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Abstract

Data Reliability Management in Cloud Storage Systems for Big Data Applications

by

Rekha Nachiappan

Doctor of Philosophy in Information and Communication Technology

Western Sydney University

Bahman Javadi, Principal Supervisor

Rodrigo N Calheiros, Kenan M. Matawie, Co-supervisors

The revolution of Big Data influences various sectors such as banking, healthcare, energy,

consumer, manufacturing and education. Traditional storage systems are incapable of

handling unprecedented growth of data. Cloud storage systems are distributed and scal-

able in nature. They offer more efficient platform to store and analyse Big Data. Cloud

storage systems are composed of large number of hardware and software components that

are vulnerable to failures. Hence failures in cloud storage systems are inevitable. Any

failure in hardware, software, network or power supply will compromise durability and

availability of data.

In order to improve data reliability, various data redundancy techniques are employed

in cloud storage systems. The most prominent data redundancy techniques are replication

and erasure coding. Replication maintains multiple copies of data in several locations.

In case of failure, data repair is activated to maintain data reliability. Data repair in

replication simply copies all missing data from next available location. Even though

replication sounds simple, it incurs more storage overhead to improve the reliability of

Big Data. Erasure coding is a viable alternative to replication since it improves data

reliability with less storage overhead using parity data. Many popular storage systems

have started adopting erasure coding to improve data reliability with huge cost savings.

However, data repair in erasure coding is not as simple as replication. During data
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repair, missing data has to be reconstructed data using parity data. Data reconstruction

in erasure coding will not only incur more disk I/O and network bandwidth but also

increase data access latency. Data repair overhead prevents erasure coding being more

pervasive in cloud storage. The mission of this thesis is to address the challenges involved

in employing erasure coding in cloud storage system. The contributions of this thesis are

listed below:

� Replication offers exceptional read performance since it does not incur exponential

resource consumption during data repair like erasure coding. Activating proactive

replication of failure predicted data in erasure coding will not only reduce resource

consumption during repair but also improve read performance. Based on this, a

system with novel proactive recovery techniques are proposed in this thesis. The

proposed system adapts to client requirements and selects an appropriate proactive

recovery technique utilizing failure predictions.

� To further improve resource savings in erasure coded storage systems, we propose

an optimization technique that attempts to minimize the number of data blocks

to be replicated during proactive recovery, in the event of any failure prediction.

We formulate the optimization problem as an integer linear program using data

duplication information and system’s network traffic. The objective to minimize

the number of data blocks to be replicated during proactive recovery process.

� In erasure coding, any data read request to a failed data is served by performing data

reconstruction on the fly. Such data reconstructions increase data access latency

(degraded read latency). To address this, we propose a novel caching technique

that proactively replicates failure predicted data into cache. Since data access from

cache is faster, this technique eliminates degraded read latency.
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Chapter 1

Introduction

Digital data is rapidly growing in today’s Big Data era. Internet of Things (IoT), online

transactions and social media are playing an important role in generating massive amount

of digital data. International Data Corporation (IDC) has predicted that the data gen-

erated in whole world will reach 175 zettabytes by 2025 [1]. The knowledge derived from

Big Data has shown significant impact on business and society. To derive valuable insight

from Big Data on time, it is imperative to store and processes them in an efficient plat-

form. The on-demand scalability nature of cloud computing plays a vital role in efficiently

handling, rapid and unprecedented growth of digital data. IDC also predicts that 40% of

world data will reside in public cloud environment by 2025 [1].

Cloud storage systems are composed of large number of hardware and software compo-

nents. Failures are the norm rather than exception in cloud storage systems. Any failures

such as hardware failures, power outage, software glitches, maintenance shut down or net-

work failures in cloud storage system will raise temporary data unavailability events and

sometimes it leads to permanent data loss. Figure 1.1 represents node failure behaviour

in Facebook’s 3000 machine production cluster. It shows at least 20 machine failures are

encountered in each day [2]. In spite of these failures, to provide reliable service to the

customers, various fault tolerant mechanisms are employed.

To meet large scale storage needs of clients, cloud defines virtual storages using Net-

work Attached Storage (NAS) and Storage Area Network (SAN). The networked storage

16
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Figure 1.1: Node failures in Facebook [2].

NAS and SAN are easily scalable in terms of both performance and capacity and hence

they are highly influential in cloud storage systems. They use distributed file system to

organize data into storage and to provide controlled data access to clients. Distributed

File System (DFS) spreads data in a storage cluster which is composed of thousands of

nodes. DFS is also designed to ensure durability, availability and I/O performance of the

storage according to client’s Service Level Agreement (SLA). DFS applies data redun-

dancy to improve the fault tolerance of cloud storage system and it spreads redundant

data into nodes from different failure zones. Any aforementioned failures in cloud storage

system may lead to unavailability events from time to time. Whenever an unavailability

event occurs, it activates data recovery to maintain durability and availability of data.

Data redundancy mechanisms employed in cloud storage systems are replication and

erasure coding. Replication maintains multiple copies of data on distinct nodes from

different failure domains. Replication is simple and straightforward fault tolerant method.

However, it is not an efficient solution for Big Data due to the volume of data. Erasure

coding is a storage efficient alternative reliability method. A file system with (n, k) erasure

codes divides a file or object into k equal chunks and calculates n-k parity chunks. The set

of n+k chunks compose a stripe and each chunk is stored on unique n+k locations from

different failure domains such that any unavailable chunk can be reconstructed using any

other k available chunks. Hence (n, k) erasure code can tolerate any n-k failures. Figure

1.2 depicts distribution of data in (5, 3) erasure coded storage. Obj1 is decomposed into
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Figure 1.2: Data distribution in (5, 3) erasure coded storage.

chunks D11, D12 and D13 and it is stored along with the parity chunks P11 and P12 such

that the chunks D11, D12, D13, P11 and P12 together constitute a stripe and hence the

system can tolerate any 2 failures. Failure domain can be chosen as machine, disk or rack.

In Figure 1.2, the failure domain is defined as disks. Many popular cloud storage systems

like Facebook and Microsoft have employed erasure coding to increase storage efficiency

[3].

When there is a failure in cloud storage systems, the objects that are resided in the

failed zone will enter into degraded mode. To avoid any unnecessary repair, a delay is

applied to recover any degraded objects[3]. Degraded objects will remain in degraded

mode from the time of failure till complete recovery. Any data read request to degraded

object in replication is handled by redirecting requests to the next available replica. On the

other hand, in erasure coding, degraded object is reconstructed on the fly. In replication,

object is recovered by copying it from next available replica, whereas in erasure coding,

object is recovered using data reconstruction of any other k available chunks.

Popular Hadoop Distributed File System (HDFS) uses three replicas. Hence it can

tolerate any two simultaneous failures with storage overhead of 3x. The most popular

Reed-Solomon(14, 10) can manage any 4 simultaneous failures with 1.4x storage overhead

[4]. Even though storage efficiency of erasure coding sounds appealing, data recovery/
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repair in erasure coding involves enormous resource consumption. For example, data

recovery in Reed-Solomon(14, 10) code increases disk I/O and network bandwidth by

10x compared to replication [5]. Increased resource consumption due to data recovery

also impacts read performance. Data recovery in replication has limited impact on both

resource consumption and on read performance. Data recovery issues of erasure coding

prevent it being more pervasive in cloud storage systems. For example, in a 3000 nodes

production cluster of Facebook, erasure code can replace replication for only 8% of data.

In case 50% of data are replaced with erasure code, the repair network traffic will saturate

cluster network links [2].

1.1 Research Challenges and Hypothesis

There are many open challenges on improving reliability of Big Data applications. Some

of the important challenges are as follows:

1.1.1 Storage Efficiency

Data reliability and storage overhead in replication are directly proportional to each other.

Improving storage overhead without sacrificing reliability is the greatest challenge in repli-

cation. Even though erasure coding offers tremendous storage savings with fair reliability,

repair resource consumption compensates it. Enabling automation of dynamic redun-

dancy, such as changing number of replicas of erasure coded data chunks by incorporating

failures and data access spikes could also improve storage efficiency further.

1.1.2 Bandwidth Efficiency

Network bandwidth is always a scarce resource in a distributed storage. Bandwidth usage

is directly proportional to the amount of data transferred. In both replication and erasure

coding, data repair consumes considerable amount of network bandwidth. However, it

is exponential in erasure coding. Node failures occur more often in cloud storage and

it is being a major reason of increased network traffic in erasure coded storage system

[2]. Literature shows various methods to reduce network traffic in erasure coded storage

systems. However, none could reduce network traffic as good as replication. Recent works
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on reducing network traffics also show limited savings. Activating proactive recovery in

erasure coding is a key to reduce recovery network bandwidth. Failure prediction should

be utilized to handle proactive recovery.

1.1.3 Energy Efficiency

Energy savings due to minimal storage overhead in erasure code can be compromised

by the extensive resource usage during data repair. Activating efficient data repair in

erasure code can reserve the energy saved due to storage. Activating proactive replication

in erasure code can reduce recovery energy. Since proactive replication also demands

additional storage, it must be wisely defined. Additional replicas must be placed only

based on the need.

1.1.4 Big Data

Cloud storage is the cost-effective platform to support the variety, volume and veloc-

ity parameters of Big Data. However, cloud storage also confronts several challenges on

improving the reliability of Big Data. Cloud storage has to employ data redundancy tech-

niques to ensure the reliability of data. The parameter variety will not get affected while

employing data redundancy techniques, but it confronts several challenges with respect to

the parameters, volume and velocity of Big Data. The most important data redundancy

techniques employed in cloud storage are replication and erasure coding. Replication

is not a cost efficient solution to improve the reliability of Big Data while considering

its volume. Erasure coding is a cost effective solution to enhance the reliability of Big

Data. However, any failures in the erasure coded storage system activate data repair,

which increases disk I/O, network bandwidth and data access latency. Data repair in era-

sure coding affects the velocity of data read. The cost effective novel hybrid redundancy

techniques should be proposed to improve the reliability of Big Data in cloud storage.

1.1.5 Data Access Latency

In replication, an object is placed in multiple locations. When the object is degraded, the

replicas can be used to serve any read request. Replicas can also be utilized to effectively

handle a sudden spike in I/O queue. Data access latency can be significantly reduced
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using replication in both of these cases. However, it is not an efficient solution when

we consider the volume attribute of Big Data. The computational and I/O overhead

involved in reconstructing degraded objects of erasure code increase latency. Increased

latency of storage efficient erasure code is a pitfall to the velocity attribute of Big Data.

Reducing access latency with less storage overhead especially for Big Data is a challenge

to the researchers. Activating cognitive, dynamic, proactive replication in erasure codes,

using data access history and failure logs reduce degraded read latency with less storage

overhead. Cache can also be utilized wisely to reduce degraded read latency.

1.1.6 Research Questions

By considering the above research challenges the research questions are formulated as

follows,

� How to define a storage efficient hybrid reliability technique for Big Data using

replication and erasure coding?

� How to define a bandwidth and energy efficient hybrid reliability technique?

� How to enable cloud to support velocity attribute of Big Data with less storage

overhead?

Replication cannot be a promising solution for improving reliability of Big Data as it

naturally increases storage overhead while improving reliability. However, data repair in

replication is simple. It does not activate sudden peak in network usage as it activates

less number of disk I/O compared to erasure coding. It does not affect the access latency

of degraded objects. Erasure coding is a viable storage efficient alternative to improve

reliability of Big Data. However, data repair process activates sudden peak in network

usage and disk I/O. Any read request to degraded data is handled by performing decoding

on the fly. This increases data access latency. Several researches have been conducted

to improve data reliability and storage efficiency in parallel using replication. However,

they all suggest compromising one for other. Many researches concentrated on defining

repair efficient novel erasure codes but none of them could reduce recovery resource usage

as good as replication.
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1.2 Thesis motivations, goals and contributions

To bring together the benefits of both replication and erasure coding, an optimal hy-

brid reliability technique using replication and erasure coding has to be defined. The

motivations of the thesis are derived from the following considerations:

� Improving reliability in replication involves incredible storage overhead. Defining a

repair efficient erasure code suggests additional storage space for minimal resource

savings. To bring together benefits of both replication and erasure coding, in this

thesis, we will consider defining a proactive replication technique in erasure coded

storage. This technique has to leverage storage efficiency and reliability benefits of

erasure coding while also reducing recovery resource consumption.

� Availability and access latency requirements may vary with respect to hot and cold

status of data. Lazy recovery delays repair until certain number of blocks in a stripe

are degraded. This reduces repair bandwidth significantly. However, lazy recovery

impacts availability and read performance of data. Proactive recovery could increase

reliability and read performance but it consumes additional resources. To apply

appropriate recovery methods client SLA can be utilized. In this thesis we will

define a system that makes an appropriate choice between lazy (delaying repair

until certain blocks in a stripe are degraded) and proactive recovery utilizing client

SLA to maximize resource savings in erasure codes.

� Defining a cache tier on erasure coded storage can reduce data access latency. How-

ever, this will have very minimal effect on reducing degraded read latency espe-

cially in the following scenarios. Cache is ineffective when an application constantly

changes access pattern or it does not follow any access pattern. A freshly introduced

cache tier will have minimal impact on reducing access latency. This research will

also focus on defining a cache based solution to address the issue of a peak in access

latency due to a failure in erasure coded storage.

The goals of this thesis are as follows:
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� Defining efficient proactive recovery techniques for erasure codes to mitigate its

extensive resource consumptions during recovery.

� Defining a system that adapts to client SLA and enforces different proactive recovery

techniques in erasure codes using status (hot, cold) of data blocks.

� Defining a cache based solution to reduce degraded latency.

Regarding the above goals this thesis makes following contributions:

1. Literature Survey: This thesis provides a comprehensive survey on popular data

reliability techniques; replication and erasure coding. Each of those techniques

has their own trade off with various parameters such as durability, availability,

storage overhead, performance energy consumption and network bandwidth/traffic.

This survey highlights the challenges involved in employing each method. It also

highlights the research gaps on improving fault tolerance in cloud storage systems.

2. Novel proactive data recovery techniques: To address the recovery resource con-

sumptions and performance issues of erasure codes, several prediction based proac-

tive recovery methods are proposed.

This thesis presents several novel proactive recovery techniques in erasure codes.

The proposed novel proactive recovery techniques are proposed as a combination

of proactive replication, typical reconstruction of erasure codes and lazy recovery.

Proactive replication creates a replica ahead of an occurrence of failure, whereas

lazy recovery applies a delay in reconstruction until a certain number of blocks in

a stripe are failed. Proactive recovery methods in erasure coding are defined using

failure predictions. We propose a system with novel proactive recovery techniques

ProDisk, ProMachine, ProHot and ProHot LazyCold. The proposed system must

use data access pattern to identify hot data. The proposed system must also confirm

and utilize client’s latency, durability and availability requirements to select one

of the most appropriate proactive techniques. In case of any failure predictions

or failures, the system adapts to client SLA and selects one of the most suitable

recovery techniques to reduce recovery network bandwidth/traffic.
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Optimizing the recovery techniques ProDisk, ProMachine, ProHot and ProHot LazyCold

can further improve storage, network bandwidth and energy savings. By examining

storage system’s current network usage and data redundancy information, proactive

replication of certain data blocks can be avoided. In order to maximize the resource

savings, we present an optimization problem. It is formulated using Integer Linear

Programming (ILP). The objective of this problem is to minimize proactive repli-

cas. A novel optimization based proactive recovery technique is also introduced. An

energy estimator is introduced to analyse the energy consumption of various storage

systems.

3. Novel caching technique: A novel proactive caching solution is proposed to reduce

degraded read latency in erasure codes.

This thesis presents a pre-fetching method for cache to reduce degraded read latency.

It uses disk failure prediction information to perform pre-fetching and moving data

into cache. The proposed proactive recovery techniques can improve read perfor-

mance using proactive replicas. However, they require changing metadata. Novel

caching technique reduces degraded read latency with no changes in underlying

storage and metadata.

Novel proactive recovery techniques significantly reduce recovery network bandwidth

in erasure coding, which prevented erasure being more pervasive in cloud storage. The

novel proactive techniques also reduce number of degraded slices, which could lead to the

reduction in degraded read latency. Hence the proposed novel proactive techniques can

define cost effective solution for large volume of data. They can also support data read

in high frequency. The novel caching technique proposed in this thesis addresses the im-

portant challenges on improving the reliability of Big Data. It reduces the degraded read

latency of erasure codes with minimum storage overhead. Hence it improves reliability of

Big Data with less storage overhead while also supporting data read in high velocity.

1.3 Thesis organization

The structure of this thesis is shown in Figure 1.3 and it is organised as follows:
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Chapter 2 presents a state-of-the-art survey on improving fault tolerance in cloud

storage systems. This describes the importance of improving fault tolerance and highlights

the challenges of various fault tolerance techniques employed in cloud storage systems.

This chapter also advises necessary future research directions. This chapter is mainly

derived from: - Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2017).

Figure 1.3: Thesis structure.

Cloud storage reliability for big data applications: A state of the art survey. Journal of

Network and Computer Applications, 97, 35-47.

Chapter 3 presents several novel proactive recovery techniques to reduce resource

usage during failure. This also presents a system to employ proposed novel proactive
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recovery techniques. The system is adapt to client SLA and select one of the suitable

proactive recovery techniques in the event of any failure prediction. Results show signifi-

cant bandwidth savings in erasure coding. This chapter is derived from:

- Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2018, August).

Adaptive Bandwidth-Efficient Recovery Techniques in Erasure-Coded Cloud Storage. In

European Conference on Parallel Processing (pp. 325-338). Springer, Cham.

Chapter 4 presents an optimization problem which attempts to maximize the resource

savings due to proactive recovery. To improve the resource savings in erasure coded

storage, an ILP based optimization problem is defined to minimize proactive replication

of data blocks. A novel optimization based proactive recovery technique is also proposed.

This chapter is derived from:

- Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. Enhancing Efficiency

of Proactive Recovery in Erasure-Coded Cloud Storage Systems. (Submitted to IEEE

Transactions on Parallel and Distributed Systems.)

Chapter 5 presents a cache based solution to reduce degraded read latency in erasure

coded storage. In this chapter, we propose a system that proactively configures cache tier

with the objects that are predicted to be degraded. This chapter is part of the below

publication.

-Nachiappan, R., Javadi, B., Neves Calheiros, R., & Matawie, K. M. (2019). Proac-

tiveCache: on reducing degraded read latency of erasure coded cloud storage. In Pro-

ceedings of the 11th IEEE International Conference on Cloud Computing Technology

and Science (CloudCom 2019), the 19th IEEE International Conference on Computer

and Information Technology (CIT 2019), the 2019 International Workshop on Resource

brokering with blockchain (RBchain 2019), and the 2019 Asia-Pacific Services Computing

Conference (APSCC 2019), 11-13 December 2019, Sydney, Australia (pp. 223-230).

Chapter 6 presents the design and architecture of a cloud storage framework which

can be used to evaluate reliability and energy efficiency of storage systems. This chap-

ter elaborates several modules of the framework which are used to estimate reliability,

recovery bandwidth and energy consumption of various systems.

Chapter 7 concludes and provides the directions for future work.
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Literature Review

Cloud storage systems are now mature enough to handle a massive volume of hetero-

geneous and rapidly changing data, which is known as Big Data. However, failures are

inevitable in cloud storage systems as they are composed of large number of hardware

components. Improving fault tolerance in cloud storage systems for Big Data applications

is a significant challenge. Replication and erasure coding are the most important data

reliability techniques employed in cloud storage systems. Both techniques have their own

trade-off in various parameters such as durability, availability, storage overhead, network

bandwidth and traffic, energy consumption and recovery performance. This chapter ex-

plores the challenges involved in employing both techniques in cloud storage systems for

Big Data applications with respect to the aforementioned parameters.

2.1 Introduction

In the era of Big Data, data volume is growing faster than the storage capacity [6]. Each

week, Facebook requires extra 60TB of storage just for new photos [7]. YouTube users

upload over 400 hours of video every minute and it requires 1 Petabyte of new storage

every day [8]. According to the International Data Corporation (IDC)’s sixth annual

study, until 2020 the digital data will double every two years [6]. Cloud computing offers

This chapter is derived from:Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2017).

Cloud storage reliability for big data applications: A state of the art survey. Journal of Network and

Computer Applications, 97, 35-47.

27
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a cost-effective way to support Big Data applications that can derive important business

value [9]. By 2020, approximately 40% of the data in the digital universe will be stored or

processed in cloud [6]. Cloud storage provides reasonable scalability for storing Big Data

and it helps to handle the steady growth of variety, volume and velocity properties of Big

Data [10].

As cloud storage is built up on commodity servers and disk drives [11], it is subject to

failures. Those failures can compromise the performance of applications relying on it. For

example, in 2009, Facebook temporarily lost over 10% of its stored photographs because

of a hard drive failure [12]. Amazon Simple Storage Service (S3) encountered a data

corruption problem caused by a load balancer bug [13]. Amazon Web Services (AWS)

suffered major disruptions due to a DynamoDB failure [14]. At Facebook, in a production

cluster of 3000 nodes, it is typical to have 20 or more node failures [2]. As failures are the

norm in cloud storage systems, improving performance of Big Data application during

data recovery is one of the most important challenges.

Data failure in cloud storage is handled by various data redundancy techniques. The

most common redundancy techniques are replication and erasure coding. Replication is

a simple data redundancy mechanism. The same data is copied and stored in several

locations on the storage systems. If the requested data is not available in one disk,

it is served from the next available disk [15]. Erasure coding is a more complex data

redundancy mechanism. Parity data is created and stored along with the original data,

such that if the requested data is not available, it can be reconstructed from parity data.

Storage overhead for erasure coding is much smaller than replication. Hence it reduces

the hardware needs for data storage and provides significant cost and energy savings in

data centres [16]. However, data reconstruction upon failure involves high reconstruction

cost and network traffic.

This is the main reason why cloud service providers are interested in moving towards

erasure coding to improve reliability and reduce operational cost of systems. Facebook

increased storage efficiency from 2.1x to 3.6x using erasure coding with multiple Petabytes

of savings [17]. Microsoft Azure reduced storage overhead from 3x to 1.33x using erasure

coding which provided over 50% cost savings [16].
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A study on the Facebook warehouse cluster [18] revealed that more than 50 machine-

unavailability events were triggered per day. Data reconstruction due to those unavailabil-

ity events increases network traffic. Facebook implemented Reed-Solomon code to only

8% of the data. As this requires 10x more network repair overhead per bit compared to

replication, it is estimated that if 50% of data were replaced with Reed-Solomon, repair

network traffic might saturate the cluster network links [2].

Another issue with the use of error correction techniques is increases latency due to

network traffic. Storage systems consume up to 40% of a data centre’s total energy [19]

and energy efficiency of storage systems is influenced by read/write latency [20]. Hence

reducing the latency involved in repair may conserve considerable amount of energy. As

mentioned earlier, erasure coding offers better storage efficiency, reliability and availabil-

ity, but reconstruction of lost data increases network traffic and latency.

This chapter addresses ongoing researches on improving data reliability of Big Data

Applications in cloud computing using replication and erasure coding. As both techniques

have their own advantages and disadvantages, this chapter discuss how researchers are

striving to bring the benefits of one technique to another.

2.2 Background

This section briefly discusses types of storage systems and file systems used in cloud

storage systems for Big Data applications. Following that, the analysis on data failures

and data reliability is presented.

2.2.1 Cloud Storage and Big Data Applications

Cloud storage systems consist of a number of storage devices connected by the network.

It is typically composed of Network Attached Storage (NAS) or Storage Area Network

(SAN) type of distributed storage using storage virtualization [21]. Storage virtualization

abstracts physical storage from applications and maps the logical storage into physical

storage. The network of storage devices can be treated as a single storage device and

users can access information regardless of physical locations and storage modes.

Based on how the data is accessed and interfaced by the client, cloud storage systems
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can be classified as file storage, block storage, and object storage[22].

File Storage: In file storage, files are organized hierarchically. The information

about the file is stored as a metadata in a storage system. The files can be accessed by

specifying the path to the individual file. It provides the higher level of storage abstraction

to applications and it enables secured data transfer among different platforms. It achieves

good performance in Local Area Network (LAN) if the number of files and metadata are

limited. File server maintains metadata and authorize I/O to share files among multiple

clients. However, file server contention affects data retrieval performance.

Block Storage: In block storage, the file is divided in blocks and an address is

assigned for each block. The application can access and combine the blocks with the

block address. The storage applications keep the metadata and use it to share data. It

does not have any file server to authorize I/O and clients can directly access data using

metadata. It offers good performance. However, it does not offer promising secure data

transmissions.

Object Storage: In object storage, the file and metadata are encapsulated as an

object and the object is assigned with an object ID. The object can be of any type and it

is geographically distributed. Each object can be assigned with unique metadata such as

the type of application object associated, level of protection, number of replication and

geographic location. It offloads storage management from applications to storage devices.

This enables secure direct data access to clients using metadata. It provides excellent

scalability to support Big Data applications. Nowadays object storage is becoming a

popular choice of cloud clients. They provide simple put/get interface to store and retrieve

data. Netflix uses Amazon S3 storage. Object storage supports efficient erasure coding

technique in addition to replication.

The variety, volume and velocity characteristics of Big Data can be fitted well in

the distributed, virtualized and scalable characteristics of cloud storage systems [23].

O’Reilly [24] has discussed advantages and drawbacks of prominent Big Data file systems

in detail. HDFS, GFS, Luster, ClusterFS, Ceph, OpenStack Swift, Quantcast and PVFS

are examples of other file systems that support Big Data Applications. GFS and HDFS

are widely employed in cloud storage and a comparison between those file systems are
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presented by Vijayakumari et al. [25].

2.2.2 Data Failures

In a cloud storage system, many factors can lead to data failure. Data failures will lead

to cloud service failures. Sharma et al. [26] presented a detailed survey of cloud service

failures. The main causes of cloud data failures are hardware, software, network, and

power failures [27]. Disks are the central element in cloud based storage [28] and are

the most common failure component [29]. Vishwanath and Nagappan analysed hardware

reliability for a large cloud computing infrastructure [30]. As shown in Figure 2.1(data

collected from [30]), 78% of failures were due to hard disks, 5% due to Rapid Array of

Inexpensive Disk (RAID) controller, 3% due to memory, with the remaining 14% due to

other factors. Hard disks are the most commonly replaced component and they are the

most frequent cause of server failures [30].

Figure 2.1: Causes of server failures in cloud computing systems [30].

As depicted in Figure 2.2, data failures can be transient or permanent. Data un-

availability due to network outage, node/machine failure, power outage, and automated

repair process are transient and do not lead to permanent data loss [27]. Data gathered

from tens of Google storage cells, each of which with 1000 to 7000 nodes over one year

period, reveals that less than 10% of events had node unavailability with duration under

15 minutes [11]. Data unavailability due to hard disk failure or data corruption leads to
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permanent data loss.

Figure 2.2: Data failures in cloud storage.

Pinheiro et al. [31] present a detailed analysis of failure behaviour of large scale

disk drives using monitored data collected over a period of nine months. They found

failure probabilities to be highly correlated with the drive first scan errors, reallocations,

offline allocations and probation counts. Ford et al. [11] demonstrate the importance of

modelling correlated failures on availability prediction. They show that failing to consider

node failure results in overestimation of availability. Data availability increased 1.5%

from reducing the disk failure rate by 10%. However, 10% reduction of node failure rate

increases availability by 18%. Ma et al. [32] analysed disk failure from a large number of

backup systems to show reallocated sectors and specific types of sector errors have large

impact on disk reliability. They designed proactive protection against single and multiple

disk failures.

Various component failures in cloud storage systems lead to permanent and transient

data failures. Disks are the most important component to be considered in cloud storage

systems. Disk failures lead to permanent data loss if they are not handled properly. Most

of the other component failures in cloud storage systems cause temporary outages only.

Some outages may last for hours, causing huge financial losses [33]. The above discussions

shed some light on considering the respective component failures to improve durability

and availability. Next section discusses various data reliability mechanisms employed in

cloud storage systems.
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2.2.3 Data Reliability

Data reliability includes maximizing durability and availability of data. Durability miti-

gates permanent failures and availability mitigates transient failures.

As shown in Figure 2.3, various mechanisms are used in cloud data centres to improve

fault tolerance of the storage system. The impact of hardware failures is mitigated with

RAID arrays, swappable drivers, and Error Correction Code Memory (ECC RAM). RAID

arrays are a logical unit composed of several disks that stores data with striping, mirroring

and parity. Swappable drivers allow administrators to swap drives that fail or predicted to

fail while the system remains in operating mode. ECC RAM is used to detect and correct

single bit errors by associating a parity bit with each binary code. Network failures and

power outage are handled with network redundancy and dual power supply respectively.

Failures due to any issues including disasters in cloud storage are handled with erasure

coding, replication and Resilient Distributed Dataset (RDD) [34]. Replication and erasure

coding are used to handle primary data failures. RDD is used to protect intermediate

data generated by Big Data applications [34].

Figure 2.3: Failure Handling in Cloud Data Centres.

Erasure coding [16, 2] and replication [35] are the most popular reliability mechanisms

employed on cloud storage. Figure 2.4 is a representation of replication and erasure

coding techniques. In replication, data file/object are divided into chunks and stored

several times on the storage systems. If the requested data is not available in one disk, it

is served from the next available disk [15]. In erasure coding, data file/object is divided

into chunks. Parity data is created and stored along with the original data, such that if

the requested data is not available, it is reconstructed and served with the help of parity
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data.

Figure 2.4: Replication and Erasure Coding.

Even though cloud providers utilize various reliability techniques to improve fault

tolerance against various component failures, replication and erasure coding stand out

from all the others by its geographically distributed redundancy. Hence, replication and

erasure coding support any kind of data loss including disasters. The next two sections

discuss erasure coding and replication.

2.3 Erasure Codes

Erasure coding is playing a predominant role in protecting data from failures in large

scale storage systems [15]. Before the emergence of cloud computing, erasure coding was

used to detect and correct errors in storage and communication systems [36]. In (n, k)

erasure codes storage system, a file of size B will be divided into k equal chunks and

n − k parity chunks are added such that any k out of n chunks can restore the original

file. For example, Figure 2.5 represents (4, 2) erasure code which can tolerate any two

failures. The arithmetic used to calculate parity data can be standard arithmetic or Galois

Field arithmetic [15]. In standard arithmetic, addition is carried out as binary XOR and

multiplication as binary AND. Standard arithmetic is performed if the number of bits in

word is 1. When the number of bits in a word increases, parity is calculated using Galois
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Field arithmetic. In Galois Field, GF(2n), arithmetic operations are bound within a finite

set of numbers from 0 to 2n-1; addition is bitwise XOR and multiplication is more complex

which depends on hardware, memory and number of bits in a word [15].

Figure 2.5: Erasure Coding.

Erasure codes can be classified as Maximum Distance Separable (MDS) and non-

MDS. The code is said to be MDS if m disks hold parity data and the system tolerates

any combination of m disk failures; non-MDS codes can tolerate only few combinations

of m disk failures, if m disks are dedicated to hold parity data. For example, in Figure

2.6.a, disks D5 and D6 are dedicated for parities, so this system can tolerate any two disk

failures. This makes it MDS codes. In Figure 2.6.b, D5, D6 and D7 are dedicated for

parities but it cannot tolerate any three disk failures. For example, if D1, D5 and D6 fail

at the same time the data in D1 will not be recovered. This is known as non-MDS codes.

Figure 2.6: Different erasure coding types a. MDS codes b. non-MDS codes.
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Examples of simple erasure codes are RAID-6, Array codes, and Reed-Solomon codes

[15]. RAID-6 codes are MDS that creates two parity blocks for data blocks such that it

can handle two disk failures [37]. Array codes are implemented with standard arithmetic

(i.e., XOR operations). In array codes parity is calculated as different linear combination

of systematic data (original data). Row Diagonal Parity (RDP) [38], EVENODD [39],

Blaum-Roth [40] and Liberation codes [41] are array codes for RAID-6 that can tolerate up

to two disk failures. Star code is an array code and it can tolerate any combination of three

disk failures [42]. Cauchy Reed-Solomon, Generalized EVENODD and Generalized RDP

are array codes that can be defined for any values of k and m [15]. Recent advancements

reduce CPU burden on Galois Field arithmetic for Reed-Solomon codes. Moreover, it

is straightforward to define Reed-Solomon code for any values of k and m. Hence Reed

Solomon has gained prominence over other erasure codes [15].

Reed-Solomon codes are the most popular erasure codes. They can be defined for any

combination of data and parity disks. Reed-Solomon codes are MDS codes. Encoding

and decoding can be done with Galois Field arithmetic. Facebook and Microsoft Azure

implemented Reed-Solomon codes in their storage systems[7, 16]. Any data failures in

erasure coded storage systems trigger data reconstruction to serve the failed data. Since

data reconstruction in erasure coding involves high disk I/O and network bandwidth,

it increases the cost of data reconstruction. Many contemporary researches focus on

reducing reconstruction costs of failed data on Reed-Solomon coded storage systems.

This chapter highlights the recent works on two important categories. One is on

reducing network bandwidth for reconstruction and these codes are called regeneration

codes. The other is on reducing disk I/O needed for reconstruction of lost data and it

is known as Locally Repairable codes (LRC). Following sections discuss non-MDS/LRC

codes and regeneration codes respectively.

2.3.1 Non-MDS Codes/Locally Repairable Codes

Non-MDS codes maintain local parities for original data blocks along with global parities

in such a way that the reconstruction needs minimum disk I/O.

Figure 2.7 represents locally repairable codes. Local parity helps blocks with single
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Figure 2.7: Locally Repairable Codes.

failures to be reconstructed with less number of data blocks than global parity. Global

parity can be utilized for reconstructing blocks with two or more simultaneous failures.

Adding local parity makes the codes non-MDS and increases storage overhead.

Huang et al. [43] designed two new non-MDS erasure codes (Basic Pyramid Codes

and Generalized Pyramid Codes). They designed Basic Pyramid Code from MDS codes.

For example, Pyramid Code can be constructed from (11, 8) MDS code as follows. Eight

data blocks of (11, 8) MDS codes should be separated into two equal size groups. Two

out of three parity blocks can be kept unchanged and it is called global parities. Two new

redundant blocks can be constructed from two equally separated data groups respectively

and it is called local parities. This technique can significantly improve the read perfor-

mance as local parities reduce the disk I/O involved in the reconstruction of lost data.

Compared to (9, 6) MDS code, (10, 6) Basic Pyramid Code reduces reconstruction read

cost by 50%, with 11% additional storage overhead and 5.6x10-7 unrecoverable probabil-

ity. Hence, it improves the performance of reconstruction with high fault tolerance and

with additional storage overhead.

Generalized pyramid code is not an extension of Basic Pyramid code but it is defined

with maximum recoverable (MR) property. Parity blocks of generalized pyramid code are

calculated using a generator matrix. For erasure codes with MR property, the matching

condition becomes sufficient. That means all failure cases satisfying the matching condi-

tion are recoverable. Basic Pyramid code in comparison with generalized pyramid code
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provides 45% less unrecoverable property [43].

Following this work, Huang et al. presented a new set of non-MDS erasure codes

(Local Reconstruction Code) for Microsoft Azure Storage [16]. This code is defined with

(k, n, r) parameters. It divides k data fragments into n groups and generates n local

parities for each group along with r global parity. It can tolerate up to r + 1 failures

and reduces the bandwidth and I/O traffic to reconstruct offline data fragments while

has 1.33x more storage overhead compared to Reed Solomon codes. The average latency

of decoding 4KB fragments is 13.2us for Reed-Solomon and 7.12us for LRC. Decoding is

faster in LRC since the number of fragments needed for reconstruction is reduced to half.

Sathiamoorthy et al. [2] proposed a novel non-MDS erasure code (XORing the Ele-

phants). They defined LRC (10, 6, 5) code on top of Facebook’s RS (10, 4) storage

system by incorporating local parity. They further defined local parity for each 5 data

blocks such that any single lost data block can be reconstructed by only communicat-

ing with the remaining blocks in that group. It reduces approximately 2x on disk I/O

and network traffic upon reconstruction, with 14% of storage overhead compared to Reed

Solomon code. Xu et al. [44], propose novel family of Concurrent Regeneration codes

with Local reconstruction (CRL). This calculates g global parity chunks from all data

chunks and divides m data chunks into l groups. CRL also calculates local parity in each

group. CRL reduces network bandwidth, disk I/O and reconstruction time.

Plank et al. [45] proposed Sector-Disk (SD) codes, which can tolerate a combination

of disk and sector failures. It is a non-MDS code and can tolerate failure of any two disks

and any two words in the stripe. It has minimum storage overhead compared to other

non-MDS codes. They also noted that it needs less computation and disk I/O.

Mehrabi et al. [46], proposed a method to construct a class of erasure codes to address

update complexity issue of LRC codes which define a strict bound of update complexity.

The proposed design algorithm reduces update complexity without sacrificing minimum

distance, code rate and locality parameters. Li et al. [47], proposed a novel family of

locally repairable codes called Galloper codes, to improve parallelism in existing LRC

codes. Galloper codes carefully embed original data into all blocks by considering perfor-

mance heterogeneity of servers. This improves performance of applications by activating
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low disk I/O during reconstructions and by improving I/O parallelism.

While all the above non-MDS codes improve the performance with better reliability,

all impose additional storage overhead. Local parity is effective only for single block

failures in the disk.

2.3.2 Regeneration Codes

Regeneration codes are defined for efficient repair of failed nodes in terms of minimizing

the amount of data downloaded for repair. Traditionally, a failed node data can be

reconstructed by communicating and downloading the entire data with any k available

nodes. Dimakis et al. [48] proved that the fraction of data from any d surviving nodes

(k ≤ d ≤ n − 1) are enough to reconstruct the failed node with network coding. (n, k)

erasure coded storage system assumes that B is the size of the file and each fragment

comprised of α symbols over a finite field. According to the definition of regeneration

codes, any β<α symbols from any d surviving nodes are enough to repair the failed node.

Hence the total amount of data dβ downloaded for repair purpose is smaller than the size

of file B as shown in Figure 2.8 [49]. Assume that each data block in the figure is 1GB.

Upon failure, the reconstruction needs only 3 GB instead of 4 GB.

Table 2.1: Related work on reducing latency of erasure coded

storage systems

Begin of Table

Author Type of

storage

systems

Performance on

Data Failure

Reliability Energy

Effi-

ciency

Storage

Over-

head

Huang et al.

[43]

Cloud Reduces number of

blocks needed to re-

construct failed data

Tolerates any n-

k-1 failures, and

86 % of n-k fail-

ures

NA 11% ad-

ditional

storage

overhead
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continuation of Table 2.1

Author Type of

storage

systems

Performance on

Data Failure

Reliability Energy

Effi-

ciency

Storage

Over-

head

Huang et al.

[16]

Windows

Azure

Storage

Reduces disk I/O

and network traffic

Tolerates any n-

k-1 failures, and

86% of n-k fail-

ures

NA 1.6x of

storage

overhead

Sathiamoorthy

et al. [2]

HDFS Reduces approx-

imately 2x on

network traffic and

disk I/O

Mean time to

Data loss is high

compared to

Reed-Solomon

code

NA 14% ad-

ditional

storage

overhead

Dimakis et

al. [48]

Distributed

Storage

Improved perfor-

mance in terms of

network traffic

Improved Relia-

bility

NA No

Pei et al. [50] Distributed

Storage

Improved perfor-

mance in terms of

network traffic

Improved Relia-

bility

NA No

Khan et al.

[51]

Cloud Reduces the number

of symbols for re-

covery and improves

performance by 20%

Tolerates arbi-

trary n-k failures

NA No

Rashmi et al.

[52]

HDFSRAID

in Face-

book data

warehouse

Reduces both net-

work traffic and disk

I/O around 25% to

45% compared to

Reed-Solomon code

Tolerates arbi-

trary n-k failures

NA No
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continuation of Table 2.1

Author Type of

storage

systems

Performance on

Data Failure

Reliability Energy

Effi-

ciency

Storage

Over-

head

Li et al. [47] Cloud Reduces disk I/O

and activate I/O

parallelism and re-

duce the completion

time of MapReduce

jobs by up to 42.9%

Tolerates arbi-

trary n-k failures

NA No

Xu et al. [44] Cloud Reduces disk I/O

and reconstruction

time and improves

performance by

0.656x compared to

[2]

Mean time to

Data loss is high

compared to

Reed-Solomon

code

NA Similar

to [2]

Pradeep et

al. [53]

Cloud Reduces response

time and improves

performance

Tolerates arbi-

trary n-k failures

NA No

Figure 2.8: Regeneration Codes.
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Minimum Storage and Minimum Bandwidth Regeneration Codes

Regenerating codes can be Minimum Storage Regenerating (MSR) or Minimum Band-

width Regeneration (MBR). Minimizing α is known as Minimum Storage Regeneration.

Minimizing β is known as Minimum Bandwidth Regeneration. In MSR, α and β can be

decided by first minimizing α and then minimizing β. In MBR, α and β can be decided

by first minimizing β and then minimizing α.

The repair process can be partial, functional or exact. In exact regeneration code, the

replacement node stores exactly the same data as the failed node. Functional regeneration

codes reconstruct a new node, which may contain different data from the corresponding

failed node, although it should form an MDS code. In partial regeneration, original data

nodes are repaired exactly and parity nodes are repaired functionally [54].

Suh and Ramchandran [54] proposed an exact MSR code where d ≥ 2k− 1 over finite

field of size at least 2(n − k) with interference alignment property. Rashmi et al. [49]

proposed optimal construction of an exact MBR code for all values of (n, k,m) and MSR

codes for all (n, k, d ≥ 2k−2) using the new product-matrix framework with finite field of

size at least n(m−k+1). Various choices of parameters (n, k,m) for exact MSR codes have

been defined in [55, 56, 57]. Hybrid MSR codes with various choices of parameters have

been defined in various works[58, 59, 60], which support the exact repair for systematic

parts and functional repair for parity parts.

The aforementioned regeneration codes did not consider cross cluster or intra-cluster

repair bandwidth. Sohn et al. [61] proposed exact repair MSR codes for cross clustered

storage systems. The proposed MSR coding scheme is suggested for repair bandwidth

1/(n− k) when the system parameter satisfy n = Lk where L is number of clusters. All

MSR and MBR codes focus on storage and bandwidth minimization but may increase

disk I/O. The choices of parameters for exact repair remain an open problem.

Repair-by-Transfer Regenerating Codes

In the regeneration of codes, the replacement of the failed node needs to be connected to

the remaining nodes and will receive β<α data blocks which are the function of α symbols

stored on it. The nodes helping in the repair process read several data blocks and pass the
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function of the α data blocks stored in it. This process may lead to disk I/O overhead.

In order to minimize I/O overhead and to avoid arithmetic operations performed by the

providers, repair-by-transfer regenerating codes have been proposed.

Rashmi et al. [62] proposed an intuitive repair by transfer exact MBR codes for any

(n, k, d = n − 1). Functional repair is carried out by transfer MSR codes for different

values of (n, k, d) defined in [63, 64]. Exact repair is carried out by transfer MBR codes

(n, k = n−2, d = n−1) over finite field of size 2 defined in [65]. Lin and Chung [66] define

a novel repair by transfer exact MBR codes at m = n − 1 MBR points which demands

a smaller finite field. Chen and Wang reveal the non-existence of a minimum storage

regenerating (MSR) code with the repair-by-transfer property for k ≥ 3, β <d−k+1 [67].

Repair-by-transfer regenerating codes minimize disk I/O and also have all the benefits

of MSR and MBR codes. However, there are only some specific choices of parameters.

Cooperative Recovery Regeneration Codes

Hu et al. [68] first proposed a Mutually Cooperative Recovery (MCR) mechanism for

multiple node failures. In this mechanism, nodes to be repaired can exchange data

among themselves to provide better trade-off between storage and bandwidth. Coop-

erative regenerating code bound on bandwidth consumption of the new node is defined

in [69, 70]. Shum and Hu [71] propose an explicit construction of exact MBCR for

(n, k, d = k, t = n− k) where t is the number of new nodes communicated for the recon-

struction. Wang and Zhang [72] show that for all possible values of (n, k, d, t), there exists

exact MBCR code on field size of at least n. Le Scouarnec [73] explain the construction

of exact MSCR code for some choices of parameter when d ≥ k = 2. Pei et al. [50]

propose cooperative regeneration repair based on the tree structure CTREE for multiple

failures to optimize repair network traffic and time. They propose CExchange to reduce

the network traffic cost. ED-TREE and PTransmission were proposed to reduce repair

time and improve data transmission efficiency. All the above codes are limited to only

some specific choices for the parameters.
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Cross-Rack Regeneration Codes

Hou et al. [74], proposed rack-aware regenerating codes (RRC) to achieve optimal trade-

off between storage and cross-rack repair bandwidth of rack-based data centers. Two

extreme optimal points are derived, namely the Minimum Storage Rack-aware Regener-

ation (MSRR) and Minimum Bandwidth Rack-aware Regeneration (MBRR) points, to

give exact-repair constructions of MSRR codes and MBRR codes. Qu et al. [75], pro-

posed Multi-rack Regeneration Codes(MRC) which repair a failed node by downloading

data from nodes in the same rack only. MRC obtain optimal trade-off between storage

and bandwidth using common product-matrix framework [49].

The following works concentrated on optimizing the disk I/O needed for reconstruc-

tion and reducing I/O cost of recovery without any storage overhead unlike non- MDS.

This algorithm supports any XOR based erasure codes (i.e., array codes). Xiang et al.

[38] propose Row Diagonal Optimal Recovery (RDOR) for single disk failure in RDP

codes to reduce I/O costs for recovery. The I/O optimal recovery of single disk failure

is defined here. Khan et al. [51] propose an algorithm to minimize the disk I/O needed

for reconstruction based on symbols (partitions of block in each disk). This algorithm

supports any number of parity blocks ≤ 3.

The following are the system level solution to address the challenges of erasure codes.

Rashmi et al. [52] propose Hitchhiker code, which is built on top of RS Code using

Piggybacking framework with Hop-and-couple (disk layout). It supports any choice of

systematic and parity data fragments. While Hitchhiker reduces the time required for

reading data during reconstruction by 32% and reduces the computation time during

reconstruction by 36% with 35% reduction in network traffic and disk I/O, it increases the

encoding time. Silberstein et al. [4] proposed lazy recovery which applies a delay to recover

failed data until the number of degraded chunks in a stripe reaches certain threshold and

performs parallel reconstruction of degraded chunks. Parallel reconstruction reduces data

transfer during data repair and hence reduces recovery bandwidth of erasure codes. It

reduces recovery bandwidth up to 76% compared to Reed-Solomon. Li et al. [76] used

disk failure prediction and defined proactive replication of data in failure predicted disks.
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This method reduces degraded read latency and improves read performance. Li et al.

[77] defined a cost effective data reliability management mechanism to ensure reliability

of massive data with minimum replication based on a generalized data reliability model.

Pradeep et al. [53] proposed a novel recovery mechanism CoARC for degraded read.

When the system receives any degraded read request, it proactively recovers all degraded

blocks in a strip and caches them. CoARC increases read performance and hence improves

the performance of the application.

2.4 Replication

Replication is the most common reliability mechanism used in cloud data centres to im-

prove availability and durability with low latency and minimum bandwidth consumption

[78]. Upon failure, in order to maintain the durability, the failed replica needs to be

restored in the active disk. This restoration can be performed either reactively or proac-

tively. In reactive replication, the replica will be created after the failure. In proactive

replication, the replica will be created even before the occurrence of failure. Common

approaches used in replication are static and dynamic replication.

2.4.1 Static Replication

In static replication, the number of replicas and their locations are fixed [78]. Replicas

are created and managed manually regardless of the changes in user behaviour. Random

replication is the most common replication technique used in HDFS, RAMCloud, GFS

and Windows Azure. In this technique, data are replicated on randomly selected nodes

on different racks. Random replication can tolerate concurrent failure as the chunks are

placed on different racks. However, it is ineffective when all the replicas are lost. Also,

fixing lost data involves high cost associated with locating and recovering the lost data.

Cidon et al. [79] propose Copyset replication. It splits the nodes into copysets with

respect to number of replications, which corresponds to random permutation. Replicas

are placed in one of the copysets. Data loss only occurs if all the nodes of some copyset

fail concurrently. It increases the data durability without significant storage overhead and

with the same performance as random replication.
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Hassan et al. [80] proposed two multi objective based optimization algorithms namely

Multi Objective Evolutionary (MOE) algorithm and Multi-Objective Randomized Greedy

(MORG) algorithm for replica management. They determine optimal number of replicas

and replica placement in an overlay with an objective with various parameters such as

access latency, storage costs and data availability.

Liu and Shen [81] proposed Multi-Failure Resilient Replication (MRR) to improve

availability in cloud storage. Authors define different number of replication for each object

based on the popularity of the object. Nodes are separated into different groups such that

groups can handle different number of replications and each set consists of the nodes from

different data centres. MRR reduces the probability of data loss with low consistency

maintenance cost. Long et al. [82] proposed the Multiobjective Optimized Management

(MOM) algorithm for cloud storage. MOM decides the number of replicas and location of

replicas based on a mathematical model with five objectives, namely unavailability, service

time, load variance, energy consumption and latency. The parameters size, access rate of

the file, failure probability, transfer rate and capacity data node have been considered in

the definition of the model. Authors show that this algorithm increases file availability,

load balancing and decreases service time, latency and energy consumption.

2.4.2 Dynamic Replication

In dynamic replication, replicas are created and removed dynamically. Replica creation,

location, management and deletion are handled automatically according to the user be-

haviour in order to improve durability, availability, cost, storage efficiency, bandwidth,

latency, energy and execution time. Bonvin et al. [78], proposed a dynamic cost efficient

replication in clouds with consideration of geographical diversity while maintaining high

availability and low latency. Bonvin et al. proposed Skute, a key-value store which deter-

mines cost efficient position of replicas. Sun et al. [83] defined a mathematical model of

relationship between system availability and number of replicas. They proposed dynamic

replication strategy that determines which data to replicate, time of replication, number

of replicas, and location of the new replicas to improve read performance and availability.

Qu and Xiong [84] propose Resilient, Fault-tolerant and High-efficient global replication
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Table 2.2: Related work on improving reliability, cost and efficiency of replicated storage

system

Author

Type of

storage

systems

Replication

type
Objective

Cidon et al. [79] Cloud Static

To reduce probability of data

loss without any additional

storage overhead and perfor-

mance lag.

Hassan et al. [80] Cloud Static

To reduce access latency and

to improve storage cost and

availability without any ad-

ditional storage overhead and

performance lag.

Liu and Shen [81] Cloud Static

To improve availability with

low storage and maintenance

cost.

Long et al. [82] Cloud Static

To improve availability with

high performance and energy

efficiency.

Bonvin et al. [78] Cloud Dynamic
To improve availability guar-

antee at minimum cost.

Sun et al. [83] Cloud Dynamic

To improve performance and

availability with high storage

efficiency.

Qu and Xiong [84] Cloud Dynamic
To improve availability with

high storage efficiency.

Hussein and Mousa

[85]
Cloud Dynamic

To improve reliability with

minimum cost.

Boru et al. [86] Cloud Dynamic
To minimize network and en-

ergy efficiency.

Li et al. [35] Cloud Dynamic
To maintain reliability with

low storage overhead.

Qu and Xiong [84] Cloud Dynamic

To reduce cost while main-

taining high availability stor-

age overhead.

Zeng and Veeravali

et al. [87]
Cloud Dynamic To reduce response time.

Liu et al. [88] Cloud Dynamic
To ensure high durability with

low cost.
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algorithm (RFH) for distributed Cloud storage systems. The goal of RFH is to hold high

replica utilization rate, high query efficiency and low cost while maintaining high avail-

ability. To achieve its goal RFH algorithm dynamically changes replica and location to

meet different needs. This flexibly replicate data according to the changing query load

and it replicates data into the nodes with high forwarding traffic.

Hussein and Mousa [85] also proposed dynamic replication strategy. Based on the

history of data requests and time series technique, it predicts future data access fre-

quency. If the predicted frequency exceeds the threshold, then data chunks are selected

for replication. After those, the number of replicas and location of the replicas are de-

cided. Experimental results show that this strategy keeps response time stable regardless

of the high number of tasks and improves reliability. A data replication technique to op-

timize energy consumption, network bandwidth and communication delay in cloud data

centres are proposed in [86]. They defined models for energy consumption and bandwidth

demand and propose an energy efficient replication strategy based on this model that re-

duces communication delays. Li et al. [35] proposed cost effective replication of Big Data

applications on cloud storage, defined as a generic data reliability model in cloud based

on replication. They used an algorithm for determining the minimum number of replicas

with assurance of data reliability. In order to assure data reliability with minimum repli-

cation, a generic data reliability model has been utilized to predict data reliability. Data

reliability has been maintained across the period using a proactive replication algorithm

that detects replica loss and triggers the data recovery process if needed.

To improve system performance cloud storage systems maintain Meta Data Server

(MDS) to perform metadata searching service. Sometimes cloud data centers maintain

multiple MDS to improve performance. To determine number of MDS in cloud, Zeng and

Veeravali et al. [87], proposed a strategy with an objective to reduce mean response time

of metadata requests. Depending on the request rate the arriving at master MDS, the

number of metadata replica of each object is determined. The proposed strategy reduces

response time and balances MDS load by maintaining minimum replication.

Even though random three replication method is commonly used in cloud storage

systems to ensure data durability, it fails to efficiently handle correlated machine failure.
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Liu et al. [88] proposed a scheme called popularity-aware multi-failure resilient and cost-

effective replication (PMCR) to ensure high durability of cloud storage in the presence of

correlated failure while reducing storage and bandwidth cost substantially. PMCR splits

cloud storage systems into primary and backup tier. It maintains three replicas of data,

but it stores two replicas in primary tier and one in backup tier. It maintains exact copy

of third replica in backup tier for hot data. However, it compresses the replicas of warm

and cold data to store before backup tier to reduce storage and bandwidth cost.

2.5 Comparison between Replication and Erasure Cod-

ing

Replication and erasure coding are important reliability mechanisms used in cloud data

centres to protect data against failure. It is important to understand the advantages and

pitfalls of those techniques to implement an optimal technique in cloud storage systems to

improve reliability with significant savings. The analysis of those techniques with respect

to various parameters is detailed below.

Figure 2.9 shows how a read request to unavailable data is handled in a replication

and an erasure coded storage system. It also shows how the data is reconstructed in case

of transient and permanent data failure. A request to unavailable data in a replicated

storage system is served by simply redirecting the request to the next available replica.

On the other hand, in an erasure coded storage system, temporarily unavailable data is

served by reconstructing data from the next k available disk on the fly. Reconstruction in

erasure coded storage involves more disk I/O than in replicated storage. For example, in

Figure 2.9.c reconstruction of block A involves two blocks of data read from two different

disks. This increases the latency of the read request in an erasure coded storage system

in comparison to replication.

Disk reconstruction upon permanent failure in an erasure coded system involves more

disk I/O than replication. For example, in Figure 2.9.b the reconstruction of a failed

disk involves only three disk access to reconstruct three data fragments. However, in

Figure 2.9.d reconstruction of the failed disk involves four disk accesses to reconstruct
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two fragments. This increases the cost of reconstruction in an erasure coding system.

Figure 2.10 depicts storage overhead and Figure 2.11 depicts the reliability in terms of

Mean Time to Failure (MTTF) in years with correlated failure for both redundancy

policies. Data from [11] are used to depict Figure2.10 and Figure2.11. These figures

show that erasure codes provide better reliability with low storage overheads compared

to replication. In large scale storage systems, replacing replication with erasure coding

leads to significant cost savings.

Erasure coding is more storage efficient than replication, however there is a perfor-

mance trade off [89]. Encoding data in an erasure coded storage system is time consuming,

while a request to the failed object can be redirected to the next available replica in a

replicated system with no latency [89]. In an erasure coded system, the failed object

should be reconstructed from the next available objects, which increases the latency for

the read request [89]. Moreover, costs associated with reconstruction is high in terms of

bandwidth and disk I/O [90].

Several works compare replication and erasure coding [91, 92, 93, 89, 11]. These com-

parisons assume independence between parameters. Table 2.3 summarizes the comparison

between replication and erasure coding. The keywords high and low are used to represent

the superiority of one technique over other.

Figure 2.12 shows quantitative comparison of network bandwidth/traffic, durabil-

ity/availability and storage overhead. The results shown in Figure 2.12 are generated

using ds-sim [4] simulator. Figure 2.12(a) shows recovery network bandwidth and traffic

of various redundancy policies and results are normalized against replication with factor

3. Figure 2.12(b) shows reliability of various redundancy policies in terms of number of

unavailable and undurable objects during simulation time of ten years. Figure 2.12(c)

shows storage overhead of various redundancy techniques.

From Figure 2.12, storage overhead of redundancy polices Reed-Solomon(6, 4) and

Reed-Solomon(9, 6) are identical. Recovery bandwidth consumption of Reed-Solomon(6,

4) is less compared to replication. However, availability offered by Reed-Solomon(6, 4)

is less than Reed-Solomon(9, 6). Reed-Solomon(14, 10) offers high reliability with less

storage overhead. However, recovery bandwidth consumptions are substantially high than
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Figure 2.9: Durability and availability handling in replication and erasure coding tech-

niques.
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Figure 2.10: Storage overhead (percentage) of various redundancy policies [94].

other redundancy techniques. Storage overhead of 2 replication is 2x which is more

than other coding techniques, but still it offers very low reliability compared to other
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Figure 2.11: MTTF in years with correlated failures for various redundancy policies [94].

Table 2.3: Comparison between replication and erasure coding
Parameters Replication Erasure coding

Storage Overhead High Low

Availability Low High

Durability Low High

Latency on Failure Low High

Cost of Reconstruc-

tion
Low High

Encoding & Decod-

ing Complexity
Low High

methods. Recovery bandwidth consumption of coding methods are substantially high

than replication methods.

2.6 State of the Art in Cloud Storage Reliability for

Big Data Applications

As failures are frequent in cloud storage system, data redundancy is employed in cloud

storage systems to handle failures. Replication is simple solution to improve data reli-

ability. But replicating terabytes and petabytes of data increase the storage overhead
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Figure 2.12: Quantitative comparison between various redundancy polices (a) Normalized

network bandwidth and traffic with respect to Replication (b) Reliability in terms of

number of durable degraded and available degraded objects over 10 years (c) Storage

overhead of various redundancy policies.
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drastically. Nowadays erasure coding is gaining traction because it offers huge savings in

terms of storage with extensive reliability and durability assurance. However, reconstruc-

tion cost involved in recovering the lost data balances the storage savings. Reed-Solomon

code requires approximately ten times more repair overhead per bit compared to repli-

cation. The challenges involved in employing the redundancy techniques for Big Data

applications in cloud storage systems are discussed in the rest of this section.

Several studies (Table 2.1) have focused on reducing network traffic and reducing the

disk I/O associated with reconstruction of failed data in erasure coded storage systems.

Few works dedicate extra storage overhead to improving performance of erasure coded

storage systems but none could improve performance of erasure codes like the performance

achieved with replication for Big Data applications.

Some studies (Table 2.2) have focused on minimizing number of redundancies in repli-

cated storage systems to improve storage efficiencies. None could reduce the storage

overhead in comparison to erasure coding without sacrificing reliability. Achieving relia-

bility, storage efficiency and performance together with either replicated or erasure coded

storage systems has not yet been achieved.

Hybrid reliability mechanisms could be the choice of future data centres. Hybrid

reliability mechanism combines replication and erasure coding. There are very limited

works in hybrid reliability mechanisms, which are listed in Table 2.4. Araujo et al. [95]

proposed double coding based on hybrid coding. The idea here is to keep one full-replica

of data in one peer and erasure coded fragments spread in the network. In double coding,

the copy of original data fragments and parity fragments are arranged in different peers

in the network. Even though it saves bandwidth upon reconstruction, it affects storage

efficiency. Ma et al. [96] proposed a novel scheme named CAROM, an ensemble of

replication and erasure coding. Their approach caches the whole file upon write requests

for serving the subsequent read and write requests. It also caches the requested block

upon read request in order to serve subsequent reads. It saves storage cost by up to

60% and erasure coded bandwidth cost by up to 43% while keeping the latency, as in

replication. When the requested data is not in memory, it needs to reconstruct the data

upon block unavailability. Li et al. [97] presents proactive erasure coding (ProCode),
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Table 2.4: Related work on improving reliability, cost and efficiency of replicated storage

system

Author

Type of

storage

systems

Objective Method

Araujo et al. [95]
Distributed

storage

Reduce latency

(In terms of net-

work bandwidth

and disk I/O)

One full-replica of

data is kept in one

peer and erasure

coded fragments

are spread in the

network.

Ma et al. [96] Cloud

Reduce latency

(In terms of net-

work bandwidth

and disk I/O)

Cache the whole file

upon write requests

for serving the sub-

sequent read and

write requests.

Li et al. [97] Cloud

Reduce latency

(In terms of net-

work bandwidth

and disk I/O)

Adjust replication

factor of data based

on drive failure

prediction.

which automatically adjusts replication factor of data based on drive failure prediction.

It reduces degraded read latency by 63% and reconstruction time by 78%. This ProCode

has no effect in the storage system consisting of flash drive and swappable drivers can

handle the drive failures more efficiently.

2.6.1 Cloud Storage Classes

The most popular cloud storage systems like Amazon, Azure and Google Cloud offers

several classes of storage [98, 99]. Pricing of storage classes are different and they define

different limits on important metrics of cloud storage such as durability, availability, access

latency and throughput. They also enable life cycle policies to automatically migrating

data between storage classes. The life cycle management tool migrates data into different

storage classes based on the time limit defined in life cycle configuration rules. They

support object level migration.

Data objects can be classified as hot, warm or cold based on data access pattern. Data

access pattern may change with different applications. Some applications may frequently
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change data access pattern or access pattern may not be defined. Amazon Web Services

(AWS) have designed a storage class S3 Intelligent-Tiering for the data storage with

unknown or changing access pattern [100]. This stores objects in two access tiers: one

for frequent access object and other for objects that have infrequent access. Objects in

S3 Intelligent-Tiering are monitored for the change in access pattern. According to the

access pattern change, it automatically moves data into appropriate tiers.

2.6.2 Energy Efficiency of Cloud Storage Systems

Storage systems are one of the most important energy consuming components in cloud

computing [26]. Energy efficiency methods used in data centres save operational costs and

help to conserve the environment [101]. The energy efficiency of storage systems is highly

dependent on read/write latency [20]. Pinheiro et al. [102] introduced a technique called

diverted access technique that separates original and redundant data on different disks in

storage systems. This technique keeps disks containing redundant data in an idle state

until there is a high disk failure. This technique has been proven to save 20-61% of energy

related to disk. Harnik et al. [19] proposed a method for full coverage in low power mode

using auxiliary nodes (pool of extra nodes with additional copies of data) of any placement

function. The power saving potential for an erasure coded storage system is limited in low

power mode, however it improves when the ratio between n and k grows. Butt et al. [101]

presented an Energy Reliability Product (ERP) metric to compare different designs with

respect to energy efficiency and reliability of data centre storage systems. Greenan et al.

[103] proposed power aware coding and present a generic technique for reading, writing

and activating devices in a power aware erasure coded storage system. They also showed

that activating the inactive disk increases power consumption. Li et al. [35] proposed a

link rate controlled data transfer (LRCDT) strategy for energy efficient data transfer in

replication based cloud storage systems.

2.6.3 Research Directions

After extensive and careful literature survey the following directions are derived to proceed

with next chapter.
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� Efficient Big Data storage: Erasure coding can define a storage efficient platform

for Big Data. However, it is not bandwidth efficient and performance efficient due

to the inevitable failures of storage systems. Replication is not a viable option to

improve the reliability of Big Data regardless of its exceptional performance in any

existence of failures. An efficient system can be carefully defined to utilize both

of its benefits. The system must apply the benefits of replication to address the

bandwidth consumption and performance issues of erasure code. The extra replicas

should be created to address the data reconstruction issues of erasure codes. To

control the extra storage requirements of erasure codes, replicas should be created

only when it is required. Failure prediction techniques can be utilized to define such

replicas.

� Cognitive Big Data storage: Read performance is an important property of Big

Data. A storage system must offer exceptional read performance to support velocity

property of Big Data. However, data in a storage system may have different access

patterns. Based on the access patterns, data can be classified as hot or cold. Data

access pattern can be used to classify data as hot or cold. A delay in accessing cold

data is acceptable some time. If the client accepts the delay, it can be recorded in

client SLA. A cognitive storage can be defined to maximize bandwidth saving by

applying lazy recovery to cold data. It must wisely use client SLA and data access

pattern to apply lazy recovery.

� Expeditious Big Data storage: Cache is a perfect solution to improve the data access

speed to support velocity of Big Data. However, cache may be ineffective sometimes.

Cache can also be utilized appropriately to improve data access speed when there

is a failure in underlying storage. Expeditious storage can be defined with erasure

codes by utilizing cache to support data read velocity while also reducing storage

overhead to the minimum.
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2.7 Summary

Cloud computing is playing a predominant role to serve Big Data applications as it pro-

vides cost-effective, on-demand services. Cloud enables storage and computing resources

to be scaled up and down rapidly based on client’s storage and computation demand. As

failures are becoming the norm in cloud storage systems various fault tolerant mechanisms

have been employed in cloud storage systems to improve data reliability. Erasure coding is

the favourable choice of cloud storage systems to improve reliability of Big Data. However,

data reconstructions due to failures demand more resources which affect performance of

the applications. This prevents cloud storage systems to move towards erasure coding.

In this chapter, state-of-the-art of both techniques is discussed. In erasure coded storage

systems, various techniques are highlighted to reduce resource consumption during data

repair. In replication storage, several existing researches on improving data reliability

with minimum replications are discussed. Also, this chapter highlighted several existing

hybrid techniques on improving data reliability.

With highlighted research directions in this chapter, next chapter proposes several

novel proactive recovery techniques to mitigate resource usage due to failures in erasure

coded storage system. They are defined utilizing hardware failure predictions. We also

propose a system to accommodate proposed recovery techniques and select an appropriate

recovery technique among them to meet client SLA in the efficient manner.



Chapter 3

Adaptive Bandwidth Efficient Cloud

Storage Systems

Replication and erasure codes are the most important data reliability techniques employed

in cloud storage systems, but individually they have their own challenges. Challenges of

replication and erasure coding were discussed in the last chapter. Subsequently, possible

research directions were also highlighted in the last chapter. In this chapter, a novel

system is proposed to define a cost effective reliable storage system for Big Data. This

reliable storage system is designed to improve storage cost by applying erasure coding and

bandwidth cost by applying replications to the necessary erasure coded chunks. Failure

predictions are utilized in this system to identify the necessary blocks for replication.

To maximize the resource savings, the proposed system employs several novel proactive

recovery methods for erasure codes. When the system predicts any hardware failures,

it will select one of the most appropriate proactive recovery techniques which can meet

client SLA and data access patterns.

This chapter is derived from: Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M.

(2018, August). Adaptive Bandwidth-Efficient Recovery Techniques in Erasure-Coded Cloud Storage. In

European Conference on Parallel Processing (pp. 325-338). Springer, Cham.
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3.1 Introduction

Hardware failures (disk failures, machine failures, and latent sector errors) and temporary

machine failures are the most common failures that affect durability and availability of

data in cloud storage [3]. In order to avoid permanent data loss due to hardware failures,

contents in failed nodes or disks have to be restored in an another hardware device,

a process that is known as data recovery. Data stored in an unavailable machine due

to temporary outage will cause temporary data loss. Temporary data loss in erasure

code is handled by degraded read. In degraded read, data blocks in the failed node are

reconstructed and served using the next available k blocks. In order to avoid unnecessary

repairs due to short term transient node failures, data recovery is delayed for a certain

amount of time. Google File System (GFS) delays recovery of data from unavailable nodes

for 15 minutes. However, this affects availability and degraded read performance [104].

In contrast, when replication is used, degraded read is handled by simply redirecting the

request to the next available replica.

Repair network bandwidth hike is one of the most important issues of erasure coding.

Repairing a single data block stored using Reed-Solomon(n, k) code requires k data blocks

to be transferred over the network. However, repairing a single data block in replication

involves the transfer of one data block [105]. Repair network bandwidth is increased by k

times in Reed-Solomon(n, k) code compared to replication. The network traffic incurred

due to such data movements increase network switch energy consumption resulting in

extra costs for cloud service providers. Moreover, network traffic is regulated by network

throttling, which affects read performance. All the above facts prevent cloud storage

systems to apply erasure codes in large scale.

As both replication and erasure coding have its own advantages, cloud storage systems

require hybrid approaches in order to leverage the advantages of both methods. In this

chapter, we propose several novel recovery techniques. These techniques replicate certain

data chunks of erasure coded data. They utilize data access patterns and hardware failure

predictions to improve repair bandwidth savings with minimal storage overhead. We have

also showed that the ProDisk method proposed by Li et al. [76] reduces repair network
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bandwidth/traffic. All the aforementioned methods must utilize machine and disk failure

prediction techniques to predict disk failures and long-time temporary machine outage.

When hardware failures (permanent machine/disk failures) are predicted, proposed stor-

age system immediately replicates all the data chunks in failure devices in to permanent

storage. When long-term machine failures are predicted, the proposed storage system ap-

plies various recovery using data access pattern and client SLA. During proactive recovery

of long-term machine failures, data is written into dedicated temporary storage for the

quick reference to remove them when it is no longer required.

In a distributed storage system, a data file is dispersed into multitude of intercon-

nected nodes, which serves any end user request by tapping data from multiple nodes.

Improving the resilience of distributed storage system with limited storage overhead is

desirable. Erasure coding offers high reliability with less storage overhead. Reducing

repair network traffic/bandwidth in erasure coding is important to make it more per-

vasive in cloud storage systems. Applying a delay in erasure code can reduce repair

network traffic/bandwidth significantly. However, this may compromise availability and

read performance. Proactive replication of failure predicted data in erasure coding can

significantly reduce resource usage due to repair but it comes with the cost of additional

storage overhead. An object can be categorized as cold, hot or warm according to the

data access pattern of that object. For an object in online social network, there is a strong

correlation between age and access pattern. An object uploaded to online social network

receives more I/O during its early lifetime [106]. Number of I/O will eventually reduce

over the time. While hot objects always demand high availability and performance, some

relaxation is acceptable for cold objects.

The amount of temporary storage required in the proposed approach is linearly related

to the number of long term machine failures predicted over a period of time. To reduce

temporary storage overhead due to proactive replication, the proposed system switches

between proactive and lazy recovery. The system utilizes the data access pattern to

identify hot data. It applies proactive replication to all hot data since read performance

of hot data should not be compromised. It checks client SLA before applying lazy recovery

to cold data. Even though bandwidth and storage savings can be maximized by applying



62

lazy recovery to cold data, client SLA must be verified to check the client’s acceptance on

access delay of cold data caused due to lazy recovery.

Novel block chain-based cloud storage systems like Storj [107] uses consumer storage

to serve their customer’s storage needs. They suggest, as a means to improve reliability,

the use of Reed-Solomon(60, 40) code. This means that, to reconstruct any missing data,

40 surviving data fragments have to be transferred to reconstruct any single failed data

fragment. These novel storage systems demand more bandwidth-efficient recovery, which

is the focus of this chapter. The proactive recovery techniques proposed in this chapter

use several failure prediction methods. As these systems are running on end-users client,

it may not be possible to apply existing hardware failures prediction techniques on the

user’s computers. However, it is possible to predict the availability of user computers

using availability logs. Hence it is possible to apply some of the proposed techniques in

blockchain-based cloud storage systems.

Using data access pattern of objects, several bandwidth-efficient recovery techniques

are defined in this chapter. They use very limited temporary storage overhead. ProMa-

chine, ProHot, ProHot LazyCold are the novel methods proposed in this research which

are the main contribution of this chapter.

3.2 Related Work

A substantial amount of research concentrated on reducing repair bandwidth of erasure

codes. Dimakis et al. [108] presented a theoretical framework for regeneration codes that

can optimize recovery bandwidth for a given storage. However, exact repair of regenera-

tion codes, matching information theoretic bound, remained unresolved. Following this,

several works [3] showed that exact repair is possible for some parameters. Sathiamoorthy

et al. [109] proposed Xorbas which reduces network traffic by half compared to Reed-

Solomon codes with 14% additional storage overhead [109]. LRC in Windows Azure

storage reduces repair network bandwidth significantly with the help of local parities,

which have the side effect of increasing storage overhead by 1.33x compared to Reed-

Solomon [110]. Hitchhiker code, built on top of Reed-Solomon code using piggybacking

framework, reduces network traffic by 35% with some encoding time overhead incurred



63

[111].

Failure predictions in cloud storage systems offer cloud service providers an efficient

proactive failure management in cloud storage. Various statistical and machine learning

methods are used to predict failures in cloud storage systems. A few methods [112,

113] are used to predict hard drive failures based on SMART attributes. Li et al. [113]

achieved 95% predictions with False Alarm rate less than 0.1%. Many researches had

focused on predicting failures in distributed systems based on system logs. Javadi et al.

[114] presented failure model as a predictive method of distributed systems availability

and unavailability. Agarwal et al. [115] uses log messages to predict failures in Hadoop

clusters.

Silberstein et al. [4] proposed lazy recovery to reduce recovery bandwidth in dis-

tributed storage by reducing the recovery rate. It reduces recovery bandwidth up to

76% compared to Reed-Solomon. However, applying this method on cloud storage affects

read performance and data durability. Li et al. [76] used failure prediction techniques

to implement proactive replication in erasure codes for reducing degraded read latency

and improving read performance. Li et al. [77] defined a cost effective data reliability

management mechanism to ensure reliability of massive data with minimum replication

based on a generalized data reliability model. Wu et al. [116, 117] used prediction tools

to identify the upcoming events to proactively migrate the data blocks on the degraded

device belonging to the hot data zones in the large-scale data centers.

3.3 The Proposed Cloud Storage System

The target system here is an object storage that initially stores data with any appro-

priate erasure code to reduce storage overhead while maintaining reliability. Consider a

distributed cloud storage system composed of a number of disks accommodated in a ma-

chine, group of machines in a rack, and several racks in a distributed storage. Data blocks

stored in a disk can be determined as a at-risk block based on the underlying machine

and disk health status. Machine and disk failure prediction algorithms run individually to

predict disk or permanent machine failure and machine unavailability. Since rack failures

are transitory, the health of data blocks is determined with machine and disks health
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Figure 3.1: The System architecture for proposed recovery techniques.

status. Data blocks that are marked as at-risk in this system are proactively replicated

before the occurrence of failure based on the client’s Service Level Agreement (SLA).

Proactive replication reduces the number of blocks required for reconstructions in erasure

coded cloud storage system. Hence, the proposed system reduces network traffic with less

storage overhead. This system utilizes various recovery schemes to reduce reconstruction

bandwidth in erasure coded cloud storage systems.

3.3.1 Architecture and Design

An overview of the system architecture is depicted in Figure 3.1. It is implemented as

an extension of regular object storage. Object storage manages data as objects where

each object has both data and metadata. A dedicated proxy server extends the support

of encoding and decoding erasure codes. It also handles failures in storage systems. The

object server stores and retrieves object data. Object server’s availability status and
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disks health status are reported to the proxy server, which is responsible for increasing or

decreasing the data object’s replication factor. The system adjusts the replication factor

of erasure coded objects when failures are predicted. The components of the architecture

are discussed as follows.

Disk Failure Prediction

This module monitors the health status of individual disks and reports prediction results

to the Node Failure History & Disk Health Information module in the proxy server.

SMART is implemented on disks and it monitors, compares disk attributes and issues

warnings. This SMART attributes are used to predict disk health status using various

statistical and machine learning techniques [113, 112]. Disk failures are calculated using

classification and regression trees methods here [113].

Proactive Replication Management

Popular storage systems like AWS and Azure migrates data into different storage classes

according to the changes in data access pattern. Client SLA with important metrics

of such as durability, availability, access latency and throughput varies with different

storage classes. Since erasure coding is a storage efficient method to improve reliability of

cloud storage, instead of moving objects into storage classes, we enforce different recovery

methods to improve cost savings of cloud storage. Redundancy of data blocks are adjusted

according to node/disk health status, client SLA and data heat.

Node Failure History and Disk Health Information This module collects the

information of disk health status and node failure history. Various statistical and machine

learning techniques can be used to predict node’s Mean Time To Failure (MTTF) and

Mean Time To Repair (MTTR). Based on node’s predicted MTTF and MTTR, node

failures are classified as permanent, long time, or short time failures. Node’s MTTF and

MTTR are calculated using various statistics of availability and unavailability [114].

Data Block Health Monitor & Client SLA Failure predicted nodes and disks in-

formation are collected from Node Failure History and Disk Health Information module.

It identifies the disks that are predicted to fail in the underlying storage system. It also
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identifies permanent, long term and short term machine failures by predicting machines

MTTF and MTTR. Permanent machine failures are handled as disk failures. This module

sends failure information to the Dynamic Replication module to take necessary actions.

Clients can request various recovery schemes based on their needs. The client can define

their requirements as follows:

� High durability, normal availability.

� High durability, high availability.

� High durability, high availability for hot and normal availability for cold data.

� High durability, high availability for hot and low availability for cold data.

Based on the client SLA, the variable that represents different recovery scheme will be

set.

Data Access Pattern Data access patterns in a distributed storage can be analysed

over a certain period of time to identify the popularity of data blocks in real-time. Based

on their popularity, data blocks can be classified as hot, warm, or cold. As the access

pattern changes, popularity of data blocks need to be updated. Various researches used

popularity-based classification to improve durability, availability, and read performance

of cloud storage systems [118]. Our approach combines both failure prediction and data

access patterns to decide the recovery type of an object. Data access pattern is used

here to define hot data. We assume that data blocks with high access frequency have

more chance to be accessed in the future and they are defined as hot. This module uses

data access pattern to classify a block as hot data block and they are grouped as a set

H = {b1, b2, ...} where the block bi in H is hot.

Dynamic Replication Manager This module collects information from Data Block

Health Monitor, Client SLA, and Data Access Pattern module and activates various

proposed recovery schemes, as follows:

� ProDisk: When disk failures or permanent machine failures are predicted, all the

data blocks in the failure predicted disks (all disks in failure predicted machine)
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are proactively replicated permanently as described in [76]. In the occurrence of

failure, the reference is made to the proactively replicated data instead of applying

typical reconstruction of erasure codes. This was originally proposed by Li et al. [76]

but they only considered the recovery performance not recovery bandwidth. This

method improves data durability and will provide limited contribution on improving

data availability. It will reduce degraded read due to disk failures and hence it will

improve read performance.

� ProMachine: Machines are the important components that fail more often in cloud

storage [2]. Best bandwidth saving can be achieved by proactively handling long

term machine failures. When temporary long term machine failures are predicted

with MTTR greater than 15 minutes, data blocks in failure predicted machines are

proactively replicated into a dedicated node that is allocated specifically to handle

temporary machine failure. In case of any failure, data is accessed from the dedicated

node. It will improve durability, availability and read performance.

� ProHot: This method periodically identifies hot data blocks and applies proactive

recovery only for hot data blocks. When temporary long term machine failures are

predicted with MTTR greater than 15 minutes, data identified as hot in failure

predicted machine are proactively replicated into the dedicated node. In case of any

failure, hot data is accessed from the dedicated node and typical reconstruction is

applied to recover cold data. This will improve durability of all objects. This will

also improve availability and read performance of hot data.

� ProHot LazyCold: In case of any temporary long term machine failure prediction,

it is unnecessary to reconstruct cold data if it is not going to be accessed soon.

When temporary long term machine failures are predicted with MTTR greater

than 15 minutes, data identified as hot in failure predicted machine is proactively

replicated into a dedicated node that is allocated specifically to handle temporary

machine failure. In case of any failure, hot data is accessed from the dedicated node

and lazy recovery [4] is applied for cold data recovery. Hence it saves temporary

storage overhead compared to ProMachine alongside significant bandwidth savings.
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This method will improve durability all objects. This method will also improve

availability and read performance of hot data. However, it will impact the read

performance of cold data since it will apply lazy recovery of cold data.

Dynamic Replication Manager is also responsible for scaling up and down the number

of dedicated temporary storage nodes, according to the failure predictions and amount of

data need to be stored in temporary storage during a period of time. It is also responsible

for allocating highly available node as a temporary storage such that any failure in this

temporary storage node is minimal. Any failure prediction in this temporary storage will

also lead to proactive replication.

3.3.2 Proactive Recovery Approach

In our target scenario, a cloud storage system initially stores data with any (n, k) erasure

code. With the help of disk and machine failure prediction methods employed in cloud

storage systems, failure types and MTTR of node failures are predicted. Failures are

also identified as disk, permanent machine, temporary long term machine (MTTR>15

minutes), or temporary short term machine (MTTR<15 minutes) failures. The set of

data blocks (b1, b2, ..., bi) that is more likely to be accessed soon is defined as the hot data

set H. Based on the failure types, hot data blocks, and client SLAs, one of the proposed

recovery techniques ProDisk, ProMachine, ProHot, ProHot LazyCold will be chosen.

When the disk or permanent machine failures are predicted (ProDisk), all the data

blocks in the failure predicted disk (all data blocks of each disk in a failure predicted

machine) are proactively replicated into the permanent storage as described in Procode

[76]. The counter variables of corresponding replicated data blocks are incremented. These

counter variables are used to identify if the particular data blocks associates proactive

copy. It is also used to delete data blocks against noisy prediction. A delay is applied

while deleting data blocks against noisy prediction. Time In Advance (TIA) provided

by failure prediction algorithm is used as a time delay to delete the data blocks that are

replicated due to noisy prediction. Time delay being larger than TIA is the better choice.

However, this will result in extra storage. The choice of time delay varies and depends on

the storage system where the system is utilized.
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While temporary machine failures are predicted, proactive recovery is activated for

either all (ProMachine) or some of the data blocks (ProHot, ProHot LazyCold) in a failure

predicated machine. They are replicated into the dedicated temporary storage. The data

blocks that are not replicated proactively are recovered by typical reconstruction of erasure

codes or using lazy recovery. While data blocks are proactively replicated into temporary

storage, the corresponding data blocks counter variables are incremented. These variables

are used to identify if the particular data blocks are replicated already. They are later

referred to delete those blocks when that machine recovers from its temporary failures.

The dynamic replication module also provisions and adjusts the number of temporary

dedicated nodes, based on long term temporary machine failure rate and client SLA.

When the failure predicted nodes recover from actual failure provide no further failures

are predicted for the same nodes, the proactively replicated data blocks corresponds to

those nodes are deleted. Also, any data fragments which have more than one copy in the

system are also deleted periodically. In the occurrence of node/disk failure, the reference

is made to proactively replicated blocks which reduce number of data reconstructions in

erasure coded storage systems.

3.4 Adaptive Proactive Recovery Algorithm

This algorithm introduces different recovery schemes based on client SLA agreement using

failure prediction techniques. Temporary machine failures occur more often in large-scale

object storage compared to permanent machine/disk failures. Temporary machine failures

are contributing more to average recovery bandwidth. Thus, it is necessary to pro-actively

handle the recovery due to temporary machine failures.

The algorithm also needs to account for temporary failures. For example, GFS initiates

recovery of data on unavailable nodes after 15 minutes in order to reduce unnecessary

recovery. Our approach uses predicted MTTR of failure predicted nodes and ignores

short-term temporary machine failures. In some applications, the only concern is on

the availability/latency of hot data blocks. In this case, the recovery of cold data can be

delayed until certain amount of fragment fail (a process called lazy recovery) to increase the

availability of resources for other operations. The algorithm activates proactive replication
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to optimize recovery bandwidth in object storage.

Lines 6-11 in the Algorithm 1 define how disk failures/permanent machine failure

predictions are handled in the system. When disk or permanent machine failures are

predicted, all the data blocks in the failure predicted machine/disk are pro-actively repli-

cated. Lines 12-39 define how transient machine failures are handled in the proposed

system. In the occurrence of machine failure prediction, the algorithm defines several

proactive recovery strategies based on client SLAs. It activates proactive recovery for

either all or partial data blocks based on client SLA. If the data blocks that are not

replicated, it is recovered by typical reconstruction of erasure codes in ProMachine and

ProHot. However, they are recovered by applying lazy recovery in ProHot LazyCold.

While data blocks are pro-actively replicated, the corresponding blocks counter variable

is incremented. It is used to identify if the particular data blocks are replicated already

or to delete blocks when the disk or machine recovers from failures.

The dynamic replication module also provisions and adjusts the number of temporary

dedicated nodes based on long term temporary machine failure rate and client SLAs. In

the occurrence of node/disk failure, the reference is made to pro-actively replicated blocks.

To reduce storage overhead, when the failure predicted machine/disk did not fail or when

the node recovers, the copy of the fragment is deleted. Also, if more than one copy of

the particular fragment exists in the system, it is also deleted. A delay is applied when

deleting data blocks. The choice of time delay varies and depends on the storage system

where the system is utilized.

3.5 Performance Analysis

All the methods proposed in this chapter use a combination of proactive, typical and

lazy recovery methods. Each proposed recovery methods show various savings in terms

of bandwidth and storage. To analyse bandwidth and storage savings of those methods,

we will carry out the performance analysis of various reliability in this section.
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Algorithm 1 Dynamic Replication Algorithm

1: Predicted Failures,Failure Type, MTTR of node failures

2: H ← Bi (Set of all hot data blocks)

3: SLA← ProDisk, ProMachine, ProHot, ProHot LazyCold

4: procedure Dynamic Replication(PredictedFailure)

5: if Failure Type is disk then

6: for each slice si in failure predicted disk do

7: identify the block bi to which fragment si belongs

8: Proactively replicate si of block bi

9: copy[si]++

10: end for

11: else if Failure Type is Machine then

12: if MTTF >15 minutes and SLA is ProDisk then

13: activate normal recovery

14: else if MTTF >15 minutes and SLA is ProMachine then

15: for each disk in failure predicted machine do

16: identify the block bi to which fragment si belongs

17: Proactively replicate si into temporary node

18: temporaryCopy[si]++

19: end for

20: else if MTTF >15 minutes and SLA is ProHot then

21: for each disk in failure predicted machine do

22: identify the block bi in which fragment si belong to

23: if block bi belongs to H then

24: Proactively replicate si into temporary node

25: temporaryCopy[si]++

26: else

27: activate typical reconstruction of erasure codes

28: end if

29: end for
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30: else if MTTF >15 minutes and SLA is ProHot LazyCold then

31: for each disk in failure predicted machine do

32: identify the block bi to which fragment si belongs

33: if block bi belong to H then

34: Proactively replicate si into temporary node

35: temporaryCopy[si]++

36: else

37: activate lazy reconstruction of erasure codes

38: end if

39: end for

40: end if

41: else

42: activate lazy reconstruction of erasure codes

43: end if

44: end procedure

3.5.1 Bandwidth Analysis

The bandwidth required to reconstruct any missing data is directly proportional to the

number of transfers required, which is k times of a chunk size in (n, k) erasure coded

storage system. The amount of data transfer required to recover any missing block is

calculated as

TransferRequired = S ∗ (k +NumberOfMissingBlocks− 1) (3.1)

Where S is the chunk size and k is number of fragments needed to reconstruct data.

The k is 1 for replication. Hence the recovery bandwidth is calculated as

RecoveryBandwidth = TransferRequired/RecoveryT ime (3.2)

Equation 3.2 shows that the RecoveryBandwidth is directly proportional to Trans-

ferRequired. Let us consider Reed-Solomon(14, 10) code with the chunk size of 250MB.
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From equation 3.1, TransferRequired can be calculated as 2500MB for recovering a single

missing data block in Reed-Solomon(14, 10). However, it is 250MB if the data block

is proactively replicated. From this, we can conclude that proactive replication reduces

the recovery bandwidth significantly. Lazy recovery delays the recovery of the data frag-

ments until certain amount of data fragments (recovery threshold) are unavailable. For

example, in Reed-Solomon(14, 10), if recovery threshold for lazy recovery defined as 12,

recovery will not be activated for any objects until number of degraded slices in an object

becomes 2. Hence lazy recovery reduces repair rate in erasure codes and reduces recov-

ery bandwidth and traffic. In this chapter, we use lazy recovery only for handling long

term temporary machine failures such that it does not impact durability of data. Since

the entire predicted disk failures are proactively replicated, it does not affect durability.

Furthermore, lazy recovery is activated based on data access pattern of objects and client

SLA. If the client needs good read performance only for data identified as hot, it activates

lazy recovery only for cold data. Proactive recover is activated for all data blocks that

are identified as hot.

3.5.2 Storage Overhead Analysis

Erasure coding offers excellent storage efficiency compared to replication. Proportional

increase in storage of various reliability methods is defined as:

(systematicdata+ originaldata)/originaldata (3.3)

The method proposed in this chapter proactively replicates data into a new hardware

device when permanent node/disk failures are predicted. Once the predicted device fails,

reference will be made to the proactively replicated device. Eventually, there will be

wrong predictions about devices failing. When this occurs, it is expected that the storage

overhead will suffer a slight increase. False positive for disk failures are calculated as less

than 0.1% using classification and regression trees [113]. Hence, the storage overhead will

not be significantly increased by wrong predictions. Temporary nodes are dedicated to

handle long term node failures. However, data in those temporary nodes are periodically

evicted. Hence, temporary node failures will not increase storage overhead permanently.
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Moreover, the life time of data that are replicated due to failure predictions are from the

time of prediction till actual failures in case of true positive. However, it is from time of

prediction till TIA+delay in case of false positive.

3.6 Performance Evaluation

We use ds-sim simulator [4] to compare recovery bandwidth from replication and erasure

coding to the various bandwidth efficient recovery techniques proposed in this chapter.

The ds-sim is a distributed storage simulator which simulates failures using traces and

models. It simulates 3-tier storage components including disks, machines, and racks. Disk

failures can be latent or permanent. Latent disk failures are detected and recovered dur-

ing periodic reads. Permanent disk failures are assumed to be unrecoverable. Machine

failures can also be transient or permanent. Recovery from transient failures begins af-

ter 15 minutes and immediately for permanent failures. Rack failures are considered as

transient. The ds-sim records number of degraded reads and repair bandwidth. We have

modified ds-sim to add failure predictions, proactive replication, and hot data predic-

tion. The modified ds-sim calculates repair bandwidth and number of degraded strips of

various reliability techniques and proposed proactive recovery methods. The simulator

models distributed storage systems of 3 Petabyte of storage for 10 years. Simulation pa-

rameters are 11 machines/racks, 20 disks/machines, each disk with capacity 750 GB and

maximum recovery bandwidth capacity of 650 TB/day. Also 40% of random data blocks

was considered as hot to evaluate ProHot and ProHot LazyCold recovery methods. For

each result we run the simulation with number of iterations and calculated the result with

95% confidence interval.

3.6.1 Results and Discussions

In this section, we compare the bandwidth and reliability of replication, Reed-Solomon(14,

10) and various recovery techniques proposed in this chapter.

Recovery Bandwidth.

We run simulations with the above experimental setup with failure prediction rate 90%,

false positive 0.1%, and TIA 24 hours which found reasonable in [113, 115]. Recovery
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Figure 3.2: (a) Average recovery bandwidth in GB per day and (b) Maximum instanta-

neous recovery bandwidth, in MB/hr, calculated over 10 years.

bandwidth is calculated for each failure event except for machine failures lasting less

than 15 minutes. Figure 3.2 shows the comparison of average recovery bandwidth in

GB/day versus storage overhead for replication, Reed-Solomon(14,10), Lazy [4], and the

various recovery techniques proposed in this chapter. The proposed recovery techniques

are applied on Reed-Solomon(14, 10) erasure code in this comparison.

Replication reduces recovery bandwidth in up to 66% compared to Reed-Solomon(14,

10). ProDisk reduces average repair bandwidth up to 19% compared to Reed-Solomon(14,

10). ProHot reduces recovery bandwidth up to 38% whereas ProMachine reduces recovery

bandwidth by 75% compared to the same approach. Reduction in recovery bandwidth

is directly proportional to number proactive replication for ProDisk, ProMachine and

ProHot methods. Data repair activated due to ProDisk is less since number of hard

disk failures are limited compared to number of temporary machine failures. Moreover,

ProMachine and ProHot apply proactive replication due to any disk failures along with

proactive replication due to any machine failures. Bandwidth savings of ProHot LazyCold

is outstanding compared to other methods since it saves bandwidth in two ways. One is

bandwidth savings due to proactive replication and other is bandwidth savings in terms

of lazy recovery. ProMachine and ProHot LazyCold outperform replication. This is be-

cause in replication, data blocks are distributed among large number of hardware devices.

Hence it experiences a large number of recovery events that increases recovery bandwidth
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compared to ProMachine and ProHot LazyCold. ProHot LazyCold outperform lazy re-

covery. This is due to failure predicted hot data blocks are replicated proactively which

eventually lead to lazy recoveries. However, ProMachine technique increases the tempo-

rary storage proportionally to the temporary long term machine failure rate. ProDisk’s

bandwidth savings compared to LRC is limited, since it proactively replicates less data

blocks.

Figure 3.2(b) shows the maximum instantaneous recovery bandwidth, in MB/hr (net-

work traffic) in distributed storage systems over the simulation period of 10 years. The

simulation calculates network traffic as follows. Upon each recovery event, instantaneous

total recovery bandwidth, in MB/hr is calculated and compared with the previous maxi-

mum recovery bandwidth. If the new recovery bandwidth is larger than maximum recov-

ery bandwidth, the new recovery bandwidth becomes the maximum recovery bandwidth.

ProDisk reduces the network traffic to the same level as replication. ProMachine

and ProHot reduce network traffic even below replication. However, maximum recovery

bandwidth in ProHot and ProMachine is higher compared to ProDisk. This spike is due to

the network bandwidth required to proactively replicate all the data blocks in the failure

predicted machine.

Reliability.

Durability and availability are always evaluated as hundred percentage for various data

recovery approaches and Reed-Solomon(14,10) according to the simulation results. Since

reliability of Reed-Solomon is high to calculate very limited compromise on durability

and availability, number of iterations should be increased substantially. Reliability of

proposed techniques are higher than Reed-Solomon(14,10) due to proactive replication.

To evaluate reliability of different approaches using ds-sim, we use the number of durable

degraded slices and available degraded slices to compare durability and availability over

the mission time. In a distributed storage system, disks are partitioned into units called

strip. Set of corresponding strips from n disks that encode and decode together is called

stripe [119]. A stripe is termed degraded if one or more systematic blocks is unavailable.

The term durable degraded refers the degraded stripe due to permanent failures, whereas
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available degraded refers to transient failures.

Replication does not increase available degraded slice counts in the system as request

to any temporary unavailable slices are redirected to next available replica. Smaller

number of durable and available degraded stripes indicates smaller probability of data

loss as the system has less number of failure and repair events. Moreover, smaller number

of degraded slices reduces access latency and increases the performance of the application

running on it. From Figure 3.3, ProHot and ProHot LazyCold methods do not decrease

number of available degraded stripes. However, available degraded slices are increased

with respect to cold data. Also, the proposed system predicts and handles disk and node

failures separately. ProHot and ProHot LazyCold methods handle all failure predicted

disk failures proactively. Hence, they do not affect durability. Number of degraded slices

in LRC(16, 10, 12) is more than Reed-Solomon(14, 10), since number of chunks in an

object of LRC is more than Reed-Solomon.

Proactively replicated data blocks reduce number of durable degraded and available

degraded slices in the cloud storage systems and hence reduce number of reconstructions.

All proactive recovery methods reduce number of data loss events in distributed storage
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by reducing number of durable degraded slices count. Figure 3.3 shows that even 90%

of disk failure prediction rate does not eliminate degraded slices. Because data degraded

due to latent sector errors are not considered in proactive recovery techniques.

3.6.2 Sensitivity Analysis

The proposed recovery techniques are influenced by various important factors such as TIA

and failure prediction accuracy. In this section, we examine how disk failure prediction

rate affects network traffic and recovery bandwidth with varying TIA.

Disk Failure Prediction Rate.

For analyzing how the system is affected by the failure prediction rate, we measured

network traffic with varying disk failure prediction rate. Li et al. [113] showed that more

than 90% accuracy of disk failure prediction is possible. We run simulation with disk

failure prediction accuracy varying from 50% to 90% and calculated recovery network

traffic in ProDisk method, as shown in Figure 3.4(a).

The proactive recovery in the storage systems will reduce network traffic (max instan-

taneous recovery bandwidth in MB/hr) associated with data reconstruction. As expected,

network traffic decreases as the failure prediction rate increases. Accurate failure predic-

tions proactively handle failures (transfer one data block instead of 10 data blocks in

Reed-Solomon) in storage systems and hence reduce the recovery traffic. Moreover, only

in the ProDisk the network traffic varies according to the prediction rate. The rest of the

methods are accordance with machine failures. They transfers large amount of data due

to proactive recovery compared to ProDisk. Hence it is not showing much variation in

network traffic when prediction rates vary.

Time In Advance.

We examine how the failure prediction’s TIA affects recovery network traffic of storage

systems. Figure 3.4(b) shows how recovery network traffic changes with reduction of TIA

of failure prediction in the ProDisk method. Since the maximum recovery bandwidth

capacity in these experiments is set to 650 TB/day, reducing TIA from 24 hours to 12

hours does not change average recovery bandwidth drastically. However, reduction in
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Figure 3.4: Maximum instantaneous recovery bandwidth, in GB/hour, calculated over 10

years. (a) for ProDisk with varying failure prediction rates (b) for ProDisk with varying

TIA.

TIA below 30 minutes increases network traffic in storage systems. Hence TIA will not

affect the recovery bandwidth drastically as it does for network traffic.

Amount of Data Transferred.

To evaluate resource savings due to proactive replication only for hot data, we calculated

the total amount of data transferred to the temporary dedicated storage to handle long

term temporary machine failure. Amount of data transferred in ProHot/ProHot LazyCold

are directly proportional to the percentage of data determined as hot. Figure 3.5 shows

total amount of data transferred in ProMachine. It is approximately twice as ProHot.

Recovery methods ProHot and ProHot LazyCold reduce temporary storage needs.

Figure 3.6 shows average number of replicated slices of popular erasure coding policy

Reed-Solomon(14, 10) in a day, with various proactive recovery techniques ProDisk, Pro-

Machine, ProHot and ProHot LazyCold. Average temporary storage overhead of ProDisk

is only 0.001% of total storage. Average temporary storage overhead of ProMachine, Pro-

Hot and ProHot Lazy Cold is 0.089%, 0.089% and 0.05% of total storage, respectively.

This shows that proactive recovery techniques provide huge bandwidth savings with very

limited additional storage overhead. It is notable that the storage overhead of popular

LRC is 14% more than Reed-Solomon (14, 10) and its bandwidth savings are very lim-
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machine failures calculated over 10 years.

ited compared to our proposed storage system. Hence our proposed proactive recovery

techniques will offer huge bandwidth savings when it is applied to BigData.

3.7 Summary

The two primary reliability mechanisms employed by cloud storage systems have their

own drawbacks. Even though erasure code offers tremendous storage savings compared

to replication, reconstructing lost or corrupted data blocks involves large communication

overhead. In this chapter, we proposed an approach that utilizes failure prediction tech-

niques to proactively replicate and handle failures in erasure coded storage systems. We

defined various recovery techniques with the combination of proactive replication, typi-

cal reconstruction of erasure codes, and lazy recovery methods to reduce network band-

width/traffic in erasure coded cloud storage systems. It uses data blocks hot data status

and client SLAs to define an appropriate recovery technique in cloud storage systems.

The proposed proactive recovery techniques will improve reliability with exceptional cost

savings by improving storage savings and recovery network bandwidth savings. Proposed
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proactive recovery techniques also reduce the number of degraded data. Less number of

degraded data in erasure coded storage will reduce read latency significantly. Hence the

proposed proactive recovery techniques define cost effective solution to improve the relia-

bility Big Data, by reducing the storage overhead significantly while also also supporting

the data read in high velocity.

Even though proposed proactive recovery techniques reduce recovery bandwidth sub-

stantially, bandwidth savings can be further escalated by optimizing proactive replication.

In the next chapter, we will propose an optimization problem using ILP to minimize the

number of data blocks replicated during proactive recovery. A novel optimization based

proactive recovery is also introduced there. To analyse energy savings of the proposed

system and other popular reliability techniques, we have presented the energy estimation

module.



Chapter 4

Repair Efficient Erasure-Coded

Cloud Storage Systems

Proactive recovery algorithms ProDisk, ProMachine, ProHot and ProHot LazyCold were

proposed in the previous chapter. These algorithms select a set data blocks from failure

predicted disk/machine to perform proactive replication. The performance of the pro-

posed methods have been analysed in the previous chapter. The experimental results

showed that some of the proposed algorithms can outperform replication, in terms of

recovery bandwidth savings. The recovery bandwidth savings of those methods can be

further improved by optimizing the selection of data blocks for proactive replication. This

chapter presents an optimization technique to eliminate some of the proactive recoveries

in the recovery techniques ProDisk, ProMachine, ProHot and ProHot LazyCold. It uti-

lizes system’s current network traffic and data duplication information to optimize the

proposed proactive recovery techniques. Applying optimization algorithm on proactive

recovery techniques will minimize the number of data blocks to be proactively replicated.

Hence optimization reduces temporary storage overhead of proactive replication. A novel

recovery technique called Optimized Proactive Recovery (OPR) is also proposed in this

chapter. OPR utilizes ILP based optimization to determine appropriate data blocks for

This chapter is derived from: Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M.

Enhancing Efficiency of Proactive Recovery in Erasure-Coded Cloud Storage Systems. (Submitted to

IEEE Transaction on Parallel and Distributed Computing.)
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proactive, typical and lazy recovery. We evaluate the optimization algorithm using ex-

tensive simulations. Storage systems of cloud play an important role in total energy

consumptions of data centres. Erasure coding improves energy savings in terms of stor-

age. However, it can be negated by the energy consumption due to extensive resource

consumption during recovery. The proposed proactive recovery methods do not only saves

recovery bandwidth but also provides energy savings associated with network bandwidth.

However, additional storage space required due to proactive replication will increase en-

ergy consumption. To analyse energy savings of various reliability techniques including

proposed proactive recovery methods, we propose energy models to measure the energy

consumptions of network and storage devices, respectively. A quantitative comparison of

energy consumption of replication and several recovery methods are also presented in this

chapter.

4.1 Introduction

In the previous chapter, we have proposed a cloud storage system which applies erasure

coding to maximize the reliability of data and employs several proactive recovery methods

to activate bandwidth efficient repair. The proposed system uses machine and disk fail-

ure prediction techniques to predict hardware failures and long-time temporary machine

outage. The system proactively handles the failure predicted data blocks. In the event of

any disk/machine failure prediction, the client’s durability, availability and performance

requirements are determined using Service Level Agreement (SLA). When the failures are

predicted, system selects an appropriate recovery technique among the proposed proac-

tive recovery techniques ProDisk, ProMachine, ProHot and Prohot Lazy cold according

to the definition of client SLA. According to the selected proactive recovery technique,

the system selects a set of data blocks for proactive replication. The experimental results

show that the proposed recovery approach improves repair bandwidth efficiency and re-

duces network traffic in the cloud storage systems. The resource savings of the proposed

system vary with respect to the selected proactive recovery technique. To maximize the

resource savings, the proposed system must also consider other important system param-

eters like data duplication and system’s current network traffic during proactive recovery.
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In previous chapter, experimental results showed that proposed recovery approach im-

proves repair bandwidth efficiency and reduces network traffic in cloud storage systems

with limited storage overhead compared to available recovery approaches. The resource

savings varies according to the selected proactive recovery technique.

Even though proactive recovery methods ProDisk, ProMachince, ProHot and Pro-

Hot LazyCold significantly reduces repair network bandwidth/traffic in erasure codes,

the proposed system simply replicates the failure predicted data blocks according to the

selection of a recovery methods and client SLA. It fails to consider important system

parameters like data duplication and system’s current network traffic during proactive

recovery. The temporary storage overhead of proactive replication can be diminished by

examining data duplication parameter during proactive recovery. The system’s storage

and bandwidth efficiency could be further enhanced by eliminating the proactive replica-

tion of data blocks that currently have more than one copy. To reduce network throttling,

proactive replication should be limited when the system’s current instantaneous network

bandwidth reaches certain limit.

Improving energy efficiency is another major challenge of cloud data centers. Storage

systems consume up to 40% of a data centre’s total energy [120]. Read and write latency

reduce energy efficiency of storage systems[121]. Energy consumption of cloud storage is

influenced by two important factors. They are storage and bandwidth energy consumption

[122]. To analyse and compare energy consumption of various recovery techniques, energy

consumption of various redundancy techniques is estimated. Energy consumption of those

techniques has been estimated in terms of the respective techniques storage overhead and

data repair bandwidth. Since intervention of applications running on cloud storage is not

considered in this research, energy consumption due to read/write latency is excluded to

estimate the energy consumption of cloud storage.

The main contribution of this chapter is as follows,

• An optimization approach is proposed in this chapter to further enhance the efficiency

of proactive recovery methods. The optimization aims to minimize the number of

data blocks selected for proactive replication. Optimization utilizes system’s current
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network traffic and data duplication information.

• An optimization algorithm is proposed in this chapter intends to limit proactive repli-

cations when the system’s instantaneous network bandwidth reaches certain limit.

Hence it minimizes bandwidth throttling. It also uses data duplication information

to avoid unnecessary replication which may increase temporary storage overhead

and recovery bandwidth consumption due to unnecessary replication.

• A novel recovery technique called OPR is proposed to optimize important metrics

of storage system such as durability, availability, bandwidth and storage overhead

during proactive replication. This method applies ILP based optimization to select

appropriate data blocks for proactive and lazy recovery. It intends to apply lazy

recovery to minimal data blocks based on the need. Hence it reduces number of

degraded data in the system.

• An analysis of energy efficiency of proactive recovery methods is performed. Activating

proactive recovery in erasure coding reduces data transfers which can contribute to

some energy savings. However, proactive recovery methods suggest additional tem-

porary dedicated storage overhead that may increase system energy consumption.

To analyse energy consumption of storage systems, we estimate energy consumption

of storage and network devices, respectively.

4.2 Related Work

As Big Data applications demand petabytes of storage, erasure code is becoming an

important reliability method in cloud storage systems. Although it improves reliability of

Big Data applications with less storage overhead, inefficient data reconstruction issues of

erasure code need to be addressed.

Dimakis et al. [123] proposed regeneration codes that reduces network traffic by down-

loading small amounts of data from higher number nodes than the number of nodes in-

volved in typical reconstruction. However, exact repair of regeneration codes, matching in-

formation theoretic bound, remained unresolved. This was followed by several researchers
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[124, 125], showing that the exact repair is possible for several other parameters. Another

family of codes proposed to reduce repair bandwidth is called LRC [126, 127]. LRC adds

local parity such that it reduces number of data blocks accessed during reconstruction.

LRC has the side effect of increasing storage overhead by 14% compared to Reed-Solomon

[126]. Hitchhiker code [128], built on top of Reed-Solomon code using “piggy-backing”

framework, reducing the network traffic by 35% while some encoding time overhead in-

curred. Even though the above methods reduce repair network bandwidth/traffic, none

of them reduced recovery bandwidth as efficient as replication.

Several works in literature suggest system level solutions like delaying data recovery,

caching data read during recovery, and proactive replication of data blocks. Silberstein

et al. [129] proposed lazy recovery to reduce recovery bandwidth in distributed storage

by reducing the recovery rate. This reduces recovery bandwidth up to 76% compared

to Reed-Solomon. However, lazy recovery may compromise read performance and data

durability. CoARC [53] is a data recovery mechanism which is proposed for handling

degraded reads in Hadoop file systems. CoARC activates data recovery not only for the

data blocks that requested by clients but also for other unavailable blocks in the same

stripe of requested data blocks and caches all recovered data blocks. CoARC reduces

network usage in erasure coded Hadoop. This system addressed bandwidth consumption

due to degraded read in the HDFS and it fails to address bandwidth consumptions due

to data recoveries activated for maintaining reliability requirements.

Li et al. [130] defined a system using failure prediction techniques to implement

proactive replication in erasure codes for reducing degraded read latency and improving

read performance. However, it did not address machine failures. HP AutoRAID [131]

automatically manages migration of data between 2-way replication of active data and

RAID 5 for inactive data with the help of access pattern change. The 2-way replications

and RAID5 offer limited reliability. Araujo et al. [132] proposed hybrid coding and

double coding. Both strategies combine the use of replication and erasure coding. Even

though it saves bandwidth upon reconstruction, it reduces storage efficiency. Li et al. [77]

defined a cost effective data reliability management mechanism to ensure reliability of

massive data with minimum replication using generalized data reliability model. However,
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storage savings due to minimum replication can compromise reliability. None of the above

works incorporate client’s expectation and nature of data to define bandwidth and storage

efficient recovery of erasure codes.

Greenan et al. [133] estimates energy consumption of data recovery in erasure coding.

It is estimated in terms of power consumption of disks involved in recovery operation.

Several researches [133, 134] calculate data reconstruction energy consumption, in terms

of participating nodes energy consumption and its active time during data recovery.

The requirements of data durability, availability and read performance of data may

vary with respect to client SLA. Client can also refine the requirements with respect

to the access frequency of data. Clients requirement are defined in SLA. In previous

chapter, we have proposed adaptive cloud storage system that uses failure predictions and

access patterns to define several proactive recovery methods. The system employs various

recovery methods. The system performs dynamic selection of recovery methods as per

the client SLA and applies proactive recovery for a selected set of data blocks from failure

predicted disk/machine depending according to the recovery method selected. System

applies typical reconstruction to recover data blocks that are not handled proactively

for techniques ProDisk, ProMachine and ProHot, whereas it applies lazy recovery for

ProHot LazyCold.

Failure predictions in cloud storage systems enable cloud service providers to apply

efficient proactive failure management in cloud storage. Various statistical and machine

learning methods are used to predict failures in cloud storage systems. A few methods

[135, 136] are used to predict hard drive failures based on SMART attributes. Li et al.

[135] had achieved 95% predictions with False Alarm rate less than 0.1%. Many researches

focused on predicting failures in distributed systems using system logs. Javadi et al. [137]

presented a failure model as a predictive method to measure distributed systems avail-

ability and unavailability. Agarwal et al. [138] uses log messages to predict failures in

Hadoop clusters. Data access pattern in a distributed storage can be used to identify

the popularity of data blocks in real-time over a certain period of time. Based on their

popularity, data blocks can be classified as hot, warm or cold. As the access pattern

changes, popularity of data blocks have to be updated. Various researches [139, 106, 140]
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used popularity-based classification to improve durability, availability, and read perfor-

mance of cloud storage systems. In this chapter, we propose an optimization algorithm to

further enhance the efficiency of proposed proactive recovery methods. A novel optimized

proactive recovery technique is also proposed.

4.3 Adaptive Bandwidth Efficient Cloud Storage Sys-

tems

An adaptive cloud storage system employs several proactive recovery methods. In the

event of any failure prediction, it selects one of the proactive recovery methods which can

meet client SLA efficiently. To improve the efficiency of proactive recovery, the proposed

system adapts to client SLA and chooses the most suitable method for recovery. Client

data can be classified as hot, warm or cold depending on the access frequency. Data

recovery can be delayed for cold data that is having less access frequency. The client may

also accept a delay in cold data. At the same time, access latency is not acceptable for hot

data. Activating proactive recovery of hot data can reduce access latency in the presence

of failure. In this chapter, we include an algorithm in the existing adaptive bandwidth

efficient cloud storage systems such that it minimizes the number of data blocks replicated

during proactive recovery, regardless of the selection of any proactive recovery methods.

This optimization algorithm was included in the existing proposed system. It will to

further increase the storage and network efficiency.

4.3.1 Architecture and Design

Architecture of the adaptive bandwidth efficient cloud storage system is proposed in last

chapter. We have introduced new components called Enhanced Proactive Recovery (EPR)

and OPR in the existing architecture, to further enhance the efficiency of proposed system,

regardless of the selection of any proactive recovery method using failure prediction. An

overview of the system architecture is depicted in Figure 4.1. It is implemented as an

extension of regular object storage. Object storage manages data as objects where each

object has both data and metadata. A dedicated proxy server supports encoding and



89

Figure 4.1: Architecture and design of the proposed recovery techniques [141].

decoding of erasure codes. It also handles failures in storage systems. The object server

stores and retrieves data as objects. Object server’s availability status and disks health

status are reported to the proxy server, which is responsible for increasing or decreasing

the data object’s replication factor. The system adjusts the replication factor of erasure

coded objects when failures are predicted.

The component disk failure prediction monitors the health status of individual disks,

using classification and regression tree methods with information derived from SMART

attributes [135]. Node failure history and disk health information component collects

node failure history and calculates node’s MTTF and MTTR using various statistics of

availability and unavailability. It also collects disk failure alarms from the component disk

failure prediction. Data access pattern classifies data blocks as hot based on its popularity

over a period of time. Assuming that data blocks with high access frequency have more

chance to be accessed in the future, we define those as hot. It is recorded as H = {hij}

where hij is the jth block from disk i that is identified as hot. Data block health monitor
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collects all information about failure predicted nodes and disks from node failure history

and disk health information module. It identifies and sets different flags of the data blocks

that are predicted for failure due to disk, machine failures. Client’s requirements in regard

with durability, availability and access latency are recorded in the client SLA. Dynamic

replication manager chooses one of the best recovery techniques which can meet client

SLA with limited resources from recovery methods ProDisk, ProMachine, ProHot and

ProHot LazyCold that are proposed in previous chapter. If the client requires high dura-

bility, ordinary availability and access latency, dynamic replication manager will select

the recovery technique ProDisk. ProHot will be selected if they require high availability

and low access latency of hot data. In case client requests high durability, availability

and low latency, the technique ProMachine will be selected. The ProHot LazyCold will

be selected by dynamic replication manager if the client requests high availability and

low access latency for hot data and they don’t bother about the availability and access

latency of cold data. Based on the selection of the recovery technique, it chooses a set of

data blocks for proactive recovery.

Enhanced Proactive Recovery module attempts to reduce the number of data blocks

elected for proactive replication. EPR selects optimal subset of data, by taking into

account the system’s current network traffic and data duplication. It also deletes the

corresponding replicated data blocks once the failure predicted machine has come back

to life or a failure predicted disk does not fail as expected. It is also responsible for

scaling up and down the number of dedicated temporary storage nodes, according to the

failure predictions and the amount of data to be stored in temporary storage during a

period of time. It is also responsible for allocating a highly available node as a temporary

storage such that any failure in dedicated temporary storage node is minimal. Any failure

prediction of this temporary storage will also lead to proactive replication. Defining

an optimization algorithm for EPR is the main contribution of this chapter and it is

extensively discussed in the next section.

Optimized Proactive Recovery is designed to support the novel proactive recovery

technique OPR. OPR is defined using fine grained optimization to define lazy, typical or

proactive recovery for the data blocks from failure predicted machines/disks.



91

4.4 Enhanced Proactive Recovery

This section explains the optimization of proactive recovery techniques. The problem

formulation of applying optimization in proactive recovery techniques is presented here.

4.4.1 Proposed Recovery Approach

The overall functionality of the proposed enhanced adaptive bandwidth efficient cloud

storage system and its recovery approach is discussed in this section.

The proposed system initially stores data with any (n, k) erasure code. Utilizing

disk/machine failure prediction methods, failure types and MTTR of any node in proposed

storage system are predicted. Failures are also identified as disk, permanent machine,

temporary long term machine (MTTR>15 minutes), or temporary short term machine

(MTTR<15 minutes) failures. A set of data blocks (b1, b2, ..., bi) that is more likely to

be accessed soon is defined as a hot data set H. Based on the failure types, and client

SLA, one of the appropriate recovery techniques is selected form the recovery techniques

ProDisk, ProMachine, ProHot, ProHot LazyCold.

When the disk/permanent machine failures are predicted, all the data blocks in the

failure predicted disk (all data blocks of each disk in a failure predicted machine) are

selected for proactive replication by the dynamic replication manager. Next, EPR applies

minimization on selected set of data blocks by considering system’s current network traffic

and data duplication. It chooses a subset of data blocks for proactive replication. The

selected subset of data are proactively replicated into the permanent storage as described

in [130]. The counter variables of corresponding replicated data blocks are incremented.

These counter variables are used to identify if the particular data blocks are replicated

already. They are also used to delete the data blocks that are replicated due to false

predictions. A delay is applied while deleting data blocks that are replicated due to false

prediction. The TIA of a failure prediction is used as a time delay to delete the data

blocks that are replicated due to false positives. Time delay larger than TIA is the better

choice despite this will result in extra storage. The choice of time delay varies and depends

on the storage system.
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In the event of long term temporary machine failure predictions, dynamic replication

manager selects all data blocks from failure predicted machine in ProMachine. It selects

a certain set of data blocks in recovery methods ProHot and ProHot LazyCold. EPR

selects a subset of it. The subset of data, selected by EPR is replicated into the dedicated

temporary storage nodes. While data blocks are proactively replicated into temporary

storage, the corresponding data blocks counter variables are incremented. These variables

are used to identify if the particular data blocks are already replicated. When the failure

predicted nodes recover from actual failure, proactively replicated copy of the data blocks

in the corresponding nodes are deleted. In the occurrence of node/disk failures, an ap-

propriate reference is made to proactively replicated block. Hence typical reconstruction

of erasure codes is replaced with proactive replication.

4.4.2 Problem Formulation

Let B = {bij} be a set of data blocks stored in the cloud storage system. Let bij denotes a

data block which is stored in the j-th location of disk i. Let DR={drij} be a set of counter

variables that represents replication count of the corresponding data block bij from set B.

The counter variables in DR are used to represent the data blocks that are replicated due

to the occurrence of disk/permanent machine failures. Similarly, MR= {mrij} is a set of

counter variables used to represent the data blocks that are replicated due to temporary

machine failures. The variable mrij is incremented if the corresponding data block bij is

replicated on the nodes that are dedicated to handle machine failure. The cardinality of

sets DR and MR are equal to the cardinality of set B. The value of mrij represents the

number of copies of block bij available in the storage node dedicated to handle temporary

failures. The variable drij is decremented on the actual failure of disk i. The variables

mrij are decremented when the machine that holds disk i have come back from failure,

after the occurrence of actual failure of the same machine. The copy of a data block bij

is also deleted from the temporary dedicated storage node. In case of false positive, the

copy of a data block is deleted after applying appropriate time delay.

Upon predicting any disk/permanent machine failures or temporary long term machine

failures, a set of data blocks is selected by dynamic replication manager for proactive
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replication according to the selection of proactive recovery methods. Let FP = {bij} is

a set of data blocks selected for proactive replication. EPR has to select an appropriate

subset of data for proactive replication from the set FP, by taking into account data

duplication and system’s current network traffic information. Let X = {xij} be a set of

binary decision variable and each variable xij represents block bij from FP; xij = 1 if the

data block bij from FP is selected for proactive replication and xij = 0 otherwise.

The module EPR should not select the data block bij for proactive replication if the

system has more than one copy of the data block bij at the failure prediction time t. This

will avoid unnecessary data duplication of the block bij. For example, consider a disk “disk

i” is predicted for failure at time t. The dynamic replication manager selects all blocks

in “disk i” for replication. Let bij be a data block belong to “disk i” which is selected for

replication by dynamic replication manager at time t. The system may already hold a

copy of bij due to the failure prediction of machine which contains the “disk i”. In this

case, EPR will not select the data block bij for proactive replication. This will not only

save bandwidth of creating extra copy but also storage. On occurrence of actual failure

of “disk i”, appropriate reference could be made to the copy of data block bij such that

it can handle the failure of “disk i”. The scenario is similar when the block bij is marked

for temporary machine failure. Hence we have,

xij = 0 ∀ bij ∈ D if mrij = 1 (4.1)

xij = 0 ∀ bij ∈M if drij = 1 (4.2)

Systems network traffic can be effectively managed by eliminating proactive recovery of

some failure predictions based on system’s Current Recovery Bandwidth (CRB). When

the system’s current recovery bandwidth reaches system’s recovery bandwidth capacity,

EPR should avoid proactive recovery of certain failure predictions that may increase the

system’s recovery bandwidth above certain Bandwidth Limit (BL). BL should be carefully

defined such that it does not affect the average recovery bandwidth of the system, and

this is formulated in equation 3 below.

(S ∗
∑

xij)/TIA+ CRB ≤ BL ∀xij ∈ X (4.3)
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We formulate the problem of selecting a subset of data blocks for proactive replication,

from set FP as a binary integer linear programming as follows,

Minimize
∑

xij ∀xij ∈ X (4.4)

Subject to:

xij = 0 ∀ bij ∈ D if mrij = 1 (4.5)

xij = 0 ∀ bij ∈M if drij = 1 (4.6)

xij = 1 ∀ bij ∈ D if drij = 0 (4.7)

xij = 1 ∀ bij ∈M if mrij = 0 (4.8)

(S ∗
∑

xij)/TIA+ CRB ≤ BL ∀xij ∈ X (4.9)

xij = {0, 1} ∀xij ∈ X (4.10)

The Bandwidth Limit (BL) in constraint 9 is determined according to the system’s

Recovery Bandwidth Capacity (RBC) at the time of prediction (when proactive recovery

starts). In order to determine BL, some important parameters of the system should be

analysed. Let S be the size of data blocks, dn be the average number of data blocks

distributed in a disk, dmax be the maximum number of data blocks distributed in a disk

and md be the number of disk in a machine. An average Projected Bandwidth Need

(PBN) of any proactive recovery of a machine failure prediction can be calculated as

follows,

PBN = (S ∗ dn ∗md)/TIA (4.11)

Similarly, the average PBN needed for any disk failure prediction can be calculated as

follows,

PBN = (S ∗ dn)/TIA (4.12)

The PBN calculation is determined according to the selection of proactive recovery meth-

ods. For ProMachine method, PBN is calculated as in equation 11. It is calculated as

in equation 12 for the recovery methods ProDisk, ProHot and ProHot LazyCold. Upon

any failure prediction, PBN will be calculated and compared with the system’s Recovery

Bandwidth Capacity (RBC). If sum of PBN and system’s Current Recovery Bandwidth
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(CRB) is less than RBC, the system should allow any proactive recovery. On the other

hand, if sum of PBN and system’s current recovery bandwidth is greater than RBC,

or PBN exceeds system’s current recovery bandwidth, the system should simultaneously

allow the proactive recovery of a single machine and a disk at time t. Hence, BL of

constraint 9 is calculated as follows

BL = S ∗ dn ∗md + S ∗ dmax if CRB < PBN (4.13)

On the other hand, when system’s PBN is smaller than RBC, the system has to increase

the BL such that it can handle proactive recovery of any single machine or disk failure

along with system’s CRB. It avoids proactive recovery, if the system is busy with handling

any other failures. When CRB exceeds PBN, the BL of constraint 9 is calculated as

follows,

BL = CRB + S ∗ dn ∗md + S ∗ dmax if RBC < PBN (4.14)

In order to maintain the systems network traffic to the level of system’s RBC, we can

set BL as BL = RBC. However, doing this will completely eliminate proactive recovery

when system’s CRB reaches RBC. As a result, typical reconstruction will be conducted

to recover data blocks that were not proactively handled. This may increase system’s

network traffic substantially.

4.4.3 Enhanced Proactive Recovery Algorithm

To solve the problem of minimizing the number of proactive replicated data blocks, an

algorithm called Enhance Proactive Recovery Algorithm (EPRA) is defined. Upon any

failure predictions, the proposed algorithm determines the set of data blocks that are

needed to be handled proactively by taking in to account system’s current network traffic

and data duplication information. The EPRA is presented in Algorithm 2.

On receipt of any failure prediction event, the algorithm examines how the system’s

network traffic will be affected while activating proactive recovery. The required calcu-

lations are programmed in Algorithm 3. This algorithm calculates the total Transfers

Required (TR) to proactively handle the predicted event. Using TR, the total Projected
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Algorithm 2 Enhanced Proactive Recovery Algorithm
INPUT: FP , FT

1: if BANDWIDTH CONSTRAINT (FP)=true then

2: for each bij in FP do

3: if mij ≤ 1 and dij ≤ 1 then

4: xij = 1

5: else if Ft = machine and dij ≥ 1 then

6: xij = 0

7: else if Ft = disk and mij ≥ 1 then

8: mij = mij − 1

9: dij = dij + 1

10: define disk holding copy of dij as permanent

11: xij = 0

12: end if

13: end for

14: else

15: for each bij in FP do

16: xij = 0

17: end for

18: end if

OUTPUT: X

Bandwidth Need (PBN) to proactively handle the predicted event is calculated as follows,

PBN = TR/TIA (4.15)

The algorithm also calculates Projected Network Traffic (PNT) of the system using sys-

tem’s CRB as follows,

PNT = CRB + PBN (4.16)

Based on the calculated PNT, the system determines whether to proactively handle the

predicted failure or not. Following that, data de-duplication is performed in lines 2 to 9.
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Algorithm 3 Bandwidth Constraint(FP)

1: procedure Bandwidth Constraint(FP )

2: initialize TR=0

3: initialize PBN=0

4: for each bij in FP do

5: if mij ≤ 1 and dij ≤ 1 then

6: TR = TR + S

7: end if

8: end for

9: PBN = TR/TIA

10: PNT = CRB + PBN

11: if PNT ≤ BL then

12: return true

13: else

14: return false

15: end if

16: end procedure

For any failure prediction of disk i, let us consider a data block bij in disk i is already

replicated due to the proactive recovery of machine that contains disk i. The system should

avoid replicating the block bij due to the prediction of disk i. However, an appropriate

reference has to be made to the copy of bij such that it cannot be deleted during the

eviction process, which is activated when the machine containing disk i recovers from

failure. On the other hand, consider a scenario where a data block bij has to be proactively

handled on receipt of a machine failure prediction to which it belongs. If the system

already has a copy of bij, due to failure prediction of disk i then it will avoid replicating

block bij. The algorithm gets a set of data blocks in failure predicted machine/disk and

the failure type from dynamic replication manager. It sets decision variable xij = 1 if the

corresponding data block bij from the failure predicted set has to be replicated. EPRA

sends X to dynamic replication manager. The dynamic replication manager replicates
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the data block bij from set FP provided the corresponding decision variable xij is 1.

4.5 Optimized Proactive Recovery (OPR)

The novel optimization technique called OPR is discussed in detail in this section. This

technique attempts to address the network spike issue of ProMachine when TIA of failure

prediction is low and access latency of ProHot LazyCold due to increased number of

degraded data in this technique. OPR applies ILP based optimization to optimize the

selection of data blocks for proactive, typical or lazy recovery while taking into account

of system’s available network traffic. All disk failures are handled as defined in ProDisk

in OPR. Upon any machine failure prediction, this technique attempts to maximize the

proactive recovery and applies lazy recovery only when it is required.

4.5.1 Problem Formulation

Let B = {bij} be a set of data blocks that are stored in the cloud storage system. Let bij

denote a data block that is stored in the j-th location of disk i. Let DR = {drij} be a set

of variables that keep track of replication factor of corresponding data block bij in storage

cluster. The cardinality of the set DR is equal to the cardinality of set B. The value of

drij represents, number of copies of block bij exist in storage cluster. On the occurrence of

actual failure of diski, the reference will be made to the replicated copy to act as original

copy. The corresponding drij is also decremented when the replicated copies reduces.

Also, variables drij are decremented when the copy of the data block bij is deleted once

the machine that holds disk i have come back from failure after the occurrence of actual

failure of same machine. In case of false positive, the copy of a data block is deleted after

applying appropriate time delay and drij variables are updated accordingly. To regulate

the network traffic hike due to proactive replication and to minimize read latency due to

lazy recovery, OPR selects optimal data blocks for proactive or lazy recovery from failure

predicted machine.

When Dynamic Replication Manager selects OPR as a recovery technique, optimal

selection of data blocks for proactive, typical or lazy recovery are performed as follows.

When predicted failure is disk, it is handled as in ProDisk regardless of the selected recov-
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ery technique. That is regardless of the system’s current available network bandwidth; it

selects all data blocks from failure predicted disk for proactive replication. Data blocks in

unpredicted disk failures are recovered by typical reconstruction of erasure codes. How-

ever, when predicted failure is machine, it applies ILP based optimization to determine

data blocks that requires proactive or lazy recovery as follows.

Let FP = {bij} is a set of data blocks in failure predicted machine. Let HFP is a

subset of FP that holds hot data blocks in failure predicted machine FP . Let X = {xij}

be a set of binary decision variable, such that each variable xij represents block bij from FP,

xij = 1 if the data block bij from FP is selected for proactive replication. OPR attempts to

maximize the proactive recovery of data blocks from set FP by utilizing system’s current

available recovery bandwidth to the most in the moment of failure predictions. Since

proactive replication of hot data is highly important to reduce unavailability of hot data

to the minimum, OPR ensures to define proactive replication for hot data that is all data

blocks from subset HFP . Also, it selects enough cold data blocks for proactive replication

when they can be replicated within system’s current available bandwidth. The proactive

replication of hot data blocks from failure predicted machine is ensured as follows:

∑
xij = h ∀ bij ∈ HFP where h = |HFP | (4.17)

Let S be the size of data blocks. System’s network traffic hike due to proactive replication

can be regulated by defining lazy recovery for appropriate data blocks by considering

system’s Current Recovery Bandwidth (CRB) and Recovery Bandwidth Capacity (RBC).

RBC of storage cluster is determined when the storage cluster is defined. CRB is the

amount of recovery bandwidth currently in use in storage cluster. Using this information,

the system can avoid proactive replication of certain cold data blocks from failure predicted

machine as follows:

(S.
∑

xij)/TIA+ CRB <= RBC ∀xij ∈ X (4.18)

OPR will also avoid unnecessary data duplication of the block bij. For example,

consider a machine “machine j” is predicted for failure at time t. Let bij be a data block

belong to “machine j” at failure prediction time t. The system may already hold a copy
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of bij due to the failure prediction of disk “disk i” that contained the “machine j”. In this

case, OPR will not select the data block bij for proactive replication. This will not only

save bandwidth of creating extra copy but also save storage. Let set Replicated Copy

(RC) contains set of all data blocks that have more than one copy. In this case, OPR

should not select the data block bij form the set FP for proactive replication if the system

has more than one copy of the data block bij at the failure prediction time t. Hence, we

have, ∑
xij = 0 ∀ bij ∈ RC (4.19)

OPR defines lazy recovery for data blocks that are not selected for proactive replication

from set FP . For any unpredicted disk failures, it applies typical reconstruction of erasure

codes whereas it applies lazy recovery for cold data blocks from unpredicted machine

failures.

We formulate the problem of selecting a subset of data blocks for proactive replication,

from the set of data blocks with a predicted failure FP as an ILP as follows,

Maximize
∑

xij ∀xij ∈ X (4.20)

Subject to: ∑
xij = |HFP | ∀ bij ∈ HFP where h = |HFP | (4.21)

(S.
∑

xij)/TIA+ CRB <= RBC ∀xij ∈ X (4.22)∑
xij = 0 ∀ bij ∈ RC (4.23)

where xij = {0, 1} ∀xij ∈ X (4.24)

After this optimization, for all bij from FP are selected for proactive replication if

corresponding xij is 1. When xij is 0 for any bij, lazy recovery will be activated for

corresponding bij when meta data shows replication factor of bij is 1. Hence when there

is enough recovery bandwidth OPR will replicated all data blocks in failure predicted

machine as in ProMachine. While ensuring proactive replication for hot data blocks, it

will apply lazy recovery for appropriate data blocks when CRB is high. Therefore, OPR

selects dynamic set of data blocks for proactive, typical and lazy recovery for each failure
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predictions. OPR will handle all disk failures as defined ProDisk except it avoids proactive

replication of data blocks that have more than one copy.

Using this optimization, system’s network traffic can be maintained to the level of

system’s RBC. However, when the failure prediction accuracy are very low, high number

data blocks from failed disks must be recovered using typical reconstruction of erasure

codes which may increase system’s network traffic substantially. Even when failure predic-

tion accuracy is very low, OPR will provide significant bandwidth savings by intelligently

activating lazy recovery.

4.5.2 Optimized Proactive Recovery Algorithm

To optimize the selection of data blocks for proactive, typical and lazy recovery, we present

Algorithm 1. OPR optimization problem attempts to maximize proactive replication with

in system’s available network bandwidth. When data blocks that require proactive repli-

cation are identified, appropriate recovery is activated as defined in Optimized Proactive

Recovery Algorithm. Algorithm 1 represents how it selects recovery types for data blocks

in failure predicted machines and disks. This algorithm accepts following as input. The

set of data blocks from failure predicted device (FP ), Failure Type (FT ) such as disk/

machine failures, failure prediction TIA, data block size ( S), system’s Current Recov-

ery Bandwidth (CRB), Recovery Bandwidth Capacity (RBC), set of hot data blocks in

corresponding failure predicted device (HFP ) and set of data blocks in corresponding

failure predicted device that have more than one copy RC. Upon each machine failure

prediction, ILP based optimization will be defined as presented in lines 2-9 of the Algo-

rithm 1. Once optimization defines appropriate values for each xij in X, type of recovery

for corresponding blocks bij is defined. After optimization, if xij holds value 1, proactive

recovery is defined for corresponding data block bij in FP . Lazy recovery is opted for

data blocks bij if it’s corresponding xij is evaluated to 0 and the corresponding data block

bij does not belong to the set RC. When the predicted failures are disk, OPR will apply

proactive replication for all bij in FP except for all bij’s that belong to RC. When a bij in

FP belongs to RC, appropriate reference should be made. Otherwise, it may get deleted

when a machine whose prediction made a copy, has come back to life. The complexity of
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this algorithm is O(N), where N is the cardinality of the set FP .

4.6 Energy Consumption Analysis

Several metrics are used to measure energy consumption of storage systems. Some metrics

use energy consumption of hardware/software components to calculate the energy con-

sumption of the storage systems. Some others measure the energy consumption of storage

systems by measuring application’s usage of physical resources like storage, network and

memory. In order to compare energy efficiency form replication, erasure coding to various

proactive recovery techniques, we estimate energy consumption of storage and network

devices. Energy consumption of the storage systems are estimated in terms of power

consumptions of disks. We calculate the energy consumption of the network devices in

terms of the amount of data transferred via top of rack switch during recovery.

Since we use these energy models to compare the energy consumption of various recov-

ery methods, we do not consider the energy consumption of the intervening applications

running on top of the storage system.

4.6.1 Energy consumption of storage devices

As mentioned above, we will estimate the storage energy by calculating energy consump-

tion of the disk drives in the storage system. Even though several other devices like

machine, rack and cooling systems are involved in energy consumption of storage sys-

tems, disk remains the most important component of the storage systems, and the energy

consumption of the storage system is directly proportional to the amount of disks em-

ployed in storage system. Since we use this model for the system comparison for various

recovery methods, we will ignore the energy consumption of other devices. Hence, energy

consumption of the storage devices is expressed as follows,

Et = Dt ∗ Tt ∗ U (4.25)

Where Et is the energy consumption of storage system during the time period t as

the product of number of disks active Dt, the amount of time active Tt and the energy

consumption of the disk per unit time U .
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Number of disks used in replication is relatively high compared to erasure coding

since it stores more number of data blocks to ensure reliability. Proactive replication in

erasure coding uses additional disks for a certain period of time. Disk failure/permanent

machine failure predictions use the additional disk from the time of prediction till the

actual occurrence predicted disk failure. Temporary machine failure uses the additional

storage from the time of prediction until the recovery of corresponding machine. Number

of disks used in case of disk failure/permanent machine failure predictions is equal to

number of disks predicted for failure, whereas it varies with respect to the selection of

recovery methods in the event of temporary machine failure predictions.

4.6.2 Energy consumption of network devices

We estimate data recovery energy consumption by calculating the amount of data trans-

ferred through the router during recovery of each failure event. We have calculated energy

consumption of data recovery using the model proposed by Viswanath et al. [17].

Et = Ep ∗Rt/S + Est ∗Rt (4.26)

We have calculated energy consumption of router as a sum of energy consumption of

processing and storing the data blocks that were involved in recovery during time t.

Energy consumption caused by data processing in routers is expressed as the product

of per packet processing energy Ep and the incoming data rate during recovery time t.

Input data rate can be calculated using data transfer rate (amount of data transferred per

second), Rt and data block size S as Rt/S. Data storage energy in the router is calculated

as a product of per byte storage energy Est and the input data rate Rt. Total energy

consumption of router during time T is calculated as the sum of all individual recovery

energy consumptions Et during the time T. Since we use equation 18 to measure energy

consumption of routers during recovery, router’s idle power is not considered. Energy

consumption of data transfer due to the intervention of applications running on top the

storage is not considered.

Finally, the total energy consumption of the system, during time T is calculated as

the sum of storage and network devices energy consumption during that time period.



104

4.7 Performance Evaluation

We have used ds-sim [4] simulator to evaluate the efficiency of proactive recovery methods

after applying optimization. Significant amount of codes have been added in ds-sim to

implement failure prediction, proactive recovery, optimization of proactive recovery and

energy consumption.

The ds-sim simulates 3-tier storage components including disks, machines and racks.

The ds-sim stores data in blocks and multiple data blocks form a stripe. A stripe is

composed of a set of original and parity data blocks such that any data block in a stripe

can be reconstructed using a subset of data blocks in a stripe. In n way replication, a

stripe consists of all replicas of a block, whereas it is comprised of k original and n − k

parity blocks for Reed-Solomon(n, k) erasure code. The ds-sim randomly chooses n racks

to store n blocks of a stripe such that no two blocks in stripe are placed on nodes in the

same rack.

The ds-sim generates failure and recovery events for all hardware components using

either synthetic probability distributions or failure traces. Each storage component disk,

machine and rack is incorporated with separate failure and recovery distribution. Disk

failures include both latent sector failure and permanent disk failures. Latent sector

failures are detected and recovered using a technique called scrubbing. Machine failures

include both transient and permanent failures. The ds-sim starts the recovery of any

permanent machine failure immediately; whereas it applies 15 mins delay for initiating

the recovery of any transient failures. Rack failures are assumed to be transient. The ds-

sim performs a runtime simulation and records all instantaneous properties of the system,

including repair bandwidth, repair energy, repair storage overhead for proactive recovery

and the number of degraded stripes. Table 4.1 lists the values of simulation parameters.

The choices of energy consumption of disk and router’s storage are made from [142] and

[143], respectively.

In order to carefully compare and evaluate the efficiency due to optimization, we have

used the same set of failure events for heuristics and optimization. This eliminates any

difference in metrics due to the variation of failure events generated by the simulator.
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Table 4.1: Simulation Parameters

Parameter Value

Total data 3 petabyte

Duration 10 years

Disk Capacity 750 GB

Recovery bandwidth capac-

ity

650 TB/day

Disks/machine 20

Machines/rack 11

Disk Energy Consumption

while operating

43.2 kilojoule/hour

Router’s per byte storage

energy

14 nJ

Packet processing energy 1375 nJ

Prediction percentage 90

Hot data threshold 40% of total data

Number of iterations 50

4.7.1 Performance Analysis

In this section, we analyse and compare the energy consumption of replication, most

popular erasure code Reed-Solomon(14, 10) and various proactive recovery techniques.

The trade-off between dedicated temporary storage overhead and bandwidth savings of

various proactive recovery methods have also been discussed in this section.

System Energy consumption

The simulations are conducted with the configuration parameters and failure prediction

rate, as listed in Table 4.1. We use TIA of 24 hours, which is found reasonable in [113] and

[115]. As the failures are generated by the simulator, the recovery energy consumption and

energy consumption of dedicated temporary storage are calculated for each failure event,



106

except for machine failures that stay less than 15 minutes. Since we do not consider

the intervention of any application running on top of the storage, we have calculated

the storage energy of disks by assuming that disks are active during the entire period

of simulation. The shutting down of the inactive disks is not considered in simulation.

They usually enhance energy savings of the storage systems. In case of any disk failure

prediction, additional disks are activated to support proactive recovery. Those incur some

additional energy consumption. It is calculated by assuming that the storage system

activates an extra disk at the time of failure prediction and it is active from the time of

failure prediction till the actual occurrence of failure. In the event of temporary machine

failure prediction, the system will activate number of disks proportional to the number

of data blocks that are selected for proactive recovery. Those disks will be active from

the time of failure prediction till recovery of the failure predicted machine and energy

consumption is calculated accordingly.

Figure 4.2 shows the comparison of average energy consumption in KJ/day for replica-

tion, Reed-Solomon(14, 10) and proactive recovery methods. The figure also shows aver-

age energy consumption of the system, with individual split ups for energy consumption of

storage, recovery bandwidth and temporary dedicated storage for proactive recovery, re-

spectively. Reed-Solomon(14, 10) saves system’s overall energy consumption up to 51.7%

compared to replication. ProDisk reduces energy consumption up to 51.8% compared

to Replication. ProHot reduces energy consumption up to 51.9%, ProMachine reduces

energy consumption by 51.8% and ProHot LazyCold reduces energy consumption by 52%

compared to the same approach. The energy savings of proactive recovery methods are

very limited. This is due to the fact that energy consumption of dedicated storage com-

pensates the energy savings of recovery bandwidth. Figure 4.3 shows data reconstruction

and storage energy for various coding scheme and proposed recovery methods. They are

normalized against replication. Energy consumption of temporary storage overhead of

proactive recovery methods are calculated for TIA 12 hours. Figure 4.3 shows that stor-

age energy consumption overhead of proactive recovery methods are the least. The power

consumption can be further reduced by carefully scheduling the proactive replication with

appropriate TIA, which is one of the promising future research directions.
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Temporary dedicated storage overhead

To evaluate resource savings from proactive replication, the average number of data blocks

replicated per day is calculated. Figure 4.4, shows the trade-off between recovery band-
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width and temporary dedicated storage for various proactive recovery methods. ProMa-

chine reduces recovery bandwidth of Reed-Solomon(14, 10) up to 75% with approximately

1.3% storage overhead compared to Reed-Solomon. ProHot reduces recovery bandwidth

up to 41% where as ProHot LazyCold reduces recovery bandwidth by 85% with 0.75% ad-

ditional storage savings compared to Reed-Solomon. The storage overhead of replication,

ProDisk, ProMachine, ProHot and ProHot LazyCold are 90%, 0.01%, 1.3%, 0.75% and

0.75%, respectively compared to Reed-solomon. Figure 4.4 shows that proactive recov-

ery methods offer excellent bandwidth savings as a compensation of dedicated temporary

storage overhead due to proactive replication.

4.7.2 Enhanced Proactive Recovery

In this section, we investigate how the optimization of proactive recovery further improves

the efficiency of storage systems. To eliminate any differences in measurement, due to

variations of events generated by the simulator, we apply optimization on the same set of

events that we used for evaluating heuristic proactive recovery techniques. We compare

various measures such as repair network traffic/bandwidth, energy and storage overhead
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of heuristic proactive recovery techniques against optimized proactive recovery techniques.

Repair network traffic

We examine how the optimization of proactive recovery reduces repair network traffic

compared to its respective heuristics. The results of examining network traffic of proactive

recovery methods, with varying TIA of failure predictions are presented in Figure 4.5.

Since recovery network bandwidth is inversely proportional to recovery time, reduction of

TIA increases network traffic of storage systems. In this experiment, maximum recovery

bandwidth capacity is set to 650 TB/day. When TIA is set to 12 hours, optimization does

not show much savings. When TIA is set to 30 minutes, optimization shows significant

savings in network traffic.

The optimization of recovery methods ProDisk, ProHot and ProHot LazyCold re-

duces network traffic up to 60%, 37%, 60% and 49%, respectively, compared to its cor-

responding heuristic methods. Similarly, optimized ProDisk, ProMachine, ProHot and

ProHot LazyCold recovery methods reduces network traffic around 4%, 4%, 4% and 3.6%,

respectively, when TIA is 12 hours. This shows that the network savings due to proac-

tive recovery increases, as TIA decreases. Applying optimization on proactive recovery

methods reduces recovery bandwidth to the level of systems recovery bandwidth capac-

ity. However, ProMachine’s network traffic reduction due to optimization is very limited,

while TIA is 30 mins. This is due to the fact that this method handles large amount

of data compared to other methods, during proactive recovery. If we attempt to further

reduce the recovery traffic of ProMachine, by adjusting the parameter BL in constraint

3, it will end up in less proactive recovery of data due to machine failures. As a result, it

will further increase average network bandwidth and the traffic of the system because it

should apply typical reconstruction for the data blocks that are not proactively handled.

Temporary dedicated storage overhead

To evaluate temporary storage savings due to the optimization of proactive replication, we

have calculated the total amount of data transferred during the simulation period. Figure

4.6 shows the comparison of total amount of data transferred for both heuristics and

optimization, respectively for proposed proactive recovery methods. ProDisk provides up
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Figure 4.5: Maximum instantaneous recovery bandwidth, in TB/hour, calculated over 10

years. (a) ProDisk (b) ProMachine (c)ProHot and (d)ProHot LazyCold.

to 46% storage savings due to optimization. Similarly, optimizing ProMachine, ProHot

and ProHot LazyCold offer up to 10%, 12% and 12% of storage savings, respectively

compared to its respective heuristics. Storage savings of proactive recovery methods

are increased by applying optimization. The storage savings due to optimization of each

method is different because BL in constraint 9 varies with respect to the recovery methods.

Repair Bandwidth

To examine, recovery bandwidth savings due to optimization of different proactive recov-

ery methods, we have estimated average recovery bandwidth in a day. Figure 4.7 shows
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lated over 10 years.

the bandwidth savings due to optimization of various recovery methods ProDisk, Pro-

Machine, ProHot and ProHot LazyCold. Optimizing the proactive recovery of methods

such as ProDisk, ProMachine, ProHot and ProHot LazyCold can offer up to 3%, 9.5%,

4% and 12% of savings, respectively. Bandwidth savings of proactive recovery methods

due to optimization are increased since it saves bandwidth by avoiding data duplication.

Also, constraint 9 increases recovery rate of the storage systems, which will further save

recovery bandwidth.

Energy Consumption

To examine energy savings due to optimization of various proactive recovery methods, we

have estimated the average recovery bandwidth in a day. Figure 4.8, shows the energy

savings due to optimization compared to respective heuristics recovery methods. Since

optimization eliminates data duplication, it saves energy in terms of temporary storage

overhead and recovery bandwidth. Applying optimization on ProDisk, ProMachine, Pro-

Hot and ProHot LazyCold offered up to 3%, 5%, 3.5% and 4% of bandwidth savings

compared to its respective heuristics.
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Reliability

To examine how the optimization of proactive recovery affects reliability of the storage

system, the average durable degraded and available degraded slices in a day is estimated.
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Figure 4.9 shows number of degraded slices for various reliability techniques. It also shows

the impact of optimization on reliability compared to its respective heuristic proactive

recovery methods. Since optimization attempts to minimize recovery network traffic, it

slightly increases number of degraded slices compared to heuristics. However, numbers of

degraded slices in optimized proactive recovery techniques are still much better than the

native methods.

Sensitivity Analysis

To determine how EPRA is influenced by failure prediction rate, we have measured param-

eters such network traffic/bandwidth, storage overhead, and energy consumption, with

varying failure prediction rate.

For analyzing how the system is affected by the failure prediction rate, we have mea-

sured network traffic with varying disk failure prediction rate. Li et al. [135] showed that

more than 90% accuracy of disk failure prediction is possible. We run simulation with

failure prediction accuracy varying from 60% to 90%. We have calculated the recovery

network bandwidth and traffic of ProMachine method with TIA equals to 12 hours. They

are depicted in Figure. 4.10 and Figure 4.11. Figure 4.10 depicts bandwidth savings at
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Figure 4.10: Average repair bandwidth, in GB/day with varying prediction rate.

failure predictions rate of 90%, 80%, 70% and 60% of ProMachine method with TIA 12

hours. They are 75%, 68%, 61% and 56% compared to Reed-Solomon(14, 10). Optimiz-

ing proactive recovery in the storage systems provides bandwidth savings up to 8%, 6%,

4% and 3% compared to its heuristics for prediction percentage 90%, 80%, 70% and 60%,

respectively. Bandwidth savings due to optimization reduces as the failure prediction rate

decreases. Even though optimization offers excellent bandwidth savings with prediction

percentage of 90%, savings in terms of network traffic is becoming very limited as the

failure prediction rate decreases. When the prediction rate is low, the system’s network

traffic increases as it activates typical reconstruction of unpredicted failures. Optimizing

proactive recovery in the storage systems reduces network traffic (max instantaneous re-

covery bandwidth in MB/h) by eliminating proactive recovery for some failure predictions.

However, with less failure prediction, this has minimum effect.

Hence optimization of proactive recovery provides significant improvements on re-

pair network bandwidth, energy consumption and temporary dedicated storage even with

smaller failure prediction percentage. However, network traffic savings due to optimiza-

tions are limited when failure prediction percentage is minimal.
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4.7.3 Optimized Proactive Recovery

Recovery Network

In this section, we have analysed the reduction of recovery network traffic in erasure

coded storage due to proactive recovery. To analyse the effectiveness of proposed proactive

recovery methods, we have evaluated storage overhead and average recovery bandwidth of

various storage systems such as replication, erasure codes and several proposed proactive

recovery methods. Since proposed proactive recovery techniques are defined using failure

predictions, we have also analysed the impact of recovery network traffic when TIA of

failure predictions reduces.

Recovery Network Bandwidth and Storage Overhead

To evaluate additional storage overhead due to proactive replication, we have calculated

average number of data blocks replicated per day. Figure 4.12, shows the trade-off between

recovery bandwidth and storage overhead of various storage systems. ProMachine reduces

recovery bandwidth of Reed-Solomon (14, 10) up to 75% with approximately 1.3% storage
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Figure 4.12: Storage overhead VS average recovery bandwidth in GB/day.

overhead compared to Reed-Solomon when TIA of failure prediction is 12 hours. ProHot

reduces recovery bandwidth up to 41% where as ProHot LazyCold reduces recovery

bandwidth by 85% with 0.75% additional storage savings compared to Reed-Solomon.

The storage overhead of replication, ProDisk, ProMachine, ProHot, ProHot LazyCold

and OPR are 90%, 0.01%, 1.3%, 0.75% and 0.75%, 1.09% respectively compared to Reed-

Solomon.

Figure 4.12 shows that proactive recovery methods offer excellent bandwidth savings as

compensation of dedicated temporary storage overhead due to proactive replication. Our

novel proactive recovery method OPR saves recovery bandwidth better than ProMachine

but not as good as ProHot LazyCold when TIA is 12. However, this will vary when TIA

and failure prediction accuracy reduces. OPR tries to handle more amounts of data blocks

pro-actively compared to ProHot LazyCold to reduce amount of slices degraded due to

lazy recovery which is the reason for increased network bandwidth. In turn, OPR will

improve system’s read performance. Even though OPR tries to handle more data blocks

pro-actively like ProMachine, it always offers better bandwidth savings than ProMachine

as it defines lazy recovery for necessary data blocks and also avoids data duplication.
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Figure 4.13: Maximum instantaneous recovery bandwidth, in TB/day, calculated over 10

years.

Repair network traffic

To estimate repair network traffic of storage systems, we have estimated maximum in-

stantaneous network bandwidth for the simulation time period of 10 years. Figure 4.13

shows recovery network traffic of various storage systems. It shows, all proposed proac-

tive recovery techniques reduces network traffic significantly compared to other existing

reliability techniques replication, Reed-Solomon(14, 10) and LRC.

Figure 4.14 shows network traffic of proactive recovery methods with varying TIA of

failure predictions. Results showed that recovery network traffic increases as TIA reduces

for proactive recovery methods ProDisk, ProMachine, ProHot and ProHot LazyCold since

they attempt to transfer static amount of data blocks with in the time period of TIA.

However, our novel technique OPR does not increase network traffic significantly when

TIA reduces. OPR optimally selects data blocks for proactive replication by considering

system’s current network bandwidth usage. By optimizing the selection, it defines perfect

balance between proactive and lazy recovery and hence it maintains recovery network

traffic to the minimum.
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Figure 4.14: Maximum instantaneous recovery bandwidth, in TB/day, calculated over 10

years with varying TIA.

4.7.4 System Energy Consumption

Figure 4.15 shows the comparison of average energy consumption in KJ/ day for vari-

ous storage schemes such as replication, (14,10) Reed-Solomon, LRC and (14,10) Reed-

Solomon with different proposed proactive recovery methods. This figure depicts storage

system’s average energy consumptions break down in storage, recovery bandwidth and

associated temporary dedicated storage for proactive recovery. Reed-Solomon (14, 10)

and LRC (16, 10, 12) saves system’s overall energy consumption up to 51.7% and 45%

respectively compared to replication. Proposed proactive recovery techniques reduce net-

work traffic/ bandwidth by dedicating additional temporary storage overhead. Hence

energy savings of proactive recovery techniques due to reduced recovery bandwidth is

compromised by the energy consumption of additional temporary storage overhead of

those methods. Energy savings of ProDisk, ProMachine, ProHot, ProHot LazyCold and

OPR are approximately up to 51.8%, 51.8%, 51.9%, 52% and 52.4% respectively com-

pared to replication. Energy savings of proactive recovery are estimated with TIA 12 hours

while failure prediction accuracy is of 90% in Reed-Solomon (14, 10). Due to the trade-

off between recovery bandwidth and temporary storage overhead energy consumptions in

various proactive recovery schemes, energy savings of proposed proactive recovery are very

limited compared to Reed-Solomon (14, 10) with traditional reconstruction. Among the

proposed proactive recovery techniques, OPR offers best energy savings. OPR improves
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Figure 4.15: Storage system’s average energy consumption in KJ per day.

energy savings by reducing temporary storage overhead due to duplication of replicated

blocks and also by improving recovery bandwidth savings with lazy recovery.

Figure 4.16 shows data reconstruction and storage energy for various coding scheme

and recovery methods that are normalized against replication. As in Table 1, in our sim-

ulation, we have used substantially high per byte storage energy compared to per byte

processing energy of the router. This measures may vary with storage systems and routers

used in cloud storage cluster. Also, Figure 4.16 shows that storage energy consumption

overhead of various proactive recovery methods when TIA is 12 hours. Energy consump-

tion of proactive recovery techniques can be varied with respect to TIA, disks per byte

storage consumption and router’s per byte processing energy consumption. Hence energy

consumption of storage system with proactive recovery can be maximized by optimizing

and scheduling proactive replication with respect to time such that temporary storage

and recovery bandwidth energy consumptions are optimized. This is one of the possible

future directions of this research.
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Figure 4.16: Average storage and recovery energy consumption in KJ per day.

Sensitivity Analysis

We run simulation with failure prediction accuracy varying from 50% to 90% and cal-

culated recovery network bandwidth of all proposed proactive recovery methods when

TIA of failure predictions is 12 hours. The results are depicted in Figure. 4.17. From

Figure 4.17 bandwidth savings at failure predictions rate of 90%, 80%, 70% , 60% and

50% of ProMachine method with TIA 12 hours are 75%, 68%, 61% and 56% compared

to (14,10) Reed-Solomon. Bandwidth savings due to proactive replication reduces as the

failure prediction rate decreases for the methods ProDisk, ProMachine, ProHot and Pro-

Hot LazyCold whereas OPR shows increased bandwidth savings when failure predictions

decreases. OPR defines proactive recovery for more data blocks when failure prediction

is high and actives lazy recovery for large data blocks when failure prediction accuracy

is low according to the optimization problem defined in section 4. This will maintain

network traffic to minimum. Low failure prediction accuracy will activate to low proac-

tive recovery and high typical reconstruction in Reed-Solomon (14,0). Hence when failure

prediction accuracy is low, network traffic also got increased. However, our experimental

result showed that OPR maintained network traffic almost to the level system’s allocated
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Figure 4.17: Average recovery bandwidth, in GB/day with varying prediction percentage.

network capacity. However, it also increased number of degraded slices.

Regardless of the variations in failure prediction accuracy, there is no doubt that all the

proposed proactive recovery techniques reduce network bandwidth and traffic significantly

compared to the typical reconstructions of erasure code. Proactive recovery also increases

system’s reliability with limited temporary storage overhead. Even though proactive

recovery methods offers limited energy savings compared to typical reconstructions, it

can be maximized using appropriate scheduling algorithms. Scheduling algorithms can

be defined to minimize the usage duration of temporary storage overhead.

4.8 Summary

The two primary reliability mechanisms—replication and erasure coding—employed in

cloud storage systems have their own drawbacks. Even though erasure code offers tremen-

dous storage savings compared to replication, reconstructing lost or corrupted data blocks

incur large communication overhead.

In the previous chapter, to achieve maximum recovery bandwidth savings in erasure

codes, we have proposed, several failure-prediction-based, novel proactive recovery tech-

niques. They are defined with the combinations of replications, erasure coding and lazy
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recovery. As an extension of this, we propose an optimization approach and an algo-

rithm, in this chapter. Optimization attempts to minimize the number of data blocks

to be replicated during proactive recovery. This optimization contributes to increase re-

source savings of the storage systems. A novel proactive recovery called OPR is proposed.

We have also analysed the energy consumptions of replication, erasure coding and erasure

coding with several recovery approaches. Experiments showed that the applying opti-

mization on proactive recovery techniques have further increased the resource savings in

cloud storage. It is also notable that proactive recovery methods energy savings are almost

close to native erasure codes. The storage and bandwidth savings due to optimization

helps to improve reliability of Big Data with additional cost savings while also supporting

the data read in high velocity.

The proposed proactive recovery methods reduce number of degraded read in the

storage system. Hence it can reduce degraded read performance of the system significantly.

However, they required to change references in physical storage and metadata. Applying

such changes to an existing storage system will lead to unnecessary chaos. To reduce

degraded read performance in existing erasure coded storage, we propose a novel cache

based solution in the next chapter. They do not suggest defining any such references.
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Algorithm 4 Optimized Proactive Recovery Algorithm
INPUT: FP , FT , S, TIA, CRB, RBC, HFP , RC

1: if FT=”Machine” then

2: for each bij in FP do

3: Generate decision variables set X= xij

4: end for

5: Set objective as Maximize
∑
xij ∀xij ∈ X

6: Add constraint as
∑
xij = |HFP | ∀ bij ∈ HFP where h = |HFP |

7: Add constraint as (S ∗
∑
xij)/TIA+ CRB <= RBC ∀xij ∈ X

8: Add constraint as
∑
xij = 0 ∀ bij ∈ RC

9: Optimize ILP problem for evaluating x to 0 or 1

10: for each bij in FP do

11: if xij == 1 then

12: Define proactive recovery for block bij

13: else

14: if bij /∈ RC then

15: Define lazy recovery for block bij

16: else

17: Do not handle block bij

18: end if

19: end if

20: end for

21: else if FT=”Disk” then

22: for each bij in FP do

23: if bij /∈ RC then

24: Define proactive recovery for block bij

25: else

26: Define appropriate reference to block bij such that block is not deleted

27: end if

28: end for

29: end if



Chapter 5

On Reducing Degraded Read

Latency of Erasure Coded Cloud

Storage

Erasure coding is gaining attraction in cloud storage systems since it improves data relia-

bility with huge cost savings in terms of storage. However, data recovery in erasure codes

includes high disk I/O, network traffic and complex decoding that impacts degraded read

latency. Data access latency is one of the most important metrics to determine Quality of

Service. Hence reducing degraded latency in erasure coding is vital to improve user perfor-

mance. Proactive recovery techniques proposed in previous chapters can reduce degraded

read latency as they reduce number of degraded reads. Hence they can improve degraded

read performance of the system proposed in previous chapter. The improvement on de-

graded read performance may vary with respect to the selection of the proactive recovery

method. However, they require modifying metadata. To reduce degraded read latency of

Nachiappan, R., Javadi, B., Neves Calheiros, R., & Matawie, K. M. (2019). ProactiveCache: on

reducing degraded read latency of erasure coded cloud storage. In Proceedings of the 11th IEEE In-

ternational Conference on Cloud Computing Technology and Science (CloudCom 2019), the 19th IEEE

International Conference on Computer and Information Technology (CIT 2019), the 2019 International

Workshop on Resource brokering with blockchain (RBchain 2019), and the 2019 Asia-Pacific Services

Computing Conference (APSCC 2019), 11-13 December 2019, Sydney, Australia (pp. 223-230).
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any existing erasure coded storage, in this chapter, we propose a cache based technique

called ProactiveCache. It proactively copies objects from failure predicted machine into

cache. On accurate failure predictions, ProactiveCache eliminates degraded read latency.

ProactiveCache is evaluated using a system prototype in Ceph object store.

5.1 Introduction

Any failure in cloud storage degrades objects that are resided in the failed zone. This is

applicable for both replication and erasure coding. To avoid any unnecessary repair, a

delay is applied to recover data that are degraded due to failure [3]. Any read request to

a degraded data in a replicated storage is handled by redirecting them to next available

replica. In erasure coding, degraded data is reconstructed on the fly before it is served.

Data recovery in replication is as simple as copying data from next available replica. On

the other hand, in (n, k) erasure coding, data should be recovered by performing decoding

using any k available chunks.

Replication maintains several copies of data on different failure zones. During tempo-

rary or permanent node/disk failure, degraded read requests are managed by redirecting

read requests to next available node/disk. Hence replication will not increase access la-

tency of degraded data. In erasure coding, any degraded read request requires to access

data from k different nodes/disks and decodes them on the fly. This in turn increases

access latency of degraded data.

Access latency is one of the most important metrics of Quality of Service. According

to an observation form Google, Microsoft and Amazon, a service delay about 400ms can

cause huge business disruption and revenue loss [144]. Erasure coding improves data

reliability with huge cost savings. Addressing degraded read latency issue of erasure

coding can enable erasure coding to be more pervasive in cloud storage. This can bring

extensive cost savings to cloud storage especially for Big Data applications.

Several researches have focused on reducing disk I/O and network traffic during recov-

ery process. Several works attempted to define new set of encoding and decoding methods

[16, 52] to reduce recovery disk I/O and network bandwidth. However, they impact re-

construction time as reducing network traffic. Several other researches [145, 146] have
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focused on parallel reconstruction. They reduce degraded read latency by applying par-

allel disk I/O. Few researches have focused on optimizing data read during degraded read

operation. They evaluate storage node using network topology, performance, bandwidth

to optimize degraded read.

Some of the recent researches have focused on defining proactive recovery methods

to reduce degraded read latency of erasure codes. Many among them [53] use proactive

recovery methods when the failure occurs; [147, 141, 97] have activated proactive recovery

even before the occurrence of failure using failure predictions. Proactive failure handling

methods are defined either with [141, 97] or without additional temporary storage over-

head [147].

A study on cloud hardware reliability revealed that hard disks are the most replaced

component in cloud infrastructure [30]. Experiencing simultaneous disk failures are pos-

sible in the cloud storage systems since it is composed of large number of storage disks.

Predicting disk failures in advance helps to efficiently handle failures in cloud storage sys-

tems by applying some proactive failure handling mechanisms. Several researches have

used some statistical and machine learning methods to improve failure prediction accu-

racy. Several hard disk failure prediction models are defined with range of statistical and

machine learning techniques using SMART attributes [135, 136, 29].

In this chapter, we propose a system called ProactiveCache. It proactively copies

failure predicted data into cache tier. Several existing cache replacement algorithms in

literature suggest to keep either recently accessed data or frequently accessed data on

cache. Hence existing algorithms may not help to reduce access latency for applications

that do not follow any specific access pattern. It is also applicable for the applications

that changes data access pattern more often. Traditional cache may not store most of the

degraded objects provided an application follows a specific access pattern. ProactiveCache

is designed to reduce degraded read latency by proactively copying data into cache when

the failures are predicted. In case of any degraded read, data can be fetched from cache

tier instead of performing data reconstruction on the fly. ProactiveCache is designed

either to adapt with an existing cache or standalone (when a cluster does not have any

existing cache tier).
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5.2 Related Work

Inefficient data recoveries of erasure coding prevent it being more pervasive in cloud. A

considerable amount of researches are constantly attempting to address the inefficient

data reconstruction issues of erasure codes.

� Coding Approach Several researches have focused on defining new encoding meth-

ods to reduce reconstruction bandwidth and disk I/O, thereby improving read per-

formance. Rashmi al.[52] proposed Hitchhiker system which defines new encoding

and decoding technique on most popular Reed-Solomon code. Hitchhiker system

uses Piggybacking framework to define a new family of code. Piggybacking frame-

work maintains arbitrary functions. Arbitrary functions are constructed by adding

functions of data form one node to another such that it reduces the amount of data

transfer required for data recovery; thereby Hitchhiker reduces degraded read la-

tency and leads to faster recovery from failure. Huang et al. [16] proposed Local

Reconstruction Codes (LRC), which divides data fragments into two equal groups

and maintains local parities for each group along with global parities. Local par-

ities help to reduce number of data fragments to be read during recovery. Hence

it reduces disk I/O, network bandwidth and data reconstruction time. Osama et

al. [51] proposed a code called Rotated Reed-Solomon to improve I/O performance.

Rotated Reed-Solomon suggests to maintain number of parities less than or equal

to three.

� Optimizing Degraded Read Several researches [148, 149] have attempted to op-

timize the selection of data blocks for data reconstruction. Some researches use

topology aware degraded read optimization for reducing network bandwidth. Few

researches [146, 150] have attempted to assign appropriate weight for each node

using various performance metrics such as capacity and speed of disks on each node

or by analyzing historic response time of each node. They optimize degraded reads

using the assigned weight of each node. Xingjun et al. [151] proposed degraded read

optimization strategy NADE. NADE optimizes degraded read using node evaluation
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method (node’s weight) and distance calculation (network topology). NADE eval-

uate node’s performance by combining a metrics choice and an analytic hierarchy

process. They use network topology for the distance calculation.

� Parallel Reconstruction Peng et al. [145] proposed Collective Reconstruction

Read (CRR) method, which utilizes parallel reconstruction to reduce degraded read

latency. In CRR, data read, transfer and decode are shared among all participating

nodes in parallel. Hence it reduces time complexity of degraded read from linear to

logrithamic. Yunfeng et al. [146] propose a system FastDR that uses I/O parallelism

to reduce degraded read latency. FastDR utilizes greedy algorithm to seek data form

surviving nodes for degraded read. Hence it reduces data transfer cost.

� Proactive Recovery Some of the recent researches have focused on defining proac-

tive recovery methods to reduce the degraded read latency of erasure codes. Pradeep

et al. [53] proposed a novel recovery mechanism called CoARC to handle degraded

read. CoARC recovers all unavailable blocks in a stripe and caches them on a sepa-

rate node. CoARC reduces the job run time as it increases read performance. Peng

et al. [97] proposed Procode which utilizes disk failure prediction methods to predict

failures on HDFS. Procode proactively replicates data from failure predicted disk

into a healthy disk. Peng et al. [147] proposed a proactive data migration technique,

in the event of any disk failure prediction. It reduces data reconstruction time and

degraded read latency.

Several researches have used some statistical and machine learning methods to improve

failure prediction accuracy. Several hard disk failure prediction models use statistical and

machine methods on SMART attributes [135, 136, 29]. Li et al. [113] proposed a disk

drive prediction model that predicts more than 95% of failures with False Alarm Rate

(FAR) under 0.1%. They have used smart attributes such as Power on Hours, Reported

Uncorrectable Errors, Temperature Celsius, Spin Up Time and Seek Error Rate. They

have proposed a classification tree model using aforementioned attributes to classify a disk

as good or failed. They have also proposed the regression model to evaluate drive’s health

degree. After analysing, 1 million SATA disks, Ao et al. [32] revealed that reallocated
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sector’s count reflects the disk reliability deterioration. They have also proved that disk

failures are predictable using reallocated sector measurements. They have also proposed

RAID SHIELD, an active defence mechanism, which reconstructs failing disks before it’s

too late. They have developed PLATE, to provide proactive protection against single disk

failure; AMOR for proactive RAID protection.

To reduce degraded read latency in cloud storage systems, in this chapter, we propose

a novel caching technique using failure predictions. This technique proactively caches ob-

jects from failure predicted devices. Literature [113] shows failure predictions accuracy up

to 95% with reasonable TIA. ProactiveCache configures cache tier with respect to failure

predictions. ProactiveCache proactively copies failure predicted objects into cache. Hence

it reduces degraded read latency. Proactive cache may also amplify read performance of

storage system since fast/expensive storage devices are used for cache tier.

5.3 Background and Motivation

Nowadays object storage is a popular choice of cloud storage since this provides simple

put/get interface to store and retrieve data. Netflix uses Amazon s3 which is object

storage. Inefficient load balancing management and data reconstruction are important

reasons that increase data access latency in erasure coding. Increased access latency of

erasure coding prevents it from being more pervasive. This chapter will not address I/O

latency incurred due to load imbalance. However, it will address I/O latency due to

failures in object storage. In particular, this research focus on reducing degraded read

latency in erasure coded storage systems.

Configuring a cache tier over an object store provides non-blocking end-to-end con-

nectivity at cloud scale as it reduces I/O latency. Caching can improve I/O performance

in both replicated and erasure coded storage systems. When there is a failure in object

storage, all objects resided in failed device will enter into degraded state. They remain

degraded until they are recovered. Any read request to the degraded objects are served by

performing data reconstruction on the fly. Data reconstructions in erasure coding increase

disk I/O and network bandwidth. This in turn will increase degraded read latency. We

propose a cache based solution to reduce degraded read latency.
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Traditional caching system are designed to maintain only least recently used or least

frequently used data to reduce I/O latency in erasure coded storage system. However,

traditional caching techniques may not be effective on reducing degraded read latency for

the following reasons;

� Workloads from Facebook and Microsoft production clusters have shown that the

top 5% of objects are seven times more popular than the bottom 75% [8]. This obser-

vation implies that a small number of objects are more likely to be accessed, which

will get benefited from caching [152]. In this case, cache may not hold considerable

amount of degraded data.

� Some scientific applications may run on different input datasets each time and it

will read different objects each time. In this case, traditional caching systems are

ineffective in reducing degraded read latency.

� Traditional cache tier is ineffective when an application changes data access pattern

frequently. It is also applicable to the applications that do not follow any access

pattern.

� Traditional caching systems need to identify most frequently used data by analysing

data access pattern. Hence it may take effect only after a considerable amount of

time once after it is introduced.

To handle the aforementioned cases, we have designed a new caching system called

ProactiveCache. This is the novel caching technique, which utilizes various existing device

failure prediction methods to forecast the devices that will fail soon. ProactiveCache

caches objects form failure predicted device. Hence ProactiveCache reduces or eliminates

the degraded read latency when the failure prediction accuracy is high.

5.4 ProactiveCache- A novel caching method on re-

ducing degraded read latency

In this section, we present the design of ProactiveCache. ProactiveCache is defined on

object storage and it aims to minimize or eliminate degraded read latency. If a storage sys-
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Figure 5.1: ProactiveCache: A novel caching system on eliminating degraded read latency.

tem is already configured with traditional cache, it can be upgraded with ProactiveCache

method to reduce degraded read latency. If a storage system is not already configured

with a cache tier, ProactiveCache will add and configure cache tier to reduce degraded

read latency. An appropriate cache eviction technique is also defined to reduce storage

overhead of cache tier to the minimum.

5.4.1 System Architecture

The architecture of ProactiveCache is illustrated in Figure 5.1. We have introduced several

modules in existing object storage to accommodate ProactiveCache.

Data Reliability Manager

This module is designed to ensure reliability of an object in a storage system. When era-

sure coding is chosen to maintain data reliability, this module has to define appropriate

configuration parameters to meet client SLA efficiently. The most important configura-

tion parameters involved in erasure coding are n, k, erasure coding technique and failure
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domain. The number of original data blocks is represented by n − k and k represents

the number of parity blocks. Hence any k failures from the failure domain are tolerated.

Failure domain can be defined as node, rack and so on. It is important to carefully select

the aforementioned parameters to minimize storage overhead and to improve reliability.

Encoder According to the selected configuration parameters, encoder segregates data

into k original data fragments. It calculates n − k parity fragments. It distributes all n

fragments into appropriate locations such that any k failures form selected failure domain

is tolerated.

Decoder On the occurrence of failures, objects in the failed devices will turn degraded

and remain degraded until they are recovered. Decoder will perform data reconstruction

using any n − k data blocks to recover degraded object data. It migrates all recovered

data into appropriate location according to the failure domain defined.

Device Failure Prediction

This module tracks hardware storage devices (SSD/HDD) and collects health metrics of

those devices to predict hardware failure. Health metrics are collected using a standard

called SMART for hard disks. SMART provides devices internal information like unre-

coverable read errors, duration of power on and power cycles. Using those health metrics,

device failures are predicted. After prediction, appropriate health alerts are generated.

Cluster Health Status

Storage cluster may contain thousands of storage nodes and it stores data as objects on

storage nodes. When the cluster is operating, the health status of storage nodes and disks

can be evaluated. This module continuously checks cluster health. On the occurrence of

failure, it reports to the proactive cache manager.

Proactive Cache Manager

Proactive cache manager is designed to configure the cache tier with objects from failure

predicted devices such that it reduces degraded read latency. It copies necessary objects

into cache tier on the receipt of any failure predictions. This also evicts objects, when the

failure predicted device has come back to life.
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Cache Configuration System When a device failure prediction is reported to this

module, it will copy either all or some objects from failure predicted device into cache. It

uses application’s data access pattern and client SLA to configure cache as follows:

� All the objects in failure predicted disk will be copied to cache, when an application

does not follow any access pattern provided if SLA demands low access latency.

� Apart from reducing degraded read latency, this cache tier can also be configured

to reduce access latency when there is a need for planned maintenance. During

planned maintenance, this caches either the data that are likely to be accessed soon

or all data in a node which undergoes maintenance.

When a storage system does not need to be configured with traditional cache tier,

ProactiveCache adds and removes cache tier as required. ProactiveCache can be easily

configured with existing erasure coded cloud storage without making any changes in the

underlying storage systems. Hence the technique of adding a cache tier is a better solution

than enforcing changes in encoding or applying proactive recoveries.

This module will also be responsible to increase storage size of cache tier as required.

ProactiveCache is an elastic cache. It adjusts the capacity of the cache with respect to

the rate of failures in cloud storage. Even though the cache tier must be defined with

a fixed capacity, it can be expanded on the receipt of any failure predictions. Proactive

cache manager resizes cache tier with respect to the number of objects resided in failure

predicted devices. Cache will be turned back to original fixed size when the cluster has

recovered all objects that are degraded due to failure. To classify objects that are cached

due to the failure predictions, this module defines a unique flag. This flag is used during

cache eviction process, to evict the objects that are copied due to failure predictions.

Cache Eviction System In traditional cache, eviction is performed as follows,

� Least Recently Used (LRU): This eviction method assumes that the objects which

have been accessed recently are more likely to be accessed soon. When the cache is

full, LRU evicts objects that are least recently accessed.
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� Least Frequently Used (LFU): In this method, the most popular objects are main-

tained in cache over the least popular objects. This method uses access history to

identify popular object. This is suitable for applications that do not change access

pattern for a prolonged period of time.

Since ProactiveCache is designed to adapt with traditional caching, it performs any

of the aforementioned cache eviction methods, to evict the objects that are cached due to

the traditional methods when the cache tier gets full. In addition to that, it also evicts

objects that are cached due to failure predictions as follows. The objects that are cached

due to failure predictions are identified using the unique flag. The objects with the flags

are deleted when the failure predicted machine has come back to life. In case of any false

positive in failure predictions, the corresponding objects will be deleted after applying

some time delay. The eviction of objects that are cached due to failure predictions will

only be deleted in the aforementioned conditions. They will not be evicted when the

cache is full.

5.4.2 ProactiveCache Algorithm

ProactiveCache is a novel caching technique defined in object storage to reduce degraded

read latency. This cache is different from traditional cache since it is designed to cache

objects from failure predicted disk. Algorithm 4 defines a layer between the objects

that are cached using the traditional algorithms and ProactiveCache. A flag is used to

determine if an object is cached due to the ProactiveCache technique. This flag is used

to protect the objects that are cached due to ProactiveCache being deleted during typical

eviction process. The objects with the flags are deleted only when the failure predicted

device is recovered from failure. In case of any false positive predictions, they are deleted

after applying some time delay. Mostly the time delay is defined to be greater than TIA

of prediction. In this way, those objects are protected from being deleted in advance. The

algorithm accepts Failure Predicted Device FPD information, aggregated total size of

objects that it holds DB and current unused capacity of cache CC. Algorithm increases

the cache size if it is required. Following that, it caches appropriate objects by assigning

appropriate flags. If an object from failure predicted device is already available in cache,
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Algorithm 5 Proactive Caching Algorithm
INPUT: FPD, DB,CC

1: if cache tier exists then

2: if ACS < DB then

3: increase cache size

4: for each obji in storage do

5: if any fragment of obji contained in FPD then

6: copy obji to cache tier

7: set flag fi for obji

8: end if

9: end for

10: end if

11: else

12: create cache tier

13: for each obji in storage do

14: if any fragment of obji contained in FPD then

15: copy obji to cache tier

16: end if

17: end for

18: end if

it sets unique flag, to protect them being deleted form typical cache eviction algorithm.

Algorithm 5 prevents objects that are cached due the failure predictions being deleted

during normal eviction process. When the cache is full, it deletes objects using typical

eviction process only for the objects that are not cached due to the failure prediction. The

objects replicated due to failure predictions are only deleted when the failure predicted

device has come back from failure or by applying some delay in case of any false positive.

While deleting those objects, it checks the flag to make sure that it does not delete objects

cached by typical caching method. It also reduces cache size to default cache size when the

failure predicted device has come back to life provided no further failures are predicted.
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Algorithm 6 Cache Eviction Algorithm

INPUT: Clusterhealthinformation, Flag

1: if cache is full then

2: if Data Recovery Completed for Failure Predicted Disk then

3: for each object obji in cache do

4: if fi is set then

5: evict obji

6: end if

7: end for

8: reduce cache size to typical cache size

9: else

10: for all object obji in cache for which fi is unset do

11: perform eviction using LRU or LFU

12: end for

13: end if

14: end if

5.5 Performance Evaluation

To evaluate the effectiveness of ProactiveCache, we have developed a system prototype

in a Ceph storage cluster [153]. This explains the cluster set up which we have used to

evaluate the proposed method. In order to compare the effectiveness ProactiveCache, for

each experiment, we have added an empty cache tier. To disregard any read performance

gain due to traditional caching system, we have copied only the failure predicted data

into cache. Once all objects from failure predicted device are copied into cache, we have

changed the mode of the cache such that it avoids any further caching objects due to any

I/O operation. Hence we have configured cache tier only with the failure predicted data.

5.5.1 Performance Analysis

In this section, we analyse and compare the impact of failure, on data access latency.

For performance analysis, we have conducted all our experiments on the most popular
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Figure 5.2: Average latency and throughput of various reliability methods (a) Average

latency and (b) Average throughput.

Reed-Solomon code. We will also evaluate the performance of ProactiveCache on reducing

degraded read latency.

Latency and Throughput

In case of any failure in a storage system, all the objects resided in the failed device will

enter into degraded state and they will remain degraded until recovered completely. Any

data read request to the degraded objects are served by performing data reconstruction.

Figure 5.2(a) represents a comparison of non-degraded read latency, degraded read latency

in typical erasure coded storage and the latency of degraded read in Proactive cache. In

Reed-Solomon(14, 10), Reed-Solomon(9, 6), Reed-Solomon(6, 4) and RAID5 degraded

read latency is increased by 15% and it is 6%, 11% and indeterminate respectively, com-

pared to its respective read latency when no objects are degraded. Degraded objects

increase latency because any read request to the degraded objects should be served by

performing data reconstruction. RAID5 can tolerate a single device failure. However, a

single disk failure in RAID5 shows latency as indeterminate. This is due to the fact that,

it has to wait indeterminate to access a data block from a disk that experiences latent

sector error which may cause deadlock.

Figure 5.2 (b) shows that degraded read in erasure coded storage. A system with

degraded objects reduce throughput. Figure 5.2 (b) also shows ProactiveCache improves
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throughput despite the existence of degraded objects.

Figure 5.2 (b) shows latency of Reed-Solomon(14, 10) is more than Reed-Solomon(9,

6). In Reed-Solomon(14, 10), data has to be distributed into large number of disks

compared to other method. The cluster set up used for our experiment has only 15

OSDs. Hence total of 14 chunks in Reed-Solomon(14,10) is distributed among 15 OSDs.

It has to reconstruct data using 10 fragments from other OSDs. The methods Reed-

Solomon(14, 10), Reed-Solomon(9, 6), Reed-Solomon(6, 4) and RAID5 decreases degraded

read throughput approximately by 14% and it is 6%, 11% and indeterminate respectively

compared to non-degraded read. In Figure 5.2 latency is steadily decreasing with respect

to the reduction in number of data blocks required for degraded read. However, it does

not apply for RAID 5, because it does not provide many choices and hence it increases

I/O congestion.

Figure 5.2 also shows ProactiveCache performance during degraded read in a storage

cluster. ProactiveCache reduces access latency for the methods Reed-Solomon(14, 10),

Reed-Solomon(9, 6), Reed-Solomon(6, 4) and RAID5 approximately upto 38%, 13%, 11%

and 100% respectively compared to those typical degraded read latency. Latency of RAID
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Figure 5.4: Average latency and throughput with varying number of failures. (a) Average
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is indeterminate for typical degraded read. ProactiveCache has reduced latency almost

equal to level of non-degraded read latency. Hence Proactive cache has reduced the latency

of RAID from indeterminate to 55ms, which is 100% reduction. Reed-Solomon(14, 10)

reduces access latency up to 38% since it copies 87% of data into cache as in Figure

5.3. Our experimental cluster has only 15 OSDs and Reed-Solomon(14,10) distributes an

object into 14 disks. Hence it has 87% of object’s data fragment in a failure predicted disk.

The amount objects copied to cache tier will be reduced for the same method when the

cluster size is large. ProactiveCache eliminates I/O dead lock in RAID and it improves

latency by 3% compared to non-degraded read latency of RAID. ProactiveCache increases

throughput for the methods Reed-Solomon(14, 10), Reed-Solomon(9, 6), Reed-Solomon(6,

4) and RAID5 approximately up to 37%, 13%, 10% and 100% respectively compared to

its own methods when there is a failure. Hence there is no doubt that ProactiveCache

reduces degraded read latency and improves throughput in the existence of failures.

Figure 5.4 represents how the latency and throughput are affected in Reed-Solomon(14,

10) when the number of device failure increases. It also shows the the performance

improvement due to ProactiveCache. Figure 5.4shows that the latency increases when

the number of failures increases. ProactiveCache method helps to reduce the latency

when the number of failures increases. ProactiveCache also increases throughput when

number of failures increases. ProactiveCache copies more objects into cache tier as the

number of failures increases and hence it increases throughput. When there are n-k

failures in (n, k) erasure code, the experiments results show a sudden peak in latency

compared to n-k-1 failures. Any disk sector error could be the reason for such delay.

Throughput during failures is steadily reduced as number of failures increases. However,

ProactiveCache holds throughput regardless of the number of failures. ProactiveCache

reduces access latency significantly when there are simultaneous failures. However, cost

of copying data into cache will also increase exponentially when there are simultaneous

failures.
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Sensitivity Analysis

The performance of ProactiveCache will vary with respect to failure prediction accuracy.

To analyse the sensitivity of ProactiveCache, we have measured latency and throughput

with varying prediction rates.

Li et al. [135] showed that more than 90% accuracy of disk failure prediction is

possible. We run simulation with failure prediction accuracy varying from 50% to 100%

and calculated latency and throughput as shown in Figure 5.5.

From Figure 5.5, the reduction in latency due to ProactiveCache at the failure predic-

tions rate of 100%, 90%, 80%, 70%,60% and 50% are 38%, 34%, 30%, 26%, 22% and 19%

when there is a single OSD failure in Reed-Solomon (14, 10). ProactiveCache increases

throughput compared to typical degraded read of Reed-Solomon (14, 10) as the failure

predictions increases. However, this comes with the cost of additional cache overhead.

5.6 Summary

Latency is one of the most important metrics in cloud storage systems. Latency increase

due to degraded read in replication is very limited compared to erasure coding. Even

though an erasure code can define cost efficient reliable storage, degraded objects in

erasure code increases data access latency. To address the degraded read latency issues of

erasure codes, in this chapter, we have proposed a novel cache based solution. The novel

ProactiveCache method suggests copying all objects in a failure predicted disk into cache

tier in a proactive manner. ProactiveCache reduces the degraded read latency of erasure

codes significantly. It does not suggest performing any changes in the underlying physical

storage. It also does not suggest any changes encoding and decoding methods. It can

be applied on any existing erasure codes. By reducing degraded read latency of erasure

code, ProactiveCache defines cost effective reliable storage that supports data read in high

velocity. ProactiveCache enables erasure coding to be a perfect solution for improving

reliability of Big Data.

The next chapter explains the framework, which we have used to analyse the perfor-

mance of various data reliability techniques.



Chapter 6

Framework of Efficient Fault-tolerant

Cloud Storage

Replication is a repair efficient solution to improve fault tolerance in cloud storage sys-

tem. However, reliability is directly proportional to the dedicated storage overhead in

replication. Erasure coding is a storage efficient alternative, but it is not a repair efficient

solution. To bring together the benefits of both methods, we propose a framework. This

framework simulates distributed storage. It initially stores data with erasure coding. It

performs proactive replication according to the failure predictions. This chapter proposes

a framework called “ds-sim Hybrid”, which is implemented by extending the classes of

ds-sim simulator [4] to simulate a cloud storage systems with hybrid reliability techniques.

Hybrid reliability techniques are defined using replication and erasure coding. This frame-

work is designed to conduct performance analysis of various recovery techniques that are

proposed in chapter 3 and 4.

6.1 Introduction

Simulator is a better choice to estimate the expected number of data loss events that can

occur over the time period of 10 years. The ds-sim simulator [4] is used in this research to

estimate reliability of various storage systems. It simulates a three tier, tree structure of

storage components of racks, machines and disks. It randomly chooses racks to store data

142
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blocks in different failure domains, according to standard practices in production setting

[94]. It also simulates disk, machine and rack failures. Disk failures can be latent or

permanent. Latent errors are detected and recovered during periodic reads. Permanent

disk failures are assumed to be unrecoverable. Machine failures can be of transient or

permanent. Recovery from transient failures, begins after 15 minutes, where as it is

immediate for permanent machine failures. Rack failures are considered as transient. The

ds-sim records the number of degraded reads and repair bandwidth over the simulation

period of 10 years.

In this research, several recovery approaches had been defined to reduce repair network,

traffic in cloud storage systems. They are defined as the combinations of proactive, typical

and lazy recovery. Proactive recovery suggests performing proactive replication of data

from a failure predicted device. Even though this method sounds promising to reduce

repair network traffic of erasure codes, this increases temporary storage overhead. On

the other hand, lazy recovery applies some delay in repairing data that are degraded,

due to any failures in cloud storage system. Lazy recovery activates repair, only after

a certain number of data from a stripe is degraded. Collective repair in lazy recovery

reduces repair bandwidth by minimizing the repair rate. However, the delay in data

reconstruction affects durability and availability of data.

Both lazy and proactive recoveries can be introduced in erasure coded cloud storage

systems, depending on the nature of the applications that are running on cloud storage.

Some applications may demand high availability on whole. Other may demand high

availability only for hot data. Some applications may even accept a delay in accessing

cold data. The nature of applications can be recorded in client SLA. While a cloud

storage system attempts to apply lazy recovery, it is essential to make sure that it does

not compromise the durability and availability of data. Durability of data is an important

metric in cloud storage system that should not be compromised at any cost. Hence an

appropriate threshold should be defined while activating lazy recovery. Since different

storage system selects several parameter choices of erasure coding, it is hard to define a

threshold. For the applications that demand proactive recovery, it is important to decide

how much additional storage is required to perform proactive replication. Failure history
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can be analysed to understand the nature of failures in a cloud storage system. This

analysis in cloud storage system will help to provision storage resources.

In order to analyse durability, availability, recovery network bandwidth/traffic, re-

covery energy consumption/energy consumption of the storage systems and temporary

storage overhead due to proactive recovery, we propose a framework “ds-sim Hybrid”.

This framework is an extension of ds-sim [4]. The ds-sim takes system configuration

parameters such as number of original data blocks and parities. It simulates different

failures latent block, machine replacement and also failures from different failure domains

disk, machine and rack. It calculates recovery bandwidth, system durability, availability,

durable degraded block count and available degraded block counts during a given period

of simulation time. We have added several classes in an existing ds-sim to accommo-

date proactive recovery techniques proposed in the chapter 3. It measures the energy

consumption of the storage systems. The main contribution of “ds-sim Hybrid” is as

follows,

� A component has been added to calculate system’s energy consumption. Total

energy consumption of the storage is calculated as a sum of energy consumption

of individual disks. Energy consumption of data repair is calculated as the sum of

energy consumed due to data transfer of each recovery.

� We have added components to calculate recovery energy/bandwidth for each pro-

posed recovery methods with varying failure predictions accuracy. We have also

calculated total temporary storage overhead due to the proactive replications.

� On configuration parameters, user can input different proactive recovery methods

according to client SLAs.

6.2 Implementation of “ds-sim Hybrid”

“ds-sim Hybrid” is an extension of the simulator “ds-sim” and several components are

introduced to estimate energy consumption and several proactive recovery techniques

proposed in this research. The ds-sim is developed using java language. The ds-sim
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accepts hardware configurations, failure/recovery parameters and failure traces as input.

It distributes data according to the hardware configurations. It also generates failures

and recovery events for various components using failure parameters and failure traces.

Figure 6.1 shows the architecture of “ds-sim Hybrid”. The components highlighted in

grey are introduced or altered in existing “ds-sim”, to preform proactive replication and

energy measurement.

In cloud storage cluster, client’s data are stored with different reliability methods

and configuration parameters. They are defined by the administrators to meet client’s re-

quirement with minimal resource usage of storage cluster. Using “ds-sim Hybrid” system,

cloud administrator can ensure that the client’s reliability requirements can be satisfied

for any defined configuration parameters. It helps them with analysing the resource usage

in cloud storage systems for any selected parameters.

6.2.1 User Code

User code represents the inputs passed to “ds-sim Hybrid” to simulate a storage cluster.

It represents the reliability techniques, configuration parameters and recovery techniques.

To define a storage cluster, the important parameters like data size, number of disks in

a machine and number of disks per rack are passed. The configuration parameters of

reliability methods, such as, number of original fragments and total number of fragments,

including original and redundant fragments are passed. In 3 way replication, number of

original fragments and total fragments are one and three, respectively. To distribute the

data blocks such that the system can tolerate any defined number of failures, the total

number of racks in a storage cluster is calculated on runtime, using aforementioned pa-

rameters. Various recovery methods, including proposed proactive recovery methods can

be defined with “ds-sim Hybrid” to simulate erasure coded system. Also, in order to gen-

erate various failure and recovery events, for various domains such as machines, racks and

disks, the failure generators and its parameters are passed. Failures and recovery events

of disk and rack are generated using Weibull generator [154]. The failure and recovery

events for machines are generated using Weibull generator and real time failure traces.

Apart from the aforementioned input parameters, the system will accept a parameter for
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recovery type. Recovery type can be defined based on client SLA based.

Several SLA based recovery methods called ProDisk, ProMachine, ProHot and Pro-

Hot LazyCold are proposed in this research for erasure codes. They apply different com-

bination of recoveries using proactive replication, lazy recovery and typical reconstruction

of erasure codes. Recovery methods ProHot and ProHot LazyCold enforce different re-

coveries for hot and cold data. Different percentages of data are defined as hot in a storage

cluster, depending on the behaviour of the application running on top of it. To adapt

with different application’s behaviour, an input parameter is defined in “ds-sim Hybrid”

to classify different amount of data hot. Among the storage data, a specific amount of

data (according to the input parameter) is identified as hot.

6.2.2 System Generation

Once the simulator receives user inputs, it calculates required number of racks according

to the configuration parameters of reliability methods and storage capacity. It also checks

if the calculated number of racks is capable of maintaining each chunk of an object in

different racks. According to the configuration parameter total amount of data to be

stored, total number of objects to be maintained in the storage is calculated. Some other

parameters such as chunk size and number of original fragments are also considered during

this process. The ds-sim uses 256MB as chunk size. After determining number of objects,

it distributes objects into disks such that the simulated storage system tolerates n− k of

failures. This also keeps tracks several variables to calculate average durable degraded,

available degraded and latent defect of objects in a day.

6.2.3 Failure and Recovery Events Generation

This module generates failure and recovery events for components such as rack, machine

and disk for the simulated period of time. Failure and recovery events of various com-

ponents are generated using various generators. Failure and recovery of disk, rack, disk

latent error and scrub is generated using Weibull generator. Each component uses its own

value for shape, size and location parameters of Weibull. For the component machine,

events such as temporary long, temporary short and permanent machine failure rates are
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generated using real time traces or Weibull generator. The recovery events for the same

component are generated by calculating fail fractions.

In the rest of this section, we will see how proactive recovery is implemented in the

existing ds-sim. We will also see how the events are simulated to calculate durability,

availability, network bandwidth/traffic, energy consumption of storage devices, energy

consumption due to recovery events and temporary storage overhead due to proactive

recoveries.

6.2.4 Proactive Recovery

In this section, we will see how various failure predictions are identified and proactive

replications are performed, to accomplish various proactive recovery methods.

Disk/Machine Failure Predictions

This module enables the system to enforce failure predictions with different prediction

accuracy. According to the user input for prediction accuracy, the system marks random

amount of failures as predicted according to the input parameter of failure predictions.

Failure predictions are assumed with the use of a variable. User can also input TIA of the

predictions. According to the specified TIA, the prediction events are generated. Even

though each prediction may use different TIA, for reducing the complexity, we use same

TIA for all failure predictions.

Hot Data Predictions

To enforce the proactive recovery techniques ProHot and ProHot LazyCold that are de-

fined in this research, the system has to identify certain percentage of data as hot data.

We designed the system such that the hot data percentage can vary according to the user

input. We randomly identify user specified percentage of data as hot. We use a variable

to identify hot and cold objects.

Proactive Recovery

On the event of failure predictions, all the objects in the failure predicted machine/disk

are considered for proactive replication, according to the selection of a recovery method.

When the system selects an object to be proactively replicated, it sets a variable to repre-
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Figure 6.1: Architecture of ds-sim Hybrid.

sent that it has an extra copy. On the occurrence of an actual failure, the aforementioned

variable is examined to determine if a particular chunk of an object have an extra copy.

The actual recovery of those chunks is omitted. This variable is unset on the recovery of

that machine or disk. Hence the system ensures that the copy of an object is maintained,

only form the time of prediction till the recovery of the same machine.
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Optimization

This module is designed to implement the optimization problem, which has been defined

in chapter 5. In a distributed storage, it is possible to encounter a machine failure when a

disk in the machine is already predicted for a failure. In this scenario, proactive recovery

could end up in maintaining two additional copies for a same chunk. It must be avoided

to improve the storage efficiency of the system. When system network traffic is already

high, it is optimum to avoid some proactive recovery. An optimization module has been

introduced to optimize proactive recovery. In the event of failure predictions, this module

ensures the system holds one a single additional replica of each in the failure predicted

device. This module also calculates the projected bandwidth need for each proactive

recovery to forecast the network traffic due that proactive recovery.

6.2.5 Estimators

This section sheds some lights on estimating bandwidth, energy, reliability and storage

overhead of various storage systems.

Network Bandwidth/Traffic Estimator

This module calculates network bandwidth/traffic for each simulated events. For perma-

nent machine and disk failure events, this module calculates recovery bandwidth need for

current failure by calculating the amount of data to be transferred. This will vary for

according to the reliability methods. For example, it is equal to chunk size for replication

and k times of chunk size for erasure coding. In lazy recovery method recovery of data

is delayed and amount of data has to be transferred for recovering one chunk is k, two

chunks are k+1 etc. Recovery rate will also be reduced significantly in proactive recovery.

This module calculates network traffic of the current failure event by summing up the

recovery bandwidth of all failure events in that specific time period. When a recovery

is completed, it reduces network traffic accordingly. The maximum network traffic for

the simulation period is recorded as well. Recovery bandwidth of each recovery is also

recorded to calculate average network bandwidth in a day. Activating proactive repli-

cation in erasure coding with 100% prediction accuracy will reduce recovery bandwidth
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better than replication because erasure coding uses less number of storage devices than

replication. Hence it encounters less number of failure events than replication.

Energy Estimator

Total energy consumption of the storage system is calculated by summing up the energy

consumption of each disk in the storage system and energy consumption of router due

to data recovery. To calculate the energy consumption of the storage devices, we have

assumed that the storage devices are always active during the total simulation period. We

did not consider any intervention of an application, running on top of it. Since replication

needs more number of storage devices than erasure coding, replication consumes more

energy, in terms of storage devices. Proactive recovery in erasure coding maintains extra

copy of data from failure predicted devices. Extra copy is maintained from the time of

predictions till the occurrence of actual failure of the same device. To calculate the energy

consumption of the devices that hold an extra copy, every time when the predictions

are encountered, energy consumption of extra devices that hold additional copies are

calculated. During each failure predictions, the amounts of energy consumed by the

temporary storage devices are recorded, to calculate average energy consumptions in a day

due to additional temporary storage overhead. Energy consumption during data recovery

is calculated in terms of amount of data transferred due to this. It is also applicable for

latent sector recovery. Energy consumed during each recovery event are recorded. Using

this, average energy consumption in a day, due to data recovery is calculated.

Reliability Estimator

This module calculates the reliability of data. For each failure, recovery, latent defect

and scrub events, the corresponding variables such as durableCount, availableCount and

latentDefect are changed to keep track of the reliability of data. Initially, they hold the

value total number of replicas. The variable durableCount is reduced for disk failures and

incremented after recovery. The variable availableCount is decremented for both machine

and disk failures and they are incremented after recovery. The variable latentDefect is

decremented for latent defect events and it is incremented after scrub. By incorporating

all three variables, on occurrence each event, unavailability and undurability is calculated.
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When availableCount or durableCount fall below the number of original fragments, corre-

sponding variables unavailable and undurable are incremented. For calculating the number

of durable degraded and available degraded (when a single fragment to (k+1) number of

fragments are lost due to machine or disk failures) stripes in a day, the variables such

as currentSliceDegraded and currentAvailabSliceDegraded are maintained. They are in-

cremented and decremented during failure and recovery events accordingly. Using all the

aforementioned variables, the durability of data is calculated for the simulated period of

time.

Temporary Storage Overhead Estimator

This module calculates the temporary storage overhead due to proactive recovery. On the

occurrence of any failure prediction event, according to the proactive recovery method,

an extra copy of chunks will be created. An extra copy of chunks in a failure predicted

machine/disk will be maintained from the time of prediction till the actual occurrence

of failure of the same machine. In the event of actual failure of predicted machine/disk,

an appropriate reference will be made to the existing copy. To calculate the temporary

storage overhead, each time when the failure predictions are encountered, the amount of

extra copies created are calculated. This will vary according to the proactive recovery

methods defined for storage system. For every prediction, the total size of replicated data

is recorded.

6.2.6 Sequence Diagrams

To present the work flow of various proactive recovery methods that are proposed in this

research, the sequence diagram of each method is depicted. Figure 6.2, 6.3, 6.4 represent

the implementation of failure handling in typical erasure coded storage and failure han-

dling in proactive recovery methods ProDisk, ProMachine, respectively. Typical failure

handling in erasure codes applies necessary changes to the variables those keep track of

durable degraded, available degraded, unavailable and undurable in reliability estimator.

Bandwidth estimator calculates bandwidth involved in recovering data blocks that are

lost during failures. Also, energy estimator will calculate energy that is consumed due
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to the data transfer during repair process. In ProDisk and ProMachine methods, when

failures are predicted, reliability estimator will update respective variables to represent

the extra copy of data fragments. It will also update Metadata for the extra copy which

is generated due to failure prediction. Bandwidth and reliability estimators will calculate

bandwidth and reliability. On the actual occurrence of failure, it will update Metadata to

represent the extra replicated copy as an original fragment of the object. Hence recovery

events of the predicted failures can be skipped.

Figure 6.5 and 6.6 depicts the work flow of recovery methods ProHot and ProHot LazyCold,

respectively. ProHot applies proactive replication only for hot data. ProHot LazyCold

method applies proactive replication for hot data and will apply a delay in recovery for

cold data. ProHot LazyCold will update only reliability estimator, in the event of fail-

ure prediction. Bandwidth and energy estimators will be updated when it activates lazy

recovery. All proposed proactive recovery methods handle disk failure predictions in the

same way. Since machine failures are mostly transient in cloud storage system, we have

proposed different recoveries using client SLA and hot data status of the object. All the

unpredicted failures are handled by the typical recovery of erasure code.

Upon failure predictions, the data in failure predicted machine is marked as copied.

Metadata is also updated accordingly. Upon failure, using Metadata, the system deter-

mines if there is an extra copy of a chunk from failed machine. During recovery of the

failed machine, instead of performing actual reconstruction, it makes some changes in

Metadata such that the pre-copied data becomes the original chunk of the object. In our

experiments, the system marks 40% of random data as hot. If the system does not have

a proactive copy for a data chunk, it is recovered using original data reconstruction in

ProHot recovery method or by applying a delay for ProHot LazyCold method.
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6.3 Validation

Researchers from Facebook and Google collaborated and developed ds-sim [4]. The mod-

ules of the simulator were designed to enable accurate simulation of failures in distributed

storage environments [4]. Due to this, ds-sim has been selected for conducting the per-

formance evaluation of the methods proposed in chapters 3 and 4. Several components

are modified or added in ds-sim to implement ds-sim Hybrid. They are highlighted in

grey in Figure 6.1. Among them the modules such as Energy Estimator, Network Band-

width/Traffic Estimator, Temporary Storage Overhead Estimator and Reliability Esti-

mators are used to analyse the efficiency of cloud storage systems and they need to be

validated for their accuracy. Remaining modules highlighted in grey are introduced or

modified to improve the input requirements of the simulator. All modules, except Energy

Estimator are already available in ds-sim and they are modified in ds-sim Hybrid. The

modules Network Bandwidth/Traffic Estimator, Temporary Storage Overhead Estima-

tor and Reliability Estimators should have been modified to adopt proposed proactive

recovery techniques.

Energy Estimator module has been introduced in ds-sim Hybrid and it is used to

compare energy consumptions of various popular erasure codes, replication and hybrid

techniques that are proposed in this thesis. However, the motive of this research is to

compare the energy consumption of the various reliability techniques. Therefore, energy

consumption due to recovery network bandwidth and storage overhead are estimated using

Energy Estimator module. Energy estimation model is presented in detail in chapter 4 in

section 4.6.

It is certain that a spike in recovery network bandwidth will eventually increase energy

consumption of the storage system. This is applicable for storage overhead as well. Since

real data is not available to validate Energy Estimation module, sensitivity analysis as

described in [155] is used to validate this module. As defined in chapter 4, two separate

energy estimators are formulated to estimate recovery and storage energy. Hence sensi-

tivity analysis is conducted with the extreme values of network bandwidth and storage,

using Analysis Of Variance (ANOVA) [156].
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To analyse recovery energy estimator using ANOVA, results of ProDisk, ProHot and

ProHot LazyCold methods are utilized. The energy consumption of these methods are

estimated using the parameters listed in Table 4.1 of chapter 4. The results from the

aforementioned methods are used to perform ANOVA test since they show extreme varia-

tion in recovery bandwidth as well as temporary storage overhead, as discussed in chapter

3. The ANOVA test results of recovery energy estimator is presented in Table 6.1. The

summary section of this table shows the information about each group. The count shows

the number of samples in each group. The average represents the sample mean of each

group. This shows the mean of different groups are lying in different range. The section

ANOVA shows the details of ANOVA test. The source of variation depicts variation

between groups, within groups and total re variation between and within groups. The

column sum of squares shows sum of square values between groups, within groups and

total sample. The sum of squares between groups is calculated by summing the squared

differences between each group. The sum of squares within group is calculated by sum-

ming the squared differences between each observation and its group mean. The total

sum of squares is calculated by summing the squared differences between each observa-

tion and the overall sample mean. The next column is Degrees of freedom. The degrees

of freedom between groups are one less than the number of groups. For within groups,

it is the difference between total sample size and number of groups. For total, it is one

less than number of groups. Next column is mean squares. It is computed as the ratio

between sum of squares and degrees of freedom. The next column is F statistic and it is

computed by taking the ratio of mean squares of between groups and within groups. The

F critical value can be found in the table probabilities of F distribution. F distribution is

the distribution of all possible values of f statistic. Since F-value is greater than F-critical

in the conducted ANOVA test, we can conclude that the mean of three aforementioned

groups are different. Hence we can conclude that the results produced by the energy

estimator module are statistically valid.

Similarly, in order to validate storage energy estimation, the ANOVA test has been

conducted with the results of ProDisk, ProMachine and ProHot LazyCold. Results of the

test are presented in Table 6.2. Using the same method, we can conclude that the results
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Table 6.1: ANOVA test results of recovery energy estimator

SUMMARY

Groups Count Sum Average

ProDisk 30 2025233.048 67507.76

ProMachine 30 643145.19 21438.17

ProHot LazyCold 30 415728.18 13857.60

ANOVA

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square
F F critical

Between

Groups
5.06E+10 2 1E+10 30822.57 3.101

Within

Groups
71386726.01 87 820537.083

Total 5.07E+10 89

(a) (b)

Figure 6.7: Energy consumption in KJ per day (a) Recovery energy (b) Storage energy

produced by the energy estimator model are statistically valid.

For better understanding of how the data from three extreme groups ProDisk, Pro-

Machine and ProHot LazyCold has been distributed, it is graphically represented using

boxplot. Figure 6.7(a) represents the data spread of energy consumption due to recovery

bandwidth and Figure 6.7(b) depicts storage energy consumption. From both the figures,

we can understand that the mean of the extreme groups are different and the data from

each group are highly skewed.

The ANOVA test results show that the experimental results of Energy Estimator are

valid. The energy savings of various reliability techniques are likely to be caused by the

differences in performance of different strategies.
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Table 6.2: ANOVA test results of storage energy estimator

SUMMARY

Groups Count Sum Average

ProDisk 30 56216.80 1873.89

ProMachine 30 826740.70 27558.02

ProHot LazyCold 30 515279.27 17175.97

ANOVA

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square
F F critical

Between

Groups
1E+10 2 5.01E+09 4955.34 3.101

Within

Groups
87925869.87 87 1010642.182

Total 10104077560.19 89

6.4 Summary

In this section, architecture of “ds-sim Hybrid” simulator is discussed in detail. To anal-

yse the performance of proposed proactive recovery methods and energy consumption of

storage systems, several components are added into the existing ds-sim to design “ds-

sim Hybrid”. The functionality of components in “ds-sim” and “ds-sim Hybrid” are

elaborated here to understand how the various metrics such as reliability, network band-

width/traffic, temporary storage overhead and energy consumptions are calculated while

simulating failures in a distributed storage. This chapter also throws some light on im-

plementing proposed proactive recovery methods in real cloud storage systems.

To address data recovery issues of erasure coding, several proactive recovery methods

are proposed in this thesis. The proposed recovery techniques are evaluated for their

performance. Experiment results showed that they substantially increase resource savings

in erasure codes. Nowadays, cloud storage systems apply erasure coding only for cold data

due to the data recovery issues of erasure coding. Upon selecting appropriate recovery

techniques from proposed proactive recovery techniques, erasure coding can be applied

for any storage systems that hold hot or cold data. Proactive recovery techniques can be

applied effortlessly to existing erasure coded storage systems since it does not suggest any

changes in encoding techniques.



162

6.5 Software Availability

ds-sim Hybrid presented in this chapter available to download on GitHub website:

https://github.com/umarekha/ds-sim_Hybrid

https://github.com/umarekha/ds-sim_Hybrid


Chapter 7

Conclusions and Future Research

Directions

This chapter summarizes the research conducted in this thesis in the area of improving

data reliability of cloud storage system. It also highlights the contributions of this thesis.

Future research directions are also discussed in this chapter.

7.1 Conclusions

Cloud service providers are consistently striving to provide efficient and reliable service, to

their client’s Big Data storage need. Replication is a simple and flexible method to ensure

reliability and availability of data. However, it is not an efficient solution for Big Data

since it always scales in terabytes and petabytes. Hence erasure coding is gaining trac-

tion despite its shortcomings. Deploying erasure coding in cloud storage confronts several

challenges like encoding/decoding complexity, load balancing, exponential resource con-

sumption due to data repair and read latency. This thesis has addressed many challenges

among them. Even though data durability and availability should not be compromised

for any reason, client’s requirements on read performance (access latency) may vary with

the nature of data and its access pattern behaviour. Access latency is one of the impor-

tant metrics and latency acceptance range can be recorded in the client’s SLA. Several

proactive recovery methods, for erasure codes are proposed in this research, to reduce

163
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resource consumption due to recovery. Also, a novel cache based solution is proposed to

mitigate the access latency issue of erasure coding.

Chapter 2 presented a comprehensive literature survey in the area of improving data

reliability of cloud storage systems. Existing fault tolerance techniques employed in cloud

storage systems were highlighted. The pitfalls of the existing methods on improving Big

Data reliability, in literature were highlighted. The advantages and drawbacks of repli-

cation and erasure coding were identified with various aspects. The existing researches

reducing storage overhead in replication and minimizing resource consumption in erasure

coding were analysed carefully. The analysis of literature has helped to address to identify

research gaps. The importance of hybrid reliability technique was discussed in chapter

2 and high level architecture to implement hybrid reliability technique using replication

and erasure coding was also presented.

Chapter 3 proposed several novel proactive recovery techniques for erasure coded stor-

age to mitigate the issue of excessive bandwidth consumption during data repair. The

proposed recovery methods ProDisk, ProMachine, ProHot and ProHot LazyCold use fail-

ure prediction techniques of cloud storage. They suggested to proactively replicating the

data chunks from failure predicted device. The most important hardware failures that

will compromise data durability/availability are machines and disks. ProDisk method,

proactively replicates all data blocks from failure predicted disks. Since disk failures are

very critical. It will compromise durability of data. Hence it suggests replicating all data

blocks from failure predicted disks when they are predicted for failure. This method does

not contribute much to bandwidth savings because disk failure events are very less, com-

pared to temporary node failures which often activate recovery. To reduce the bandwidth

usage due to machine failure, ProMachine method has been defined. This method proac-

tively replicates all blocks from failure predicted machines and disks. During observation,

it has been evaluated that ProMachine offered exceptional bandwidth savings. However,

it also increases temporary storage overhead. To reduce the temporary storage over-

head due to proactive replication, we have defined ProHot method. ProHot proactively

replicates hot data and it applies normal recovery for cold data. This method reduced

temporary storage overhead significantly compared to ProMachine. However, bandwidth
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savings are also reduced. Some applications may require high read performance for hot

data and they may accept some delay in accessing cold data. For those applications, we

have proposed a method called ProHot LazyCold. This method proactively replicates

hot data and applies some delay before recovering cold data. This method substantially

improved recovery bandwidth savings with limited temporary storage overhead. All the

above methods also reduced durable degraded and available degraded object counts and

hence increased reliability. Hence the proposed recovery techniques helps to define cost

effective cloud storage for Big Data applications while also ensuring the high velocity data

read to enhance the performance of Big Data applications.

To further enhance the efficiency of the existing proactive recovery techniques, an op-

timization problem was presented on chapter 4. In proactive recovery methods, an extra

copy of data blocks should be maintained from the time of prediction till the recovery.

An overlap of machine and disk failures may create unnecessary extra copy. Also, ac-

tivating proactive recovery when the recovery traffic is already will lead to unnecessary

throttling. To mitigate those, an optimization problem was formulated with the objective

to minimize the number of data blocks replicated due to proactive recovery. Not sur-

prisingly, the optimization of proactive replications further increased the bandwidth and

temporary storage savings. The optimization also reduced system’s network traffic. To

analyse the energy consumption of storage systems for different reliability techniques and

for erasure coding with different recovery methods, the storage energy consumptions and

recovery energy consumption were estimated. The results showed that the erasure coding

provided huge energy savings compared to replication in terms of storage. The analysis

of recovery energy consumption in typical erasure and erasure with different proposed

proactive recovery methods were conducted. The methods ProDisk, ProHot and ProMa-

chine could not save much energy since the energy savings from recovery is compensated

by the energy consumption of temporary storage. However the method ProHot Lazy cold

provided significant energy savings compared to erasure codes.

Even though the proposed proactive recovery methods contributed to reduce degraded

read latency in erasure coded storage systems, in several cases, it is better to avoid mak-

ing changes in Metadata. For the mission critical applications, latency is one of the most
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important metrics in client SLA. To avoid the degraded read latency of erasure code,

ProactiveCache is proposed in chapter 5. ProactiveCache configures a cache tier with

pre-populated objects from failure predicted devices. It performs object evictions when a

failure predicted device has come back to life. ProactiveCache can be configured in any

object storage as stand alone or with existing traditional cache. ProactiveCache almost

eliminates degraded read latency when the prediction accuracy is high. Even though it

associates some cost to copy data from underlying storage to cache tier, ProactiveCache

provides excellent read performance when there is a failure in underlying system. Proac-

tiveCache enables cloud storage to enhance reliability of Big Data applications in the cost

effective manner. This also supports the high-speed data read requirements of Big Data

applications.

Finally, in chapter 6 the architecture of “ds-sim Hybrid” is discussed. The simulator

ds-sim is extended to implement “ds-sim Hybrid”. It can be used to analyse the energy

consumption of various reliability methods. To implement “ds-sim Hybrid”, several com-

ponents have been added on ds-sim such that it can perform failure prediction, hot data

prediction and proactive replications of various proposed methods. The “ds-sim Hybrid”

accepts one of the proactive recovery methods as input and simulate the given method

to calculate several metrics like recovery bandwidth, energy, temporary storage overhead

and reliability. It also accepts hot data percentage and prediction percentage to simulate

proactive recovery with various prediction accuracy rates.

7.2 Future Research Directions

Although the investigated methodologies in this thesis contribute to improve Big Data

reliability, there are still several aspects that need to be explored comprehensively. This

section discusses future directions.

7.2.1 Popularity driven recovery

In (n, k) erasure coded storage any failure that jeopardise a single data block to n-k-

1 data blocks simply marks the object degraded and they do not affect durability and

availability of data. Any read request to the object is served by performing reconstruction
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on the fly. Even though repairing the objects that are degraded is important to ensure

the durability and availability of data, delaying such a repair particularly when the failure

domain is machine (mostly machine failures are transient) will have very minimal impact

on durability and availability of data. Degraded read latency can get affected due to the

delay in repair. However, a delay in accessing cold data is acceptable for some applications.

A software defined recovery system has to be developed such that the system defines an

appropriate recovery method by examining the access pattern behaviour of application

periodically. Any changes in access pattern behaviour have to reflect on data recovery

method of the erasure coded storage.

Developing system that defines access pattern defined recovery will automatically avoid

unnecessary recovery and also will automatically select the failures which need immediate

attention. By selecting appropriate recovery the system will not only regulate storage

systems network and energy usage but also reduces access latency of hot data by providing

priory to the hot data during recovery.

7.2.2 Efficient Proactive Replica Scheduling

Several proactive replication techniques for erasure codes are proposed in this thesis. How-

ever, efficient scheduling of replicas, in cloud storage is not evaluated. Replicas can be

scheduled into machine which has smaller I/O queue. In geographically distributed stor-

age, replicas can be allocated to the location where more read requests are received. By

scheduling the proactive replicas, into appropriate disks/machines, the energy savings and

read performance could be greatly improved. Also, activating reactive or proactive migra-

tions in erasure codes, with respect to device failure predictions, node’s read performance

and workload evaluation could be other promising research directions.

7.2.3 Failure Prediction

Any disk or machine failure predictions both in replication and erasure coding help to

proactively handle those failures. Hence prediction accuracy of the machine or disk failures

has to be improved. Most accurate disk failure prediction methods, proposed in literature

use SMART attributes. Even though they achieve high accuracy with less false positives,
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they could not improve accuracy more than 95% [135, 113, 136, 29]. Failure prediction

accuracy has to be improved with machine learning models such as neural networks.

Machine availability and unavailability predictions have to be improved with reasonable

TIA. Hence the proactive actions can be performed at right time.

7.2.4 Load balancing in Erasure Coding

Replication maintains 3 copies. Any request to read can be redirected to the node which

has minimal I/O queue. In erasure coding, if a node has become a hot spot, the tail

latencies are increased. Degraded read is activated only when a read time-out occur.

Degraded read will select any other k nodes to access the data blocks and it performs

reconstruction to obtain an original data. This approach does not only increases tail

latency but also increases bandwidth usage due to degraded read. To reduce tail latency

due to the poor load balancing of erasure codes, proactive hybrid reliability methods

should be developed. Either an extra copy of data has to be proactively maintained or

selected objects have to be proactively moved to cache to reduce tail latency in erasure

codes.

7.2.5 Reliability of Decentralized Cloud Storage

Decentralized cloud storage is the future for all Big Data storage need. Decentralised stor-

age eliminates central control and hence it improves security and privacy of the storage.

In decentralised storage any node can go offline permanently. The decentralized storage

Storj [107] have calculated that eight redundancies have to be maintained to improve

durability of data. Since bandwidth requirement to maintain eight copies are substan-

tially high, they have decided to use (40, 20) erasure to improve reliability [107]. Using

(40, 20) erasure code the durability and availability can be assured with less storage over-

head. However, this also confronts several challenges. The most important challenges of

using erasure coding in decentralized cloud storage as follows:

� Applying erasure coding on streaming data is more challenging due to the encod-

ing complexity of data. Erasure coding already involves complex encoding. The

additional encodings proposed in literature may further increase the encoding com-
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plexity. Hence simple and repair efficient encoding techniques must be proposed.

� In decentralized storage, nodes are distributed geographically. Since Reed-Solomon

(40, 20) is a popular choice of improving reliability, data are spread into large

number of nodes [107]. In case of any failure in this system, data from 20 nodes

should be retrieved for repairing lost date. Hence, it provides multiple choices to

select a subset of data to perform data reconstruction. To improve degraded read

performance in decentralised storage, node selection for data reconstruction should

be optimized using participating nodes read performance and physical distance.

7.2.6 Edge Computing and Erasure Coding

Edge computing paradigm enables data storage to be placed closer to clients and it reduce

response time [157]. Data access latency of erasure coding is one of the most important

issues, which prevent it being more pervasive in cloud storage. ProactiveCache proposed

in this thesis suggests configuring cache tier on top of the primary storage with failure pre-

dicted data. It significantly reduces degraded read latency. To further amplify degraded

read performance, cache tier of Proactive cache can be replaced with edge storage.

Storage capacity of edge tier is very limited and erasure coding could be an optimal

mean to improve data reliability of the edge. However, an appropriate erasure code with

minimal encoding and decoding complexity should be defined to meet computational

limitations of edge.

7.2.7 Big Data and Erasure Coding

One of the important parameter of Big Data is velocity. Velocity refers both read and write

efficiency. Erasure coding is the cost efficient solution to improve reliability of Big Data

when considering the volume property of Big Data. However, its encoding and decoding

complexity will affect the read and write performance. This thesis has addressed several

challenges attributed to read performance. In order to improve the write performance of

erasure codes, novel techniques should be developed such that it defines high reliability

with less encoding complexity.



Bibliography

[1] David Reinsel, John Gantz, and John Rydning. “The digitization of the world:

from edge to core”. In: Framingham: International Data Corporation (2018).

[2] Maheswaran Sathiamoorthy et al. “Xoring elephants: Novel erasure codes for big

data”. In: Proceedings of the VLDB Endowment. Vol. 6. 5. VLDB Endowment.

2013, pp. 325–336.

[3] Rekha Nachiappan et al. “Cloud storage reliability for Big Data applications: A

state of the art survey”. In: Journal of Network and Computer Applications 97

(2017), pp. 35–47.

[4] Mark Silberstein et al. “Lazy means smart: Reducing repair bandwidth costs in

erasure-coded distributed storage”. In: Proceedings of the International Conference

on Systems and Storage (SYSTOR). Haifa, Israel: ACM, 2014, pp. 1–7.

[5] Sungjoon Koh et al. “Understanding system characteristics of online erasure coding

on scalable, distributed and large-scale SSD array systems”. In: 2017 IEEE Inter-

national Symposium on Workload Characterization (IISWC). IEEE. 2017, pp. 76–

86.

[6] John Gantz and David Reinsel. “The digital universe in 2020: Big data, bigger

digital shadows, and biggest growth in the far east”. In: IDC iView: IDC Analyze

the future 2007.2012 (2012), pp. 1–16.

[7] Doug Beaver et al. “Finding a Needle in Haystack: Facebook’s Photo Storage.” In:

OSDI. Vol. 10. 2010. 2010, pp. 1–8.

170



171

[8] Bart Baesens. Analytics in a big data world: The essential guide to data science

and its applications. John Wiley & Sons, 2014.

[9] Tom Groenfeldt. Big Data—Big Money Says It Is a Paradigm Buster. 2012.

[10] CL Philip Chen and Chun-Yang Zhang. “Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data”. In: Information Sciences 275

(2014), pp. 314–347.

[11] Daniel Ford et al. “Availability in Globally Distributed Storage Systems.” In: Osdi.

Vol. 10. 2010, pp. 1–7.

[12] Haryadi S Gunawi et al. “Towards Automatically Checking Thousands of Failures

with Micro-specifications.” In: HotDep. 2010.

[13] Peipei Wang, Daniel J Dean, and Xiaohui Gu. “Understanding Real World Data

Corruptions in Cloud Systems”. In: Cloud Engineering (IC2E), 2015 IEEE Inter-

national Conference on. IEEE. 2015, pp. 116–125.

[14] AWS. Summary of the Amazon DynamoDB Service Disruption and Related Im-

pacts in the USEastRegion. 2016. url: https://aws.amazon.com/message/

5467D2/ (visited on 2016).

[15] James S Plank. “Erasure codes for storage systems: A brief primer”. In: The Usenix

Magazine 38.6 (2013), pp. 44–50.

[16] Cheng Huang et al. “Erasure Coding in Windows Azure Storage.” In: Usenix an-

nual technical conference. Boston, MA. 2012, pp. 15–26.

[17] Subramanian Muralidhar et al. “f4: Facebook’s warm blob storage system”. In:

Proceedings of the 11th USENIX conference on Operating Systems Design and

Implementation. USENIX Association. 2014, pp. 383–398.

[18] KV Rashmi et al. “A Solution to the Network Challenges of Data Recovery in

Erasure-coded Distributed Storage Systems: A Study on the Facebook Warehouse

Cluster.” In: HotStorage. 2013.

https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/5467D2/


172

[19] Danny Harnik, Dalit Naor, and Itai Segall. “Low power mode in cloud storage

systems”. In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE Inter-

national Symposium on. IEEE. 2009, pp. 1–8.

[20] Akshay Kumar, Ravi Tandon, and T Charles Clancy. “On the latency and energy

efficiency of erasure-coded cloud storage systems”. In: arXiv preprint arXiv:1405.2833

(2014).

[21] Wenying Zeng et al. “Research on cloud storage architecture and key technolo-

gies”. In: Proceedings of the 2nd International Conference on Interaction Sciences:

Information Technology, Culture and Human. ACM. 2009, pp. 1044–1048.

[22] Mike Mesnier, Gregory R Ganger, and Erik Riedel. “Object-based storage”. In:

IEEE Communications Magazine 41.8 (2003), pp. 84–90.

[23] Raghavendra Kune et al. “The anatomy of big data computing”. In: Software:

Practice and Experience 46.1 (2016), pp. 79–105.

[24] James O’Reilly. Network Storage: Tools and Technologies for Storing Your Com-

pany’s Data. Morgan Kaufmann, 2016.

[25] R Vijayakumari, R Kirankumar, and K Gangadhara Rao. “Comparative analysis

of google file system and hadoop distributed file system”. In: (2014).

[26] Yogesh Sharma et al. “Reliability and energy efficiency in cloud computing systems:

Survey and taxonomy”. In: Journal of Network and Computer Applications 74

(2016), pp. 66–85.

[27] Rajasekharan. Data Reliability in Highly Fault-Tolerant Cloud Systems. 2014. url:

https://pdfs.semanticscholar.org/abe7/%207e70864a0d914365ed755cac5ce1abc3b8b0.

pdf/ (visited on ).

[28] Eric Brewer et al. “Disks for data centers”. In: White paper for FAST 1.1 (2016),

p4.

[29] Gordon F Hughes et al. “Improved disk-drive failure warnings”. In: IEEE Trans-

actions on Reliability 51.3 (2002), pp. 350–357.

https://pdfs.semanticscholar.org/abe7/%207e70864a0d914365ed755cac5ce1abc3b8b0.pdf/
https://pdfs.semanticscholar.org/abe7/%207e70864a0d914365ed755cac5ce1abc3b8b0.pdf/


173

[30] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. “Characterizing cloud

computing hardware reliability”. In: Proceedings of the 1st ACM symposium on

Cloud computing. ACM. 2010, pp. 193–204.

[31] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. “Failure Trends
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