1,606 research outputs found

    Prolonging Network Lifetime of Clustered Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networking is envisioned as an economically viable paradigm and a promising technology because of its ability to provide a variety of services, such as intrusion detection, weather monitoring, security, tactical surveillance, and disaster management. The services provided by wireless senor networks (WSNs) are based on collaboration among small energy-constrained sensor nodes. The large deployment of WSNs and the need for energy efficient strategy necessitate efficient organization of the network topology for the purpose of balancing the load and prolonging the network lifetime. Clustering has been proven to provide the required scalability and prolong the network lifetime. Due to the bottle neck phenomena in WSNs, a sensor network loses its connectivity with the base station and the remaining energy resources of the functioning nodes are wasted. This thesis highlights some of the research done to prolong the network lifetime of wireless sensor networks and proposes a solution to overcome the bottle neck phenomena in cluster-based sensor networks. Transmission tuning algorithm for a cluster-based WSNs is proposed based on our modeling of the extra burden of the sensor nodes that have direct communication with the base station. Under this solution, a wireless sensor network continues to operate with minimum live nodes, hence increase the longevity of the system. An information theoretic metric is proposed as a cluster head selection criteria for breaking ties among competing clusters, hence as means to decrease node reaffiliation and hence increasing the stability of the clusters, and prolonging the network lifetime. This proposed metric attempts to predict undesired mobility caused by erosion

    Decentralized mobility models for data collection in wireless sensor networks

    Full text link
    Controlled mobility in wireless sensor networks provides many benefits towards enhancing the network performance and prolonging its lifetime. Mobile elements, acting as mechanical data carriers, traverse the network collecting data using single-hop communication, instead of the more energy demanding multi-hop routing to the sink. Scaling up from single to multiple mobiles is based more on the mobility models and the coordination methodology rather than increasing the number of mobile elements in the network. This work addresses the problem of designing and coordinating decentralized mobile elements for scheduling data collection in wireless sensor networks, while preserving some performance measures, such as latency and amount of data collected. We propose two mobility models governing the behaviour of the mobile element, where the incoming data collection requests are scheduled to service according to bidding strategies to determine the winner element. Simulations are run to measure the performance of the proposed mobility models subject to the network size and the number of mobile elements.<br /

    The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    Get PDF
    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks

    Optimization of depth-based routing for underwater wireless sensor networks through intelligent assignment of initial energy

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are extensively used to explore the diverse marine environment. Energy efficiency is one of the main concerns regarding performance of UWSNs. In a cooperative wireless sensor network, nodes with no energy are known as coverage holes. These coverage holes are created due to non-uniform energy utilization by the sensor nodes in the network. These coverage holes degrade the performance and reduce the lifetime of UWSNs. In this paper, we present an Intelligent Depth Based Routing (IDBR) scheme which addresses this issue and contributes towards maximization of network lifetime. In our proposed scheme, we allocate initial energy to the sensor nodes according to their usage requirements. This idea is helpful to balance energy consumption amongst the nodes and keep the network functional for a longer time as evidenced by the results provided

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    Overlapping layers for prolonging network life time in multi-hop wireless sensor networks

    Full text link
    Wireless sensor networks have been proposed as a practical solution for a wide range of applications due to their benefits of low cost, rapid deployment, self-organization capability, and cooperative data-processing. Many applications, such as military surveillance and habitat monitoring, require the deployment of large-scale sensor networks. A highly scalable and fault-tolerant network architecture, the Progressive Multi-hop Rotational Clustered (PMRC) structure has been proposed, which is suitable for constructing large-scale wireless sensor networks. However, similar to other multi-hop structures, the PMRC structure also suffers from the bottleneck problem; This thesis is focused on solving the bottleneck problem existing in the PMRC structure. First, the Overlapping Neighbor Layers (ONL) scheme is proposed to balance the energy consumption among cluster heads at different layers. Further, the Minimum Overlapping Neighbor Layers (MONL) scheme is proposed wherein the overlapped area between neighbor layers is gradually increased through network life time to achieve load balance and energy efficiency in the whole network area. Simulation results show that the MONL scheme significantly prolongs network life time and demonstrates steady performance on sensor networks with uniformly distributed sensor nodes. To further prolong the network life time, traffic-similar sensor nodes distribution combined with the MONL scheme is studied; The proposed overlapped layers schemes are proven to be effective in solving the bottleneck problem and prolonging network life time for PMRC-based networks. They can also be applied for other multi-hop cluster-based sensor networks. The traffic-similar nodes distribution concept can be applied in optimizing sensor network deployment to achieve desired network life time

    On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    Get PDF
    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures
    • …
    corecore