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ABSTRACT

As the base of the software stack, system-level software is expected to provide efficient

and scalable storage, communication, security and resource management functionalities.

However, there are many computationally expensive functionalities at the system level,

such as encryption, packet inspection, and error correction. All of these require substantial

computing power.

What’s more, today’s application workloads have entered gigabyte and terabyte scales,

which demand even more computing power. To solve the rapidly increased computing

power demand at the system level, this dissertation proposes using parallel graphics pro-

cessing units (GPUs) in system software. GPUs excel at parallel computing, and also

have a much faster development trend in parallel performance than central processing units

(CPUs). However, system-level software has been originally designed to be latency-oriented.

GPUs are designed for long-running computation and large-scale data processing, which are

throughput-oriented. Such mismatch makes it difficult to fit the system-level software with

the GPUs.

This dissertation presents generic principles of system-level GPU computing developed

during the process of creating our two general frameworks for integrating GPU computing

in storage and network packet processing. The principles are generic design techniques

and abstractions to deal with common system-level GPU computing challenges. Those

principles have been evaluated in concrete cases including storage and network packet

processing applications that have been augmented with GPU computing. The significant

performance improvement found in the evaluation shows the effectiveness and efficiency of

the proposed techniques and abstractions. This dissertation also presents a literature survey

of the relatively young system-level GPU computing area, to introduce the state of the art

in both applications and techniques, and also their future potentials.
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CHAPTER 1

INTRODUCTION

System-level software sits at the bottom of the software stack, including file systems,

device drivers, network stacks, and many other operating system (OS) components. They

provide basic but essential storage, communication and security functionalities for upper-

level applications. It is vital for system software to make those functionalities efficient

and scalable, otherwise the entire software stack will be slowed down. Yet, many system-

level functionalities require substantial computing power. Examples include encryption for

privacy, deep packet inspection for network protection, error correction code or erasure code

for fault tolerance, and lookups in complex data structures (file systems, routing tables, or

memory mapping structures). All of these may consume excessive processing power. What’s

more, today’s application workloads are dramatically increasing: gigabytes or even terabytes

of multimedia contents, high definition photos and videos, tens or even hundreds of gigabits

per second network traffic and so on. Thus more and more computing power is needed to

process those bulk-data workloads on modern rich functional software stacks.

A very common and important feature of many system-level computational function-

alities is that they are inherently parallelizable. Independent processing can be done in

parallel at different granularities: data blocks, memory pages, network packets, disk blocks,

etc. Highly parallel processors, in the form of graphics processing units (GPUs), are now

common in a wide range of systems: from tiny mobile devices up to large scale cloud server

clusters [1] and super computers [2]. Modern GPUs provide far more parallel computing

power than multicore or many-core central processing units (CPUs): while a CPU may

have two to eight cores, a number that is creeping upwards, a modern GPU may have over

two thousands [3], and the number of cores is roughly doubling each year [4]. As a result,

exploiting parallelism in system-level functionalities to take advantage of today’s parallel

processor advancement is valuable to satisfy the excessive demand of computing power by

modern bulk-data workloads.

GPUs are designed as a throughput-oriented architecture [5]: thousands of cores work
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together to execute very large parallel workloads, attempting to maximize the total through-

put, by sacrificing serial performance. Though each single GPU core is slower than a CPU

core, when the computing task at hand is highly parallel, GPUs can provide dramatic

improvements in throughput. This is especially efficient to process bulk-data workloads,

which often bring more parallelism to fully utilize the thousands of GPU cores.

GPUs are leading the way in parallelism: compilers [6, 7, 8], algorithms [9, 10, 11],

and computational models [12, 13, 14] for parallel code have made significant advances in

recent years. High-level applications such as video processing, computer graphics, artificial

intelligence, scientific computing and many other computationally expensive and large scale

data processing tasks have benefited with significant performance speedups [15, 16] from

the advancement of parallel GPUs. System-level software, however, have been largely left

out of this revolution in parallel computing. The major factor in this absence is the lack of

techniques for how system-level software should be mapped to and executed on GPUs.

For high-level software, GPU computing is fundamentally based on a computing model

derived from the data parallel computation such as graphics processing and high perfor-

mance computing (HPC). It is designed for long-running computation on large datasets,

as seen in graphics and HPC. In contrast, system-level software is built, at the lowest

level of the software stack, on sectors, pages, packets, blocks, and other relatively small

structures despite modern bulk-data workloads. The scale of the computation required on

each small structure is relatively modest. Apart from that, system-level software also has

to deal with very low-level computing elements, such as memory management involving

pages, caches, and page mappings, block input/output (I/O) scheduling, complex hard-

wares, device drivers, fine-grained performance tuning, memory optimizations and so on,

which are often hidden from the high-level software. As a result, system-level software

requires technologies to bridge the gap between the small building structures and the large

datasets oriented GPU computing model; also to properly handle those low-level computing

elements with careful design trade-offs and optimizations, to take advantage of the parallel

throughput-oriented GPU architecture.

This dissertation describes the generic principles of system-level GPU computing, which

are abstracted and learned from designing, implementing and evaluating general throughput-

oriented GPU computing models for two representative categories of system-level software:

storage applications and network packet processing applications. Both models are in the

form of general frameworks that are designed for seamlessly and efficiently integrating

parallel GPU computing into a large category of system-level software. The principles
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include unique findings of system-level GPU computing features, and generic design tech-

niques and abstractions to deal with common system-level GPU computing challenges we

have identified. The significant performance improvements in storage and network packet

processing applications brought by integrating GPU computing with our frameworks shows

the effectiveness and efficiency of the proposed techniques and abstractions, and hence

supporting the following statement:

1.1 Dissertation Statement

The throughput of system software with parallelizable, computationally expensive tasks

can be improved by using GPUs and frameworks with memory-efficient and throughput-

oriented designs.

1.2 Contributions

The contributions of this dissertation work include the following.

• Two general frameworks, GPUstore [17] and Snap [18], for integrating parallel GPU

computing into storage and network packet processing software, as described in Chap-

ter 4 and Chapter 5.

• Three high throughput GPU-accelerated Linux kernel storage components, including

a filesystem and two storage device mappers, which are discussed in Chapter 4.

• A set of Click [19] elements for Snap to help build parallel packet processing pipelines

with GPUs, which are described in Chapter 5.

• A modified fully functional Click Internet protocol (IP) router with fast parallel GPU

acceleration built on top of Snap as described in Chapter 5.

• A literature survey of system-level GPU computing that covers existing work, poten-

tial applications, comparison of the useful techniques applied in surveyed work and

the ones proposed in our work as presented in Chapter 6.

1.3 Findings

Besides the above contributions, we also have found and learned valuable facts and

lessons from designing and implementing GPUstore and Snap. We believe they are common

and applicable to other system-level GPU computing software, too. We will thoroughly

discuss them in the later chapters. For now, they are listed below as an overview.

• Batching improves GPU utilization. System code is often latency-oriented. As

a result, system software often works with small building blocks. However, GPUs’

architecture is throughput-oriented. Small building blocks lead to constant overhead
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and low GPU utilization. To bridge the gap between the latency-oriented system

code and throughput-oriented GPUs, batching small blocks to process many at once

amortizes the overhead and improves GPU utilization. Batching may increase the

processing latency of a single block, but for systems dealing with I/O, adding relatively

small latency is tolerable.

• High throughput computing needs truly asynchronous GPU programming.

With the required synchronization, current GPU programming models are mismatched

to asynchronous system components, which widely exist in file systems, block I/O,

device drivers, and network stacks at system level. Synchronization stalls the typical

GPU computing pipeline which consists of three common stages: (1) host-to-device

direct memory access (DMA) copy; (2) GPU kernel execution; (3) device-to-host DMA

copy. Event-based or callback-based asynchronous GPU programming is necessary for

asynchronous systems code, allowing it to fully utilize the GPU pipeline and achieve

high throughput.

• System code has data usage patterns that are different from traditional

GPU code. Traditional GPU computing usually reads the data from a file or the

network into host memory, copies the entire data buffer into GPU device memory, and

does the computation based on all the data. However, the code in a system component

often works as a stage of a long data processing pipeline, and may use either the entire

dataset passed through the pipeline, or just a few small pieces. In order to improve the

system performance, special care must be taken to provide different memory models

to system code (both the CPU side code and the GPU side code) according to the

code’s data usage pattern.

– The computation needs all the data. This data usage pattern is similar to

traditional GPU computing. In this case, the GPU needs the entire dataset to

be copied into GPU memory. To reduce the memory copy overhead, we should

focus on reducing the copy within host memory. Different from traditional GPU

computing, in the system-level context, processing stages often pass data buffers

owned by a third party, such as the page-cache managed memory in the storage

stack and network packet buffers in the network stack, through a long pipeline.

Remapping the memory to make it GPU DMA-capable avoids redundant memory

copy in host memory.

– The computation uses just a few small pieces of the large trunk of

data. In contrast to most GPU computing, some system-level computing tasks
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such as packet processing use only a few small pieces of the entire dataset. In

this case, copying the entire dataset into GPU memory wastes a large portion

of the bus bandwidth. Considering the much higher host memory bandwidth

than the bus bandwidth, it is worth copying the scattered small pieces into a

consecutive host memory buffer, allowing one smaller DMA copy to GPU. Such

trade-off takes advantage of the faster host memory to reduce the overall memory

copy time. Gathering the scattered pieces together also benefits memory access

coalescing on the GPU, taking advantage of the wide GPU memory interface.

1.4 Dissertation Outline

Chapter 2 gives a simple background introduction of concepts, techniques and features of

general purpose GPU computing. This chapter tries to get readers without GPU computing

background familiar with it, and also defines the terminology used in later chapters. Readers

familiar with traditional GPU computing can skip this.

Chapter 3 describes the system-level GPU computing principles at the high level. It

discusses the challenges and special requirements in system-level GPU computing and the

proposed techniques and abstractions to deal with them.

Chapter 4 describes the storage framework GPUstore, including the design, implemen-

tation and the experimental evaluation. The GPU-accelerated file system and block device

drivers built on top of GPUstore have achieved up to an order of magnitude performance

improvements compared with the mature CPU-based implementations.

Chapter 5 describes the network packet processing framework Snap, similar to the

previous GPUstore, including the design, implementation and the experiments. The demon-

strated deep packet inspection router built with Snap has shown 40 Gbps (gigabits per

second) line rate packet processing throughput at very small packet size.

Chapter 6 is the survey of system-level GPU computing, which includes both existing

work and the identified possible application areas. The survey discusses techniques used by

other system-level GPU systems to compare with what this dissertation has proposed and

applied.

Chapter 7 reviews the dissertation and concludes.



CHAPTER 2

GENERAL PURPOSE GPU COMPUTING

This chapter describes essential general purpose GPU (GPGPU) computing background

that is needed to help understand the rest of the dissertation. Currently, there are two most

widely used GPGPU frameworks: compute unified device architecture (CUDA) [4] and

open computing language (OpenCL) [20]. CUDA is a proprietary framework developed by

NVIDIA corporation; OpenCL is a public framework designed by Khronos Group. Despite

its proprietary feature, CUDA has several advanced features, such as concurrent streaming

and flexible memory management which are helpful to system-level computing and OpenCL

missed at the time of my dissertation work. As a result, CUDA is used in this dissertation

to represent the lowest level GPGPU computing framework. And its terminology and

concepts are used in this chapter to explain GPGPU computing. For a comprehensive

description of CUDA-based modern GPGPU computing, readers may refer to NVIDIA’s

CUDA programming guide [4].

2.1 Overview

A GPU works as a coprocessor of the CPU. It has dedicated video memory on the card

to save the computing data. The processor cores on GPU can only access the video memory,

so any data to be processed by the GPU must be copied into the video memory. To utilize

the GPU, a typical workflow includes three steps:

1. CPU code copies the data to be processed from main memory (also called “host

memory” in CUDA) to the video memory (also called “device memory”);

2. CPU code starts the GPU kernel, which is the program to be executed on the GPU,

to process the copied data and produce the result in the device memory;

3. After the GPU kernel execution, the CPU code copies the result from device memory

back to host memory.

Most GPUs sit in the peripheral component interconnect express (PCIe) slots, needing DMA

over PCIe for the aforementioned memory copy. The GPU kernel is a program consisting



7

of GPU binary instructions. Using CUDA, programmers can write C/C++ code, then use

nvcc to compile them into GPU instructions. CUDA also provides runtime libraries to

allow CPU code to use special host memory, device memory, make DMA copy and manage

GPU execution.

2.2 Parallel GPGPU

A GPGPU is a special single instruction multiple data (SIMD) processor with hundreds

or thousands of cores and a variety of memory types (as shown in Figure 2.1). On recent

CUDA GPUs, each 32 cores are grouped into a “warp.” All 32 cores within a warp share

the same program counter. A GPU is divided into several “stream multiprocessors,” each of

which contains several warps of cores and fast on-chip memory shared by all cores. A GPU

kernel is executed by all the physical cores in terms of threads. So for a given GPU kernel,

it becomes one thread on each GPU core when executing. High-end GPU models, such as

GTX Titan Black [3], can have as many as 2880 cores. In that sense, up to 2880 threads can

concurrently run on a GPU to execute a single GPU kernel. Threads on GPU cores may

do hardware-assisted context switching, in case of memory operations or synchronization,

which is determined and scheduled by the GPU hardware. Such zero-cost hardware context

switching makes it possible to run millions of threads on a single GPU without any context

switching overhead. Such a “single kernel executed by multiple threads” computing model

is called single instruction multiple threads, or SIMT.

SIMT is a simple and efficient parallel processor design. But similar to other SIMD

processors, the performance of SIMT may suffer from any control flow divergence because

of the shared program counter within a warp. On CUDA GPUs, any control flow divergence
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Figure 2.1. Architecture of a CUDA GPU.



8

within a warp may cause serialized control flow. When a core executes the control flow

branch that its current thread should not jump into, it simply disables memory or register

access to disable the execute effects. Different from the powerful sequential cores on CPUs

that are armed with large cache, out-of-order execution and accurate branching prediction,

a single GPU core is very weak. The performance speedup of many GPGPU programs

comes from partitioning the workload into millions of small pieces processed by thousands

of lame cores in parallel. As a result, a GPU kernel full of such control flow structures may

severely slow down the GPU performance due to the control flow divergence.

SIMT architecture requires programmers to carefully tune their GPU kernels to avoid

conditional structures and to reduce as many loops as possible. This can affect the data

processing design in system software. For example, when using GPUs to process a batch of

network packets through the network stack, packets in the batch may diverge to different

paths because of their different protocols. Such path divergence will lead to warp divergence

on GPUs because GPU kernel threads must execute different code for packets going to

different paths. As we will see in Snap, we have proposed techniques and design principles

to reduce the overhead caused by this problem.

2.3 GPU Memory Architecture

The original video memory on GPU board has been largely increased to up to 6GB

(gigabyte) for a single GPU. Compared with the instruction execution on GPU cores,

accessing GPU video memory, which is also called global memory, is much slower and

may cost hundreds of cycles. So global memory access is a time consuming operation that

should be minimized. Fortunately, the GPU memory bus width is much wider than normal

CPUs, e.g., some model [3] has a 384 bits memory bus width which leads to 336 GB/s

bandwidth. Though a single thread may not be able to fully utilize the 384 bits bus, a

SIMT-oriented GPU kernel may take advantage of the wide bus by issuing memory access

operations to consecutive locations from the same warp, which is called “memory access

coalescing.”

Besides the global memory, there are some special memory types on GPUs for fast

memory access in certain applications (as shown in Figure 2.1). Constant memory is a

small region of memory that supports fast read-only operations. Texture memory is similar

to constant memory but has very fast special access patterns. For example, according

to the Kargus [21] network intrusion detection system (NIDS), using texture memory

for deterministic finite atomata (DFA) transition table improves the pattern matching
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performance by 20%. Shared memory can be viewed as a program-controlled cache for a

block of threads. Its access latency can be 100x lower than the uncached global memory. In

fact, current CUDA GPUs use a single region of 64KB (kilobyte) on-chip memory per stream

multiprocessor to implement both layer one (L1) cache and shared memory, allowing either

48 KB cache and 16 KB shared memory or 16 KB cache and 48 KB shared memory split

that is configurable by programmers. Besides program-controlled cache for fast frequent

data access, shared memory can also be used to achieve global memory access coalescing,

e.g., when using four threads to encrypt a single 16-byte advanced encryption standard

(AES) data block, each thread can issue a four-byte read operation to be coalesced into a

single sixteen-byte transaction.

As a result, to achieve high performance GPU computing, a GPU program should

be designed and executed with the following memory related considerations: consecutive

threads should issue coalescable memory accesses; memory access latency can be hidden by

launching more threads than cores in order to switch out the threads that wait for memory

transaction; read-only data should go into constant or texture memory; frequently accessed

data should go into shared memory.

2.4 Advanced GPGPU Computing

GPUs have been designed to be more than simple coprocessors. Many advanced tech-

niques have been applied to improve the GPU computing environment. In the hardware

perspective: GPUs are capable of having multiple GPU kernels executed concurrently on

their cores; some high-end GPUs have more than one DMA engine on a single GPU board;

the rapidly development of dynamically random access memory (DRAM) technology has

significantly reduced the cost of large volume of DRAM in modern computers, so using large

trunks of nonpageable dedicated physical memory for DMA is feasible. To utilize these

hardware features to improve the GPU computing performance, CUDA has implemented

and exposed software interfaces for programmers to access them.

CUDA provides the “stream” abstraction, which represents a GPU computing context

consisting of a DMA engine for memory copy, and GPU cores for GPU kernel execution.

CUDA GPUs support multiple concurrent streams, which essentially enables concurrent

execution of multiple GPU kernels on a single GPU, and utilizes multiple DMA engines

for concurrently bidirectional PCIe transfers. Each stream is independent of the other:

operations (memory copy and GPU kernel execution) in the same stream are sequentially

performed, but operations in different streams are totally independent. This provides an
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asynchronous streaming GPU computing model, which may fully utilize the execution and

copy capabilities of GPUs.

DMA memory copy requires nonpageable memory pages that are locked in physical

memory. So if a program wants to copy the data in pageable memory with GPU DMA,

the GPU driver has to firstly allocate an extra locked memory buffer, then copy the data

from pageable memory to locked memory, and finally copy the data from locked memory

to the GPU with DMA. This causes a double-buffering problem that causes an extra copy

in host memory and also wastes extra memory space. As a result, a program should use

locked memory directly to store its data in order to avoid this double-buffering problem in

GPU DMA.

2.5 Efficient GPGPU Computing Techniques

To achieve efficient GPGPU computing, the aforementioned GPU features must be

considered to design GPU kernels and to design the host side software.

• SIMT architecture requires as few branches as possible in GPU kernel’s control flow

to avoid warp divergence. This is more an algorithmic requirement than a system

one. However, as the packet processing example shows in Section 2.2, sometimes the

system-level processing control flow can cause the GPU side divergence, hence it re-

quires the system design to be GPU-aware, to either avoid processing flow divergence,

or apply techniques to reduce the divergence overhead like in Snap.

• The wide memory bus requires coalescable memory accesses in consecutive threads.

This not only requires SIMT GPU kernel to guarantee coalescable memory accesses

from consecutive threads, but also needs designing coalescing-friendly data structures

or data layout in system-level software.

• The variety of different GPU memory requires GPU kernels to be carefully optimized

and tuned to make use of the faster read only memory regions and shared memory.

This is mostly a general algorithmic requirement, not a very “system” need. But

as said in Section 2.3, system code still needs finely tuned system-level algorithms

such as Kargus’ DFA table placement in texture memory that improves 20% pattern

matching performance.

• The CUDA stream technology requires programmers to make use of the concurrency

and bidirectional PCIe bus with careful design. This needs system designers to take

advantage of concurrent workloads or partitioning large single-threaded workload,

properly abstracting the computations on GPUs to utilize the overlapped GPU com-
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putation and memory copy pipeline enabled by CUDA stream.

• The page-locked memory requires the programmers to design their memory man-

agement mechanism with the consideration of GPU resources at the very beginning.

Because memory management in system-level, especially in OS components can be

very complex. System components can either have their own memory allocators,

or more often, just work as stages in a pipeline that don’t own the memory of the

processed data buffers at all.

Traditional GPGPU computing considers mostly the GPU side optimization techniques

such as the SIMT architecture, wide memory bus and different types of device memory.

Their workflows are often very simple, as shown in Section 2.1. For these kind of tradi-

tional GPGPU programs, all the complex low-level problems such as memory management,

memory copy efficiency, bus bandwidth, device synchronization overhead, interaction with

other system components, are hidden and handled efficiently by the system-level code. Now

when it comes to the system-level software targeted in this dissertation, all of them must

be considered in the system design when integrating GPU computing. Special system-level

data usage patterns may cause large PCIe bus bandwidth waste when copying memory, and

may also cause difficulty to issue coalescable memory accesses from GPU threads. Using

page-locked memory may be not as simple as calling the CUDA memory allocator; it may

lead to complex memory page remapping in system code. Some inherently asynchronous

system codes may not be able to afford the host-device synchronization because that will

change their efficient ways of working. All of these system-level issues must be handled in

this dissertation work, as will be shown in the next chapter.



CHAPTER 3

SYSTEM-LEVEL GPU COMPUTING

PRINCIPLES

A lot of system-level workloads are good candidates of the throughput-oriented GPU

accelerations: file systems and storage device layers use encryption, hashing, compression,

erasure coding; high bandwidth network traffic processing tasks need routing, forwarding,

encryption, error correction coding, intrusion detection, packet classification; a variety of

other computing tasks perform virus/malware detection, code verification, program control

flow analysis, garbage collection and so on. Not every system-level operation is capable

of throughput improvement with GPUs. Those inherently sequential or latency sensitive

tasks such as process scheduling, acquiring current date-time, getting process identifier (ID),

setting up I/O devices, allocating memory and so on definitely can’t afford the relatively

high-latency GPU communication that often crosses external buses.

Some early system-level work has demonstrated the amazing performance speedup using

GPUs: PacketShader [22], a GPU-accelerated software router, is capable of running IP rout-

ing lookup at most 4x faster than the CPU-based mode. SSLShader [23], a GPU-accelerated

secure sockets layer (SSL) implementation, runs four times faster than an equivalent CPU

version. Gnort [24], as an GPU-accelerated NIDS, has showed 2x speedup over the original

CPU-based system. EigenCFA [25], a static program control flow analyzer, has reached as

much as 72x speedup when transforming the flow analysis into matrix operations on GPUs.

However, all of them are very specialized systems that have been done in an ad hoc way

to deal with performance obstacles such as memory copy overhead, parallel processing design

and those mentioned in the previous chapter, without considering any generic systematic

design for a wide range of related applications. A general system-level GPU computing

model needs to provide generic design principles. It requires a thorough study of system-level

behaviors and GPU computing features to identify the common challenges when integrating

GPUs into low-level system components, and then come up with generic techniques and
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abstractions to decompose the system, trade off design choices according to contexts, and

finally solve the problems.

This chapter discusses the generic challenges faced by system-level GPU computing and

our proposed design principles. Similar to traditional general purpose GPU computing,

tuning GPU kernel to make parallel algorithms fully utilize the SIMT cores is important

to system-level code, too. However, a unique feature of system-level computing tasks is

that most of them are much simpler than the application-level tasks in scientific computing

and graphics processing. If we take a look at the surveyed computing tasks in system-level

in Section 6.1, they are mostly one-round deterministic algorithms without any iterative

scheme and convergence requirement such as in partial differential equation (PDE) al-

gorithms and randomized simulations. In that case, other noncomputational costs may

become major overhead: for example, as we evaluated for GPUstore, the significant AES

performance improvements with a variety of memory copy optimization techniques show

that the memory copy, rather than the cipher computation, is the bottleneck. As a result,

system-level GPU computing is faced with challenges from not only traditional device side

GPU kernel optimization, but also the host side GPU computing related elements. The

following sections discuss each of the major challenges we’ve identified in the GPUstore and

Snap projects and the generic techniques to deal with them.

3.1 Throughput-oriented Architecture

The SIMT GPU architecture enables simple but highly parallel computing for large

throughput processing. But the SIMT architecture is also a big challenge to GPU kernel

design and GPU computing workload. As for the GPU kernel design, it means avoiding

control flow divergence via tuned GPU code or SIMT-friendly data structures to process.

To fit the SIMT architecture, the workload must be able to provide enough parallelism

to fully utilize the thousands of parallel SIMT cores. The parallelism may come from the

parallelized algorithms in terms of GPU kernels. More importantly, it comes from the

amount of data to be processed in one shot, which often requires batched processing in

system environments. When trying to provide a generic design for a variety of system-level

applications, a right workload abstraction that covers the various processing tasks is needed

to guarantee the parallelism, and also to make it easy to design divergenceless GPU kernels.

3.1.1 Parallel Workload Abstraction

Considering the thousands of cores on a modern GPU that processes one basic data unit

in one thread, at least the same number of basic units is required to fully utilize all the
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cores. This is actually the key to achieve high throughput in GPU computing. Taking the

GTX Titan Black [3] as an example: even with the parallelized AES algorithm that uses

four threads to process a single 16-byte block, its 2880 cores still need 2880 × 4 = 11KB

data to process in one GPU kernel launch. If we consider the context switching due to

global memory access, even more data are required to keep GPU cores busy.

Unfortunately, system-level software is often designed to process data sequentially due to

the latency-oriented system design philosophy through the ages. However, the performance

of parallel and sequential processors have been significantly improved to be easily achieve

very low latency, and also today’s “big data” workloads focus more on high throughput

processing, even at the system-level. Batching is a simple yet effective technique to

accumulate enough parallelism in one-shot workload. Instead of a single data unit to be

processed at one time, a one-shot workload with batching now includes enough units to

fully occupy the thousands of GPU cores. “Enough” is ambiguous in the high-level workload

abstraction. An intuitive but effective policy for concrete design is to ensure that processing

the batched workload on GPUs is at least faster than on CPUs.

An obvious drawback of batching is the increased latency. This may cause a serious

performance problem in some latency sensitive software, especially the network applications

such as video conference, video streaming, etc. As we will see in Snap, the packet processing

latency introduced by batching is eight to nine times larger than the nonbatching latency.

So batching is not a pervasive solution to adapt sequential software with the parallel GPUs.

This also reveals the fact that not every system-level software can benefit from parallel

GPUs, such as those latency sensitive computing tasks whose algorithms can’t be efficiently

parallelized.

3.1.2 Avoid Control Flow Divergence

Many research projects [26, 27, 28, 29, 30, 31, 32] have been focused on designing efficient

SIMT style parallel implementation of particular algorithms on the GPU. Besides those

well-studied techniques, how to efficiently partition the workload into SIMT threads and

how to choose SIMT-friendly algorithms and data structures (if possible) are also very

important.

The workload partitioning is often very straightforward: each GPU thread processes one

single basic data unit. Many system-level computing tasks can use such simple partitioning

scheme such as computing erasure code of one disk sector per thread, encrypting a single

sixteen-byte AES block per thread, looking up next hop for one IP address per thread,

etc. However, exceptions always exist. The AES algorithm is an example, which has been
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parallelized by exploiting the intrablock parallelism [33]. GPUstore applied this technique

in its AES implementation to have four threads to encrypt/decrypt a single AES block.

Designing the data structures used by processing logic to make them SIMT-friendly is

another technique to avoid control flow divergence. One example is the pattern matching

algorithm in Snap that is based on DFA. The DFA matching is a very simple loop: get

the current symbol; find the next state indexed by the symbol in current state’s transition

table; use the found state as the current state. The algorithm itself can be implemented

in SIMT style because all input strings use the same three-step matching. But for the

second step, some transition table data structures cannot ensure same code execution when

finding the next state. For example, a tree-based map may need different lookup steps

for different symbols to find the mapped states, which means different GPU threads may

have to execute different numbers of lookup loops to find the next states, and hence is not

SIMT-friendly. In the meanwhile, an array-based transition table, which assigns state for

every symbol in the DFA alphabet, can guarantee equal steps to find the next state of any

given symbol, and hence is SIMT-friendly. That’s because we can use the symbol as the

array index to fetch the mapped state, and one state lookup becomes a single array access.

So although the tree-based map is more memory-efficient and the array-based map is very

memory-consuming because even invalid symbols in the alphabet have transition states,

sometimes the memory may be sacrificed to achieve SIMT-friendly GPU code.

3.1.2.1 When It Is Unavoidable

An effective but not efficient way that can always solve the control flow divergence

is to partition the computing tasks into multiple GPU kernels, each GPU kernel works

for a particular control flow branch of the computing task. This needs some information

available at the host side to indicate how many threads a GPU kernel should be executed

by, and which data items should be processed by a particular GPU kernel. Such host side

information implies a device-to-host memory copy, the necessary host-device synchroniza-

tion for its completion and probably a data structure reorganization, which may cost more

than admitting divergence at the GPU side. So it is not always unacceptable to introduce

divergence into a GPU kernel. The batched packet processing in different GPU elements in

Snap is a very representative example.

However, allowing divergence in GPU kernel doesn’t mean writing arbitrary code; we

still need to minimize the effects. We have proposed and implemented the predicated

execution to minimize the divergence affections. More details of the predicated execution

are in Section 5.3.2.
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3.2 Coalesce Global Memory Accesses

The throughput-oriented GPU architecture is armed with not only high computation

throughput, but also high memory access throughput. To fully utilize the 384 bits global

memory bus in GTX Titan Black [3], coalescable memory accesses must be issued from

neighbor threads in a thread block. Compared with noncoalesced access, coalesced memory

access can achieve orders of magnitude faster [26]. So the GPU kernel must be designed

to access consecutive memory locations from threads within the same thread block or

warp. Besides the GPU kernel code, the data structures to be processed must be carefully

organized to make them coalescing-friendly. Some kinds of workloads are quite easy to

satisfy the coalescing requirement, for example, data read from a block device are naturally

consecutively stored, hence when encrypting them, neighbor GPU threads can always

coalesce their memory accesses. However, some workloads are not that coalescing-friendly,

needing a coalescing-aware abstraction to achieve a generic solution. A simple but very

good example is the IP routing lookup. The lookup GPU kernel needs only the destination

IP address of a packet. If we put the entire packet into the global memory for each thread

to access, the memory reads for IP addresses issued from neighbor threads will be scattered.

One 384 bits memory transaction may only read 32 bits effective data, which wastes more

than 90% memory bandwidth. But if we organize the destination IP addresses into a

separate buffer, then up to 12 memory reads for the IP addresses issued from neighbor

threads can be coalesced into a single memory transaction, which significantly reduces

the number of global memory transactions. The “region-of-interest”-based (ROI) slicing

technique applied in Snap is an effective abstraction of the workload data to build such

coalescing-friendly data structures for a variety of GPU-accelerated computating tasks (see

Chapter 5).

3.3 Overlapped GPU Operations

The typical GPU computing workflow mentioned in Section 2.1 can be pipelined to

improve the utilization of the two major GPU components: SIMT cores and DMA engines.

The pipelined model needs multiple CUDA streams, each of which carries proper-size

workloads for certain computing tasks. This may require the workload to be split into

multiple trunks in order to fill into multiple streams. The host code will be responsible to

do such workload splitting, which needs the task-specific knowledge to ensure the splitting is

correct. For a generic GPU computing framework such as GPUstore, it is impractical to put

those splitting knowledge of every task into the generic framework. The computing tasks
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need a right abstraction to describe both the task-specific logic and the task management

(such as partitioning) logic. For example, GPUstore provides the modular GPU services,

which are the abstraction of computing tasks. Each GPU service not only processes

computing requests issued from GPUstore clients, but also does service-specific request

scheduling including workload splitting and merging.

This requirement seems totally contrast to the parallelism one in Section 3.1.1. However,

it is not a paradox. An application usually needs to find the balance point of these two

requirements to decide the optimal size of the workload to be processed on GPUs in one shot,

so as to achieve the best performance. This can be done either dynamically or statically.

A static approach finds the balance point offline by benchmarking the computing tasks

and uses predefined sizes at run time. Both GPUstore and Snap simply use this approach

in their prototypes. The dynamic way would do microbenchmarking at run time to find

optimal sizes for the specific execution hardware and software environment. It can adjust

workload sizes according to the hardware and system load, and hence is more accurate.

3.4 Asynchronous GPU Programming

CUDA stream requires asynchronous DMA memory copy and GPU kernel launching

operations so that a single CPU thread can launch multiple streams. However, current

GPU programming model needs the synchronization between the host and the device to

detect the completion of the device operations in each stream. This may not be a problem

at all for traditional GPGPU computing that just focuses on a particular computing task.

However, many system-level components are designed to exploit asynchrony in order to

achieve high performance.

For example, filesystems work with the virtual file system (VFS) layer, and often rely on

the OS kernel page-cache for reading and writing. By its nature, the page-cache makes all

I/O operations asynchronous: read and write requests to the page cache are not synchronous

unless an explicit sync operation is called or a sync flag is set when opening a file.

Other examples include the virtual block device drivers, which work with the OS kernel’s

block I/O layer. This layer is an asynchronous request processing system. Once submitted,

block I/O requests are maintained in queues. Device drivers, such as small computer system

interface (SCSI) drivers, are responsible for processing the queue and invoking callbacks

when the I/O is complete.

Some filesystems and block devices, such as network file system (NFS), common Internet

file system (CIFS), and iSCSI (Internet SCSI), depend on the network stack to provide their



18

functionality. Because of the high and unpredictable latency on a network, these subsystems

are asynchronous by necessity.

When it goes to the network packet processing, it is totally asynchronous workflow.

Although there does exist totally synchronous network stacks such as the uIP [34] and

lwIP [35], they are designed for memory constraint embedded systems, not for performance.

As a result, the synchronization CUDA call is totally unacceptable in those asynchronous

environment because it will block the normal workflow and may cause performance slow

down.

GPUstore and Snap solve this problem by implementing asynchronous CUDA stream

callback mechanism to enable completely asynchronous GPU program control flow. Such

callback mechanism can be implemented in two different approaches.

Polling-based. this method has a thread keep polling stream state change and invoke

callbacks. It is obvious that this approach can get low latency response but will keep

a CPU core in busy waiting loop.

Signal-based. this is implemented with the events invoked by GPU interrupts at the low

level. The signal-based response latency is definitely higher than the polling-based

one, but its advantage is also obvious: CPU cores can be freed to process other work

without busy waiting.

At the time of writing this dissertation, the latest CUDA release has provided similar

signal-based callback for streams after GPUstore did that for more than two years. This

further confirms the effectiveness of the techniques we’ve proposed.

3.5 Reduce Memory Copy Overhead

Having said at the beginning of this chapter, the memory copy is often the major over-

head compared with the computation. Many different aspects are related to the performance

of memory copy. Since we are discussing system-level GPU computing, the memory copy

is not only the DMA over PCIe bus. We also need to consider what happens in the host

main memory as an entire system. We will start from the obvious challenges and problems

in GPU related memory copy, then gradually introduce other vital issues and techniques to

deal with them.

3.5.1 DMA Overhead

The overhead of DMA comes from its special requirement: the memory pages in main

memory must not be swapped out (paging) during DMA. To satisfy such requirement when

copying data in pageable memory to GPUs, CUDA GPU drivers use the aforementioned
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double-buffering approach as described in Section 2.4. According to the evaluations [36],

double-buffering DMA can be two times slower than using page-locked memory directly.

Compared with pageable memory, using page-locked memory may lock too many physical

pages and reduce the available memory for other applications. However, considering today’s

cheap DRAM and widely available tens of gigabytes DRAM on a single machine, locking

even 6GB memory (for a high end GPU [3]) is totally acceptable.

3.5.2 Avoid Double-buffering

The aforementioned solution with CUDA page-locked memory requires the system code

to use CUDA-allocated memory as its data buffer. This seems trivial: traditional GPGPU

computing usually reads the data from a file or the network into host memory, copies the

entire data buffer into GPU device memory, and does the computation. It is seldom that the

host memory used in this scenario may have any other users or complicated dependencies,

so it is easy to replace it with CUDA-allocated page-locked memory. However, the code in

a system component often works as a stage of a long data processing pipeline. In that case,

it may be impractical to modify the entire system from the beginning of the pipeline to use

CUDA’s memory, especially in a large complex system such as the operating system kernel.

One way to deal with this is allocating a separate page-locked buffer with CUDA, and copy

the data to be processed into this CUDA buffer before DMA (and similar approach for the

processing result). This leads to double-buffering, which is similar to the aforementioned

early stage CUDA DMA implementation for pageable memory: introducing extra copy in

host memory. To avoid the double-buffering problem, we’ve proposed and implemented the

page remapping technique, which can remap external page-locked memory pages into CUDA

GPU driver’s memory area, and make them DMA-capable just like CUDA page-locked

memory (refer to Section 4.1.2.) This allows minimum invasive GPU computing integration

into an existing complex system: only the component containing the computing tasks needs

a few modifications.

There do exist some special cases where the component we’d like to put GPU-accelerated

computing tasks into may be the beginning of the data processing pipeline. It may also

be a pipeline stage that allocates memory for later use. In those cases, replacing previous

malloc or similar memory allocators with CUDA’s memory allocation functions is feasible

and efficient. Introducing remapping in those cases doesn’t make any sense due to the added

complexity of the extra page mappings.

The techniques in this section try to avoid memory copy in host memory because such

copy is not necessary. However, there is an implicit assumption that the data in the memory
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buffer are all useful to the computation. Otherwise it may be unwise to copy the entire

buffer to device since it wastes the relatively slow PCIe bandwidth, as we shall discuss in

the following section.

3.5.3 Trade Off Memory Copy Costs

Some computing tasks in a system component may need only small pieces of a large data

unit it receives. Typical examples are the packet processing tasks: IP routing just needs

the destination IP address, layer 2 forwarding just needs the destination’s media access

control (MAC) address, packet classification just needs five small fields, etc. Copying the

entire data unit into GPU memory can waste a large portion of the PCIe bus bandwidth:

considering the 4 bytes IP address versus the minimum 64 bytes packet. At the same

time, the host side memory bandwidth is much faster than the PCIe bus. Take a look

at the machine I used for Snap evaluation: the main memory has a 38.4GB/s bandwidth,

while the maximum throughput of the PCIe 2.0 16x slot is 8GB/s in each direction, which

is a 4.8 times difference. As a result, for computing tasks with the data usage patterns

discussed here, copying the needed data pieces into a much smaller page-locked memory

buffer and then launching a PCIe DMA for this small buffer may lead to a much faster

total memory copy than copying the entire data unit into GPU memory through PCIe bus.

The aforementioned Snap’s the ROI-based slicing technique is based on this idea. It takes

advantage of the much faster host memory to achieve fast host-device memory copy. As we

mentioned in Section 3.2, it also makes coalescing-friendly data structures for GPUs (refer

to Chapter 5 for details).

3.5.4 Discussion

Section 3.5.3 advocates a technique that is totally opposite to the one in its previous

section (Section 3.5.2). But they are not paradoxical. It is the data usage pattern of the

computing task that decides which technique to use. On the one hand, for a computing

task that needs the entire data unit received by the enclosing system for its computation,

it should avoid extra buffers in host memory for the same data unit content with either

the remapping technique or using CUDA page-locked memory directly, depending on the

memory management role of the system as we discussed in Section 3.5.2. On the other

hand, a computing task needing only small pieces of the entire data unit should trade off

the main memory bandwidth and the host-device memory copy bandwidth, and may use

techniques similar to Snap’s ROI-based slicing for faster total memory copy performance.

Snap’s ROI-based slicing is a very flexible data abstraction to deal with both kinds of usage
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patterns: it allows computing tasks to define their own pieces to be processed in a single

data unit, for a “use all” usage pattern, the computing task can specify the entire data unit

as its interested region.

3.6 Miscellaneous Challenges

There are some challenges caused by the limitations in current GPU computing libraries

or GPU hardware. Though we can believe that with the development of GPU technology

and the GPU market, these obstacles may disappear in future, it is still worth describing

them here for readers who are trying to apply GPU computing into system components at

this time. The challenges discussed in this section are only related to our GPU computing

experiences learned from GPUstore and Snap, the survey chapter (in Chapter 6) discusses

more such challenges and solutions provided by other system-level GPU computing works.

3.6.1 Kernel-User Communication

Currently, in almost all GPU computing libraries, drivers are closed source, not to

mention the even more closed GPU hardware. This leads to a big performance problem

when applying GPU computing into an operating system: the OS kernel mode code has to

rely on the userspace GPU computing library to use GPUs. So now in OS kernel mode, using

GPUs is not as efficient as a function call in userspace, but a cross context communication.

Such a system needs an efficient kernel-user communication mechanism for invoking GPU

computing library functions, and also memory sharing between two modes for computing

data. GPUstore got this problem on Linux kernel when using CUDA GPU library. Current

open source GPU drivers such as nouvea [37] and open source CUDA implementation

such as Gdev [38] still can’t reach the proprietary software’s performance. GPUstore uses

a userspace helper to deal with requests from OS kernel and invoke CUDA calls. The

userspace helper is based on polling-based file event mechanism to achieve fast kernel-user

communication. The details are in Chapter 4. The Barracuda [39] GPU microdriver has

evaluated different approaches to implement efficient kernel-user communication for GPU

computing.

3.6.2 Implicit Synchronization

The host-device synchronization happens not only when the host side explicitly calls

cudaDeviceSynchronize function, but also when some GPU resource management opera-

tions are performed [4]. Such operations include CUDA host or device memory allocation,

GPU information query, etc. The host and device memory allocation is the main trouble
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maker because it is almost unavoidable. This may stall the aforementioned asynchronous

GPU programming in Section 3.4 even when there is no explicit stream synchronization. As

a result, as we will see in Chapter 6, a common technique used by many system-level GPU

computing works including our GPUstore and Snap frameworks is to preallocate CUDA

page-locked memory, and manage the memory allocation on their own. This can easily

consume a lot of memory, but due to the current GPU limitations, it is a must to achieve

asynchronous GPU computing.

3.7 Summary

In this chapter, we discussed generic system-level challenges and also proposed high-level

principles and techniques to deal with them. The proposed principles and techniques are

designed to make system code efficiently work with the throughput-oriented GPU architec-

ture, take advantage of the wide GPU memory interface, do nonblocking host and device

communication and reduce unnecessary overheads during GPU DMA. These principles are

mainly about batching to provide parallel workloads, truly asynchronously programming

GPUs with callbacks or status polling at the CPU side, compacting workload data to reduce

unnecessary PCIe transfer, and using locked memory directly to avoid double-buffering

DMA. In the next two chapters, we will discuss our two concrete frameworks: GPUstore

and Snap, to explain how we apply these generic principles and techniques in practice to

deal with their specific problems.



CHAPTER 4

GPUstore: GPU COMPUTING FOR

STORAGE

This chapter covers the design, implementation and evaluation of GPUstore. GPUstore is

a framework for integrating GPU computing into storage systems in Linux kernel. Different

from the systems surveyed in Section 6.1.2, GPUstore is a generic framework, not for a

particular storage application or subsystem. It has been designed to collaborate with the

storage subsystem in Linux kernel in order to use the GPU as a coprocessor. We try to min-

imize the source code change for a storage component to use GPU computing. So GPUstore

follows the OS working style and utilizes existing resource management mechanisms to avoid

any fundamental change in the OS kernel. GPUstore has been evaluated with three storage

system case studies, showing its efficiency and effectiveness.

4.1 Design

This section will go into the details of how GPUstore has been designed to apply the

generic technical principles discussed in Chapter 3 in practice. The following text first

takes an overview of the architecture, then discusses specific aspects including memory

management, request scheduling and stream management.

4.1.1 Overview

GPUstore has three main functional blocks: memory management, request management

and streams management, as shown in Figure 4.1. There are also GPU “services” that

don’t belong to the framework, but are managed by GPUstore and essential to provide

GPU computing tasks. GPUstore abstracts the computing tasks into “services.” So storage

components request for services to get computational functionalities. Services are modular

libraries that are dynamically linked with GPUstore. There is a generic service interface

provided by GPUstore to use and manage concrete services. Due to the closed source GPU

driver and library, GPUstore has to use a userspace helper to interact with the userspace
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Figure 4.1. The architecture of GPUstore.

CUDA GPU library. A GPU service also has to be split into two parts: the kernel part and

the userspace part. The kernel part mainly hides the GPUstore application programming

interface (API) calls to turn a function call invoked from storage components into a GPU

service request. The userspace part of a service deals with the necessary host-device memory

copies and GPU kernel launching to process a request. The workflow of the three example

GPU-accelerated storage systems built with GPUstore are illustrated in Figure 4.2.
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Figure 4.2. The workflow of a GPUstore-based storage stack.
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4.1.2 Memory Management

GPUstore manages both host memory and device memory that are used for GPU

computing. All the host memory is CUDA page-locked memory to achieve best memory

copy performance, and also preallocated to avoid stalling the asynchronous GPU computing,

as discussed in Section 3.6.2. GPUstore simplifies the device memory management by

maintaining a one-to-one mapping between the host memory and the device one. The

downside of such one-to-one mapping is that it makes suboptimal use of host memory:

buffers must remain allocated even when not in active use for copies.

The Linux kernel storage workflow can be treated as a long pipeline, as illustrated in

Figure 4.2. Each layer may either allocate memory buffer for new data processing, or

accept data buffers from neighbor layers to process. Most computing tasks in the storage

systems work on the entire data rather than just small portions of them. That said in

Section 3.5.4, such data usage pattern requires avoiding double-buffering when integrating

GPU computing. According to our AES cipher evaluation shown in Figure 4.3, avoiding

double-buffering adds almost 3x speedup to the cipher performance.

GPUstore provides API to do memory remapping for components processing data buffers

received from others, and also in-kernel CUDA memory allocation for components creating

its own buffers for data processing. For example, eCryptfs in our case studies is a good

candidate to use remapping because all the memory pages it uses are allocated and managed

by kernel page-cache, while dm-crypt is a good fit for allocating its own buffers capable of

GPU DMA because its code creates and manages buffers for the encrypted or decrypted
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data.

“Remapping” means mapping normal memory pages into GPU driver’s memory area to

let it treat them the same as its page-locked memory that is capable of DMA. Remapping

is not a safe way in some cases: some memory pages such as the mmap ones may not be

allowed to do further remapping in Linux kernel. We “rudely” manipulate the page tables

for remapping regardless of the potential problem. Although we haven’t got any errors for

our case studies, it may cause bugs in some circumstances.

Allocating CUDA page-locked memory in Linux kernel is achieved with the GPUstore

userspace helper. The helper is responsible for all the userspace CUDA calls, and the kernel

part takes care of necessary address translation for kernel code use and manages the memory

in a memory pool.

4.1.3 Request Management

4.1.3.1 Request Processing

GPU service requests are submitted to GPUstore by storage components (via the kernel

part GPU service), passed across the kernel-user boundary to the userspace helper, then

processed by the requested services, and finally get the response. GPUstore processes service

requests asynchronously to avoid breaking the normal workflow of storage components as

we discussed in Section 3.4. So each request has a callback that is invoked after it has been

processed.

GPUstore exposes a Linux character device file for the kernel-user communication. The

userspace helper reads submitted requests, and after a request has been processed, it

writes to that file for completion notification. The userspace helper works completely

asynchronously to achieve low latency. It does nonblocking read on the GPUstore device

file, and also relies on the nonblocking write implemented by the device file. GPUstore

implements such nonblocking write using a separate kernel thread that is blocked on a

request completion queue, which is filled by the device file’s write. The kernel thread is

waked up on available elements in the completion queue and responsible for invoking the

request callbacks.

GPUstore defines a generic service interface, which includes the following three common

steps and operations to process a request.

• PrepareProcessing allows a service to do some preparation before processing a re-

quest, such as calculating CUDA kernel execution parameters, launching asynchronous

host-to-device memory copy, etc.
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• LaunchKernel does the CUDA kernel launching operation, which is an asynchronous

operation.

• PostProcessing performs asynchronous device-to-host memory copy and other nec-

essary operations in specific services.

A service only does asynchronous GPU operations in each step to avoid blocking the

userspace helper’s workflow. One service doesn’t have to follow the typical host-to-device

copy, GPU kernel execution and device-to-host copy GPU computing steps. For example,

two services can collaborate in this way: the first service produces an intermediate result,

without copying it back to the host, and then the second service processes the result on

GPU directly, no host-to-device copy needed. This allows GPUstore users to do efficient

data flow control by saving unnecessary memory copies, which is similar to the pipe data

flow model in PTask [40].

4.1.3.2 Request Scheduling

In the userspace helper, request processing is started as first-come-first-serve. However,

due to the totally asynchronous CUDA calls, the completion order of requests is not guar-

anteed. GPUstore doesn’t try to maintain the order of requests to allow fully asynchronous

processing. Users who needs such processing order must maintain it via the request callbacks

or special logic in GPU services.

Having said in Section 3.1.1 and Section 3.3: GPUs need enough parallelism in one-shot

computing workload which is often accumulated via batching; GPUs also need to pipeline

computation and memory copy to improve the utilization of GPU components. But most

kernel storage code is unaware of GPUs, and hence can hardly issue requests with GPU-

friendly workload sizes. Changing exist code to make GPU-friendly workloads may lead

to significant amount of code refactoring. GPUstore tries to reduce the amount of such

refactoring by merging or splitting accepted requests.

The merge operation is performed on small requests (for the same service), which is

an analogy of batching as said in Section 3.1.1. The split operation is on large requests to

utilize the overlapped GPU computation and memory copy technique (see Section 3.3). Both

merging and splitting requires the service-specific knowledge to guarantee the correctness of

the result requests, so GPUstore doesn’t perform the actual merging and splitting. Instead,

it depends on each GPU service to do them. So GPU services can optionally implement

merging or splitting logic, which will be utilized by GPUstore for request scheduling. In

the current GPUstore system prototype, all GPU services use predefined constant values to

decide their optimal request sizes for best performance, which may be affected by runtime
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system load and other factors. Implementing dynamically adjustable merging or splitting

parameters is an interesting future work.

merge is not the “ultimate” solution to produce GPU-friendly workloads with enough

parallelism. merge can only process requests already submitted to GPUstore. If a storage

component explicitly splits a large workload to process one much smaller unit at a time in

a loop, it causes unnecessarily sequential constraints on requests: the loop must wait until

completion of the previous request in order to do the next round. In that case, merge can’t

find enough requests in request queue to merge at all. The existing code may have to be

refactored to produce bulk-data requests.

4.1.4 Streams Management

CUDA streams are assigned to service requests in GPUstore to achieve sequentially

executed operations on the same request. CUDA stream is also a GPU computing resource

abstraction, which is the analogy of a CPU thread or process. So managing the allocation

is analogous to process scheduling on CPUs. Due to the functionally limit, GPUs are not

capable of preemptive execution, so GPUstore uses first-come-first-serve policy to allocate

streams to requests, and the request processing is unpreemptable (once started). Even

with current GPU functional constraints, it is still possible to enable prioritized request

execution with techniques similar to TimeGraph [41] and Gdev [38], though it may need

significant engineering work to make use of the immature open source GPU drivers and

CUDA libraries they depend on.

4.2 Implementation

GPUstore has been prototyped on Linux kernel to accelerate three existing kernel stor-

age components. We enhanced encrypted storage with dm-crypt and eCryptfs, and the

software RAID (redundant array of inexpensive disks) driver md. We chose these three

subsystems because they interact with the kernel in different ways: md and dm-crypt

implement the block I/O interface, and eCryptfs works with the VFS layer.

The design of GPUstore ensures that client subsystems need only minor modifications

to call GPU services. Table 4.1 gives the approximate numbers of lines of code that we

had to modify for our example subsystems. The lines of code reported in this table are

those in the subsystems that are modified to call GPUstore, and do not include the lines

of code used to implement the GPU services. Linux storage subsystems typically call other

reusable kernel components to perform common operations such as encryption. Essentially,

we replace these with calls to GPUstore and make minor changes to memory management.
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Table 4.1. Modified lines of code (LOC) to use GPUstore.
Subsystem Total LOC Modified LOC Percent

dm-crypt 1,800 50 3%

eCryptfs 11,000 200 2%

md 6,000 20 0.3%

4.3 Evaluation

We benchmarked the GPUstore framework itself as well as the three storage subsystems

that we adapted to use it. We used two machine configurations, S1 and S2 for our

evaluation. S1 is used for file system and block device tests. S2 is used for the RAID

benchmarks.

All benchmarks were run without use of hybrid mode in GPUstore, that is, GPU services

were not allowed to fall back to the CPU for small requests. This has the effect of clearly

illustrating the points where the GPU implementation, by itself, underperforms the CPU,

as well as the points where their performance crosses. With hybrid mode enabled, GPUstore

would use the CPU for small requests, and the CPU performance can thus be considered

an approximate lower bound for GPUstore’s hybrid mode performance.

In many cases, our GPU-accelerated systems are capable of out-performing the physical

storage devices in our systems; in those cases, we also evaluate them on DRAM-backed

storage in order to understand their limits. These DRAM-based results suggest that some

GPUstore accelerated subsystems will be capable of keeping up with multiple fast storage

devices in the same system, or PCIe-attached flash storage, which is much faster than the

drives available for our benchmarks.

4.3.1 Framework Performance

Our first microbenchmark examines the effect of block sizes on GPUstore’s performance

and compares synchronous operation with asynchronous. On S1 , we called a GPU service

which performs no computation: it merely copies data back and forth between host memory

and GPU device memory. Note that total data transfer is double the block size, since the

data block is first copied to GPU memory and then back to host memory. In Figure 4.4, we

can see that at small block sizes, the PCIe bus overheads dominate, limiting throughput.

Performance steadily increases along with block size, and reaches approximately 4 GB/s

on our system. This benchmark reveals three things. First, it demonstrates the value

to be gained from our merge operation, which increases block sizes. Second, it shows a

performance boost of 30% when using asynchronous, rather than synchronous, requests to
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Figure 4.4. Throughput of a GPU kernel that copies data but performs no computation.

the GPU. Finally, it serves as an upper bound for performance of GPU services, since our

test service performs no computation.

Our second microbenchmark shows the effects of our optimization to remove redundant

buffering and the split operation. This benchmark, also run on S1 , uses the AES cipher

service on the GPU, and the results can be seen in Figure 4.3. The baseline GPU result

shows a speedup over the CPU cipher, demonstrating the feasibility of GPU acceleration

for such computation. Our split operation doubles performance at large block sizes, and

eliminating redundant buffering triples performance at sizes of 256 KB or larger. Together,

these two optimizations give a speedup of approximately four times, and with them, the

GPU-accelerated AES cipher achieves a speedup of 36 times over the CPU AES imple-

mentation in the Linux kernel. The performance levels approach those seen in Figure 4.4,

implying that the memory copy, rather than the AES cipher computation, is the bottleneck.

4.3.2 Encrypted Device Mapper

Next, we use the dd tool to measure raw sequential I/O speed in dm-crypt. The results

shown in Figure 4.5 indicate that with read and write sizes of about 1MB or larger, the GPU-

accelerated dm-crypt easily reaches maximum throughput of our solid state disk (SSD):

250MB/s read and 170MB/s write. The CPU version is 60% slower; while it would be

fast enough to keep up with a mechanical hard disk, it is unable reach the full potential

of the SSD. Substituting a DRAM disk for the SSD (Figure 4.6), we see that the GPU-

accelerated dm-crypt was limited by the speed of the drive: it is able to achieve a maximum

read throughput of 1.4 GB/s, more than six times as fast as the CPU implementation.
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Figure 4.5. dm-crypt throughput on an SSD-backed device.
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Figure 4.6. dm-crypt throughput on a DRAM-backed device.

This is almost exactly the rated read speed for the ioDrive Duo, the third fastest SSD in

production [42] at the time of developing GPUstore (in 2012). As the throughput of storage

systems rises, GPUs present a promising way to place computation into those systems while

taking full advantage of the speed of the underlying storage devices.

4.3.3 Encrypted File System

We evaluated both sequential performance and the concurrent performance of eCryptfs,

as shown in the following sections.
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4.3.3.1 Sequential Throughput

Figure 4.7 and Figure 4.8 compare the sequential performance for the CPU and GPU

implementation of eCryptfs. We used the iozone tool to do sequential reads and writes

using varying block sizes and measured the resulting throughput. Because eCryptfs does

not support direct I/O, effects from kernel features such as the page cache and readahead

affect our results. To minimize (but not completely eliminate) these effects, we cleared the

page-cache before running read-only benchmarks, and all writes were done synchronously.

Figure 4.7 shows that on the SSD, the GPU achieves 250 MBps when reading, compared

with about 150 MBps for the CPU, a 70% speed increase. Unlike our earlier benchmarks,

read speeds remain nearly constant across all block sizes. This is explained by the Linux
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page-cache’s readahead behavior: when small reads were performed by iozone, the page-

cache chose to issue larger reads to the filesystem in anticipation of future reads. The default

readahead size of 128 KB is large enough to reach the SSD’s full read speed of 250MB/s.

This illustrates an important point: by designing GPUstore to fit naturally into existing

storage subsystems, we enable it to work smoothly with the rest of the kernel. Thus, by

simply implementing the multipage readpages interface for eCryptfs, we enabled existing

I/O optimizations in the Linux kernel to kick in, maximizing performance even though they

are unaware of GPUstore.

Another surprising result in Figure 4.7 is that the GPU write speed exceeds the write

speed of the SSD, and even its read speed, when block size increases beyond 128 KB.

This happens because eCryptfs is, by design, “stacked” on top of another file system.

Even though we take care to sync writes to eCryptfs, the underlying file system still

operates asynchronously and caches the writes, returning before the actual disk operation

has completed. This demonstrates another important property of GPUstore: it does not

change the behavior of the storage stack with respect to caching, so client subsystems still

get the full effect of these caches without any special effort.

We tested the throughput limits of our GPU eCryptfs implementation by repeating

the previous experiment on a DRAM disk, as shown in Figure 4.8. Our GPU-accelerated

eCryptfs achieves more than 700 MBps when reading and 420 Mbps when writing. Com-

pared to the CPU, which does not perform much better than it did on the SSD, this is a

speed increase of nearly five times for reads and close to three times for writes. It is worth

noting that Linux’s readahead mechanism not only “rounds up” read requests to 128 KB,

it “rounds down” larger ones as well, preventing eCryptfs from reaching even higher levels

of performance.

4.3.3.2 Concurrent Throughput

We also used FileBench to evaluate eCryptfs under concurrent workloads. We varied

the number of concurrent writers from one to one hundred, and used the DRAM-backed

file system. Each client writes sequentially to a separate file. The effects of GPUstore’s

merge operation are clearly visible in Figure 4.9: with a single client, performance is low,

because we use relatively small block sizes (128 KB and 16 KB) for this test. But with

ten clients, GPUstore is able to merge enough requests to get performance on par with

dm-crypt at a 1 MB blocksize. This demonstrates that GPUstore is useful not only for

storage systems with heavy single-threaded workloads, but also for workloads with many

simultaneous clients. While block size still has a significant effect on performance, GPUstore
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Figure 4.9. eCryptfs concurrent write throughput on a DRAM disk for two block sizes.

is able to amortize overheads across concurrent access streams to achieve high performance

even for relatively small I/O sizes.

4.3.4 Data Recovery

Similar to encryption, the performance of our GPU-based RAID recovery algorithm

increases with larger block sizes, eventually reaching six times the CPU’s performance, as

seen in Figure 4.10.

We measured the sequential bandwidth of a degraded RAID 6 array consisting of 32

disks in our S2 experiment environment. The results are shown in Figure 4.11. We find

that GPU accelerated RAID 6 data recovery does not achieve significant speedup unless

the array is configured with a large chunk size, or strip size. Interestingly, the speedup is
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caused by decreasing CPU performance. We believe the decrease is caused by the limit-sized

design of md’s I/O request memory pool, which does not efficiently handle large numbers

of requests on large stripes. Because GPUstore merges these requests into larger ones, it

avoids suffering from the same problem.

We also measured the degraded mode performance of a RAID array in the S1 system

using 6 DRAM disks. The results are shown in Figure 4.12. We find that our previous

recovery experiment was limited by the speed of the hard disks, and both CPU and GPU

implementations would be capable of faster performance given faster disks. With DRAM

disks, the CPU based recovery reaches the maximum throughput we saw in Figure 4.10,

while the GPU version is still far from its own maximum in the figure.

However, with chunk sizes below 16KB, the throughputs on DRAM disk arrays are
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actually much higher than we saw for the raw algorithm in Figure 4.10. This result

demonstrates the effectiveness of the request merge operation in GPUstore. merge was

in use for recovery benchmark, but not the raw algorithm test, and the former therefore

saw larger effective block sizes.

4.4 Summary and Future Work

GPUstore is a general-purpose framework for using GPU computing power in stor-

age systems within the Linux kernel. By designing GPUstore around common storage

paradigms, we have made it simple to use from existing code, and have enabled a number

of optimizations that are transparent to the calling system. We modified several standard

Linux subsystems to use GPUstore, and were able to achieve substantial improvements in

performance by moving parts of the systems’ computation on to the GPU. Our benchmark

results also demonstrate the effectiveness of the optimizations adopted by GPUstore for

matching the storage subsystems requirements. The source code of GPUstore is released at

http://code.google.com/p/kgpu/.

Because of its in-kernel target applications, GPUstore has to suffer from the kernel-

user switching overhead and technical workarounds to implement in-kernel CUDA memory

management. A promising future work will be migrating GPUstore onto open source GPU

drivers such as nouvea [37] and the in-kernel CUDA runtime Gdev [38]. Both of them

eliminate the overhead due to kernel-user switching and resource management and provide

direct GPU computing primitive access inside Linux kernel. Authors of Gdev [38] have

actually done a simple, eCryptfs only migration of GPUstore to Gdev, and still got pretty

large speedup over CPU implementations. We believe that with future open specification

GPUs and their open source drivers and computing libraries, GPUstore will be more efficient

on top of them.



CHAPTER 5

Snap: PACKET PROCESSING WITH

CLICK AND GPUS

This chapter describes Snap, the GPU-accelerated network packet processing framework.

As networks advance, the need for high-performance packet processing in the network

increases for two reasons: first, networks get faster, and second, we expect more functionality

from them [43, 44, 45, 46, 47, 48]. The nature of packet data naturally lends itself to parallel

processing [49], and as we shall see in the survey chapter (Chapter 6), a wide variety of

network functionalities are capable of parallel GPU accelerations. However, a software

router is made up of more than just these heavyweight processing and lookup elements. A

range of other elements are needed to build a fully functional router, including “fast path”

elements such as time-to-live (TTL) decrement, checksum recalculation, and broadcast

management, and “slow path” elements such as handling of IP options, Internet control

and management protocol (ICMP), and address resolution protocol (ARP). Building new

features not present in today’s routers adds even more complexity. To take full advantage of

the GPU in a packet processor, what is needed is a flexible, modular framework for building

complete processing pipelines by composing GPU programs with each other and with CPU

code.

We have designed and implemented Snap to address this need. It extends the archi-

tecture of the Click modular router [19] to support offloading parts of a packet processor

onto the GPU. Snap enables individual elements, the building blocks of a Click processing

pipeline, to be implemented as GPU code. It extends Click with “wide” ports that pass

batches of packets, suitable for processing in parallel, between elements. Snap also provides

elements that act as adapters between serial portions of the processing pipeline and parallel

ones, handling the details of batching up packets, efficiently copying between main memory

and the GPU, scheduling GPU execution, and directing the outputs from elements into

different paths on the processing pipeline. In addition to these user-visible changes to

Click, Snap also makes a number of “under the hood” changes to the way that Click
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manages memory and optimizes its packet I/O mechanisms to support multiple 10 Gbps

network interface card (NIC) rates.

The following sections start from introducing simple Click background, and several

motivating experiments we have done for Snap work to convince you of the need for Snap.

Then we shall discuss in detail the design and implementation of Snap to describe how it

extends Click to efficiently use parallel GPUs to accelerate packet processing. And last

we evaluate Snap from a variety of aspects to demonstrate its performance and also the

flexibility and modularity derived from Click.

5.1 Click Background

Click is a modular software router that provides an efficient pipeline-like abstraction for

packet processing on the hardware. A packet processor is constructed by connecting small

software modules called “elements” into a graph called a “configuration.” Click elements

have two kinds of “ports”: input ports and output ports, and a single element may have

more than one of each. A connection between two elements is made by connecting an output

port of one element to an input port of another. Packets move along these connections

when they are pushed or pulled; an element at the head of the pipeline can push packets

downstream, or packets can be pulled from upstream by elements at the tail of the pipeline.

Packets typically enter Click at a FromDevice element, which receives them from a physical

NIC and pushes them downstream as they arrive. Unless dropped, packets leave through

a ToDevice element, which pulls them from upstream and transmits them as fast as the

outgoing NIC allows. Queues are used to buffer packets between push and pull sections of

the configuration.

At the C++ source-code level, elements are written as subclasses of a base Element

class, ports are instances of a Port class, and network packets, which are represented by

instances of the Packet class, are passed one at a time between Elements by calling the

elements’ push() or pull() methods. We run Click at user level—although Click can run

directly in the kernel, with the Netmap [50] zero-copy packet I/O engine, user-level Click

has a higher forwarding rate than the kernel version [50].

5.2 Motivating Experiments

Our work on Snap is motivated by two facts: (1) rich packet processing functionality can

represent a major bottleneck in processing pipelines; and (2) by offloading that functionality

onto a GPU, large performance improvements are possible, speeding up the entire pipeline.
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We demonstrate these facts with two motivating experiments. (Our experiment setup and

methodologies are described in more detail in Section 5.5.)

Our first experiment starts with the simplest possible Click forwarder, shown at the

top of Figure 5.1. It does no processing on packets. It simply forwards them from one

interface to another. We then add, one at a time, elements that do IP route lookup,

classification based on header bits as in most software-defined network (SDN) designs, and

string matching that is used in many intrusion detection systems (IDS) and deep-packet-

inspection (DPI) firewalls. The relative throughputs of these four configurations, normalized

to the throughput of the “Simple Forwarder,” are compared in Table 5.1. We can clearly

see from this table that the addition of even a single and ordinary processing task into the

forwarding pipeline can significantly impact performance, cutting throughput by as much

as 43%. In short, processing does represent a bottleneck, and if we can speed it up, we can

improve router throughput.

Our next experiments compare the performance of these three processing element when

run on the CPU and on the GPU. These experiments involve no packet I/O—we are simply

interested in discovering whether the raw performance of the GPU algorithms offers enough

of a speedup to make offloading attractive. We process packets in batches, which is necessary

to get parallel speedup on the GPU. The results are shown in Figure 5.2. Two things become

clear from these graphs. First, GPUs do indeed offer impressive speedups for these tasks:

we see a 16x speedup for IP route lookup: 559 Mpps (million packets per second) on the

GPU versus 34.7 Mpps on the CPU. Second, fairly large batches of packets are needed to

achieve this speedup. These results are in line with findings from earlier studies [24, 22].

FromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

Simple Forwarder:

Simple IP Router:

Simple SDN Forwarder:

Simple IDS:

LookupIPRouteFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

SDNClassifierFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

IDSMatcherFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

Figure 5.1. Simplified Click configurations for motivating experiments.
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Table 5.1. Relative throughputs of simple processing pipelines.
Configuration Throughput Relative Throughput

Simple Forwarder 30.97 Gbps 100%

IP Router 19.4 Gbps 62.7%

IDS 17.7 Gbps 57.3%

SDN Forwarder 18.8 Gbps 60.7%
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(c) Classifier algorithm.

Figure 5.2. GPU versus CPU performance on packet processing algorithms. Note that
the axes are nonlinear.

GPUs are not appropriate for every type of packet processing element. In particular,

elements that require a guarantee that they see every packet in a flow in order, or that

have heavy state synchronization requirements, are not well-suited to massively parallel

processing. Our challenge in Snap is to make it possible to take advantage of GPU

parallelism in a practical way that preserves the inherent composability and flexibility of

Click, including incorporation of CPU elements into the processing pipeline.
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5.3 Design

We designed Snap with two goals in mind: enabling fast packet processors through GPU

offloading while preserving the flexibility in Click that allows users to construct complex

pipelines from simple elements. Snap is designed to offload specific elements to the GPU:

parts of the pipeline can continue to be handled by existing elements that run on the CPU,

with only those elements that present computational bottlenecks reimplemented on the

GPU. From the perspective of a developer or a user, Snap appears very similar to regular

Click, with the addition of a new type of “batch” element that can be implemented on

the GPU and a set of adapter elements that move packets to and from batch elements.

Internally, Snap makes several changes to Click in order to make this pipeline work well at

high speeds. Several themes appear in our design choices. In many cases, we find that if

we do “extra” work, such as making copies of only the necessary parts of a packet in main

memory, or passing along packets that we know will be discarded, we can decrease the need

for synchronization and reduce our use of the relatively slow PCIe bus. We also find that

scheduling parts of the pipeline asynchronously works well, and fits naturally with Click’s

native push/pull scheduling. In this section, we walk through the design and implementation

of Snap, starting at a high level with the user-visible changes, and progressing through the

low-level changes that stem from these high-level decisions.

5.3.1 Batched Packet Processing

GPUs need parallel workloads to fully utilize their large number of cores, as discussed in

Section 3.1.1. To provide and to process parallel workloads in Snap, we designed a batched

processing mechanism to batch a large amount of packets and process them on GPUs by

one time GPU kernel execution. We extended Click’s single packet processing pipeline to

support multiple packets processing in a batch. We also designed special elements and

efficient data structures to do the batching and to store the batched packets. The following

sections will describe the details of our batched processing design in Snap.

5.3.1.1 Wider Pipeline

In standard Click, the connection between elements is a single packet wide: the push()

and pull() methods that pass packets between elements yield one packet each time they are

invoked. To efficiently use a GPU in the pipeline, we added wider versions of the push() and

pull() interfaces, bpush() and bpull(). These methods exchange a new structure called a

PacketBatch, which will be described in more detail in the following section. We also made

Click’s Port class aware of these wider interfaces so that it can correctly pass PacketBatches
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between elements. bpush() and bpull() belong to a new base class, BElement, which derives

from Click’s standard Element class.

In standard Click, to implement an element, the programmer creates a new class derived

from Element and overloads the push() and pull() methods. This is still supported in Snap;

in fact, most of our pipelines contain many unmodified elements from the standard Click

distribution, which we refer to as “serial” elements. To implement a parallel element in Snap

the programmer simply derives it from BElement and overrides the bpush() and bpull()

methods.

A GPU-based parallel element is comprised of two parts: a GPU side, which consists of

GPU kernel code, and a CPU side, which receives PacketBatches from upstream elements

and sends commands to the GPU to invoke the GPU kernel. Snap provides a GPURuntime

object to help Click code interact with the GPU, which is programmed and controlled using

CUDA [4]. GPU-based elements interact with GPURuntime to request GPU resources such

as memory. The GPU kernel is written in CUDA’s variant of C or C++, and is wrapped in

an external library that is linked with the element sources when compiling Snap. Typically,

each packet is processed by its own thread on the GPU.

5.3.1.2 Batching

The BElement class leaves us with a design question: how should we collect packets to

form PacketBatches, and how should we manage copies of PacketBatches between host and

GPU memory? Our answer to this question takes its cue from the functioning of Click’s

Queue elements. Parts of a Click configuration operate in a push mode, with packets arriving

from a source NIC; other parts of the configuration operate in pull mode, with packets being

pulled along towards output NICs. At some point in the configuration, an adapter must be

provided between these two modes of operation. The family of Queue elements plays this

role. In practice, the way a packet is processed in Click is that it is pushed from the source

NIC through a series of elements until it reaches a Queue, at which point it is deposited

there and Click returns to the input NIC to process the next packet. On the output side of

the Queue, the packet is dequeued and processed until it reaches the output NIC.

In an analogous manner, we have created a new element, Batcher, which collects packets

one at a time from a sequential Element on one side and pushes them in batches to a

BElement on the other side. A Debatcher element performs the inverse function. Batcher

can be configured to produce PacketBatches with specified batch-size packets, or fewer if a

specified timeout period passed. Implementing this functionality as a new element, rather

than changing Click’s infrastructure code, has three advantages. First, it minimizes the
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changes within Click itself. Second, it makes transitions between CPU and GPU code

explicit; since there are overheads associated with packet batching, it is undesirable for it

to be completely invisible to the user. Third, and most important, it means that batching

and offloading are fully under the control of the creator of the Snap configuration—while we

provide carefully-tuned implementations of Batcher and Debatcher elements, it is possible

to provide alternate implementations designed for specific uses (such as BElements running

on devices other than GPUs) without modifying Snap.

5.3.1.3 Data Structure

The PacketBatch data structure (shown in Figure 5.3) that represents a batch of packets

has been carefully designed specially for offloading computation to GPUs. A PacketBatch

is associated not only with a collection of packets (represented by Click’s Packet objects),

but also with allocations of host and GPU device memory. Large consecutive buffers are

used in host and GPU memory in order to enable efficient DMA transfers, minimizing the

overhead of setting up multiple transfers across the PCIe bus.

The large buffers of a PacketBatch are split into small buffers, which contain the slices

of packets (such as the headers) that are needed by the BElement(s). Snap does such slicing

and extra host memory buffer because of the special data usage pattern of most packet

processing tasks. As we have discussed in Section 3.5.3 and Section 3.5.4, network packet

processing is a representative task that only needs small pieces of a given data unit. Such

Packet

Packet

...

Packet slot

Packet slot

...
Packet slot

Packet

Packet pointers Host Memory 
Buffer

Device Memory 
Buffer

PacketBatch

Packets

ROI-based Copy

Host to 
Device 

Memcpy

Packet slot

Packet slot

...
Packet slot

Ptr

Ptr

...
Ptr

Figure 5.3. The PacketBatch structure.
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data usage pattern needs a trade-off of the relatively large host memory bandwidth and

the relatively small host-device memory bandwidth in order to effectively reduce the total

memory copy overhead.

We designed packet slicing (illustrated in Figure 5.4) for Snap to deal with this problem.

Slicing allows GPU processing elements to specify the regions of packet data that they

operate on, called regions of interest (ROIs). An ROI is a consecutive range in the packet

data buffer, and a GPU processing element can have multiple ROIs spread throughout the

packet. Batcher accepts ROI requests from its downstream BElements and takes their

union to determine which parts of the packet must be copied to the GPU. It allocates only

enough host and device memory to hold these ROIs, and during batching, Batcher only

copies data in these regions into a packet’s host memory buffer. This reduces both the

memory requirements for PacketBatches and the overhead associated with copying them

to and from the GPU. During debatching, ROIs are selectively copied back into the Click

Packet structure. Slicing is one reason that we chose not to use a zero-copy approach for

PacketBatches.

Batcher contains optimizations to avoid redundant copies in the case of ROIs that

overlap and to combine memcpy() calls for consecutive ROIs to reduce function call overhead.

For element developers’ convenience, we have provided helper API for BElements that

allow the element to address packet data relative to its ROIs—the true offsets within the

PacketBatch are computed transparently.

One problem associated with ROIs is that it may be difficult to describe the exact range
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Figure 5.4. A slicing example.
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in numeric values. For example, a Classifier element may need transmission control

protocol (TCP) port numbers, but the offset of this data within a packet is not constant

due to the presence of IP option headers. To support this case, Batcher provides some

special values to indicate variable offsets, such as the beginning of the TCP header or the

end of the IP header. This also enables some special ROIs, such as ROIs that request the

entire IP header including all IP options, or ROIs that cover the payload of the packet.

5.3.1.4 Flexible Memory Copy

GPU code requires both input data and output results to reside in GPU memory,

making it necessary to copy packets back and forth between main memory and the GPU

across the PCIe bus. Snap factors this task out of the BElements that contain processing

code: a HostToDeviceMemcpy element (provided as part of Snap) is placed between the

Batcher and the first element that runs on the GPU. An analogous DeviceToHostMemcpy

element is placed before the Debatcher. Multiple GPU elements can be placed between a

HostToDeviceMemcpy/DeviceToHostMemcpy pair, allowing the output ports of one to feed

into the input ports of another without incurring a copy back to host memory. This design

reduces the host-device packet copy times, reducing the overall memory copy overhead.

These memory copy elements, along with the batching and debatching elements, can be

seen in Figure 5.5.

5.3.1.5 Avoid Packet Reordering

Previous work on parallel packet processing often causes reordering among packets due

to techniques such as load balancing and parallel dispatch across multiple cores [51, 49].

HostToDeviceMemcpy

Batcher

(a) Batching packets.

DeviceToHostMemcpy

GPUCompletionQueue

Debatcher

(b) Completion and debatching.

Figure 5.5. Batching and debatching elements. Serial interfaces are shown as simple
arrows, wide interfaces as double arrows.
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This can hurt TCP or streaming performance [52]. Snap, however, does not suffer from

this problem: it waits for all threads in a GPU BElement to complete before passing the

batch to the next element, so Snap does not reorder packets within a PacketBatch. Because

asynchronous scheduling on the GPU (discussed in more detail in Section 5.3.3) may cause

reordering of the PacketBatches themselves, we add a GPUCompletetionQueue element

between the DeviceToHostMemcpy and Debatcher elements. GPUCompletetionQueue keeps

a first-in-first-out (FIFO) queue of outstanding GPU operations, and does not release a

PacketBatch downstream to the Debatcher until all previous PacketBatches have been

released, keeping them in order. Because GPUCompletetionQueue is simply an Element

in the configuration graph, a configuration that is not concerned about reordering could

simply provide an alternate element that releases batches as soon as they are ready.

5.3.2 Packet Processing Divergence

Snap faces a problem not encountered by other GPU processing frameworks [22, 21, 24],

namely the fact that packets in Click do not all follow the same path through the Element

graph. Elements may have multiple output Ports, reflecting the fact that different packets

get routed to different destination NICs, or that different sets of processing elements may be

applied depending on decisions made by earlier elements. This means that packets that have

been grouped together into a PacketBatch may be split up while on the GPU or after being

returned to host memory. We encounter two main classes of packet divergence. In routing or

classification divergence, the number of packets exiting on each port is relatively balanced;

with exception-path divergence most packets remain on a “fast path” and relatively few are

diverted for special processing. Packet divergence may also appear in two places: before

the packets are sent to the GPU, or on the GPU, as a result of the decisions made by

BElements.

Figure 5.6(a) shows an example of exception-path divergence before reaching the GPU:

packets may be dropped after the TTL decrement if their TTLs reach zero. Figure 5.6(b)

shows an example of routing divergence on the GPU. In this example, different IDS elements

(likely applying different sets of rules) are used to process a packet depending on its next

hop, as determined by IP routing lookup.

Divergence before reaching the GPU is another reason that we do not attempt to

implement zero-copy in the PacketBatch structure. The effect of divergence early in the

pipeline is memory fragmentation, giving us regions of memory in which only some packets

need to be copied to the GPU. This problem is particularly pronounced in the case of

routing/classification divergence. Copying all packets, even unnecessary ones, to the GPU
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Figure 5.6. Handling divergent packet paths.

would waste time and scarce PCIe bandwidth. Alternately, we could set up a number of

small DMA transfers, covering only the necessary packets, but this results in high DMA

setup overhead. Instead, we use the relatively plentiful memory bandwidth in host RAM

to copy the necessary packets to one continuous region, which can be sent to the GPU with

a single DMA transfer.

For divergence that occurs on the GPU, our experiments show that the overheads

associated with splitting up batches and copying them into separate, smaller PacketBatches

are prohibitive, especially in the case of exception-path divergence. Assembling output

PacketBatches from selected input packets is also not concurrency-friendly: determining

each packet’s place in the output buffer requires knowledge of how many packets precede

it, which in turn requires global serialization or synchronization. Having discussed in

Section 3.1.2.1, Snap should embrace the warp control flow divergence on GPU. But instead

of suffering from the slow performance caused by the divergence, Snap uses the predicated

execution to minimize the performance impact.

To do the predicated execution, Snap attaches a set of predicate bits to each packet in a

PacketBatch—these bits are used to indicate which downstream BElement(s) should process

the packet. Predicates are stored as annotations in Click’s Packet structure. The thread
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processing each packet is responsible for checking and setting its own packet’s predicate;

this removes the need for coordination between threads in preparing the output. With

predicate bits, a thread simply decides whether to process a given packet or not by checking

the packet’s predicate at the very beginning of the GPU kernel, hence it just introduces two

branches of the control flow, and one of them is totally “empty,” which follow the guidelines

presented in Section 3.1.2.1. Because they are only used to mark divergence that occurs on

the GPU, not before it, we save PCIe bus bandwidth by not copying predicate bits to GPU

memory; we do, however, copy them from the GPU once a chain of BElements is finished,

since they are needed to determine the packets’ next destination Elements on the CPU.

Figure 5.6(c) shows how this predicated execution works. The GPUElement-1 element

marks packets with either Predicate 0 or Predicate 1, depending on which downstream

element should process them. The packets remain together in a single PacketBatch as

they move through the element graph, but GPUElement-2 only processes packets with

Predicate 0 set and GPUElement-3 only processes those with Predicate 1. Eventually, once

they have left the GPU, the packets encounter a Dispatcher element, which sends them

to different downstream destinations depending on their predicate bits. This arrangement

can be extended to any number of predicate bits to build arbitrarily complicated paths on

the GPU.

We have experimented with two strategies for using predicate bits: scanning all packets’

predicates, and only launching GPU threads for the appropriate packets; and launching

threads for all packets, and returning immediately from threads that find that their packet

has the wrong predicate. We found it more efficient to launch threads for all packets:

scanning packets for the correct predicates in order to count the number of threads adds

to the startup overhead for the BElement. The savings in execution time that come from

launching fewer threads are typically smaller than the overhead of scanning for the correct

threads to launch, and it is faster to simply launch all threads. Because we run many threads

per core, the threads that exit early do not necessarily waste a core. A further experiment

to evaluate these two strategies on Snap applications is discussed in Section 5.5.4.

5.3.3 Asynchronous Processing

The host uses two main operations to control the GPU: initiating copies between host

and device memory and launching kernels on the GPU. Both can be done asynchronously,

with the CPU receiving an interrupt when the copy or code execution completes. Multiple

GPU operations can be in flight at once. Based on this, most GPU elements can work

asynchronously on the CPU side: when a GPU element is scheduled by Snap, it issues
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appropriate commands to the GPU and schedules its downstream element by passing the

PacketBatch immediately, without waiting for completion on the GPU. As a result, a push

path or a pull path with GPU elements can keep pushing or pulling PacketBatches without

blocking on the GPU. This allows us to achieve very low latency at the beginning of the path,

which is critical when packet rates are high—for example when receiving minimum-sized

packets from a 10Gbps interface. The Click FromDevice element that receives packets

from the NIC must disable interrupts while it pushes packets downstream to first Queue or

Batcher element that they encounter; it is thus critical to have this path run as quickly as

possible to avoid lost packets.

Snap uses CUDA stream to achieve overlapped asynchronous kernel execution and

asynchronous memory copy. Each stream has a queue of operations which is run in FIFO

order. Operations from different streams run concurrently and may complete in any order.

We associate each PacketBatch with a unique stream. When the PacketBatch is first

passed to a GPU element (typically, HostToDeviceMemcpy), it gets a stream assignment.

Each subsequent BElement along the path asynchronously queues execution of its operation

within the stream and passes control to the next BElement immediately, without waiting for

the GPU. This sequence of events continues until control reaches a GPUCompletetionQueue,

which is a push-to-pull element, much like a Queue. When a PacketBatch is pushed into the

GPUCompletetionQueue, it simply adds the batch’s stream to its FIFO queue and returns.

When the GPUCompletetionQueue’s bpull() method is called, usually by a downstream

Debatcher, it checks the status of the stream at the head of the FIFO by calling a

nonblocking CUDA stream checking function. If the stream has finished, bpull() returns

the PacketBatch; if not, it indicates to the caller that it has no packets ready.

5.3.4 Packet I/O

Click includes existing support for integration with Netmap [50] for fast, zero-copy

packet I/O from userspace. We found, however, that Click’s design for this integration did

not perform well enough to handle the packet rates enabled by Snap.

Netmap uses the multiqueue support in recent NICs to enable efficient dispatch of

packets to multiple threads or CPU cores. The queues maintained by Netmap in DRAM

are mapped to hardware queues maintained by the NIC; the NICs we use for our prototype

fix each receive and transmit queue at 512 packets. When a packet arrives on the NIC, a

free slot is found in a queue, and the NIC places the packet in a buffer pointed to by the

queue slot. When the packet is passed to Click, the buffer, and thus the queue slot, remains

unavailable until Click is either finishes with the packet (by transmitting it on another port
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or discarding it) or copies it out into another buffer. Since packets may take quite some

time to be processed, they tie up these scarce queue slots, which can lead to drops. This

problem is exacerbated in Snap, which needs to wait for suitably large batches of packets

to arrive before sending them to the GPU. Click’s solution is to copy packets out when it

notices the Netmap queues getting full. It uses a single global memory pool for all threads,

leading to concurrency problems. We found that at the high packet rates supported by

Snap, these copies occurred for nearly every packet, adding up to high overhead incurred

for memory allocation and copying. Note that unlike our PacketBatch structure, which

copies only regions of interest, the copies discussed here must copy the entire packet.

Unmodified Netmap gives the userspace application a number of packet buffers equal

to the number of slots in the hardware queues; while kernel code can request more buffers,

userspace code cannot. We added a simple system call that enables applications to request

more packet buffers from Netmap. Though the size of the queues themselves remain fixed,

Snap can now manipulate the queue slots to point to these additional buffers, allowing

it to maintain a large number of in-process packets without resorting to copying. Snap

maintains a pool of available packet buffers—when it receives a packet from the NIC, it

changes the queue to point to a free packet buffer, and packet buffers are added back to the

free pool when the packets they hold are transmitted or dropped. This eliminates packet

buffer copying and overhead from complex memory allocation (kmalloc()), and we use

multithreaded packet buffer pools to avoid overhead from locking.

We also modified Click to pin packet I/O threads to specific cores. This is a well-known

technique that improves cache behavior and interrupt routing when used with multiqueue

NICs. Combined, these two optimizations give Snap the ability to handle up to 2.4 times

as many packets per second as Click’s I/O code—this improvement was critical for small

packet sizes, where the unmodified packet I/O path was unable to pull enough packets from

the NIC to keep the processing elements busy.

5.4 Implementation

Snap has been implemented on top of the 9200a74 commit in the Click source repos-

itory [53]. We used the Netmap release from August 13, 2012 and Linux kernel 3.2.16.

Snap makes 2,179 lines of changes to Click itself, plus includes 4,636 lines of code for new

elements and a 3,815 line library for interacting with the GPU. We modified only 180 lines

of code in Netmap. The source for Snap, including our modifications to Netmap, can be

downloaded from https://github.com/wbsun/snap.
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The new packet processing elements we have implemented are for three kinds of packet

processing tasks. Each has a CPU and a GPU version.

• GPUIPLookup: this GPU-based IP lookup element implements Click’s IPRouteTable

class using a radix tree. Its CPU counterpart is Click’s RadixIPLookup element. For

evaluation, we used a routing table dump from routeview.org [54] that has 167,000

entries.

• SDNClassifier, GPUSDNClassifier: these two elements classify packets using seven

fields from the ethernet, IP, and TCP headers. Each entry assigns an action by

forwarding the packet out of a specific outbound Port on the element. This is

roughly analogous to the flow space matching used by many SDN forwarding schemes.

SDNClassifier is the CPU version. The classification rule set is ClassBench [55]’s

“ACL1 10K” filter set. We randomly assigned an action number to each rule.

• IDSMatcher, GPUIDSMatcher: these two elements implement the Aho-Corasick [56]

string matching on packet payloads. The Aho-Corasick algorithm can match mul-

tiple patterns simultaneously by scanning the entire packet payload once. We used

Snort’s [57] rules for an Internet application server.

We combine these elements to build three kinds of Snap configurations, each of which

has both a GPU and a CPU version:

• SDN Forwarder: This configuration includes only the SDNClassifier or its GPU

counterpart. It simulates an SDN switch.

• DPI Router: This configuration includes an IP lookup element (RadixIPLookup or

GPUIPLookup) and a string matching element (IDSMatcher or GPUIDSMatcher) as the

major processing elements. The intent is to simulate a router with a simple deep

packet inspection firewall.

• IDS Router: This configurations includes all three elements (IP lookup, IDS matcher,

and SDN classifier) to simulate a more sophisticated router with complicated forward-

ing rules and intrusion detection.

5.5 Evaluation

All experiments were performed on the “gpunode” machine in the Emulab testbed [58].

Packets were generated at full line rate using a modified version of the packet generator that

comes with the Netmap distribution, using a separate set of hosts in Emulab. Forwarding

tables were designed such that all packets were forwarded back out the interface they arrived

on. This ensured that all outgoing traffic was perfectly balanced so that any drops we
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observed were due to effects within the Snap host, rather than congestion on unbalanced

outbound links.

5.5.1 Packet I/O

Our first set of experiments are simple microbenchmarks that evaluate the packet I/O

optimizations described in Section 5.3.4. We measured the forwarding rate for minimum-

sized (64 bytes) packets using Click’s Netmap packet I/O engine and Snap’s improvements

to that engine. These experiments use the simplest possible forwarder, which simply

passes packets between interfaces with no additional processing. We test both a one-path

arrangement, which passes packets from a single input NIC to a single output, and a

four-path arrangement that uses all four NICs in our test machine. Click’s existing Netmap

support is not thread-safe, allowing only one packet I/O thread to be run. We added

multithreading support to standard Click’s Netmap code, and also report performance for

four threads, one per NIC. Snap adds support for multiple threads per NIC, each using a

different NIC queue, so we use sixteen threads for the Snap configuration.

The performance numbers are found in Table 5.2. Snap’s improvements to the I/O

engine introduce a 1.89x speedup for single path forwarding and 2.38x speedup for four-

path forwarding. One interesting result is that Snap’s four-path performance is not quite

four times that of its single-path performance. This suggests that there may be room

to improve the forwarding performance of Snap using more cores; our test CPU has four

physical cores and hyperthreading, meaning that there are two I/O threads mapped to

each hyperthreaded core. A recent (at the time of writing this dissertation) evaluation of

Snap’s forwarding performance confirms this guess. We use a recent six-core high-end CPU:

Intel Core i7-3930K, and six 10Gb ports to do the basic forwarding, and get 49.62 Gbps

forwarding rate, which is a little bit higher than the quad-core machine when considering

the per-port rate. That makes sense because the six-core machine still assigns two I/O

threads to a single hyperthreaded core. When we use only four 10GB ports on the six-core

machine so that in theory each two I/O threads can get one-third more core, the forwarding

rate approximately reaches 40 Gbps line rate.

5.5.2 Applications

Using the implemented applications, we compared the performance of four configura-

tions: standard Click; Snap with only CPU Elements; Snap with GPU elements, but with

packet slicing disabled; and Snap with all optimizations enabled. We experimented with

a variety of packet sizes. Each experiment lasted at least one minute, and the numbers
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Table 5.2. Base forwarding performance of Snap and Click.
Configuration Throughput

Click 1 Path 4.55 Gbps 6.5 Mpps

Click 4 Paths (1 thread) 8.28 Gbps 11.8 Mpps

Click 4 Paths (4 threads) 13.02 Gbps 18.5 Mpps

Snap 1 Path 8.59 Gbps 12.2 Mpps

Snap 4 Paths 30.97 Gbps 44.0 Mpps

reported are the average of three runs. The results are shown in Figure 5.7.

The results show that Snap gets significant performance improvements over Click, par-

ticularly for small packet sizes. A significant fraction of this speedup comes from our I/O

optimizations, which can be seen by comparing the bars for “Click” and “Snap-CPU:” 63%

of the 3.1x speedup seen by the SDN forwarder on 64-byte packets comes from this source.

Another jump comes from moving the processing-heavy elements to the GPU, with another

modest increase with the addition of packet slicing. Snap is able to drive all four NICs at
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(a) SDN Forwarder.
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(b) DPI Router.
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(c) IDS Router.

Figure 5.7. Application performance.
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full line rate for all but the smallest packets: at and above 128 bytes, it gets full line rate

for all configurations (with the exception of the IDS Router, which gets 39.6 GBps at 128

bytes). Snap is limited by the availability of PCIe slots in our test machine, which has 32

PCIe lanes: 16 are used by the GPU, and each dual-port NIC uses 8 lanes, meaning that

we cannot add any more NICs. The results strongly suggest that Snap would be capable

of higher bandwidth on a machine with more or faster PCIe lanes, but such hardware was

not available for our tests. We thus leave exploration of Snap’s full limits to future work

and the availability of suitable hardware, but we are optimistic that it will be capable

of exceeding 40 Gbps for large packets. Conversely, this result also means that there is

headroom available to do more processing per packet than is performed by our example

applications.

For minimum sized packets, Snap reaches 29.9 Gbps (75% of the full line rate) for the

SDN forwarder; the primary cause of this limitation appears to be due to packet I/O, as the

throughput seen in this experiment is very close to the trivial forwarder from Section 5.5.1.

The other two GPU applications reach almost the same performance: 29.2 Gbps for the

DPI router and 28.0 Gbps for the IDS Router. This matches our intuition, because with

all of the complex processing done on the GPU, the CPU only needs to perform simple

operations and can spend most of its time on packet I/O. When we use the CPU elements,

both packet I/O and the processing algorithms need the CPU, and all three applications

slow down significantly: the IDS Router gets 14.73 Gbps, a slowdown of 52% from the trivial

forwarder. With the DPI and IDS Router configurations, standard Click is unable to reach

much more than 20 Gbps, even for large packet sizes.

The ROI-based slicing mechanism makes a modest improvement in forwarding through-

put. For example, the SDN forwarder sees a 13.7% increase in throughput for 64-byte

packets. Slicing enables Snap to reach nearly the full rate supported by the packet I/O

engine for small packets. At larger packet sizes, the improvement disappears because we

have reached full line rate on the NICs.

5.5.3 Latency and Reordering

The most obvious drawback of batched processing is an increase in latency, since packets

arriving at the beginning of a batch must wait for the batch to fill. To find out how much

latency the batching mechanism adds to Snap, we measured round-trip time for 64-byte

packets using both a CPU and GPU configuration. For the CPU-only configuration, we

saw a mean latency of 57.5µs (min: 31.4µs, max: 320µs, σ: 25.7µs). For the GPU-based

configuration with batched processing (batch-size: 1024), the mean latency was 508µs (min:
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292µs, max: 606µs, σ: 53.0µs); this represents an increase of less than one quarter of a

millisecond in each direction. Reducing the batch-size from 1024 to 512, the latency reduces

to 380.4µs on average, but throughput also drops from 28 Gbps to 24 Gbps. The additional

latency added by batching for GPU elements is likely to be noticeable, but tolerable, for

many local area network (LAN) applications. On wide area network (WAN) links, this

delay will be negligible compared to propagation delay. As part of this experiment, we also

checked for packet reordering. We define the multiqueue dispatching rules of our router

NICs to send packets in the same traffic flow into the same NIC transmit queue, and in the

Snap configuration, we connected each FromDevice element to a ToDevice with the same

transmit and receive queue IDs. With these settings, we found no reordering in the packet

stream.

5.5.4 Packet Processing Divergence

To evaluate whether our design for handling divergent paths is effective, we built an

IDS configuration that connects an GPUSDNClassifier element with two GPUIDSMatcher

elements. The classifier marks each packet with a predicate indicating which of the two IDS

elements is to process it; this simulates a scenario in which packets are to be handled by

different IDSes depending on some property such as source, destination, or port number. In

both this configuration and the IDS router configuration from our earlier experiments, each

packet is processed by one IDS element; the difference is that in the diverging configuration,

there are two IDS elements, each of which processes half of the packets. Thus, we can expect

that, if the overhead of our divergence handling strategy is low, the configuration with

two GPUIDSMatchers should achieve similar throughput to the configuration with a single

one. We evaluated this diverging configuration with different packet sizes and measured the

throughput, which is shown in Figure 5.8. The performance under divergence is very similar

to the IDS router result shown in Figure 5.7(c). It is only slightly slower at small packet sizes:

the diverging configuration achieves 26.8 Gbps versus the IDS router’s 28.0 Gbps for 64-byte

packets, 39.4 Gbps versus 39.6 Gbps for 128-byte packets, and 39.9 Gbps versus 40.0 Gbps

for 256-byte packets. At and above 512-byte packets, both achieve a full 40.0 Gbps. We

conclude that the launch of extra GPU threads that have no work to do causes a slight

slowdown, but the effects are minimal.

5.5.5 Flexibility and Modularity

Finally, we demonstrate that Snap can be used to build not only highly specialized

forwarders, but also a complete standards compliant IP router. This task is simple, because
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Figure 5.8. Forwarding performance when using a GPUSDNClassifier that diverges to
two GPUIDSMatcher elements.

such configurations already exist for Click. Specifically, we base our IP router off of

the configuration shown in Figure 8 of the Click paper [19], which includes support for

error checking of headers, fragmentation, ICMP redirects, TTL expiration, and ARP. We

replace the LookupIPRoute element with our GPUIPLookup element (and the accompanying

Batcher, etc.), and add an IDS element to both the CPU and GPU configurations.

Due to the complexity of this router, we do not attempt to illustrate the entire Snap

configuration here. Instead, we illustrate the major changes that we made to the standard

Click router configuration in Figure 5.9. The left part of the figure shows our GPU pro-

cessing path, and the right part is the original CPU route lookup path plus an IDSMatcher

and its auxiliary alert element. This figure also shows a strategy for handling divergence

on the GPU: the GPUIDSMatcher sets predicates on packets depending on whether they

should raise an alert, then pushes entire the PacketBatch downstream. The GPUIPLookup

is assigned a CHK ANNO argument, which is the predicate controlling processing of each

packet. GPUIPLookup thus ignores packets flagged for alerts by the IDS, and divergence on

the actual element graph is delayed until after the Debatcher, using a Dispatcher element.

The performance of the CPU-based and GPU-based full router configurations are shown

in Figure 5.10. This fully-functional router with built-in IDS is able to achieve 2/3 of the

performance of a trivial forwarder for minimum-sized packets, and almost full line rate

(38.8 Gbps) for 512-byte and larger packets. This demonstrates the feasibility of composing

complex graphs of CPU and GPU code, and shows that existing CPU Click elements can

be easily used in Snap configurations without modification. The bottleneck in performance

appears to be the large number of CPU elements in this configuration—there are fifteen

types of elements, some of which are duplicated sixteen times, once for each thread. As

future work, we believe that the throughput can be significantly improved by moving some of



57

HostToDeviceMemcpy

Batcher(batch-size, timeout, …)

GPUIPLookup(CHK_ANNO ..., ...)

GPUIDSMatcher(…)

DeviceToHostMemcpy

GPUCompletionQueue

˙˙˙ ˙˙˙ ˙˙˙ ˙˙˙

Dispatcher(CHK_ANNO ...)

LookupIPRoute(...)

IDSMatcher(…)

IDSAlertDrop

˙˙˙ ˙˙˙ ˙˙˙ ˙˙˙

Debatcher

Dispatcher(CHK_ANNO ...)

IDSAlertDrop

GPU Configuration… CPU Configuration
… 

Figure 5.9. Major changes of the standard Click router to build a GPU-based IDS router.
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Figure 5.10. Fully functional IP router + IDS performance



58

these to the GPU and applying the techniques from the work [59] to optimize the remaining

CPU portions of the configuration.

5.6 Summary and Future Work

Snap expands Click’s composable element structure, adding support for batch processing

and offloading of computation. At small packet sizes (128 bytes), Snap increases the

performance of a combined IP router, SDN forwarder, and IDS on commodity hardware from

10.6 Gbps to 39.6 Gbps. This performance increase comes primarily from two sources: an

improved packet I/O engine for Click that takes advantage of multiqueue NICs, and moving

computationally expensive processing tasks to the GPU. A trivial forwarder created with

Snap can forward at a rate of 44.0 Mpps, while the complex SDN/IDS router reaches 90%

of this rate (39.8 Mpps). These results suggest that there is likely potential for elements

that are even more computationally complex than the ones we investigated, pointing to

future work in complex packet processing. The fact that we are able to saturate all NICs

in our test platform with such small packets suggests that it will be possible to reach even

higher throughputs when PCIe 3.0 devices are available for testing, allowing us to double

the number of NICs on a bus.

The elements and techniques proposed and implemented in Snap are not GPU-specific

only. While some of the new Elements implemented for Snap, such as HostToDeviceMemcpy

and GPUCompletetionQueue, are GPU-specific, the extensions we made to the Click archi-

tecture should be applicable to other parallel offload engines (such as network processors

and programmable NICs) as well.

Besides possible throughput improvement with techniques from the similar work [59],

recent CUDA releases and GPU hardware advancement have provided useful techniques for

Snap to do fast packet processing. The “dynamic parallelism” technique [60] on the latest

CUDA GPUs allows a kernel thread on GPU to invoke a new kernel launching, exactly the

same as the host side code can do. This indicates an alternative approach to implement

predicated execution: packet pointers can be grouped on GPU by their predicates, and

then only necessary threads are launched for a following GPU element’s kernel to process

the grouped packets only. One problem with this approach is that it requires on-GPU

synchronization, which is an expensive operation, and hence is impractical on GPUs used

for evaluating Snap. However, dynamic parallelism also makes it possible to only launch

a one-thread scheduling kernel at the beginning of the first GPU element in a batched

processing path. Such a scheduling kernel is responsible to launch the kernels for the
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following GPU elements according to the configuration and predicates as explained before.

In that case, on-GPU synchronization won’t be a problem any more because the scheduling

and kernel launching only happen in the single-threaded scheduling kernel.



CHAPTER 6

A SURVEY OF SYSTEM-LEVEL GPU

COMPUTING

The motivations of this survey are two-fold.

1. To survey the existing work of different system-level GPU computing to demonstrate

the wide applications of the GPU in system areas.

2. To analyze techniques used by the related work for efficient GPU integration in system

software, comparing them with our techniques proposed in this dissertation for pros

and cons, as a reference to guide later system-level GPU research.

This survey tries to cover major system-level work that targets the GPU. Most of the papers

surveyed are related to various system-level applications with GPU acceleration. However,

some work covered in this survey is on system-level support for GPU computing, such as

virtualization, resource management, and migration.

This survey has two major sections. The first section is focused on applications of

GPUs in system-level software. It discusses the computationally expensive operations or

algorithms in different system areas which GPUs are expected to accelerate, with represen-

tative work in each area. Similar to our KGPU white paper [61], not only existing work but

also potential applications are discussed. For each application area, the attacking targets,

which are computationally expensive operations or algorithms, are listed first. Then the

related work is described. This section serves as a traditional related work survey for this

dissertation. The second section is focused on techniques proposed and used by applications

in the first section to improve the performance of or ease the GPU computing integration into

existing system software. Since Chapter 3 has described our own techniques for system-level

GPU computing, this section will also compare them with the surveyed techniques. It is not

surprising to find a large portion of common techniques during the comparison, which can

further confirm the feasibility and effectiveness of techniques proposed in this dissertation.

Besides those two major sections, there is also a small section at the end of this chapter,
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which discusses the potential future GPU development and useful techniques to solve current

problems.

6.1 Applications

The system-level work categories listed in the following sections are not orthogonal to

each other. Many applications actually belong to two or more categories. For example

SSLShader [23] is both networking and security work. Some categories such as networking

and storage have much more existing work surveyed due to comprehensive studies done by

the research community. Some have just attracted a few efforts, such as program analysis

and data compression. However, that doesn’t mean they are not important at all. On the

contrary, less existing work often means that area has not been thoroughly studied and

hence may contain more potential opportunities for future research.

6.1.1 Networking

Currently, the main computing tasks in network systems are the operations and algo-

rithms used to process network packets, providing packet forwarding, security, and data

integrity functionalities. The parallelism of packet processing tasks often requires inde-

pendent processing on a per-packet and per-flow basis. So stateful processing that needs

either high-level protocol data or particular packet orders is not a good candidate for

parallel acceleration. As we will see in the following text, most computing tasks are packet

classification, IP routing, pattern matching, hashing, error correction coding, encryption,

name lookup, etc. They are all very packet-independent processing logic.

As for concrete applications, Gnort [24, 62] is a very early attempt at a GPU-accelerated

NIDS. It’s built on top of Snort [57], which is a widely used open source NIDS. Gnort

attacks the pattern matching problem in intrusion detection. It matches multiple patterns

in parallel using a DFA built by the Aho-Corasick [56] algorithm, getting 3.2x speedup over

the CPU algorithm implementation, and 2x speedup in the macrobenchmark.

Kargus [21] is similar to Gnort. It is also a GPU-accelerated NIDS based on Snort.

Different from Gnort, Kargus includes more pattern matching algorithms for different

regular expression dialects. Kargus also balances the workload between the CPU and the

GPU to trade off between the throughput and latency. The load-balanced processing model

in Kargus helps it reach a factor of 1.9 to 4.3 performance improvement over the conventional

Snort.

PacketShader [22] is a software router with GPU-accelerated IP routing. PacketShader

considers the entire network stack from packet I/O on NICs to the routing table lookup,
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to improve the IP routing throughput. It brings a factor of four performance improvement

over the existing software router when doing minimum size IP forwarding. As the pioneer

work of GPU-accelerated network systems, PacketShader demonstrates a great opportunity

in this area.

SSLShader [23] is an SSL proxy that utilizes both CPU and GPU power. SSLShader

uses GPUs to attack the cryptography operations in the SSL protocol, such as hashing,

asymmetric public key encryption, AES private key encryption and other simple encryption

algorithms. By combining the CPU and the GPU together to process SSL flows, SSLShader

demonstrates a comparable performance to high-end commercial SSL appliances at a much

lower price.

Our Snap framework is also focused on network packet processing. The main difference

between Snap and the above work is Snap’s generality as a packet processing platform that

is capable of building a variety of system-level network applications, including all of the

above ones. Different from Snap, which decomposes the abstract GPU-accelerated packet

processing task into modular elements for flexible configurable control in different processing

tasks, each surveyed system is built as a single box for a particular task only, not suitable

for other kinds of packet processing.

There are several algorithm-only efforts. An algorithmic work [63] has achieved scalable

IP lookup under frequent routing table updates. Another project [64] did name lookup for

the content-centric network (CCN) [65] with GPU-accelerated longest prefix matching on

strings. The low-density parity-check (LDPC) coding algorithm that is used in wireless com-

munication for error correction is also attacked by a project [66] with parallel GPUs. Last,

the classic packet classification problem has also benefited from parallel GPU acceleration

as done in [67].

One potential GPU computing application in network systems is the WAN optimiza-

tion [43, 48]. Candidate computing tasks include computing data signatures for packet

deduplication, compressing payload to reduce transfer overhead, computing error correction

code and so on. The CCN is definitely another good target for GPU acceleration. The

aforementioned name lookup work [64] only did algorithm parallelization with GPUs, the

underlying system infrastructure still needs careful optimization to build a high perfor-

mance CCN. Our Snap work provides such complementary infrastructure-level optimization,

making it possible to build such a CCN on top of Snap with the optimized name lookup

algorithm.
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6.1.2 Storage

Storage systems also contain many computational tasks. There are content addressable

storage systems that require hashing for signatures, secure storage systems that require

encryption algorithms, reliable storage systems that require erasure code for error detection

and recovery, archival or space-efficient storage systems that compress the data, and high

performance storage systems that use complex index structures for fast lookup. Similar to

network processing, storage tasks can often be parallelized per data block, per disk sector,

per I/O request or per memory page.

Content addressable storage attracts a lot attention due to its expensive hashing oper-

ations. Shredder [68] and CrystalGPU [69] are representative work on incremental storage

and deduplication systems with GPU-accelerated content addressing functionality. Shredder

works as a content-based chunking framework, which has shown 5x chunking bandwidth

speedup over the CPU counterpart, and also large performance improvements in real world

applications. CrystalGPU is actually a GPU framework for building distributed content ad-

dressable storage systems with two other GPU libraries, HashGPU [69] and MesaStore [69],

which has demonstrated up to 2x speedup.

Erasure coding, or error correction coding, is another hot topic: Gibraltar [70] and

Barracuda [39] accelerated RAID [71] parity computation with GPUs. Gibraltar is built

on top of the Linux kernel’s SCSI target in userspace. It implements a flexible Reed-

Solomon coding [72] on GPUs, so it supports broader RAID configurations compared to its

counterpart, the md’s only n+ 2 RAID 6 scheme in the Linux kernel. Barracuda is similar

to GPUstore’s md work; they both accelerate the coding tasks in md. Similar to Gibraltar,

Barracuda implements more schemes than md’s default two-failure tolerable one. Different

from GPUstore’s md acceleration, it didn’t see speedup at the two-failure case, but got a

72x speedup at the eight-failure case.

Besides content addressable storage and erasure coding, secure storage with data encryp-

tion can also benefit from GPUs with GPU-accelerated cryptography: GPUstore includes

two secure storage systems, the encrypted filesystem and the disk encryption driver.

A potential GPU application in storage is for file system integrity, such as the Feather-

stitch [73], which exposes the dependencies among writes in a reliable file system. One of

the most expensive parts of Featherstitch is analysis of dependencies in its patch graph, a

task we believe could be done efficiently on the GPU with parallel graph algorithms.

There exists other work that tries to ease the storage access in GPU programming.

GPUfs [74] is a file system API available to CUDA GPU kernels. With GPUfs, GPU kernel
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programmers can access file content directly from within the kernel, no need to go back to

the host side any more, which leads to complex interleaved host code and device code.

6.1.3 Database Processing

For databases, the major computing tasks are in data query, which may require large

scale linear scanning, sorting and hashing. Generic large scale data processing, which often

involves the MapReduce [75] model, requires not only sorting during key shuffling, but also a

GPU computing friendly platform for potential GPU-accelerated mappers or reducers. Note

that we won’t survey the specific GPU-accelerated MapReduce applications for particular

tasks such as stock analysis, because they are not system-oriented. Instead, we focus on the

system support by means of a framework or runtime to build GPU-accelerated MapReduce

applications.

The main algorithmic operations in relational database queries—scan, join and sorting—

have been studied to take advantage of parallel GPUs by a lot of existing work [76, 77,

78, 79, 80, 81]. However, only a few have built practical database systems with GPU

accelerations. The most practical work is the GPU query engine [82], which accelerates the

linear scan of massive records in the industrial-level PostgreSQL [83] database management

system with GPUs. The in-GPU-memory column-oriented database [84] is designed for

processing analytical workloads. The main idea, or motivation of its in-memory design is to

address the low bandwidth memory copy between host and device. By keeping data in GPU

device memory, memory copy through PCIe bus is unnecessary. Key-value store databases

also benefit from the GPU-accelerated lookup algorithms, such as the GPU-accelerated

Memcached [85] which has got up to 7.5x performance increase with integrated CPU+GPU

key-value lookup.

For large scale data processing, GPUTeraSort [86] is a pipelined disk-based external

sorting system to process large scale data, and shows a good price-performance in practice.

As for the GPU-accelerated MapReduce frameworks, Mars [87] is the pioneer work that

eases the GPU-accelerated MapReduce programming. Mars works on a single machine,

so its performance is limited compared with the other CPU-based distributed MapReduce

systems. Mars also uses a simple workload mapping mechanism: it maps a single data

item to one GPU thread. Such single mapping prevents programmers from exploiting the

interthread collaboration to improve performance. Recent GPU-accelerated MapReduce

frameworks[88, 89] relax such mapping constraint, allowing flexible one-to-many or many-

to-one mappings. Moreover, they have been extended to multiple GPU clusters to embrace

more computing power.
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6.1.4 Security

Cryptography algorithms are a main class of computing tasks for security. Another

computing task is pattern matching. We have gone through the NIDS that heavily relies on

pattern matching for network security. In this section, we mainly focus on general security

systems.

The cryptography algorithms fit quite well on GPUs because of their simple control flow

logic: symmetric cryptography [90], asymmetric cryptography [91, 92] and hashing [23].

All have been exploited to use parallel GPUs to accelerate. The pattern matching based

security systems are not only network intrusion detection systems as we have discussed

in previous sections, but also antivirus software that requires heavy signature matching.

There is a parallel antivirus engine [93] with GPU-accelerated signature matching via the

Boyer-Moore algorithm [94] and the Aho-Corasick algorithm [56]. It is built on top of

ClamAV1, a popular open source antivirus software, to achieve 20 Gb/s, 100 times faster

than the CPU-only performance. Kaspersky, which is a very famous antivirus software, also

tried using GPUs to match virus signatures and got two orders of magnitude speedup [95].

This is the most practical GPU-accelerated antivirus solution right now, though as far as

we know, Kaspersky hasn’t released any product with such GPU acceleration available to

end users.

A very useful potential GPU application in security is for the trusted computing in

virtualized environment based on trusted platform module (TPM). A TPM is tradition-

ally hardware, but recent software implementations of the TPM specification, such as

vTPM [96], are developed for hypervisors to provide trusted computing in virtualized

environments where virtual machines cannot access the host TPM directly. Because TPM

operations are cryptography-heavy, they can also potentially be accelerated with GPUs.

6.1.5 Program Analysis

A very interesting work is the EigenCFA [25] static program analyzer, which maps flow

analysis onto matrix multiplication accelerated by GPUs to get up to 72x speedup. Though

EigenCFA just does the basic 0CFA [97] and can’t fundamentally solve the exponential

complexity control flow analysis problem, it makes the flow analysis further practical with

much faster GPUs. One of our side projects, the GodelHash [98], also reveals another

potential computation target for GPUs to attack: the time-consuming flow entry subsump-

tion operations in kCFA [97]. GodelHash does perfect hashing that maps a flow entry to a

1http://www.clamav.net
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prime number, then uses the product of the prime number to represent a flow set. Hence

the subset and membership, which are actually the subsumption operation in control flow

analysis, are done by the divisibility. It requires multiple precision arithmetic to deal with

the huge integers produced by multiplying a set of prime numbers, which has demonstrated

great speedup with GPU acceleration [23]. Hence GodelHash-based flow analysis is a good

candidate for parallel acceleration.

6.1.6 Data Compression

Some data compression algorithms can also be parallelized. For general compression

scheme, the LZSS [99] has been exploited in a recent work [100] to enable pipelined par-

allel compression. They accelerate the two main stages in LZSS, substring matching and

encoding, to get a 34x speedup over a serial CPU implementation, and a 2.21x speedup

compared with a parallel CPU implementation. The aforementioned GPU-accelerated

database compression [101] uses a specialized compression scheme for column-oriented

databases and gets very high performance.

Another opportunity comes from the recent migratory compression [102] work. Migra-

tory compression does three steps to achieve better compression than traditional methods: it

firstly deduplicates the data, then relocates the similar data chunks to put them together,

and last does the traditional compression on the relocated data. The chunk relocation

improves the data similarity, and helps migratory compression achieve 44-157% compression

ratio improvement on archival data. The relocation step needs to find similar data chunks,

which relies on the computation intensive “super-feature” generating and matching. The

feature generating is totally chunk-independent, hence a good parallel target for GPUs.

The matching needs hashing for hash table lookup and large scale sorting for similarity

comparison, which are parallelizable.

6.2 Techniques

In this section, we will discuss the techniques used by a variety of existing system-level

GPU work. As said at the beginning of the chapter, we focus on the system-level techniques

rather than algorithm parallelization. The general goal of the techniques is to improve

the system performance. However, there are some technologies that have been exploited

to make GPU computing available in more environments, such as Gdev for in-kernel GPU

computing, and the virtualized GPU solutions discussed at the end of this section that make

GPGPU available to virtualization environments and cloud computing. The techniques are

categorized by the challenges or problems they solved. In the categorized techniques, we
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will see a large portion of common categories shared with the ones discussed in Chapter 3.

For those categories, readers should refer to Chapter 3 for the description or origins of the

challenges and problems.

6.2.1 Batched Processing

All the surveyed papers need some kind of batching to ensure enough parallelism in the

workload to be processed on GPUs. However, there are two different kinds of batching

approaches: static batch size and dynamic batch size.

The static batch size approach is easier, as mentioned in most surveyed papers [22, 70,

39, 69, 86] and in our own GPUstore and Snap work, the number of data units in a single

batch is constant. Such constant value is decided by performing algorithmic benchmarking,

finding the optimal size of the batch, and then using it forever. The optimal batch size can

be the size where GPU performance goes down, or the first size that the GPU outperforms

CPU. The drawback of such an approach is obvious: it can be easily affected by the system

load and any other runtime overheads. Because of its simplicity, this has been applied by

most system-level work.

The dynamic batch size is complex: it still needs some prebenchmarking, but instead of

finding a single size, it builds a relationship between the batch size and the performance.

During the run time, it dynamically adjusts the batch size, or disables GPU offloading

according to the built relationship, system load and other factors. SSLShader [23] and

Kargus [21] use this approach to implement flexible GPU offloading control to balance the

latency and throughput. They also implement dynamic load balancing between the CPU

and the GPU with the help of the built relationship: small packets, low packet rates and

high GPU load all lead to CPU processing.

The dynamic approach is for sure the better way to finely tune the overall system

performance. But it requires a comprehensive study and evaluation of the GPU-accelerated

algorithms under a variety of different environments, and also possibly complex runtime

workload balancer. So the static approach is still useful to demonstrate GPU accelerations

without considering the combined CPU+GPU power and external environment conditions.

6.2.2 Memory Copy Overhead

Memory copy is the main bottleneck for most system-level GPU computing. Taking the

GTX Titan as an example, compared with the 336 GB/s GPU device memory bandwidth,

even the maximum PCIe 3.0 x16 can only run at 16 GB/s, which is 31 times slower!

Besides that, Section 3.5.2 also discusses the double-buffering problem caused by inefficient
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GPU computing integration into system software in practice. Several techniques have been

applied by previous work to reduce the memory copy overhead. Here they are categorized

into the following approaches.

6.2.2.1 Use Page-Locked Memory

Although there are some systems, such as the GPUTeraSort [86], Barracuda [39], the

database compression mechanism on MonetDB [101], EigenCFA [25] and Mars [87], that

haven’t used page-locked memory to improve PCIe DMA performance, most of the afore-

mentioned work applies this simple but effective memory copy optimization. However, not

all of them have efficiently used page-locked memory in practice. Many systems just use

page-locked memory as a separate memory area dedicated for GPU computing, rather than

treating it as normal host memory that is used for any host side computation, which leads

to the inefficient double-buffering problem.

6.2.2.2 Avoid Double-Buffering

Many systems surveyed perform a “use all” data usage pattern as discussed in Sec-

tion 3.5.4. However, even when using page-locked memory to improve memory copy, most

of them still failed to efficiently integrate the memory into the host side computation as

normal host memory. Some are totally unaware of this problem such as the CrypstalGPU

content addressable storage [69] and deduplication storage [103]. Some of them are due to

the technical obstacle when getting data from the operating system kernel [70, 23, 68, 39, 85].

Such kernel-user memory sharing obstacles can be solved by allocating the GPU computing

host side memory directly in the OS kernel as the kernel-space GPU driver Gdev [38] does,

or supporting such in-kernel allocation with pre-allocated page-locked memory passed into

the kernel from userspace, like GPUstore does. Only a few of the surveyed papers have

carefully designed their systems to deal with the double-buffering problem. For example,

the GPU antivirus engine [93] has modified the memory buffers used in the mature antivirus

software, ClamAV, to efficiently use CUDA page-locked memory for virus pattern detection.

Another example of such engineering work is the GPU query engine for PostgreSQL [82],

which has efficiently integrated both page-locked memory and asynchronous overlapped

GPU computation and memory copy into a large complex existing industrial-level database

system.
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6.2.2.3 Trade Off Different Bandwidths

Having discussed in Section 3.5.3, packet processing is the typical task that follows a “use

part” of the entire data unit usage pattern. But not all the network systems in Section 6.1.1

have considered the potential performance improvement by taking advantage of the much

larger host memory bandwidth. SSLShader [23] is such an example that is totally unaware

of such potential speedup. Although the rest, such as those NIDS systems [24, 104, 21] that

only copy packet payloads into device memory and the PacketShader [22] that copies only

an IP address and a packet identifier to GPU, still do not use the more generic ROI-based

slicing technique as Snap has proposed in Section 5.3.1.3. Actually, such copy in most of

those papers is not described as a memory copy optimization, but instead, an overhead that

must be suffered due to the technical difficulty of sharing DMA memory between the NIC

driver and the GPU driver.

Interestingly, some papers other than network systems are aware of this issue, and

have carefully traded off not only the host memory bandwidth and PCIe’s, but also con-

sidering the CPU performance in some cases, such as in EigenCFA [25], which does not

use page-locked memory, though authors try to significantly reduce the size of the flow

data representation to be copied into device memory with preconverted bit-packed matrix

at the CPU side. Another example is the GPUTeraSort [86] system, which is similar to

EigenCFA, using pageable memory only, but still, authors do CPU side preprocessing on

the data entries read from the disks to produce a much smaller (key, pointer) tuple for

each entry. Although the GPUTeraSort case is very straightforward, it still represents the

application of an effective memory copy optimization technique, and actually has inspired

our generic ROI-based slicing design in Snap.

6.2.2.4 Exploit GPU Drivers

There are some papers that try to improve the underlying blackbox GPU driver in

order to get better PCIe DMA performance. Although we can optimistically expect that

future GPUs will be completely open, it is still unclear how long the “future” can be.

Hence those papers studying the close source GPU drivers make sense to the relatively long

“present.” Some recent papers [105, 106] have exploited the microcontrollers on GPUs that

manages the CPU-GPU communication and GPU command queues. By modifying the

firmware for the GPU microcontroller using an open source GPU driver [37], they are able

to achieve up to 10x speedup when copying small size data (ranging from 16 bytes to 256

bytes) controlled by the microcontroller rather than the dedicated DMA engines. Gdev [38]

implements a CUDA runtime inside the Linux kernel based on the same open source GPU
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driver, and has implemented DMA memory pages sharing for arbitrary kernel components,

which is supposed to be provided by GPUDirect [107], but is rarely available in practice.

Gdev is complementary to all the in-kernel GPU computing work such as GPUstore and

Barracuda [39] because of its efficient in-kernel GPU driver access without the need of a

userspace helper.

6.2.3 Warp Divergence

Besides the algorithmic design techniques that are used to eliminate as many control

flow branches as possible, most system work doesn’t encounter the on-GPU data divergence

problem that Snap has solved in Section 5.3.2. Even in packet processing work, systems such

as those NIDSes [24, 21, 104] do preprocessing on CPUs to classify packets into different

“port groups” according to their transport layer protocol ports. This preprocessing is

acceptable in those systems because they just have a one-stage (the pattern matching only)

processing control flow, rather than a multistage one with multiple layers of branching as

in Snap.

Some nonsystem work such as the GPU-accelerated packet classification algorithms [67]

and CPU work such as the batched processing in Click [59] have identified and dealt with this

problem. The classification paper uses a similar approach to Snap’s predicated execution:

it uses a boolean value to notify the following classification rule kernel whether to process

a particular packet or not. The batched processing Click paper encountered this problem

when doing the CPU side batching. They simply split the batch into multiple small batches,

which has not got any evaluation result due to being in the early stage of their work.

Another similar work, PTask [40], which tries to build a data flow programming model

for GPU tasks by providing a UNIX pipe-like abstraction, simply does not support such flow

divergence, or conditional data flow, in the flow graph, though it supports the opposite one:

merging of multiple outputs into a single input. Besides that, PTask is a more application-

level abstraction that is designed to deal with interprocess data flow. It is a heavy-weighted

abstraction compared with data sharing mechanisms in system code, such as memory page

sharing in an OS kernel.

6.2.4 Improve GPU Utilization

Most of the recent papers use CUDA’s overlapped GPU computation and memory copy,

and asynchronous GPU kernel execution features to improve their performance by fully

utilizing the GPU cores and DMA engines. Those that failed to benefit from them are

mostly very old papers before NVIDIA released its CUDA 4.0, which first introduced the
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technique. However, there are exceptions such as PacketShader, which claims, though

without any further explanation, a performance slow down when using such techniques [22].

Despite the fact that many systems use such overlapped scheme and asynchronous execution,

none of them have studied the synchronization problem in GPU programming even with

CUDA stream like technique, as discussed in Section 3.4.

6.2.5 Virtualization and Migration

The virtualization and application migration techniques are mainly for enabling GPU

computing in cloud environments, Cloud providers such as Amazon2 have provided GPU

devices in their cloud instances [1]. However, those GPUs are completely exposed to users

rather than through virtualization. This not only brings security issues, but also prevents

resource consolidation and instance migration, which are the most important features of a

cloud platform.

Several GPU virtualization solutions have been proposed by both industry and academia.

The VMWare’s GPU virtualization [108] aims at the graphics processing functionality. It

is based on VMWare’s hosted I/O architecture to enable GPU command queue isolation,

GPU memory isolation and I/O space isolation so as to achieve independent virtualized

GPUs. There are some recent projects [109, 110] that are very simple virtualization layers

just for CUDA computing. They provide an intercept layer for CUDA library calls to

forward them to the actual CUDA runtime in the host. Gdev [38] supports both graphics

processing virtualization and the CUDA computing virtualization. Gdev can achieve the

fully functional virtualization because it is built on top of an open source GPU driver, and

hence it can access and control very fine-grained and low-level GPU functionality.

Migration of GPGPU computing programs is in a very early stage at this time. The

two currently available solutions [111, 112] both use an interception layer for CUDA calls,

which is similar to the aforementioned simple virtualization solutions. The proprietary GPU

driver and closed GPU specifications prevent efficient GPU virtualization and migration.

As a result, the obstacle is not any technical issue, but some marketing policies of GPU

vendors.

6.2.6 Resource Management and Scheduling

These are actually no techniques to improve system-level GPU computing performance,

but system-level work that improves all GPGPU computing applications.

2http://aws.amazon.com/ec2/
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TimeGraph [41] is a GPU resource scheduling system based on an open source GPU

driver. TimeGraph schedules GPU commands issued from different tasks based on their

priorities to achieve resource isolation and reservation for real-time environments. A similar

work is PTask [40], which also deals with the scheduling problem of GPU tasks. Different

from TimeGraph, PTask considers the priorities of both GPU tasks and CPU tasks to

achieve fair scheduling by counting GPU execution time into a task’s total execution time.

As said in Section 6.2.3, PTask also provides a UNIX pipe-like model to synthesize an

efficient data flow of multiple GPU tasks with dependencies. The aforementioned Gdev [38]

is also an OS-level GPU resource management and scheduling solution. Gdev uses the same

open source GPU driver as TimeGraph, so it can provide similar scheduling functionality,

though not for real-time environments.

6.3 Future

GPUs have been developed much faster than CPUs: the number of cores is doubled

almost in only one year [4] instead of CPU’s 18 months following Moore’s Law.3 Thus we

can confidently believe that future GPUs will come with tens or hundreds of thousands of

cores. Such amazingly large number of cores are ideal to deal with current “big data” trend

in both application level and the system level.

Another technical improvement should be the CPU-GPU communication. Today’s

fastest PCIe 3.0 bus only reaches 16 GB/s peak bandwidth, compared with the more

than 300 GB/s GPU device memory bandwidth, it easily becomes the bottleneck in many

GPU computing as we have seen in previous sections and chapters. Besides dramatically

increasing PCIe bandwidth, another potentially useful technique is the integrated GPUs

that sit on the same chip of the CPU. Integrated GPUs are expected to eliminate the PCIe

bus overhead. However, most current integrated GPUs are limited to only access their own

dedicated main memory region. This can still cause possible data copy in main memory

due to the dedicated GPU region. What’s more, the host side memory bus interface is

much narrower than the dedicated GPU’s, for example, DRAM’s 64 bits width versus GTX

Titan Black’s 384 bits. As a result, integrated GPUs suffer more memory copy issues. The

recent Kaveri accelerated processing unit (APU)4 has been designed to provide a better

technique: heterogeneous uniform memory access (hUMA) [113]. hUMA allows integrated

GPUs to directly access any memory locations, and even further, the CPU cache and GPU

3http://en.wikipedia.org/wiki/Moore’s law

4http://www.amd.com/en-us/products/processors/desktop/a-series-apu
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cache benefit from hardware-based cache coherence. Though hUMA still can’t provide the

wide device memory interface, at least it eliminates any possible copy in main memory. As

a result, the main memory techniques should try to provide wider and faster memory for

integrated GPUs, too.

Another system-level GPU computing area that is lacking attention is with mobile

devices. Traditional GPGPU computing has already explored mobile GPUs for mainly

visual computing [114, 115, 116], but none of the system-level software has tried such

small but ubiquitous GPUs. The main problem in current mobile GPU computing is

their relatively low performance compared with the desktop GPUs. According to a mobile

GPGPU computing evaluation [117], mobile GPU performance is still not on par with

their desktop CPU competitors. Fortunately, mobile GPUs are getting more powerful. A

recently released mobile processor has significantly increased its GPU cores to up to 192

CUDA cores.5 This makes it possible to get much faster GPU computing than the CPU

on mobile devices. Mobile GPUs are more closely combined with CPUs than the desktop

ones. It may be possible for mobile GPUs to share and control more integrated components

such as memory, DMA, and I/O on the highly integrated system-on-chip (SoC) for mobile

devices. But mobile devices also suffer from a common energy consumption problem. So

future system-level GPU computing on mobile devices will definitely need new techniques

to achieve high performance yet power efficiency.

6.4 Summary

This literature survey covers recent applications of and techniques for improving the

performance and functionality of system-level GPU computing. It has been done with

strong system flavor, from the applications to the techniques, which are very different from

traditional GPU computing surveys such as the work done in [15]. Besides existing work,

it tries to identify several potential system-level tasks that can be improved with GPU

computing. The system techniques surveyed in this chapter share a large portion with the

ones applied in our work, which confirms the effectiveness of each other.

As showed in this survey, some techniques such as batched processing, overlapped GPU

computation and memory copy, and using locked memory directly to avoid double-buffering

GPU DMA, are commonly used by the surveyed system work. However, among the generic

principles and techniques described in Chapter 3, the truly asynchronous GPU program-

ming, SIMT-friendly data structures and using locked memory according to different data

5http://www.nvidia.com/object/tegra-k1-processor.html
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usage patterns are newly proposed in this study. Previous system designs either did not

study the related problems, or used very specific approaches. For example, as shown in

Section 6.2.2.3, PacketShader avoids wasting PCIe bandwidth by copying only an IP address

and packet identifier, but it is an IP routing specific design compared with Snap’s generic

ROI-based packet slicing that is available to all the packet processing tasks. The surveyed

papers are actually origins of most techniques proposed in this dissertation work, after

careful trade-off, abstracting, generalization and many rounds of design considerations.

Those techniques have been categorized by the problems and challenges they’ve solved in

order to make it convenient for readers to refer to in practice.



CHAPTER 7

CONCLUSION

Because of its low-level position in the software stack, efficient system-level software is

vital to high performance computer systems. However, computationally expensive tasks in

system-level software require more and more computing power due to the rapidly increased

bulk-data workloads. They may consume excessive processing power, slowing down the

entire software stack.

We deal with this problem using parallel GPUs. The highly parallel GPU proces-

sors provide a throughput-oriented architecture, which is designed for parallel bulk-data

processing. Integrating GPU computing into originally latency-oriented low-level system

software has faced many technical challenges that prevent high performance GPU computing

in system level. We have proposed generic principles for designing and implementing

GPU-accelerated system-level applications. The two specific instances, GPUstore and Snap

frameworks for two representative kinds of system software, have successfully enabled

efficient GPU computing in typical system-level tasks, and both have got significant per-

formance improvement with their efficient memory and throughput-oriented design guided

by our proposed principles. The success of these two not only validates the feasibility of

system-level GPU computing, but also provides a variety of effective generic techniques

and abstractions that are designed to deal with common challenges encountered during

the GPU computing integration, achieving better performance speedup. We then surveyed

the current system-level GPU computing area, identifying potential applications, discussing

useful techniques applied in existing work, comparing them with our techniques, and giving

interested readers and researchers literature to get a picture of the state of the art and more

importantly, a technical reference for their own system-level GPU computing work.

Although the techniques and principles described in this work are mainly for parallel

GPUs, they may also be applied to other similar computing platforms. For example, the

wide range of coprocessors includes cryptography coprocessors network processors, digital
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signal processing (DSP) coprocessors, computing coprocessors such as Xeon Phi 1 and the

field programmable gate array (FPGA). These coprocessors share a lot of common archi-

tecture features with GPUs: SIMD style throughput-oriented computing, PCIe-based high

latency communication, indirect or limited host memory access capability, and dedicated

on-device memory. All of these common features indicate that similar challenges also exist

when using those coprocessors in system code. As a result, our generic system-level GPU

computing principles and techniques that are designed to deal with those challenges may also

apply to those platforms. Systems working with the coprocessors may also benefit from the

study in this work. Besides the coprocessors, today’s multicore CPU platform may benefit

from this study as well. A recent study [59] that did batched processing in Click on CPUs

shows that the CPU-based packet processing can also get speedup from batching packets.

The similar techniques we implemented in Snap, such as batching elements and packet batch

data structures, are the candidate techniques applicable to multicore CPUs. This shows

the much broader impact of our work, which is not limited to GPUs only, but also valuable

to a wide range of computing platforms.

1https://software.intel.com/en-us/mic-developer
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