1,872 research outputs found

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area

    Efficient data reliability management of cloud storage systems for big data applications

    Get PDF
    Cloud service providers are consistently striving to provide efficient and reliable service, to their client's Big Data storage need. Replication is a simple and flexible method to ensure reliability and availability of data. However, it is not an efficient solution for Big Data since it always scales in terabytes and petabytes. Hence erasure coding is gaining traction despite its shortcomings. Deploying erasure coding in cloud storage confronts several challenges like encoding/decoding complexity, load balancing, exponential resource consumption due to data repair and read latency. This thesis has addressed many challenges among them. Even though data durability and availability should not be compromised for any reason, client's requirements on read performance (access latency) may vary with the nature of data and its access pattern behaviour. Access latency is one of the important metrics and latency acceptance range can be recorded in the client's SLA. Several proactive recovery methods, for erasure codes are proposed in this research, to reduce resource consumption due to recovery. Also, a novel cache based solution is proposed to mitigate the access latency issue of erasure coding

    Cache-enabled Unmanned Aerial Vehicles for Cooperative Cognitive Radio Networks

    Get PDF
    Cooperative cognitive radio network is a new method to alleviate the spectrum scarcity problem. Proactive content caching and UAV relaying techniques are deployed in a CRN, to enable the achievable rates for primary and secondary systems. Even though these two emerging technologies are grateful to solve the problem of spectrum scarcity, there are still open issues to influence the system performance and the utilization of spectrum. In this article, we provide an overview of the cooperation technique, including their theoretical schemes and the advanced performance in radio networks. Then, this article proposes a cache-enabled UAV cooperation scheme in CRN, which enhances the CRN's transmission capability and reduces the redundant traffic load of CRN. The experimental results show that the cache-enabled UAV scheme significantly improves the achievable rates for both systems in CCRN. In addition, we present future work related to content caching, deployment of UAVs and CCRN to support radio networks

    A systematic review on cloud storage mechanisms concerning e-healthcare systems

    Get PDF
    As the expenses of medical care administrations rise and medical services experts are becoming rare, it is up to medical services organizations and institutes to consider the implementation of medical Health Information Technology (HIT) innovation frameworks. HIT permits health associations to smooth out their considerable cycles and offer types of assistance in a more productive and financially savvy way. With the rise of Cloud Storage Computing (CSC), an enormous number of associations and undertakings have moved their healthcare data sources to distributed storage. As the information can be mentioned whenever universally, the accessibility of information becomes an urgent need. Nonetheless, outages in cloud storage essentially influence the accessibility level. Like the other basic variables of cloud storage (e.g., reliability quality, performance, security, and protection), availability also directly impacts the data in cloud storage for e-Healthcare systems. In this paper, we systematically review cloud storage mechanisms concerning the healthcare environment. Additionally, in this paper, the state-of-the-art cloud storage mechanisms are critically reviewed for e-Healthcare systems based on their characteristics. In short, this paper summarizes existing literature based on cloud storage and its impact on healthcare, and it likewise helps researchers, medical specialists, and organizations with a solid foundation for future studies in the healthcare environment.Qatar University [IRCC-2020-009]

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    Website Technology Trends for Augmented Reality Development

    Get PDF
    Augmented reality (AR) is a technology that is gaining increasing attention from academics and industry. AR is relied upon to be an innovative technology to enrich ways of interacting with the physical and cyberspace around users that can enhance user experience in various fields. Platforms for AR applications are usually hardware based and mobile based, for mobile applications AR is usually based. AR-based hardware requires quite expensive support, this is seen from the rendering space requirements and this makes it inflexible while AR-based applications on mobile smartphones require large storage space and do not make it convenient for cross-platform use. Currently many researchers are trying to create and develop website-based AR, as a solution to the spread of AR to be flexible and save storage space, website technology development trends are used as a method for improving the performance of website-based AR. Other support comes from open-source software and more developer platforms and program courses for Web AR that are made public. This paper reviews the state-of-the-art, various methods, technologies and challenges of existing AR, this can be a trigger for more research interest and efforts to provide AR experienc

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    corecore