the response to therapeutic

interventions [17; 18]. Concerning surgery eligibility and planning, some meticulous procedures

can only be conducted after a careful assessment of the local blood vessels. For instance, the

proximity of a tumour to major blood vessels may prevent tumour resection [19], and the lack of

suitable perforating arteries may discourage the use of a free flap technique for reconstruction [20].

Flap is the designation given to the lifting of tissue from a donor site having intact blood supply

and moved to the recipient location. A free flap is completely detached from the donor site,

such that the blood vessels are cut and have to be reattached to those at the recipient site. When

a surgery is deemed adequate, the planning step aims to gather local landmarks which will be

helpful to guide the surgeons during the procedure, and also to select the most proper way of

achieving the goal [21]. A particular scenario where this is important and which will be focused

in this thesis is the Deep Inferior Epigastric Perforator (DIEP) flap, the state-of-the-art technique

for autologous-based breast reconstruction [22]. In this procedure, a portion of belly tissue is

extracted without significantly disturbing the abdominal muscle, in order to rebuild the breast.

The assessment of the DIEPs (the vessels vascularising that region of the belly) before surgery is

essential to guarantee that appropriate blood vessels are included in the extracted flap. This is vital

for a good vascularisation of the reconstructed breast after reconnecting the blood vessels to those

of the chest.

Given the importance of assessing the different vascular networks of our body, many imaging

techniques and protocols have been proposed throughout the years for that particular need. The

continuous evolution of technology allowed to obtain clearer images, directly leading to better

diagnoses, and to create improved care routines which were not possible in the past. Chapter

2 discusses some of the imaging techniques that are commonly used to visualise blood vessel

networks. Due to the huge amount of people suffering from cardiovascular disorders and also the

suspicious cases, a large volume of data is acquired in daily clinical practice. Some of the vascular

trees of the body are especially complex, such as the retinal, brain, and lung ones. Therefore,

blood vessel analysis is a very time consuming and repetitive task. This becomes even more

relevant in scenarios like screening programmes, where data from many people is collected at

a given time. The computer vision researchers naturally started dedicating their time to design

methodologies that could help reducing the burden faced by radiologists. The first methodologies

were proposed in the 1980s decade, and since then a lot of researchers have been dedicating their

efforts to this problem, following new trends, applications, and requirements. Nowadays, this

computer vision topic already comprises a vast literature, and even though great progress has
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been made, there are still challenges that require attention. Computer Aided Diagnosis (CAD)

systems targeting blood vessel related applications usually divide them into two different steps,

blood vessel segmentation, and local characterisation of the segments, yet some methodologies

tackle them at once. Nonetheless, the characterisation of the vascular tree is usually simple to

solve after a good segmentation has been achieved. In this thesis, we will mostly focus in blood

vessel segmentation, the computer vision task seeking an automated or semi-automated extraction

of vascular trees in medical images, as shown in Figure 1.2. It separates each unit of the data (pixel

or voxel whether the data is Two-dimensional (2D) or Three-Dimensional (3D), respectively) into

one of two classes: the foreground, which ideally should only contain blood vessels, and the

background, which should include all the remaining body tissues. The characterisation step will

be further discussed in Chapter 4.

(a) (b)

(c) (d)

Figure 1.2: The blood vessel segmentation task, exemplified in a coronary angiogram (a) and a
retinal fundus photo (c). The manual annotations of the blood vessels (foreground) in these images
by an expert are shown, respectively, in (b) and (d).

1.1 Motivation

Despite all the research that has been performed throughout the years on the topic of blood vessel

segmentation, there are still open challenges. Some of them are due to the difficulty of encod-

ing some typical properties of blood vessels in computers, others are related with the continuous



1.1 Motivation 5

emergence of new applications and imaging techniques, which naturally bring new requirements.

Vascular trees possess a very characteristic structure, a graph-like one, similar in many ways to

roads and rivers as seen in satellite images. All of these basically consist of piecewise linear seg-

ments having occasionally some bifurcations. Moreover, blood vessels have varying sizes and, de-

spite the major ones being more relevant in most clinical practices, the narrow segments also have

clinical importance. Even though the state-of-the-art has achieved a very good performance in the

larger vessels, there is still margin for improvement regarding narrow ones, as usually it is very

challenging to address the compromise between detecting the narrow vessels and the emergence

of false positives. As an example, Figure 1.3 shows the predictions obtained with a U-Net [23],

a state-of-the-art architecture for biomedical image segmentation, on a challenging region of a

retinal fundus photo.

(a) (b) (c)

Figure 1.3: A U-Net model [23] fails at detecting narrow vessels in challenging conditions: (a)
retinal fundus photo; (b) expert annotation; and (c) output of a U-Net.

One particular problem where the detection of very small vessels is crucial is in the preoper-

ative planning of breast reconstruction using the DIEP flap technique, as mentioned before. The

DIEPs have calibre in the range 1-3 mm, such that it is extremely challenging, even for experts, to

characterise them in an accurate and repeatable manner. As reported by the clinical community, it

is common to spend around 2 hours in the preoperative planning phase, which could be improved

by employing computer vision routines. A CAD methodology could also make the analysis more

objective, increasing the repeatability of characterisations. In the past, we proposed the first com-

puter vision methodology for extracting the DIEPs [24], nonetheless clinical validation is required

and more advanced techniques were deemed necessary after further testing.

It is well known that deep learning models excel at the tasks where they were trained, given

sufficient data and similarity between the train and test distributions. However, when the test data

does not have the same distribution, the trained models tend to fail (see Figure 1.4). Thus, it comes

as no surprise that one of the trending topics in the machine learning community consists of finding

new network designs and training procedures that allow to learn parametrisations that generalise

well to different distributions, sometimes even without using any labelled data from the latter.

Almost all the literature of blood vessel segmentation focuses on the simpler scenario where the
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(a) (b) (c) (d)

Figure 1.4: Models learned on a given dataset in a normal supervised fashion fail at generalising
to sufficiently different data: (a) retinal fundus photo; (b) manual annotation by an expert; (c)
segmentation by a model that has been trained on a similar data distribution; and (d) segmentation
by a model that has been trained on differently distributed data.

training and test distributions are similar. Interestingly, humans are very good at detecting blood

vessels in medical images, even if they are not experts on the topic. In fact, humans excel at

finding any graph-like structures in images, such as blood vessels, roads, rivers, and others alike,

since they know their underlying properties: they are locally linear, they are connected, their

cross-section diameter varies smoothly, and so on. Thus, it seems plausible that advances in the

Domain Adaptation field may lead to a state where algorithms generalise properly, performing

adequately on significantly different data without requiring training again. This is also relevant in

blood vessel segmentation as there is a huge heterogeneity in the amount of data available for the

different vascular networks. A general algorithm would allow deep learning known capabilities in

terms of performance to become a reality in a broader range of vascular related scenarios.

Finally, the problem of blood vessel segmentation may be interpreted as a multi-pixel classifi-

cation one, where we output a score for each pixel encoding how confident we are that it belongs

to a vessel, thus summing up to a binary classification problem. In such scenario, it is common to

consider the minimisation of the Binary Cross-Entropy (BCE) loss, or even the smooth Dice loss,

when learning models for solving this task. However, these losses only account for pixel-wise

errors, failing to induce properties that are known to be relevant in structures like vascular trees,

such as their connectivity. As can be seen in Figure 1.5, these losses do not promote the models to

effectively capture topological properties of the objects of interest.

1.2 Research Aims

After introducing the relevance of the segmentation of blood vessels in medical images and dis-

cussing some aspects that still require attention, the research aims of this thesis are the following:

• Designing segmentation algorithms that are capable of detecting very small vessels while

having a good compromise in terms of false positives;
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(a) (b) (c)

Figure 1.5: A U-Net [23] trained with BCE loss easily produces broken segments in challenging
conditions: (a) retinal fundus photo; (b) expert annotation; and (c) the obtained segmentation.

• Validating the methodology proposed for the extraction of the DIEPs, and improving the

framework in order to better fit the clinical needs;

• Developing deep learning approaches that generalise well to data distributions other than

those used during training, in order to better leverage the knowledge extracted from the

latter to different vascular networks;

• Exploring novel neural network architectures and/or losses to induce topological coherence

in the final segmentations.

1.3 Main contributions

The main contributions of this thesis are the following:

1. The improvement and clinical validation of our preliminary work targeting the DIEPs, where

a semi-automatic approach robust to the particular challenges of this use case extracts the

subcutaneous and intramuscular course of the DIEPs, and relevant descriptors, such as the

calibre and localisation where they perforate the anterior fascia of the abdominal muscle.

The outcome of this work shows promising results for achieving a faster and more objective

pre-operative planning of DIEP flaps. This research line has lead to several publications and

a patent:

• (Conference) R.J. Araújo, and H.P. Oliveira. Segmentation of the rectus abdominis

muscle anterior fascia for the analysis of deep inferior epigastric perforators. In Iberian

Conference on Pattern Recognition and Image Analysis, pp. 537–545, Springer, Cham,

2017.

• (Journal abstract) C. Mavioso, J.C. Anacleto, M.A. Vasconcelos, R.J. Araújo, H.P.

Oliveira, D. Pinto, P. Gouveia, C. Alves, F. Cardoso, J. Cardoso, and M.J. Cardoso.
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The development of an automatic tool to improve perforators detection in angio ct in

dieap flap breast reconstruction. European Journal of Cancer, 92, 2018.

• (Journal) R.J. Araújo, V. Garrido, C.A. Baraças, M.A. Vasconcelos, C. Mavioso, J.

Anacleto, M.J. Cardoso, and H.P. Oliveira. Computer aided detection of deep infe-

rior epigastric perforators in computed tomography angiography scans. Computerized

Medical Imaging and Graphics, 77, 2019.

• (Journal) C. Mavioso, R.J. Araújo, H.P. Oliveira, J.C. Anacleto, M.A. Vasconcelos, D.

Pinto, P. Gouveia, C. Alves, F. Cardoso, J. Cardoso, and M.J. Cardoso. Automatic

detetion of perforators for microsurgical reconstruction. The Breast, 50, pp. 19–24,

2020.

• (Journal abstract) D. Pinto, C. Mavioso, R.J. Araújo, H.P. Oliveira, J. Anacleto, M.A.

Vasconcelos, P. Gouveia, N. Abreu, C. Alves, J.S. Cardoso, M.J. Cardoso, and F.

Cardoso. Automatic detection of perforators for microsurgical reconstruction and cor-

relation with patient’s body mass index. European Journal of Cancer, 138, 2020.

• (Patent) R.J. Araújo, and H.P. Oliveira. Method and apparatus for segmentation of

blood vessels, granted in Europe (3352135), China (108324300) and Japan (6776283).

2. A fully convolutional neural network learning single resolution feature maps for the fast ex-

traction of retinal vessels in color fundus photos, enabling competitive performance regard-

ing the state-of-the-art approaches at a faster inference speed. This becomes very relevant

at population screening scenarios. This research was presented in a conference:

• (Conference) R.J. Araújo, J.S. Cardoso, and H.P. Oliveira. A single-resolution fully

convolutional network for retinal vessel segmentation in raw fundus images. In Inter-

national Conference on Image Processing and Analysis, pp. 59–69, Springer, Cham,

2019.

3. Learning a data-driven deep metric from the multi-scale Hessian analysis, instead of re-

lying in vesselness functions based on prior knowledge and which are likely sub-optimal.

This approach surpasses the enhancement of traditional vesselness filters, both in same and

different data distributions, and also generalises better than more complex deep learning

models. This work was published in:

• (Conference) R.J. Araújo, J.S. Cardoso, H.P. Oliveira. Deep vesselness measure from

scale-space analysis of hessian matrix eigenvalues. In Iberian Conference on Pattern

Recognition and Image Analysis, pp. 473–484, Springer, Cham, 2019.

4. Raising awareness and designing mechanisms to deal with the literature limitations regard-

ing the topological properties of blood vessel masks. A similarity index is proposed to

enable the objective and efficient benchmarking of these properties. Moreover, two ap-

proaches are designed to promote the learning of deep neural network models that produce
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better segmentations topological-wise. One of them tackles the issue from an architecture

design point of view, through a cascade of segmentation and probabilistic refinement mod-

els. The topological errors are interpreted as a noise process and the probabilistic refiner

operates as a denoising model. The second approach addresses the challenge via a more ad-

equate loss function. A framework based on the morphological closing operator is designed

to penalise centreline errors that induce broken trees or merge distinct ones. This research

line has originated the following publications:

• (Conference) R.J. Araújo, J.S. Cardoso, and H.P. Oliveira. A deep learning design for

improving topology coherence in blood vessel segmentation. In International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention, pp. 93–101,

Springer, Cham, 2019.

• (Pre-print) R.J. Araújo, J.S. Cardoso, and H.P. Oliveira. Topological blood vessel seg-

mentation, arXiv, 2021.

5. The design of a novel parametric active contour model which extends the state-of-the-art

capabilities, by allowing to have a set of regions with different bending properties, such

that some dynamics of an object may be fitted while others disregarded. This is a wanted

behavior when some of the dynamics are caused by noise or other processes. A real scenario

where this is relevant concerns the lung segmentation, where we wish to include as many

peripheral nodules as possible, and simultaneously, fit accurately the natural dynamics of

the lung boundary. This work was published in:

• (Journal) R.J. Araújo, K. Fernandes, J.S. Cardoso. Sparse multi-bending snakes. IEEE

Transactions on Image Processing, 28(8), pp. 3898–3909, 2019.

1.4 Document Structure

Chapter 1 introduced the problem of blood vessel segmentation, its relevance for the clinical prac-

titioners and how it captured the interest of the computer vision community. Our motivation,

research aims and main contributions were stated. The rest of this thesis is structured as follows:

• Chapter 2 presents a non-exhaustive description of the blood vessel trees that are related to

the experiments we discuss along the thesis. The used imaging techniques and the respective

databases are also described in this Chapter;

• Chapter 3 reviews the literature concerning the research that has been made in blood vessel

segmentation and analysis;

• Chapter 4 describes the methodologies we designed for two particular scenarios of blood

vessel segmentation, the DIEPs and the retinal vessels, with a focus on the narrower vessels;
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• Chapter 5 contains our experiments towards general blood vessel segmentation, by intro-

ducing regularisation based on strong prior knowledge coming from the eigenvalue analysis

of the Hessian matrix at different scales;

• Chapter 6 presents our two contributions promoting topological coherence of the segmented

blood vessels, one by means of architecture design, and the other by introducing a loss

function which helps achieving that goal; Moreover, it also describes the novel similarity

index for benchmarking the topological coherence of blood vessel masks;

• Chapter 7 discusses a novel extension of parametric active contour models, allowing them

to have a finite set of regions behaving differently in terms of bending resistance;

• Chapter 8 presents the main conclusions of the thesis and discusses future work that is

expected to bring important contributions to this field.



Chapter 2

Anatomy, Imaging, and Datasets of
Blood Vessels

Blood vessels share common properties independently of their location in the human body. They

are elongated piecewise linear structures whose diameter decreases as they evolve from their root.

Nonetheless, the complexity of vascular networks varies between distinct anatomical regions. The

structure of a given blood vessel tree directly impacts the type of methodologies that are suitable

for its segmentation. This Chapter briefly describes, according to [25; 26], the anatomy of the

vascular networks which are related with the experiments performed in this thesis: the retinal,

coronary, deep inferior epigastric, and pulmonary networks. The imaging techniques which are

commonly used for assessing each of these trees and the benchmarks for blood vessel segmentation

which we consider for the evaluation of the proposed algorithms will be presented.

2.1 Retinal blood vessels

The retina provides the opportunity of obtaining insight on many medical conditions in a non-

invasive manner. It is vascularised by two different arterial blood vessel trees, both having origin

in the ophthalmic artery, which in turn is a bifurcation of the internal carotid artery, as represented

in Figure 2.1a. The posterior ciliary arteries irrigate the outer and middle layers of the retina, while

the central retinal artery supplies the inner retina. The latter enters the optic nerve and divides into

four main branches spreading radially away from the optic disc and curving around the macula.

These branches may be assessed when obtaining images of the retinal fundus, which is represented

in Figure 2.2. Veins are usually darker and slightly wider than their arterial counterpart. The

central retinal vein drains blood from the capillaries of the retina into the superior ophthalmic vein

or into the cavernous sinus. Finally, the blood returns to the heart via the superior vena cava.

Direct ophthalmoscopy is the main technique for visualising the retinal fundus in primary and

emergency care, where the physician uses a hand-held device with lenses to inspect the back of

the eye and search for abnormalities, determining if the patient should be referred to an appoint-

ment with an ophthalmologist [28; 29]. Dilation of the pupil is generally required for a clear

11
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(a) (b)

Figure 2.1: Vascularisation of the retina: (a) arterial supply, and (b) venous drainage. Adapted
from [27].

Figure 2.2: Representation of the retinal fundus1.

assessment [30]. Furthermore, this examination requires extensive practice and confidence, and

the acquisition of such skill seems to be often overlooked [31; 32]. Fundus photography uses spe-

cialised cameras integrating a microscope to obtain pictures of the retinal fundus. This technique

is frequently used since it is very simple and allows to document the findings, which is crucial

to assess the progress of any abnormality or disease in future medical appointments. It is less

invasive, as no pupil dilation is required and it enables telemedicine, which is becoming essen-

tial nowadays due to the progression of diabetes, especially in low and middle-income countries,

where the number of experts may not be sufficient to analyse all the data [32; 33]. The COVID-19

pandemic has further shown the relevance of tele-ophthalmology [34]. In a face-to-face consulta-

tion, dyes such as fluorescein and indocyanine green may be injected in the blood flow to better

visualise, respectively, retinal and choroidal blood vessels [35; 36]. The main disadvantage of

fundus photography is the lack of depth information and portability. Optical Coherence Tomog-

1Adapted from https://simpleosce.com/img/mainpics/fundoscopy/fundus.jpg

https://simpleosce.com/img/mainpics/fundoscopy/fundus.jpg
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raphy Angiography (OCTA) has been recently proposed as an additional non-invasive technique

for assessing the fundus. It identifies blood vessels due to the varying laser light reflectance at

the surface of red blood cells, being capable of distinguishing vessels at different tissue layers

and providing more depth information. It is useful for diagnosing many retinal conditions, even

though it is extremely motion-sensitive, thus very dependent on patient collaboration, and has a

relatively small field of view [37]. Figure 2.3 shows images of the retinal fundus acquired with the

described techniques.

(a) (b) (c)

Figure 2.3: Images of the retinal fundus acquired with different imaging techniques: (a) Color
Fundus Photography from DRIVE [38], (b) Fluorescein Angiography2, and (c) OCTA adapted
from [37], where two different layers are shown, the superficial vessels (top) and deep vessels
(bottom).

Several color fundus photography benchmarks are publicly available, even though only some

of them have manual annotations of the blood vessels. The retinal vascular network is the most

targeted one by the computer vision community, possibly due to the wide availability of public

data. In this thesis, we resort to the three mostly used benchmarks in the literature: DRIVE [38],

STARE [39], and CHASEDB1 [40]. DRIVE is a result of a diabetic retinopathy screening program

conducted in The Netherlands comprising 40 images, 7 of which showing pathology, divided into

training and test sets, each with 20 images. There is available one manual annotation for each of

the training images, while there exist two for the test ones, such that it is possible to compare the

performance of an algorithm with that of a human. STARE is a dataset containing 400 images with

expert annotations of 39 different pathologies. From all the images, 80 have available the ground

truth of optic nerve detection, 10 artery/veins labeling and 20 of them the manual annotation of

blood vessels. Two experts have provided their annotations of the images, and a large variability

exists regarding the segmentation of the narrow vessels. Half of these images have pathology.

CHASEDB1 was compiled after the Child Heart and Health Study in England, containing images

of the left and right retinas of 14 different individuals. Central reflex is particularly abundant in

this dataset. The images are centred on the optic disc with full field illumination. Figure 2.4 shows

2Adapted from https://www.laretinacenter.com/services/fluorescein-angiography

https://www.laretinacenter.com/services/fluorescein-angiography
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(a) (b) (c)

Figure 2.4: Example images contained in the benchmarks of retinal vessel segmentation: (a)
DRIVE [38]; (b) STARE [39]; and (c) CHASEDB1 [40]. Healthy (top) and pathological cases
(bottom) are shown.

healthy and pathological images from each of these benchmarks. Table 2.1 contains a summary of

the main characteristics of each dataset.

Table 2.1: Summary of the characteristics of the databases used in this thesis for retinal blood
vessel segmentation.

Dataset Camera No. images Resolution FOV (◦)
DRIVE Canon Cr5 non-mydriatic 3CCD 40 584×565 45
STARE TopCon TRV-50 20 605×700 35

CHASEDB1 Nidek non-mydriatic handheld camera 28 960×999 30

2.2 Coronary vessel tree

The heart tissue, as any other tissue in the human body, requires oxygen to keep its activities. The

coronary vessel network is responsible for the vascularisation of the heart muscle (see Figure 2.5).

The coronary arterial tree (Figure 2.5a) takes oxygenated blood to the heart muscle. The two

main coronary arteries have origin in the aorta. One of them, the left main coronary artery, splits

into the circumflex artery and the left anterior descending artery. The first vascularises the left

atrium and the lateral and posterior regions of the left ventricle. The latter supplies the anterior

and bottom regions of the left ventricle and the anterior portion of the septum. The other main

coronary artery, the right coronary artery, takes blood to the right atrium, right ventricle, bottom

portion of both ventricles, and to the posterior region of the septum. The coronary venous tree

(Figure 2.5b) takes deoxygenated blood back to the right atrium of the heart, along with some
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(a) (b)

Figure 2.5: Coronary (a) arterial and (b) venous trees3.

metabolic waste compounds. From the numerous capillaries lying in the heart tissue, the blood

flows to venules which join into veins. Most of them return the blood to the right atrium through

the coronary sinus.

Practitioners request imaging of coronaries when there are symptoms of coronary artery dis-

ease (such as chest pain), when they suspect there are restrictions of blood flow to the heart, or

when abnormal findings were obtained in a non-invasive test, for instance an electrocardiogram,

an ecocardiogram, or a stress test [41; 42]. Coronary angiogram is the state-of-the-art approach

for obtaining images of the coronaries [42]. It comprises catheterisation to inject a radio-opaque

contrast agent that allows to obtain clear images of the vessels using X-ray beams. The most

commonly used technique is the Digital Subtraction Angiography, where an image is obtained

before injecting the contrast and allows to remove the background signal from the frames acquired

during the study, enhancing the visualisation of blood vessels. This procedure, besides diagnosis,

can be combined with other catheterisations for repairing some conditions, such as removing clots

and placing stents in narrowed arteries [43]. Due to the invasive behaviour, it is a relatively long

and expensive procedure, and comprises some risks, even though they are rare (infection, vessel

rupture, allergy, among others). Due to the advances of the Computed Tomography (CT) scanning

technology (where a computer combines several X-ray images taken at different angles to produce

cross-sectional images of the tissues - volumetric data), the CT Angiography (CTA) is nowadays

being suggested as the first imaging protocol to consider in low to intermediate risk scenarios [44].

It requires the use of a iodine-based dye but no catheterisation is needed. Additionally, it allows

3Adapted from http://what-when-how.com/nursing/the-cardiovascular-system-structure-and-function-nursing-part-2/

http://what-when-how.com/nursing/the-cardiovascular-system-structure-and-function-nursing-part-2/
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to analyse other tissues which may be the real sources of discomfort, such as those belonging to

the lungs or nearby bones. Figure 2.6 provides examples of coronary images acquired with each

of these techniques.

(a) (b)

Figure 2.6: Coronary images obtained with different techniques: (a) a slice of a coronary CTA,
and (b) a coronary angiogram. White arrows highlight a stenosis. Adapted from [45].

Recently, a benchmark for the segmentation of coronary blood vessels in coronary angiograms

has become publicly available [46]. The dataset contains 134 angiograms and the respective an-

notations of the blood vessels outlined by a cardiologist. It was provided by the Cardiology De-

partment of the Mexican Social Security Institute. The images have a size of 300×300 pixels and

are grey-scale. Figure 2.7 shows some examples of the data contained in this dataset.

(a)

(b)

Figure 2.7: Example data from a publicly available coronary dataset [46]: (a) coronary an-
giograms, and (b) respective manual annotations of the blood vessels.
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2.3 Inferior epigastric vasculature

The Deep Inferior Epigastric Artery (DIEA) provides blood to the anterior region of the abdominal

wall, more precisely the inferior portion. It has origin in the external iliac artery above the inguinal

ligament and ascends along the medial margin of the abdominal inguinal ring. Afterwards, it

pierces the posterior lamella of the rectus abdominis muscle sheath, and ascends between the

lamella and the muscle, until it divides in branches that anastomose with the superior epigastric

artery (see Figure 2.8).

Figure 2.8: The abdominal wall vasculature4. The left side shows the superficial blood vessels,
while the deep vascular tree (including the DIEA) is present on the right.

After the DIEA pierces the muscle sheath, it occasionally gives origin to small vessels, the

DIEPs (or just epigastric perforators), as represented in Figure 2.9. Their designation comes from

the fact that they perforate the abdominal muscle to vascularise the subcutaneous region. The

number of perforators is variable, but usually there are between 6 and 8 of these blood vessels.

Their intramuscular course is highly variable both in terms of length and tortuosity. After leaving

the muscle, the perforators may also present several courses and branching configurations, and

usually there are anastomoses with the superficial inferior epigastric system. In the subcutaneous

region, deoxygenated blood moves to venules that drain into the inferior epigastric vein, which is

the venous counterpart of the DIEA. The blood then flows to the external iliac vein, in direction to

the inferior vena cava.

As described before, clinicians study these blood vessels during the preoperative planning of

DIEP flap based breast reconstruction. A precise description of each perforator is required to

design a flap that is properly vascularised and not excessively difficult to extract. The calibre of

4Adapted from https://www.earthslab.com/anatomy/abdominal-wall/

https://www.earthslab.com/anatomy/abdominal-wall/
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Figure 2.9: 3D representation of the course of a DIEP vessel. Adapted from [26].

perforators is usually taken into account to assess how adequate a perforator is for vascularising

the tissue and linear and short intramuscular courses are preferred for easier extraction [22]. The

standard technique to visualise the epigastric perforators is CTA [47; 48; 22], even though Mag-

netic Resonance Angiography (MRA) is also a viable option [49; 50]. It uses gadolinium-based

contrast agents instead of iodine-based ones, and avoids radiation by relying on the dynamics

shown by protons in the presence of a strong magnetic field and after a radio-frequency current

traverses the patient. Images acquired with both techniques are presented in Figure 2.10. CTA has

(a) (b)

Figure 2.10: Maximum intensity projection reconstruction of axial subvolume in (a) CTA and (b)
MRA scans, for the visualisation of inferior epigastric perforators (highlighted by white arrows).
Adapted from [49].

a lower cost but involves radiation, which may become problematic in patients that have already

been subjected to radiation a significant number of times in the past. The contrast agent used in

CTA is also more prone for inducing allergic reaction. Nonetheless, MRA has a larger acquisi-

tion time, is prone to include noise related with respiratory movement, and the overall acquisition

process is more arduous to the patient [50].



2.4 Pulmonary tree 19

To the best of our knowledge, no public databases exist for assessing the segmentation or

analysis of the epigastric perforators. During this thesis, in a collaboration with the Breast Unit

of the Champalimaud Foundation, a proprietary database containing CTAs from 40 patients was

assembled. After obtaining the consensus of the patients to participate in the study, the images

were acquired with a CT Spectral Scanner with a 64-detector row (Philips Igon), a 140 kV tube

voltage and a 120-160 mA fixed tube current. Further settings are 0.75 rotation time, collimation of

128, pitch of 0.609 and a 512 matrix. 80-100 ml of contrast were injected and images acquired in

Bolus Tracking. Images were collected starting from 5 cm above the umbilicus and until the lesser

trochanter (range of 32 cm) with a thickness of 0.8 mm and an increment of 0.4 mm. Figure 2.11

shows examples of how DIEAs and DIEPs appear in the collected volumes of data. It is possible

to see that the vessels are very small when comparing with the neighbouring structures.

(a) (b)

Figure 2.11: Example data comprised in the proprietary database concerning the DIEPs: (a) axial
slices of a CTA scan, and (b) the respective region of interest for the analysis of DIEPs. Some
relevant structures are labelled: 1) DIEAs, 2) rectus abdominis muscle, 3) subcutaneous region,
4) skin, 5) subcutaneous course of a DIEP, 6) intramuscular course of a DIEP.

2.4 Pulmonary tree

The lungs are the organs responsible for the respiration process. Millions of alveoli are involved

in this task, each of them surrounded by blood capillaries, such that the pulmonary vessel network

is very complex. A representation of the lung vasculature is depicted in Figure 2.12.

Deoxygenated blood leaves the heart from the right ventricle to the pulmonary trunk, which

gives origin to the right and left pulmonary arteries ahead. Each of them conducts the blood
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Figure 2.12: Representation of the pulmonary vessel tree5.

into the respective lung, where the oxygenation process occurs. The arborisation pattern of each

pulmonary artery is different, but it closely follows the branching pattern of the bronchial three. It

leads to the truncal, lobar, segmental, and subsegmental arterial segments, which take blood into

the different lobes of the lung. In the alveolar capillaries, the oxygenation of the blood occurs and

it is then returned via pulmonary veins to the left atrial chamber of the heart.

Chest X-rays will be the first request of most practitioners who suspect the patient has a lung

disease. This technique is capable of detecting some lung nodules and conditions such as pneu-

monia, infection, and lung emphysema [51]. When the findings are not conclusive or a condition

has to be better characterised, a CT scan is usually conducted [52]. The 3D view of the data al-

lows to have more detail when assessing the structures of the lung, especially blood vessels and

nodules. The use of contrast (CTA) may be requested by the clinician, in order to further enhance

the signal of blood vessels. A good visualisation of the vascular tree is essential to characterise the

surroundings of a nodule, which is relevant for its characterisation, and also to detect pulmonary

embolism [53]. Pulmonary angiogram is uncommon and is usually only performed when there is a

suspicion of a pulmonary embolism requiring treatment, which can be conducted during catheter-

isation [54; 55]. Figure 2.13 shows example images acquired with the described techniques.

Regarding datasets dedicated to the segmentation of lung blood vessels, a competition named

VESSEL12 was held in the past and the data is still available6. It comprises 20 different CT

scans, 9 of them with contrast, 5 of them low-dose in radiation, and 1 is a high-resolution CT

scan. CTAs were acquired with a Siemens SOMATOM Sensation 64 or a Toshiba Acquilion

5Adapted from https://www.britannica.com/science/pulmonary-circulation
6https://vessel12.grand-challenge.org

https://www.britannica.com/science/pulmonary-circulation
https://vessel12.grand-challenge.org
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(a) (b) (c)

Figure 2.13: Images of the lung acquired with a (a) chest X-ray7, (b) chest CT scan8, and (c)
pulmonary digital subtraction angiography9.

ONE. The latter was used to obtain all of the low-dose CT scans and also the high-resolution one.

The regular CT scans were produced with either a Phillips Mx8000 IDT 16 or a Philips Brilliance

16P. Different reconstruction kernels, and axial and inter-slice resolutions have been considered.

Further details are present in the overview article related to the competition [56]. Most of the

scans contain relevant findings, such as interstitial lung disease, pulmonary thromboembolism,

and lung nodules. A complete annotation of the blood vessels does not exist, as the effort required

in delineating them in the 3D data would be extremely large. Nevertheless, labels for a set of

voxels are provided, where classes such as blood vessel, nodule, lung parenchyma, airway wall,

and lesion are considered. Figure 2.14 shows some images contained in the database.

(a) (b)

Figure 2.14: Example axial slices from volumes included in the VESSEL12 dataset: (a) a slice
from a regular chest CT scan, and (b) one from a CTA scan, where the signal of blood vessels is
further enhanced.

7Adapted from https://radiologykey.com/the-normal-chest-x-ray-reading-like-the-pros/
8Adapted from https://radiopaedia.org/cases/normal-chest-ct-lung-window-1
9Adapted from https://thoracickey.com/pulmonary-angiography/

https://radiologykey.com/the-normal-chest-x-ray-reading-like-the-pros/
https://radiopaedia.org/cases/normal-chest-ct-lung-window-1
https://thoracickey.com/pulmonary-angiography/
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Chapter 3

Literature Review

This Chapter provides a description of how the literature related to blood vessel segmentation has

been evolving through the years. The algorithms are divided in two main categories: unsupervised

and label-driven approaches. Unsupervised methods encode known properties of vascular trees

into different enhancement or extraction frameworks, whereas label-driven methodologies rely

on annotated data and machine learning (ML) techniques to produce segmentations, either from

a set of hand-crafted features (traditional ML) or from images themselves (deep learning (DL)).

Traditional ML also heavily relies on prior knowledge since the features used in the learning

process have to embed useful properties of vascular trees. DL may also imbue prior knowledge

in the form of regularisation of feature representations, nonetheless this is usually not required for

obtaining well-performing models when an adequate architecture is used.

There are relevant surveys in the literature concerning the topic of vessel segmentation: Kir-

bas and Quek [57] reviewed in 2003 the main approaches at that time targeting the extraction of

tubular-shaped structures, with a heavy focus on blood vessels; Lesage et al. [58] described algo-

rithms for the extraction of blood vessels in 3D data in 2009; Fraz et al. [59] surveyed in 2012 the

main approaches for retinal blood vessel segmentation, a largely focused vascular network due to

the large number of available datasets; recently, in 2018, Moccia et al. [60] discussed the latest

trends in the field, focusing ML, deformable models and tracking methods.

3.1 Unsupervised approaches

This Section covers algorithms making several assumptions on the structure of blood vessels (such

as being piecewise linear structures and having smooth calibre variation) in order to design unsu-

pervised enhancement functions or extraction frameworks. Even though these methodologies are

unsupervised, they may be data-driven in the sense that clustering approaches and the statistics

of particular datasets can be explored. Moreover, computer vision practitioners often analyse the

data to understand the challenges involved in a given visual task. Regarding the particular scenario

of blood vessel segmentation, prior knowledge about vessel structure often does not suffice. For

instance, there may exist neighbouring structures displaying similar properties or even pathologies

23
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distorting the expected patterns. Even then, unsupervised methods do not rely on annotations of

the data.

Regarding the enhancement of blood vessels, matched filtering, Hessian analysis, and mathe-

matical morphology are reviewed. Even though these methodologies do not provide a segmenta-

tion, a simple threshold can be used to obtain it. Concerning frameworks for blood vessel extrac-

tion, centreline tracking, region growing, active contour models, and graph-cuts approaches are

considered.

3.1.1 Matched Filtering

Matched filtering for vessel enhancement was introduced by Chaudhuri et al. [61] and became a

popular technique since then. It consists in the design of kernels that account for the grey-level

profile of vessels, such that their convolution with the data produces high responses at vessel

locations. Chaudhuri et al. [61] regarded vessels as piecewise linear structures with a different

intensity than the background (lower in their use case) and whose diameter decreases very gradu-

ally. The authors analysed the profiles of the cross sections of different vessels and concluded that

they resembled a Gaussian shape, albeit not ideal and showing variation among vessels. Based

on this intuition, the authors designed a 2D kernel that is decomposable in two One-Dimensional

(1D) linear filters: a zero-mean Gaussian (which produces higher responses when aligned with

the cross section of the vessel) and a constant filter (to account for a smoothing effect along the

vessel). Note that to deal with vessel orientation, the kernel must be convolved with the image

at different orientations. The final response at a given pixel is given by the maximum response

across the different orientations.

A supervised variant was introduced by Al-Rawi et al. [62], where labelled data was used to

infer the best filter parameters for a specific dataset, namely the length of the kernel, the side trail

truncation level, and the standard deviation of the Gaussian. However, the best approach to deal

with vessels of varying widths in medical images is to use a bank of filters. Such is accomplished

by varying the standard deviation and truncation of the zero-mean Gaussian. Figure 3.1 shows a

bank of three different kernels.

Figure 3.1: 2D kernels for enhancing vessels of increasing diameter, from left to right. Notice the
increasing scale of the axis related to the zero-mean Gaussian.
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Imagining a scenario where 4 kernels are used at 12 different rotations, a total of 48 convo-

lutions are required. This has a relevant computational cost and explains why this methodology

has been essentially applied to 2D images, as the 3D case has even more degrees of freedom.

Poli and Valli [63] targeted this efficiency aspect and proposed a methodology for the decomposi-

tion of large kernels into small atomic masks, establishing a framework for real-time detection of

vessels. The following research has mainly focused two aspects: the proper way of representing

the cross section profiles of vessels, which is strongly dependent of the image acquisition step

and the used protocol; and the design of filters for better enhancement of vessels, while decreas-

ing the response to other structures showing step-like edges, such as the optic disk and bright

lesions in retinal images. The cross section of vessels has been commonly modelled as a Gaus-

sian [61; 63; 39; 64; 65; 66]. Even then, it has also been regarded as bar-like [67; 68] and more

complex functions [69]. Regarding kernel design, besides the zero-mean Gaussian [61; 39; 66],

the second-order derivative of the Gaussian [64; 65; 67] and multi-wavelet kernels [70] have been

used for obtaining high responses at the cross section of vessels. Zhang et al. [66] addressed the

high responses at non-vessel locations provided by Gaussian based kernels. The authors explored

the fact that a vessel cross section is ideally symmetric, while a step-edge has a strong asymmet-

ric behaviour. Thus, besides the typical second-order derivative of Gaussian kernel, a first-order

derivative of the Gaussian was also considered. The analysis of the local average response to

the latter filter allows to distinguish these two types of profiles, as shown in Figure 3.2. Wang

et al. [70] used the multi-wavelet system of [71] and deviated an approach to distinguish step

edges from vessel edges. Odstrcilik et al. [72] learned from a database five different cross section

profiles, each for a specific vessel width.

Azzopardi et al. [68] enhanced piecewise linear structures by locally analysing the response

to a set of shifted Difference of Gaussian filters. The authors designed two different filters from

those responses, one which is symmetric for the enhancement of vessel segments, and another

which is asymmetrical, in order to adequately enhance vessel endings. They designated these

filters as, respectively, symmetric and asymmetric Bar-Combination Of Shifted FIlter REsponses

(B-COSFIRE).

3.1.2 Hessian based filters

The second-order local intensity variations have been widely used in the past to enhance vascular

structures in medical data [73; 74; 75; 76; 77; 78; 79]. As vessels are piecewise linear struc-

tures, they are expected to produce large responses when a second derivative of a 1D Gaussian is

convolved along their cross section profile. In addition, such filter should not lead to significant

responses when applied along their length. This intuition favoured the use of the Hessian matrix,

H, which encodes the second order partial derivatives of the image. The Hessian of a scalar-valued

function f (x), where x = [x1, ...,xD]
T is a D-dimensional vector, is a D×D matrix with elements

Hi j(x) =
δ 2 f (x)
δxiδx j

for i, j = 1, . . . ,D (3.1)
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Figure 3.2: Responses of zero-mean Gaussian and first-order derivative of the Gaussian (top left
and bottom left, respectively) to a Gaussian cross-section and an ideal step-edge: (a) a Gaussian
cross-section and an ideal step-edge; (b) the response to the zero-mean Gaussian; (c) the response
to the first-order derivative of the Gaussian; (d) the local mean of the response to the latter. Adapted
from [66].

In the particular case where the goal is to enhance vascular structures of varying width, it

is important to evaluate H at different scales. Let I be a D-dimensional image, such that I(x)
denotes the intensity at position x. If f (x) is simply given by I(x), only a single scale is ad-

dressed. Thus, previous works have evaluated H at a scale-space by blurring the original data with
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Gaussian kernels of varying σ . This has the additional advantage of reducing noise. Note that

δ 2(I(x)∗G(x,σ))/(δxiδx j) and I(x)∗δ 2G(x,σ)/(δxiδx j) are equivalent. Hence, the Hessian of

I at position x and scale σ is a D×D matrix with elements

Hi j(x,σ) = σ
2I(x)∗ δ 2G(x,σ)

δxiδx j
for i, j = 1, . . . ,D (3.2)

where G(x,σ) is a D-variate Gaussian and ∗ denotes the convolution operation. The factor σ2

compensates the increasing blurring effect [80]. Let λ1, . . . ,λD denote the eigenvalues of H, such

that |λi| ≤ |λi+1|, and e1, . . . ,eD be their associated eigenvectors. The eigenvector eD points to-

wards the direction in which the second derivative is maximum, and λD gives the value of the

second derivative. The sign of λD is related to the contrast between the data element and the local

neighbourhood, i.e. if it is brighter or darker than the neighbour regions. The eigen-analysis of

H is capable of differentiating between tubular, rounded and plate-like shapes. Tables 3.1 and 3.2

show how local geometrical interpretations can be made according to the eigenvalues of H, for 2D

and 3D data, respectively.

Table 3.1: 2D local shape inference based on the eigenvalue analysis of the Hessian matrix.

Shape Eigenvalues

no shape |λ1,λ2| small

rounded
brighter |λ1,λ2| large; λ1,λ2 < 0
darker |λ1,λ2| large; λ1,λ2 > 0

tubular
brighter |λ1| small, |λ2| large; λ2 < 0
darker |λ1| small, |λ2| large; λ2 > 0

Table 3.2: 3D local shape inference based on the eigenvalue analysis of the Hessian matrix.

Shape Eigenvalues

no shape |λ1,λ2,λ3| small

rounded
brighter |λ1,λ2,λ3| large; λ1,λ2,λ3 < 0
darker |λ1,λ2,λ3| large; λ1,λ2,λ3 > 0

tubular
brighter |λ1| small, |λ2,λ3| large; λ2,λ3 < 0
darker |λ1| small, |λ2,λ3| large; λ2,λ3 > 0

planar
brighter |λ1,λ2| small, |λ3| large; λ3 < 0
darker |λ1,λ2| small, |λ3| large; λ3 > 0

Given the possibility of inferring local shape through the analysis of the eigenvalues of H, it is

possible to define metrics involving their values which aim at enhancing target structures, such as

vessels. Lorenz et al. [73] and Sato et al. [74] were among the first to design vesselness filters using

this approach. Nonetheless, only some of the eigenvalues were used in their metrics. Frangi et

al. [75] proposed a vesselness measure comprising all the eigenvalues, such that terms responsible
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for blob and plate-like structures suppression were included. The noise robustness of this metric

made it very popular and it is still one of the most used techniques among Hessian-based filters.

Figure 3.3 shows the enhancement of vessels at multiple scales achieved by this method.

(a) (b) (c) (d) (e) (f)

Figure 3.3: Vessel enhancement using Frangi’s vesselness filter [75]: (a) maximum intensity pro-
jection of an MRA image; (b-e) vessel enhanced images at four increasing scales; and (f) the
combined response.

Li et al. [77] developed a more user friendly filter, as it does not involve parameter tuning, as

required in the approach of Frangi. Nonetheless, the lack of a structureness term does not give

a strong noise robustness to this method. Zhou et al. [81] followed a different direction in terms

of target structures to enhance. As bifurcations tend to locally resemble blob-like structures, the

authors decided to also enhance this kind of shapes. This consequently enhances structures such

as aneurysms and nodules. The applicability of such filter is very dependent on the application

at hand, since enhancing blob-like structures may be strongly undesirable in scenarios where we

do not want to include nodules and noisy regions which tend to look like small blobs. Recently,

Jerman et al. [79] also shared this perspective, as the enhancement of aneurysms was intended.

Manniesing et al. [82] used a smoothed version of Frangi’s vesselness to design a vesselness

diffusion equation. The interesting property of such process lies in its anisotropy, such that dif-

fusion is strong along vessels and strongly inhibited perpendicularly. This selective smoothing is

able to strengthen the signal of vessels without significant distortion of edges, as can be seen in

Figure 3.4.

3.1.3 Mathematical Morphology

Mathematical morphology theory analyses an image by means of non-linear order based opera-

tions. It relies on two basic building blocks, the dilation and erosion operators. They can be used to

formulate more complex and interesting operators, such as closing, opening, top-hat and bottom-

hat transforms. The geometrical properties embedded in mathematical morphology arise from the

definition of a Structuring Element (SE) that dictates the influence range of the non-linearities.

Thus, this theory is easily adapted to the assumptions about vessel structure. Even though initially

mathematical morphology only addressed binary images, extension to grey-scale has been made.
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(a) (b) (c) (d)

Figure 3.4: Vessel diffusion in low dose CT scans of the cerebral vasculature: (a,c) regions of in-
terest in the scans; and (b,d) the respective diffusion results after 40 iterations. Adapted from [82].

Low-level morphological operations were used by Thackray and Nelson [83] for the enhance-

ment of vessel networks. The authors considered a morphological opening using an elongated SE.

Varying vessel orientation was addressed by rotating the SE into eight different orientations, thus

obtaining eight opened images. The enhanced result was obtained by the pixel-wise maximum

response across the images. Zana and Klein [84] also considered morphological openings with an

elongated SE, in order to obtain a sum of top-hat transforms along each direction for oriented ves-

sel enhancement. However, such approach requires long SE in order to remove the wider vessels,

leading to significant noise retrieval during the sum of top-hat transforms. The authors considered

instead a geodesic reconstruction of the opened images into the original one. Likewise, Walter and

Klein [85] calculated the top-hat transform from the supremum of openings using a large elongated

SE in different directions. Mendonça and Campilho [86] also relied on mathematical morphology

for vessel enhancement, however, a modified top-hat transformation was adopted to avoid the sen-

sitivity to noise (see Figure 3.5). The authors further used mathematical morphology theory, given

that binary morphological reconstruction was performed on images containing vessels enhanced

at multiple scales, for application in a vessel filling method. Figueiredo and Leitão [87] estimated

the boundaries of coronary vessel segments through a morphological edge operator. Smoothness

constraints were considered for electing the most likely candidate estimates rather than directly

smoothing them, in order to avoid an unwanted impact on the quantitative analysis of blood vessel

stenosis.

Other complex operations were considered for vessel enhancement in the 3D setting, such

as connected set filters [88; 89] and grey-level hit-or-miss transform [90; 91]. Dufour et al. [92]

combined Hessian-based local shape description and spatially variant morphological closing to

reduce noise and merge vessel segments affected by signal loss. The Hessian analysis provides

a fast mechanism to evaluate local shape and obtain principal curvature direction, while the mor-
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Figure 3.5: Mathematical morphology based enhancement of vessels applied by Mendonça and
Campilho [86].

phological reconnection allows a fast local vessel signal recovery, as opposed to the approach of

Manniesing et al. [82].

3.1.4 Centreline Tracking

Centreline tracking methodologies iteratively find new points along a vessel according to some

local feature. Even though such approach only extracts the centrelines of vessels, this type of al-

gorithm commonly incorporates a mechanism to estimate their local diameter, allowing to produce

a complete segmentation of the lumen. The detection of bifurcations is a special case that has to

be addressed in order to automatically track vessel trees.

In one of the pioneer works, Sun [93] developed a tracking method for finding the vessel

contours in digital coronary arteriograms (see Figure 3.6). Each centreline point is represented

by its position, pk, local vessel direction, ûk, and local width, wk. Given such a centreline point,

the next one is first estimated by p̃k+d = pk + d · ûk, where d is proportional to wk. A profile of

length 2wk+1 perpendicular to ûk and centred at p̃k+d is then taken. A matched filtering process is

performed with a rectangular kernel, and the maximum response is regarded as a new estimate of

the centreline point, p′k+d . A new profile centred at p′k+d and perpendicular to the vector defined by

locations pk and p′k+d is used to detect vessel edges through the analysis of roll off points. Finally,

pk+d is set to the midpoint between the edges and wk+d is updated accordingly. This process is

iteratively conducted until a stopping criterion involving the lack of local contrast is met.

Zhou et al. [94] modelled the vessel cross section profile as a Gaussian instead. Additionally,

the authors measured local vessel diameter by taking the 95% confidence interval of the matched

filter response. Chutatape et al. [67] dedicated their work to the detection of vessels in ocular

fundus images. As the optic disk in these images is the source of vessels, an automated initial-

isation step was proposed. The second-order derivative of the Gaussian is convolved with the

intensity profile of a circumference around that structure, such that local maxima of the response
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Figure 3.6: Representation of the tracking approach of Sun [93].

are potential sites for starting the vessel tracking procedure. For each tracked vessel, a Kalman

filter [95] is responsible for estimating new centrelines, which are corrected by analysing the cross

sectional profiles. While the previous described works were not able to detect bifurcations, here,

at each centreline point, a scheme based on the convolution of a Gaussian filter to the locations

lying in a front half of such point is proposed. Tolias and Panas [96] also addressed the automatic

retrieval of locations to initialise the tracking procedure in ocular fundus images. The authors used

a Fuzzy C-Means (FCM) clustering method on the intensity profile of the circumference around

the optic disk. At the iterative tracking step, a vessel membership function is evaluated through

the FCM algorithm applied to the cross section profile, and the edge points are set as the locations

where such membership is 0.5. Bifurcation detection and tracking termination are accomplished

by heuristic-based decisions. Wörz and Rohr [97] designed a tracking model for 3D data, where

new centreline points were estimated through fitting a cylindrical model to the data.

Friman et al. [69] target the tracking of small vessels, where frequently the signal is disguised

in the background noise. The authors state that modelling the profile of the cross section of such

vessels as a Gaussian is not proper, designing a steeper profile instead. Tracking vessels in low

contrast regions becomes possible with the introduction of a multiple hypothetical vessel path

approach. Given a centreline point, a set of pre-defined locations for the next one is considered

and the vessel template is used to assess each solution. Based on the pattern of the scores, a new

estimate is made.

Yin et al. [98] proposed a probabilistic framework for iteratively detecting edge points along

vessel structures. At each iteration, a semi-ellipse is centred at the current centreline point accord-

ing to the local vessel direction estimate, as represented in Figure 3.7. A set of points is drawn
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(a) (b) (c)

Figure 3.7: The three different types of configurations considered in the tracking approach of Yin:
(a) normal; (b) bifurcation; and (c) crossing. The points marked with circles are used to define
a possible configuration. At each step, all 2, 4, and 6-combination of points are used. Adapted
from [98].

(a)

(b) (c)

Figure 3.8: Edge points tracked by the algorithm of Yin [98] at different vessel patterns: (a) single
vessel, (b) bifurcation, and (c) crossover.

from the semi-ellipse to obtain a vector of intensities which is used to infer about local structure,

i.e. if a single segment, a bifurcation or a crossover lies ahead. The estimated edge points are

the ones maximising the posterior probability of a configuration given the intensity vector. The

likelihood models assume that the background has constant intensity and the cross section of ves-

sels is Gaussian-like. The prior probability promotes edge continuity. Figure 3.8 presents results

obtained at single vessel, bifurcation and crossover regions.
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Bekkers et al. [99], inspired by the mechanisms of human visual cortex, developed a tracking

algorithm based on orientation scores. One of the experiments considered the use of cake wavelets

to obtain an invertible orientation score. This property allows to disentangle crossing structures,

such that accurate tracking of blood vessels is possible in these locations, which are commonly

problematic.

3.1.5 Region Growing

Region growing is an iterative scheme for image segmentation, requiring an initial set of mask

pixels, known as seed regions. These regions may be provided by an user or automatically induced

from image information. If automatic initialisation is considered, the algorithm must be robust

and return adequate locations, or else region growing will fail. At each iteration of the procedure,

seed-region neighbouring pixels are candidates to join that region. They are merged if they meet

all the specified criteria, which are generally based on intensity information (see Figure 3.9). The

simplicity of these methods makes them computationally efficient, although the obtained result

depends on the initial seed point(s) location. To overcome this initialisation problem, Wan and

Higgins [100] proposed a symmetric region growing algorithm capable of extracting the same

vessel tree for different starting seed points.

(a) (b) (c) (d)

Figure 3.9: Region growing algorithm using intensity related growth criterion: (a) the initial seed
(dark cross); (b-d) candidate pixels (dark crosses) and expanded seed region (light crosses) as the
algorithm progresses. Adapted from [101].

Martínez-Pérez et al. [102] employed a two-stage region growing algorithm based on features

related to the scale-space analysis of the first and second order derivatives of the intensities. A

set of seed regions was obtained by analysing the histograms of the extracted features. In the first

stage, growing occurs in regions of low gradient magnitude, while the second stage relaxes such

constraint in order to obtain more accurate vessel edges. The authors extended their work in [103]

and a parallel implementation was later made [104].

Boskamp et al. [101] combined three intensity-based criteria for growing the seeds: a low

threshold, such that no candidate with a lower intensity is included in the segmented region; an

adaptive high threshold, combined with size limit, such that calcifications may be included; and a

gradient-based threshold, enforcing that only neighbours with similar intensity are accepted. The

authors state that setting the low threshold is not a trivial task. Hence, an iterative framework is



34 Literature Review

used, where the low threshold is decreased at each iteration, and the initial seed regions are the

locations comprising the segmentation obtained at the previous iteration.

Metz et al. [105] developed a region growing methodology accounting for bifurcation and

leakage detection, two essential steps for the extraction of vessel networks. The growing criterion

is very simple, as it only regards if the intensity of a candidate pixel lies within a certain range.

Bifurcation and leakage detection are achieved by analysing the behaviour of the grown regions

in recent iterations. Concerning bifurcation detection, if the recently grown regions are not con-

nected, then a bifurcation exists. Regarding leakage, if the number of voxels that were recently

appended to the segmented region surpasses a specified threshold, then leakage is assumed to have

occurred.

Li et al. [106] obtained two feature maps from the images, one of them used for extraction of

wider vessels, while the other is tailored for addressing narrower ones. A novel vesselness measure

is used by the authors to obtain a multi-scale vessel enhanced image. The seed is initialised at the

location where the response to the enhancement is higher. A threshold is obtained using the Otsu’s

method [107] over the histogram of the enhanced image. A region growing approach follows

where pixels are appended to the seed region if their response in the enhanced image is higher

than the threshold. As this does not include narrower vessels in the segmentation, the multi-scale

first-order derivative of the intensities is considered as a second feature map. Region growing

using the previous segmentation as seed region and the new feature map response allows to obtain

a more accurate result (see Figure 3.10).

(a) (b) (c)

Figure 3.10: Outputs of the region growing approach of Li et al. [106]: (a) original angiograms;
(b) wide vessel extraction; and (c) refined segmentations.

Zhao et al. [108] combined two segmentation procedures into a final output. One of them

was obtained by applying region growing to an image enhanced by the 2D Gabor wavelet. Seed
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initialisation is automated via analysis of the histogram of the enhanced image. A simple intensity

similarity criterion is used in the growing scheme, however it is parametrised by a value induced

from each specific image.

3.1.6 Active Contour Models

Active Contour Models (ACMs) were introduced by Kass et al. [109], and quickly became one of

the most used methodologies for image segmentation. An ACM is a curve moving in an image

(or a surface in a volume), in order to minimise an energy function that accounts for its topology,

forces derived from the image, and possibly, user defined attractive and/or repulsive forces. The

first accounts for forces that are inherent to the shape of the ACM, in order to resist stretching and

bending efforts. The second is responsible for driving the contour into the features of interest, such

as the edges of an object. The last is an user dependent mechanism that allows to induce attracting

and/or repelling forces, guiding the contour to the desired configuration.

The curve may be represented explicitly [109] or implicitly [110; 111] (see Figure 3.11). An

(a) (b)

Figure 3.11: Possible representations of a curve: (a) explicit; and (b) implicit.

explicit representation regards the curve as a finite set of points moving in the image domain

according to a field of forces. The implicit representation typically uses the level set method [112]

to represent the curve as the zero-level set of a higher dimensional function. The advantages

of this representation are the natural handling of topological changes and the trivial extension

to higher dimensional problems. Nevertheless, level set based approaches require periodical re-

initialisations of the level set function to a signed distance one, in order to maintain stability

throughout the evolution of the contour. Besides being difficult to know when the re-initialisation

should be made, a significant computational cost is also introduced. The need of re-initialisation

was eliminated by imposing the level set function to be similar to the signed distance function,

which was achieved with the introduction of a penalty term that weights the distance between

those functions [113].
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Regarding the nature of the image features guiding the ACM to the object boundary, edge-

based snakes are attracted to strong gradient regions while region-based snakes move along the

image according to region statistics, looking for the configuration that maximises the difference of

such features in each side of the contour. The latter are able to detect boundaries of objects which

are not defined by gradient, and tend to be more robust when considering the influence of contour

initialisation in the evolution process.

Sum and Cheung [114], aware that the model of Chan and Vese [111] is inadequate for non-

uniform illumination, proposed a two-step procedure for the extraction of vessels with a level set

based active contour. In the first step, the Chan-Vese model is used to obtain an initial segmenta-

tion, prone to bad results in regions where vessels have intensities similar to the background. A

refined result is produced by performing more iterations of the level set method using a locally

normalised version of the image. Sun et al. [115] also considered the extension of the Chan-Vese

model to the vessel segmentation problem, by modifying the region-based terms in the energy

function. The authors replaced the mean region intensities by the maximum and minimum fuzzy

opening operators.

Al-Diri et al. [116] designed the Ribbon of Twins parametric model, comprising two pairs of

open ACMs. One of the pairs is intended to fit the interior edges of the vessel wall, while the

second pair should fit the exterior ones. The coherence of the model is kept by imposing repulsive

forces between the interior ACMs and attractive forces between ACMs modeling the same vessel

wall. This is achieved with the introduction of an additional term in the model energy, penalising

the difference between the expected vessel width and the distance between the interior ACMs.

Läthén et al. [117] used a geodesic ACM in order to introduce regularisation into the segmen-

tation of vessels in images enhanced by quadrature filtering. The curve length penalising term

included in that model proved to be crucial for increased noise robustness. Example results are

shown in Figure 3.12.

Shang et al. [118] proposed a region competition-based ACM making use of a Gaussian Mix-

ture Model (GMM). As such design is not capable of extracting the narrower vessels, the authors

added a term to the level set motion equation that is responsible for promoting the evolution of the

contour into the thin vessel region from its central line. The term comprises a vector field that is

derived in the local vessel direction and whose magnitude comes from a vesselness measure.

Zhao et al. [119] extended the infinite perimeter ACM [120] in order to combine different

sources of information, namely intensity and vesselness information. The latter is obtained by

analysing the local phase, as in [117]. Additionally, the regulariser is modified, aiming for im-

proved detection of small oscillatory structures, such as bifurcations.

3.1.7 Graph Cuts

Graph Cuts is an algorithm that employs graph theory to segment images by minimising an energy.

In this framework, an image is taken as a grid of interconnected nodes (4 or 8 neighbourhood for

example). There are two additional nodes with special properties, the terminal nodes, namely one
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(a) (b) (c)

Figure 3.12: Active contour segmentation by Läthén et al. [117]: (a) portion of a retinal fundus
image with initial zero-level set in red; (b) phase map; and (c) final segmentation.

source and one sink. These nodes represent the foreground and background objects. Figure 3.13

shows a representation of the graph that is built.

Figure 3.13: Representation of the graph implemented in a Graph Cuts approach for binary seg-
mentation. The red and blue nodes represent the source and sink nodes, respectively.

The underlying idea is that the non-negative weights of edges between pixel nodes denote

how difficult it is to separate those pixels (for example based on intensity similarity), while the

non-negative weights between terminal nodes and pixel nodes incorporate how likely that pixel

belongs to the foreground or background (according to some extracted feature and assuming that

the feature densities for the background and foreground are known).

A valid cut on this graph is a partition of the nodes into two disjoint sets such that the terminal
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nodes are separated. The cost of a cut is the sum of the edge weights that were severed by it.

The minimum cut problem finds the cut having the lowest cost, usually by solving the equivalent

maximum flow problem through algorithms such as the Ford-Fulkerson method [121].

Slabaugh and Unal [122] segmented images using Graph Cuts approach, but introduced a

shape prior which further constrains the segmentation result, leading to increased noise and weak

boundary robustness. The elliptical prior was used being adequate to extract structures such as

vessels.

Schaap et al. [123] used Graph Cuts to extract the vessel lumen given its centreline. An esti-

mate of local lumen intensity was made using the intensities of voxels belonging to the centreline.

The data term was set according to two differences: one between the local lumen estimate and the

voxel intensity, and another between the estimated lumen and surrounding tissue intensities. The

boundary term between neighbour voxels was set to the commonly used Gaussian function of the

squared intensity difference.

Esneault et al. [124] also considered a model-based constraint into the Graph Cuts framework.

Motivated by its integrative nature, and consequent increased noise robustness, the authors used a

geometrical moment-based detector of cylinder shapes. This detector was used at multiple scales

to retrieve a set of cylinder parameters in the 3D space, which influence the Graph Cuts segmen-

tation procedure, by means of a modified energy minimisation function.

Pamulapati et al. [125] used data coming from two distinct temporal phases of the hepatic

vessels image acquisition procedure: the non-contrast phase and the portal venous enhancement

phase. Intensity histograms at vessel and background regions were obtained after finding an op-

timal threshold in the enhanced data. The energy minimisation was modified in order to acquaint

for three different region-based terms. A first term computes penalties according to the voxel in-

tensity and the intensity histograms of the foreground and background. A second term associates

penalties according to the voxel intensity difference in both data sources, as a vessel voxel should

have a significant higher intensity in the enhanced data. Finally, a third term incorporates the

multi-scale vesselness measure developed by Sato [74]. Figure 3.14 contains examples of hepatic

vessel segmentation using this methodology.

Zhao et al. [126] optimised the energy function proposed in the active contour without edges

model of Chan and Vese [111] by means of a Graph Cuts approach. The region term was deviated

from a local-phase based enhanced vessel image, after correction of intensity inhomogeneity by a

method inspired in the Retinex theory [127].

3.2 Label-driven approaches

Label-driven approaches rely on the availability of data and corresponding annotations to find

complex mappings between a set of hand-crafted features and pixel-wise labels (traditional ML)

or to automatically find a hierarchy of deep representations of an image that is useful to solve the

segmentation problem (DL). The amount of required data varies with the complexity of the model
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(a)

(b)

Figure 3.14: Extraction and labelling of hepatic veins on axial slices of liver CT data: (a) portal
venous enhancement phase images; and (b) vessel network extraction and labelling. Adapted
from [125].

and the degree of supervision. This is true for ML but mostly for DL. The ground-breaking per-

formance levels achieved by DL in many applications were only possible due to the availability of

huge amounts of labelled data. Nonetheless, there have been efforts to reduce the data eagerness

of these methodologies, through semi- and weak-supervision. Semi-supervised methods also use

unlabelled portions of the data during training, usually by including auxiliary tasks like image

reconstruction, or classification [128]. Even though unlabelled images do not directly contribute

to the segmentation loss, they end contributing to the learned feature spaces. Weakly-supervised

methods use less complex and easier to obtain annotations, which still comprise relevant informa-

tion for the segmentation problem [129].

Transfer learning has also been allowing to employ DL in datasets with little annotated data.

Models trained with large amounts of data are likely to learn low-level features which are relevant

for a broad array of scenarios. Thus, it may suffice to fine-tune a previously learned model on the

target data to obtain good performance [130]. A particular instance of transfer learning known as

domain adaptation is an active topic of research by the ML community [131; 132]. Here, there are

different datasets of related tasks available, and there is an interest in deriving feature representa-

tions from labelled datasets (known as sources) which are useful in the unlabelled ones (known as

targets). This topic is of utmost importance in practice, since it would allow to effectively learn

models in labelled datasets which are already available and use them in new data acquisitions

which probably have different distributions, due to new acquisition procedures and/or protocols.

In this Section, the main traditional ML and DL approaches that have been proposed for the

blood vessel segmentation task will be described.
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3.2.1 Traditional machine learning

ML has a great impact currently, as the extraction of knowledge from data is nowadays a common

procedure in almost every practical field. Computer vision is no exception, and the particular case

of vessel segmentation was also focused by this type of techniques. Here, supervised learning is

focused, where a training dataset comprising labelled examples is exploited. This allows to use

a myriad of learning techniques to create decision boundaries that separate the classes according

to the extracted features. In the vessel segmentation literature, ML techniques have been mainly

applied to the extraction of the vasculature from retinal fundus images, since labelled databases

exist for such scenario [38; 39; 40; 133].

Niemeijer et al. [134] used a k-Nearest Neighbours (kNN) classifier with k = 30 to distinguish

between vessel and non-vessel pixels, based on a feature vector of 31 dimensions. Besides the

pixel intensity in the green channel, the features were obtained by performing a convolution be-

tween the image and the following filters at 5 different scales: the Gaussian kernel and its first and

second derivatives (in each axis direction).

Staal et al. [38] extracted potential vessel locations by analysing the ridges of the image at

different scales. A ridge is a location where an intensity extremum exists along the direction

of the largest surface curvature, i.e. the direction given by the eigenvector corresponding to the

eigenvalue of highest magnitude of the Hessian. Theoretically, such extrema should exist near the

centrelines of the vessels. The found extrema were used to compose line primitives and assign

pixels of the image to the closest primitive. Afterwards, a set of appearance and geometrical

features were extracted, including features related to the perpendicular profiles of the primitives.

Feature selection was implemented by means of sequential forward selection and a kNN classifier

was used to perform soft classification. By varying the threshold applied to the soft output, the

authors were able to obtain a Receiver Operating Characteristic (ROC) curve.

Soares et al. [135] considered a smaller number of features, as only the inverted green channel

intensity and the 2D Gabor wavelet transform responses at the considered scales were used. Such

wavelet was selected due to its selective enhancement of oriented features and the capacity to

choose the specific frequencies to find. Hence, for each scale, the maximum modulus of the

wavelet transform over all the angles is taken as feature. Using the training data, the authors

considered GMMs to find the distribution of the features over the vessel and non-vessel classes.

A Bayesian approach was then employed to classify test feature vectors into one of the classes.

The authors obtained a ROC curve by varying the threshold on the posterior pixel probabilities.

The experiments showed that using k = 20 clusters in the likelihood learning phase lead to the best

performance.

Ricci and Perfetti [136] found line-like profiles by using a line operator of length equal to

15 pixels and rotating it over all angles with a step of 15o . Considering vessels brighter than

the background, the intuition is that for some angle, the line operator fits only vessel pixels and

the sum of intensities over the line operator is larger than at other locations. Thus, one feature

is the difference between such sum (the maximum over all angles) and the average intensity at
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a 15× 15 neighbourhood. Since this also outputs rather high values at regions near vessels, a

second line operator of length equal to 3 pixels and orthogonal to the first operator is regarded

(see Figure 3.15). A feature from this operator is extracted in the same way as described before.

Additionally, the inverted green channel intensity is added to the feature vector, leading to a 3-

element predictor for each pixel. A linear Support Vector Machine (SVM) was considered for the

classification task, and the bias was varied in order to generate a ROC curve.

Figure 3.15: Line operators considered by Ricci and Perfetti [136].

Lupascu et al. [137] extracted a significant number of features related to local intensity struc-

ture, spatial and geometrical properties. To deal with vessels of different size, some of them were

extracted at four different scales, leading to predictors with 41 dimensions. An Adaboost classifier

was designed, where a decision is the result of a linear combination of the outputs coming from

simple classifiers, usually known as weak learners. In this approach, a first weak learner finds the

thresholds that lead to a smaller loss. Then, at each iteration, a new weak learner is introduced,

with the detail that the weight of misclassifying a given training sample is larger if it was wrongly

classified by the previous learner. The authors considered 100 iterations in their work. Changing

the threshold of the final output allows to find the ROC curve of the model.

Marín et al. [138] represented each pixel as feature vector with 7 dimensions, comprising in-

formation related to grey-level and moment invariants. The features were extracted after intensity

homogenisation and vessel enhancement by means of a top-hat transform. The classifier designed

by the authors was a multilayer feed-forward neural network with an input layer (7 neurons), three

hidden layers (15 neurons in each) and an output layer (a single neuron). The non-linear logistic

sigmoid function was regarded as the activation function of all the neurons, such that the network

output ranges between 0 and 1. The authors interpreted such value as a posterior probability and

a ROC curve was obtained by varying the decision threshold. The training set was not randomly

obtained as occurred in other works, in order to avoid possible reference errors. Instead, the au-

thors carefully selected training samples from the different patterns: possible vessel, background,

and noise.
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Fraz et al. [139] considered 9 features: the intensity in the inverted green channel; one deviated

from the analysis of the orientation of the gradient vector field; another obtained with a morpho-

logical transformation; two from line strength measures; and, finally, the remaining four resulting

from the Gabor filter response at multiple scales. Similarly to Lupascu et al. [137], the authors

considered ensemble-based classifiers. Besides AdaBoostM1 and LogitBoost (which differ in the

loss function, but their intuition is the same and was explained before), the authors also considered

a bootstrap aggregation strategy, where the weak learners are independently and simultaneously

trained, without changing the weights of misclassified samples. The authors used 200 decision

trees as weak classifiers and their experiments concluded that the LogitBoost was the strategy

leading to better performance (two results are compared to the ground truth in Figure 3.16).

(a) (b) (c)

Figure 3.16: Comparison between the segmentations obtained by Fraz et al. [139] and the ground
truth: (a) original retinal fundus images; (b) segmentations; and (c) ground truth.

Roychowdhuri et al. [140] start by extracting the major blood vessels of the retina using two

different approaches, one resorting to a high-pass filter and the other to a top-hat reconstruction.

The intersection of segmentations is deemed as the preliminary detection of the wider vessels.

Neighbourhood-based features as considered in [138] and gradient-based descriptors are extracted

from pixels which are not included in the preliminary segmentation. A GMM classifier is then used

to distinguish between narrow vessels and the background. The authors argue that this design helps

the classifier to focus on the challenging part of the vessel detection task - distinguishing narrow

vessels from background, since the major vessels are usually easily extracted.

Strisciuglio et al. [141] considered a supervised approach resorting to the B-COSFIRE de-

scriptor [68]. A bank of 42 filters (21 for vessel segments and 21 for vessel endings) is initially

built. Pixel-wise feature vectors containing the local response to each of the 42 filters, and also the
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green-channel intensity value, are obtained. Several experiments are performed concerning fea-

ture selection, from criteria based on the entropy to genetic algorithms. Finally, a SVM classifier

with a linear kernel is used to classify each pixel into vessel or background.

Orlando et al. [142] posed the vessel segmentation problem as minimising the energy of a

fully connected Conditional Random Field (CRF). In contrary to traditional CRFs, whose pair-

wise potentials only encode local information, fully connected CRFs take into account long-range

interactions between pixels. This comes at the cost of increased computational complexity during

the inference step, however, it is alleviated by restricting the pairwise potentials to linear combi-

nations of Gaussian kernels over an Euclidean feature space [143]. The authors jointly learn the

weights for the unary, bias and pairwise terms, by applying the Structured Output SVM [144]. The

considered features are those referred in other works [84; 135; 145].

Zhang et al. [146] consider both full-scale and scale-selective wavelet transforms to obtain

orientation score representations of the images. In addition to features taken from these represen-

tations, the authors also extract Gaussian scale-space features, up to a total of 29 features per pixel.

For the classification step, a Random Forest containing 500 trees was used.

Recently, Wang et al. [147] proposed a complete pipeline for the segmentation of retinal ves-

sels, including pre- and post-processing. Regarding the pre-processing stage, in addition to the

typical background normalisation, the authors have used an image-detail preserving filter [148] for

removing isolated noise. Afterwards, a large number of features was collected, following the de-

scriptors used in other works (matched filters, Gabor wavelets, local grey-level statistics, Frangi’s

vesselness features, and difference of Gaussians). To remove redundant features and being aware

of the imbalance between vessel and background pixels, the authors perform an asymmetric prin-

cipal component analysis, reducing 300 features to 100 descriptors. A cascade of classifiers was

considered, where each consecutive classifier assigns a label to pixels in uncertain regions. Post-

processing removes structures whose geometric properties do not follow the structure of vascular

networks.

3.2.2 Deep learning

DL is currently a massive trend in the field of computer vision, having achieved top performance

in tasks such as hand digit and face recognition. As the term suggests, deep networks comprise a

large number of neuron layers which allow to encode complex and non-trivial non-linear functions

of the data. In comparison to traditional ML, where the task of feature engineering is fundamen-

tal, DL is able to automatically find adequate representations of the data for a particular problem,

given sufficient and relevant data. Much of the attention was due to the performance achieved

by Convolutional Neural Networks (CNNs) in visual challenges. A CNN comprises sequences

of convolutional, pooling, and activation layers, which are responsible for extracting increasingly

high-level descriptors of the data, and a final set of fully connected neurons, which learn complex

non-linear functions of the learned features in order to solve a particular visual task. Convolutional

layers convolve the image with a set of filters, producing a new feature layer for each filter. Pool-

ing layers reduce the size of the images, in order to decrease the number of parameters to learn, to
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increase the robustness to small translations of the features in the original image, and to capture

information from a larger neighbourhood. Activation functions allow to learn non-linear repre-

sentations of the data. These networks were already a reality at the 1990s decade, when LeCun

et al. [149] designed LeNet-5 (see Figure 3.17) and applied it to the task of character recognition.

However, the hardware limitations at the time hindered their true potential. The trend re-emerged

Figure 3.17: The LeNet-5 CNN applied in digit recognition. The final output layer represents a
non-normalised distribution over each class. Adapted from [149].

after Krizhevsky et al. [150] significantly outperformed other competitors in the ImageNet clas-

sification problem. This was achieved using a CNN designated as AlexNet (see Figure 3.18) and

possible due to the improvement hardware had been facing and the introduction of parallel pro-

cessing. The continuous technological evolution and increasing amount of available data has been

allowing the design of networks with larger complexity and increased performance.

Melinščak et al. [152] were among the first to apply DL for the segmentation of blood vessels.

The authors resorted to an architecture containing 4 blocks of convolutional, max-pooling and

Rectified Linear Unit (ReLU) activation layers, followed by 2 fully connected (FC) ones that

output the probability of each class. The use of FC layers turns mandatory the division of the

image into small tiles (patches) of equal size, and the problem of segmentation is converted into

a multiple patch-classification one, where the network outputs the probability of the centre pixel

of the patch belonging to each class. Liskowski and Krawiec [153] considered a similar approach.

Among their experiments, they have tested the impact of data augmentation, balancing the training

samples, removing pooling layers, and considered structured prediction, i.e. instead of predicting

just the label of the centre pixel of the patch, labels are assigned to a neighbouring window centred

at that pixel (see Figure 3.19). In their experiments, pooling was often prejudicial. The most

promising performances were obtained in the balanced data setting and in the one without pooling

layers, both considering structured prediction.

Li et al. [154] pose the problem of vessel segmentation as a cross-modality data transformation

one. The authors divide images into 16×16 patches and parametrise the mapping function with

a 5-layer artificial neural network comprising, respectively, 256, 400, 400, 400, and 256 neurons.

This approach differs from the ones above, as classes are predicted for each pixel of the patch.
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Figure 3.18: The AlexNet CNN applied in the ImageNet competition. A softmax function follows
the last fully connected layer in order to obtain a probability for each class. Adapted from [151].

(a) (b)

Figure 3.19: A training sample in the structured prediction approach: (a) 27 × 27 patch with a
5×5 output window; and (b) the corresponding ground-truth. Adapted from [153].

The authors state that it is difficult to train this network from scratch using the backward prop-

agation algorithm, therefore the first layer is pre-trained using an approach based on denoising

auto-encoders.

Fully Convolutional Networks (FCNs) [155] were an important milestone in semantic segmen-

tation applications, since they have enabled obtaining dense predictions efficiently. They replace

FC layers with convolutional counterparts. Dasgupta and Singh [156] followed the structure pre-

diction approach of Liskowski and Krawiec [153] but resorted to a FCN instead. As discussed

by Long et al. [155], training with mini-patches of a given image instead of feeding it into the

network, corresponds to sampling the loss function. Many authors resort to patch-based training

due to memory limitations of processing units and to increase the randomness of data feeding the

models. Feng et al. [157] considered this when training a FCN, however the sampling of patches

was not entirely random. Since the vessel class is scarcer, the authors provided a mechanism

to guarantee that at least a portion of the patches included regions where both classes were well
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represented. For that end, the label entropy of the patches was assessed, given that a higher en-

tropy indicated a larger equilibrium between class representation. The authors considered skip

connections too, as introduced in U-Net [23], a state-of-the-art architecture for the segmentation

of biomedical images.

The U-Net has been successfully applied to blood vessel segmentation in several works [158;

159] and its original architecture is shown in Figure 3.20. It can be divided in two halves, a first

Figure 3.20: The U-Net architecture. Adapted from [23].

one encoding a hierarchy of features that consecutively represents larger portions of the image,

and a second one where the high-level representations are used to learn features at up-sampled

resolutions until the last layer, where a final probability over the image is obtained. Note that the

skip connections allow to reuse the features from the encoding portion of the network, in order

to improve the recovery of fine details. Zhang and Chung [158] resorted to this network but they

extended the problem of vessel segmentation to a 5-class task, as a mechanism to increase the

relevance of pixels in narrow vessels and vessel boundary regions. The considered classes were

large vessels, small vessels, neighbourhood of large vessels, neighbourhood of small vessels, and

the remaining background tissues, as illustrated in Figure 3.21. Jin et al. [159] also used a U-Net

architecture, but they considered the deformable variant of the convolutional kernels, where the

neighbourhood offsets are no longer a fixed grid but also learnable parameters in order to be more

adequate to local structure (see Figure 3.22).

Other works have not relied on the capabilities of a single deep neural network. Oliveira et
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(a) (b)

Figure 3.21: Extension of the binary vessel segmentation task to a 5-class one: (a) example patch
from a retinal fundus image; and (b) the transformed ground truth. White, gray, orange, green, and
black pixels represent, respectively, narrow vessels, wide vessels, background neighborhood of
narrow vessels, background neighborhood of wide vessels, and the remaining background tissues.
Adapted from [158].

Figure 3.22: Sampling locations in regular (green) and deformable (blue) 5×5 convolution.

al. [160] provide to the network not only the image information but also the outputs of a stationary

wavelet transform. The motivation behind this approach is that providing multi-scale information

from the start potentially releases some of the network capacity, and it becomes easier to fuse

such details with other feature representations in order to obtain the final predictions. Moreover,

the authors consider data augmentation through rotations in the prediction phase, claiming that

a final prediction obtained by averaging the responses is more robust. This comes from the fact

that typical deep networks are not rotation invariant. Fu et al. [161] use a CNN with side-output

supervision as a feature extractor, and resort to a CRF encoded as a recurrent neural network [162]
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to account for non-local pixel correlations. This encoding allows to train the whole pipeline in an

end-to-end fashion.

Transfer learning has been explored in retinal vessel segmentation, in order to attenuate the

small amount of available images in public datasets, which have at most a few dozens of images.

Jiang et al. [130] considered a pre-trained fully convolutional version of the AlexNet and fine-

tuned it with up-sampled versions of retinal fundus patches. Despite using a FCN, the authors

conduct patch-based prediction and merge overlapping patches with the OR operation.

3.3 Comparison between methodologies

It is very hard to objectively compare the described approaches, as they are frequently dedicated

to different vessel structures and data sources. Additionally, vessel extraction frameworks result

from the combination of several steps, such that it becomes non trivial to understand where par-

ticular improvements are coming from. However, an objective comparison may be established be-

tween works that have been evaluated in the publicly available DRIVE, STARE, and CHASEDB1

databases, containing retinal fundus images. Tables 3.3, 3.4, and 3.5 present objective metrics of,

respectively, unsupervised, traditional ML, and DL approaches that have been here reviewed and

applied to those databases.

Methodologies using traditional ML are able to slightly improve the performance when com-

pared with unsupervised ones, mainly regarding the Area Under the ROC Curve (AUC) criterion.

The DL paradigm further improved the state-of-art performance. Even though this was somewhat

expected, as DL has been breaking performance barriers in many problems of Computer Vision,

the improvement may seem too large for a problem that is reasonably well understood by humans.

Such large improvement is expected in problems where it is very hard for a human to design fea-

tures that are adequate to separate the classes. DL shines in such scenarios as it automatically

finds representative mappings of the data. Regarding vessel segmentation, DL seems to find better

mechanisms to distinguish vessels from other structures and noise.

Even then, the data dependency of these approaches makes them prohibitive in most real set-

tings. For instance, the segmentation of 3D vasculature is essentially made by unsupervised tech-

niques, as obtaining a training set in 3D would even require more effort from expert annotators.

Additionally, trained models expect to evaluate images that are similar to the ones they have seen

in the training step. This does not easily fit into clinical practice, where it is not feasible to produce

manual annotations of images every time a new protocol or acquisition device is used. Domain

adaptation techniques should increase in a near future the applicability of DL in a wider range of

settings, since they improve the generalisation capabilities of these networks.

Some authors proposing label-driven approaches perform cross-training evaluation in order to

analyse how well their methods generalise to data distributions that are different from the ones

used during the training procedure. When comparing these methods with unsupervised ones, it

is more fair to use this cross-training performance. Even then, many unsupervised approaches

have hyper-parameters that are fine-tuned to the different datasets, such that most of the times it



Table 3.3: Available performances in the DRIVE, STARE, and CHASEDB1 databases, among the unsupervised works. The represented metrics are
sensitivity (sen), specificity (spe), accuracy (acc) and AUC. Best results are highlighted in bold.

DRIVE STARE CHASEDB1
Authors Year AUC acc sen spe AUC acc sen spe AUC acc sen spe

2nd observer - 94.7 78.0 97.2 - 93.5 84.5 93.8 - - - -

Hoover et al. [39] 2000 - - - - - 92.6 67.5 95.6 - - - -

Mendonça and Campilho [86] 2006 - 94.5 73.4 97.6 - 94.4 70.0 97.3 - - - -

Martínez-Pérez et al. [103] 2007 84.5 93.4 72.5 96.6 85.3 94.1 75.1 95.7 - - - -

Al-Diri et al. [116] 2009 84.2 - 72.8 95.5 86.0 - 75.2 96.8 - - - -

Palomera-Pérez et al. [104] 2010 81.1 92.2 66.0 96.1 86.0 92.4 77.9 94.0 - - - -

Zhao et al. [108] 2014 - 94.8 73.5 97.9 - 95.1 71.9 97.7 - - - -

Zhao et al. [126] 2015 86.1 95.3 74.4 97.8 88.1 95.1 78.6 97.5 - - - -

Zhao et al. [119] 2015 86.2 95.4 74.2 98.2 87.4 95.6 78.0 97.8 - - - -

Azzopardi et al. [68] 2015 96.1 94.4 76.6 97.0 95.6 95.0 77.2 97.0 94.9 93.9 75.8 95.9

Neto et al. [163] 2017 - - 78.1 96.3 - - 83.4 94.4 - - - -

Fan et al. [164] 2019 85.9 96.0 73.6 98.1 88.1 95.7 79.1 97.0 81.5 95.1 65.7 97.3



Table 3.4: Available performances in the DRIVE, STARE, and CHASEDB1 databases, among the traditional machine learning works. The represented
metrics are sensitivity (sen), specificity (spe), accuracy (acc) and AUC. Best results are highlighted in bold.

DRIVE STARE CHASEDB1
Authors Year AUC acc sen spe AUC acc sen spe AUC acc sen spe

2nd observer - 94.7 78.0 97.2 - 93.5 84.5 93.8 - 95.6 74.2 97.9

Niemeijer et al. [134] 2004 92.9 94.2 - - - - - - - - - -

Staal et al. [38] 2004 95.2 94.4 - - 96.1 95.2 - - - - - -

Soares et al. [135] 2006 96.1 94.7 - - 96.7 94.8 - - - - - -

Ricci and Perfetti [136] 2007 96.3 96.0 - - 96.8 96.5 - - - - - -

Lupascu et al. [137] 2010 95.6 96.0 - - - - - - - - - -

Marín et al. [138] 2011 95.9 94.5 - - 97.7 95.3 - - - - - -

Fraz et al. [139] 2012 97.5 94.8 74.1 98.1 97.7 95.3 75.5 97.6 - - - -

Roychowdhury et al. [140] 2015 96.2 95.2 72.5 98.3 96.9 95.2 77.2 97.3 95.3 95.3 72.0 98.2
Strisciuglio et al. [141] 2016 96.0 94.5 77.8 97.0 96.4 95.3 80.5 97.1 - - - -

Orlando et al. [142] 2017 95.1 94.5 79.0 96.8 95.7 95.2 76.8 97.4 94.8 94.7 75.6 96.6

Zhang et al. [146] 2017 97.0 94.7 78.6 97.1 97.4 95.5 78.8 97.3 97.1 95.0 76.4 97.2

Wang et al. [147] 2019 - 95.4 76.5 98.2 - 96.4 75.2 98.8 - 96.0 77.3 97.9



Table 3.5: Available performances in the DRIVE, STARE, and CHASEDB1 databases, among the deep learning works. The represented metrics are
sensitivity (sen), specificity (spe), accuracy (acc) and AUC. Best results are highlighted in bold. The four best architectures of Liskowski and Krawiec are
here presented. They are, respectively, BALANCED-SP with output window of side 3, NO-POOL-SP with output window of side 3, BALANCED-SP
with output window of side 5 and NO-POOL-SP with output window of side 5.

DRIVE STARE CHASEDB1
Authors Year AUC acc sen spe AUC acc sen spe AUC acc sen spe

2nd observer - 94.7 78.0 97.2 - 93.5 84.5 93.8 - 95.6 74.2 97.9

Melinščak et al. [152] 2015 97.5 94.7 72.8 97.8 - - - - - - - -

Fu et al. [161] 2016 - 95.2 76.0 - - 95.8 74.1 - - 94.9 71.3 -

Li et al. [154] 2016 97.4 95.3 75.7 98.2 98.8 96.3 77.3 98.4 97.2 95.8 75.1 97.9

Liskowski and Krawiec [153] 2016 (1) 97.9 95.1 84.6 96.7 99.3 96.7 92.9 97.1 98.2 94.4 91.6 94.7

(2) 97.7 95.2 80.2 97.6 99.2 97.1 85.1 98.5 98.2 96.2 79.1 98.2

(3) 97.9 95.3 81.5 97.5 99.3 97.0 90.8 97.7 98.4 95.8 87.9 96.7

(4) 97.9 95.4 78.1 98.1 99.3 97.3 85.5 98.6 98.2 96.3 78.2 98.4

Feng et al. [157] 2017 97.9 95.6 78.1 98.4 - - - - - - - -

Dasgupta and Singh [156] 2017 97.4 95.3 76.9 98.0 - - - - - - - -

Oliveira et al. [160] 2018 98.2 95.8 80.4 98.0 99.0 96.9 83.2 98.6 98.6 96.5 77.8 98.6

Zhang and Chung [158] 2018 98.0 95.0 87.2 96.2 98.8 97.1 76.7 99.0 99.0 97.7 76.7 99.1
Jiang et al. [130] 2018 98.1 96.2 75.4 98.2 99.0 97.3 83.5 98.5 98.1 96.7 86.4 97.4

Jin et al. [159] 2019 98.6 97.0 78.9 98.7 98.7 97.3 74.3 99.2 98.6 97.2 82.3 98.2
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Table 3.6: Available performances of label-driven works when performing cross-training. The
dataset in bold is the test set and the one inside parenthesis is the training set. Best results are
highlighted in bold.

DRIVE (STARE) STARE (DRIVE)
Authors Year AUC acc sen spe AUC acc sen spe

2nd observer - 94.7 78.0 97.2 - 93.5 84.5 93.8
Soares et al. [135] 2006 - 94.0 - - - 93.3 - -
Marín et al. [138] 2011 - 94.5 - - - 95.3 - -
Fraz et al. [139] 2012 97.0 94.6 72.4 97.9 96.6 95.0 70.1 97.7
Roychowdhury et al. [140] 2015 - 94.9 - - - 95.1 - -
Li et al. [154] 2016 96.8 94.9 72.7 98.1 96.7 95.4 70.3 98.3
Oliveira et al. [160] 2018 97.5 95.0 67.1 99.2 98.5 96.0 84.5 97.3

is not trivial to compare the robustness of different methods to new data. Table 3.6 presents the

performance achieved by different authors when considering cross-training between the DRIVE

and STARE datasets. As can be seen, there is a natural decrease of performance, however the

top-performing approach still achieves a larger AUC value than unsupervised and traditional ML

algorithms, showing that DL can also generalise rather well.

3.4 Summary

This Chapter covered the main approaches for vessel enhancement and segmentation. Matched fil-

tering, Hessian-based filters, and mathematical morphology were considered for the enhancement

task. Matched filtering shines when the objects to be found are flawlessly described by a particular

shape and local contrast. However, vessels present variability in terms of appearance, such that the

enhancement of different cross section profiles may require the design of multiple filters. These

methods easily reach high computational cost as a response is computed over the entire data and at

multiple orientations. In addition, handling very tortuous segments is not trivial with this kind of

approach. Hessian-based filters have been widely applied in the vessel enhancement field. Their

ability to evaluate local shape in a scale-space provides a great opportunity to enhance vessels

of different sizes. However, as the Hessian relies in the derivative operator, it propagates noise,

and it becomes extremely challenging to detect small vessels without increasing false detections.

Moving on to mathematical morphology, methods applying this theory are usually fast and noise

resistant, even though they do not take into account the available cross sectional information. This

may be crucial when distinguishing vessels from other structures that locally resemble a tubular

pattern, as is the case of some pathologies.

Concerning vessel segmentation, centreline tracking, region growing, active contour, graph

cut, and machine learning approaches were presented. Centreline tracking methods iteratively de-

tect points along the centre of a vessel, focusing a single segment at each time. This framework

is able to naturally present more detailed information on a certain vessel segment and is generally
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fast, given that only a portion of the data needs to be analysed. Even then, automatic initialisation

may be a source of error and bifurcation detection requires special considerations. Missing a bi-

furcation will result in the loss of portions of the vascular network. Region growing approaches

heavily suffer from leakage problems. Even then, they have high efficiency since a sparse search

is employed. ACMs are dependent of the initialisation and parameter tuning, such that they have

a strong application-dependent character. Parametric models have to deal with strong elonga-

tions, and contour splitting and merging, which is not trivial. Implicit representations avoid the

parametrisation of the contour, handling better those problems. However, computational cost is

increased and special algorithmic care has to be taken to ensure convergence. Graph Cuts are

affected by the shrinking bias problem, where there is a bias towards small final contours. This is

more evident in the segmentation of elongated structures, such as vessels. Additionally, the mem-

ory usage quickly increases with the size of data. Label-driven methods achieve better results,

especially when the images are very similar to the ones seen during the training step. Nonetheless,

they demand that manual annotations are available. Given that the manual segmentation of data by

an expert is a very time-consuming and tedious task, it is not a common scenario in many real-life

applications. Even then, advances in their generalisation capabilities are increasing their use cases.



54 Literature Review



Chapter 4

Application-specific Blood Vessel
Segmentation

The content of this Chapter is based on the following works:

• R. J. Araújo and H. P. Oliveira, "Segmentation of the rectus abdominis muscle anterior

fascia for the analysis of deep inferior epigastric perforators", In Iberian Conference

on Pattern Recognition and Image Analysis, 2017.

• R. J. Araújo et al., "Computer aided detection of deep inferior epigastric perforators

in computed tomography angiography scans", Computerized Medical Imaging and

Graphics, 2019.

• R. J. Araújo, J. S. Cardoso, and H. P. Oliveira, "A single-resolution fully convolutional

network for retinal vessel segmentation in raw fundus images", In International Con-

ference on Image Analysis and Processing, 2019.

• C. Mavioso et al., "Automatic detection of perforators for microsurgical reconstruc-

tion", The Breast, 2020.

The majority of works comprising the blood vessel segmentation literature are designed to

solve a particular use-case and struggle to generalise properly for different scenarios, such as

other vessel trees, acquisition devices, and used protocols. This is especially true when supervised

machine learning methodologies are used, where the models are likely to learn particularities of

the training data which will probably do more harm than good when those models are applied to

data from other scenarios. Nonetheless, frameworks focusing a single application may further rely

on prior knowledge and establish assumptions which are known to be useful for a given scenario.

Hence, application-specific algorithms have been showing great success and are possibly the best

choice for controlled environments where the upcoming data to be analysed meet the assumptions

considered during design.

55



56 Application-specific Blood Vessel Segmentation

In this Chapter we describe two methodologies that we designed for particular use-cases of

blood vessel segmentation: i) a semi-automatic algorithm for the segmentation and characterisa-

tion of the DIEPs, the blood vessels that vascularise the anterior portion of the abdominal wall and

are crucial for a successful breast reconstruction through a DIEP flap (Section 4.1); ii) a supervised

approach for the fast segmentation of retinal vessels, which is relevant in screening programmes

where large volumes of data are collected (Section 4.2).

4.1 Deep Inferior Epigastric Perforators

About 2.1 million newly diagnosed female breast cancer cases were expected worldwide in 2018,

accounting for almost 1 in 4 cancer cases among women. The disease is the most frequently

diagnosed cancer in the vast majority of the countries and it is also the leading cause of cancer

death in over 100 countries [165]. Women who were diagnosed with breast cancer have higher

chance of suffering from anxiety and depression resulting from the fear of recurrence, body image

disruption, sexual dysfunction and mortality concerns [166]. Although breast conservative meth-

ods have recently shown a survival rate superior to mastectomy, especially in early breast cancer

cases [167], the latter is still a highly recurrent procedure and has even been increasing in some

institutions [168; 169]. Mastectomy is conducted in cases where the relation between the size of

the resected breast and the global volume of the gland is too large for a conservative procedure,

in cases where radiotherapy is contra-indicated, and also when the patient does not desire breast

conservation [170].

Reconstruction methods allow to recreate the breast, improving the way women feel about

themselves and their image after their breast(s) was(were) removed. There are different tech-

niques for breast reconstruction but basically two major groups can be defined: reconstruction

with implants and reconstruction with autologous tissues. Each has its own merits but the latter

commonly lasts longer, provides a more natural result due to the similarity of tissues, and avoids

foreign body reactions. Nonetheless, as it also involves a donor-site, it leads to longer surgery and

recovery time, and may lead to donor-site complications. The DIEP flap has become the state-

of-art technique for autologous-based breast reconstruction [22]. It makes use of the skin and fat

(it does not include the muscle, its big advantage over the Transverse Rectus Myocutaneous flap)

of the lower abdomen to build a new breast either in the same surgery when the mastectomy is

performed (immediate reconstruction) or in a second one after the initial procedure (delayed re-

construction). The transposition of the lower abdominal skin and fat is free of any attachment to

the end anatomic structures of the donor site - the abdomen. Micro-surgical connections are done

at the recipient site between the vessels of the transposed skin and fat, and the vessels of the tho-

rax, where the new breast will replace the void left by the mastectomy (see Figure 4.1). A scheme

with the abdominal anatomy of interest for conducting a DIEP flap is shown in Figure 4.2.

Before a DIEP flap, preoperative imaging studies are performed to evaluate the branches of

the DIEAs, which are known as perforators (DIEPs) and are the vessels responsible for the vascu-

larisation of the tissue that will be used in the reconstruction of the breast. The viability of the new
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Figure 4.1: Representation of a DIEP flap procedure.

Figure 4.2: Sagittal representation of the anatomy of the anterior portion of the abdominal wall,
between the pelvic and umbilicus regions.

breast is related to several features of the included perforators [26]. The calibre of a perforator is

an indicator of its capacity to ensure a good vascularisation of the new breast, and perforators with

a larger number of ramifications and anastomoses with others are usually preferred. The surgical

team also requires the location where the perforators pierce the anterior fascia of the muscle, in

order to know how to extract the perforators to be included in the flap. Usually, perforators having

linear intramuscular courses are preferred, since the dissection becomes more challenging as the

tortuosity increases. Through MRI or CTA, the perforators are manually identified and charac-

terised by the radiological team, and a report is delivered to the surgeons. The aforementioned

task of identifying and characterising the 3D course of the perforators is subjective and time con-

suming. This is exacerbated by the small size of these blood vessels (1-3 mm of calibre, which

translates to 1-5 pixels in a state-of-the-art CTA) and their low Signal-to-Noise Ratio (SNR), es-

pecially in their intramuscular region. As a result, incoherences between the preoperative studies
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and the surgical findings often exist, and can lead to the need of modifying the strategy intra-

operatively. For that reason, computer vision algorithms may play an important role in supporting

the activity of radiologists who are responsible for the preoperative study, reducing the subjectiv-

ity and time involved in the process. Moreover, more precise and complex representations of the

findings can be shown through 3D models, whereas the manually written reports strongly limit

the information exchange. Other authors have developed plugins for medical software trying to

render the manual analysis of the perforators faster [171] and used virtual tools to facilitate the

communication of the manual findings with the surgical team [172]. In this Section, we start by

providing a brief description of the framework we developed for this scenario during preliminary

work [24], which was the first work aiming to automate the extraction of the DIEP vascular tree,

requiring only minimal user input. Afterwards, we present the contributions that were made dur-

ing this thesis and which allowed the methodology to become closer to the clinical needs, and

describe the clinical validation which was conducted to show the potential and impact of the pro-

posed algorithm. All the work has been performed with the collaboration of the Breast Unit of

Champalimaud Foundation 1.

4.1.1 Previous work

In the past, motivated by the aforementioned reasons, we have proposed a methodology for the

semi-automatic extraction and characterisation of the perforators in CTA scans, by means of a

vessel centreline extraction technique particularly designed to address the challenges involved in

the detection of these small vessels [24]. The complete pipeline is represented in Figure 4.3.

Figure 4.3: The previously proposed pipeline for the semi-automatic detection and characterisation
of DIEPs [24]. Threshold d dictates when the tracking procedure of the subcutaneous portion of a
perforator finishes.

After loading the data (A), the user is prompted to select the landmarks required by the al-

gorithm to define the volume of interest and posteriorly extract and characterise the DIEP vessel

tree in an automated fashion. The user should indicate two points at the end of the subcutaneous

course of each perforator and also the locations where each DIEA perforates the posterior rectus

1centroclinico.fchampalimaud.org/en/oncology/breast-unit/

centroclinico.fchampalimaud.org/en/oncology/breast-unit/
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sheath (B). This effort is minimal when compared to the current manual analysis that technicians

and radiologists face, which involves performing several reconstructions of the data through the

Maximum Intensity Projection method [22; 173], in order to follow the course of each perforator

and characterise it. The volume of interest should contain the portion of the data that needs to

be analysed in this application, which is only a sub-volume of the abdominal CTA scan (anterior

region of the abdomen, lower bounded by the hips and upper bounded slightly above the umbilical

region). An example region of interest and the structures which exist there were already shown in

Figure 2.11.

There is a higher contrast between the vessels and the background in their subcutaneous por-

tion, since the rectus abdominis muscle also responds significantly to the CTA image acquisition.

This motivated us to pursue different strategies when addressing the extraction of the subcuta-

neous and intramuscular courses of the perforators. Anatomically, those regions are separated by

the anterior fascia (or anterior rectus sheath) of the rectus abdominis muscle. Unfortunately, that

tissue layer is not distinguishable in CTA scans. Nonetheless, it can be approximated as the edge

that exists between the subcutaneous region and the muscle. We started by segmenting this layer,

thus enabling the employment of a divide-and-conquer strategy to extract the complete course of

the perforators.

To segment the anterior fascia of the rectus abdominis muscle (C), we proposed a 2-stage al-

gorithm. First, we obtain a preliminary detection of this layer for each axial slice of the volume of

interest by employing an algorithm resorting to intensity and connected component analysis, rely-

ing on prior anatomical knowledge. A summary of the steps and illustrative results are provided,

respectively, in Figures 4.4 and 4.5. Finally, to obtain a complete and smooth fascia segmentation,

refined detections were set as the output of local regressions using the preliminary ones. Fig-

ure 4.6 provides illustrative examples of this final step. A detailed description of the methodology

followed to segment the fascia can be found in [24; 174].

Having two landmarks on the subcutaneous portion of each perforator to be tracked and a

Figure 4.4: Pipeline used to obtain a preliminary fascia detection for each axial slice of the volume
of interest.
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(a) (b) (c) (d) (e) (f)

Figure 4.5: Example results along the considered pipeline for obtaining a preliminary fascia seg-
mentation: (a) original axial slices of the region of interest; (b-f) segmentations after steps 1, 2, 4,
5, and 6. In the last column, the preliminary fascia layer is shown in white.

(a) (b) (c) (d)

Figure 4.6: Example results of the interpolation framework implemented to obtain the final fascia
segmentation: sagittal slices of the region of interest with (a,c) the preliminary fascia detection;
and (b,d) the smooth final fascia segmentation.

segmentation of the fascia, it becomes possible to use a centreline tracking procedure (D) to iter-

atively estimate new points along the vessel until the distance to the fascia layer becomes lower

than a specified threshold. To employ this framework, we estimated the local vessel direction by

analysing the neighbourhood gradient vectors, as Agam et al. [175] considered for steering en-

hancement filters. According to the authors, the local vessel direction vi is the one minimising the

squared projection of the local gradient vectors into itself:

E(vi) =
1
n

n

∑
k=1

(gT
k vi)

2 = vT
i

(
1
n

n

∑
k=1

gkgT
k

)
vi (4.1)

where n is the number of gradient vectors inside a local window specifying the neighbourhood,

and gk is the kth gradient vector. A tracker relying only in this information is prone to start devi-

ating from the centre of the perforator as error accumulates through the iterative procedure. This

is further exacerbated by the low SNR characterising this scenario. Thus, we also considered a
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correction framework that would estimate the centre of the cross section of the vessel every n

iterations, allowing to correct the accumulated bias. It relies on the assumption that voxels on

the centre of the vessel have higher intensity, and that it decreases as the distance to the centre

increases. In a 2D image of the cross section of a vessel (plane perpendicular to the local esti-

mated vessel direction), it is then expected that the centre location can be found by analysing the

divergence of the gradient vector field, through cross-correlation with a template [176]:

(f∗g[η ]) = ∑
m

f∗[m]g[η +m] (4.2)

where f and g represent the gradient orientation vector field and template vector field, respec-

tively, f∗ is the complex conjugate of f, and η is the displacement. The centre location estimation

corresponds to the maximum response location. Figure 4.7 illustrates this procedure.

(a) (b) (c) (d)

Figure 4.7: Ridge-based correction framework: (a) example cross sectional image with gradient
vector field imposed; (b) template for finding the centre; (c) cross-correlation result; and (d) the
detected ridge. Images are interpolated for better visualisation.

As soon as the distance to the fascia criterion is met, the process is terminated and the last

point is considered the location where the perforator pierces the fascia, one of the features that the

surgeons require in order to know the dissection place of each perforator, in case they choose to

include it in the flap. The calibre of the perforator, which is also relevant for the surgical team,

is estimated at each centreline point and the average is returned. For a given centreline point, the

local calibre is measured by fitting a Gaussian to the intensity profile of a line on the axial plane

centred at that point and whose direction is perpendicular to the projection of the local vessel

direction into the axial plane.

The intramuscular path of the perforator (F) was found by extracting the minimum cost path

between the location where it leaves the fascia (where the subcutaneous tracker ended) and the

DIEA of the respective hemiabdomen (provided by the user), using the A∗ algorithm [177]. This

path-finding method includes an heuristic function estimating the distance to the target, in order

to decrease the computational cost of the search. We considered the Euclidean distance as the

heuristic function. To obtain the cost of traversing each voxel, we started by enhancing the tubular
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structures through Frangi’s vesselness measure νF [75]:

νF(n) =

0, if λ2 > 0 or λ3 > 0

(1− e−RA
2/2α2

) · e−RB
2/2β 2 · (1− e−S2/2c2

), otherwise
(4.3)

where n is a given voxel in our data domain, and λ1,λ2,λ3 are the eigenvalues of increasing

absolute value of the Hessian matrix. The constants α,β , and c control the sensitivity of the

vesselness function to the terms RA,RB, and S, which are eigenvalue-based ratios accounting for,

respectively, the distinction between line-like and plate-like structures, the deviation from a blob,

and the local structureness:

RA =
|λ2|
|λ3|

(4.4)

RB =
|λ1|√
|λ2λ3|

(4.5)

S =
√

λ 2
1 +λ 2

2 +λ 2
3 (4.6)

Lower costs are given to voxels which more likely belong to vessels, as determined by the

following function:

C(n) =

2−νF(n), if νF(n)> 0

10, if νF(n) = 0
(4.7)

where the constants have been empirically determined for this application. Many perforators have

a significantly tortuous intramuscular course, such that the Euclidean distance heuristic commonly

underestimates the true vessel length. This, combined with the difficult enhancement due to the

low SNR, leads to a tendency to expand many nodes and consequently a very slow extraction in

many cases. To overcome this, an upper bound m was set on the number of nodes allowed in the

open list. If the upper bound is reached, only the k nodes closer to the target (Euclidean distance)

are kept, whereas the remaining ones are moved to the closed list. It is important to notice that,

with this consideration, the final path is not guaranteed to be the optimal one. Nonetheless, it was

empirically found that significant speed-ups were possibly without impacting the accuracy of the

extracted paths.

4.1.2 Local shape analysis for increased tracking robustness

The aforementioned methodology allowed to obtain promising results [24]. Nonetheless, the

tracking of perforators having a significant part of the course adjacent to the fascia often lead

to an early stop of the tracking procedure, due to the strong gradient vectors coming from the

muscle boundary and their impact in the local vessel direction estimation.
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To increase the robustness of the tracker, we aimed to reduce the impact of non-tubular struc-

tures in the gradient field estimation. Therefore, we proposed to retrieve the local gradient vectors

from a vessel-enhanced data instead, where the signal of tubular-shaped structures is increased,

while other local shapes have their signal decreased. Considering the particular case of the muscle

boundary, when considering the eigenvalue decomposition described in Section 3.1.2, an eigen-

value with large magnitude (eigenvector perpendicular to the muscle boundary) and two small

ones (eigenvectors defining the plane tangent to the muscle boundary) are expected. Thus, by con-

ducting vessel enhancement via the Hessian analysis, we decreased the influence of the muscle

boundary and hence increased the robustness of the tracker in the regions nearby. To obtain the

vessel enhanced data, we considered once again Frangi’s vesselness function [75].

4.1.3 Cost functions for the efficient extraction of intramuscular paths

The intramuscular paths found with the methodology presented in subsection 4.1.1 are not neces-

sarily the optimum ones, due to the limit that was imposed in the open nodes list. This constraint

was introduced to avoid visiting a very large amount of voxels, which was quite common, given

that some courses had significant length and tortuosity, and sometimes the volume of costs was

not well defined due to the extremely low SNR of the intramuscular course of the perforators. It

is often possible to find some segments of this course without any signal.

We investigated whether another family of cost functions could induce more interesting com-

promises between performance and time efficiency. We explored a function which proved to be

useful in the centreline extraction of coronary arteries [178]:

C(s) =
1

νF(s)T (s)+ ε
(4.8)

where νF(s) is Frangi’s Vesselness (4.3) at voxel s normalised to the range [0,1], ε is a small

constant to avoid division by zero, and T (s) is a sigmoid function of the intensity:

T (s) =
1

1+ e−as(I(s)−bs)
(4.9)

with I(s) being the intensity at voxel s, and constants as and bs controlling the shape of the sigmoid

function.

The expression (4.8) produces low costs at voxels which have high probability of belonging

to a vessel, according to (4.3), and which have relatively high radio-density, according to the

parametrisation of (4.9). Note that (4.8) gives costs in the range [1,∞[, guaranteeing that the

heuristic included in the A* formulation is admissible.



64 Application-specific Blood Vessel Segmentation

4.1.4 Experiments

4.1.4.1 Perforator extraction

Experiments were conducted at two different time lapses. The first assessment was performed

with a preliminary version of the database described in Section 2.3, aiming to evaluate the im-

pact of the proposed modifications to the methodology. For every CTA volume of this database, a

radiologist provided manual annotations of the existing perforators, by defining some landmarks

belonging to the centrelines of those vessels. Across the 21 volumes available at the time, a total

of 98 subcutaneous and 50 intramuscular perforator pathways were identified. Since the blood

vessel annotations available in this dataset are sparse when compared to the paths extracted by

our methodology, we consider the Euclidean and Hausdorff distances from the ground truth anno-

tations to the extracted paths, as metrics indicating the precision of the vessel detection method-

ologies. The Euclidean distance measures the average distance from the manual annotations to

the path, whereas the Hausdorff distance accounts for the maximum distance. Additionally, as we

are interested in assessing the time efficiency of the minimum cost path approach designed for

intramuscular path extraction, we also consider the time expended in that subtask.

4.1.4.2 Perforator characterisation

A second set of experiments was performed more recently [179] using the extended database (the

one detailed in Section 2.3). The goal was to compare the findings (calibre, and the location

where the perforator pierces the fascia) retrieved by the proposed framework with those obtained

manually by the radiological team. The following statistical tests were conducted:

1. A paired sample t-test with a significance level α = 0.05 evaluated the difference in calibres

between both methods (null hypothesis H0 was that the average of the differences is 0,

and the alternative hypothesis H1 is that this does not hold). The same analysis was also

performed only in the perforators that ended up being included in the flaps by the surgical

team. Effect size was measured through the standardised mean difference and interpreted

accordingly (estimates of 0.20, 0.50, and 0.80 denote, respectively, a small, medium, and

large effect size) [180];

2. A Wilcoxon rank-signed test with a significance level α = 0.05 was used to assess the dif-

ference in calibre estimation between both methods when compared to calibres reported by

the surgical team intra-operatively (ground truth). This analysis was performed in perfo-

rators having a calibre larger than 1.5 mm (frequently included in the flap) and also in the

ones having 1.5 mm or less (rarely selected). Effect size was measured through correlation

and interpreted accordingly (estimates of 0.10, 0.30, and 0.50 denote, respectively, a small,

medium, and large effect size) [180];

3. The methodology was also evaluated on how well it estimated the location where the per-

forators pierce the fascia of the rectus abdominis muscle. The errors of the software were
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divided into vertical and horizontal errors and a one sample t-test was performed for each

of them, where in H0 the average error is 0 and in H1 it is not. Effect size was measured

through the standardised mean difference. Here, the true locations of the perforators were

considered to be the ones reported by the radiological team, as these measures cannot be ac-

curately obtained during the surgery. Additionally, the subjectivity is practically negligible

for this parameter, in contrast with calibre measurement.

4.1.5 Results and discussion

4.1.5.1 Perforator extraction

Subcutaneous course Our proposed methodology for extracting the subcutaneous portion of

perforators is now assessed concerning the metrics described in subsection 4.1.4.1, and compared

to both the previous version of the algorithm and the tracking approach of Friman et al. [69], which

was tailored for the robust detection of small vessels.

Regarding the implementation of our approach, we empirically set the step δ to 1 mm, the

side length of the local window to 4 mm, took a correction measure every 3 iterations, restricted

the direction variation to 60◦, and obtained the vessel enhanced data by setting α = 0.5, β = 10,

and c = 500. In order to obtain the results from the approach of Friman et al. [69], we used

the implementation available in MeVisLab (MeVis Medical Solutions AG, 2017), and tuned the

parameters for this particular application, by setting the minimum and maximum radius to 0.5

and 1.5 mm, respectively, the step length to 1 mm, and the maximum step angle to 60◦. The

initialisation of all perforator tracking procedures was made at the ground truth landmark which

was closer to the end of the perforator. Table 4.1 summarises our findings.

Table 4.1: Results obtained for the extraction of the subcutaneous course of the perforators, having
as reference the manual ground truth annotations.

Method
Path error (mm)

Euclidean distance Hausdorff distance

Friman et al. [69] 1.01±0.60 2.38±2.17
Previous work (subsection 4.1.1) 1.35±0.46 2.98±1.46
Proposed 0.64±0.25 1.17±0.88

Our refined methodology proved to be more adequate for the subcutaneous tracking of per-

forators, as the average Euclidean and Hausdorff distances were significantly lower when using

it. In fact, the proposed methodology reached sub-voxel accuracy for most of the volumes in our

database. The increased performance was mainly due to the fact that our approach is able to ne-

glect more the presence of the muscle when tracking the vessel, as we do it in the vessel enhanced

data. In contrast, the methodology of Friman et al. [69] suffered more from this. The average

Hausdorff distance gives information about how well the methods are able to correctly track the

perforator until it reaches the fascia, as it is near this region that the tracking procedure faces
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more difficulties, especially when the perforator has a substantial overlap with the muscle signal.

Again, the proposed method behaved better in such circumstance, thus being more adequate for

determining the location where the perforators pierce the fascia. Figure 4.8 shows a comparison

between the proposed method and the approach of Friman et al. [69] when extracting an example

subcutaneous path having a segment close to the fascia.

(a) (b)

Figure 4.8: Tracking the subcutaneous course of a perforator using (a) our approach and (b) the
method proposed by Friman et al. [69]. The latter was more prone to terminating sooner when the
vessel evolved near the fascia.

Intramuscular course extraction Concerning the extraction of intramuscular paths, we seek

to find how appropriate is the volume of costs given by (4.8) when used as terrain costs inside a

minimum path framework such as A*. Note that by appropriate, we refer to path accuracy but
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also time expended, as minimum path approaches may become prohibitively slow when there is a

need to visit many neighbours, especially in a 3D environment. To obtain νF(n), we empirically

set α = 0.5, β = 0.5, and c = 100. Regarding T (n), we considered 42 different parametrisations,

as given by the possible combinations of taking as from 7.5 to 45 with a step of 7.5, and bs from

0.5 to 0.8 with a step of 0.05 (radio-density was mapped into the range [0,1] as described in sub-

section 4.1.3). Besides the metrics considered in the case of subcutaneous extraction evaluation,

Euclidean and Hausdorff distances between the ground truth annotations and the retrieved paths,

we also measured the time expended. Table 4.2 presents the results of our experiments. For the

sake of readability, we show only the average value of the metrics of interest.

Table 4.2: A* performance when retrieving the intramuscular courses of the perforators, using
Eq. (4.8) to obtain the volume of costs. Each cell contains the performance of a parametrisation (as,
bs) regarding the average Euclidean and Hausdorff distances between the ground truth annotations
and the retrieved paths (mm), and the average time expended (s), respectively.

bbbsss

0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.62 0.62 0.62 0.62 0.61 0.61 0.61
7.5 1.40 1.38 1.38 1.37 1.36 1.36 1.36

36.1 39.5 40.8 41.8 42.2 41.1 40.1

0.61 0.60 0.60 0.59 0.56 0.54 0.52
15 1.32 1.30 1.29 1.27 1.13 1.06 1.01

60.8 64.2 56.1 26.7 12.7 7.48 7.90

0.60 0.59 0.57 0.52 0.52 0.50 0.51
aaasss 22.5 1.32 1.28 1.22 0.99 0.99 0.96 0.96

56.7 51.2 19.6 6.70 4.80 17.1 109

0.61 0.58 0.64 0.52 0.50 0.69 1.53
30 1.38 1.22 1.38 0.98 0.95 1.31 3.11

53.4 41.3 7.10 3.70 28.7 1340 843

0.59 0.65 0.59 0.50 0.50 1.48 2.10
37.5 1.28 1.41 1.18 0.96 0.94 3.00 4.54

49.5 25.9 3.51 14.6 237 756 3031

0.67 0.65 0.51 0.50 1.39 1.81 2.67
45 1.48 1.42 1.00 0.97 2.86 3.81 5.70

46.3 10.2 3.50 89.1 514 1154 2022

The performance manifold, concerning each of the metrics, is visually represented in Fig-

ure 4.9. These manifolds allow us to conclude that the influence of parameters as and bs on the

overall performance is not linear. Instead, it is a particular combination of both that may lead to

a reasonable volume of costs. This was somewhat expected, as as dictates the steepness of the

sigmoid function, hence the intensity compression, and bs sets the threshold of the sigmoid, con-

trolling the range of intensities that produce lower costs. The parametrisations highlighted in bold
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Figure 4.9: Manifolds showing the average A* performance when using Eq. 4.8, and how it varies
according to the parametrisation (as, bs). Logarithmic scales were used for the sake of clarity.

in Table 4.2 were the ones reaching better trade-off concerning path detection accuracy and time

expended. In a clinical setting like the one described in this Section, where the manual analysis

of the data may easily reach a couple of hours, having a semi-automatic algorithm that takes a

dozen of seconds to detect an intramuscular path is not problematic. Even then, our methodol-

ogy was able to reach very interesting compromises. For example, the parametrisation (as = 45,

bs = 0.60) was able to attain one of the best path accuracies (Euclidean and Hausdorff distances

of 0.51± 0.14 mm and 1.00± 0.39 mm) and also be very fast (3.50± 6.5 s). For reference, an

Intel Core i7-4500U CPU @ 1.80 GHz 2.40 GHz with 8 GB of RAM was used. An example of

an extracted intramuscular path using this configuration is present in Figure 4.10.

The previous version of the algorithm had average Euclidean and Hausdorff distances of, re-

spectively, 1.06± 0.32 and 2.44± 0.92, taking an average of 15.00± 14.76 s. Therefore, for

appropriate parametrisations, the proposed minimum cost path approach is able to extract the op-

timal intramuscular pathways at sub-voxel accuracy, and taking little time to do so. This makes

us more confident that these algorithms are suitable to be incorporated into a software aiming to
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Figure 4.10: Example intramuscular course extracted by the proposed minimum cost path method,
for as = 45 and bs = 0.60.

Figure 4.11: 3D representation of the anterior fascia of the abdominal muscle and the extracted
DIEP tree from one hemiabdomen.

support the DIEP flap preoperative planning task. The detection of the perforators is also a step

towards the efficient creation of 3D models which may be of great relevance to the surgical team.

In Figure 4.11, we show a representation of one of the DIEP trees extracted by the methodology

presented here.
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4.1.5.2 Perforator characterisation

From the 40 CTAs available in the considered dataset, 180 perforators have been manually iden-

tified pre-operatively by the experts, and 183 by the user running the proposed algorithm. A total

of 234 vessels were confirmed intra-operatively (ground truth). From those, a total of 129 vessels

were identified simultaneously by both the manual and semi-automated methods.

A statistically significant difference was detected when estimating calibres using the manual

and software methods, p ≈ 1e−5 (128 degrees of freedom), and the effect size was medium,

r = 0.39. However, the paired sample t-test revealed no statistically significant difference when

estimating the calibres of the perforators selected for the flap using the manual and software meth-

ods, p≈ 0.44 (40 degrees of freedom), and the effect size was small, r = 0.12. Figure 4.12 shows

(a)

(b)

Figure 4.12: Calibre estimation differences between the software and manual reporting when
considering: (a) all perforators simultaneously detected by both methods; (b) only the perforators
included in the flap.
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the distribution of the differences between the calibre estimates of both methods when considering

all the perforators or only the ones that ended being included in the flaps.

A statistically significant reduction of the median absolute error of estimated calibres was ob-

tained by using the software, regarding perforators having calibres larger than 1.5 mm, p≈ 2e−3,

with a medium effect size, r = 0.26. However, using the software led to a statistically significant

increase of the median absolute error when estimating the calibre of perforators having a calibre

less than or equal to 1.5 mm, p≈ 6e−4. The effect size was medium, r = 0.34. Figure 4.13 shows

the distribution of the absolute errors of both methods when comparing with the intra-operative

measures of, respectively, perforators having calibre larger than 1.5 mm, and the ones having

calibre less than or equal to 1.5 mm.

(a)

(b)

Figure 4.13: The distribution of the absolute error of calibres estimated by the automated and man-
ual methods when compared with the reference surgical findings: the distribution for perforators
with (a) calibre larger than 1.5 mm, and for the ones having (b) calibre less than or equal to 1.5
mm.
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Regarding the software estimates of where the perforators pierce the fascia, horizontal error

was not statistically significant, p≈ 0.09 (170 degrees of freedom), and the effect size was small,

r = 0.13. However, vertical error was statistically significant, p≈ 0.02 (170 degrees of freedom),

even though the effect size was also small, r = 0.18. Figure 4.14 shows a representation of the

differences between the location estimated by our methodology and the manual findings. Regard-

ing error in height, the average absolute error was 3.2± 2.4 mm, whereas the horizontal average

absolute error was 2.5±2.0 mm.

Figure 4.14: Comparison of the automated method with manual analysis when estimating the lo-
cation where the perforator pierces the anterior fascia. Each point represents for a given perforator
the vertical and horizontal error when considering the manually retrieved location as the ground
truth.

The results allow to perceive some merits but also limitations of the semi-automatic approach

when compared with the manual analysis. It was more adequate at measuring the calibre of larger

perforators (≥ 1.5 mm) but also shown a tendency to overestimate the calibre of the smallest ones.

Regarding the location where the perforators pierce the fascia, even though there was a small error

regarding vertical position (2-3 mm), it was not relevant in clinical practice, since perforators are

approached carefully during dissection in order to prevent damage.

The majority (88%) of the perforators included in the flaps were co-identified by both methods,

showing that the results of the semi-automatic methodology can be an option for this particular

scenario. Despite having very challenging SNR, the DIEP vessel tree has a relatively simple

network such that centreline-based approaches are the framework of choice amongst traditional
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algorithms for blood vessel segmentation. Additionally, such methodology also facilitates the lo-

cal characterisation of blood vessels, which is essential in this scenario. Although the proposed

pipeline is not completely automatic, the effort required by the user is significantly reduced. The

manual analysis takes between 2-3 h to be conducted, whereas the semi-automatic approach usu-

ally takes around 30 min. Moreover, these algorithms make it easier for the user to interact with

them in case errors are spotted. As they output a sequence of vessel centreline points, it is easy to

manually manipulate the output to correct eventual mistakes.

These results are promising in the sense that the semi-automatic methodology was capable

of delineating and characterising the perforators with an adequate performance, reducing signifi-

cantly the operator-dependent analysis and many of the time-consuming steps (gaining at least 2 h

per patient).

4.1.6 Prototype software

The promising results obtained in the aforementioned experiments motivated us to design a prelim-

inary prototype that shall be included in the clinical pipeline and undergo further validation. The

aim will be to gather input from clinicians about the usability of such tool and other nice-to-have

functionalities.

The interface of the prototype is shown in Figure 4.15, where the data of a patient has al-

ready been loaded. As can be noticed, this version of the prototype already includes the required

functionality to conduct the main steps of the algorithm, such as defining the volume of interest,

automatically finding the fascia in that volume, and also conducting the perforator extraction step.

In addition, controls to select which detections are visible and also to clear previous findings are

available.

Figure 4.15: Main prototype interface showing the data of a patient.
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After the volume of interest has been defined, the visualisation panel shows only the intensity

data at the region of interest, as shown in Figure 4.16. This allows the clinicians to more easily

focus on the structures of interest while scrolling through the data.

Figure 4.16: Main prototype interface after selecting the volume of interest.

The detection of the fascia is initiated with a simple button click. As soon as the fascia is

detected, it is possible to conduct the perforator extraction step, after the required user landmarks

have been defined. Figure 4.17 illustrates what is seen in the visualisation panel after conducting

fascia and perforators detection.

We provide a 3D visualisation option, due to the relevance of observing how the different

structures are arranged in a 3D environment. This is one of the main limitations of the current

manual pipeline, as only delivering a report (an example is provided in Figure 4.18) and observing

2D slices limits 3D comprehension. The prototype allows to render the extracted fascia layer

and perforators in a 3D environment, being possible to control the zoom and rotate the data.

Figure 4.19 demonstrates different perspectives of a particular case.

In the future, we would like to include other important functionalities in the prototype, such as

describing the characteristics of the perforators (calibre, tortuosity and general course), providing

an automated reporting of the findings, and improving the 3D visualisation options. It would be

interesting to detect and show other neighbouring structures, in order to better depict the local

anatomy and provide more relevant landmarks. Additionally, we would like to explore more

automated ways of characterising the subcutaneous part of the perforators, which seems the most

plausible to do so, as the SNR at that region is not as low as the more challenging intramuscular

one. For that, we plan to use the volume of vessel enhanced data and consider a segmentation

based on hysteresis thresholding. Some preliminary experiments lead to interesting results and

we would like to further explore this idea. As shown in Figure 4.20, this algorithm is capable
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Figure 4.17: Detection of the fascia (white points) and the centrelines from the subcutaneous (blue
points) and intramuscular (red points) courses of perforators.

Figure 4.18: An example report of the manual analysis of the DIEPs.
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Figure 4.19: 3D visualisation of the extracted fascia layer and perforators. Blue and black lines
represent, respectively, the subcutaneous and intramuscular courses of the perforators.

Figure 4.20: 3D visualisation of the results obtained when using the automated approach for
subcutaneous course extraction. Red and black lines represent, respectively, the subcutaneous and
intramuscular courses of the perforators.

of extracting the more complex subcutaneous structure of the perforators, including ramifications

and anastomoses between different perforators. This allows the surgical team to better understand

the volume each perforator vascularises and lead to better preoperative planning when picking the

optimal perforators to include in the flap.

4.1.7 Summary

In this Section we proposed an improved version of our pioneer semi-automatic algorithm for the

extraction and characterisation of the DIEP vessel tree, which is essential during the preoperative

planning of breast reconstruction through the DIEP flap procedure.

A first set of experiments allowed to conclude that the proposed modifications improved the

extraction of these blood vessels, both in terms of accuracy and time expended. A second experi-

ment in a larger version of the dataset looking to compare the findings of the proposed method with
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those retrieved manually by the radiological team was conducted. Regarding calibre estimations,

there was a statistically significant difference between both methodologies, however, when consid-

ering only perforators which ended being included in the flap, no statistical significant difference

was found. Having the calibres measured during surgery as reference, the automated method

showed smaller median error in larger perforators (the most commonly included in the flap) yet a

larger median error in the smaller ones, when comparing with the manual analysis. With regard to

the estimation of the location where the perforators pierce the anterior fascia, having the manual

findings as reference, the automated method had no statistical significant horizontal error, however

a statistical difference in vertical error was found. Nonetheless, the effect size was small and it

does not have much impact in practice.

These experiments are promising and support our conviction that it is feasible to design a CAD

algorithm to support the clinicians who are responsible for the preoperative analysis of the DIEPs,

leading to more objective and fast results. A prototype software providing a simple interface to

conduct our proposed methodology was created. In the future, we want to handle this software

to the Breast Unit of Champalimaud Foundation in order to acquire input on its usability and

suitability, and also further validating the algorithm in a more clinical context. Augmented reality

systems would be interesting to consider in this scenario, given that the simultaneous visualisation

of the data and the extracted DIEP tree would give a better perception to the surgeons of the 3D

arrangement of the structures of interest.

4.2 Retinal fundus vessels

The retina is a tissue layer in the eye of vertebrates that participates in the production of nerve

impulses that go to the visual cortex of the brain. Its vascularisation is easily assessed in a non-

intrusive manner by photography-based mechanisms, such that fundus imaging is often used as a

diagnostic means of medical conditions affecting the morphology of vessels, such as hypertension,

diabetes, arteriosclerosis, and cardiovascular disease [181]. A more detailed discussion on the

relevance of this topic can be found in Chapter 1.

The manual analysis of blood vessels by experts is a very time consuming and tedious process.

This becomes even more evident in scenarios where large volumes of data are collected in a short

time lapse, as is the case of diabetic retinopathy screenings [182]. Hence, CAD algorithms for

the segmentation, analysis, and identification of relevant findings are highly welcome, in order to

support the activity of these clinicians.

Despite the success of early DL approaches applied in the scenario of retinal vessel segmenta-

tion [153], they are quite slow (≈ 90 s per image) during prediction as they must divide an image

into a set of patches and classify each of them to obtain a segmentation map. Even though that time

may not be prohibitive in many applications, it can quickly induce a bottleneck during a screening

programme, where many people are assessed and, ideally, results should be quickly obtained.

In this Section, we describe the supervised FCN we have proposed to automatically segment

the retinal vessels at a single step, even when trained in a patch-wise fashion (see Figure 4.21). Our
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Figure 4.21: FCNs take images of arbitrary size, allowing to combine patch-based training and
image-based prediction.

design strongly takes into account the time efficiency at the prediction phase, given that we seek an

automated model that is adequate for screening programs. In addition, we also avoided employing

pre- and post-processing steps, which are commonly taken into account in the literature. Note that

by pre-processing we refer to methods such as Contrast Limited Adaptive Histogram Equalisation

and the use of Wavelet transforms, not to data normalisation. Our motivations are three-fold:

• in theory, a large number of non-linear functions is capable of modelling the more irregular

structure of raw data, even though, in practice, an adequate pre-processing tends to facilitate

the learning process, especially in scenarios where the availability of data is more limited.

Nonetheless, it is not completely clear how this translates to each application and network

architecture, and whether it can be mitigated by employing adequate data augmentation.

• most pre- and post-processing steps introduce a further significant burden in terms of com-

putation time, adding up to the total time expended in the prediction step;

• it becomes difficult to understand in the end how each module is contributing to the final

performance obtained if a proper experimental setup is not conducted. This is especially

true when using a particular Deep Neural Network (DNN) design and also post-processing,

and only reporting the performance of the complete pipeline, which does not allow to grasp

the capabilities of the network itself.

Following the discussion above, we use raw color fundus images in our experiments, in order

to understand if our network design is able to reach state-of-the-art performance and, simultane-

ously, keep the prediction process as simple as possible. A FCN was proposed in the past [156],

however its performance is significantly inferior to the best performing methods, indicating that

other specific network design options may not have been ideal for retinal vessel segmentation.
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4.2.1 Single-resolution Fully Convolutional Network for Vessel Segmentation

Here, we discuss the motivations and preliminary empiric findings that led us into designing a

FCN adapted to the specific task of vessel segmentation in raw color fundus images.

4.2.1.1 Fully Convolutional Networks

CNNs have revolutionised the field of computer vision, given their combination of deep hierar-

chical feature extraction (sequence of convolutional layers) and classification (FC layers) blocks.

This was the type of deep neural network used in [153], where very small patches of the retina

were fed into the model and it outputted the probability of the centre pixel being a vessel. This

highlights one of the problems of using typical CNNs for segmenting vessels, which is the need to

divide a given image into a very large number of small patches and classify each of them, yielding

a tremendous computational cost. A second problem is that fully connected layers force all the

input images to have the same size.

A FCN design is a more adequate choice for segmentation problems, since it does not use

fully connected layers. Thus, it is not mandatory to divide an image in order to obtain a complete

segmentation map, which is crucial whenever we require fast predictions, as is the case of retinal

screening programs, where a high volume of data is quickly generated. The inputs may also have

varying size, making this design much more adaptable to different imaging conditions. It allows

us to train on smaller patches of the images and later still be able to obtain single-pass predictions

of the entire images, as is represented in Figure 4.21. Note that performing patch-wise training

is an engineering option which facilitates avoiding wasting computational effort with portions of

the images that do not contain information of the retina fundus, and helps managing the available

memory.

4.2.1.2 Specific design considerations

After motivating the use of a FCN design for the segmentation of retinal vessels, now we delve

into more specific aspects of the proposed network architecture, discussing some options we took

based in previous works and empirical findings.

Spatial resolution Pooling or strided convolutions are commonly used to induce higher-level

features to encode more neighborhood information. Recent results [153] suggest that pooling

operations do not improve the performance of networks that are trained in small images. In pre-

liminary experiments, we found that indeed a single-resolution deep network was more capable

than a U-Net shaped model when extracting small capillaries. Even though the latter is able to

combine low- and high-scale features, it seems that a deeper network at a fine scale is able to ob-

tain better representations of small structures of interest, as is the case of very small vessels. Thus,

in this work, the image resolution was kept across the entire network, contrarily to the previously

proposed FCN of Dasgupta and Singh [156].
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Activation units All intermediate non-linearities were given by a Leaky ReLU:

f (x) =

x if x > 0,

ax otherwise
(4.10)

where x represents the outcome of the previous convolution and a was set to 0.2. It was used over

a ReLU just to allow the network to learn even for negative inputs. In the last layer, we used a

Sigmoid activation unit, since we are dealing with a pixel-wise binary problem.

Batch normalisation Whenever the statistics at test time differ from the ones found during

training, batch normalisation becomes problematic. In fact, this is the case when a model is trained

in small retinal patches and, during prediction, is applied to entire retinal images, whose statistics

will be inevitably different. In preliminary experiments, we found that using batch normalisation

was indeed hurting the performance of the models, thus it was not considered in the final design.

Dropout Turning off some computational connections along the network was useful to create

more redundancies and thus obtain more robust models. We found it was also useful to apply

dropout at the initial levels of the model, in order to add some noise to the initial representations.

Loss function Neural networks targeting binary segmentation problems usually minimise the

BCE loss, a pixel-wise criterion that exponentially increases as the network becomes more con-

fident when committing a mistake. Notice however, that this loss is agnostic to class imbalance,

thus it naturally biases models to be more confident identifying the most common class, which in

our case, is the background. We are interested in alleviating this effect, in order to obtain models

with good sensitivity and that do not simply ignore narrow vessels. Weighting differently each

class was an option we considered for reaching fairer models. Furthermore, we used the recently

proposed Focal Loss (FL) [183], an extension to the BCE loss that puts more focus in the misclas-

sified examples:

L f ocal(p,y;α,γ) =−
(

y ·α(1− p)γ · log(p)+(1− y) · (1−α) · pγ · log(1− p)
)

(4.11)

where p ∈ [0,1] is the probability of class 1 (vessel) outputted by the network, y ∈ {0,1} is the

binary target variable, γ ≥ 0 is a focusing parameter, and α ∈ [0,1] allows to give more weight

to samples of a certain class. γ was set to 2 in this work. Even though the FL by itself is also

agnostic to class imbalance, by performing hard training, it helps inducing the model to not ignore

the potential hardest cases, such as small capillaries.

After all these considerations, architecture and hyper-parameter tuning was conducted (see

Section 4.2.2.2). The final design we considered for segmenting vessels from raw color fundus

images is represented in Figure 4.22.



4.2 Retinal fundus vessels 81

Figure 4.22: Single-resolution fully convolutional network proposed for segmenting vessels in raw
fundus images.

4.2.2 Experiments

The model is evaluated on the retinal fundus datasets described in Section 2.1. The metrics used

to assess its performance will be briefly described here, and then we provide details regarding how

hyper-parameter tuning was conducted to obtain the final neural network design.

4.2.2.1 Model Evaluation

To evaluate how well a map of vessel probabilities fits the ground truth, we calculated the metrics

that are commonly used in this task, which are accuracy, sensitivity, and specificity:

Accuracy =
T P+T N

T P+T N +FP+FN
(4.12)

Sensitivity =
T P

T P+FN
(4.13)

Speci f icity =
T N

T N +FP
(4.14)

where TP, FP, FN, and TN are the true positive, false positive, false negative, and true negative

detections. A limitation of these metrics is that they are evaluated at a threshold of 0.5. Thus, we

also considered the commonly used AUC, which we believe is more ideal for this task, as it better

depicts how well a method separates both classes in different operating points.

4.2.2.2 Implementation details

The architecture and hyper-parameters were tuned by randomly picking three images from the

DRIVE training set for validation purposes and using the remaining ones to train varying model

configurations, according to the considerations detailed in subsection 4.2.1.2. Colour images were

solely normalised to the range [0,1]. At each training epoch, 500 batches of N patches of size
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M×M were fed to the network. Patches were randomly extracted from images at valid positions,

where valid means the centre pixel belongs to the retinal fundus. Data augmentation was con-

ducted via random transformations including vertical or horizontal flipping, and rotations in the

range [−π/2,π/2]. We used the Adam optimiser with the parameters as provided in the original

work [184], with the exception of the learning rate, which was initialised to 1e−4 and decreased

to half every time the validation loss did not decrease for 10 epochs. A loss decrease was only

considered if it surpassed the threshold of 1e−4. Early stopping occurred if there were 30 epochs

without improvement. Our preliminary experiments achieved best performance in the validation

set using the network design present in Figure 4.22, and for N = 16 and M = 64, even though

these hyper-parameters did not have a significant impact in the performance of the model.

We trained our final FCN design for 30 epochs. Starting from epoch 10, we performed linear

learning rate decay by multiplying it by a constant of 0.75, and after epoch 20 the constant was

changed to 0.5. Concerning DRIVE, we trained the network in the 20 images of the training

set and evaluated it in the 20 images comprising the test set. Regarding STARE and CHASEDB1,

datasets with few images and where a prior division does not exist, we followed the same approach

of other researchers [153], which resorted to the leave-one-out validation.

4.2.3 Results and discussion

The results obtained by conducting the described methodology in the referred databases are present

in Table 4.3, along with the performance of the most relevant state-of-the-art approaches. A brief

description of each of the works being compared is present in Chapter 3. It is important to note

that the method of Azzopardi et al. [68] belongs to the unsupervised category, and that the work

of Fraz et al. [139] uses traditional machine learning. The rest of the methods included use deep

learning techniques.

The analysis of the results shows that our FCN design is able to combine efficiency and strong

predictive capabilities, even when using raw fundus images and not considering pre- and post-

processing. By comparing the AUC of the methodologies, it is possible to conclude that the

proposed methodology achieved competitive performance in all the databases, even though it is

not the top performing model at any of them. It is interesting to see that it is not possible to pick

a single best method, since the best-performing ones are different among the considered datasets.

In fact, some of these have lower performance than the proposed design in the datasets where they

do not reach state-of-the-art performance. Among the databases, our method deviated more from

the best-performing one in the STARE dataset. We believe this is due to the high variability of the

raw color information among the images of this database. This may indicate that preprocessing

techniques leading to more uniform images are relevant here. Regarding DRIVE, we also tested

α = 0.6 (give more weight to the vessel class) to better show the compromises we can get between

sensitivity and specificity. Note that by varying α , we could easily achieve models with very high

sensitivity or specificity, thus we emphasise that it is the compromise that is relevant. Besides, this

shows that the AUC metric is the most adequate to inspect the true model’s capacity to distinguish

both classes. We did not conduct this experiment in the other databases, since the number of



Table 4.3: Performance of the proposed methodology and state-of-the-art approaches in the DRIVE, STARE, and CHASEDB1 databases. Accuracy,
sensitivity and specificity are abbreviated as acc, sen, and spe, respectively. Best results are highlighted in bold.

Method
DRIVE STARE CHASEDB1

AUC acc sen spe AUC acc sen spe AUC acc sen spe

Azzopardi et al. [68] 96.1 94.4 76.6 98.1 95.6 95.0 77.2 97.0 94.9 93.9 75.8 95.9

Fraz et al. [139] 97.5 94.8 74.1 98.1 97.7 95.3 75.5 97.6 97.1 94.7 72.2 97.1

Liskowski and

Krawiec [153]

balanc.-SP, s = 3 97.9 95.1 84.6 96.7 99.3 96.7 92.9 97.1 98.2 94.4 91.6 94.7

balanc.-SP, s = 5 97.9 95.3 81.5 97.5 99.3 97.0 90.8 97.7 98.4 95.8 87.9 96.7

no-pool-SP, s = 5 97.9 95.4 78.1 98.1 99.3 97.3 85.5 98.6 98.2 96.3 78.2 98.4

Oliveira et al. [160] 98.2 95.8 80.4 98.0 99.0 96.9 83.2 98.6 98.6 96.5 77.8 98.6

Zhang and Chung [158] 98.0 95.0 87.2 96.2 98.8 97.1 76.7 99.0 99.0 97.7 76.7 99.1
Jiang et al. [130] 98.1 96.2 75.4 98.2 99.0 97.3 83.5 98.5 98.1 96.7 86.4 97.4

Jin et al. [159] 98.6 97.0 78.9 98.7 98.7 97.3 74.3 99.2 98.6 97.2 82.3 98.2

Proposed
α = 0.5 98.2 95.6 80.3 97.9 98.7 96.5 82.9 98.0 98.6 96.5 82.1 98.1

α = 0.6 98.2 95.4 85.0 96.9 - - - - - - - -
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models that are trained in a leave-one-out validation setting is very high. The use of FL over

BCE lead to an improvement of 0.2 percentage points regarding the AUC metric, when evaluating

the system in the DRIVE database for α = 0.5. The other metrics did not significantly change

with this loss, meaning that it mostly induced the system to become slightly more confident on

its predictions. Then, this seems to support that the single-resolution deep architecture was the

main reason for our system to significantly outperform the FCN proposed in [156]. Figure 4.23

shows the best and worst predictions outputted by the proposed methodology for the considered

databases, regarding AUC. It is possible to visualise that the model is able to cope with challenging

imaging conditions, and even with the presence of severe pathology (4th row of Figure 4.23).

Using a Nvidia GeForce GTX 1080 Ti GPU, it took us 2.1, 2.7, and 6.5 s to make a pre-

diction for an image in DRIVE, STARE, and CHASEDB1 databases, respectively. The method

of Liskowski and Krawiec [153] takes on average 92 s using the Nvidia GTX Titan GPU. Even

though the GPUs are not identical, this strongly suggests that our method is significantly faster,

thus being more adequate for real-time applications. The other deep learning methods in Table 4.3

also report that it only takes a couple of seconds to conduct prediction, however it is not clear

whether this time includes the pre- and post-processing steps.

4.2.4 Summary

In this Section, we described the motivation behind using a FCN for the particular case of retinal

blood vessel segmentation, and discussed the design options we took to do it using raw retinal

fundus images. The proposed network is more convenient and efficient than some of the state-

of-the-art approaches, as it allows to make predictions for unseen images of different sizes at a

single step and avoids time-consuming pre- and post-processing steps, traits that become relevant

in screening scenarios.

Even though the proposed method did not surpass the best-performing state-of-the-art methods

in any of the considered datasets (considering AUC), it reached competitive performance. It is

important to refer that the best performing methods in each dataset are different, and our algorithm

surpasses some of them in the other datasets. This shows that the considerations we made do

not necessarily compromise the performance in this task, as the proposed design competes with

the state-of-the-art approaches. Among all the datasets, it was in STARE that our methodology

deviated more from the best performing method. In this dataset, the raw images are significantly

different from each other, such that an adequate pre-processing may indeed be helpful to achieve

better results. Thus, for future work, it would be interesting to study cost efficient pre-processing

techniques, in order to avoid introducing a relevant bottleneck during prediction time.

4.3 Main Contributions and Final considerations

This Chapter described the work conducted in two very distinct applications. First, the segmen-

tation of the DIEP vessels in CTA scans, a problem involving the analysis of 3D data and where

there is no publicly available datasets with labels. This motivated the design of a more traditional



4.3 Main Contributions and Final considerations 85

best
DRIVE

worst
DRIVE

best
STARE

worst
STARE

best
CHASE

worst
CHASE

Figure 4.23: Best and worst results for each database, concerning the AUC metric. From left to
right, raw color fundus image, probability map outputted by the proposed methodology, segmen-
tation obtained by thresholding probabilities at 0.5, and ground truth. Notice that the blood vessel
masks are inverted for visualisation purposes.
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computer vision pipeline to address the problem. Our pioneer work on this topic started during

the MSc thesis [24] and was improved during the PhD. In addition, a first set of clinical validation

was conducted in order to better understand the potential of the framework.

Regarding the second scenario, the segmentation of retinal blood vessels in fundus photos, 2D

data is targeted instead and there are several available databases including gold standard annota-

tions which can be used for supervised machine learning research. We explored the efficient FCN

architecture and showed that our particular design choices were suitable for this task, even without

conducting pre- and post-processing steps.

These works were developed having specific applications in mind, such that the design of the

methodologies was inevitably influenced by the particularities of each of them. In the case of

DIEPs, the prior knowledge concerning the local anatomy and the significantly different SNR of

their subcutaneous and intramuscular parts motivated us to employ a divide-and-conquer method-

ology to simultaneously consider accuracy and efficiency. The little amount of data has favoured

the employment of a more traditional-based computer vision algorithm. Even though the complete

pipeline was specifically designed for the DIEP extraction, it is still expected that its single com-

ponents are useful in other similar scenarios, such as the extraction of perforating vessels from

other regions of the body.

Concerning the retinal vessels, the wide availability of data opens the possibility of success-

fully performing experiments based on deep learning. A model that was learned with supervi-

sion has a natural tendency to capture particularities of the training data which will not be useful

when making predictions over sufficiently different images. Therefore, models learned on a given

dataset commonly do not generalise properly to different ones, even if they depict the same blood

vessel tree, given that illumination, imaging artefacts, noise, and other particularities of the data

make them very different from a computer point of view.

These limitations are not relevant when we know beforehand that the upcoming data is not

significantly different from the data we used to obtain prior knowledge or train a DNN. In this

case, application-specific algorithms tend to excel as they strongly focus the given task. This is

the reason why this kind of methods has been more successful in real-life scenarios, as most of

the settings are heavily controlled and the data conforms to an expected pattern. Even then, there

are situations where models generalising well are indeed crucial. In the particular case of blood

vessel segmentation, it is infeasible to re-calibrate the hyper-parameters of a traditional computer

vision method or obtaining gold standard annotations of data for retraining a DNN, whenever the

acquisition procedure is changed and/or a slightly different vessel tree shall be targeted. There-

fore, there is a natural growing interest in methodologies that are powerful and simultaneously

generalise well to similar tasks.



Chapter 5

Deep Vesselness Measure for Increased
Generalisation

The content of this Chapter is based on the following work:

• R. J. Araújo, J. S. Cardoso, and H. P. Oliveira, "Deep Vesselness Measure from Scale-

Space Analysis of Hessian Matrix Eigenvalues", In Iberian Conference on Pattern

Recognition and Image Analysis, 2019.

Blood vessel imaging, as every procedure conducted in clinical practice, naturally evolves

throughout time. The introduction of new medical equipment and/or the proposal of novel imaging

protocols impact the appearance of blood vessels and the surrounding tissues in these medical

images. To better perceive this, it suffices to assess the differences between retinal images coming

from the different datasets presented in Section 2.1. Moreover, the advancement of technology

and medical expertise creates the possibility for the emergence of novel treatments and techniques,

which may require the imaging of structures which were not studied in the past. One example of

this is the case of the DIEPs, whose analysis gained relevance after the introduction of the DIEP

flap breast reconstruction, as covered in Section 4.1.

The aforementioned factors introduce an important challenge to the computer vision com-

munity, which is the development of algorithms which generalise properly to similar domains.

Having methodologies which are capable of performing well in different but related domains en-

ables easy and fast deployment of computer vision solutions in new imaging pipelines. However,

the generalisation to unseen data is not easy to address. Approaches relying on deep learning

and which are able to get supervision from datasets of relevant size have been the ones achieving

best performance in the domains they have seen, nonetheless they typically generalise poorly to

different ones. This was shown in Figure 1.4, where it is possible to see that a U-Net [23], a

state-of-the-art model for segmentation of biomedical images, has its performance significantly

decreased on unseen domains. This is not surprising, since supervised models will typically use

their entire capacity to fit the training data distribution. Yet, this problem also affects many tra-

ditional computer vision algorithms, especially the most competitive ones. Even though these
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rely mostly on strong prior knowledge about a given application, they commonly employ sev-

eral heuristics and rule-based methods to tune the methodology to a particular scenario and see

their performance indicators increase. Even then, most unsupervised approaches do generalise

better to related domains, since properly encoding prior knowledge tends to generalise better than

data-hungry methodologies (when domain shift is sufficiently large).

Vessel enhancement based on the Eigen decomposition of the Hessian matrix is one of the most

widely used enhancement processes, due to natural formulation for both 2D and 3D scenarios,

good generalisation to different data distributions, and also high noise suppression capabilities.

Several hand-designed metrics combining the eigenvalue information were proposed in the past,

as already described in more detail at Section 3.1.2. Even though these metrics rely on strong prior

knowledge of the problem, they usually end discarding a lot of details due to how they combine

multi-scale information, thus being suboptimal.

In this Chapter, we describe a methodology aiming to find a more complex and optimal vessel-

ness measure mapping the eigenvalue information at different scales into the final vessel enhanced

image, by means of a DNN. By using supervision, our goal is to obtain a deep vesselness measure

that combines the advantages of both deep learning methodologies (finding deep complex func-

tions) and using prior knowledge (increased robustness to data coming from different distribu-

tions). Recent research considered the implementation of Frangi’s algorithm as a neural network,

by careful initialisation of its weights [185]. The authors then used supervision to update weights

responsible for the computation of the Hessian, and coefficients controlling the relevance of the

different eigenvalue ratios used in Frangi’s vesselness. Note, however, that the first option strongly

relaxes the use of prior knowledge, as the network is able to learn features completely different

from the Hessian, thus regularisation may be lost. Additionally, the authors do not consider ex-

ploring other functions mapping the Eigen maps to the final vesselness, being restricted to the use

of the maximum operator across the responses obtained at different scales, which is suboptimal.

5.1 Traditional vesselness measures

Given a D-dimensional image I, the type of structure present at a given location x= (x1,x2, . . . ,xD)

may be inferred through the analysis of the Hessian matrix at x, a D×D matrix encoding the

second order derivatives of the intensities:

Hi j(x,σ) = σ
γI(x)∗ ∂ 2G(x,σ)

∂xi∂x j
, i, j = 1, . . . ,D (5.1)

where G is a D-variate Gaussian, σ denotes its standard deviation, dictating the scale at which

the image is being analysed, γ is a constant that normalises responses obtained at different scales,

allowing a fair comparison [80], and ∗ represents the convolution operation.

The Eigen analysis of H(x,σ) produces D eigenvectors representing the principal directions

that decompose the second order structure of the image at x. Each of them has an eigenvalue

associated, a scalar whose magnitude and signal allow to characterise the intensity curvature along
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the corresponding eigenvector. From now on, let us consider that the Eigen decomposition of the

Hessian at a location x,

L(x,σ) = eig(H(x,σ)) (5.2)

produces a set of eigenvalues λ1,λ2, . . . ,λD, such that, |λ1| ≤ |λ2| ≤ . . . ≤ |λD|. These provide a

concise description of the local geometry at x, allowing the design of functions that respond to

particular geometries. In this context, a vesselness measure is any function f of the eigenvalues

that is suited for the enhancement of blood vessels:

ν(x,σ) = f (L(x,σ)) (5.3)

A common assumption on vessel geometry is it being piecewise linear, that is, locally, it resembles

a cylinder. As in this work we deal only with 2D images, we restrict the following discussion to

this scenario. Nonetheless, extension to 3D is straightforward and addressed in the aforementioned

works. The most commonly used vesselness measure is Frangi’s [75], which for the 2D case is

given by:

νF =


0 if λ2 ≤ 0,

exp
(
− R2

B
2β 2

)
·
(

1− exp
(
− S2

2c2

))
otherwise

(5.4)

where RB = |λ1|/|λ2| is a ratio measuring local similarity to a blob through eccentricity of the

second order ellipsis, S =
√

λ 2
1 +λ 2

2 is the amount of local structure, and β and c, control the

relevance of those quantities, respectively. This formulation highlights vessels which are darker

than the background, but inverting the conditions of (5.4) is enough to detect brighter vessels

instead. In the case of Jerman’s vesselness [79], assumptions are slightly relaxed in order to better

model aneurysms and bifurcations:

νJ =


0 if λ2 ≤ 0∨λp ≤ 0,

1 if λ2 ≥ λp/2 > 0,

λ 2
2 · (λp−λ2) ·

[
3

λ2+λp

]3
otherwise

(5.5)

where λp is a regularised eigenvalue for ensuring that robustness to noise is achieved in regions

with uniform intensity.

Regardless of the considered vesselness measure, the final enhanced image, V, is obtained by

combining the responses obtained at different scales σ , through a pixelwise maximum operation:

V(x) = max
σ1,...,σn

ν(x,σ) (5.6)

The traditional pipeline here described is represented in Fig. 5.1.
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I
(5.1)

H(σ1) (5.2)

H(σ2) (5.2)

H(σn) (5.2)

L(σ1) (5.3)

L(σ2) (5.3)

L(σn) (5.3)

ν(σ1)

ν(σ2)

ν(σn)

(5.6)
V

Figure 5.1: Multiscale pipeline of traditional vessel enhancement methodologies, where n denotes
the number of scales. Pixelwise Hessian matrix and corresponding eigenvalues are represented
as feature vectors for convenience. Our proposed design replaces the functions inside the dashed
rectangle by a DNN.

5.2 Proposed deep vesselness measure

Our proposed methodology replaces hand designed vesselness measures (see region delimited by

dashed lines in Fig. 5.1) by a DNN. Our motivation is twofold. First, mapping eigenvalue infor-

mation into a vessel probability (5.3) through hand-designed functions, despite being based on

prior intuition, is most likely suboptimal. Second, combining the responses at different scales by

a pixel-wise maximum operation (5.6) discards much of the information encoded at all scales and

fails to capture high-level local information that may be useful in challenging regions. Thus, we

replace those functions by a neural network having as input the concatenation of the eigenvalue

description, and as output a vessel probability map, as represented in Fig. 5.2. We use label super-

vision in order to update its weights, aiming to obtain a more optimal deep vesselness measure,

which is still regularised as we only provide the scale-space eigenvalue description.

(5.2)

L(σ1) L(σ2) L(σn)

merge
DNN

V

Figure 5.2: Proposed pipeline for vessel enhancement. A DNN learns a more complex vesselness
measure from the eigenvalue information.
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5.2.1 Neural network considerations

We modeled our DNN as an FCN [155], such that images seen at train and test phases may have

different sizes. This also allowed us to train our model in small patches of blood vessel images, and

still later obtain predictions for entire images at a single pass. This may be relevant due to memory

issues and to avoid training with unnecessary data, such as the black regions in retinal fundus

images. We considered patch-based training, which is not expected to affect the performance of

an FCN.

Batch normalisation [186] is especially useful in very deep networks, which was not the case

here. Additionally, care must be taken when the statistics of the data are not the same in the

train and test sets. Such difference may be a result of performing patch-based training, where,

for example, entire images of the retina have different statistics than small patches that were just

taken from the retinal fundus area. It may also naturally arise from training and testing in different

datasets. This last scenario is very relevant as one of the main advantages of traditional Hessian-

based methods is their good generalisation to other distributions of data. Thus, we did not consider

batch normalisation.

Recent findings [153] seem to support that reducing space resolution via max-pooling or

strided convolution does not always improve the performance of networks trying to capture small

details, as is the case of blood vessels. Preliminary experiments that we conducted support this,

such that slightly increasing the kernel dimension and keeping spatial resolution equal across the

entire network proved to be more effective. Having features already encoding neighbourhood

information as the input of our neural network may also contribute to learn interesting deep ves-

selness measures by only looking at a relatively small neighbourhood. Even then, we found that

using dilated convolution [187] in the intermediate layers improved the performance of the system.

An ideal vessel enhancement algorithm would output probability of 1 for every pixel belonging

to a vessel and probability of 0 otherwise. However, note that, for an adequate scale σ , and when

analysing pixels over the cross section of a vessel, it is expected that the Eigen decomposition of

the centre pixel is the one matching better the Eigen description of an ideal vessel (|λ1|<< |λ2|, in

the 2D case). This is the reason why vesselness measures such as Frangi’s enhance more the central

regions of vessels. Even though a DNN is able to find complex relations between eigenvalues and

thus learn effectively when hard labels are provided, in preliminary experiments, we found that

using soft labels (obtained by blurring the hard labels with a standard normal distribution) was

helpful. Nevertheless, as will be shown in Section 5.3, our design is still capable of enhancing the

peripheral regions of vessels extremely well.

The ReLU function was used as an activation function throughout the network and the last

non-linearity was a Sigmoid function. Regarding the loss function, we considered the BCE, which

is also adequate when soft labels are given. The Adam optimiser [184] was used to update the

weights. Other state-of-the-art considerations such as Dropout were also tested. The final FCN

design is represented in Fig. 5.3. More information on the tuning procedure is given in subsec-

tion 5.3.2.
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512 256 128 64 32

1-dilated conv., 5×5 kernel
ReLU activation

conv., 5×5 kernel
Sigmoid activation

Figure 5.3: FC design used in the experiments after tuning the network architecture. The first set
of features is obtained by doing convolution over the eigenvalue pile of features with 5×5 kernels
and no dilation.

5.3 Experiments and Discussion

In this Section, we start by briefly describing the datasets and metrics we used during the exper-

iments. Afterwards, we present the procedure that was followed to tune the network architecture

and its hyper-parameters, in order to reach the design presented in Fig. 5.3. Finally, we detail the

different experiments taken into account to show the properties of the proposed methodology and

present the obtained results.

5.3.1 Datasets and Metrics

At the time of this research, to the best of our knowledge, blood vessel 2D imaging datasets

containing the ground truth vessel masks only existed for the retinal case. This made us consider

supervision only from this type of vascular network. To conduct the experiments, we resorted to

the retinal datasets covered in Section 2.1, DRIVE [38], STARE [39], and CHASEDB1 [40]. To

compare the different algorithms, we have analysed their ROC curves.

5.3.2 Implementation details

Having in mind the considerations discussed in subsection 5.2.1, we tuned the architecture and

hyper-parameters using the DRIVE dataset. We randomly set aside three images from DRIVE’s

training set for validation purposes and used the remaining ones for training different model con-

figurations. In this work we did not conduct any preprocessing step, we simply selected the green

channel information and normalised it to the range [0,1]. We considered σ ∈ [1,11] with steps of

2. At each training epoch, we gave the models 300 batches of 8 patches of size 64×64. A total of

100 epochs were conducted. These values were empirically found to be appropriate in preliminary

experiments but their variation did not yield significant performance alterations. Patches were ran-

domly extracted from the field of view region of images. We considered data augmentation via

random vertical or horizontal flipping, and rotations in the range [−π/2,π/2]. The parameters of
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the Adam optimiser were initialised as described in [184]. The best performance in the validation

set was obtained when using the design represented in Fig. 5.3.

With the exception of DRIVE, the datasets do not have a prior split into train and test sets.

Thus, we considered the first 10 images of each for training purposes and the remaining were set

aside for testing. According to the experiment we conduct, different sets are used for training and

testing but details will be provided as necessary. The training procedure is conducted as described

before for network and hyper-parameter tuning, but this time all the available training data is used.

Frangi’s and Jerman’s enhancement responses were obtained using their Matlab implementations

and default parameters.

5.3.3 Results and Discussion

We start by considering the scenario where we train and test our model in the same dataset/domain

(yet in different sets of data). With this experiment, we aim to show that for a specific distribution

of data, it is possible to use deep learning to obtain more complex and optimal vesselness measures

than traditional ones. The ROC curves of the proposed and baseline methods, for the different

datasets, are shown in Fig. 5.4.

Figure 5.4: ROC curve of the proposed methodology when trained and tested in the same dataset.
The ROC curves of the baseline methods are presented for comparison.
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This shows that, when specific data distributions are targeted, we are able to obtain more

optimal vesselness functions than the traditional ones. This was expected, but note that tradi-

tional methods do not target specific dataset distributions, but instead a representation that gener-

alises well. Obviously, the more interesting scenario is to analyse what occurs when the proposed

methodology is used to enhance blood vessels in images coming from data distributions other than

the one(s) used during training. Thus, we now consider the scenario where we set the test dataset

aside and train using the remaining ones. The ROC curves of the system in such conditions are

again compared against the baselines in Fig. 5.5. It is possible to conclude that our system is

Figure 5.5: ROC curve of the proposed methodology when trained and tested in different datasets.
The ROC curves of the baseline methods are presented for comparison.

indeed capable of generalising well to data coming from distributions that were not available dur-

ing training. The proposed deep vesselness measure is then learning a complex mapping of the

eigenvalue information that is useful to extract general tubular-like structures, not only to capture

the particularities of a given data distribution. For very high false positive ratios, Jerman’s ves-

selness occasionally achieves higher true positive ratio, however note that such region is not ideal

for enhancement functions as it already comprises a large amount of noise. This is clearly seen in

Fig. 5.7, where our method proves to be much more robust to noise than Jerman’s one.
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Finally, we compare the generalisation capability of the proposed method against the well-

established U-Net [23] for biomedical image segmentation. Such network has much more capacity

and has increased flexibility as it is not restricted to use a given set of features, as we do in the

proposed methodology. Instead, it creates representations from the image itself. Fig. 5.6 shows

the ROC curves of both methods. They achieved similar performance in STARE but the proposed

Figure 5.6: ROC curves of the proposed methodology and a regular U-Net, when trained and
tested in different datasets.

approach generalised better for DRIVE and CHASEDB1. This shows that a careful regularisation

of deep neural networks, as we described in this Chapter, is a relevant mechanism to achieve

neural designs that generalise better to similar domains, even using significantly less parameters.

Powerful networks having access to raw images and supervision are able to learn a much larger

family of functions, and, while this generally allows to achieve strong performance in the same

domain of the training data, it inevitably promotes learning features which are more specific and

probably will not be as relevant for different distributions. By restricting the network to have

as input a feature space which is known to properly encode tubular-like structures, we constrain

the type of functions that can be learned. Therefore, the capacity of the model is likely to be

used to learn mappings that are more adequate to general tubular structures. We can also view

this regularisation as transforming an initial input space where samples coming from different
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domains are far apart (due to illumination, noise, artefacts, among other processes) into a proper

feature representation where they become more similar. Visual results of our method and the

baselines are provided in Fig. 5.7.

5.4 Main contributions and final considerations

This Chapter focused a topic that has been trending in the machine learning area, which is the

ability of generalising to new but related data distributions. Our approach to this challenge, in the

particular scenario of blood vessel segmentation, combined the strengths of two different types

of methodologies: i) the generalisation typical of algorithms relying on prior knowledge; and ii)

the capability of modelling complex functions by learning DNN models using supervision. To do

so, we extended traditional Hessian-based methodologies for the enhancement of blood vessels

in medical images. By replacing hand-designed functions mapping eigenvalue descriptions to the

final output with a shallow DNN, we were able to learn more optimal functions than traditional

vesselness measures. At the same time, when comparing with a U-Net which was fed images

instead of an eigenvalue description, our methodology generalised better to data coming from

distributions other than the ones used at training. This showed that our approach was able to embed

significant prior knowledge, thus helping to achieve good abstraction of what a blood vessel is.

Lately, there has been a lot of research regarding domain adaptation techniques, which apply

mechanisms that allow to better use the knowledge obtained for a given set of datasets (com-

monly regarded as source datasets) in the analysis of new data which is related but has a different

distribution (the target data). These methods are divided into unsupervised and semi-supervised

domain adaptation, according to whether no or some supervision from the target dataset is used

during model training. These frameworks tend to employ auxiliary tasks [131] and/or adversarial

losses [132] to promote the learning of features which are relevant for the different data distribu-

tions.

While our approach relied on a powerful yet simple description that is basis for all tubular

structures, domain adaptation techniques have been letting complex DNNs reach very promising

performances in target domains using a very small amount of labels or even no supervision at

all from target data. Therefore, despite the positive findings achieved with our proposed method-

ology, we believe that domain adaptation techniques are very promising and we would like to

consider them in future experiments. Additionally, we would like to extend our research to 3D

data, possibly exploring synthetic datasets during the training procedure, since tools such as Vas-

cuSynth [188] allow to readily generate large amounts of data and the respective ground truth

annotations.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.7: Blood vessel enhancements achieved by the baseline methods and the proposed ap-
proach: (a) example retinal fundus images; (b) ground truth vessel masks; and corresponding
enhancements by, respectively, (c) Frangi’s, (d) Jerman’s, (e) U-Net, and (f) proposed vesselness.
From left to right, image from DRIVE, STARE, and CHASEDB1. Concerning the U-Net and the
proposed method, training was conducted in all datasets, except the testing set. Frangi’s vesselness
was rescaled for visualisation purposes, since the signal at narrow vessels is usually small. The
masks are inverted for visualisation purposes.
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Chapter 6

Topology Coherence

The content of this Chapter is based on the following work:

• R. J. Araújo, J. S. Cardoso, and H. P. Oliveira, "A deep learning design for improv-

ing topology coherence in blood vessel segmentation", In International Conference on

Medical Image Computing and Computer-Assisted Intervention, 2019.

• R. J. Araújo, J. S. Cardoso, and H. P. Oliveira, "Topological blood vessel segmenta-

tion", arXiv, 2021

Despite all the progress that is being achieved in blood vessel segmentation lately, mostly

through the exploration of deep learning, the algorithms are still far from mimicking expert be-

haviour. When considering the typical pixel-wise metrics, supervised learning has been able to

produce models which reach expert performance, even though their generalisation to different

datasets should not be expected to match that of a human. Moreover, the analysis of pixel-wise

metrics is not sufficient to understand how close the predictions of a model really are from those of

an expert. In fact, when observing the predictions of models, we commonly see errors that allow

us to understand that they were not capable of grasping the complete concept of blood vessel net-

works, since they typically miss vessel segments in challenging regions, due to structure overlap,

central reflex, or low SNR. Examples of these errors are provided in Figure 6.1. A missing seg-

ment may correspond to discarding the termination of a vessel or to inducing a disconnected tree,

both of which (especially the latter) causing a modification of the underlying graph representing

the vascular network. Thus, we designate these errors as topological errors. In our opinion, the

current metrics do not allow to properly understand how well the predictions of models maintain

the topology of the ground truth masks. This may be essential in some scenarios, as these errors

may put at risk applications that require vessel pathway extraction and/or characterisation [189],

and are likely to deeply affect any routine that should follow an automated segmentation. The

state-of-the-art methodologies are prone to commit topological errors since they rely on the min-

imisation of pixel-wise loss functions which do not account for the structure of the errors, such

99
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Figure 6.1: Example images and corresponding segmentations obtained with a U-Net model [23]
learned by minimising the BCE loss. Topological errors commonly emerge in challenging cases:
central reflex (green), the latter plus neighbour structure influence (blue), and poor local contrast
(red). Masks are inverted for visualisation purposes.

as the BCE and the soft Dice losses, and mostly use model architectures that are not aware of

topological incoherences.

Recently, there have been attempts to incorporate topological awareness in deep learning mod-

els targeting different applications. A loss encoding hierarchical relations between labels, such as

containment and detachment, was designed to improve the multi-class segmentation of histology

glands [190]. In [191], a process for consecutive refinement of a segmentation given the grey-scale

image and the previous mask was proposed, guided by the differences between high-level features

of the current segmentation and the ground truth. However, none of these works was applied to

vessel segmentation. Bifurcation detection has been addressed in a parallel fashion [192], aiming

to enhance the overall segmentation process of vascular networks, and consequently, the overall

network topology. Nonetheless, topological errors do not arise in bifurcations only, appearing

frequently in the middle of branches due to different reasons, as demonstrated in Figure 6.1.

This Chapter has the purpose of raising awareness to the relevance of the topological prop-

erties of vascular networks during learning and evaluation steps, and describes the work we have

conducted in this context. We start by presenting an end-to-end deep neural network architecture

comprising a probabilistic refinement step and showing how it can successfully improve topo-

logical consistency via model design. Afterwards we discuss the need for topological metrics,

contemplating some attempts that have been made in the literature, and proposing our own simi-

larity index. In the end, we present a novel loss function which is shown to increase the robustness

to topological errors.

6.1 Deep probabilistic refinement for increased topological aware-
ness

In this section, we present an end-to-end deep neural network design for improving topological

consistency in blood vessel segmentation. The methodology comprises a typical segmentation

network followed by a refinement model which aims to enforce the learning of meaningful features

from noisy data. We discuss how such design can be used as a strategy to reduce topological
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mistakes. In what follows, X and Y denote, respectively, the grey-scale input and the ground truth

vessel mask, and Y′ and Y′′ represent the outputs of the segmentation network and the refinement

model, respectively.

6.1.1 Auto-encoding for learning local topology

Errors committed by a segmentation network can be interpreted as a hidden noise process affecting

the true vessel signal Y. Thus, we seek an encoding of Y′ that does not model this noise, allowing

Y′′ to better depict the topology of Y.

Usually, auto-encoding designs encode the entire image X into a vector z ∈ RD, assuming

that complex large scale spatial interactions may be learned. This is not the most adequate option

for encoding images where recurring patterns exist, as is the case of blood vessels. In this type

of data, for inference purposes, it is better to follow the methodology in [193], where we have

latent variables z as a 3D tensor (stack of feature maps) instead, for explicitly capturing spatial

information.

Let us start by considering the generation process of ground truth vessel masks Y. It consists

of sampling latent variables from a prior distribution pθ ∗(z) and generating masks according to

a conditional distribution pθ ∗(Y|z). We assume these distributions belong to parametric families

of distributions pθ (z) and pθ (Y|z). Given observations Y, we want to perform inference in this

model, pθ (z|Y) = (pθ (Y|z)pθ (z))/pθ (Y), to obtain distributions over the latent space explaining

the different observations.

The described approach leads to an intractable problem because evaluating the marginal like-

lihood of the data, pθ (Y), requires integrating over the entire latent space. This limitation can be

circumvented using variational inference by approximating the posterior probability with a family

of distributions qλ (z). The optimal parameters λ ∗ are the ones minimising the Kullback-Leibler

divergence between the two distributions:

DKL(qλ (z)||pθ (z|Y)) = Eqλ (z)

[
log
(

qλ (z)
pθ (z|Y)

)]
= Eqλ (z) [logqλ (z)− log pθ (z,Y)]+ log pθ (Y)

(6.1)

However this optimisation problem also requires computing the marginal likelihood, thus be-

ing once again intractable. By noting that DKL is a non-negative quantity and rearranging (6.1):

log pθ (Y) = DKL(qλ (z)||pθ (z|Y))+Eqλ (z) [log pθ (z,Y)− logqλ (z)]

≥ Eqλ (z) [log pθ (Y|z)]−DKL (qλ (z)||pθ (z))
(6.2)

we obtain the Evidence Lower BOund (ELBO), which can equivalently be maximised, allowing

us to do approximate posterior inference.
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The Variational Auto-Encoder (VAE) [194] conditions the approximate posterior on the data.

This distribution, qφ (z|Y), and the data likelihood one, pθ (Y|z), are both parametrised by neural

networks, which are commonly designated as recognition (or encoder) and generative (or decoder)

models, respectively. The weights of both networks are jointly learned using the Stochastic Gradi-

ent Variational Bayes estimator introduced in the same work [194]. Since parameters φ are shared

among all observations, this model performs amortised inference.

Until now, we considered the case of auto-encoding the vessel masks Y. However, the aim

of this work is to use the VAE as a segmentation refiner. Therefore, our recognition model is

conditioned by the segmentation output Y′, while the generative model produces masks Y′′ closer

to the ground truth Y. As we shall discuss next, this formulation is a particular case of a Denoising

VAE [195].

6.1.2 Refinement model as a Denoising VAE

The Denoising VAE (DVAE) [195] is trained on noisy observations, where the noise is modeled

by a distribution conditioned on the data, pγ(Y′|Y). In our use case, the outcome of the segmen-

tation network, Y′, is interpreted as a noisy version of the true vessel signal, Y. In a DVAE, the

recognition model is given by:

q̃φ (z|Y) =
∫

qφ (z|Y′)pγ(Y′|Y)dY′ (6.3)

The modified ELBO of the DVAE comes as:

Eq̃φ (z|Y)

[
log

(
pθ (z,Y)

Epγ (Y′|Y)

[
qφ (z|Y′)

])] (6.4)

but a more practical lower bound was proven to be eligible for optimisation by the authors [195]:

Eq̃φ (z|Y)

[
log
(

pθ (z,Y)

qφ (z|Y′)

)]
(6.5)

which is equivalent to training a regular VAE on noisy examples. From (6.5) follows the conclu-

sion that the recognition model in the DVAE is trying to learn meaningful features from the noisy

observations, in order to obtain latent representations that allow the generative model to produce

an output that is similar to the noiseless data. Our proposed refinement model can be seen as a

particular case of a DVAE, where the noise model is not known and is encoded in the observations

Y′ instead. In Figure. 6.2, we present the proposed design for obtaining segmentation masks that

are topologically more coherent.

6.1.3 Experiments and Discussion

The U-Net model [23] is very popular for segmenting biomedical images, given its capability of

accounting for both low and high-level features of the images. In this work, the U-Net was used

as the segmentation network. Our proposed method (prop) was compared against two baselines:
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X Y′
qφ (z|Y′)

D

z

pθ (Y|z)
Y′′

Figure 6.2: Design of the proposed model for blood vessel segmentation. X and Y′ are, respec-
tively, the input image and the mask obtained using any particular segmentation network. Y′′ is
the output of the proposed DVAE receiving as input Y′.

i) a single U-Net producing vessel masks (unet), and ii) a cascade of two U-Net models which

performs segmentation and refinement tasks (dunet). The losses of these models are, respectively:

Lprop = α ·L1(Y′,Y)+(1−α) ·
(
L2(Y′′,Y)+DKL(qφ (z|Y′)||pθ (z))

)
(6.6)

Lunet = L1(Y′,Y) (6.7)

Ldunet = α ·L1(Y′,Y)+(1−α) ·L2(Y′′,Y) (6.8)

with pθ (z) being the standard Gaussian. We tested the impact of using losses L1 and L2 other than

BCE to train the models: the class-weighted BCE (BCEw), which penalises more false negatives

than false positives (weights of 0.7 and 0.3 were found appropriate for vessel and non-vessel

classes, respectively); and the FL [183], which is an extension of BCE that increases the weight of

pixels according to the magnitude of the error.

6.1.3.1 Datasets and Metrics

We performed experiments in the three benchmarks for retinal vessel segmentation that have been

introduced in Section 2.1: DRIVE [38], STARE [39], and CHASEDB1 [40] databases.

To compare the performance of the models, we considered usual pixel-wise metrics, such as:

AUC, sensitivity, and specificity. To evaluate the topological coherence of the masks, we followed

a similar approach to [196]. A connected path is randomly chosen from the ground truth and

the equivalent path in the binarised prediction mask is analysed. The prediction is classified as

infeasible if such path does not exist. Otherwise, it is wrong or correct whether its length differs

by more than 10%, or not, respectively. We sampled 1000 paths per test image.
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6.1.3.2 Implementation details

The train data of DRIVE was randomly split into 15 training and 5 validation images, in order

to tune the models. When these included a refinement step (dunet and prop), α was set to 1 and

decreased by 5e−3 each epoch until 0.3, and L1 and L2 consisted of the same type of loss function.

For stability purposes, when using the FL, we set L1 = BCE and L2 = FL. The training procedure

lasted for 150 epochs where, in each, 300 batches of 16 patches of size 64x64 were used. Patches

were taken from the green channel of images and augmented via random transformations including

horizontal and vertical flips, rotations in the range
[
−π

2 ,+
π

2

]
, and addition of an intensity bias.

The original U-Net model comprises 4 condensing and expanding levels; however, we con-

cluded that 2 were ideal in this scenario, when considering the AUC metric. Afterwards, we tuned

the refiners in the dunet and prop models, considering the number of correct paths. Both pipelines

ended having around 4M parameters. The best performing dunet model was a cascade of two

U-Nets as the one described above. Our proposed recognition model was constituted by 4 con-

volutional layers (3×3 kernels and padding of 1) producing, respectively, 64, 64, 256, and 256

feature maps. Each of the first 3 is followed by a max-pooling layer (kernel size of 2). Then,

convolutional layers (1×1 kernels, no padding) learning D feature maps, parametrise the diagonal

Gaussian over the latent space. D was tuned to 100. Regarding the generative model, it includes

3 transposed convolutional layers (4×4 kernels, padding and stride of 2) producing, respectively,

256, 256, and 64 feature maps, followed by 2 convolutional layers (3×3 kernels and padding of

1), where the first learns 64 kernels and the last outputs the parameters of a Bernoulli distribu-

tion. ReLUs were used in the intermediate layers of the proposed VAE, and a Sigmoid activation

function in the last one. The modulating constant of DKL was tuned to 1e−3.

Having tuned the structure and hyper-parameters of the models, they were trained as before,

but this time using all the train data. Note that we perform patch-based training, but the design of

the models allows single-pass prediction of a complete image. The implementation of the models,

training procedure, and described losses, in PyTorch, is available at https://github.com/

rjtaraujo/dvae-refiner.

6.1.3.3 Results and discussion

The average performance of the models on 5 different runs is shown in Table 6.1. The FL slightly

increased the AUC of the models, meaning that they became better at separating both classes.

However, that did not necessarily translate into better topological masks in the end. This is not

surprising, as giving more focus to hard cases does not guarantee we are giving more weight to the

pixels that generate topological mistakes. Instead, using BCEw, thus giving more weight to the

vessel class, allowed to improve the sensitivity and the topology, as was expected. Proceeding to

model design comparison, the proposed method was able to significantly decrease the number of

infeasible paths, essentially due to finding the correct topology, as demonstrated by the increase of

correct paths. This was achieved without hurting pixel-wise metrics, as may be seen by analysing

the AUC. In fact, this metric was even improved in some cases. Note that there is a compromise

https://github.com/rjtaraujo/dvae-refiner
https://github.com/rjtaraujo/dvae-refiner
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Table 6.1: Performance of the models, in percentage, averaged over 5 runs. AUC, sen, spe, inf, and
cor stand for, respectively, area under the roc curve, sensitivity, specificity, infeasible, and correct
paths. The larger these metrics, the better the performance of the model, with the exception of inf,
where lower values are better. The best obtained performance for each indicator and considered
database is highlighted in bold.

BCE BCEw FL
unet dunet prop unet dunet prop unet dunet prop

DRIVE

AUC 97.7 97.8 97.8 97.9 97.9 97.9 98.0 98.0 97.9
sen 79.2 79.6 85.1 87.4 87.8 89.7 78.4 79.0 82.3
spe 98.1 98.0 96.7 96.2 96.1 95.3 98.1 98.1 97.4
inf 47.0 45.0 34.1 34.8 31.8 29.1 48.6 44.8 40.4
cor 45.5 47.3 56.7 56.7 59.2 61.2 43.8 48.3 51.4

STARE

AUC 98.0 98.2 98.3 98.1 98.4 98.6 98.7 98.8 98.8
sen 80.5 82.7 87.3 87.7 89.1 90.1 81.1 82.7 85.2
spe 98.5 98.4 97.3 97.3 97.2 96.8 98.5 98.4 97.9
inf 53.4 43.2 27.9 38.9 29.2 23.1 49.7 38.4 34.9
cor 40.8 51.8 61.9 55.3 64.3 69.2 43.6 54.4 58.1

CHASE

AUC 97.6 97.7 97.9 97.8 98.0 98.0 97.9 98.2 98.2
sen 80.7 80.5 82.8 87.8 88.4 89.8 80.6 80.9 84.2
spe 97.6 97.6 97.4 95.9 95.9 95.6 97.5 97.7 97.2
inf 74.9 74.0 64.7 60.5 54.6 48.0 73.7 71.4 62.2
cor 20.9 22.8 29.8 32.4 38.1 45.6 21.6 24.5 31.8

between the sensitivity and specificity of the models, such that using them for direct comparison

of models is often not trivial. By comparing with the results achieved by the dunet model, which is

also a model with more capacity, we conclude that our proposed design effectively learned better

features for ensuring topological coherence. Fig. 6.3 shows some visual results of the three models

trained with BCEw.

6.1.4 Summary

We proposed a design where a VAE is cascaded after a segmentation network, with the purpose

of improving the topological coherence of the predicted blood vessel masks. The experiments

showed that our methodology achieves that objective by predicting more correct paths and less

infeasible paths, without negatively affecting pixel-wise metrics. The results of comparing the

proposed method with a cascade of two U-Net models sustain that the improvement comes from

the model design and not from the increased complexity of the pipeline.

6.2 Assessing topological coherence

Blood vessel trees are graph-like structures in the sense that, besides local calibre, they are well

encoded by a graph G = (V,E), where vertices V represent bifurcations and vessel terminations,
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(a) (b) (c) (d) (e)

Figure 6.3: Example masks obtained by using the BCEw loss: (a) original images, (b) ground
truth, and predictions from (c) U-Net, (d) Double U-Net, and (e) proposed method. Notice that
the masks are inverted for visualisation purposes.

and undirected edges E encode the segments connecting them. We designate by topological co-

herence the similarity between two vascular tree graphs, such as the ones corresponding to the

ground truth and the predicted segmentation of a given image.

As shown in Section 6.1, one option to evaluate the topological properties of the algorithms is

to sample paths from the gold standard mask and determining the proportion of infeasible (impos-

sible to reach the end point from the initial one), wrong (a path exists but is not equivalent to the

gold standard one) and correct paths in the predicted mask. Even then, it may not always be trivial

to objectively compare two different algorithms, as a decrease in the amount of infeasible paths

will be likely followed by an increase in both wrong and correct paths, which naturally constitutes

a trade-off, similarly to sensitivity and specificity. Moreover, to capture the amount of false posi-

tive paths being introduced by the algorithms, the analysis should be made in the opposite direction

too, further increasing the complexity of analysing the behaviour and taking conclusions.

A novel similarity metric derived from the Dice score and focusing the blood vessel centre-

lines, designated clDice, has been proposed [197]:

clDice(P,Y) = 2 · clSens(P,Y) · clPrec(P,Y)

clSens(P,Y)+ clPrec(P,Y)
(6.9)

clSens(P,Y) =
∑i P ·Ys + ε

∑i Ys + ε
(6.10)

clPrec(P,Y) =
∑i Y ·Ps + ε

∑i Ps + ε
(6.11)

where P and Y denote the predicted and ground truth masks, respectively, Ps and Ys are their

centrelines, and ε is a small constant to deal with the cases where the denominator would be 0.
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The authors [197] argue that clDice accounts for the topology of the vascular network; however,

we believe that this metric is not a truly topological one, since it yields the same penalty for a

missing segment in a vessel termination and one of equal extension that leads to disconnected

trees. The latter has a much larger impact on the vascular tree graph, as illustrated in Figure 6.4.

Therefore, we believe the literature is lacking a unified metric that better captures these topological

properties.

Figure 6.4: The effect of different errors on the clDice metric. Y is the ground truth mask and
P1,P2, and P3 are segmentations where, respectively, a termination segment is missing, a false
positive branch is added, and two missing segments that induce disjoint trees exist (errors high-
lighted in red). As shown, the clDice metric is sensitive to the extension of centreline error, not to
the effect of the errors in the overall graph. A topological metric, in our opinion, should penalise
P3 more than P1 and P2.

In our opinion, a proper topological metric or similarity index should highlight the errors

affecting the vascular tree graph according to the following properties:

• Property 1: broken segments should be further penalised than missing termination seg-

ments, since they lead to major changes of the underlying graph;

• Property 2: topological errors in the main vascular tree branches should have larger impact,

since they may lead to larger sub-trees being lost in automated analysis algorithms.

As mentioned before, the most commonly used metrics for evaluating blood vessel segmenta-

tion algorithms - accuracy, sensitivity, specificity, and AUC - do not possess any of these proper-

ties. Even though they penalise broken and missing termination segments, these errors tend to be

scarcer than calibre-related ones, thus they are strongly dissipated. The clDice metric focuses cen-

trelines and neglects the errors due to calibre assessment. Nevertheless, as shown in Figure 6.4, it

equally penalises termination and broken tree inducing missing segments of same extension, and it

does also not distinguish errors occurring in major and peripheral branches. Therefore, to the best

of our knowledge, there is no metric or similarity index in the blood vessel literature satisfying

properties 1 and 2.
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6.2.1 Proposed topological similarity index

Let A be a binary blood vessel mask, which can consist of a single connected component or

multiple sub-trees. Let A f be the set of vessel (foreground) pixels and Pi, j = {i, . . . , j} be the

minimum cost path between pixels i, j ∈ A f , li = l j, where lk specifies the sub-tree to which a

vessel pixel k belongs.

Removing a termination blood vessel segment T = {t1, . . . , tn} would render impossible all

paths Pi, j where i ∈ T ∨ j ∈ T . Considering a broken segment B = {b1, . . . ,bn} instead, any path

Pi, j intersecting B, Pi, j∩B 6= 0, would also not be possible anymore. Note how this relates with the

first property we have specified, as a broken segment has a larger impact than a missing termination

in terms of the amount of paths that become impossible (assuming errors of similar size). In fact,

it is also likely to satisfy the second property due to the pattern naturally displayed by blood vessel

trees. Given their root, they keep dividing in branches, and calibre decreases with each division.

Therefore, there is a natural tendency for the majority of possible paths in a vascular tree to traverse

the major branches. This behaviour makes us consider functions taking into account the feasibility

of paths when designing our proposed topological similarity indices. Based on this motivation,

we now formulate a similarity index m : RD×RD→ [0,1] comparing two D-dimensional binary

masks. We are interested in assessing how feasible the possible paths in the ground truth Y are in

a segmentation P (path sensitivity/recall) and also the amount of false positive paths that exist in

P (path precision). Let NP and NY denote, respectively, the number of possible paths in P and Y.

An expression for a similarity index taking into account what was discussed until now follows:

m(P,Y) =

√√√√ ∑
i, j∈Y f , li=l j

f (Pi, j,P)

NY
·

∑
i, j∈P f , li=l j

f (Pi, j,Y)

NP
(6.12)

where f (Pi, j,A) is any function assessing the coherence between a path Pi, j and a mask A, return-

ing 0 and 1 in the extreme cases of, respectively, no and full coherence. In our experiments, we

consider two different possibilities for f based on the Hamming distance H, a metric that counts

the number of switches that are required to have two n-bit strings match. Notice that our problem

can be interpreted as comparing two strings, since that: (i) a path Pi, j of length n can be seen as a

n-length string of 1s; (ii) and the values that A takes at x∈ Pi, j can also be represented as a n-length

string, this time possibly containing both 0s and 1s, according to whether A takes the value of 0 or

1, respectively, at each of the path positions. Given that we want f to produce values in the range

[0,1], and 1 to be equivalent to complete coherence, we define the first possibility, fH , as:

fH(Pi, j,A) =
n−H(Pi, j,A)

n
(6.13)

where n ≥ 2 is the number of pixels in the path Pi, j. An illustration demonstrating how fH is

calculated is shown in Figure 6.5.
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(a) (b)

(c) (d)

(e)

Figure 6.5: Hamming distance between a path Pi, j sampled from a mask A1, and a mask A2. (a)
A1, (b) A2, (c) a path Pi, j sampled from A1, (d) the respective string obtained from A2, and (e)
the number of switches needed to have both strings match, in this case, H(Pi, j,A2) = 2, therefore
fH = 4/6.

The second possibility is a binary function that only outputs 1 if the entire path is possible in the

mask or, in other words, if the Hamming distance is 0:

fF(Pi, j,A) =

1, if H(Pi, j,A) = 0

0 otherwise
(6.14)

6.2.2 Practical considerations

There are two important considerations to have into account regarding the similarity index defined

before: i) to obtain Pi, j we resort to a minimum cost path algorithm, which is likely to follow the

boundaries of blood vessels when precaution is not taken (see Fig. 6.6b). This is an unwanted

behaviour as it would be very sensitive to calibre-based errors and that is not the goal we seek

with the proposed similarity index; ii) the number of possible paths grows exponentially with the

number of pixels in A f , with a worst case complexity of O(n2/2). This turns the use of (6.12)

impractical to evaluate real-world images which always have a significant number of blood vessel

pixels.

Regarding the tendency of minimum cost path based approaches to follow the vessel bound-

aries, we consider a simple possibility to address that issue. Instead of considering the complete
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set of vessel pixels A f , we simply take into account the centreline pixels As and all the possi-

ble paths there. Concerning the second property we have defined earlier, this approach slightly

reduces the relevance of larger vessels in comparison with the narrower ones. Even then, the men-

tioned natural properties of vascular trees (larger blood vessels ramify into smaller ones) promote

centrelines of larger vessels to be visited more times (see Fig. 6.6c). Another option would be

using a non-linear distance function between the foreground (vessel) and background pixels, in

order to promote the minimum cost path to follow the centrelines of the blood vessels.

Figure 6.6 shows two coronary trees and the number of times each pixel is visited when using

the discussed strategy for employing the proposed similarity index. As illustrated, the centreline

pixels of the main branches of the vascular trees are visited more frequently, penalising more any

error in these segments.

(a) (b) (c)

Figure 6.6: The relative frequency each pixel is visited when considering all the possible paths
to be taken in a tree (a higher intensity is equivalent to a higher relative frequency). (a) Example
coronary trees; (b) the frequency map when the minimum cost path between every two points of
the tree is considered; (c) when the minimum cost path is retrieved from the centrelines for every
two centreline points.

Concerning the exponential complexity of the number of paths to be extracted, we can resort

to a Monte Carlo approach to approximate (6.12):
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m̃(P,Y) =(
1
n

n

∑
k=1

f (Pi, j,P), i, j i.i.d.∼ U(Ys), li = l j ·

1
n

n

∑
k=1

f (Pi, j,Y), i, j i.i.d.∼ U(Ps), li = l j

)1/2

(6.15)

where U(As) denotes the Uniform distribution over a set of vessel pixels As.

Regarding the example shown in Fig. 6.4, our proposed similarity index (6.12) evaluates P1,P2

and P3 with a score of, respectively, 0.984,0.988, and 0.933 (using fH). This is aligned with the

properties we seek for a topological benchmark.

6.3 A loss function for increasing topological coherence

BCE and soft Dice are among the most typically used loss functions in the blood vessel segmen-

tation problem. BCE allows to weigh differently false positive and false negative errors, however

it treats equally the errors inside each group. The FL [183] further increases the weight given to

pixels where the error is larger, such that it can be interpreted as a hard mining technique. Again,

the weight given to a pixel is proportional to the magnitude of the error and not its type. The soft

Dice loss is interesting for binary problems where imbalance is relevant, which is the case of blood

vessel segmentation, since typically vessel pixels are a minority of the total pixel count. Never-

theless, the effect of false positives and false negative errors is still the same independently of the

location where they occur. The clDice loss [197], similarly to the behaviour of the corresponding

metric, brings increased attention to the blood vessel centrelines, disregarding errors on the wall

boundaries of vessels. In conjunction with the soft Dice loss, it was shown to promote the cre-

ation of segmentations which were more similar to the reference ones concerning topology. Yet,

despite its usefulness, we argue that this loss is still not truly topological due to two reasons: i) it

does not distinguish errors inducing disjoint trees and merging distinct ones from those happening

at the terminating portions of blood vessel segments; ii) it does not distinguish errors in major

vessels from those in minor ones. In this section, we describe our proposed loss function which,

besides focusing on the centrelines of the vascular tree, is also capable of distinguishing the errors

mentioned in Property 1.

6.3.1 Detecting errors that produce disjoint trees

We aim to design a loss function which, contrary to state-of-the-art losses, is able to highlight

errors inducing disjoint trees, such that it can guide models towards producing blood vessel masks

which are more topologically coherent. Errors leading to disjoint trees are nothing more than

"holes" in a given blood vessel segment, therefore they may be filled by applying mathematical

morphology operators, which have already been introduced in subsection 3.1.3.
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Let us start by considering the simple case of a single blood vessel segment being affected

by this type of errors, as illustrated in Figure 6.7. The disjoint segments can be connected by

employing a closing operator (dilation followed by erosion) using a structuring element (SE) of

sufficient size. Let AD(r) and AC(r) be, respectively, the output of the morphological dilation and

closing of A using a squared SE with radius r. In the example provided in Figure 6.7, a radius of

2 would be necessary to connect all the disjoint segments.

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Connecting disjoint segments to recover the reference blood vessel segment, by means
of a closing operation with a squared structuring element. (a) Predicted, P, and (d) reference, Y,
segmentations; morphological dilation of P with a SE of radius (b) 1, PD(1), and (c) 2, PD(2), where
light grey represents the appended pixels; outputs of the respective closing operations, (e) PC(1)
and (f) PC(2).

Most medical images of blood vessels (or even patches, small portions of these images) con-

tain tree-like structures, not single vessel segments as illustrated in the previous simplistic sce-

nario. Hence, the closing operation might merge disjoint segments which should not be connected

at all (see Figure 6.8), constituting an unwanted behaviour. This effect is exacerbated when a large

SE is required to connect segments far apart. Fortunately, as long as we have a reference seg-

mentation, Y, which is the case of supervised blood vessel segmentation, this limitation is easily

circumvented. To do so, we pose the problem as joining separate segments only if the missing

segment exists in the reference mask. In our experiments, we consider the centrelines Ys instead,

in order to put a larger focus on the graph structure of the vascular trees. Hence, we detect missing

segments inducing disjoint trees as follows:

e(P,Y;r) =
(
PC(r)−P

)2 ·Ys (6.16)

Figure 6.9 illustrates this approach on the example provided in Figure 6.8.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Connecting disjoint segments to recover the reference blood vessel tree, showcasing
the possibility of joining segments which are not connected in the reference segmentation. (a)
Predicted, P, and (d) reference, Y, segmentations; morphological dilation of P with SE of radius
(b) 1, PD(1), and (c) 2, PD(2), where light grey represents the appended pixels; outputs of the
respective closing operations, (e) PC(1) and (f) PC(2).

(a) (b) (c)

(d) (e) (f)

Figure 6.9: Detection of centreline errors inducing disjoint trees. (a) Predicted, P, and (b) refer-
ence, Y, segmentations; (c) reference centrelines, Ys; (d) morphological closing of the prediction,
PC(2); (e) Squared difference between the latter and the original prediction, (PC(2)−P)2; and (f)

the centreline errors that produce disjoint trees, according to the reference mask,
(
PC(2)−P

)2 ·Ys.
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6.3.2 Weighting errors of different size

Despite identifying the errors that originate disjoint trees, according to (6.16), their weight is

being proportional to the length of the corresponding missing centreline. Therefore, following

the example provided in Figure 6.9, the larger missing segment would end having three times the

weight of the smaller one. We argue that this might not be ideal for learning purposes. In our

opinion, the model should learn that it is more likely that a small missing segment is in reality a

false negative, than segments which are farther apart. Therefore, to reduce this weight bias towards

larger missing segments, we consider weight normalisation according to the length of the missing

segment.

Let Sr be a missing segment that can be filled through a closing operation considering a SE

with radius r or larger. The total error of this segment is given by:

e(Sr) = wr · l(Sr) (6.17)

where wr is a scalar, and l(Sr) is the length of the segment, being either 2r− 1 or 2r. We seek a

normalisation such that the following inequality always holds:

wr · l(Sr)≥ wr+1 · l(Sr+1) (6.18)

which states that a missing segment that can be filled with a SE with radius r must have at least

the same total error as a missing segment which can only be filled with a SE with radius r+1 or

larger. By noticing again that the length of a missing segment Sr can have two different values, the

following equality is sufficient to hold inequality (6.18):

wr · (2r−1) = wr+1 · (2(r+1)) (6.19)

Let us consider that the largest SE radius to be used is rM and that its associated weight wrM

is 1. It is now possible to consider an iterative approach that highlights all missing segments with

length up to 2rM and normalises their weights according to 6.19:

e(P,Y;rM) = ∑
r=rM ,rM−1,...,1

εr ·
(
PC(r)−P

)2 ·Ys (6.20)

with εr given as:

εr =

wrM , if r = rM

wr−wr+1 otherwise
(6.21)

Figure 6.10 exemplifies how this normalising approach would work for the synthetic example

shown in Figure 6.9, considering rM = 2.



6.3 A loss function for increasing topological coherence 115

(a) (b) (c)

Figure 6.10: Demonstration of the error normalisation approach regarding the synthetic example
considered in Figure 6.9. (a) Missing segments detected when using a SE with radius rM, which
was set to 2 in this example, and the corresponding ε2 = w2 = 1; (b) missing segments detected
when using a SE with radius 1, with corresponding weight w1 = 4, as given by (6.19), hence
ε1 = w1−w2 = 3; (c) total error according to (6.20).

6.3.3 Design of a topological loss

In subsections 6.3.1 and 6.3.2, a method for highlighting errors inducing disjoint trees in a seg-

mentation, according to a reference mask, was presented. Until now, false negative segments in

the prediction segmentation have been focused. Nonetheless, it is also important to consider false

positive detections joining segments which do not belong to the same tree in the reference mask.

Note that this can be simply achieved via (6.20) by switching the roles of the predicted segmenta-

tion and the reference mask. Therefore, we define two loss terms, one that seeks to minimise the

amount of missing segments that induce disjoint trees, according to the reference mask:

Ltsens(P,Y;rM) =

∥∥∥∑
r∈r

εr · (PC(r)−P) ·Ys

∥∥∥
1

‖Ys‖1
(6.22)

and a second one, promoting that no false connections are introduced, again having into account

the reference mask:

Lt prec(P,Y;rM) =

∥∥∥∑
r∈r

εr · (YC(r)−Y) ·Ps

∥∥∥
1

‖Ps‖1
(6.23)

where the denominators are introduced for normalising purposes only and not considered during

the loss gradient calculation and, for simplicity of notation, r = rM,rM−1, . . . ,1. Both terms are

combined into our proposed topological loss:

Ltopo(P,Y;α,rM) = α ·Ltsens(P,Y;rM)+(1−α) ·Lt prec(P,Y;rM) (6.24)

where α ∈ [0,1] determines the relative importance of each term.

In order to easily integrate the morphological operators into the model training procedure, we

consider the neural dilation and erosion layers introduced in [198]. Note that, instead of having to

design multiple neural layers to perform morphological closings with SE of different radius, we

can simply cascade neural layers implementing morphological operations with a SE of radius 1.
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This is possible since the following holds:

AD(r) = Ar
D(1) (6.25)

AC(r) =
(
AD(r)

)r
E(1) (6.26)

where Ar
M(1) denotes r-consecutive uses of a morphological operator M with a SE with radius 1 in

segmentation mask A. Algorithm 1 provides a pseudo-algorithm concerning the computation of

the proposed loss.

Algorithm 1: Proposed topological loss function
input : ground truth y, prediction p, max radius r, weight α

output: proposed loss function L
ratios← [ ];
for i← 1 to r−1 do

ratios.append
(

4+2i
1+2i

)
;

end
p_s← Skeleton(p);
y_s← Skeleton(y);
L_tsens← 000;
L_t prec← 000;
w← 1;
wprev← 0;

for i← r to 1 do
p_tmp← p;
y_tmp← y;
for j← 1 to i do

p_tmp← Dilation(p_tmp);
y_tmp← Dilation(y_tmp);

end
for j← 1 to i do

p_tmp← Erosion(p_tmp);
y_tmp← Erosion(y_tmp);

end
L_tsens← L_tsens+(w−w_prev) · (p_tmp− p) · y_s;
L_t prec← L_t prec+(w−w_prev) · (y_tmp− y) · p_s;
w_prev← w;
w← w · ratios[i−1];

end

Ltopo← α · ‖L_tsens‖1
‖y_s‖1

+(1−α) · ‖L_t prec‖1
‖p_s‖1

;
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6.3.4 Experiments and Discussion

To assess the contribute of the proposed topological loss, Ltopo (6.24), in the scenario of blood

vessel segmentation, we analysed how the performance of a U-Net model [23] varies according to

the loss function that is minimised during training.

The first two baseline loss functions considered are the typically used soft Dice loss, Ldice, and

the BCE loss, Lbce:

Ldice(P,Y) = 1−2 ·
∑

i
Pi ·Yi

∑
i

P2
i +Y2

i
(6.27)

Lbce(P,Y;α) =− 1
N

N

∑
i=1

(
α ·Yi · log(Pi)+(1−α) · (1−Yi) · log(1−Pi)

)
(6.28)

where N is the total number of pixels in the image, and α ∈ [0,1] determines the relative weight

of each class (blood vessel and background).

We also consider the FL [183]:

L f ocal(P,Y;α,γ) =− 1
N

N

∑
i=1

(
α ·Yi · (1−Pi)

γ · log(Pi)+

(1−α) · (1−Yi) ·Pγ

i · log(1−Pi)
) (6.29)

with γ controlling the non-linear relation between the magnitude of the error and the weight.

Given the results achieved by the inclusion of the clDice loss in [197], we also test the loss

proposed in [197] as a baseline:

Lcldice(P,Y;α) = α ·Ldice(P,Y)+(1−α) · (1− clDice(P,Y)) (6.30)

where clDice(P,Y) is the criterion defined in (6.9), and α determines the relative weight given

to each loss component. A loss mimicking the ideas behind Lcldice, but using the BCE criterion

instead, was also regarded in the experiments:

Lclbce(P,Y;α;β ) =− 1
N

N

∑
i=1

(
(a ·Yi +β ·Ysi) · log(Pi)+

(
(1−α)+(1−β ) ·Psi

)
· (1−Yi) · log(1−Pi)

) (6.31)

with β controlling the compromise between false positive and false negative centreline detections.
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Having described the losses that will be used as benchmark in the experiments, the proposed

loss function is now detailed. Since we recognise the relevance of emphasising the centrelines of

the vessels, we let our proposed loss build upon Lcldice (6.30) and Lclbce (6.31), and extend them

by including an additional term pertaining to the loss term we proposed in subsection 6.3.3:

Lpropdice(P,Y;α1,α2,c,r) = Lcldice(P,Y;α1)+ c ·Ltopo(P,Y;α2,r) (6.32)

Lpropbce(P,Y;α1,α2,β ,c,r) = Lclbce(P,Y;α1,β )+ c ·Ltopo(P,Y;α2,r) (6.33)

where c sets the relevance of the proposed topological term in the overall loss, α2 controls the

compromise between Ltsens and Lt prec, and r defines the maximum radius to be considered in the

involved closing operations.

6.3.4.1 Datasets and Metrics

Regarding the data used in the experiments, in addition to the retinal vessel segmentation

benchmarks commonly used (DRIVE [38], STARE [39], and CHASEDB1 [40]), we have also

considered a dataset containing coronary angiograms [46].

Concerning metrics and similarity indices to assess the performance of the different models,

we consider not only the typically used metrics (AUC, accuracy, sensitivity, and specificity), but

also the clDice score [197], and both variants of the proposed approximate topological similarity

index (6.15), m̃H and m̃F . The Monte Carlo approximation was performed with n = 1000.

6.3.4.2 Implementation details

From the 20 images comprising the training set of DRIVE, 4 were set aside for validation pur-

poses. The original test set remained unchanged and was used for that stage. Regarding STARE,

from a total of 20 images, 3 and 5 were reserved for, respectively, validation and testing phases.

Concerning CHASE, from the available 28 images, 4 and 10 were used for the validation and test

steps. Finally, for the CORONARY dataset, which contains 134 coronary angiograms, we con-

sidered 20 and 30 images for validating and testing, respectively, the trained models. Throughout

training, small patches of dimensions 128×128 were fed to the model, whereas, during validation

and testing, the entire images were given. Data augmentation during training comprised flipping

and rotation transformations, and the addition of an intensity bias.

The U-Net model [23] was implemented according to its original description and 100 batches

containing 8 patches each were fed every epoch. The Adam optimiser [184] was used to update

the model parameters, with an initial learning rate of 1e−4. The loss in the validation set was

measured every 25 epochs. Every 50 epochs the learning rate was decreased by a factor of 0.1,

being the training process terminated after 200 epochs. We kept the set of parameters leading to

a minimum loss over the evaluations performed in the validation set. To regularise the weights
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of the model, excluding the bias of neurons, we considered L2-regularisation with a coefficient of

1e−5.

Two different configurations of Lbce were considered, one where an equal weight was given

to both classes (α = 0.5, unweighted), Lbceu, and another one weighting significantly more errors

in blood vessel pixels (α = 0.7, weighted), Lbcew. This weight has been found appropriate in

previous experiments. Concerning L f ocal , we consider a single parametrisation, α = 0.7,γ = 2.

Lcldice was configured following [197], by setting α = 0.5. In our proposed variant, Lpropdice, we

also consider α1 = 0.5, then we set r = 10, c = 0.1, and test different values for α2. The centreline

aware BCE variants, Lclbceu, and Lclbcew were parametrised with β = 0.5, and α of, respectively,

0.5 and 0.7. Our proposed variants, Lpropbceu and Lpropbcew, consider β = 0.5, r = 10, c = 0.1 and,

respectively, α1 = 0.5 and α1 = 0.7. Different values are tested for α2.

To disregard randomness involved in training using a GPU and other processes such as batch

generation, we have performed deterministic training and evaluation. To further highlight the

differences between the losses, we have run 2 times each of them, by picking 2 different seeds,

guaranteeing that among experiments with the same seed, everything was constant except the loss

function being optimised. An NVIDIA GeForce RTX 2080 Ti GPU was used to conduct the

experiments.

6.3.4.3 Results and discussion

The average value of the performance obtained when minimising the different losses, concerning

the metrics specified in subsection 6.3.4.1, is shown in Table 6.2.

For each loss that includes the proposed cost function and for each dataset, we show only the

results for the parametrisation achieving larger average value of m̃H and m̃F . The best parametri-

sations are highlighted with a filled circle in the graphics concerning the ablation studies. Fig-

ures 6.11, 6.12, and 6.13 depict the ablation studies for Lpropdice,Lpropbceu, and Lpropbcew, respec-

tively. It is possible to conclude that the ideal value for α2 varies according with the dataset

and the loss that is being considered. The larger the α2 value, the larger the focus on errors in-

ducing disjoint trees over those merging separate trees. Even though a pattern is not clear for

Lpropdice, Lpropbceu and Lpropbcew seem to benefit from, respectively, larger and smaller α2 values.

The weighted BCE loss already weights significantly blood vessel locations, such that it seems

plausible that a big focus on errors inducing disjoint trees would hurt the equilibrium between

these errors and those merging distinct trees. Following the same rationale, models based on the

unweighted BCE typically have difficulty in effectively capturing some of the vessel branches;

therefore, it is likely that they benefit more from the use of large α2 values. Despite this variability

regarding the optimal α2, the ablation studies show that, for a particular family of models, it is

possible to find α values which lead to improvements in all the datasets when compared with the

centreline-aware baselines. By analysing the graphics, it is also possible to conclude that there is

not a direct relation between m̃H and m̃F , such that it is possible to have models which improve

one of them while having their performance decreased in the other one. This shows that, even

though our proposed general similarity index (6.12) has fixed properties related to the graph of



Table 6.2: Performance of the models, in percentage, averaged over 2 runs. AUC, acc, sen, spe stand for, respectively, area under the roc curve, accuracy,
sensitivity, and specificity. clDice is the metric proposed in [197], and m̃H and m̃F are the two approximate topological similarity indices presented in
subsection 6.2.1. The larger all of these indicators, the better the performance of the model. The best obtained performance for each indicator, model
family, and considered database is highlighted in bold. The best model for a given database and indicator is underlined.

Ldice Lcldice Lpropdice Lbceu Lclbceu Lpropbceu Lbcew Lclbcew Lpropbcew L f ocal

DRIVE

AUC 97.5 95.8 96.0 97.8 97.6 97.6 97.6 97.6 97.4 97.8
acc 95.2 94.6 93.5 95.5 95.2 94.0 94.8 94.4 93.6 95.0
sen 83.8 86.0 88.5 80.0 80.2 88.5 85.3 87.0 88.2 85.2
spe 96.9 95.8 94.3 97.8 97.5 94.8 96.2 95.6 94.4 96.4

clDice 82.2 84.4 85.2 81.4 81.6 84.6 82.6 83.0 83.4 82.8
m̃H 93.0 94.2 94.8 93.0 92.8 94.3 93.0 92.8 94.6 93.1
m̃F 18.8 19.3 21.0 18.9 17.0 19.4 18.3 17.6 20.4 18.1

STARE

AUC 98.6 96.6 96.8 98.6 98.6 98.6 98.8 98.8 98.7 98.5
acc 97.0 96.8 96.6 97.0 97.0 96.4 96.6 96.5 95.8 96.2
sen 84.8 84.0 86.3 81.7 83.3 89.2 88.8 89.8 92.0 85.4
spe 98.2 98.0 97.6 98.6 98.4 97.2 97.4 97.2 96.1 97.4

clDice 87.3 87.7 88.6 86.7 87.5 88.4 87.6 87.7 88.4 84.7
m̃H 94.6 94.4 95.2 94.4 94.7 95.7 94.6 95.2 95.6 91.0
m̃F 29.4 30.6 31.2 30.8 30.3 34.6 31.0 34.0 35.6 25.1

CHASEDB1

AUC 97.2 94.4 94.8 97.8 98.0 97.8 97.3 96.8 96.8 97.0
acc 95.5 95.4 94.6 96.2 96.2 95.8 94.8 94.1 93.6 94.2
sen 80.9 80.5 85.0 80.6 82.3 82.4 85.0 83.8 84.3 83.6
spe 97.0 96.8 95.5 97.8 97.6 97.2 95.8 95.2 94.6 95.4

clDice 78.0 80.0 80.6 80.8 81.9 80.8 77.2 73.8 76.3 74.0
m̃H 85.6 87.2 87.7 89.6 89.4 90.1 85.0 82.4 85.9 82.1
m̃F 12.5 12.9 14.5 15.9 15.0 17.0 11.6 9.2 14.2 8.9

CORONARY

AUC 98.4 96.9 96.8 98.8 98.9 98.8 99.0 99.1 98.9 99.0
acc 97.6 97.4 97.0 97.7 97.7 96.8 97.1 97.2 96.4 96.6
sen 81.8 84.0 87.0 80.2 79.6 90.0 89.6 90.4 92.6 87.4
spe 98.5 98.2 97.6 98.7 98.8 97.3 97.6 97.6 96.6 97.2

clDice 84.6 85.6 85.4 84.0 84.2 84.1 83.4 84.2 84.8 78.4
m̃H 89.3 90.1 90.6 89.4 89.8 90.4 89.4 90.4 91.1 84.8
m̃F 39.3 42.0 43.2 39.2 40.4 42.8 41.0 42.6 41.9 40.2
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Figure 6.11: Ablation studies concerning the proposed model Lpropdice(P,Y;0.5,α2,0.1,10). The
baseline performance of Lcldice(P,Y;0.5) is represented by the dashed line.
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Figure 6.12: Ablation studies concerning the proposed model Lpropbce(P,Y;0.5,α2,0.5,0.1,10).
The baseline performance of Lclbce(P,Y;0.5,0.5) is represented by the dashed line.
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Figure 6.13: Ablation studies concerning the proposed model Lpropbce(P,Y;0.7,α2,0.5,0.1,10).
The baseline performance of Lclbce(P,Y;0.7,0.5) is represented by the dashed line.
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the vascular trees, the considered function f (Pi, j,A) also plays a role on the properties that are

highlighted during the benchmark.

Analysing the patterns found for each of the loss function families, and starting with the Dice

one, Ldice,Lcldice, and Lpropdice, the impact of the soft clDice loss in the AUC is evident, since the

models that include its minimisation have a significant decrease in the AUC metric. The accuracy

was also slightly higher in the Ldice experiments; however, we believe this is not a crucial metric for

blood vessel segmentation, as class imbalance exists, and models achieving better compromises

between sensitivity and specificity tend to have lower accuracies. This trend is observable in the

obtained results, since Lcldice and, especially, Lpropdice, achieve higher sensitivity at the cost of

decreased specificity, thus having lower accuracies. Regarding the proposed topological similarity

indices, the runs minimising Lpropdice were the best performing ones. One interesting finding was

that the inclusion of the topological term Ltopo in Lpropdice also lead frequently to the increase of

the clDice metric.

Concerning the BCE-based families, focusing the centrelines had only a negligible impact in

the AUC. The remaining patterns follow the trends already discussed for the Dice family, with the

proposed variants being once again the ones producing segmentations which are better topology-

wise, according to the proposed similarity indices. An exception occurred in the Bcew family,

where the proposed extension did not perform strictly better in the CORONARY database. The

FL considered in the experiments, an extension of BCEw, did not achieve any benefit regarding

the topological benchmarks.

The inferior performance of models belonging to the Dice and Bcew families in the CHASE

dataset, when comparing with the ones from the Bceu family, was due to converging problems in

some of the experimental runs. Having this in mind, and according to all of the obtained results,

the best model to pick would likely be the one trained with Lpropbce(P,Y;0.5,1,0.5,0.1,10). This

model systematically performed better than the baselines topological-wise without disturbing sig-

nificantly the pixel-wise metrics such as the AUC. Figure 6.14 shows example segmentations that

can be obtained when learning a U-Net [23] with the different loss functions. For each image, we

show the outputs of the family of models that achieved the best performance (average between

m̃H and m̃F ) on its dataset. For example, regarding the images coming from the CORONARY

dataset, where the best performing model was the one trained with Lpropdice, we show images for

Ldice,Lcldice, and Lpropdice. From the qualitative assessment of the visual results, it is possible to

verify that the proposed loss term helped the model to produce segmentations with less errors that

lead to disjoint trees, without introducing a significant number of errors that join distinct trees. The

skeleton-aware baselines seem to have a tendency to overestimate the calibre of narrow segments,

an effect that seems to increase even a bit more when extending with the proposed loss term. This

behaviour may introduce an error concerning the calibre estimation of narrow blood vessels and

should be further investigated in the future.
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Image GT Baseline Skeleton-aware Proposed

(Continues on the next page)
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Image GT Baseline Skeleton-aware Proposed

Figure 6.14: Example image patches, their ground truth, and segmentations achieved when min-
imising the typical baseline loss functions (Ldice,Lbce), the centreline-aware baseline loss functions
(Lcldice,Lclbce), and the extension of the latter with the proposed loss function (Lpropdice,Lpropbce).
Segmentations from the best performing model in the particular dataset are shown. Coloured
patches are from retinal images while the grey-scale ones come from the images depicting the
coronary tree. Notice that the masks are inverted for visualisation purposes.
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6.3.5 Summary

In this Section, we described a loss term we have proposed for penalising two types of errors we

deem as relevant in a topological loss: i) missing segments in the predicted segmentation that lead

to disjoint trees (taking into account the topology of the reference mask); and ii) false positive seg-

ments in the predicted segmentation that join distinct trees (again, according to a reference mask).

To do so, the proposed loss makes use of the morphological closing operation. In addition to the

typical metrics that are used to evaluate blood vessel segmentations (AUC, accuracy, sensitivity,

and specificity), the experiments considered the recently proposed clDice metric [197], which fo-

cuses blood vessel centrelines, and the approximated topological similarity indices presented in

Section 6.2. The goal was to assess how useful the proposed loss term (6.24) is to promote seg-

mentation models to produce masks that are better in terms of topological properties. The results

of the experiments showed that this novel loss was indeed capable of improving the topological

properties of the produced masks, relatively to the reference ones.

6.4 Main contributions and final considerations

Despite the breakthrough that has been happening due to deep learning and the continuous in-

crease in the performance of these algorithms, it is still somewhat likely that we can distinguish

segmentations produced by a human expert from those coming from a computer routine. The

differences come mostly from the very strong prior knowledge that an expert human has regard-

ing the concept of a blood vessel tree, and how difficult it is to encode those high level concepts

in a complex model while expecting it to have the generalisation capability of a human. A type

of error that continues to affect the performance of deep neural networks is the non-detection of

particularly challenging blood vessel segments (poor local contrast, brightness, overlapping struc-

tures, among other reasons), leading to disjoint trees and, therefore, having a great impact in the

overall graph of the blood vessel tree. There is also the possibility of detecting false segments and

erroneously join trees. We designate these as topological errors and one of the main motivations

of this thesis was to conduct research in order to find methodologies which could alleviate this

problem. Increasing the capability of deep neural networks to deal with these topological errors

has been gaining awareness lately [192; 197; 199].

Our first approach to this problem was from the model architecture point of view. By mod-

elling errors affecting segmentation masks as noise, we have considered a probabilistic auto-

encoding model to learn the most likely local blood vessel tree topology given a corrupted one. We

have shown how this interpretation relates to a DVAE [195]. The conducted experiments shown

that this design successfully restored some of the topological errors, as concluded by the decrease

of infeasible paths and simultaneous growth of correct paths. These benefits were not achieved

when replacing the probabilistic refiner with a second U-shaped network of similar complexity.

One of the things that became apparent in this first work, and also in the research conducted

by other authors [192; 197], was the lack of a single unified metric or similarity index which could
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be used to assess the topological properties of the segmented blood vessel trees. This has mo-

tivated us to derive novel similarity indices having properties which we deem as obligatory for

assessing topological coherence: i) to clearly highlight the errors that have impact on the vascular

tree graphs; ii) to further penalise missing segments inducing disjoint trees and false segments

wrongly joining trees; and iii) topological errors in the main vascular tree branches should have

larger impact. Additionally, our first work ended requiring increased model complexity to over-

come some of the topological errors. Therefore, our second approach to tackle the problem at

hand targeted the derivation of a loss whose minimisation promoted learning models which were

less affected by topological errors. Since there already exist loss functions in the state-of-the-art

promoting blood vessel centreline consistency (which, despite focusing the graph structure of the

vascular tree, do not particularly penalise the errors that most contribute to graph changes), we

focused on the penalisation of the errors described in point ii) above (which are the ones inducing

the biggest graph changes). To find these errors, we developed a framework involving the mor-

phological closing operation, and proposed a normalisation function based on the length of the

error. Our experiments have shown that including this topological loss term during model training

leads to obtaining masks which are closer to the reference ones topological-wise, according to an

approximation of the proposed topological similarity indices.

We hope that the research conducted in this topic brings more awareness to the need of, not

only improving the resilience to these topological errors in future approaches, but also reporting

how good a given methodology is topological-wise. We stress that, with the continuous evolution

methodologies will keep facing, only reporting the typical metrics (AUC, accuracy, sensitivity,

and specificity) will be less sufficient as time goes by, since many properties of the produced

segmentations will be overlooked in that case.



Chapter 7

Sparse Multi-Bending Snakes

The content of this Chapter is based on the following work:

• R. J. Araújo, K. Fernandes, and J. S. Cardoso, "Sparse Multi-Bending Snakes", IEEE

Transactions on Image Processing, 2019.

ACMs are one of the most emblematic algorithms of computer vision. Their strong theoret-

ical foundations and high user interoperability turned them into a reference approach for object

segmentation and tracking tasks. A brief overview on how these models segment objects and

how they can be categorised according to their representation (explicit/parametric vs implicit) and

guiding features (edge- vs region-based) can be found in subsection 3.1.6.

In this Chapter, we build upon traditional parametric ACMs (tACMs from now on). Since the

introduction of ACMs [109], different contributions have been showing mechanisms to overcome

some of their limitations. To deal with ill defined forces far away from edges and poor conver-

gence to concavities, balloon forces [200] were introduced. Nonetheless, this solution requires

prior knowledge related to which direction should the force be acting and weak edges are easily

overpassed due to the pressure, leading to erroneous boundaries when portions of the object are

not well defined. Another method addressing these issues was later proposed, establishing a new

force field [201], known as Gradient Vector Flow (GVF). Other force fields have been proposed

meanwhile [202]. Further improvement of robustness to noise and initialisation was achieved

with the proposal of a decoupled active contour [203], where alternate steps of external energy

minimisation and prior-based smoothing are taken.

The state-of-the-art ACMs do not allow, however, to find the correct boundary of objects

having variable dynamics along the contour, where some of them occur due to the presence of

artefacts. Consider, for instance, the object shown in Figure 7.1. Suppose that the concavities

present in its top and bottom boundaries are due to an artefact (noise, object overlapping, image

acquisition issue, or related problems), such that the true boundary of the object is smooth at those

regions. A tACM is unable to produce the desired result, as the rigidity is constant along the entire

snake. High rigidity coefficients produce a smooth boundary that cannot fit correctly any contour

dynamics, while low rigidity makes the snake model the regions we want to disregard. Figure 7.1

129
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(a) (b)

Figure 7.1: Synthetic object displaying several dynamics along the boundary. Contours obtained
using (a) a tACM with rigidity of 0 and using (b) a tACM with rigidity of 10. x0 is represented in
the left image as a black star and the contour evolves clockwise.

Figure 7.2: Examples of juxta-pleural nodules in CT images, indicated by white arrows.

presents the contours obtained with those models. An example of a real scenario where this issue

arises is the segmentation of the lung in CT images. The inclusion of nodules on the boundary

of the lung, which are commonly referred to as juxta-pleural nodules, is challenging given that

they respond differently than healthy tissue to the imaging acquisition procedure (see Figure 7.2).

This makes these nodules highly susceptible to be discarded in the lung segmentation step, putting

at risk the nodule detection and characterisation steps that follow. There is strong evidence that

tumour growth and metastasis relies on angiogenesis, the process where new blood vessels emerge

from pre-existing ones [204; 205]. The analysis of blood vessel patterns near tumours, which are

typically very distinct from the ones appearing in healthy tissues, is relevant for understanding the

tumour mechanisms and therapeutic guidance [17; 18]. Hence, both nodule detection and local

blood vessel analysis play an important role in these studies.

The problem of finding the true object boundary has been targeted in the past, however the

methodologies are specifically tailored for a given application [206; 207] or they do not allow for

different behavior along the contour [208; 209]. Recently, an orientation-lifted Finsler minimum
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path approach has been developed and extended to closed contour detection [209], allowing to

overcome the common shortcut problem by penalising the variation of the tangent vector along

the curve. Even though such approach was effective at finding the true smooth boundary, it does

not solve the problem mentioned before, as it is not capable of achieving heterogeneous behavior

along the contour. In this Chapter, we discuss a novel parametric ACM that allows having a finite

number of contiguous regions with different bending properties. We designate such method as

Sparse Multi-Bending (SMB) snake, since rigidity transitions between consecutive contour points

are sparse, leading to contiguous regions of equal bending resistance.

7.1 Parametric active contour models

Traditional snakes, as introduced in [109], are represented as a parametric curve x(s)=
(
x(s),y(s)

)
,

s ∈ [0,1]. The energy of a given snake configuration is obtained by evaluating an energy function

along s:

Esnake =
∫ 1

0
Esnake

(
x(s)

)
ds

=
∫ 1

0
Eint
(
x(s)

)
+Eext

(
x(s)

)
ds

(7.1)

where Eint is the energy due to topological constraints of the snake, and Eext is an energy map

where image features of interest, usually edges, have lower energy. Additionally, a term related to

user input may also be considered, where attracting and/or repulsive forces are manually set.

The internal energy Eint is expressed as:

Eint =
1
2
(
α(s)|x′(s)|2 +β (s)|x′′(s)|2

)
(7.2)

where x′(s) and x′′(s) are the first and second-order derivatives of x(s), respectively. The first term

penalises the growth of the snake, making it behave as a membrane, while the second penalises

bending, making it act like a thin plate. The coefficients α(s) ∈ R≥0 and β (s) ∈ R≥0 control the

relevance of those properties along the snake.

The external energy Eext defines the features that attract the snake. Although different func-

tions have been designed, in this work we consider one that associates lower energy to stronger

edges. Then, the external energy may be given by:

Eext =−
∣∣∇(Gσ ∗ I)

∣∣2 (7.3)

where Gσ ∗ I is a smoothed version of image I obtained by performing a convolution with a Gaus-

sian having a standard deviation of σ , and ∇ denotes the gradient operation.
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A snake lying in a minimum of (7.1) must satisfy the Euler-Lagrange equation:

αx′′−βx′′′′−∇Eext(x) = 0 (7.4)

that can be equivalently expressed as a force balance:

fint(x)+ fext(x) = 0 (7.5)

where fint(x) = αx′′−βx′′′′ is the force due to the internal constraints, and fext(x) =−∇Eext(x) is

the force that pulls the contour to the desired image features.

By treating x(s) as a function of time t, we can iteratively update the contour using a gradient

descent scheme:

∂x(s, t)
∂ t

= αx′′(s, t)−βx′′′′(s, t)+ fext(x(s, t)) (7.6)

The solution to (7.4) is found when (7.6) reaches a steady state. Numerical schemes perform

a discretisation of x(s) into n contour points, xi = {xi,yi}, i = 1, . . . ,n, allowing to solve (7.6) in a

discrete grid, such as a 2D image. The discrete version of (7.1) is given by:

Esnake =
n

∑
i

1
2
(
αi|x′i|2 +βi|x′′i |2

)
+Eext(xi) (7.7)

However, these ACMs suffer from strong dependency to the initialisation and are unable to

model strong concavities. The GVF snake, as introduced in [201], is one of the fundamental

methods dealing with these issues. It uses a different external force, represented by the vector

field v(x,y) = [u(x,y),v(x,y)] that minimises the following function:

E =
∫ ∫

µ
(
u2

x +u2
y + v2

x + v2
y
)
+
∣∣∇ f

∣∣2∣∣v−∇ f
∣∣2dxdy (7.8)

where f (x,y) = −Eext and µ is a parameter controlling the smoothness of the GVF field. This

function combines two interesting properties: (1) when |∇ f | is high, (7.8) is minimised by set-

ting v = ∇ f , such that the force field is kept similar to the gradient of the edge map at regions

where strong edges exist; (2) when |∇ f | is low, the first term of (7.8) dominates and the energy is

minimised when the partial derivatives are small, which means that the force field is smoothed at

homogeneous regions. These properties allow extending the range of the force field and improving

the convergence to concavities.

Even though (7.7) allows having a parameterised contour with variable stretching and bending

resistances, for the best of our knowledge, no scheme for the automatic optimisation of such

properties exists. tACMs set αi and βi, i = 1, . . . ,n to constant values, such that identical properties

exist across the entire contour. In Section 7.2, we present a novel snake model that automatically

finds proper rigidity distribution, βββ , along the contour, being able to accurately segment objects

whose boundary displays dynamics that result from the presence of artefacts.
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7.2 Sparse multi-bending snake

The SMB snake is a novel parametric ACM, since it is able to automatically tune the bending

resistance along the contour. Our motivation is to have a flexible model that is able to accurately

fit the true contour of objects that, due to noise or other artefacts, have a locally distorted boundary.

A synthetic example was provided in Figure 7.1. This problem amounts to the necessity of having

ACMs that are able to fit certain dynamics while neglecting others.

7.2.1 Energy definition

The desired properties for our ACM are two-fold. First, it should allow to accurately model highly

dynamic regions. Second, it should be flexible enough in order to smooth regions with dynamical

behavior in favor of fitting others that present higher dynamics. Here, we propose a novel energy

function that allows achieving such behavior.

The energy of a parametric ACM having constant stretching and heterogeneous bending resis-

tances is given by a particular case of (7.7):

E =
n

∑
i

1
2
(
α|x′i|2 +βi|x′′i |2

)
+Eext(xi) (7.9)

Given that βi ∈ R≥0 and |x′′i |2 ∈ R≥0, the minimisation of the energy (7.9) trivially induces

configurations where βi = 0, i = 1, . . . ,n. Therefore, constraints are required to produce more

interesting models in terms of applicability.

In our proposed framework, we restrict the optimisation space by forcing the final solution

to have an average rigidity value of β . This may be thought as defining a budget that has to be

distributed over the entire contour. In this particular case, the total budget is nβ , where n is the

number of discrete points parametrising the contour. Even then, the existence of a point x j with

curvature |x′′j |2 ≈ 0 would be enough to allocate the entire budget to β j. Thus, a second constraint

sets an upper bound M on the budget that might be given to a single point.

These constraints already allow obtaining non-trivial models whose rigidity is heterogeneously

distributed along the contour, in such a way that low rigidity exists in regions of higher dynamics.

However, noise and other artefacts may lead to capturing dynamical behaviours that we do not

want to model. Thus, we seek solutions with sparse rigidity variation that divide the contour into a

small number of regions having heterogeneous bending properties, in order to fit the true dynamics

of a contour while ignoring the contribution of noise and other artefacts. We address this issue by

modifying the energy function to promote sparse rigidity transitions along the contour, for the

sake of inducing contiguous regions with different bending properties. Such goal is achieved by

considering a L0 norm term that penalises the number of transitions in βββ , leading to our proposed

energy function:

ESMB =
n

∑
i

1
2

(
α|x′i|2 +βi|x′′i |2 +λ

∥∥βi−βi−1
∥∥

0

)
+Eext(xi) (7.10)
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where βi ∈ [0,M], ∑i βi = nβ , λ ∈ R≥0 is a regularisation constant that controls the sparsity in-

ducing term, and ‖ ·‖0 denotes the L0 norm, which in this particular setting is 1 every time that the

rigidity parameter β changes between consecutive points in the contour, and 0 otherwise. Note that

we are considering closed parametric contours, such that β0 ≡ βn. This holds for the remaining

expressions presented in this Chapter, although we omit it for simplicity of notation.

The term of (7.10) accounting for the curvature is responsible for pulling lower rigidity to

points with higher curvature, while the L0 norm imposes that the solutions are sparse, that is, a

limited amount of different bending regions is allowed to exist. In the end, an adequate choice of

λ allows obtaining a sparse solution where the most bending-resisting segments are those where

the frequency of high curvatures is lower. When λ → ∞, the energy function will not allow any

transition to occur in βββ , such that the minimum of (7.10) amounts to setting βi = β , i = 1, . . . ,n.

Then, the SMB snake would behave as a tACM with β = β . The other extreme case, when λ = 0,

is not interesting in terms of applicability. Such setting freely introduces transitions in βββ , such

as to minimise the curvature related term of (7.10), only restricted by the constraints. The ratio

M/β controls the proportion of contour points that are allowed to have low β . It is expected that

for high ratios, a large portion of points have very low β at the expense of assigning high β to a

point where the curvature is low. This particular case produces final contours very similar to the

ones obtained when using a tACM with low β . A more interesting scenario arises when λ ∈]0,∞[.

An adequate parametrisation allows modelling the curvature of some regions while smoothing

the fluctuations of others. In addition, the parametrisation of the SMB snake naturally allows for

a significant flexibility in terms of the number of different bending regions and their respective

sizes. The joint optimisation problem considered in the proposed SMB snake comes as follows:

arg min
xi,βi

n

∑
i=1

1
2

(
α|x′i|2 +βi|x′′i |2 +λ

∥∥βi−βi−1
∥∥

0

)
+Eext(xi)

subject to 0≤ βi ≤M, i = 1, . . . ,n,
1
n ∑

i
βi = β

(7.11)

7.2.2 Optimisation framework

The joint optimisation of the contour x and the rigidity parameters βββ , as expressed in (7.11), is a

complex problem. Nonetheless, we propose to tackle it by considering alternate steps of partial

optimisation: optimisation of x given rigidity parameters βββ , and optimisation of βββ given contour

x, until convergence. The first step amounts to evolve x for a given βββ , using the traditional discrete

schemes. The second one is now addressed, as we present a method to iteratively optimise βββ given

x.

For simplicity of notation, let kkk be a vector representing the curvature along the parametrised

contour x, such that the curvature at xi, given by |x′′i |2, is denoted by ki. The optimisation of βββ
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given x is deduced from (7.11) by only taking into account the terms that depend on the rigidity

distribution:

arg min
βi

n

∑
i=1

βiki +λ
∥∥βi−βi−1

∥∥
0

subject to 0≤ βi ≤M, i = 1, . . . ,n,
1
n ∑

i
βi = β

(7.12)

Finding the solution to (7.12) is not trivial due to the inclusion of the L0 norm. It makes the

energy function non-differentiable, such that typical gradient-based descent methods cannot be

used. Here, we propose a group optimisation strategy based on pairwise coordinate descent to

minimise (7.12).

Consider any division of the contour x into two contiguous regions, R1 and R2, such that

R1∩R2 = /0 and R1∪R2 = x. An example of such a division is provided in Figure 7.3. By (7.12),

Figure 7.3: Possible division of a snake into two different regions, R1 and R2. P1 and P2 are the
indices of the first contour points of regions R1 and R2, respectively, considering clockwise order.

we know that ∑i βi = nβ . Thus, the following trivially holds:

γ− γ + ∑
i∈R1

βi + ∑
i∈R2

βi = nβ (7.13)

which is equivalent to:

∑
i∈R1

(
βi +

γ

n1

)
+ ∑

i∈R2

(
βi−

γ

n2

)
= nβ (7.14)

where γ is a variable representing a perturbation to the rigidity distribution, and n1 and n2 are

the number of points in R1 and R2, respectively. Given a feasible βββ distribution, and a particular
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division of the contour into two regions, our group optimisation strategy updates the rigidity βi of

each contour point xi by δi, according to the region it belongs to:

δi =

 γ/n1 if i ∈ R1

−γ/n2 if i ∈ R2

, i = 1, . . . ,n (7.15)

Then, for a given division of the contour, we are interested in finding the value of γ that leads to

a minimisation of (7.12). Such is achieved by transforming (7.12) into an expression that depends

on γ:

arg min
γ

n

∑
i=1

(
βi +δi

)
ki +λ

∥∥∥βi +δi−βi−1−δi−1

∥∥∥
0

subject to 0≤ βi +δi ≤M, i = 1, . . . ,n

(7.16)

By keeping only the terms dependent on γ , (7.16) is simplified to:

arg min
γ

γ

(
1
n1

∑
i∈R1

ki−
1
n2

∑
i∈R2

ki

)
+

λ

(∥∥∥∥βP1 +
γ

n1
−βP1−1 +

γ

n2

∥∥∥∥
0
+

∥∥∥∥βP2−
γ

n2
−βP2−1−

γ

n1

∥∥∥∥
0

)
subject to 0≤ βi +

γ

n1
≤M, i ∈ R1,

0≤ βi−
γ

n2
≤M, i ∈ R2

(7.17)

where P1 and P2 are the first contour points of R1 and R2, respectively, considering clockwise order.

Let β m
i∈R j

and β M
i∈R j

denote, respectively, the minimum and maximum β values found among

the points of region R j. The constraints in (7.17) can be equivalently written as the following set

of conditions:

{
γ ≥max

(
−n1β

m
i∈R1

, n2
(
β

M
i∈R2
−M

))
, γ ≤min

(
n1
(
M−β

M
i∈R1

)
, n2β

m
i∈R2

) }
(7.18)

The set of conditions in (7.18) defines a minimum and maximum limit for γ , which we des-

ignate as γm and γM, respectively. A further reduction of the search space can be achieved, by

carefully analysing the shape of the terms in the goal function of (7.17). The first term is linear

on γ , being the slope dictated by the relation between the mean region curvatures, 1
n1

∑i∈R1 ki and
1
n2

∑i∈R2 ki. The contribution of this term to the energy (7.17), as a function of γ , is presented in

Figure 7.4. When the slope is positive, this term pushes the optimum γ towards γm. Otherwise,

when the slope is negative, it drives the optimum γ to γM. Note that, for the particular case where

the regions have equal mean curvature, the slope is 0, such that any γ leads to the same cost.

This means that this term either contributes to one minimum, γm or γM, or to none. The second

term is a sum of two L0 norms weighted by the regularisation term λ . A L0 norm contributes

in a very particular manner to the energy (see Figure 7.5). It generates a local minimum at the
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γ

J

γMγm

a > 0

a < 0

Figure 7.4: Cost J of the first term of (7.17), as a function of γ . a is the difference between the
mean curvatures of R1 and R2.

γ

J

l

1

γMγm

Figure 7.5: Cost J of a single L0 norm of the second term of (7.17), as a function of γ . l is given
by n1n2

n1+n2
(βP1−1−βP1) for the first L0 norm and n1n2

n1+n2
(βP2−βP2−1) for the second one.

value of γ that reduces its argument to 0. Hence, the first L0 norm induces a local minimum at

γ = n1n2
n1+n2

(βP1−1−βP1), while the second is responsible for one at γ = n1n2
n1+n2

(βP2−βP2−1).

Given that (7.17) is simply given by the addition of these functions, it amounts to find which

of the following values of γ minimises (7.17):

{
γ

m, γ
M,

n1n2

n1 +n2
(βP1−1−βP1),

n1n2

n1 +n2
(βP2−βP2−1)

}
(7.19)

After finding the optimum γ for a given division, βββ may be updated accordingly:

βi(τ +1) =

βi(τ)+
γ

n1
if i ∈ R1

βi(τ)− γ

n2
if i ∈ R2

, i = 1, . . . ,n (7.20)

where τ ∈ Z+ denotes the current iteration of the optimisation procedure. Essentially, we pro-

pose an iterative procedure (see Algorithm 2), where, at iteration τ , we consider all the possible

divisions of the contour into two contiguous regions, and for each, we find the optimum γ . The di-

vision that is effectively considered at iteration τ is the one that minimises (7.16). We repeat such

process until convergence or, in other words, until no additional perturbation further decreases our

energy function. Note that, even though we only consider a division into two regions at each time,

the iterative nature of the optimisation procedure allows to incrementally find new heterogeneous

bending regions. Figure 7.6 exemplifies this, by showing how the rigidity evolves with τ , when x
is the contour shown in the left image of Figure 7.1, λ = 5, β = 5, and M = 10.
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Algorithm 2: Optimisation of rigidity distribution βββ given contour x.
input : rigidity distribution βββ , contour x
output: optimised rigidity distribution β̂ββ

βββ
it ← βββ

k← curvature along x
J← LossFunction

(
βββ ,k

)
// (7.12)

do
β̂ββ ← βββ

it

for (P1,P2), 1≤ P1 < P2 ≤ n do
γ ← GroupOptimisation

(
β̂ββ ,k,P1,P2

)
// (7.16)

βββ
con f ig← UpdateBeta

(
β̂ββ ,k

)
// (7.20)

cost← LossFunction
(
βββ

con f ig,k
)

// (7.12)

if cost < J then
βββ

it = βββ
con f ig

J← cost
end

end
while βββ

it 6= β̂ββ ;

return β̂ββ

(a) (b) (c)

Figure 7.6: Rigidity distribution evolution with the number of iterations of the proposed optimisa-
tion algorithm, when applied to the contour shown in Figure 7.1a, with λ = 5, β = 5, and M = 10:
(a) after 1 iteration; (b) 2 iterations; and (c) convergence.

7.3 Experimental Results

In this Section, we demonstrate how the SMB snake design allows to address different scenarios.

First, we perform experiments on synthetic images just to show the adaptability of the model to

different user requirements. Afterwards, we apply the SMB snake to a real application that benefits

from having a multi-bending ACM, the lung segmentation in CT images. Finally, we report some

findings related to initialisation and computational efficiency. A Matlab implementation of our

algorithm is available at https://github.com/rjtaraujo/smb-snake. Additional ex-

periments regarding the delineation of hands in hand gesture images can be found in the published

paper.

In the experiments described in subsections 7.3.1 and 7.3.2, we initialised the contour x(t0) at

https://github.com/rjtaraujo/smb-snake
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the boundary of a dilated version of the ground truth of the object. A square kernel of side 13 was

used. The number of discrete points was set to a fraction of the perimeter of that initial contour.

The fraction was 1/3 for synthetic images, and 1/5 for the lung ones, as the lung boundary can

be accurately modelled with fewer contour points. For all tested parametric models, including

ours, we set α = 0, such that we do not penalise stretching forces. Additionally, the image related

forces were obtained after 100 iterations of GVF (7.8). Regarding our model, the rigidity across

x(t0) was set to β (t0),∀i. After letting the snake converge, at time t1, we optimised βββ given the

curvature kkk along the contour x(t1). The curvature at point xi was estimated by the inverse of

the radius of the circle fitted using xi and its neighbours xi−1 and xi+1. Finally, we let the snake

converge again, according to the new rigidity distribution, leading to the final contour x(t2). In

our experiments, no further improvement was obtained by undergoing additional steps of rigidity

distribution optimisation.

7.3.1 Synthetic images

Let us consider first a binary object resembling the shape of a flower, as shown in Figure 7.7.

Three regions induce high curvature along the boundary of the object, namely the petal (top), sepal

(a) (b)

Figure 7.7: Synthetic image and curvature along the contour: (a) image and contour x(t1) in black,
with x0 represented as a black star and considering that the contour evolves clockwise; and (b)
curvature along the contour.

(right) and stem (bottom) regions. The SMB snake parametrisation allows modelling portions of

the mentioned dynamics. For instance, by setting β (t0) = 0, we first obtain a detailed contour of

the flower (black line imposed in Figure 7.7a). The curvature along the contour is represented in

Figure 7.7b.

As can be seen, the stronger dynamic appears in the petal region, such that this is the first region

that the SMB snake tries to distinguish. However, an adequate parametrisation may also append

adjacent dynamics, such as the sepal one. Figure 7.8 illustrates the flexibility of the proposed

model, where we set β (t0) = 0, λ = 5, M = 12 and show the effect of varying β . The results show

that by decreasing the ratio M/β , we induce configurations with a smaller portion of the contour

having low rigidity, as discussed in Section 7.2.
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(a) (b) (c)

Figure 7.8: βββ distribution (top) and SMB snake result (bottom) for β (t0) = 0, λ = 5, M = 12 and
varying β : (a) 2, (b) 5, and (c) 8.

It may also be of interest to use parametrisations that induce a partition of the contour into more

than two different bending resisting regions. Returning to the example provided in Figure 7.1, the

objective was to fit the lateral dynamics while neglecting the remaining ones. Figure 7.9 shows

how the optimised rigidity distribution varies with λ and demonstrates that the SMB snake is

able to accomplish its purpose for an adequate regularisation value, which in this case was any λ

between 1.4 and 10.3.

(a) (b) (c)

Figure 7.9: βββ distribution (top) and SMB snake result (bottom) for β (t0) = 0, β = 5, M = 10 and
varying λ : (a) 0, (b) 5, and (c) 20.
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7.3.2 Lung CT images

The SMB snake is able to naturally handle the challenge presented in the beginning of this Chapter,

concerning the inclusion of juxta-pleural nodules during lung segmentation. Throughout the CT

images, the lungs frequently exhibit a medial region with intermediate to high dynamics, while the

lateral region is generally smooth. Hence, a SMB snake capable of modeling the lung contour as

two different segments seems ideal to include juxta-pleural nodules that exist in the lateral region

of the lung.

To conduct our experiments, we used 406 lung CT images from the LIDC-IDRI database [210;

211; 212], of which 208 include juxta-pleural nodules. Manual annotations of the entire lung

regions and of the individual juxta-pleural nodules were made by an expert. We compare the

results of our model to the GVF snake [201], and two implicit ACMs, the Distance Regularised

Level Set Evolution (DRLSE) method [113], and the Selective Binary and Gaussian Filtering

Regularised Level Set (SBGFRLS) [213]. The edge-based application of DRLSE is ruled by the

following gradient flow:

∂φ

∂ t
= aR(φ)+bL(φ)+ cA(φ) (7.21)

where φ is a level set function that represents the contour implicitly as the zero-level set, R(φ)

is associated with a term that penalises the difference of φ to a signed distance function, L(φ) is

related to the line integral of the edge indicator function along the zero level set of φ , A(φ) to the

weighted area of the region inside zero level set of φ , and a ∈ R>0, b ∈ R>0, c ∈ R control the

relevance of those terms, respectively. The sign of c dictates whether the zero level set expands or

contracts.

On the other hand, the region-based SBGFRLS evolution is given by:

∂φ

∂ t
= sp f (I) ·d|∇φ | (7.22)

where sp f (I) is a region-based signed pressure function, making the contour shrink when outside

the region of interest and expand when inside. The second term, modulated by a constant d,

increases the propagation speed. Regarding the implementation of this level set formulation, after

each evolution step, a Gaussian filter is used to regularise the level set function, such that its

standard deviation σ dictates the amount of regularisation of the contour.

Regarding the GVF snake, we tested different values of β . As for the parametrisation of

the DRLSE model, we set a = 0.2, c = 3 and tested different configurations of b. With respect

to the SBGFRLS model, we set d = 1 and tuned σ . Finally, for our model, we empirically set

β (t0) = 5, λ = 1, M = 17, and varied the value of β . Table 7.1 summarises the performance of

these models with respect to three different metrics: the percentage of juxta-pleural nodule area

that is included in the segmentations, and the Jaccard index and F1-score accounting for the entire

lung area segmentation. Visual results related to the examples provided in Figure 7.2 are presented

in Figure 7.10.
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(a) (b) (c) (d) (e)

Figure 7.10: Example contours of the lung area, obtained using (a) a GVF snake with β = 0; (b)
a GVF snake with β = 20; (c) the DRLSE model with b = 50; (d) the SBGFRLS model with
σ = 10; and (e) the proposed SMB snake with β = 10.

Table 7.1: Evaluation of the lung segmentations obtained with different ACMs. Comparison is
made in terms of the mean juxta-pleural nodule area that is included and also in terms of the
complete lung area, using the Jaccard index and the F1-score.

Model % nodule area
segmentation J F1

GVF

β = 0 24.1 0.963 0.981
β = 1 60.7 0.958 0.979
β = 5 76.6 0.944 0.971
β = 10 81.1 0.913 0.964
β = 20 83.8 0.908 0.951

DRLSE
b = 10 22.6 0.970 0.985
b = 50 26.8 0.973 0.986
b = 100 26.7 0.971 0.985

SBGFRLS
σ = 1 11.9 0.968 0.983
σ = 5 62.4 0.957 0.978
σ = 10 71.0 0.924 0.959

Proposed
β = 8 67.2 0.958 0.978
β = 10 80.0 0.956 0.977
β = 12 81.4 0.951 0.975

The results show that, as we increase β in the GVF snake, we are able to include a higher

percentage of nodule area, at the cost of decreasing the accuracy at other dynamic regions, as

concluded from the decrease in the Jaccard index and F1-score. This was expected since more

topological restricted snakes induce smoother contours, allowing them to ignore the concavities

that exist due to the juxta-pleural nodules. However, they also fail at returning a detailed lung
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boundary in highly curved regions. The DRLSE method produced results similar to a GVF snake

with zero rigidity, and varying the parametrisation did not significantly change the behaviour of

the model. Regarding the SBGFRLS model, the increase of regularisation allowed including more

nodule area, as expected; however, the loss of lung boundary detail also increased significantly.

The SMB snake was able to achieve the advantages of both low and high bending resisting tACMs,

combining a proper inclusion of juxta-pleural nodules and accurate lung boundary modelling. It

proved to be the model achieving the best compromise. Even then, occasionally, juxta-pleural

nodules may appear in the medial region of the lung or in its vicinity, and be wrongly interpreted

as part of the natural dynamic of the lung (see Figure 7.11).

Figure 7.11: An example juxta-pleural nodule that has been missed by our proposed framework
due to its inclusion in the region of higher dynamics.

7.3.3 Impact of intensity inhomogeneity

Intensity inhomogeneity, either due to non-uniform illumination or the nature of the image, in-

troduces a challenge to the evolution of ACMs, as it leads to significant changes of the gradient

and region statistics. Here, taking the image in Figure 7.1, we artificially generate images that

are affected by intensity inhomogeneity. We analysed how the proposed methodology behaved

in such scenario, in comparison with the edge-based DRLSE method described in section 7.3.2

and a region-based level set formulation that is robust in the presence of intensity inhomogene-

ity, the Locally Statistical Active Contour Model (LSACM) [214]. Visual results1 are provided

in Figure 7.12. Regarding the proposed model, the number of discrete points was set to half the

perimeter of the initial contour, β (t0) = 0 (such that a GVF snake with no rigidity first fits all of

the object dynamics), λ = 10, β = 10, and M = 25. As for the DRLSE, a = 1, b = 10, and c = 4

were used. Finally, concerning the LSACM, we used the implementation provided in [215] and

set the parameter controlling the size of the constant kernel to 20.

1In our experiments concerning intensity inhomogeneity, the SBGFRLS was clearly worst than the LSACM; thus,
we only show results for the latter. Despite this, the SBGFRLS achieved better compromises regarding segmented
nodule area and lung boundary detail in the lung experiment; thus, we selected it as representative of region-based level
set methods in subsection 7.3.2.
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The GVF snake was capable of converging to the dynamics of the object in the first three sce-

narios of intensity inhomogeneity, including the case where the shadow of the object was present

(third row of Figure 7.12). This is a result of smoothing and propagating the most relevant gradient

vectors, which exist between the object and the background. The DRLSE method failed in this

particular case, as the edge between the shadow and the background was strong enough to prevent

further evolution of the contour. However, in the fourth case, where we mimic object overlapping,

the gradient vectors between the overlapped object and the background are sufficiently strong to

prevent the GVF snake from converging only to the dynamics of the target object. Our method-

ology, by taking the result of the GVF snake and according to its parametrisation, was capable of

breaking the contour into a set of contiguous regions with different bending properties, as shown

before. The LSACM successfully fitted the dynamics of the object in all the images, even though

it does not possess the flexibility of the SMB snake and cannot replicate its results when desired.

(a) (b) (c) (d) (e)

Figure 7.12: Impact of intensity inhomogeneity in the evolution of different ACMs: (a) initial
contours; the results obtained using (b) the GVF snake, (c) our proposed methodology, (d) the
DRLSE level set, and (e) the LSACM.
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7.3.4 Impact of contour initialisation

The evolution of parametric ACMs is largely influenced by the initialisation of the curve, espe-

cially when local minima exist due to noise and other objects. This is the case of the lung scenario

we described before, which justifies that we analyse here the effect of varying the initialisation in

the performance of some of the parametric ACMs that were considered for that application: GVF

snake with β = 0, with β = 20, and the SMB snake with β = 10. We now consider initialising with

dilations of the ground truth using kernels of varying width, more precisely, 0 (no dilation), 13, 26,

and 39. We also consider the same dilations affected by local distortions obtained by adding noise

drawn from a normal distribution N (µ = 0,σ2 = 100). Finally, we also test evolving the ACMs

from an ellipse fitted to the object, and from the bounding box of the object. Let these scenarios

be represented by D0, D13, D26, D39, DN0, DN13, DN26, DN39, ELL, and BBOX , respectively.

Figure 7.13 presents a graphical comparison of how the performance of the ACMs was affected

by the initialisation, with respect to the overall lung segmentation quality, according to the Jaccard

index.

The performance of the considered ACMs decreased when increasing the distance between the

initial curve and the target lung boundary. This was expected due to the influence of the non-target

lung in the evolution of the contour. The added noise did not have such a significant impact, but

it ended up affecting slightly more the GVF with zero rigidity. As that model does not penalise

bending, any distortion of the contour that makes it approximate the boundary of the non-target

lung results in a region that becomes trapped. Again, initialising at the bounding box of the target

lung frequently induced the contour to be trapped at the boundary of the non-target lung, leading

to poor performance. The initialisation as an ellipse fitted to the target lung did not severely suffer

from this since it better encapsulated the object of interest. The initialisation dependence of our

model is related to the parametric ACM used to first fit the dynamics of the object (t1), before

optimising the rigidity along the contour. To demonstrate the properties of our framework, we

used the GVF snake with rigidity β (t0) in that first step. A more sophisticated parametric ACM,

in the sense of being robust to noise and initialisation, could be used instead; however, such detail

is behind the scope of this work.

7.3.5 Time efficiency

The SMB snake includes an intermediate step where a new rigidity distribution is found, therefore

it has an increased computational cost associated. Even though we introduced an exhaustive search

algorithm for optimising the rigidity distribution, note that for each possible division of the contour

into two, there is an analytical solution, only requiring the evaluation of the cost function at four

points. In fact, the optimisation procedure only took, on average, 0.014 s for each considered

image of the lung database, using a naive implementation in C++ and an Intel Core i7-6700 CPU

3.40GHz in a setup with 16.0 GB of RAM. For the sake of comparison, 100 iterations of tACM

evolution, which are not enough for convergence in most applications, take 0.5 s in a Matlab

implementation [216]. Thus, our rigidity optimisation procedure takes less time than 4 iterations
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Figure 7.13: Performance of parametric ACMs when only considering the segmentation of the
total area of the target lung, according to curve initialisation.

of tACM evolution, showing that its computational cost is practically negligible, especially when

we also take into consideration the cost of calculating the image energy and the field of forces.

We believe that most applications benefiting from our ACM fall into the scenarios included in this

Chapter, in the sense that only a small number of regions should have distinct bending properties,

thus requiring few iterations of the optimisation algorithm until convergence.

7.4 Main contributions and final considerations

This Chapter addressed the challenge of including juxta-pleural nodules when using automated

algorithms for the segmentation of the lung area. This task is typically performed before lung

nodule detection and analysis, such that it is very important to not discard any nodule during the

segmentation step. The analysis of nodules commonly takes into account features such as their

size and shape, nonetheless it may also involve assessing local blood vessel patterns for a more

complete study, and guiding and evaluating therapeutic treatments [17; 18].

A novel parametric ACM that allows to divide the snake into a set of contiguous regions

with different rigidity properties was presented. The proposed energy function allows the user to

control the amount of such regions, since it incorporates a regularisation term that penalises the

number of transitions in the βββ distribution along the contour. A group optimisation strategy was

also presented, which may be used to optimise βββ , given a contour with points xi, i = 1, . . . ,n.

In addition to experiments with synthetic images, we tested the proposed model in the real

application of lung area segmentation in CT images. We showed how our model achieved a result

that is not possible when using other explicit and implicit ACMs. The SMB snake was able to

accurately follow the lung curvature while including most of the juxta-pleural nodules. Other

ACMs can only achieve one of those desired properties. Parametrisations of low rigidity tend to
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not include the nodule area, while the ones with high rigidity fail at retrieving the detailed lung

boundary.

Our main contributions to the ACM literature are the following: (1) proposal of a snake model

that is able to automatically fit different dynamics along the boundary of the object; (2) design of a

novel energy function that induces few transitions in the rigidity coefficients along the contour, and

consequently the existence of a small number of contiguous regions; (3) derivation of a pairwise

coordinate descent strategy to optimise the proposed energy function.

Regarding future work, given the relevance of level set based approaches in the current frame-

work of ACMs, it would be interesting to have an implicit ACM, which naturally handles topology

changes and is more robust to initialisation, benefiting from the flexibility that characterises the

SMB snake. Additionally, an extension to 3D would also be highly desirable.
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Chapter 8

Conclusions and Future work

Blood vessels are the structures responsible for carrying blood throughout the different tissues of

the body, enabling the exchange of molecules between this fluid and cells. The imaging and anal-

ysis of blood vessels is required by clinicians in several scenarios: suspicion of abnormalities in

their structure, such as aneurysms and stenosis, both of which may lead to life-threatening events;

to obtain cues on some systemic diseases, such as hypertension and diabetes; to better characterise

certain tumours; and to determine surgery eligibility and perform pre-operative planning. Yet,

blood vessel analysis is a very time consuming and repetitive task, an issue that becomes even

more apparent in screening programmes, where a large volume of data is collected in a short span

of time. Not surprisingly, the task of blood vessel segmentation became a hot topic of research

in the computer vision community, with the goal of identifying the data pixels belonging to blood

vessels. This map may facilitate the analysis by clinicians or be fed as input to an automated

analysis and characterisation module. Nowadays, the blood vessel segmentation literature is al-

ready vast and, even though great progress has been achieved, there are still challenges that require

attention. This thesis discusses some of the areas where we believe the literature is lacking and

presents the outcomes of our research.

The evolution of medicine and clinical practice pushes forward the field of computer vision,

since many new applications, challenges and needs arise. An area where medicine has been evolv-

ing significantly in the last years is autologous-based breast reconstruction. Through microsurgery

techniques, it became possible to extract tissue from the belly without significantly disturbing the

abdominal wall. Even then, this procedure requires a careful pre-operative planning, which is

dependent on the analysis of the DIEPs, the blood vessels vascularising the anterior abdominal

wall, by a radiological team. This is a requirement since the extracted flap must contain adequate

blood vessel branches for the re-anastomosis with the blood vessels of the chest, in order to en-

sure the proper vascularisation of the new breast. The radiologists commonly resort to a CTA

or MRA to acquire images of these blood vessels and then transmit the findings to the surgeons,

which will subsequently design the plan for the extraction of the flap. The process of localising

and characterising the DIEPs is very time-consuming and prone to subjectivity, which increases

the uncertainty during the assessment by the surgeons. In a collaboration with the Breast Unit

149
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of the Champalimaud Foundation, we have developed a computer vision approach for the semi-

automatic extraction of the DIEPs in CTAs. To the best of our knowledge, we were the first

targeting the automated extraction of these blood vessels. The main challenges are the small cali-

bre of the vessel segments (1-3mm, which in a typical CTA scan corresponds to 1-5 pixels only),

the low SNR even after the injection of contrast, especially in their intramuscular portion, and the

existence of nearby structures which are also highlighted by the imaging procedure, like the ab-

dominal muscle. The proposed methodology starts by finding the anterior fascia of the abdominal

muscle in order to transform the problem of extracting the DIEPs into two different ones, each of

them having their own set of challenges: i) extraction of the subcutaneous course of the DIEPs

from manually given points until the fascia, where the major difficulty is to find the correct course

when the vessel evolves nearby or even adjacent to the fascia; ii) extraction of the intramuscular

course from the point where the subcutaneous tracker ends until the location where the respective

DIEA perforates the posterior lamella of the abdominal muscle, a very challenging task since the

blood vessel signal is disguised in the muscle, and frequently only some portions of the course

are observable. For the subcutaneous part, we designed a centreline tracker which makes use of

Frangi’s vesselness data to decrease the influence of the 3D plane-like fascia layer. Concerning

the intramuscular course, a minimum cost path approach was employed and the usefulness of cost

functions combining Frangi’s vesselness and intensity information was assessed. The calibre of

each DIEP was estimated during its subcutaneous tracking by fitting Gaussian functions to inten-

sity profiles from the cross section of the blood vessel. The experiments compared the findings

of the proposed method with those retrieved manually by radiologists, and the following obser-

vations were made: a statistical significant difference was verified in calibre estimation, but not

when considering only the perforators which ended being included in the flap; having as reference

the measurements taken during the surgery, the automated method showed smaller median error

in larger perforators yet larger median error in the smaller ones; regarding the location where the

perforators pierce the anterior fascia, the automated method and the manual analysis were only

statistically different with respect to the vertical component, even though the effect size was small

and did not have impact in practice. A time reduction of about 2 h per patient was estimated

when using the proposed methodology. These promising results support our conviction that the

developed CAD algorithm is capable of supporting the clinicians in this challenging application,

leading to a more objective and faster analysis. A prototype software providing a simple inter-

face to conduct our proposed methodology was created and, in the future, it will be tested at the

Breast Unit of the Champalimaud Foundation, in order to better assess its usability and suitability,

and also further validating the algorithm in a more clinical context. The further automation of

report generation and blood vessel extraction will be considered. Concerning the latter, prelim-

inary experiments have shown that, by using vessel enhanced data and hysteresis threshold, the

subcutaneous portion of the DIEPs can be extracted with a lot of detail, even allowing to better

assess how they communicate between them, a relevant information to have into account during

the preoperative planning. Augmented reality systems would also be interesting to consider in this

scenario, given that the simultaneous visualisation of the data and the extracted DIEP tree would
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give a better perception to the surgeons of the 3D arrangement of the structures of interest.

Another specific scenario which was targeted during this thesis was the segmentation of retinal

vessels in fundus photography images. This scenario has been widely studied, not only due to

its impact in healthcare, but also because there exist several databases with annotations which

allowed to establish proper benchmarks and creating machine learning models. At the time of our

research, the state-of-the-art supervised deep learning approaches had already achieved human-

like performance regarding metrics such as the AUC and accuracy, nonetheless they were slow

during prediction. This was caused by the need of splitting an image into several patches and

performing classification for each of them. One of the main necessities for the automated analysis

of retinal fundus photos arises during screening programmes, where it is likely that a large number

of images will be acquired in a short amount of time. Therefore, it is important to decrease

the time spent in the inference process as much as possible. We have designed a convenient

and efficient FCN, which allows to run inference on images of different sizes at a single step

and avoids time-consuming pre- and post-processing steps. A discussion regarding the use of

batch normalisation and dropout, and the overall network design was contemplated. The proposed

methodology was able to achieve competitive performance when comparing with the state-of-the-

art algorithms while being very fast during inference. It took us less than 5 s in average to make a

prediction (Nvidia GeForce GTX 1080 Ti GPU), whereas the state-of-the-art patch classification

based approach required, on average, 92 s (Nvidia GTX Titan GPU).

The algorithms discussed in the two preceding paragraphs are application-specific, since they

were designed having a particular use case in mind. This does not mean that, for example, the

blood vessel centreline extraction methods employed in the DIEP case would not work in other

applications, but they would likely be sub-optimal at most, as their design was heavily influenced

by particularities of the use case. It comes as no surprise that there is a tendency to use anatomical

prior knowledge and heuristics when targeting a very particular use case of blood vessel segmen-

tation. Even then, the relevance of studying methodologies that generalise well to new data is

clear. Whenever a new application emerges, such a generalisable algorithm could be promptly

used without forcing developers to re-adapt hyper-parameters or, worst, requiring new datasets to

re-train the networks, especially if annotations were required. Deep learning has been breaking

boundaries in supervised scenarios, yet the learned models tend to perform poorly when they are

given differently distributed data, such as the data coming from a different imaging technique or

even another blood vessel tree. In this thesis, we explored the combination of supervised deep

learning and an unsupervised framework that is known for its generalisation capabilities in blood

vessel enhancement, the eigenvalue analysis of the Hessian matrix at multiple scales. By defin-

ing expressions based on prior knowledge that respond to the eigenvalues characteristic of tubular

structures, a vessel probability is obtained when using these methods. Our motivation was to learn

a more optimal vesselness measure, making use of the available annotated data. This can also be

seen as a network regularisation mechanism, since instead of letting it learn a mapping from the

images themselves, the input is already a richer and more compact representation of local struc-

ture. The experiments showed that a shallow network implementing a deep vesselness measure
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was able to, not only surpass traditional vesselness metrics, but also generalise better than a Unet

model. Despite the promising results, we would like to explore domain adaptation in the future. It

is one of the hot topics in machine learning at the moment and it is likely to provide further gains,

since it allows to find more complex manifolds representing differently distributed data without

the constraint of relying on a simpler prior representation of the data.

In clinical practice, the blood vessel segmentation step is followed by the analysis and char-

acterisation of the extracted tree, which could also be automated or not. Keeping an accurate

graph-like structure of the tree is very relevant in this characterisation step, as failing to do so can

lead to the misinterpretation of some aspects of the network, or even losing some sub-trees when

using automated analysis methods. Even then, the topological similarity between the segmenta-

tions and the ground truth are typically overlooked during the benchmarking of proposed blood

vessel segmentation algorithms. This may be due to the lack of proper metrics in the literature to

assess this property. Moreover, this issue extends to how machine learning models are learned,

which is typically by minimising loss functions which only account for pixel-wise error and do

not reliably enforce that the graph structure is kept. During this thesis, we conducted research

to find proper ways to reduce these limitations, hopefully increasing awareness to the relevance

of the topic. Starting with the evaluation of topological properties, we have designed a general

similarity index which is based on the paths that are possible to traverse in a tree and having the

following properties: i) errors originating disjoint trees or merging different trees are weighted

more than those at blood vessel terminations; ii) errors at the main branches of the blood vessel

tree are likely to be more penalised. Properties i) and ii) are responsible for penalising more the

errors having larger impact on the global graph, making this similarity index distinct from the

metrics available in the literature. Two particular designs of the proposed similarity index were

presented. Concerning the challenge of learning models which better promote topological consis-

tency, two approaches were proposed. The first one comprises the design of a model architecture

where the errors affecting a first segmentation are interpreted as a noise process, which we aim to

eliminate through the use of a probabilistic auto-encoding model. Our experiments showed that

this architecture produces segmentations which are topologically more coherent than having both

segmentation and refinement steps implemented as Unet models, with a total number of param-

eters similar to the proposed network. The second approach relied on the design of a novel loss

function whose minimisation promotes learning models which are better regarding topological

coherences. State-of-the-art losses promoting blood vessel centreline consistency (which, despite

focusing the graph structure of the vascular tree, do not particularly penalise the errors that most

contribute to graph modifications) were extended in order to further penalise the errors mentioned

previously in property i). That was accomplished by a loss involving the morphological closing

operation and a normalisation function taking into account the length of the error. Experiments

showed that the inclusion of the novel loss term allowed a Unet model to reach states that output

segmentations which are closer to the reference ones topology-wise, according to the proposed

topological similarity indices. We hope that the research conducted in this topic brings more

awareness to the need of, not only improving the resilience to these topological errors in future
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approaches, but also reporting how good a given methodology is topology-wise. We stress that,

with the continuous evolution which methodologies will keep facing, only reporting the typical

metrics (AUC, accuracy, sensitivity, and specificity) will be less sufficient as time goes by, since

many properties of the produced segmentations will be overlooked in that case. We expect that the

development of learning procedures that better capture the topological properties of blood vessel

trees will significantly boost the generalisation and robustness of the learned models.

Finally, the research conducted during this thesis includes a fundamental contribution to the

ACM literature. ACMs are very commonly used in a myriad of computer vision applications,

including biomedical ones. Despite the large number of existing ACMs, to the best of our knowl-

edge, all of them have homogeneous stretching and bending properties along the contour. This is

not ideal when an object displays several dynamics and some of them result from noise or other

artefacts and, therefore, should not be fitted. One example of this is the segmentation of the lungs

in CT images, where a state-of-the-art ACM cannot follow the natural dynamics of these organs

and, at the same time, include in the segmentation the nodules lying in their peripheral region. The

inclusion of these nodules is essential for the steps that follow, nodule detection and characterisa-

tion and, possibly, the analysis of the surrounding blood vessel patterns to gather more insight. A

novel parametric ACM, the SMB snake, was proposed to address this limitation of the literature,

by allowing to have contours with a finite number of contiguous regions with different bending

properties. To make this possible, a novel energy function inducing sparse transitions (L0 norm) in

the rigidity coefficients along the contour was designed. To optimise our novel energy function, a

pairwise coordinate descent strategy was derived. The conducted experiments have shown how an

adequate parametrisation of the SMB snake is able to achieve contours that state-of-the-art models

cannot. In addition to the scenario of lung segmentation, where our model was the one dealing

better with the trade-off between accurate delineation and peripheral nodule inclusion, we have

also demonstrated its properties in experiments concerning synthetic and hand gesture images.

With the outcomes of this thesis, we believe that: (i) AI-based blood vessel segmentation

was shown to still be far from mimicking the rationale a human employs when solving the task,

such that there are still several open challenges to address; (ii) we have paved the way for the

employment of computer vision in the preoperative planning of DIEP flaps; (iii) the array of

methodologies available for clinicians who deal with blood vessel segmentation and/or analysis

was increased, with the attenuation of some of the limitations of the literature; (iv) the relevance

of topics which have not been very focused during blood vessel segmentation research, such as the

topological properties of the vascular trees, was stressed, hopefully raising their awareness; and

(v) the applicability of ACMs was extended with the proposal of the novel SMB snake.
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