529 research outputs found

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Control analysis and design of medium voltage converter with multirate techniques

    Get PDF
    This work aims to unify the current knowledge about multirate controllers with design techniques for grid-tied converters, in this occasion, connected to Medium Voltage AC grid. Therefore, the multirate contributions, that have been given so far, are studied, as well as everything related to modulation techniques for power converters. The temporal implications of the DSPWM actuator will be correlated to multirate analysis, in addition to possible alternatives for applications with a lower sampling frequency than modulation one. Finalizing with explanations and result demonstrations of controllers working between two frequencies or rates, by means of the available power converter in laboratory.Este trabajo pretende unir el conocimiento actual sobre controladores multitasa o multifrecuencia (multirate) con técnicas de diseño para convertidores conectados a la red, en este caso concreto, a la red alterna (AC) de Media Tensión. Por tanto, se estudian las contribuciones multirate realizadas hasta la fecha, así como todo lo relacionado con la modulación de la señal de control para los convertidores. Las implicaciones temporales del actuador DSPWM se relacionarán con el análisis multitasa, así como se explicarán posibles alternativas para aplicaciones con una frecuencia de muestreo menor que la de modulación. Finalizando con la explicación y presentación de resultados de controladores trabajando entre dos frecuencias o tasas, mediante simulaciones del convertidor disponible en laboratorio.Máster Universitario en Ingeniería Industrial (M141

    Dynamic operability assessment : a mathematical programming approach based on Q-parametrization

    Get PDF
    Bibliography: pages 197-208.The ability of a process plant to guarantee high product quality, in terms of low variability, is emerging as a defining feature when distinguishing between alternative suppliers. The extent to which this can be achieved is termed a plant's dynamic operability and is a function of both the plant design and the control system design. In the limit, however, the closedloop performance is determined by the properties inherent in the plant. This realization of the interrelationship between a plant design and its achievable closed-loop performance has motivated research toward systematic techniques for screening inherently inferior designs. Pioneering research in the early 1980's identified right-half-plane transmission zeros, time delays, input constraints and model uncertainty as factors that limit the achievable closedloop performance of a process. Quantifying the performance-limiting effect of combinations of these factors has proven to be a challenging problem, as reflected in the literature. It is the aim of this thesis to develop a systematic procedure for dynamic operability assessment in the presence of combinations of performance-limiting factors. The approach adopted in this thesis is based on the Q-parametrization of stabilizing linear feedback controllers and involves posing dynamic operability assessment as a mathematical programming problet? In the proposed formulation, a convex objective function, reflecting a measure of closed-loop performance, is optimized over all stable Q, subject. to a set of constraints on the closed-loop behavior, which for many specifications of interest is convex. A discrete-time formulation is chosen so as to allow for the convenient hand.ling of time delays and time-domain constraints. An important feature of the approach is that, due to the convexity, global optimality is guaranteed. Furthermore, the fact that Q parametrizes all stabilizing linear feedback controllers implies that the performance at the optimum represents the best possible performance for any such controller. The results are thus not biased by controller type or tuning, apart from the requirement that the controller be linear

    Finite worldlength effects in fixed-point implementations of linear systems

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 173-194).by Vinay Mohta.M.Eng

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Approximation, analysis and control of large-scale systems - Theory and Applications

    Get PDF
    This work presents some contributions to the fields of approximation, analysis and control of large-scale systems. Consequently the Thesis consists of three parts. The first part covers approximation topics and includes several contributions to the area of model reduction. Firstly, model reduction by moment matching for linear and nonlinear time-delay systems, including neutral differential time-delay systems with discrete-delays and distributed delays, is considered. Secondly, a theoretical framework and a collection of techniques to obtain reduced order models by moment matching from input/output data for linear (time-delay) systems and nonlinear (time-delay) systems is presented. The theory developed is then validated with the introduction and use of a low complexity algorithm for the fast estimation of the moments of the NETS-NYPS benchmark interconnected power system. Then, the model reduction problem is solved when the class of input signals generated by a linear exogenous system which does not have an implicit (differential) form is considered. The work regarding the topic of approximation is concluded with a chapter covering the problem of model reduction for linear singular systems. The second part of the Thesis, which concerns the area of analysis, consists of two very different contributions. The first proposes a new "discontinuous phasor transform" which allows to analyze in closed-form the steady-state behavior of discontinuous power electronic devices. The second presents in a unified framework a class of theorems inspired by the Krasovskii-LaSalle invariance principle for the study of "liminf" convergence properties of solutions of dynamical systems. Finally, in the last part of the Thesis the problem of finite-horizon optimal control with input constraints is studied and a methodology to compute approximate solutions of the resulting partial differential equation is proposed.Open Acces

    Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 2

    Get PDF
    The Control/Structures Integration Program, a survey of available software for control of flexible structures, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software are discussed

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network
    corecore