3,255 research outputs found

    Online experimentation and interactive learning resources for teaching network engineering

    Get PDF
    This paper presents a case study on teaching network engineering in conjunction with interactive learning resources. This case study has been developed in collaboration with the Cisco Networking Academy in the context of the FORGE project, which promotes online learning and experimentation by offering access to virtual and remote labs. The main goal of this work is allowing learners and educators to perform network simulations within a web browser or an interactive eBook by using any type of mobile, tablet or desktop device. Learning Analytics are employed in order to monitor learning behaviour for further analysis of the learning experience offered to students

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Critical data studies, abstraction and learning analytics: Editorial to Selwyn’s LAK keynote and invited commentaries

    Full text link
    © 2019, UTS ePRESS. All rights reserved. This editorial introduces a special section of the Journal of Learning Analytics, for which Neil Selwyn’s keynote address to LAK ’18 has been written up as an article, “What’s the problem with learning analytics?” His claims and arguments are engaged in commentaries from Alfred Essa, Rebecca Ferguson, Paul Prinsloo, and Carolyn Rosé, who provide diverse perspectives on Selwyn’s proposals and arguments, from applause to refutation. Reflecting on the debate, I note some of the tensions to be resolved for learning analytics and social science critiques to engage productively, observing that central to the debate is how we understand the role of abstraction in the analysis of data about teaching and learning, and hence the opportunities and risks this entails

    Digital Transformation of Education and Sustainability-Review Based Study

    Get PDF
    Since 1990, the usage of internet as well as digitization has significantly increased. Digital transformation is the process of using, adoption of digital technology or information technology by an organisation to embed or digitalize products and services. A brief picture of types of learning, educational technology like Artificial intelligence, Metaverse, AR&VR, IoT, how digital transformation enables to meet UN SDG 4 is portrayed in this paper

    Topics in Educational Cyber-Physical Labs:Configurations, Data Collection and Analysis

    Get PDF
    Recent advances in remote sensing and actuation technologies, coupled with the large reach of the internet, allowed for the emergence of applications such as cyber-physical labs. Cyber-physical labs are the digital and remotely-accessible equivalent of the lab equipment students use in school to experiment, through web-based interfaces such as web applications. Students, teachers and lab owners derive value from these systems, they are our stakeholders. Students are the intended users, teachers are the educational content curators and lab owners are the service providers. In this thesis, we take a close look at issues pertaining to cyber-physical labs and propose new approaches to address them. We also analyze the use of such systems in a MOOC, to detect the impact of the exherted experimental behavior of students on their academic performance. First, we tackle the case of the generation of web apps interfacing cyber-physical labs. It is the equivalent of preparing experiments for teachers by arranging the equipment for multiple experiments with the same equipment. We propose an extension to the Smart Device Specification for cyber-phyiscal labs, and a tool which generates these apps based on it. The automatically generated apps implement the necessary functions to use a cyber-physical lab, and are ready to be integrated in online learning platfroms. Next, we investigate issues related to the collection and retrieval of students' generated data through their interaction with cyber-physical labs. We consider the needs of students and lab owners. Through questionnaires sent to both parties, we elicit the requirements for an activity-tracking infrastructure composed of a vocabulary and an architectural model. The proposed vocabulary ensures deriving value from the recorded activity, and the proposed architecture addresses privacy and data access issues pertaining to students and lab owners respectively. We evaluate our proposal with two example cyber-physical labs. Last, we collect the interaction data with a cyber-physical lab used in a MOOC. We devise computational analyses on the students activity statistics, in search for indicators of academic performance. We find that high and low performing students show statistically different activity statistics. Then, we sequence the steps students did in an experiment, and don't find any statistically significant patterns for low and high-performing students. This analysis provides insights on the usage of installed facilities to service a potential massive access to limited resources (lab installations), and shed light on possible indicators for academic performance
    corecore