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Abstract

This work presents some contributions to the fields of approximation, analysis and control

of large-scale systems. Consequently the Thesis consists of three parts. The first part cov-

ers approximation topics and includes several contributions to the area of model reduction.

Firstly, model reduction by moment matching for linear and nonlinear time-delay systems,

including neutral differential time-delay systems with discrete-delays and distributed de-

lays, is considered. Secondly, a theoretical framework and a collection of techniques to

obtain reduced order models by moment matching from input/output data for linear (time-

delay) systems and nonlinear (time-delay) systems is presented. The theory developed is

then validated with the introduction and use of a low complexity algorithm for the fast

estimation of the moments of the NETS-NYPS benchmark interconnected power system.

Then, the model reduction problem is solved when the class of input signals generated by

a linear exogenous system which does not have an implicit (differential) form is considered.

The work regarding the topic of approximation is concluded with a chapter covering the

problem of model reduction for linear singular systems. The second part of the Thesis,

which concerns the area of analysis, consists of two very different contributions. The first

proposes a new “discontinuous phasor transform” which allows to analyze in closed-form

the steady-state behavior of discontinuous power electronic devices. The second presents

in a unified framework a class of theorems inspired by the Krasovskii-LaSalle invariance

principle for the study of “lim inf” convergence properties of solutions of dynamical sys-

tems. Finally, in the last part of the Thesis the problem of finite-horizon optimal control

with input constraints is studied and a methodology to compute approximate solutions of

the resulting partial differential equation is proposed.
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Chapter 1

Introduction

1.1 Motivation and objectives

In this section we motivate the work of the Thesis and set its objectives. We begin giving

an intuitive explanation of some basic terminology and concepts that are used through

the Thesis.

1.1.1 Representing the evolution of reality

Evolving phenomena are characterized by quantities that change with time. Since the

variation of certain quantities depends on the variation of other quantities, we can distin-

guish between outputs (the first quantities) and inputs (the second quantities). With the

expression “dynamical system” we refer to the mathematical relation that describes the

effect of the inputs on the outputs when all the other unrelated quantities are neglected.

A very simple example of dynamical system is represented by the equation

Mẍ(t) = u(t) +Mg +Kx(t)− Fẋ(t). (1.1)

This equation represents the dynamics of a mass-spring-damper system in which M is the

mass, K is the elastic constant, F in the friction constant and g is the gravity. The term u

represents an input to the system that can be freely chosen and for this reason it is called

control variable or, more simply, control. The quantity Mg represents an external input

that cannot be chosen and therefore is referred to as a disturbance. In system (1.1) it can

be noticed that the variable x, along with its time derivatives, can be used to represent
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the time history of the system from the initial time t0 until time t. This variable x is

called state at time t, or simply state of the system.

Dynamical systems can be represented by several different classes of mathematical rela-

tions. If the time variable t takes real values, then the resulting system is a continuous-time

system, e.g. system (1.1). On the other hand if the time variable takes integer values, then

the system is a discrete-time system. Both continuous and discrete systems are powerful

mathematical representations of evolving phenomena and both of them have interesting

and characteristic properties. The reason one representation may be preferred over the

other depends on the particular phenomenon studied. For instance, it is far more intuitive

to represent the dynamics of digital devices, e.g. microcontrollers, with discrete systems

since the time variable is related to the period of the clock inside each of these devices

and thus these devices are themselves discrete-time by nature.

Another important property which is used to distinguish between classes of dynamical

systems is linearity and nonlinearity. Again, the same phenomenon can be represented by

a linear or a nonlinear system; however, these two representations are not equivalent. A

linear system is usually represented by the equation

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1.2)

where A, B and C are constant matrices and y is the output of the system. As a contrast,

nonlinear systems are represented by means of nonlinear differential equations of the form

ẋ(t) = f(x(t), u(t)),

y(t) = h(x(t)),
(1.3)

where f and h are nonlinear mappings. Linear systems have the important advantage

that they are mathematically “tractable”. A large amount of results are known for these

systems and strong claims can be proved easily. However, they have the disadvantage

that they are very rarely, if ever, faithful representations of the original phenomenon since

most real-life dynamics are nonlinear. Thus, the results that can be achieved with linear

analysis often do not describe accurately the behavior of reality. On the other hand,
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results developed for nonlinear systems, which provide a more faithful representation of

the actual phenomenon and show a richer dynamics, are in comparison weak.

It is timely now to explain the meaning of the words “richer dynamics” of nonlinear systems

with respect to linear systems. A first notable difference concerns the properties of the

equilibrium points and the presence of the finite escape time phenomenon. Equilibrium

points are the solutions of the differential equations (1.2) or (1.3), when ẋ is equal to zero

and u is constant and represent those states of the system from which the system does

not depart unless a variation of the state, however little, happens. It is straightforward

to see that equation (1.2) can have only one isolated equilibrium point because this is the

solution of a linear equation. On the other hand, since the mapping f in (1.3) can be a

high order algebraic equation or a transcendental equation, nonlinear systems can have

multiple isolated equilibrium points and, as a consequence, the asymptotic behavior of the

trajectories may vary depending on the initial state of the system. It is easy to show

that if there is an unstable equilibrium point, namely an equilibrium point for which any

variation of the state causes a departure of the state of the system from that point, the

trajectories of (1.2) can only (and will) approach infinity asymptotically as time goes to

infinity, because the solution of the differential equation (1.2) is governed by exponential

functions. On the other hand, nonlinear systems may have trajectories that approach

infinity in a finite time interval, amid several other different possible behaviors, a property

which is referred to as finite escape time [1].

A second notable difference regards oscillation and periodic behaviors. A linear system

can oscillate if and only if there are pairs of purely imaginary poles (a subset of the

eigenvalues of A). This is a condition that is extremely sensitive to perturbations of the

model of the system. On the contrary nonlinear systems can generate oscillations that are

robust to variations of the model. In addition, the amplitude of the oscillations of linear

systems depends upon the initial conditions. As a contrast, the amplitude and the period

of the oscillations generated by nonlinear systems may be independent from the initial

conditions. This kind of oscillations is called limit cycle.

The last remarkable difference shown by nonlinear systems is chaos and multiple modes of

behavior. The trajectories of (1.2) can only approach an equilibrium point, a periodic orbit
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or an almost-periodic orbit. The dynamics of (1.3) can be so rich that they may exhibit

chaotic behavior. As a consequence, the value of the state at time T may be substantially

different if an infinitesimal variation of the initial condition is considered. An example of

chaotic dynamical system is the Lorenz system that can generate a strange attractor [2].

In addition to chaos, nonlinear systems can change mode of behavior for little variations

of the input u, whereas linear systems change behavior smoothly with respect to u. Thus

equilibrium points, limit cycles and strange attractors may disappear, or appear, varying

the input of the nonlinear system.

Linear and nonlinear systems are not the only two possible representations of the evolution

of phenomena. Another distinction that can be made is between time-varying and time-

invariant systems. As it can be noted by equation (1.2), the mathematical law that

expresses the dynamics of the state x does not depend on the time. Of course, the state

x and the control u are time dependent, but the mathematical law is fixed. This is an

example of a time-invariant system, i.e. the dynamics of the system does not depend on

time. Replacing equation (1.2) with

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),
(1.4)

we obtain a rather general representation, known as time-varying system, in which the

matrices A, B and C change with time. The relation in this case is still linear, but the

form (1.4) is more general than the ones expressed by (1.2) since it represents a dynamical

system in which the parameters that are present in the mathematical equations are time-

varying.

A last class of systems that is relevant for the Thesis is the class of time-delay systems. A

very simple linear time-delay system can be represented as

ẋ(t) = Ax(t) +A1x(t− τ) +Bu(t), (1.5)

in which τ is called delay. This class of systems represents the idea that the evolution

of the phenomenon at time t does not depend only on the present state and input, but



1.2 Contribution of the Thesis 21

depends also on the past value, delayed by τ , of the state.

Combinations of these classes of systems can be obtained resulting in different level of

generality of the phenomena which they represent and difficulty of analysis and control.

1.1.2 Objectives of the Thesis

The objective of the Thesis is to shed light on fundamental problems regarding the study

of dynamical systems, namely modeling, analysis and control. In fact, almost any problem

concerning dynamical systems can be grouped in one of these three categories. Modeling

is the problem of the selection of the mathematical representation of a phenomenon and

of the determination of the parameters of this representation. Analysis is the problem of

studying the behavior of dynamical systems, e.g. determining the equilibrium points, sta-

bility or instability, transient behavior and asymptotic behavior. Control is the problem

of changing the current behavior of the system to obtain an alternative behavior.

Whichever representation we are using, and whatever the objective, the problem becomes

more complicated when large-scale systems are considered. Large-scale systems are dy-

namical systems composed by a large number of differential equations and may results, for

instance, from the interconnection of several simple subsystems. When considering large-

scale systems another problem becomes fundamental: the approximation of the large-scale

system with a lower dimensional representation.

The Thesis explores the topics of approximation, analysis and control of large-scale dy-

namical systems proposing novel solutions to some of the many open problems in this

wide area of research. In particular the topics covered consist of the model reduction for

the classes of systems we have introduced (and a few more), the steady-state analysis of

switching circuits, the description of the asymptotic behavior of nonlinear systems and

the problem of optimal control.

1.2 Contribution of the Thesis

The Thesis is organized in three parts, each divided in several chapters. Every chapter

has its own introduction, presentation of the problem, theoretical development and

examples. The examples are always organized in a subsection titled “Example: . . . ”.
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The only exception is Chapter 5 which is an “application” chapter. This chapter builds

upon the theoretical results of the previous chapters and presents the validation of these

results from an applicative point of view, i.e. the practical problem takes the majority of

the attention over the mathematical technicalities. A brief description of each part and

chapter follows.

Part I is the most substantial part of the Thesis, consists of six chapters and covers

the topic of approximation.

Chapter 2 provides an introduction to the problem of model reduction by moment

matching. We introduce the interpolation approach to moment matching, which is

how moment matching has been classically interpreted in the linear framework. Then,

we move to the steady-state approach introduced in [3]. Exploiting this description of

moment, we give the solution of the problem of model reduction by moment matching

achieving additional properties for linear and nonlinear systems. These basic results are

instrumental for the development of the remaining of Part I.

Chapter 3 deals with the problem of model reduction for linear and nonlinear

time-delay systems. The notion of moment is extended to linear time-delay systems, the

solvability of the resulting Sylvester-like equation is discussed and the equivalent steady-

state description is given. These results are subsequently extended to neutral systems

and systems with distributed-delays. A family of systems achieving moment matching is

presented and a simple example based on the model of a LC transmission line is given.

The possibility of interpolating a larger number of points maintaining the same “number

of equations” is investigated. Two examples, one inspired by [4] and one inspired by the

problem of the automatic control of a platoon of vehicles, illustrate the results. Then, the

center manifold theory for time-delay systems is used to extend the definition of moment

to nonlinear time-delay systems and a family of systems achieving moment matching for

nonlinear time-delay systems is given. The possibility of interpolating multiple moments

is investigated and the problem of obtaining a reduced order model of an unstable system
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is discussed. The theory is illustrated by the reduction of a nonlinear neutral time-delay

equation describing the torsional dynamics of an oilwell drillstring. Finally, the character-

ization of the moments at infinity for linear and nonlinear time-delay systems is presented.

Chapter 4 presents a theoretical framework and a collection of techniques to obtain

reduced order models by moment matching from input/output data for linear (time-delay)

systems and nonlinear (time-delay) systems. We begin by giving a preliminary analysis

to compute on-line estimates of the moments of a linear system. Then approximations

which converge asymptotically to the moments of the linear (nonlinear) system are given.

A discussion on the computational complexity associated with the evaluation of these

approximations is presented, a recursive least-square formula is given and a moment

estimation algorithm is provided. A simple example in which the average heartbeat

under “stress” is measured is used to show how to estimate the moment of a nonlinear

system. Then, a family of reduced order models for linear (nonlinear) systems and

linear (nonlinear) time-delay systems, respectively, is given. We discuss how several

properties, e.g. matching with prescribed eigenvalues or zeros, can be enforced in the

present scenario. A linear reduced order model computed with the method proposed

in the chapter is estimated for a system of order n = 1010 [4, 5]. A nonlinear reduced

order model constructed using an approximation of the moment of the DC-to-DC Ćuk

converter provides a further example.

Chapter 5 provides a validation of the theory developed in Chapters 2 and 4. We

present a low complexity algorithm for the fast estimation of the moments of MIMO

systems. The estimated moments are exploited for the model reduction of large-scale

interconnected power systems. The technique offers, simultaneously, a low computational

complexity approximation of the moments and the possibility to easily enforce constraints

on the reduced order model. This possibility is used to preserve selected slow and poorly

damped modes which are important both from a mathematical and physical point of

view. The problem of the choice of the so-called tangential directions is also studied and

an heuristic for their approximation is given. The techniques have been validated with
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the study of the dynamic response of the NETS-NYPS benchmark system.

Chapter 6 investigates the limitations of the description of moment based on a sig-

nal generator described by differential equations. With the final aim of solving the model

reduction problem for a class of input signals generated by a linear exogenous system

which does not have an implicit (differential) form, a time-varying parametrization of the

steady-state of the system is used to extend, exploiting an integral matrix equation, the

definition of moment to this class of input signals. The equivalence of the new definition

and the one based on the Sylvester equation is proved under specific conditions. Special

attention is given to periodic signals due to the wide range of practical applications where

these are used. Reduced order models matching the steady-state response of explicit

signal generators are given for linear systems and several connections with the classical

reduced order models are drawn.

Chapter 7 extends the model reduction techniques to linear singular systems.

Combining the interpolation-based and the steady-state-based description of moment

a partitioned projector is constructed. The contribution of the slow subsystem and

the contribution of the fast subsystem to the moment are separated. The information

on the fast subsystem is encoded in the projector and it is not lost by the moment

matching technique. Moreover, the output of reduced order models based on this

projector approximates the output of the system only when consistent initial conditions

are taken into account. Exploiting this partitioned projector, several families of reduced

order models are proposed. In particular, a purely fast, a purely slow and a “simple”

family of reduced order models are given. The possibility of maintaining the impulsive

controllability property is investigated and a few examples are used to illustrate the results.

Part II is another significant part of the Thesis, consists of two chapters and covers

analysis topics.

Chapter 8 shows the somewhat obvious fact that the phasors of an electric

circuit are the moments on the imaginary axis of the linear system describing the
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circuit. Exploiting this relation, we can analyze circuits powered by discontinuous

sources. A new “discontinuous phasor transform”, which allows to analyze in closed-form

the steady-state behavior of discontinuous power electronic devices, is defined and

the v-i characteristics for inductors, capacitors and resistors is described in terms of

this new phasor transform. The new quantities maintain their physical meaning: the

instantaneous power, the average power and the reactive power in the phasor domain are

defined. The analytic potential of the new tool is illustrated studying the steady-state

response of power inverters and of wireless power transfer systems with non-ideal switches.

Chapter 9 presents in a unified framework a class of theorems inspired by the

Krasovskii-LaSalle invariance principle. The contribution of the chapter is a tool to

study “lim inf” convergence properties of solutions of dynamical systems. In particular

the theorems give sufficient conditions to determine the convergence in the mean and

the “lim inf” convergence. These theorems are derived by a relaxation of Matrosov and

Small-gain Theorems, and they are based on a “lim inf” Barbalat’s Lemma. Additional

technical assumptions to have “lim” convergence are given. The “lim inf” / “lim” relation

and the role of some of the assumptions are illustrated by means of examples.

Part III is the shortest part of the Thesis, consists of one chapter and covers a

control topic.

Chapter 10 studies the finite-horizon optimal control problem with input con-

straints, which consists of controlling the state of a dynamical system over a finite time

interval (possibly unknown) minimizing a cost functional, while satisfying hard constraints

on the input. In this framework, the minimum time optimal control problem and some

related problems are of interest for both theory and applications. For linear systems

the solution of the problem often relies upon the use of bang-bang control signals. For

nonlinear systems the “shape” of the optimal input is in general not known. The control

input can be found solving a Hamilton-Jacobi-Bellman (HJB) partial differential equation

(pde): it typically consists of a combination of bang-bang controls and singular arcs. In
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this chapter a methodology to approximate the solution of the HJB pde is proposed. This

approximation yields a dynamic state feedback law. The theory is illustrated by means of

two examples: the minimum time optimal control problem for an industrial wastewater

treatment plant and the Goddard problem, i.e. a maximum range optimal control problem.

Finally, the Thesis is concluded with a summary of the work and directions for

future work.

1.3 Notation

Standard notation has been adopted in the Thesis, most of which is defined in this section

and used throughout the remainder of the Thesis. When new notation, not included in

this section is introduced, this is defined in the relevant parts of the Thesis.

The symbol R≥0 (R>0) denotes the set of non-negative (positive) real numbers; C<0

denotes the set of complex numbers with strictly negative real part; C0 denotes the set of

complex numbers with zero real part and D<1 the set of complex numbers with modulo

less than one.

The symbol I denotes the identity matrix and σ(A) denotes the spectrum of the

matrix A ∈ Rn×n. The symbol ⊗ indicates the Kronecker product and ||A|| indicates the

induced Euclidean matrix norm. Given a list of n elements ai, diag(ai) indicates a diagonal

matrix with diagonal elements equal to the ai’s. The vectorization of a matrix A ∈ Rn×m,

denoted by vec(A), is the nm× 1 vector obtained by stacking the columns of the matrix

A one on top of the other, namely vec(A) = [a⊤1 , a
⊤
2 , . . . , a

⊤
m]
⊤, where ai ∈ Rn are the

columns of A and the superscript ⊤ denotes the transposition operator. The superscript

∗ indicates the conjugate transpose operator.

The symbol ℜ[z] indicates the real part of the complex number z, ℑ[z] denotes its

imaginary part and ι denotes the imaginary unit. The symbol ǫk indicates a vector with

the k-th element equal to 1 and with all the other elements equal to 0. Given a function

f , F represents its phasor at ω, whereas <f(t)> indicates its time average.

Given a set of delays {τj}, the symbol Rn
T = R

n
T ([−T, 0],Rn), with T = max

j
{τj},

indicates the set of continuous functions mapping the interval [−T, 0] into Rn with the
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topology of uniform convergence [6]. The subscripts “τj” and “χj” denote the translation

operator, e.g. xτj (t) = x(t− τj).

Let s̄ ∈ C and A(s) ∈ Cn×n. Then s̄ /∈ σ(A(s)) means that det(s̄I − A(s̄)) 6= 0.

σ(A(s)) ⊂ C<0 means that for all s̄ such that det(s̄I −A(s̄)) = 0, s̄ ∈ C<0.

The symbol L(f(t)) denotes the Laplace transform of the function f(t) (provided

that f(t) is Laplace transformable) and L−1{F (s)} denotes the inverse Laplace transform

of F (s) (provided it exists). With some abuse of notation, σ(L(f(t))) denotes the set of

poles of L(f(t)). Given two functions, f : Y → Z and g : X → Y , with f ◦ g : X → Z we

denote the composite function (f ◦ g)(x) = f(g(x)) which maps all x ∈ X to f(g(x)) ∈ Z.

1.4 Published material

The introduction to the problem of model reduction by moment matching given in Chap-

ter 2 is partly contained in the book chapter [7]. The problem of the model reduction of

time-delay systems covered in Chapter 3 has been published in the conference papers [8,9],

in the journal paper [10] and is partly included in [7]. The topic of data-driven model re-

duction discussed in Chapter 4 is contained in the conference papers [11, 12] and in the

journal paper [13]. The conference paper [14] and the journal paper [15] encompass the ap-

plication of model reduction to power systems given in Chapter 5. Chapter 6, which deals

with the problem of model reduction for explicit signal generators, has been published in

the conference paper [16] and in the journal paper [17]. The topic in Chapter 7 is included

in the conference paper [18]. The theory regarding the discontinuous phasor transform and

its applications in power electronics presented in Chapter 8 are contained in the conference

paper [19] and in the journal paper [20]. The theorems for the study of weak converge

properties given in Chapter 9 are published in the conference paper [21] and in the journal

paper [22]. The work reported in Chapter 10 on the approximate finite-horizon optimal

control with input constraints has been published in the conference paper [23] and in the

journal paper [24]. Finally, note that a few contributions of the author, submitted soon

after the writing of the draft of the Thesis, have not been included [25–27].
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Chapter 2

Model reduction by moment

matching

2.1 Introduction

The availability of mathematical models is essential for the analysis, control and design of

modern technological devices. As the computational power has advanced, the complexity

of these mathematical descriptions has increased. This has maintained the computational

needs at the top or over the available possibilities [28]. A solution to this problem is repre-

sented by the use of reduced order models, which are exploited in the prediction, analysis

and control of a wide class of physical behaviors. For instance, reduced order models are

used to simulate or design weather forecast models, very large scale integrated circuits or

networked dynamical systems [5]. The model reduction problem can be informally formu-

lated as the problem of finding a simplified description of a dynamical system in specific

operating conditions, preserving at the same time specific properties, e.g. stability. For

linear systems, the problem has been addressed from several perspectives which can be

divided into two main groups: singular value decomposition (SVD)-based approximation

methods and moment matching, or Krylov-based, approximation methods. The use of

the notion of Hankel operators [29–31] and the theory of balanced realizations [32–35],

belong to the first group, whereas the use of interpolation theory and the notion of projec-

tions [36–44] belong to the latter. For further detail and an extensive list of references see

the monograph [5]. The additional difficulties of the reduction of nonlinear systems carry
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the need to develop different or “enhanced” techniques. The problem of model reduc-

tion for special classes of systems, such as differential-algebraic systems, bilinear systems

and mechanical/Hamiltonian systems has been studied in [45–48]. Energy-based methods

have been proposed in [34,49,50]. Other techniques, based on the reduction around a limit

cycle or a manifold, have been presented in [51, 52]. Model reduction methods based on

proper orthogonal decomposition have been developed for linear and nonlinear systems,

see e.g. [53–57]. Finally, note that some computational aspects have been investigated

in [52,55,58,59].

The goal of this chapter is to review the model reduction techniques for linear and non-

linear systems based on the “steady-state” notion of moment introduced in [60] and [3]

exploiting the center manifold theory. The advantage of moment matching over the SVD-

based methods is that the numerical implementation is much more efficient [5, Section

14.1]. The major drawback, however, is the difficulty in the moment matching methods

to preserve important properties of the original system. The first outcome of the “steady-

state” notion of moment is the ability to preserve some properties of the original system

overcoming some of the drawbacks of the moment matching methods. The second out-

come is the extension of the model reduction theory by moment matching to nonlinear

systems. This has led to new results in the area of model reduction, see e.g. [61–63].

The rest of the chapter is organized as follows. In Section 2.2 we introduce the interpola-

tion approach to moment matching, which is how moment matching has been classically

interpreted in the linear framework. In Section 2.3 we move to the steady-state approach

introduced in [3]. In Section 2.4 we provide families of linear reduced order models and

we study the possibility to achieve moment matching with additional properties. In Sec-

tion 2.5 we present some results on the model reduction problem by moment matching for

nonlinear systems.

The material presented in this chapter is not original work of the author but it is due

to [3, 60]. It is herein reported because it is instrumental for the development of the

rest of the Approximation Part of the Thesis. Note finally that part of this chapter has

been published in the book chapter [7] as a review report on model reduction by moment

matching.
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2.2 The interpolation approach

In this section we briefly recall the notion of moment and the related model reduction

techniques as presented in [5]. We refer to this family of methods as “interpolation-based”

methods. The key element to understand this framework is that the moment matching

problem is interpreted as a problem of interpolation of points on the complex plane.

Consider a linear, single-input, single-output, continuous-time, system described by the

equations

ẋ = Ax+Bu, y = Cx, (2.1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Let

W (s) = C(sI −A)−1B

be the associated transfer function and assume that (2.1) is minimal, i.e. controllable

and observable. The k-moment of system (2.1) at si is defined as the k-th coefficient of

the Laurent series expansion of the transfer function W (s) in a neighborhood of si ∈ C

(see [5, Chapter 11]), provided it exists.

Definition 1. [5] Let si ∈ C \ σ(A). The 0-moment of system (2.1) at si is the complex

number

η0(si) = C(siI −A)−1B.

The k-moment of system (2.1) at si is the complex number

ηk(si) =
(−1)k
k!

[
dk

dsk
(C(sI −A)−1B)

]

s=si

,

with k ≥ 1 integer.

In the interpolation-based notion of moment a reduced order model is such that its

transfer function (and derivatives of this) takes the same values of the transfer function

(and derivatives of this) of system (2.1) at si. This is graphically represented in Fig. 2.1 in

which the magnitude (top) and phase (bottom) of the transfer function of a reduced order

model (dashed/red line) matches the respective quantities of a given system (solid/blue

line) at the point si = 30ι. Since a minimal system can be entirely described by its transfer
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Figure 2.1: Diagrammatic illustration of the interpolation approach. Magnitude (top
graph) and phase (bottom graph) plots of a given system (solid/blue line) and of a
reduced order model (dashed/red line). The green circle represents the interpolation
point.

function, such a system can be effectively reduced using this technique.

In this framework the problem of model reduction by moment matching can be formulated

as the problem of finding the Petrov-Galerkin projectors V ∈ Rn×ν and W ∈ Rn×ν , with

W ∗V = I, such that the model described by the equations

ξ̇ = Fξ +Gu, ψ = Hξ, (2.2)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R, F ∈ Rν×ν , G ∈ Rν×1, H ∈ R1×ν and

F =W ∗AV, G =W ∗B, H = CV, (2.3)

matches the moments of the given systems at a set of points si. The problem of model

reduction by moment matching using the Petrov-Galerking projectors is thoroughly de-

scribed in [5] and it is the subject of intensive research, see e.g. [36–40, 42, 43]. Herein

we report a few results which are instrumental for the aims of the Thesis. We invite the

reader to refer to [5] for additional details.



2.2 The interpolation approach 35

Proposition 1. [5] Consider sj ∈ C \ σ(A), with j = 1, . . . , ν. The transfer function of

the reduced order model (2.2), with

V =
[
(s1I −A)−1B · · · (sνI −A)−1B

]
(2.4)

a generalized reachability matrix and W any left inverse of V , interpolates the transfer

function of system (2.1) at the points sj , with j = 1, . . . , ν.

Proposition 2. [5] Consider s0 ∈ C \ σ(A). The transfer function of the reduced order
model (2.2), with

V =
[
(s0I −A)−1B (s0I −A)−2B · · · (s0I −A)−νB

]
(2.5)

a generalized reachability matrix and W any left inverse of V , interpolates the transfer

function of system (2.1) and its ν − 1 derivatives at the point s0.

The techniques which result from these propositions are called rational interpolation

methods by projection, or Krylov methods. We note that the matrixW is a free parameter

since it has to satisfy only a “mild” constraint, namely that it is a left inverse of V .

However, the selection ofW such that the reduced order model exhibits specific properties

is in general a difficult problem. All the results presented to exploit the free parameters of

the matrixW play, with different aims, on the possibility of interpolating more, somewhat

special, points. The first of these results, which we recall here, provides a method for the

so-called two-sided interpolation.

Proposition 3. [5] Consider sj ∈ C\σ(A), with j = 1, . . . , 2ν, the generalized reachability

matrix

V̄ =
[
(s1I −A)−1B · · · (sνI −A)−1B

]
, (2.6)

and the generalized observability matrix

W̄ =
[
(sν+1I −A∗)−1C∗ · · · (s2νI −A∗)−1C∗

]
. (2.7)

Assume that det(W̄ ∗V̄ ) 6= 0, then the transfer function of the reduced order model (2.2)

with V = V̄ and W = W̄ (V̄ ∗W̄ )−1 interpolates the transfer function of system (2.1) at

the points sj , with j = 1, . . . , 2ν.
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From a numerical point of view, the computation of the matrices V and W defined

in this chapter can be performed using the two-sided Lanczos or the Arnoldi algorithms [5],

which are algorithms originally devised for the iterative approximation of the eigenvalues

of a matrix. We can now summarize the main advantages of the Krylov methods [5]:

• the number of operations needed to compute a reduced order model of order k given a

system of order n using Lanczos or Arnolfi factorization is O(νn2) for dense systems

and O(ν2n) for sparse systems;

• only matrix-vector multiplications are required, i.e. no matrix factorizations or in-

versions are needed;

• Krylov methods can also be applied to multi-input, multi-output systems;

• Krylov methods have simple algorithms and high convergence rate.

However, the drawbacks of the Krylov methods are [5]:

• the reduced order model may be unstable even though the original system is stable;

• the algorithms break down if during the iteration some rank conditions (see [5, Pag.

350]) are not satisfied;

• there is no systematic technique to preserve important properties of the system,

for instance maintaining prescribed eigenvalues, relative degree, zeros, L2-gain, or

preserving compartmental constraints;

• the interpolation-based methods cannot be applied to nonlinear systems (or more

general classes of systems), since for these we cannot define a transfer function.

Note that a solution to the problem of preservation of passivity and stability has been

proposed in [64,65], as reported here.

Lemma 1. [5] If the interpolation points in Proposition 3 are chosen so that sj , with

j = 1, . . . , ν, are stable spectral zeros, i.e. they are such that W ∗(−sj) +W (sj) = 0, and

sj+ν = −sj , with j = 1, . . . , ν, i.e. the interpolation points are chosen as zeros of the

spectral factors and their mirror images, the projected system is both stable and passive.
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However, this lemma requires that specific moments are matched. Hence, the de-

signer cannot choose arbitrary moments which, as we see later, should be in general

considered a drawback in the moment matching approach. Moreover, there is a lack of

system theoretic understanding behind why a particular interpolation point is related to

a property like passivity. Finally, in Lemma 1 all the free parameters (the matrix W ) are

used and no additional property can be preserved.

A possible solution to these issues is offered by the “steady-state-based” approach to

moment matching, which is introduced in the next section.

2.3 The steady-state approach

As just observed the interpolation approach cannot be extended to nonlinear systems for

which the idea of interpolating points in the complex plane partially loses its meaning

(see, however, [66] and [67] for some results on the interpolation problem for nonlinear

systems). In [3] (see also [41], [42]) a characterization of moment for system (2.1) has been

given in terms of the solution of a Sylvester equation as follows.

Lemma 2. [3] Consider system (2.1), si ∈ C \ σ(A), for all i = 1, . . . , η. There exists a

one-to-one1 relation between the moments η0(s1), . . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη)

and the matrix CΠ, where Π is the unique solution of the Sylvester equation

AΠ+BL = ΠS, (2.8)

with S ∈ Rν×ν any non-derogatory2 matrix with characteristic polynomial

p(s) =

η∏

i=1

(s− si)ki , (2.9)

where ν =

η∑

i=1

ki, and L is such that the pair (L, S) is observable.

The importance of this formulation, which resulted in several developments in the

area of model reduction by moment matching, see e.g. [61, 63] and [10–12, 16, 17], is that

1The matrices A, B, C and the zeros of (2.9) fix the moments. Then, given any observable pair (L, S)
with S a non-derogatory matrix with characteristic polynomial (2.9), there exists an invertible matrix
T ∈ R

ν×ν such that the elements of the vector CΠT
−1 are equal to the moments.

2A matrix is non-derogatory if its characteristic and minimal polynomials coincide.
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Figure 2.2: Diagrammatic illustration of Theorem 1. The term denoting the steady-
state response is circled.

it establishes, through the Sylvester equation (2.8), a relation between the moments and

the steady-state response of the output of the system. This is summarized in the following

result and illustrated in Fig. 2.2.

Theorem 1. [3] Consider system (2.1), si ∈ C\σ(A), for all i = 1, . . . , η, and σ(A) ⊂ C<0.

Let S ∈ Rν×ν be any non-derogatory matrix with characteristic polynomial (2.9). Consider

the interconnection of system (2.1) with the system

ω̇ = Sω, u = Lω, (2.10)

with L and ω(0) such that the triple (L, S, ω(0)) is minimal. Then there exists a one-to-one

relation between the moments η0(s1), . . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the

steady-state response of the output y of such interconnected system.

Remark 1. By one-to-one relation we mean that the moments are uniquely determined

by the steady-state response of y(t) and vice versa. Exploiting this fact, in Chapter 4

the problem of model reduction for unknown linear systems from input/output data is

studied. Therein, an algorithm that, given the signal ω and the output y, retrieves the

moments of a system for which the matrices A, B and C are not known is devised. �

The reduction technique based on this notion of moment consists in the interpo-

lation of the steady-state response of the output of the system: a reduced order model

is such that its steady-state response is equal to the steady-state response of the output

of system (2.1) (provided it exists). Thus, the problem of model reduction by moment

matching has been changed from a problem of interpolation of points to a problem of in-

terpolation of signals. The output of the reduced order model has to behave as the output

of the original system for a class of input signals, a concept which can be translated to

nonlinear systems, time-delay systems and infinite dimensional systems, [3, 10]. This fact



2.4 Model reduction by moment matching for linear systems 39

also highlights the importance for the moment matching techniques of letting the designer

free to choose the interpolation points, which are related to the class of inputs to the

system.

2.4 Model reduction by moment matching for linear sys-

tems

2.4.1 Moment matching

Exploiting this new notion of moment, in [3] a family of reduced order models that achieve

moment matching is given. The main advantage of this family lies on the ease of choosing

the free parameters to preserve additional properties.

Definition 2. [3] Consider the signal generator (2.10). The system described by the

equations

ξ̇ = Fξ +Gu, ψ = Hξ, (2.11)

with ξ(t) ∈ Rν , ψ(t) ∈ R, F ∈ Rν×ν , G ∈ Rν×1, H ∈ R1×ν is a model of system (2.1) at S

if system (2.11) has the same moments at S as (2.1).

Lemma 3. [3] Consider system (2.1) and the signal generator (2.10). Suppose σ(A) ∩
σ(S) = ∅. Then the system (2.11) is a model of system (2.1) at S if there exists a unique

solution P of the equation

FP +GL = PS, (2.12)

such that

HP = CΠ, (2.13)

where Π is the unique solution of (2.8).

Several methods and algorithms to solve equation (2.8) are presented in [5]. How-

ever, note that the determination of the matrix Π may be computationally expensive

because one of its dimensions depends on the order of the system to be reduced. An

alternative approach proposed in [3] to avoid solving equation (2.8) when the solution Π

has dimension n× ν consists in using Arnoldi or Lanczos algorithms as follows. Consider

system (2.1) and construct a reduced order model achieving moment matching at S with

any efficient algorithm [5, 68, 69]. At this point it is sufficient to apply the steady-state-
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based model reduction techniques discussed in this chapter considering the reduced order

model just obtained as the system to be reduced. This time the matrix Π will have the

smaller dimensions ν×ν. Note also that the results in Chapter 4 can be used to determine

a reduced order model in a even more computationally efficient way. This last strategy is

exploited in Chapter 5 for the reduction of large-scale interconnected power system.

The computation of the solution P of the Sylvester equation (2.12) of the reduced order

model can be avoided altogether. In fact, as shown in [3], the family of systems

ξ̇ = (S −GL)ξ +Gu, ψ = CΠξ, (2.14)

with G any matrix such that σ(S) ∩ σ(S − GL) = ∅, belongs to the family (2.11) and

contains all the models of dimension ν interpolating the moments of system (2.1) at S.

Remark 2. With the expression “the family (2.11) contains all the models of dimension

ν” we mean that all the models that can be obtained using Krylov projectors are encoded

in the family of systems (2.11) [3]. Thus the models obtained with the two approaches

are equivalent. The advantage of this formulation is that the family of systems (2.11) is

parametrized in G, which allows to set with ease several properties of the reduced order

model, as shown in the next section. For instance, setting the eigenvalues of the reduced

order model is an easy task, whereas with the classic Krylov method this is rather difficult.

�

It can be observed that the family of models (2.14) is built on three ideas: avoiding

to solve equation (2.12), selecting the solution as I; copying the dynamics of the signal

generator (2.10), i.e. the relation ξ = ω holds for the steady-state of ξ; and having a

convenient parametrization for the family of reduced order models for which additional

constraints can be easily imposed.

Remark 3. The state ξ of system (2.14) taken in isolation does not hold any information

regarding system (2.1), but it contains only information about the signal generator (S

and L) and ν free parameters (G). This suggests that any use of the reduced order model

has to take into account both the state ξ and the output ψ. In fact, model reduction

by moment matching consists in the problem of interpolating the steady-state output

response of the system [16]. Even though not as evident, this holds true also for the
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family of models (2.11). �

Remark 4. [3] This approach differs from the interpolation-based approach presented in

Section 2.2. In fact, the relation between the projectorW and the properties of the reduced

order models is nontrivial because it does not possess a system theoretic interpretation,

see [43, 44, 64, 70]. On the contrary, in the approach presented in [3] and reported in the

remainder of this section, the family of reduced order models achieving moment matching

is parameterized explicitly by the matrix G. Consequently, procedures to construct the

matrix G achieving additional properties can be easily obtained. �

Remark 5. In addition to the Krylov interpolation theory, other connections can be estab-

lished with the so-called Georgiou-Kimura parametrization [36,71,72], and the Nevanlinna-

Pick interpolation problem [73]. A discussion of these connections can be found in [3]. �

2.4.2 Model reduction by moment matching with additional properties

We recall here the solution to the problem of achieving moment matching with additional

constraints on the reduced order model which is relevant for Chapters 3 and 4. The

proofs are omitted and can be found in [3]. Note also that therein other problems, such as

matching with a passivity constraint and matching with L2-gain, are discussed and solved.

Matching with prescribed eigenvalues [3]

Given a set Λ = {λ1, · · · , λν} of ν values λi ∈ C, with Λ ∩ σ(S) = ∅, we consider the

problem of determining G such that system (2.14) has eigenvalues equal to the elements

of Λ. This objective has been achieved with the interpolation-based notion of moment

in [70,74]. In the steady-state-based framework this problem can be solved simply selecting

G such that

σ(S −GL) = Λ. (2.15)

Matching with prescribed relative degree, zeros, or a compartmental con-

straint

Consider system (2.14) and the problem of selecting G such that the system has a given

relative degree r ∈ [1, ν], prescribed zeros or satisfies a compartmental constraint [75–77].
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Definition 3. [3] System (2.14) has relative degree r if




CΠ
...

CΠSr−2

CΠSr−1



G =




0
...

0

γ



, (2.16)

for some non-zero γ.

The following result holds.

Theorem 2. [3] The following statements are equivalent.

(RD) Equation (2.16) has a solution G for all r ∈ [1, ν].

(Z1) The zeros of system (2.14) can be arbitrarily assigned by a proper selection of G.

(Z2) The zeros of the system

ξ̇ = Sξ +Gu, ψ = CΠξ, (2.17)

can be arbitrarily assigned by a selection of G.

(C) There is a matrix G such that system (2.17) has a diagonal positive realization.

(O1) The system

ξ̇ = Sξ, ψ = CΠξ, (2.18)

is observable.

(O2) The system

ω̇ = Sω, ẋ = Ax+BLω, y = Cx, (2.19)

is observable.

2.5 Model reduction by moment matching for nonlinear sys-

tems

2.5.1 The notion of moment

An important contribution of [3] is the extension of the model reduction techniques by

moment matching to nonlinear systems. Consider a nonlinear, single-input, single-output,
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continuous-time system described by the equations

ẋ = f(x, u), y = h(x), (2.20)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, f and h smooth mappings, a signal generator described

by the equations

ω̇ = s(ω), u = l(ω), (2.21)

with ω(t) ∈ Rv, s and l smooth mappings, and the interconnected system

ω̇ = s(ω), ẋ = f(x, l(ω)), y = h(x). (2.22)

In addition, suppose that f(0, 0) = 0, s(0) = 0, l(0) = 0 and h(0) = 0. Similarly to the

linear case the interconnection of system (2.20) with the signal generator captures the

property that we are interested in preserving the behavior of the system only for specific

input signals. The following assumptions and definitions provide a generalization of the

notion of moment.

Assumption 1. The signal generator (2.21) is observable, i.e. for any pair of initial

conditions ωa(0) and ωb(0), such that ωa(0) 6= ωb(0), the corresponding output trajectories

l(ωa(t)) and l(ωb(t)) are such that l(ωa(t))− l(ωb(t)) 6≡ 0, and Poisson stable3 with ω(0) 6=
0.

Assumption 2. The zero equilibrium of the system ẋ = f(x, 0) is locally exponentially

stable.

Lemma 4. [3] Consider system (2.20) and the signal generator (2.21). Suppose Assump-

tions 1 and 2 hold. Then there is a unique mapping π(ω), locally defined in a neighborhood

of ω = 0, which solves the partial differential equation

∂π

∂ω
s(ω) = f(π(ω), l(ω)). (2.23)

Remark 6. Lemma 4 implies that the interconnected system (2.22) possesses an invariant

manifold described by the equation x = π(ω). �

3See [78, Chapter 8] for the definition of Poisson stability.
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Figure 2.3: Diagrammatic illustration of Theorem 3. The term denoting the steady-
state response is circled.

Definition 4. [3] Consider system (2.20) and the signal generator (2.21). Suppose As-

sumption 1 holds. The function h ◦ π, with π solution of equation (2.23), is the moment

of system (2.20) at (s, l).

Theorem 3. [3] Consider system (2.20) and the signal generator (2.21). Suppose As-

sumptions 1 and 2 hold. Then the moment of system (2.20) at (s, l) coincides with the

steady-state response of the output of the interconnected system (2.22).

The result is illustrated in Fig. 2.3 which represents the nonlinear counterpart of

Fig. 2.2.

Remark 7. [3] While for linear systems it is possible to define k-moments for every si ∈ C

and for any k ≥ 0, for nonlinear systems it may impossible to provide general statements

if the input signal generated by system (2.21) is unbounded. Hence, we assume that the

trajectories generated by the signal generator are bounded. �

2.5.2 Markov parameters of a nonlinear system

In [3] the steady-state-based notion of moment has been extended also to moment at

infinity. This notion is relevant for the results in Chapter 3 and thus it is herein recalled.

For the linear system (2.1) the k-moments at infinity are defined as ηk(∞) = CAk−1B

(with η0(∞) = 0), i.e. the first k + 1 moments at infinity coincide with the first k + 1

Markov parameters [5]. Recall also that4

CAkB =
dk

dtk
(CeAtB)

∣∣∣∣
t=0

= y
(k)
I (0+),

4In this section we use y
(i)(t) to denote the i-th order time derivative of y at time t.
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where yI denotes the impulse response of the system. Consider now a nonlinear affine

system5 described by equations of the form

ẋ = f(x) + g(x)u, y = h(x), (2.24)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and f , g and h smooth mappings. The k-moment at

infinity, for k ≥ 0, of the nonlinear system (2.24) are defined as ηk(∞) = y
(k)
I (0+) (with

η0(∞) = 0). Reduced order models which match the 0, . . . , k moments at infinity of

system (2.24) can be constructed exploiting these definitions. See [3] for more details and

an example.

2.5.3 Moment matching

We are now ready to introduce the notion of reduced order model by moment matching

for nonlinear systems.

Definition 5. [3] Consider the signal generator (2.21). The system described by the

equations

ξ̇ = φ(ξ, u), ψ = κ(ξ), (2.25)

with ξ(t) ∈ Rν , is a model at (s, l) of system (2.20) if system (2.25) has the same moment

at (s, l) as (2.20). In this case, system (2.25) is said to match the moment of system (2.20)

at (s, l). Furthermore, system (2.25) is a reduced order model of system (2.20) if ν < n.

Lemma 5. [3] Consider system (2.20), system (2.25) and the signal generator (2.21).

Suppose Assumptions 1 and 2 hold. System (2.25) matches the moments of (2.20) at (s, l)

if the equation

φ(p(ω), l(ω)) =
∂p

∂ω
s(ω) (2.26)

has a unique solution p such that

h(π(ω)) = κ(p(ω)), (2.27)

where π is the (unique) solution of equation (2.23).

5Note that for non-affine systems the impulse response, and its derivatives, may not be well-defined
functions, see [79, Chapter 10].
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In other words, we have to determine the mappings φ, κ and p such that equations

(2.26) and (2.27) hold. We introduce the following assumption to simplify the problem.

Assumption 3. There exist mappings κ and p such that κ(0) = 0, p(0) = 0, p is locally

continuously differentiable, equation (2.27) holds and det
∂p(ω)

∂ω

∣∣∣∣
ω=0

6= 0, i.e. the mapping

p possesses a local inverse p−1.

Remark 8. [3] Similar to the linear case, Assumption 3 holds selecting p(ω) = ω and

κ(ω) = h(π(ω)). �

Finally, as shown in [3], the system described by the equations

ξ̇ = s(ξ)− δ(ξ)l(ξ) + δ(ξ)u, ψ = h(π(ξ)), (2.28)

where δ is any mapping such that the equation

∂p

∂ω
s(ω) = s(p(ω))− δ(p(ω))l(p(ω)) + δ(p(ω))l(ω), (2.29)

has the unique solution p(ω) = ω, is a family of reduced order models of (2.20) at (s, l).

2.5.4 Model reduction by moment matching with additional properties

Similarly to the linear case we can determine the conditions on the mapping δ such that

the reduced order model satisfies additional properties. The proofs are omitted and can be

found in [3]. Note also that therein other problems, such as matching with prescribed zero

dynamics, matching with a passivity constraint and matching with L2-gain, are discussed

and solved.

Matching with asymptotic stability [3]

Consider the problem of determining a reduced order model (2.28) which has an asymptot-

ically stable zero equilibrium. This problem can be solved if it is possible to select the map-

ping δ such that the zero equilibrium of the system ξ̇ = s(ξ)−δ(ξ)l(ξ) is locally asymptoti-

cally stable. To this end, for instance, it is sufficient that the pair

(
∂l(ξ)

∂ξ

∣∣∣∣
ξ=0

,
∂s(ξ)

∂ξ

∣∣∣∣
ξ=0

)

is observable.
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Matching with prescribed relative degree

The problem of constructing a reduced order model which has a given relative degree

r ∈ [1, ν] at some point ξ̄ can be solved selecting δ as follows.

Theorem 4. [3] For all r ∈ [1, ν] there exists a δ such that system (2.28) has relative

degree r at ξ̄ if and only if the codistribution

dOν = span{dh(π(ξ)), · · · , dLν−1
s h(π(ξ))} (2.30)

has dimension ν at ξ̄.

Matching and nonlinear systems at Sω [3]

Finally, in [3] the problem of model reduction for nonlinear systems when the signal

generator is a linear system has been considered. This problem, which is relevant for one

of the results developed in Chapter 3, is important because the resulting reduced order

models have a very simple description, namely

ξ̇ = (S − δ(ξ)L)ξ + δ(ξ)u,

ψ = h(π(ξ)),

with δ a free mapping. A further simplification can be achieved with the selection δ(ξ) = G,

for some constant matrix G. In fact, in this case the family of reduced order models is

described by a linear differential equation with a nonlinear output map. The two obvious

advantages of this result are that the matrix G can be selected to achieve the additional

properties presented in Section 2.4.2 and that the determination of the reduced order

model reduces to the computation of the mapping h ◦ π. This can be determined as

suggested in [80, Section 4.2 and 4.3] or as shown in Chapter 4.

2.6 Conclusion

In this chapter we have reviewed the model reduction technique by moment matching. We

have recalled the classical interpolation theory and we have then introduced the steady-

state-based notion of moment. Exploiting this description of moment the solution of the

problem of model reduction by moment matching for linear and nonlinear systems achiev-
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ing additional properties has been given and an enhancement of the notion of frequency

response for nonlinear systems has been presented. These basic results are instrumental

for the developments in the rest of the Thesis.
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Chapter 3

Model reduction of neutral

systems with discrete and

distributed delays

3.1 Introduction

In this chapter we extend the model reduction techniques based on moment matching to a

general class of linear and nonlinear differential time-delay systems. Time-delay systems

are a class of infinite dimensional systems extensively studied in the literature, e.g. see

the monographs [81–87] and the survey papers [6, 88, 89]. From a practical point of view

every dynamical system presents delays of some extent, see for instance [85, 90], in which

several examples from biology, chemistry, physics and engineering are discussed. Delays in

closed-loop systems can generate unexpected behaviors: for instance “small” delays may

be destabilizing [89,91–95], while “large” delays may be stabilizing [96–99].

The problem of model reduction of time-delay systems is a classic topic in control theory.

The optimal reduction (in the sense of some norm) is listed as an unsolved problem in

systems theory in [100] and several results have been given using rational interpolations,

e.g. [101–103], see also [104–110]. Recent results include model order reduction techniques

for linear time-delay systems, see e.g. [111–113], and for infinite dimensional systems, see

e.g. [114,115] in which operators are used to provide reduced order models for linear sys-

tems.
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In this chapter the model reduction theory introduced in Chapter 2 is extended to linear

and nonlinear time-delay systems. For linear systems, it is shown that the moments of

the system are fully characterized by the solution of a Sylvester-like equation. Although

Sylvester equations have been widely studied (see for instance [116, 117]), some care is

needed to extend the classical results to the particular Sylvester-like equation that arises

in the chapter. The results are then generalized to the class of linear neutral differen-

tial time-delay systems with discrete and distributed delays. A family of systems that

achieve moment matching is characterized and connections with the results of Chapter 2

are drawn. As noted in [118] a reduced order model with time-delays may lead to im-

provements in the approximation. Accordingly, the possibility to maintain the delay in

the reduced order model is discussed and, in addition, it is shown that the introduction

of delays can be used to improve the approximation, interpolating at a larger number of

points. For nonlinear systems, the description of moment is based on the center manifold

theory for time-delay systems and is derived using the steady-state response of the system.

The conditions and properties of the center manifold hold as for finite dimensional sys-

tems, see e.g. [81, 119]. Exploiting this interpretation, a parameterized family of models

described by differential time-delay equations is characterized. In addition, the notion

of moment at infinity for linear and nonlinear time-delay systems is investigated and a

brief discussion for nonlinear neutral differential time-delay systems is given. Finally, the

problem of obtaining a reduced order model of the open-loop system given the closed-loop

system is discussed and solved.

The rest of the chapter is organized as follows. In Section 3.2 the notion of moment is ex-

tended to linear time-delay systems (Section 3.2.1), the solution of the resulting Sylvester-

like equation is discussed (Section 3.2.2) and a revisitation of this description is given

using the notion of steady-state response (Section 3.2.3). The results are then extended to

neutral systems and systems with distributed-delays (Section 3.2.4). A family of systems

achieving moment matching is presented (Sections 3.2.5 and 3.2.6) and a simple example

based on the model of a LC transmission line is given (Section 3.2.7). The possibility of

interpolating a larger number of points maintaining the same “number of equations” is

investigated (Section 3.2.8). Two examples, one inspired by [4] (Section 3.2.9) and one
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inspired by the problem of the automatic control of a platoon of vehicles, illustrate the

results (Section 3.2.10). In Section 3.3 the center manifold theory for time-delay systems

is used to extend the definition of moment to nonlinear time-delay systems (Section 3.3.1)

and a family of systems achieving moment matching for nonlinear time-delay systems

is given (Sections 3.3.2 and 3.3.3). The possibility of interpolating multiple moments is

investigated (Section 3.3.4) and the problem of “open-loop” reduced order models is dis-

cussed (Section 3.3.5). The theory is illustrated by the reduction of a nonlinear neutral

differential time-delay equation describing the torsional dynamics of an oilwell drillstring

(Section 3.3.6). In Section 3.4 the characterization of the moments at infinity for linear

and nonlinear time-delay systems is presented. Finally Section 3.5 contains some conclud-

ing remarks.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference papers [8], [9], in the book

chapter [7] and in the journal paper [10].

3.2 Linear time-delay systems

In this section we derive a model reduction theory for linear differential time-delay systems.

To keep the notation as simple as possible we begin with the class of systems with discrete-

delays and we then discuss the extension of the results to more general types of delays

and representations in Section 3.2.4.

3.2.1 Definition of Π: linear time-delay systems

Consider a linear, single-input, single-output, continuous-time, time-delay system with

constant discrete-delays described by the equations1

ẋ =

ς∑

j=0

Ajxτj +

µ∑

j=ς+1

Bjuτj , y =

ς∑

j=0

Cjxτj ,

x(θ) = φ(θ), −T ≤ θ ≤ 0,

(3.1)

1The results can be extended to multi-input, multi-output (MIMO) systems straightforwardly. The
problem in the MIMO case is called tangential interpolation, see [63, 120], and it is extensively discussed
in Chapter 5.
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with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, φ ∈ R
n
T , Aj ∈ Rn×n and Cj ∈ R1×n with2 j = 0, . . . , ς,

Bj ∈ Rn×1 with j = ς + 1, . . . , µ, τ0 = 0 and τj ∈ R>0 with j = 1, . . . , µ. Let

W (s) = C̄(s)(sI − Ā(s))−1B̄(s), (3.2)

with

Ā(s) =
ς∑

j=0

Aje
−sτj , B̄(s) =

µ∑

j=ς+1

Bje
−sτj , C̄(s) =

ς∑

j=0

Cje
−sτj , (3.3)

be the associated transfer function and assume (3.1) is minimal3, i.e. controllable and

observable. We begin defining the moments of system (3.1) at some si ∈ C and showing

that there exists a one-to-one relation between the moments and the (unique) solution of

a Sylvester-like equation.

Definition 6. Let si ∈ C \ σ(Ā(s)). The 0-moment of system (3.1) at si is the complex

number

η0(si) = C̄(si)(siI − Ā(si))−1B̄(si).

The k-moment of system (3.1) at si is the complex number

ηk(si) =
(−1)k
k!

[
dk

dsk
C̄(s)(sI − Ā(s))−1B̄(s)

]

s=si

,

with k ≥ 1 integer.

This definition of moment is justified by the fact that, as already stated, the k-

moment of a linear system at si is defined as the k-th coefficient of the Laurent series

expansion of the transfer function W (s) at si ∈ C (see Chapter 2), provided it exists.

Lemma 6. Consider system (3.1) and let si ∈ C \ σ(Ā(s)). Assume that Π̃ ∈ Rn×ν is

the unique solution of the Sylvester-like equation

ς∑

j=0

AjΠ̃e
−Σkτj +

µ∑

j=ς+1

BjLke
−Σkτj = Π̃Σk, (3.4)

2The delays of Aj and Cj are taken, without loss of generality, equal to ease the notation.
3See [121] for a in-depth discussion of the different characterizations of minimality for time-delay sys-

tems. Herein, we mean that there are no common zeros between the numerator and denominator of the
transfer function.
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with Lk = [1 0 . . . 0] ∈ R(k+1) and

Σk =




si 1 0 . . . 0

0 si 1 . . . 0
...

...
. . .

. . .
...

0 . . . 0 si 1

0 . . . . . . 0 si




∈ R(k+1)×(k+1).

Then
[
η0(si) . . . ηk(si)

]
=

ς∑

j=0

CjΠ̃e
−ΣkτjΨk,

where Ψk = diag(1,−1, 1, . . . , (−1)k) ∈ R(k+1)×(k+1).

Proof. Let Π̃ = [Π̃0 Π̃1 . . . Π̃k]. Since Σk is in Jordan form then

e−Σkτj = e−siτj




1 −τj
(−τj)2
2

. . .
(−τj)k−1
(k − 1)!

0 1 −τj . . .
(−τj)k−2
(k − 2)!

...
...

. . .
. . .

...

0 . . . 0 1 −τj
0 . . . . . . 0 1




.

Thus, the first column of equation (3.4) can be rewritten as

ς∑

j=0

AjΠ̃0e
−siτj +

µ∑

j=ς+1

Bje
−siτj = Π̃0si, (3.5)

the second column can be rewritten as

ς∑

j=0

Aje
−siτj Π̃1 +

ς∑

j=0

−τjAje
−siτj Π̃0 −

µ∑

j=ς+1

τjBje
−siτj = Π̃1si + Π̃0, (3.6)

and so on until the last column

0∑

l=k

ς∑

j=0

AjΠ̃k−l
(−τj)l
l!

e−siτj +

µ∑

j=ς+1

Bj
(−τj)k
k!

e−siτj = Π̃ksi + Π̃k−1. (3.7)
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As a result, Π̃0 can be determined from equation (3.5) as

Π̃0 =


siI −

ς∑

j=0

Aje
−siτj



−1

µ∑

j=ς+1

Bje
−siτj =

(
siI − Ā(si)

)−1
B̄(si),

Π̃1 from equation (3.6) and Π̃0 as

Π̃1 =−


siI −

ς∑

j=0

Aje
−siτj



−1
I +

ς∑

j=1

τjAje
−siτj




siI −

ς∑

j=0

Aje
−siτj



−1

µ∑

j=ς+1

Bje
−siτj

−


siI −

ς∑

j=0

Aje
−siτj



−1

µ∑

j=ς+1

τjBje
−siτj =

[
d

ds

(
(sI − Ā(s))−1B̄(s)

)]

s=si

.

Iterating for all k, yields

Π̃k =
1

k!

[
dk

dsk
(
(sI − Ā(s))−1B̄(s)

)]

s=si

.

Finally, exploiting the columns of Π̃, the moments can be written as

ς∑

j=0

CjΠ̃e
−Σkτj =

[
ς∑

j=0

CjΠ̃0e
−siτj . . .

0∑

l=k

ς∑

j=0

CjΠ̃k−l
(−τj)l
l!

e−siτj

]

=

[
C̄(si)Π̃0 . . .

0∑

l=k

1

l!

dl

dsl
[
C̄(s)

]
s=si

Π̃k−l

]

=
[
η0(si) . . . (−1)kηk(si)

]
,

which proves the claim.

Equation (3.4) can be written eliminating the fact that Σk and Lk have a special

structure. As a result the following holds.

Theorem 5. Consider system (3.1) and let si, with i = 1, . . . , η, be a set of numbers such

that si ∈ C \ σ(Ā(s)). Let S ∈ Rν×ν be any non-derogatory matrix with characteristic

polynomial

p(s) =

η∏

i=1

(s− si)ki , (3.8)

where ν =

η∑

i=1

ki, and L be such that the pair (L, S) is observable. Assume that Π is the
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unique solution of the Sylvester-like equation

ς∑

j=0

AjΠe
−Sτj −ΠS = −

µ∑

j=ς+1

BjLe
−Sτj . (3.9)

Then there exists a one-to-one relation between the moments η0(s1), . . . , ηk1−1(s1), . . . ,

η0(sη), . . . , ηkη−1(sη) and the matrix
ς∑

j=0

CjΠe
−Sτj .

Proof. Note that it is sufficient to prove the claim for η = 1. By observability of the pair

(L, S) there is a unique invertible matrix T such that S = T−1ΣkT and L = LkT . Then

equation (3.9) becomes

ς∑

j=0

AjΠe
−(T−1ΣkT )τj −ΠT−1ΣkT = −

µ∑

j=ς+1

BjLe
−(T−1ΣkT )τj .

The claim follows defining Π̃ = ΠT−1, recalling that eT
−1XT = T−1eXT and that the

moments are coordinates invariant.

3.2.2 Solution of the Sylvester-like equation

Equation (3.9) is a Sylvester equation only if ς = 0. Nevertheless, it is a linear equation

in Π and it can be solved with the use of the vectorization operator and the Kronecker

product. To this end, it is necessary to determine when the equation admits a unique

solution. In this section we solve this problem in the general case and for two special

cases.

Lemma 7. Equation (3.9) has a unique solution if and only if si ∈ C \ σ(Ā(s)) for all
i = 1, . . . , η.

Proof. Suppose, without loss of generality, that the matrix S is in complex Jordan form.

Then the matrices S⊤ and e−S
⊤τj are lower triangular and their i-th eigenvalue is si and

e−siτj , respectively. We recall that the eigenvalues of the sum of lower triangular matrices

is the sum of the eigenvalues. The claim follows since equation (3.9) has a unique solution

(see [116,117]) if and only if

det




ς∑

j=0

(
e−S

⊤τj ⊗Aj

)
− S⊤ ⊗ I


 6= 0,
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which holds if and only if

η∏

i=1

det




ς∑

j=0

Aje
−siτ − siI


 6= 0,

hence the claim.

Corollary 1. Equation (3.9) has a unique solution if the following holds.

• A0 = 0, A1 6= 0, µ = ς = 1, and σ(A1) ∩ σ(SeSτ ) = ∅.

• The matrices Aj for j = 0, 1, . . . , ς commute and

µ∑

j=0

e−slτjλji 6= sl for i = 1, ..., n

and l = 1, ..., η, with λji and sl eigenvalues of Aj and S, respectively.

Proof: The claim is a direct consequence of the use of the vectorization operator

(see [116,117]). �

3.2.3 Definition of Π: linear time-delay systems - Revisited

To prepare the ground for the study of nonlinear time-delay systems, in this section we

revisit the interpolation-based description of moment developed just now and give the

equivalent steady-state-based description using the center manifold theory. The center

manifold theory for time-delay systems has been widely studied. The results in [119]

establish that the theory for finite dimensional systems can be extended to infinite dimen-

sional systems (and thus to time-delay systems). In particular, as for finite dimensional

systems, if the linearized system has q eigenvalues on the imaginary axis then there exists

a q-dimensional local integral manifold (referred to as center manifold) for the original

system. In addition, the well-defined restriction of the dynamics of the system to the

manifold is finite dimensional. An overview on the center manifold theory for time-delay

systems has been given in [81] and references therein.

Theorem 6. Let S ∈ Rν×ν be any non-derogatory matrix with characteristic polyno-

mial (3.8). Consider system (3.1) and assume si ∈ C \ σ(Ā(s)), with i = 1, . . . , η, and

σ(Ā(s)) ⊂ C<0. Consider the interconnection of system (3.1) with the system

ω̇ = Sω, u = Lω, (3.10)
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with L and ω(0) such that the triple (L, S, ω(0)) is minimal. Then there exists a one-to-one

relation between the moments η0(s1), . . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the

steady-state response of the output of such interconnected system.

Proof. Consider the interconnection of system (3.1) with system (3.10). By the assump-

tions on σ(Ā(s)) and σ(S), the interconnected system has a globally well-defined invariant

manifold given by M = {(x, ω) ∈ Rn+ν : x = Πω}, with Π the unique solution of the

Sylvester-like equation (3.9). We prove now thatM is attractive. Consider the equation

˙︷ ︸︸ ︷
x−Πω =

ς∑

j=0

Ajxτj +

µ∑

j=ς+1

BjLωτj −ΠSω =
ς∑

j=0

Ajxτj +




µ∑

j=ς+1

BjLe
−Sτj −ΠS


ω

in which we used the fact that ω(t− τj) = e−Sτjω(t). Substituting (3.9) in the right-hand

side of the last equation, yields

˙︷ ︸︸ ︷
x−Πω =

ς∑

j=0

Aj(xτj −Πωτj ).

Computing the Laplace transform on both sides yields

s(X(s)−ΠΩ(s))− (x(0)−Πω(0)) =




ς∑

j=0

Aje
−sτj


 (X(s)−ΠΩ(s))

and, by the assumptions on σ(Ā(s)), we have

X(s)−ΠΩ(s) = (sI − Ā(s))−1(x(0)−Πω(0)).

Finally, computing the inverse Laplace transform, yields

x(t)−Πω(t) = L−1{(sI − Ā(s))−1(x(0)−Πω(0))}.

Since σ(Ā(s)) ⊂ C<0, by [81, Chapter 1, Theorem 6.2],M is attractive. As a result

y(t)=
ς∑

j=0

Cj(xτj −Πωτj ) +
ς∑

j=0

CjΠωτj

=

ς∑

j=0

CjΠωτj +

ς∑

j=0

CjL−1{(sI − Ā(s))−1(x(0)−Πω(0))}e−Sτj =
ς∑

j=0

CjΠe
−Sτjω+ε(t),
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where

ς∑

j=0

CjΠe
−Sτjω(t) describes the steady-state response, whereas

ε(t) =

ς∑

j=0

CjL−1{(sI − Ā(s))−1(x(0)−Πω(0))}e−Sτj ,

describes the transient response which vanishes exponentially. This proves the claim.

Remark 9. Exploiting Theorem 6, in Chapter 4 the problem of model reduction for

linear time-delay systems from input/output data is addressed. Therein, an algorithm

that, given the signal ω and the output y, retrieves the moments of a system for which

the matrices Aj , Bj and Cj are not known is devised. �

Note that the importance of Theorem 6 goes beyond the simple computation of

the moments because it highlights the relation between the steady-state response and the

moments.

3.2.4 A general class of linear time-delay systems

All the results presented for discrete-delays can be generalized to linear neutral differential

time-delay systems with distributed-delays. Consider a linear, single-input, single-output,

continuous-time, neutral time-delay system with discrete-delays and distributed-delays

described by the equations

ẋ =

q∑

j=1

Dj ẋcj +
ς∑

j=0

Ajxτj +

µ∑

j=ς+1

Bjuτj +
r∑

j=1

∫ t

t−hj

(Gjx(θ) +Hju(θ))dθ,

y =

ς∑

j=0

Cjxτj ,

x(θ) = φ(θ), −T ≤ θ ≤ 0,

(3.11)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, φ ∈ R
n
T , Aj ∈ Rn×n and Cj ∈ R1×n with j = 0, . . . , ς,

Bj ∈ Rn×1 with j = ς +1, . . . , µ, Dj ∈ Rn×n with j = 1, . . . , q, Gj ∈ Rn×n and Hj ∈ Rn×1

with j = 1, . . . , r, τ0 = 0, τj ∈ R>0 with j = 1, . . . , µ, cj ∈ R>0 with j = 1, . . . , q and
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hj ∈ R>0 with j = 1, . . . , r. The transfer function W (s) is defined by (3.2) with

Ā(s) =

q∑

j=1

Djse
−scj +

ς∑

j=0

Aje
−sτj +

r∑

j=1

Gj
1− e−shj

s
,

B̄(s) =

µ∑

j=ς+1

Bje
−sτj +

r∑

j=1

Hj
1− e−shj

s
,

C̄(s) =
ς∑

j=0

Cje
−sτj .

(3.12)

Theorem 7. Assume 0 6∈ σ(S). Theorem 5 holds, with the same assumptions, for sys-

tem (3.11) replacing equation (3.9) with

ς∑

j=0

AjΠe
−Sτj +

r∑

j=1

GjΠS
−1(I − e−Shj ) +

q∑

j=1

DjΠSe
−Scj −ΠS =

= −
µ∑

j=ς+1

BjLe
−Sτj −

r∑

j=1

HjLS
−1(I − e−Shj ).

(3.13)

Proof. The proof is similar to that of Theorem 5, hence it is omitted.

We introduce the following stability condition (i.e. a “formal stability” condition,

see [122], [6]).

Assumption 4. Assume the difference equation

x(t) +

q∑

j=1

Djx(t− cj) = 0

is asymptotically stable.

Theorem 8. Assume 0 6∈ σ(S) and Assumption 4 holds. Theorem 6 holds, with the same

assumptions, for system (3.11).

Proof. The claim can be proved noting that σ(Ā(s)) ⊂ C<0, with the definitions in (3.12),

and Assumption 4 guarantee asymptotic stability of system (3.11) [123], [6]. The additional

assumption that S is invertible is necessary because in equation (3.13) the distributed-

delays generate terms in S−1.

Remark 10. As noted in [124], many systems can be described by the equations (3.11)

with, in most cases, a single neutral delay, i.e. q = 1. In this case Assumption 4 holds if

σ(D1) ⊂ D<1, see [81] and [125]. �
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Remark 11. Since hyperbolic partial differential equations can be locally expressed as

neutral time-delay systems and, conversely, any time-delay y(t) = u(t − τ) can be repre-

sented by a classical transport equation (see [126], [83], [6]), the techniques presented in

this chapter can be used to establish a model reduction theory for some classes of partial

differential equations: the example we study in Section 3.3.6 is, in fact, a neutral system

originated from a partial differential equation. A similar remark applies for other rela-

tions, such as the ones established between time-delay systems and fractional derivation

equations [127]. �

To keep the notation light only the discrete-delay case is considered in the remain-

ing of the chapter. However, the extension of the following results to system (3.11) is

straightforward.

3.2.5 Reduced order model for linear time-delay systems

In this and the following sections a family of systems achieving moment matching is

presented and the possibility of interpolating a larger number of points maintaining the

same “number of equations” is investigated.

Definition 7. Consider the signal generator (3.10). The system described by the equa-

tions

ξ̇ =

̺∑

j=0

Fjξχj
+

ρ∑

j=̺+1

Gjuχj
, ψ =

d∑

j=0

Hjξχj
, (3.14)

with ξ(t) ∈ Rν , ψ(t) ∈ R, Fj ∈ Rν×ν for j = 0, . . . , ̺, Gj ∈ Rν×1 for j = ̺ + 1, . . . , ρ,

Hj ∈ R1×ν for j = 0, . . . , k, χ0 = 0 and χj ∈ R>0 for j = 1, . . . ,max{ρ, d}, is a model of

system (3.1) at S, if system (3.14) has the same moments at S as (3.1).

Lemma 8. Consider system (3.1) and the signal generator (3.10). Suppose σ(S) ∩
σ(Ā(s)) = ∅. Then the system (3.14) is a model of system (3.1) at S, if there exists

a unique solution P of the equation

̺∑

j=0

FjPe
−Sχj − PS = −

ρ∑

j=̺+1

GjLe
−Sχj , (3.15)

such that
ς∑

j=0

CjΠe
−Sτj =

d∑

j=0

HjPe
−Sχj , (3.16)
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where Π is the unique solution of (3.9). System (3.14) is a reduced order model of sys-

tem (3.1) at S if ν < n, or if ̺ < ς, or if ρ < µ, or if d < ς.

Proof. The claim is a consequence of Definition 7 and the definition of moment. In fact,

note that equation (3.15) defines the moments of the reduced order model, whereas equa-

tion (3.16) gives the matching condition between the moments of the system to be reduced

and the moments of the reduced order model.

The following lemma assures that the solution P exists, is unique and that equa-

tion (3.16) have a solution.

Lemma 9. Let F̄ (s) =

̺∑

j=0

Fje
−sχj . Equation (3.15) has a unique solution P and

equation (3.16) has a solution uniquely determined by the matrices Hj if and only if

si /∈ σ(F̄ (s)) for all i = 1, . . . , η and the pair (L, S) is observable.

Proof. The uniqueness of the solution P of equation (3.15) follows from the arguments

given in Section 3.2.2. The observability of the pair (L, S) guarantees that P is full rank

and, as a consequence, (3.16) can always be solved.

3.2.6 Reduced order model with free Fj

To construct a family of models that achieves moment matching at ν points one could

select

F0 = S −
ρ∑

j=̺+1

GjLe
−Sχj −

̺∑

j=1

Fje
−Sχj

H0 =
ς∑

j=0

CjΠe
−Sτj −

d∑

j=1

Hje
−Sχj ,

(3.17)

and note that this selection solves equations (3.15), (3.16) for P = I. This yields the

family of reduced order models described by the equations

ξ̇ =


S −

ρ∑

j=̺+1

GjLe
−Sχj −

̺∑

j=1

Fje
−Sχj


 ξ +

̺∑

j=1

Fjξχj
+

ρ∑

j=̺+1

Gjuχj
,

ψ =




ς∑

j=0

CjΠe
−Sτj −

d∑

j=1

Hje
−Sχj


 ξ +

d∑

j=1

Hjξχj
,

(3.18)

with Gj and Fj any matrices such that si /∈ σ(F̄ (s)), for all i = 1, . . . , η.

The proposed model has several free design parameters, namely Gj , Fj , Hj , χj ,
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̺, ρ and d. We note that selecting ̺ = 0, ρ = 1, d = 0 and χ1 = 0 (in this case

we define G = G1), yields a reduced order model with no delays. In other words, we

reduce an infinite dimensional system to a finite dimensional one, of dimension ν. This

reduced order model coincides with the one in Chapter 2 (equation (2.14)) and all results

therein are directly applicable: the parameter G can be selected to achieve matching with

prescribed eigenvalues, matching with prescribed relative degree, etc.

Remark 12. The problem of reducing an infinite dimensional system to a finite dimen-

sional one is not new in literature, see e.g. [114,115,128], and is how the model reduction

has been traditionally intended for time-delay systems, see e.g. [100–110, 129], in which

the problem of reducing the transfer function of a linear time-delay system to a rational

function is studied. A variety of methods are used, e.g. Padé approximation, Taylor ex-

pansions, spline approximations and Hankel operator.

On the other hand, the choice of eliminating the delays is likely to destroy some underlying

dynamics of the model and, as shown in [96–99, 118], delays are not always detrimental

(for example to stability). With this in mind, a possible choice is to keep Fj , Gj and Hj

free with ̺ = d = ς and ρ = µ. In this case we can use the matrices Fj , Gj and Hj ,

with τj = χj , to maintain some important physical properties of the delay structure of the

system. �

3.2.7 Example: model of a LC transmission line

To illustrate the above idea consider the example in Section 2.5 of [85] in which a model

of a LC transmission line in considered. The linear neutral differential time-delay system

is described by the equations

ẋ = Ax+Dẋτ +Bu,

y = Cx,

(3.19)

with

A = − 1

C1




1

R1
+

√
C0

L0
0

−C1 0


, D =



0 − 2

C1

√
C0

L0
α

0 α


,

B =

[
b1 b2

]⊤
, C =

[
c1 c2

]
,
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α =
1−R0

√
C0
L0

1 +R0

√
C0
L0

, τ = 2
√
L0C0,

in which C1 ∈ R>0, R1 ∈ R>0, C0 ∈ R>0, L0 ∈ R>0, R0 ∈ R>0, b1 ∈ R, b2 ∈ R, c1 ∈ R

and c2 ∈ R. The system is such that if R0

√
C0/L0 = 1 the delay part of the system

disappears (a phenomenon called line-matching) and the model can be described by a

system of ordinary differential equations. In the reduced model it is desirable to maintain

this property to preserve the physical structure of the system. To simplify the example,

suppose S = 1 and L = 1. Then the vector Π can be computed from equation (3.13), that

in this case is

AΠ+DΠe−τ −Π = −B,

which has a unique solution if

− 1

C1

(
1

R1
+

√
C0

L0

)
6= 1, e−τ

1−R0

√
C0
L0

1 +R0

√
C0
L0

6= 1.

Hence, a family of reduced order models, parameterized in G, is described by the equations

ξ̇ = (1− e−τα−G)ξ + αξ̇τ +Gu,

ψ = CΠξ.

(3.20)

Both equations (3.19) and (3.20) describe linear neutral differential time-delay systems

when R0

√
C0/L0 6= 1 and linear delay-free systems otherwise.

3.2.8 Reduced order model interpolating at (̺+ 1)ν points

The matrices Fj and Hj in (3.18) are design parameters. In this section we show how to

exploit them to achieve moment matching at more than ν points, still maintaining the

same dimension ν of the matrix F0. We analyze the case in which ̺ = 1, ρ = 3 and

d = 1 (F1, G2, G3 and H1 are the free parameters), for ease of notation. We further

assume without loss of generality that there are no delays in the equation of the output y

of system (3.1). The general case can be analyzed in a similar way.

Proposition 4. Let Sa ∈ Rν×ν and Sb ∈ Rν×ν be two non-derogatory matrices such that
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σ(Sa) ∩ σ(Sb) = ∅ and let La and Lb be such that the pairs (La, Sa) and (Lb, Sb) are

observable. Let Πa = Π be the unique solution of (3.9), with L = La and S = Sa, and let

Πb = Π be the unique solution of (3.9), with L = Lb and S = Sb. Consider F0 and H0 as

in (3.17) with χ2 = 0, S = Sa and L = La.

• If d = 1 and L = La = Lb, system (3.14) with the selection

F1=(Sb − Sa −G3(e
−Sbχ3 − e−Saχ3))(e−Sbχ1 − e−Saχ1)−1,

F0=Sa −G2L−G3Le
−Saχ3 − F1e

−Saχ1 ,

H1=(CΠb − CΠa)(e
−Sbχ1 − e−Saχ1)−1,

H0=CΠa −H1e
−Saχ1 ,

(3.21)

belongs to the family (3.18) and is a reduced order model of system (3.1) achieving

moment matching at Sa and Sb, for any G2 and G3 such that si /∈ σ(F̄ (s)), for all
i = 1, . . . , η.

• If d = 0, the family (3.18) with

F1 = (PbSb − SaPb +G2LaPb +G3Lae
−Sbχ3Pb

−G2Lb −G3Lbe
−Sbχ3)(Pbe

−Sbχ1 − e−Saχ1Pb)
−1,

(3.22)

is, for some Pb such that CΠaPb = CΠb, a reduced order model of system (3.1)

achieving moment matching at Sa and Sb, for any G2 and G3 such that si /∈ σ(F̄ (s)),
for all i = 1, . . . , η.

Proof. We begin with the case d = 1. Easy computations show that

F0 = Sa −G2La −G3Lae
−Saχ3 − F1e

−Saχ1 ,

H0 = CΠa −H1e
−Saχ1 ,

(3.23)

defined in (3.17), solve

F0Pa + F1Pae
−Saχ1 − PaSa = −G2La −G3Lae

−Saχ3 ,

CΠa = H0Pa +H1Pae
−Saχ1 ,

(3.24)
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with Pa = I. F1 given in (3.22) solves the equation

F0Pb + F1Pbe
−Sbχ1 − PbSb = −G2Lb −G3Lbe

−Sbχ3 ,

for any invertible Pb. Substituting H0 in

CΠb = H0Pb +H1Pbe
−Sbχ1 , (3.25)

yields

H1 = (CΠb − CΠaPb)(Pbe
−Sbχ1 − e−Saχ1Pb)

−1.

The matrices F0, F1, H0, H1 are such that the resulting reduced order model achieves

moment matching at Sa and Sb and selecting L = La = Lb and Pb = I they yield (3.21).

If d = 0, equation (3.25) reduces to

CΠb = H0Pb

for some Pb. We then have to prove that there always exists a Pb such that CΠaPb = CΠb

and F1 is well-defined. To prove the first claim note that the condition consists in finding

ν2 parameters to solve ν equations. If CΠa 6= 0 there exist always such a Pb, full rank

and upper triangular (possibly after a change of coordinates). Finally note that by the

hypotheses on the system and the signal generator there exists at least a component of

CΠa which is not zero. To prove the second claim we have to show that

rank
{
Pbe

−Sbχ1 − e−Saχ1Pb

}
= ν. (3.26)

Note now that selecting Sa and Sb in complex Jordan form implies that the matrices in

equation (3.26) are all upper triangular. Condition (3.26) can be rewritten as

πbi
(
e−sbiχ1 − e−saiχ1

)
6= 0, ∀ i = 1, . . . , ν,

with πbi, sai and sbi the eigenvalues of Pb, Sa and Sb, respectively. Since σ(Sa) ∩ σ(Sb) = ∅
then σ(e−Saχ1) ∩ σ(e−Sbχ1) = ∅, hence the claim follows.

The family of systems characterized in Proposition 4 achieves moment matching at
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2ν interpolation points. Note that the matrices G2 and G3 remain free parameters and

they can be used to achieve the properties discussed in Chapter 2. For instance G2 and

G3 can be used to set both the eigenvalues of F0 and F1. In addition, note that Gj has

exactly ν free parameters. Hence, for instance, to assign the eigenvalues of j Fj matrices,

j Gj matrices are needed. In [62], as already hinted in [3], it has been shown how to select

G (our G2) to achieve the two-sided interpolation, i.e. how to exploit the free parameter

G to achieve interpolation at 2ν points. The two techniques may be combined and, in the

case of Proposition 4, G2 and G3 may be selected to achieve interpolation at 4ν points.

Remark 13. The result can be generalized to ̺ > 1 delays, obtaining a reduced order

model that interpolates at (̺+ 1)ν points. This result can be used also when the system

to be reduced is not a time-delay system. In other words, a system described by ordinary

differential equations can be reduced to a system described by time-delay differential

equations with an arbitrary number of delays ̺ achieving moment matching at (̺ + 1)ν

points. This property of interpolating an arbitrary large number of points comes to the

cost that the reduced order model becomes an infinite dimensional system. However, as

noted in [96–99, 118], a reduced model with time delays may have better properties than

one without delays. �

3.2.9 Example: a system of order n = 1006

To illustrate the idea of approximating delay-free systems with time-delay systems exploit-

ing the additional degrees of freedom to increase the number of interpolation points, we

consider an example inspired by [4] (see also [5]). The example is a single-input, single-

output system of order n = 1006, which has a Bode plot with three peaks, described by

the equations

ẋ = Ax+Bu, y = Cx,

where A = diag(A1, A2, A3, A4), with

A1 =



−1 10

−10 −1


 , A2 =



−1 20

−20 −1


 , A3 =



−1 40

−40 −1


 ,
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Figure 3.1: Bode plot of the system (solid line), of the delay-free reduced order
model (dash-dotted line) and of the time-delay reduced order model (dotted line).
The squares indicate the first set of interpolation points, whereas the circles indicate
the second set.

and

A4 = diag(−1,−2, . . . ,−1000), B⊤ = C = [ 10 . . . 10︸ ︷︷ ︸
6 times

1 . . . 1︸ ︷︷ ︸
1000 times

].

We start with obtaining a linear delay-free reduced order model of order ν = 8. The

matrices of the signal generator (3.10) have been selected as S = Sa = diag(S2, S3, S4, S5),

with S2 = 1.57S1, S3 = 2S1, S4 = 3.4S1, S5 = 4.5S1, where S1 = A1+I, and L randomly

generated, to interpolate the moments close to the three peaks. The delay-free model (3.18)

has been constructed with the technique presented in Chapter 2 assigning the eigenvalues

of F0 such that σ(F0) ⊂ σ(A). Fig. 3.1 shows the Bode plot of the system to be reduced

(solid line) and of this reduced order model (dash-dotted line). The interpolation points

are indicated by four squares. Note that the reduced order model approximates poorly

the system because few interpolation points have been used (for comparison in [5] the

order of the reduced order model is ν = 11, while in [11] ν = 13). We apply the technique

presented in Proposition 4. The matrix Sb has been selected as Sb = diag(S6, S7, S8, S1),
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with S7 = 7S1, S8 = 10S1 and

S6 =



0 1

0 0


 .

Selecting χ = χ1 = χ3 = 0.05, yields

F0 = Sa − (Sb − Sa)(e−Sbχ − e−Saχ)−1e−Saχ −G2L,

and

F1 = (Sb − Sa)(e−Sbχ − e−Saχ)−1 −G3L.

Note that, because of the selection χ1 = χ3, F0 does not depend upon G3. Thus, the

eigenvalues of both F0 and F1 have been assigned such that σ(F0) = σ(F1) ⊂ σ(A). In

Fig. 3.1, the Bode plot of this reduced order model is represented by the dotted line.

Three additional interpolation points are indicated with the circles. In addition the plot

shows clearly that the model interpolates the point at zero, which is confirmed by a direct

computation. Thus, the addition of one delay improved the quality of the approximation

of the system without increasing the size of the matrices. However, note that a delay-free

model with ν = 16 would be a better approximation because the introduction of the delay

is, at the same time, detrimental (in particular at high frequencies).

Remark 14. Although it is possible to interpolate at several different points si maintain-

ing the same dimension ν, the order of interpolation at si cannot exceed ν because it is

limited, by definition, by the dimension of the matrix Sj . �

3.2.10 Example: reduction of a platoon of vehicles

Consider a controlled platoon of vehicles as presented in [130,131]. The platooning problem

consists in controlling a group of vehicles tightly spaced following a leader, all moving in

longitudinal direction. The advantages of the automatic cruise control is twofold. First,

the use of automatic control to replace human drivers and their low-predictable reaction

time with respect to traffic problems (spacing of around 30m at 60 km/h) can reduce the

spacing distance between vehicles, consequently decreasing the traffic congestion. Second,

the automatic control reduces the human error factor and then increases safety. In recent
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years successful experiments involving autonomous vehicles have been carried out (e.g. the

Google driver-less cars), and the use of this technology may be possible in the immediate

future. However, when a large number of vehicles is considered, to study the dynamics

of the whole platoon to guarantee individual vehicle stability and avoid slinky-type effect

(i.e. the amplification of the spacing errors between subsequent vehicles as the vehicle

“index” increases) can be computationally demanding (see [132]).

In what follows we use a model well-studied (see [85, 130, 131]), for which the solution of

the platooning problem is known, to illustrate the results of the chapter. In particular,

we are interested in reducing the number of vehicles to only a leader and a following car.

Let xi(t) be the position of the i-th vehicle with respect to some well-defined reference,

vi(t) its speed, ai(t) its acceleration and denote with ei = xi+1− xi− ℓi the spacing error,

with ℓi > 0 the minimum separation distance. The resulting model is described by the

equations

ėi(t)=vi+1(t)− vi(t),

v̇i(t)=ai(t),

ȧi(t)=−
ai(t)

c
+
1

c
[ksei(t−τ)+kv(vi+1(t−τ)−vi(t−τ))],

(3.27)

where c > 0 is the engine time constant, τ > 0 is the total delay (including fueling and

transport, etc.) for each vehicle, and ks and kv are the transmission gains between the

vehicles. To this platoon we add a leader car with dynamics described by the equations

v̇n(t) = an(t),

ȧn(t) = −
an(t)

c
+
1

c
kv (u(t)− vn(t)) ,

(3.28)

where u(t) is a desired velocity imposed on the leader with no delay. We select as output

of the system the sum of all the spacing errors, namely the distance between the first and

the last vehicle. We rewrite the system in compact form as

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t),

y(t) = Cx(t),

(3.29)
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with

A0 =
1

c




A1
0 A2

0 0 . . . 0 0

0 A1
0 A2

0
. . .

...
...

...
. . .

. . .
. . . 0

...

...
. . . 0 A1

0 A2
0 0

0 . . . . . . 0 A1
0 A3

0

0 . . . . . . . . . 0 A4
0




, A1 =
1

c




A1
1 A2

1 0 . . . 0 0

0 A1
1 A2

1
. . .

...
...

...
. . .

. . .
. . . 0

...

...
. . . 0 A1

1 A2
1 0

0 . . . . . . 0 A1
1 A3

1

0 . . . . . . . . . . . . 0




,

B =
[

0 0 0 | 0 0 0 | . . . | 0 0 0 | 0
kv
c

]T
,

C = [ 1 0 0 | 1 0 0 | . . . | 1 0 0 | 0 0 ],

where

A1
0 =




0 −c 0

0 0 c

0 0 −1



, A2

0 =




0 c 0

0 0 0

0 0 0



, A3

0 =




c 0

0 0

0 0



, A4

0 =




0 c

−kv −1


 ,

A1
1 =




0 0 0

0 0 0

ks −kv 0



, A2

1 =




0 0 0

0 0 0

0 kv 0



, A3

1 =




0 0

0 0

kv 0



.

Simulations

We consider n = 8 identical vehicles with c = 0.25 s, ks = 0.875 s−2, kv = 2.5 s−1 and

τ = 0.005 s.

We propose two reduced order models that match the 0-moments at s1 = 0, s2,3 = ±π/5,

s4,5 = ±π/30, with u(t) = Lω(t), ω̇(t) = Sω(t), L = [1 0 1 0 1]′, and described by the

equations

ξ̇(t) = F0ξ(t) + F1ξ(t− τ) +Gu(t),

ψ(t) = CΠξ(t),

(3.30)

with F0 defined as in (3.17) and F1 free. Note that the number of equations decreases

from 3n− 1 to ν. We denote with ψI the output of the system (3.30) when F1 is defined
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Figure 3.2: Speed of the eight vehicles.

as

F1 =
1

c



A1

1 A3
1

0 0


 . (3.31)

Note that F1 has the same structure of A1. We denote with ψ0 the output of the sys-

tem (3.30) when F1 = 0. In the latter case all the eigenvalues of the matrix F0 have

been placed at −1
2
. The input given to the system consists of a speed increase from 0

to 20m/s = 72 km/h in 15 s, a constant speed of 20m/s for 30 s and a deceleration to

0m/s in 15 s. The speed of the vehicles are shown in Fig. 3.2. Fig. 3.3 shows the time

histories of the output signals y(t) (solid line), ψI(t) (dashed line), ψ0(t) (dotted line).

Fig. 3.4 shows the absolute errors between y(t) and ψI(t) (dashed line), and between y(t)

and ψ0(t) (dotted line). We see that the output is similar in the three cases and that the

reduced order model with delays is tighter to the system, i.e. the ratio between the area

under the error curve of the model with delays and the area under the error curve of the

model with no delays is 0.799.
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3.3 Model reduction for nonlinear time-delay systems

In this section we derive an extension of the model reduction method for nonlinear dif-

ferential time-delay systems. To keep the notation simple we consider, without loss of

generality, only delays (discrete or distributed) in the state and in the input, i.e. the

output is delay-free. The neutral case is briefly discussed at the end of the section.

3.3.1 Definition of π: nonlinear time-delay systems

Consider a nonlinear, single-input, single-output, continuous-time, time-delay system de-

scribed by the equations

ẋ = f(xτ0 , . . . , xτς , uτς+1 , . . . , uτµ), y = h(x),

x(θ) = φ(θ), −T ≤ θ ≤ 0,

(3.32)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, φ ∈ R
n
T , τ0 = 0, τj ∈ R>0 with j = 1, . . . , µ and f and

h smooth mappings. Consider a signal generator described by the equations

ω̇ = s(ω), u = l(ω), (3.33)

with ω(t) ∈ Rν , s and l smooth mappings, and the interconnected system

ω̇ = s(ω),

ẋ = f(xτ0 , . . . , xτς , l(ωτς+1), . . . , l(ωτµ)),

y = h(x).

(3.34)

Suppose that f(0, . . . , 0, 0, . . . , 0) = 0, s(0) = 0, l(0) = 0 and h(0) = 0.

Assumption 5. The signal generator (3.33) is observable and Poisson stable with ω(0) 6=
0.

Assumption 6. Assume the zero equilibrium of the system ẋ = f(xτ0 , . . . , xτς , 0, . . . , 0)

is locally exponentially stable.

Lemma 10. Consider system (3.32) and the signal generator (3.33). Suppose Assump-

tions 5 and 6 hold. Then there exists a unique mapping π(ω), locally defined in a neigh-
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borhood of ω = 0, which solves the partial differential equation

∂π

∂ω
s(ω) = f(π(ω̄τ0), . . . , π(ω̄τς ), l(ω̄τς+1), . . . , l(ω̄τµ)), (3.35)

where ω̄τi = Φs
τi
(ω), with i = 0, . . . , µ, is the flow of the vector field s at −τi, see [78].

Remark 15. Lemma 10 implies that the interconnected system (3.34) possesses an in-

variant manifold, described by the equation x = π(ω). Note that the partial differential

equation (3.35) is independent of time (as equation (3.9) and the correspondent equations

given in Chapter 2), e.g. if s(ω) = Sω then ω̄τi = e−Sτiω. �

Definition 8. Consider system (3.32) and the signal generator (3.33). Suppose Assump-

tion 5 holds. The function h ◦ π, with π solution of equation (3.35), is the moment of

system (3.32) at (s, l).

Theorem 9. Consider system (3.32) and the signal generator (3.33). Suppose Assump-

tions 5 and 6 hold. Then the moment of system (3.32) at (s, l) coincides with the steady-

state response of the output of the interconnected system (3.34).

Proof. Under the stated assumptions there exist a well-defined center manifold described

by x = π(ω). In addition, the assumptions on the signal generator guarantee that the

steady-state response of the output is locally well-defined and it is described by h(π(ω))

(see [133]).

3.3.2 Reduced order model for nonlinear time-delay systems

In this section a family of systems achieving moment matching is given.

Definition 9. Consider system (3.32) and the signal generator (3.33). Suppose Assump-

tion 5 and 6 hold. Then the system

ξ̇ = φ(ξχ0 , . . . , ξχ̺ , uχ̺+1 , . . . , uχρ), ψ = κ(ξ), (3.36)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R, χ0 = 0, χj ∈ R>0 with j = 1, . . . , ρ, and φ and

κ smooth mappings, is a model of system (3.32) at (s, l) if system (3.36) has the same

moment at (s, l) as system (3.32).

Lemma 11. Consider system (3.32) and the signal generator (3.33). Suppose Assump-
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tion 5 and 6 hold. Then system (3.36) is a model of system (3.32) at (s, l) if the equation

∂p

∂ω
s(ω) = φ(p(ω̄χ0), . . . , p(ω̄χ̺), l(ω̄χ̺+1), . . . , l(ω̄χρ)), (3.37)

where ω̄χi
= Φs

χi
(ω), with i = 0, . . . , ρ, has a unique solution p such that

h(π(ω)) = κ(p(ω)), (3.38)

where π is the unique solution of (3.35). System (3.36) is a reduced order model of sys-

tem (3.32) at (s, l) if ν < n, or if ̺ < ς, or if ρ < µ.

Proof. The claim follows from Definition 9 and the definition of moment.

3.3.3 The identity family of models

We now identify a simple family of models.

Assumption 7. There exist mappings κ and p such that κ(0) = 0, p(0) = 0, p is locally

continuously differentiable, equation (3.38) holds and p has a local inverse p−1.

Consistently with Lemma 11, a family of models that achieves moment matching

at (s, l) is described by

ξ̇ = Φ(ξ, ξ̄χ1 , . . . , ξ̄χ̺) +
∂p(ω)

∂ω
γ(ξχ1 , . . . , ξχ̺) +

∂p(ω)

∂ω

ρ∑

j=̺+1

δj(ξ)uχj
,

ψ = κ(ξ),

(3.39)

with

Φ(ξ, ξ̄χ1 , . . . , ξ̄χ̺) =


∂p(ω)

∂ω
(s(ω)− γ(p(ω̄χ1), . . . , p(ω̄χ̺))−

ρ∑

j=̺+1

δj(p(ω))l(ω̄χj
))



ω=p−1(ξ)

,

where ξ̄χj
=

[
ω̄χj

]
ω=p−1(ξ)

, κ and p are such that Assumption 7 holds, p is the unique

solution of (3.37) and δj and γ are free mappings.

Assumption 7 holds with the selection p(ω) = ω and κ(ω) = h(π(ω)). This yields a family
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of models described by the equations

ξ̇ = s(ξ)−
ρ∑

j=̺+1

δj(ξ)l(ξ̄χj
)− γ(ξ̄χ1 , . . . , ξ̄χ̺) + γ(ξχ1 , . . . , ξχ̺) +

ρ∑

j=̺+1

δj(ξ)uχj
,

ψ = h(π(ξ)),

(3.40)

where δj and γ are arbitrary mappings such that equation (3.37), namely

∂p

∂ω
s(ω) = s(p(ω))−

ρ∑

j=̺+1

δj(p(ω))l(p(ω̄χl
))− γ(p(ω̄χ1), . . . , p(ω̄χ̺))

+ γ(p(ωχ1), . . . , p(ωχ̺)) +

ρ∑

j=̺+1

δj(p(ω))l(ωχj
),

has the unique solution p(ω) = ω.

The nonlinear model (3.40) is the direct counterpart of the linear model (3.18). The model

has several free design parameters, namely δj , γ, χj , ̺ and ρ. We note that selecting

γ ≡ 0, ̺ = 0, ρ = 1 and χ1 = 0 (in this case we define δ = δ1), yields a reduced order

model with no delays. This reduced order model coincides with the one in Chapter 2

(equation (2.28)) and all results therein are directly applicable: the mapping δ can be

selected to achieve matching with asymptotic stability, matching with prescribed relative

degree, etc. However, as stressed previously in the chapter, the choice of eliminating the

delays is likely to destroy some important dynamics of the model.

Remark 16. As in the case of linear time-delay systems the results of this section can be

extended to more general classes of time-delay systems provided that, for such systems,

the center manifold theory applies. In particular, one can consider the class of neutral

differential time-delay systems described by equations of the form

d(ẋτ0 , . . . , ẋτς1 ) = f(xτς1+1 , . . . , xτς2 , uτς2+1 , . . . , uτµ),

y = h(x),

(3.41)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, τ0 = 0, τj ∈ R>0 with j = 1, . . . , µ and d, f and

h smooth mappings. The center manifold theory does not hold for this class of systems

for a general mapping d. Specific cases have to be considered and we refer the reader
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to [81], [125], [122] and references therein. Note, however, that for the simple case

ẋ+Dẋτ1 = f(xτ2 , . . . , xτς1 , uτς1+1 , . . . , uτµ),

y = h(x),

(3.42)

with D ∈ Rn×n, the center manifold theory holds as for standard time-delay systems if

the matrix D is such that σ(D) ⊂ D<1. �

3.3.4 Matching at h ◦ πa and h ◦ πb

In this section we present a nonlinear version of the result of Section 3.2.8, namely we show

how to exploit the free parameters to achieve moment matching at two moments h ◦ πa
and h ◦πb maintaining the same number of equations describing the reduced order model.

Consider system (3.32) and, to simplify the exposition, the signal generators described by

the linear equation

ω̇ = Saω, u = Labω.

As highlighted in Chapter 2, considering the model reduction problem for nonlinear sys-

tems when the signal generator is a linear system is of particular interest since the reduced

order models have a very simple description. This observation holds true also in the case

of time-delay systems, namely a nonlinear time-delay system can be approximated by a

linear time-delay equation with a nonlinear output map. Hence, a reduced order model of

system (3.32) at (Sa, Lab) is given by the family

ξ̇ = F0ξ + F1ξχ +G2u+G3uχ,

ψ = κ0(ξ) + κ1(ξχ),
(3.43)

with κ0 and κ1 smooth mappings, if there exists a unique matrix Pa such that

F0Pa + F1Pae
−Saχ − PaSa = −G2Lab −G3Labe

−Saχ,

h(πa(ω)) = κ0(Paω) + κ1(Pae
−Saχω),

Consider now another signal generator described by the linear equation

ω̇ = Sbω, u = Labω,
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and the problem of selecting F0, F1, G2, G3, κ0 and κ1 such that the reduced order

model (3.43) matches the moments of system (3.32) at (Sa, Lab) and (Sb, Lab).

Proposition 5. Let Sa ∈ Rν×ν and Sb ∈ Rν×ν be two non-derogatory matrices such

that σ(Sa) ∩ σ(Sb) = ∅ and let Lab be such that the pairs (Lab, Sa) and (Lab, Sb) are

observable. Let πa(ω) = π(ω) be the unique solution of (3.35), with L = Lab and S = Sa,

and let πb(ω) = π(ω) be the unique solution of (3.35), with L = Lab and S = Sb. Then

system (3.43) with the selection

F1=(Sb − Sa −G3(e
−Sbχ − e−Saχ3))(e−Sbχ − e−Saχ)−1,

F0=Sa −G2Lab −G3Labe
−Saχ − F1e

−Saχ,

κ0(ω)=h(πa(ω))− κ1(e−Saχω),

and κ1 a mapping such that

κ1
(
e−Sbχω

)
− κ1

(
e−Saχω

)
= h(πb(ω))− h(πa(ω)),

is a reduced order model of the nonlinear time-delay system (3.32) achieving moment

matching at (Sa, Lab) and (Sb, Lab), for any G2 and G3 such that si /∈ σ(F0+F1e
−sχ), for

all si ∈ σ(Sa) and si ∈ σ(Sb).

Proof. As showed in the proof of Proposition 4, F0 and F1 solve the two Sylvester equations

F0Pa + F1Pae
−Saχ − PaSa = −G2Lab −G3Labe

−Saχ,

F0Pb + F1Pbe
−Sbχ − PbSb = −G2Lab −G3Labe

−Sbχ,

with Pa = Pb = I. It remains to determine the mappings κ0 and κ1 that solve the matching

conditions

h(πa(ω)) = κ0(ω) + κ1
(
e−Saχω

)
,

h(πb(ω)) = κ0(ω) + κ1
(
e−Sbχω

)
.

Solving the first equation with respect to κ0 and substituting the resulting expression in

the second yields

κ1
(
e−Sbχω

)
− κ1

(
e−Saχω

)
= h(πb(ω))− h(πa(ω)),

from which the claim follows.
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The family of linear time-delay systems with nonlinear output mapping character-

ized in Proposition 5 matches the moments h◦πa and h◦πb of the nonlinear system (3.32).

Note that the matrices G2 and G3 remain free parameters and they can be used to achieve

the properties discussed in Section 2.5.4.

Remark 17. Proposition 5 can be generalized to ˆ̺> 1 delays, obtaining a reduced order

model that match (ˆ̺ + 1)ν moments. The result can also be generalized to nonlinear

generators si(ω) assuming that the flow Φsi
χi
(ω) is known for all the delays χi and that

γ(ξχ1 , . . . , ξχ ˆ̺
) in (3.40) is replaced by γ̂1(ξχ1) + · · ·+ γ̂ ˆ̺(ξχ ˆ̺

). �

Remark 18. Similarly to Proposition 4, the number of delays in (3.32) does not play a

role in Proposition 5. Thus, this result can be applied to reduce a system with an arbitrary

number of delays always obtaining a reduced order model with, for example, two delays.

�

3.3.5 Open-loop reduced order model

We consider now the problem of obtaining a reduced order model of an open-loop system

from the closed-loop system. This problem may arise when the system to be reduced is

not stable and we have to apply a feedback to use the reduction techniques proposed,

yet we are interested in the reduced order model of the uncontrolled system. For ease of

notation we assume that there are no delays on the input u.

Consider a closed-loop, nonlinear, single-input, single-output, continuous-time, time-delay

system described by the equations

ẋ = f(xτ0 , . . . , xτµ1 , u), u = g(xǫ0 , . . . , xǫµ2−1) + vτµ2 , y = h(x), (3.44)

with x(t) ∈ Rn, u(t) ∈ R, v(t) ∈ R, y(t) ∈ R, τ0 = 0, τj ∈ R>0 with j = 1, . . . , µ1,

ǫ0 = 0, ǫj ∈ R>0 with j = 1, . . . , µ2 and f , g and h smooth mappings. Consider the signal

generator (3.33) and the interconnected system

ω̇ = s(ω), ẋ = f(xτ0 , . . . , xτµ1 , g(xǫ0 , . . . , xǫµ2−1) + l(ωτµ2
)), y = h(x). (3.45)

Suppose that f(0, . . . , 0, 0) = 0, g(0, . . . , 0, 0) = 0, s(0) = 0, l(0) = 0 and h(0) = 0.
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Assumption 8. Assume the zero equilibrium of the system ẋ =

f(xτ0 , . . . , xτµ1 , g(xǫ0 , . . . , xǫµ2−1)) is locally exponentially stable.

Lemma 12. Consider system (3.44) and the signal generator (3.33). Suppose Assump-

tions 5 and 8 hold. Then there exists a unique mapping π(ω), locally defined in a neigh-

borhood of ω = 0, which solves the partial differential equation

∂π

∂ω
s(ω) = f(π(ω̄τ0), . . . , π(ω̄τµ), g(π(ω̄ǫ0), . . . , π(ω̄ǫµ2−1)) + l(ω̄τµ2

)), (3.46)

where ω̄τi = Φs
τi
(ω), with i = 0, . . . , µ1, and ω̄ǫi = Φs

ǫi
(ω), with i = 0, . . . , µ2.

Definition 10. Consider system (3.44) and the signal generator (3.33). Suppose Assump-

tion 5 and 8 hold. Then the system

ξ̇ = φ(ξχ0 , . . . , ξχρ , u), ψ = κ(ξ), (3.47)

with ξ(t) ∈ Rν , u(t) ∈ R, χ0 = 0, χj ∈ R>0, with j = 1, . . . , ρ, and φ and κ smooth

mappings, is an open-loop model of system (3.44) at (s, l) if the system

ξ̇ = φ(ξχ0 , . . . , ξχρ , u), u = g(π(p−1(ξǫ0)), . . . , π(p
−1(ξǫµ2−1))) + vχµ2

, ψ = κ(ξ),

(3.48)

with v(t) ∈ R, π the unique solution of (3.46) and p invertible and the unique solution of

the equation
∂p

∂ω
s(ω) = φ(p(ω̄χ0), . . . , p(ω̄χρ), l(ω̄χµ2

)), (3.49)

where ω̄χi
= Φs

χi
(ω), with i = 0, . . . , ρ, such that

h(π(ω)) = κ(p(ω)), (3.50)

is a model of the (closed-loop) system (3.45) at (s, l).

Obtaining a reduced order model of an open-loop system given the closed-loop

system solves the problem of the reduction of nonlinear systems when their zero equilibrium

is not locally exponentially stable, extending the model reduction technique by moment

matching to a larger class of systems. We illustrate this point with the next example.
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3.3.6 Example: model of an oilwell drillstring

Consider a neutral type model of the torsional dynamics of an oilwell drillstring as pre-

sented in [134], [135], and [136]. In recent years, there has been increasing interest on the

modeling and analysis of oilwell drilling vibrations because of its economic consequences

(see [137] for an overview). In drilling operations the nonlinear interaction between the bit

of the drillstring and the bottom of the hole originates the stick-slip phenomenon. This

consists in the undesired event that a constant rotational velocity applied on the top of

the string does not translate to a steady speed at the bottom of the hole. In particular

the bit undergoes intervals where it is completely blocked and intervals where the accu-

mulated energy is released and the rotational speed becomes larger than the prescribed

value. Among several models of the dynamics of the system which have been presented,

we consider the model presented in [134] (see [138] for an alternative). This model is

described by the neutral differential time-delay system

ẋ = Ῡẋτ1 −Ψx−ΨῩxτ1 −
1

IB
T (x) +

1

IB
ῩT (xτ1) + 2

Ψca
Λ

Ωτ2 ,

y = x,

(3.51)

with

Ῡ =
ca −

√
IGsJ

ca +
√
IGsJ

, Ψ =

√
IGJ

IB
, Λ = ca −

√
IGsJ,

where x(t) is the angular velocity at the bottom of the string, y(t) is the output of the

system, Ω(t) is the input variable, I is the inertia, J is the geometrical moment of inertia,

Gs is the shear modulus, IB is the lumped inertia representing the block at the bottom, ca is

a constant related to the local torsion of the drillstring, τ2 = Γ, τ1 = 2Γ, Γ = Ls

√
I

GsJ
and

Ls is the length of the string. The nonlinear function T describes the bit-rock interaction.

Several models of this function have been proposed (for an overview see [137]). One model

is given by the equation [134,139],

T (x) = cbx+WobRb

[
µcb + (µsb − µcb)e

−
γb
vf
|x|
]
sign(x), (3.52)



82

Table 3.1: Parameters of the model of the oilwell drillstring

Gs = 79.3 · 109 N/m2, I = 0.095 kg ·m, Ls = 1172 m,

J = 1.19 · 10−5 m4, Rb = 0.155575, vf = 1,

Wob = 97347 N , IB = 89 kg ·m2, µcb = 20 rad/s,

ca = 2000 N ·m · s, µsb = 0.8, γb = 0.9,

cb = 0.03 N ·m · s/rad, tg = 10. ζ1 = 6.96 · 103
ζ2 = 0.09,

where µsb, µcb are, respectively, the static and Coulomb friction coefficients, Wob is the

weight on the bit, Rb is the bit radius, γb is a positive constant defining the decaying

velocity of the exponential, vf is a constant velocity introduced to have appropriate units

and cb is the viscous damping coefficient. This function has the disadvantages, for the

sake of illustrating the results of this chapter, of being discontinuous and hard to simulate

with sufficient precision.

The function

T (x) =
ζ1x

x2 + ζ2
, (3.53)

where ζ1, ζ2 are positive parameters, has been proposed in [140]. This function has the

advantage to be continuous, however, it does not approximate (3.52) sufficiently well far

from x = 0. We propose, as a continuous approximation of (3.52), the function

T (x) = cbx+WobRb

[
µcb + (µsb − µcb)e

−
γb
vf
|x|
]
tanh(tgx), (3.54)

where tg is the gain of the hyperbolic tangent. Fig. 3.5 shows the graphs of the functions

(3.52), (3.53), (3.54) and the error between (3.52) and (3.53) and between (3.52) and

(3.54), as a function of the angular velocity x.

Simulations

The parameters have been selected as in [135] and are listed in Table 3.1. System (3.51),

with (3.54), has been simulated using the Matlab solver ddensd with relative and absolute

tolerances of 10−5 (the smallest presently supported) and 10−6, respectively. Fig. 3.6

shows the state of system (3.51), with (3.54) and Ω(t) = r(t) = const, for different values
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Figure 3.5: Top: graphs of the function (3.52) (solid line), (3.53) (dotted line) and
(3.54) (dashed line). Bottom: graphs of the error between (3.52) and (3.53) (dotted
line) and between (3.52) and (3.54) (dashed line).

of the desired angular velocity r. The typical behavior of the interaction between bit and

rock can be seen, i.e. for high values of r the steady-state is constant whereas for low

values of r the stick-slip phenomenon is present.

System (3.51), with (3.54), is a nonlinear neutral differential time-delay system for which

the origin is not exponentially asymptotically stable and Lemma 11 cannot be directly

applied. However, several closed-loop feedbacks have been proposed to asymptotically

stabilize the origin of the system. We apply the feedback control law proposed in [135],

namely

Ω(t) = k1ẋ(t− τ2) + k2x(t− τ2) + r(t), (3.55)

where k1 = −0.05 and k2 = 0.36. For the closed-loop system (3.51), with (3.54) and (3.55),

we compute numerically the solution of equation (3.35). The function π is approximated

by the piecewise continuous function

π(ω) =





0, ω ≤ 5.7,

1.5633ω − 5.9250, ω > 5.7.
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Figure 3.6: Angular speed of the system (3.51), with (3.54), for different values of
r: 20 rad/s (solid line), 15 rad/s (dashed line) and 10 rad/s (dotted line). Note the
stick-slip phenomenon for r(t) = 10 rad/s.

A simple reduced order model achieving moment matching at ω̇ = s(ω) = 0 and belonging

to the family of models (3.40) is described by the equations

ξ̇ = −δ(ξ) [ξ − rτ2 ] , ψ = π(ξ). (3.56)

Fig. 3.7 shows a comparison between the output of system (3.51), with (3.54) and (3.55),

and the output of the reduced order model (3.56), with δ = 2, for various desired angular

velocities.

We are now interested, using system (3.56), in obtaining a model of the open-loop sys-

tem (3.51) with (3.54). An open-loop model of system (3.51), with (3.54), achieving

moment matching at ω̇ = 0 is given by

ξ̇ = −δ(ξ) [ξ − µτ2 ] , ψ = π(ξ), (3.57)

with µ = −k1π(ξ̇τ2)− k2π(ξτ2) + r.

Fig. 3.8 shows the time histories of the output of the open-loop system (3.51), with (3.54),
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Figure 3.7: Time histories of the output of system (3.51), with (3.54) and (3.55),
(dotted line) and the output ψ of the reduced order model (3.56), with δ = 2, (dashed
line) for various desired velocities.
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Figure 3.8: Time histories of the output of system (3.51), with (3.54), (solid line) and
of system (3.57) (dashed line) with δ(z) = qz2 + ε for r = 25, q = 0.0333, ε = 0.3 (top)
and r = 15, q = 0.125, ε = 0.01 (bottom).
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and of the model (3.57), with δ(z) = qz2 + ε, for r = 25, q = 0.0333, ε = 0.3 (top) and

r = 15, q = 0.125, ε = 0.01 (bottom). We can see that the model (3.57) and the open-

loop system (3.51), with (3.54), have the same steady-state value and that, using the free

mapping δ, the transient behavior can be partially recovered.

3.4 Moment at infinity

We conclude the chapter with the characterization of the moments at infinity for linear

and nonlinear time-delay systems. The description of moment given in Definitions 6 and

8 does not characterize the moments at si = +∞. Since, as already pointed out, the k

moments of linear delay-free systems at si are defined as the first k coefficients of the

Laurent series expansion of the transfer function W (s) at si ∈ C, in a similar way the

k moments at infinity can be computed by evaluating the expansion at infinity of the

transfer function. In addition, by using the final value theorem (see e.g. [5] and [141]), the

moments from 1 to k + 1 correspond to the j = 0, . . . , k coefficients of the expansion at

t = 0+ of the impulse response (with η0(∞) = 0).

Note that for differential time-delay systems, the transfer functionW (s) is transcendental.

This implies that the computation of the limit at s = +∞ has to be done with care. As

noted in [141] there is widespread carelessness in the definition of the Laplace transform

and its properties. In our case, it is fundamental to determine what is the meaning of the

limit at infinity because the result (if well-defined) would depend upon which direction at

infinity is considered. As explained in [141], in this context the limit has to be taken along

the positive real axis. Then we have the following results4.

Theorem 10. Let Υ be the set of values of j = ς + 1, . . . , µ such that τj = 0.

Consider system (3.1).

- If Υ 6= ∅ then the k moments at infinity are ηk(∞) =
∑

j∈Υ

CAk−1
0 Bj , with η0(∞) = 0.

- If Υ = ∅ then all the moments at infinity are identically zero.
Consider system (3.32).

- If Υ 6= ∅ then the k moments at infinity are5 ηk(∞) = y
(k)
I (0+), with η0(∞) = 0.

4To be coherent with equation (3.32) we ignore the delays in the equation of the output y of the linear
system (3.1).

5We remind that y
(k)
I denotes the k-th derivative of the impulse response of the system.
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- If Υ = ∅ then all the moments at infinity are identically zero.

Proof. By the equivalence between the moments at infinity and the impulse response at

t = 0+, it follows that if τj = 0 for some j = ς + 1, . . . , µ the behavior of the systems

at 0+ is the same as the corresponding delay-free system (because no delay on the state

has “kicked in” at t = 0+). If τj 6= 0 for all j = ς + 1, . . . , µ then the impulse response is

delayed and it follows that the response at 0+ is identically zero. Once established that

the behavior is as for delay-free systems, the proof is as in [3].

Remark 19. From Theorem 10 it appears that a finite dimensional system is sufficient to

characterize the moments at infinity and we can use it to match the moments at infinity

as described in Chapter 2. However, note that some properties of the transfer function are

lost with a finite dimensional system. In fact if, for instance, τj 6= 0 for some j = 1, . . . , ς

and τj = 0 for some j = ς + 1, . . . , µ the expansion at infinity along the negative real axis

is identically zero, while for finite dimensional systems the expansion is the same as along

the positive real axis. Or, if τ1 = τς+1 > 0 and τj = 0 for i = 2, . . . , ς, ς+2, . . . , µ, then the

first coefficient of the expansion at infinity along the negative real axis is −CB1 for time-

delay systems, while zero (i.e. the same as along the positive axis) for finite dimensional

systems. This suggests that a finite dimensional model that matches the moments of the

system at infinity may not be a good approximation of the dynamics of the system far

from t = 0 and that to preserve the properties of the transcendental transfer function it

is necessary to choose a model with the same delay structure as the original system. �

3.5 Conclusion

The model reduction theory based on moment matching has been extended to linear

and nonlinear differential time-delay systems. The model reduction problem has been

solved first for linear time-delay systems. The description of moment has been given in

terms of the unique solution of a Sylvester-like equation. This has been subsequently

extended to neutral differential time-delay systems with distributed and discrete delays.

A family of systems achieving moment matching has been proposed and the problem of

interpolating a larger number of points maintaining the same number of equations has

been studied and solved. Then the definition of moment developed for linear time-delay

systems has been extended to nonlinear systems by means of the center manifold theory.
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The moments at infinity have been characterized for both linear and nonlinear time-delay

systems and a parameterized family of models achieving moment matching has been given.

The solution to the problem of obtaining a reduced order model of an unstable system

has been given and connections with the delay-free framework, classical results in the

literature and further developments have been drawn throughout the chapter. Finally, the

theory has been illustrated by means of several examples.
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Chapter 4

Data-driven model reduction for

linear and nonlinear, possibly

time-delay, systems

4.1 Introduction

The model reduction techniques that we have presented, as well as the majority of any

model reduction method presented in the literature, assume the knowledge of a state-space

model of the system to be reduced. However, in practice this model is not always available.

In this chapter, inspired by the learning algorithm given in [142–144] to solve a model-free

adaptive dynamic programming problem (see also the references therein, e.g. [145, 146]),

we propose data-driven on-line algorithms for the model reduction of linear and non-

linear, possibly time-delay, systems. Collecting at a given sequence of time instants tk

time-snapshots (which resemble the ones used to compute a proper orthogonal decompo-

sition (POD), see e.g. [55, 147–149]) of the input and output of the system, an algorithm

is devised to define a family of reduced order models (in the framework introduced in

Chapter 2) at each instant of the iteration tk. The reduced order model asymptotically

matches the moments of the unknown system to be reduced. This algorithm has several

advantages with respect to an identification plus reduction technique: there is no need to

identify the system, which is expensive both in terms of computational power and storage

memory; since the reduced order model matches the moments of the unknown system, it
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is not just the result of a low-order identification but it actually retains some properties

of the larger system; since the proposed algorithm determines directly the moment of a

nonlinear system from the input and output data, it does not involve the computation of

the solution of a partial differential equation, which is usually difficult.

The rest of the chapter is organized as follows. In Section 4.2.1 we give a preliminary

analysis to compute on-line estimates of the moments of a linear system. In Section 4.2.2

(4.3.1) approximations which converge asymptotically to the moments of the linear (non-

linear) system are given. Therein, a discussion on the computational complexity associated

to the evaluation of these approximations is presented, a recursive least-square formula is

given and a moment estimation algorithm is provided. In Section 4.3.2 we present a simple

experiment in which we show how to estimate the moment of a nonlinear system using the

measured average heartbeat under “stress”. In Sections 4.2.3 (4.3.3) and 4.2.4 (4.3.4) we

give a family of reduced order models for linear (nonlinear) systems and linear (nonlinear)

time-delay systems, respectively. In Section 4.2.5 we discuss how several properties, e.g.

matching with prescribed eigenvalues or zeros, can be enforced in the present scenario.

In Section 4.2.6 a linear reduced order model computed with the method proposed in the

chapter is estimated for a system of order n = 1010 [4, 5]. In Section 4.3.5 a nonlinear

reduced order model constructed using an approximation of the moment of the DC-to-DC

Ćuk converter provides a further example. Finally Section 4.4 contains some concluding

remarks.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference papers [11], [12] and in the

journal paper [13].

4.2 Linear (time-delay) systems

For the sake of convenience we report here the equations of system (2.1), namely

ẋ = Ax+Bu, y = Cx, (4.1)
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and the Sylvester equation (2.8), namely

AΠ+BL = ΠS, (4.2)

which will be used through the chapter. The quantities appearing in the equations retain

their original meaning.

4.2.1 A preliminary analysis

In this section we provide a preliminary analysis assuming to know the matrices A, B, C

and the state x(0) in equation (4.1). This analysis is used in the following section for the

development of an estimation algorithm which, this time, does not use the matrices A, B,

C and the state x(0). To this end we make the following assumptions.

Assumption 9. The input u of system (4.1) is described by the equations

ω̇ = Sω, u = Lω, (4.3)

with S such that σ(S) ⊂ C0. In addition, assume that the triple (L, S, ω(0)) is minimal.

Assumption 10. System (4.1) is asymptotically stable, i.e. σ(A) ⊂ C<0, and minimal.

Assumption 9 has a series of implications. The hypothesis on the eigenvalues of

S is reasonable since the contribution of the negative eigenvalues of S to the response of

the system decays to zero. The minimality of the triple (L, S, ω(0)), which in turn implies

the observability of the pair (L, S), guarantees that all the modes of S are present in the

signals ω and u and it can be seen as a condition of persistency of excitation of order

ν, see [150]. The choice of the particular structure (4.3) for the input u is limiting in

applications in which the input cannot be arbitrarily chosen. We suggest in Section 4.2.2

a possible way to deal with alternative input signals. Note that the two assumptions imply

that σ(A) ∩ σ(S) = ∅, which in turn implies that equation (4.2) has a unique solution or,

equivalently, that the steady-state in Theorem 1 is well-defined. Hence, recalling from

Section 2, Assumptions 9 and 10 yield for all t ∈ R

x(t) = Πω(t) + eAt(x(0)−Πω(0)). (4.4)
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Theorem 11. Let the time-snapshots Qk ∈ Rnp×nν and χk ∈ Rnp be defined as

Qk =




ω(tk−p+1)
⊤ ⊗ I − ω(0)⊤ ⊗ eAtk−p+1

...

ω(tk−1)
⊤ ⊗ I − ω(0)⊤ ⊗ eAtk−1

ω(tk)
⊤ ⊗ I − ω(0)⊤ ⊗ eAtk



,

and

χk =




x(tk−p+1)− eAtk−p+1x(0)
...

x(tk−1)− eAtk−1x(0)

x(tk)− eAtkx(0)



,

respectively, where 0 ≤ t0 < t1 < · · · < tk−p < · · · < tk < · · · < tq, with p > 0 and q ≥ p,

and define T p
k = {tk−p+1, . . . , tk−1, tk}. Assume the matrix Qk has full rank, then

vec(Π) = (Q⊤k Qk)
−1Q⊤k χk. (4.5)

Proof. Equation (4.4) can be rewritten as

Πω(t)− eAtΠω(0) = x(t)− eAtx(0). (4.6)

Using the vectorization operator and the Kronecker product on equation (4.6) yields

vec(Πω(t))− vec(eAtΠω(0)) = vec(x(t)− eAtx(0)),

and

(ω(t)⊤ ⊗ I − ω(0)⊤ ⊗ eAt) vec(Π) = vec(x(t)− eAtx(0)). (4.7)

Computing equation (4.7) at all elements of T p
k yields

Qk vec(Π) = χk. (4.8)

If the matrix Qk has full rank, we can compute Π from the last equation yielding equa-

tion (4.5).

Note that the selection of the set T p
k can affect the quality of the data and the
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rank of the matrix Qk. Thus, to assure that T
p
k is non-pathological [151] we introduce the

following technical assumption.

Assumption 11. The elements of T ν
k are such that rank

([
ω(tk−ν+1) . . . ω(tk)

])
=

ν for all k.

Remark 20. If Assumption 9 holds, i.e. (S, ω(0)) is controllable, it is always possible

to choose the elements of T ν
k such that Assumption 11 holds. Vice versa Assumption 11

implies the controllability of (S, ω(0)). See [26] for more details. �

Lemma 13. Suppose Assumptions 9, 10 and 11 hold. If p = ν, Qk is full rank.

Proof. Consider the i-block element of the matrix Qk, namely

ω(ti)
⊤ ⊗ I − ω(0)⊤ ⊗ eAti .

Note that the properties of the Kronecker product yield

ω(ti)
⊤ ⊗ I − ω(0)⊤ ⊗ eAti = ω(0)⊤eS

⊤ti ⊗ II − ω(0)⊤I ⊗ IeAti =

= (ω(0)⊤ ⊗ I)(eS⊤ti ⊗ I)− (ω(0)⊤ ⊗ I)(I ⊗ eAti) = (ω(0)⊤ ⊗ I)(eS⊤ti ⊗ I − I ⊗ eAti).

Since σ(A) ⊂ C<0 and σ(S) ⊂ C0, the controllability of (S, ω(0)) implies that the i-block

element of the matrix Qk is a n× nν matrix of rank n. Assumption 11 implies that ν of

these blocks are linearly independent for any ti > 0. As a result Qk is a square full rank

matrix.

Remark 21. Since real data are affected by noise the assumptions of Lemma 13 may not

hold. In this case p can be taken larger than nν and, as well-known from linear algebra

and remarked in [142] and [150], the solution of equation (4.5) is the least squares solution

of (4.8). �

The discussion carried out so far has the drawback that requires information on

the state of the system. In practice, this is usually not the case and only the output y is

available.
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Theorem 12. Let the time-snapshots Rk ∈ Rw×nν and Υk ∈ Rw be defined as

Rk =




(ω(0)⊤ ⊗ C)(eS⊤tk−w+1 ⊗ I − I ⊗ eAtk−w+1)
...

(ω(0)⊤ ⊗ C)(eS⊤tk−1 ⊗ I − I ⊗ eAtk−1)

(ω(0)⊤ ⊗ C)(eS⊤tk ⊗ I − I ⊗ eAtk)



,

and

Υk =




y(tk−w+1)− CeAtk−w+1x(0)
...

y(tk−1)− CeAtk−1x(0)

y(tk)− CeAtkx(0)



,

respectively. Assume the matrix Rk has full rank, then

vec(Π) = (R⊤k Rk)
−1R⊤k Υk. (4.9)

Proof. The result can be proved following the same steps used to obtain equation (4.5).

Lemma 14. Suppose Assumptions 9, 10 and 11 hold. If w = nν, Rk is full rank.

Proof. The proof is similar to the one of Lemma 13, although this time also the observ-

ability of (C,A) is used.

4.2.2 On-line moment estimation from data

Equation (4.5) contains terms that depend upon the matrix A and the initial states x(0)

and ω(0). However, we note that given the stability hypothesis of the system, these terms

are exponentially decaying functions.

Definition 11. Let the time-snapshots Q̃k ∈ Rnp×nν and χ̃k ∈ Rnp be

Q̃k=
[
ω(tk−p+1)⊗ I . . . ω(tk−1)⊗ I ω(tk)⊗ I

]⊤

and

χ̃k=
[
x(tk−p+1)

⊤ . . . x(tk−1)
⊤ x(tk)

⊤
]⊤
.

Assume the matrix Q̃k has full rank, then following the same steps used to obtain equa-
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tion (4.5), we define

vec(Π̃k) = (Q̃⊤k Q̃k)
−1Q̃⊤k χ̃k. (4.10)

Note that if Assumption 11 holds and p = ν, Q̃k is full rank.

Lemma 15. Suppose Assumptions 9, 10 and 11 hold. There exists a matrix Π̄ such that

lim
tk→∞

Π̃k = Π̄.

Proof. By Assumption 9 and 10 there exists a matrix Π̄ such that the steady-state response

xss(t) of the interconnection of system (4.1) and the generator (4.3) is described by the

equation xss(t) = Π̄ω(t). Then substituting χ̃ss
k = Q̃k vec(Π̄) in equation (4.10), yields

lim
tk→∞

vec(Π̃k) = (Q̃⊤k Q̃k)
−1Q̃⊤k χ̃

ss
k = vec(Π̄),

which is well-defined by Assumption 11 if p = ν.

Theorem 13. Let Π be the solution of equation (4.2). Suppose Assumptions 9, 10 and

11 hold. There exists a sequence {tk} such that

lim
k→∞

Π̃k = Π.

Proof. The matrix Π̃k defined in equation (4.10) is such that

x(tk) = Π̃kω(tk), (4.11)

whereas Π is such that

ẋ(t)|t=tk = ΠSω(tk) +AeAtk(x(0)−Πω(0)) (4.12)

hold. Consider the first equation of system (4.1) computed at tk, namely

ẋ(t)|t=tk = Ax(tk) +BLω(tk). (4.13)

Substituting equations (4.11) and (4.12) in equation (4.13) yields

ΠSω(tk) +AeAtk(x(0)−Πω(0)) = AΠ̃kω(tk) +BLω(tk)
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and (
AΠ̃k +BL−ΠS

)
ω(tk) = AeAtk(x(0)−Πω(0)),

from which, using equation (4.2) and Assumption 10, the equation

(
Π̃k −Π

)
ω(tk) = eAtk(x(0)−Πω(0))

follows. By Assumption 9 there exists a sequence {tk}, with lim
k→∞

tk = ∞, such that for

any ti ∈ {tk}, ω(ti) 6= 0 and Assumption 11 holds. By Assumption 10

lim
k→∞

(
Π̃k −Π

)
ω(tk) = lim

k→∞
eAtk(x(0)−Πω(0)) = 0,

and by Assumptions 11 and Lemma 15, lim
k→∞

(
Π̃k −Π

)
= lim

k→∞

(
Π̄−Π

)
= 0. It follows

that Π̃k converges asymptotically to Π.

Remark 22. Equation (4.11) is reminiscent of the POD of the collection {x(ti)}. However,
the two concepts are quite different. In fact, the POD of {x(ti)} is

[
x(t0) . . . x(tq)

]
=

[
u(t0) . . . u(tq)

]

︸ ︷︷ ︸
U

∆

with ∆ ∈ Rq×q and U∗U = I, where the superscript ∗ indicates the complex conjugate
transpose. The dimensions of ∆ are related to the number of samples, whereas the dimen-

sions of Π are related to the ones of the system to be reduced and of the signal generator.

In fact, the POD is a decomposition of the entire cloud of data {x(ti)} along the vectors
u(ti), called principal directions of {x(ti)} [5]. Instead, in the technique proposed in this
chapter the oldest data are discarded as soon as new data satisfying Assumption 11 is

collected. As a consequence, while ∆ is built to describe the entire dynamics of {x(ti)}, Π
is built to describe only the steady-state response of the system to be reduced. The result

is that the POD is usually used with the Petrov-Galerkin projection for a SVD-based

approximation [148], [55], whereas this technique is a moment matching method. �

A similar discussion can be carried out for equation (4.9) that contains also terms

which depend upon the matrix C. In this case note that equation (4.4) can be written as

y(t) = CΠω(t) + ε(t),
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with ε(t) = CeAt(x(0)−Πω(0)) an exponentially decaying signal.

Theorem 14. Define the time-snapshots R̃k ∈ Rw×ν and Υ̃k ∈ Rw as

R̃k =
[
ω(tk−w+1) . . . ω(tk−1) ω(tk)

]⊤

and

Υ̃k =
[
y(tk−w+1) . . . y(tk−1) y(tk)

]⊤
.

Assume the matrix R̃k has full rank, then

vec(C̃Πk) = (R̃⊤k R̃k)
−1R̃⊤k Υ̃k, (4.14)

is an approximation of the on-line estimate CΠk, namely there exists a sequence {tk} such
that

lim
k→∞

C̃Πk = CΠ.

Proof. Equation (4.14) can be derived following the same steps used to obtain equa-

tion (4.5). We delay the proof of the convergence of the limit to CΠ to Chapter 5 (Theo-

rem 18).

Note that if Assumption 11 holds and w = ν, R̃k is full rank.

Remark 23. The matrix R̃k is considerably smaller than Rk since it is not obtained from

Kronecker products. �

With equation (4.14) we are not able to retrieve the matrix Π̃k, but only C̃Πk.

However, as shown in equation (2.14), we only need CΠ to compute the reduced order

model, i.e. Π is not explicitly required. Equation (4.14) is a classic least-square estimation

formula. The following result holds.

Theorem 15. Assume that Φk = (R̃⊤k R̃k)
−1 and Ψk = (R̃⊤k−1R̃k−1 + ω(tk)ω(tk)

⊤)−1 are

full rank for all t ≥ tr with tr ≥ tw. Given vec(C̃Πr), Φr and Ψr, the recursive least-square

formula

vec(C̃Πk) = vec(C̃Πk−1) + Φkω(tk)
(
y(tk)− ω(tk)⊤ vec(C̃Πk−1)

)

−Φkω(tk−w)
(
y(tk−w)− ω(tk−w)⊤vec(C̃Πk−1)

)
,

(4.15)
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with

Φk = Ψk −Ψkω(tk−w)
(
I + ω(tk−w)

⊤Ψkω(tk−w)
)−1

ω(tk−w)
⊤Ψk (4.16)

and

Ψk = Φk−1 − Φk−1ω(tk)
(
I + ω(tk)

⊤Φk−1ω(tk)
)−1

ω(tk)
⊤Φk−1. (4.17)

holds for all t ≥ tr.

Proof. The formula is obtained adapting the results in [150] (see also [152–154]) to the

present scenario, in which at each step we acquire a new measure and we discard an old

measure: for completeness we provide the details of the proof. Note that

Φ−1k = R̃⊤k R̃k =

k∑

i=k−w+1

ω(ti)ω(ti)
⊤ =

k−1∑

i=k−w

ω(ti)ω(ti)
⊤+ ω(tk)ω(tk)

⊤− ω(tk−w)ω(tk−w)⊤

= Φ−1k−1 + ω(tk)ω(tk)
⊤ − ω(tk−w)ω(tk−w)⊤

and that rewriting equation (4.14) for k − 1 yields

R̃⊤k−1Υ̃k−1 =

k−1∑

i=k−w

ω(ti)y(ti) = Φ−1k−1 vec(C̃Πk−1).

Substituting the first equation in the second we obtain

k−1∑

i=k−w

ω(ti)y(ti)=Φ
−1
k vec(C̃Πk−1)−ω(tk)ω(tk)⊤vec(C̃Πk−1)+ω(tk−w)ω(tk−w)

⊤vec(C̃Πk−1),

which substituted in (4.14), namely

vec(C̃Πk) = Φk

(
k−1∑

i=k−w

ω(ti)y(ti) + ω(tk)y(tk)− ω(tk−w)y(tk−w)
)

yields equation (4.15). Finally equations (4.16) and (4.17) are obtained applying recur-

sively the matrix inversion lemma [150] to

Φk =
(
Ψ−1k − ω(tk−w)ω(tk−w)⊤

)−1
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and

Ψk =
(
Φ−1k−1 + ω(tk)ω(tk)

⊤
)−1

.

Remark 24. The construction of the initial values vec(C̃Πr), Φr and Ψr needed to start

the recursion can be done in two ways: the first consists in using equation (4.14) to build

vec(C̃Πr), Φr and Ψr and then updating the estimate with the equations in Theorem 15.

However, this method has the drawback of requiring the inversion of (R̃⊤k R̃k)
−1. The

second method consists in starting with dummy initial values vec(C̃Πr), Φr and Ψr. Since

the formulas “forget” the oldest measurements, after a sufficient number of iterations all

the dummy measurements are forgotten. �

Remark 25. For single-input, single-output systems the two matrix inversions in the

definition of Φk and Ψk are two divisions. Equations (4.15)-(4.16)-(4.17) can be used to

compute a fast, on-line, estimate of C̃Πk, since the computational complexity of updating

(4.15) is O(1). Thus, the implementation of equations (4.15)-(4.16)-(4.17) to update C̃Πk

is preferred to equation (4.14), which has a computational complexity, when w = ν, of1

O(ν2.373) at each iteration k. �

Remark 26. In comparison, the Arnoldi or Lanczos procedure for the model reduction by

moment matching have a computational complexity of O(νn2) [5, Section 14.1] (or O(ανn)
for a sparse matrix A, with α the average number of non-zero elements per row/column

of A). In addition, note that these procedures require a model to be reduced and thus

further expensive computation has to be considered for the identification of the original

system. �

The approximations Π̃k and C̃Πk can be computed with the following algorithm.

Algorithm 1. Let k be a sufficiently large integer. Select η > 0 sufficiently small. Select

w ≥ nν (w ≥ ν, respectively).

1: Construct the matrices Q̃k and χ̃k (R̃k and Υ̃k, respectively).

2: If rank
(
Q̃k

)
= nν (rank

(
R̃k

)
= ν, respectively) then compute Π̃k (C̃Πk, respec-

tively) solving equation (4.10) ((4.14), or (4.15), respectively).

Else increase w.

1This is the computational complexity of the fastest algorithm [155] for the inversion and multiplication
of matrices.
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If k − w < 0 then restart the algorithm selecting a larger initial k.

3: If

∣∣∣
∣∣∣Π̃k − Π̃k−1

∣∣∣
∣∣∣ > η

tk − tk−1
,

(∣∣∣
∣∣∣C̃Πk − C̃Πk−1

∣∣∣
∣∣∣ > η

tk − tk−1
, respectively

)

(4.18)

then k = k + 1 go to 1.

4: Stop.

Remark 27. It is not always possible to arbitrarily select the input of the system to be

reduced. For instance the input signal may be composed by several unwanted frequencies.

Instead of system (4.3), consider the input described by the equations

ω̇ = Sω, u = Lω + v,

with v(t) ∈ Rn an unknown signal. In this case the output response of system (4.1) is

y(t) = CΠω(t) + CeAt(x(0)−Πω(0)) +

∫ t

0
eA(t−τ)Bv(τ)dτ,

which can be written as

y(t) = CΠω(t) + ε(t) + v(t),

with v(t) =

∫ t

0
eA(t−τ)Bv(τ)dτ and ε(t) = CeAt(x(0) − Πω(0)). One can then apply

the filtering techniques given in [150, Chapter 11]: we filter out v from y and u with a

band-pass filter and apply the results of the chapter to the filtered yf and uf . �

4.2.3 Families of reduced order models

Using the approximations given by Algorithm 1 a reduced order model of system (4.1) can

be defined at each instant of time tk.

Definition 12. Consider system (4.1) and the signal generator (4.3). Suppose Assump-

tions 9, 10 and 11 hold. Then the system

ξ̇ = Fkξ +Gku, ψ = Hkξ, (4.19)

with ξ(t) ∈ Rν , Fk ∈ Rν×ν , Gk ∈ Rν×1, Hk ∈ R1×ν , is a model of system (4.1) at S at
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time tk, if there exists a unique solution Pk of the equation

FkPk +GkL = PkS, (4.20)

such that

C̃Πk = HkPk, (4.21)

where C̃Πk is the solution of (4.14).

Proposition 6. Select Pk = I, for all k ≥ 0. If σ(Fk) ∩ σ(S) = ∅ for all k ≥ 0, then the

model

ξ̇ = (S −GkL)ξ +Gku, ψ = C̃Πkξ, (4.22)

is a model of system (4.1) at S for all tk.

The result is a consequence of Definition 12 and Chapter 2.

4.2.4 Linear time-delay systems

The results developed so far can be easily extended to linear time-delay systems renaming

the moments of system (3.1) in Chapter 3 as CΠ =
ς∑

j=0

CjΠe
−Sτj . Theorem 13 holds for

the linear time-delay system (3.1) replacing C̃Πk with C̃Πk which is an approximation of

CΠ (the proof is a simple exercise).

Definition 13. Consider system (3.1) and the signal generator (4.3). Assume σ(Ā(s)) ⊂
C<0, system (3.1) is minimal and suppose Assumptions 9 and 11 hold. Then the system

ξ̇ =

̺∑

j=0

Fj,kξχj
+

ρ∑

j=̺+1

Gj,kuχj
, ψ =

d∑

j=0

Hj,kξχj
, (4.23)

with ξ(t) ∈ Rν , ψ(t) ∈ R, Fj,k ∈ Rν×ν for j = 0, . . . , ̺, Gj,k ∈ Rν×1 for j = ̺ + 1, . . . , ρ,

Hj,k ∈ R1×ν for j = 0, . . . , k, χ0 = 0 and χj ∈ R>0 for j = 1, . . . ,max{ρ, d}, is a model of

system (3.1) at S at time tk, if there exists a unique solution Pk of the equation

̺∑

j=0

Fj,kPke
−Sχj − PkS = −

ρ∑

j=̺+1

Gj,kLe
−Sχj , (4.24)

such that

C̃Πk =

d∑

j=0

Hj,kPke
−Sχj , (4.25)
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where C̃Πk is the solution of (4.14).

Proposition 7. Let F̄k(s) =

̺∑

j=0

Fj,ke
−sχj and select Pk = I for all k ≥ 0. If σ(F̄k(s)) ∩

σ(S) = ∅ for all k ≥ 0, then the model

ξ̇ =


S −

ρ∑

j=̺+1

Gj,kLe
−Sχj −

̺∑

j=1

Fj,ke
−Sχj


 ξ +

̺∑

j=1

Fj,kξχj
+

ρ∑

j=̺+1

Gj,kuχj
,

ψ =


C̃Πk −

d∑

j=1

Hj,ke
−Sχj


 ξ +

d∑

j=1

Hj,kξχj
,

(4.26)

is a model of system (3.1) at S for all tk.

The result is a consequence of Definition 13 and Chapter 3.

4.2.5 Properties of the exponentially converging models

In Chapters 2 and 3, see also [3, 10], we have studied the problem of enforcing additional

properties and constraints on the reduced order model. In this section we go through these

properties to determine if, and under which conditions, they hold for the models (4.22)

and (4.26).

Matching with prescribed eigenvalues

Consider system (4.22) and the problem of determining at every k the matrix Gk such

that σ(Fk) = {λ1,k, . . . , λν,k} for some prescribed values λi,k. The solution of this problem

is well-known and consists in selecting Gk such that

σ(S −GkL) = σ(Fk).

This is possible for every k and for all λi,k 6∈ σ(S) and note that Gk is independent from

the estimate C̃Πk. Note also that by observability of (L, S), Gk is unique at every k.

Matching with interpolation at 2ν points

Let Sa ∈ Rν×ν and Sb ∈ Rν×ν be two non-derogatory matrices such that σ(Sa) ∩ σ(Sb) = ∅

and let Lab be such that the pairs (Lab, Sa) and (Lab, Sb) are observable. Let C̃Πa,k = C̃Πk

computed with (4.14) with L = Lab and S = Sa, and let C̃Πb,k = C̃Πk computed with

(4.14) with L = Lab and S = Sb. Consider system (4.26) with ̺ = 1, ρ = 3, d = 1,
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χ2 = 0 and the problem of determining F1,k and H1,k such that system (4.26) is a model

of system (3.1) at Sa and Sb at time tk. This problem is solved for every k by the selection

(see Proposition 4)

F1,k=(Sb − Sa−G3,k(e
−Sbχ3−e−Saχ3))(e−Sbχ1−e−Saχ1)−1,

F0,k=Sa −G2,kLab −G3,kLabe
−Saχ3 − F1,ke

−Saχ1 ,

H1,k=(C̃Πb,k − C̃Πa,k)(e
−Sbχ1 − e−Saχ1)−1,

H0,k= C̃Πa,k −H1e
−Saχ1 ,

(4.27)

which belongs to the family (4.26) for any G2,k and G3,k such that σ(F̄k(s)) ∩ σ(S) = ∅.

Matching with prescribed relative degree, matching with prescribed zeros,

matching with compartmental constraints

These problems can be solved at each k as detailed in Chapter 2 if and only if

rank



sI − S

C̃Πk


 = n, (4.28)

for all s ∈ σ(S) at k. Even though the asymptotic value of C̃Πk satisfies this condition

there is no guarantee that the condition holds for all k. However, if the condition holds

for the asymptotic value, there exists k̄ ≫ 0 such that for all k ≥ k̄ equation (4.28) holds.

4.2.6 Example: A system of order n = 1010

In this section we apply Algorithm 1 to a system similar to the one used in Section 3.2.9

(see also [4,5]). The system has order n = 1010 and it has Bode plot with five peaks. The

state space matrices of system (4.1) are given by A = diag(A1, A2, A3, A4, A5, Ā), with

Ai =



−1 ai

−ai −1


 , Ā = diag(−1,−2, . . . ,−1000),

a1 = 50, a2 = 100, a3 = 150, a4 = 200, a5 = 400, and B⊤ = C = [ 10 . . . 10︸ ︷︷ ︸
10 times

1 . . . 1︸ ︷︷ ︸
1000 times

].

The matrices of the signal generator (4.3) have been selected as S =

diag(0, S1, S2, S3, S4, S5, S̄), with S1 = A1 + I, S2 = 0.5S1, S3 = 1.5S1, S4 = 2S1,
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Figure 4.1: Bode plot of the system (solid/blue line), of the reduced order model
at t12803 = 8s (dotted/red line), of the reduced order model at t22334 = 14s (dash-
dotted/cyan line) and of the reduced order model at t39873 = 25s (dashed/black line).
The circles indicate the interpolation points.

Figure 4.2: The colored mesh represents the magnitude of the transfer function of
the reduced order model as a function of tk, with 8 ≤ tk ≤ 14 s. The solid/black line
indicates the magnitude of the transfer function of the reduced order model for the
exact moments CΠ.
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Figure 4.3: The grey mesh represents the phase of the transfer function of the reduced
order model as a function of tk, with 8 ≤ tk ≤ 14 s. The solid/red line indicates the
phase of the transfer function of the reduced order model for the exact moments CΠ.

S5 = 4S1 and

S̄ =



1

5
S1 I

0
1

5
S1


 ,

to interpolate the moments at 0 and close to the five frequency peaks.

A reduced order model (4.22) at time tk has been constructed assigning the eigenvalues

of Fk. Fig. 4.1 shows the Bode plot of the system (solid/blue line), of the reduced order

model at t12803 = 8s (dotted/red line), of the reduced order model at t22334 = 14s (dash-

dotted/cyan line) and of the reduced order model at t39873 = 25s (dashed/black line).

Note that the frequencies of interest, indicated with circles, are interpolated already at

t12803 = 8s. We see also that the error between the reduced order model and the system

decreases as tk increases and that at t39873 = 25s the frequency responses of the reduced

order model and the system match over a wide range of frequencies. The surface in Fig. 4.2

(4.3, respectively) represents the magnitude (phase, respectively) of the transfer function

of the reduced order model as a function of tk, with 8 ≤ tk ≤ 14 s. The solid/black

(solid/red, respectively) line indicates the magnitude (phase, respectively) of the transfer
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function of the reduced order model for the exact moments CΠ. The figures show how

the approximated magnitude and phase of model (4.22) at S of system (4.1) evolve over

time and approach the respective quantities of the exact reduced order model as tk →∞.

The approximated and actual Bode plot are indistinguishable at tk = 25 s, but the figures

are sliced at tk = 14 to show the detail of the initial convergence, when the Bode plot

changes more swiftly. Note also that we have tested different color schemes to ease the

individuation of the evolution of the two graphs. This resulted in the two different codings

used in Fig. 4.2 and 4.3.

4.3 Nonlinear (time-delay) systems

For the sake of convenience we report here the equations of system (2.20), namely

ẋ = f(x, u), y = h(x), (4.29)

of the signal generator (2.21), namely

ω̇ = s(ω), u = l(ω), (4.30)

and the partial differential equation (2.23), namely

∂π

∂ω
s(ω) = f(π(ω), l(ω)). (4.31)

which will be used through the chapter. The quantities appearing in the equations retain

their original meaning.

4.3.1 On-line moment estimation from data

Solving equation (4.31) with respect to the mapping π is a difficult task even when there

is perfect knowledge of the dynamics of the system, i.e. the mapping f . When f is not

known equation (4.31) may be solved numerically requiring information on the state of

the system. In practice, this is usually not the case and only the output y is available,

with the consequence that also the mapping h has to be known.

Note that given the exponential stability hypothesis on the system and Theorem 3, the
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equation

y(t) = h(π(ω(t))) + ε(t), (4.32)

where ε(t) is an exponentially decaying signal, holds. We introduce the following assump-

tion.

Assumption 12. The mapping h◦π belongs to the function space identified by the family
of continuous basis functions ϕj : R

ν → R, with j = 1, . . . ,M (M may be ∞), i.e. there

exist πj ∈ R, with j = 1, . . . ,M , such that

h(π(ω)) =

M∑

j=1

πjϕj(ω),

for any ω.

Let

Γ =

[
π1 π2 . . . πN

]
,

Ω(ω(t)) =

[
ϕ1(ω(t)) ϕ2(ω(t)) . . . ϕN (ω(t))

]⊤
,

with N ≤M . Using a weighted sum of basis functions, equation (4.32) can be written as

y(t) =
N∑

j=1

πjϕj(ω(t)) + e(t) + ε(t) = ΓΩ(ω(t)) + e(t) + ε(t), (4.33)

where e(t) =
M∑

N+1

πjϕj(ω(t)) is the error resulting by stopping the summation at N .

Consider now the approximation

y(t) ≈
N∑

j=1

π̃jϕj(ω(t)) = Γ̃Ω(ω(t)), (4.34)

which neglects the approximation error e(t) and the transient error ǫ(t). Let Γk be an

on-line estimate of the matrix Γ computed at Tw
k , namely computed at the time tk using

the last w instants of time ti assuming that e(t) and ǫ(t) are known. Since this is not the

case in practice, define Γ̃k =

[
π̃1 π̃2 . . . π̃N

]
as the approximation, in the sense of

(4.34), of the estimate Γk. Finally we can compute this approximation as follows.
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Theorem 16. Define the time-snapshots Ũk ∈ Rw×N and Υ̃k ∈ Rw as

Ũk =
[
Ω(ω(tk−w+1)) . . . Ω(ω(tk−1)) Ω(ω(tk))

]⊤

and

Υ̃k =
[
y(tk−w+1) . . . y(tk−1) y(tk)

]⊤
.

If Ũk is full rank, then

vec(Γ̃k) = (Ũ⊤k Ũk)
−1Ũ⊤k Υ̃k, (4.35)

is an approximation of the estimate Γk

To ensure that the approximation is well-defined for all k, we give an assumption

in the spirit of persistency of excitation.

Assumption 13. For any k ≥ 0, there exist K̄ > 0 and α > 0 such that the elements of

TK
k , with K > K̄, are such that

1

K
Ũ⊤k Ũk ≥ αI.

Note that if Assumption 13 holds (see [143] for a similar argument), Ũ⊤k Ũk is full

rank. To ease the notation we introduce the following definition.

Definition 14. The estimated moment of system (4.29) is defined as

h̃◦πN,k = Γ̃kŨk, (4.36)

with Γ̃k computed with (4.35).

An equivalent of Theorem 15 can be formulated in the nonlinear framework. The

recursive least-square algorithm is obtained with Ω(ω(tk)) playing the role of ω(tk), Ũk

playing the role of R̃k and Γ̃k playing the role of C̃Πk, namely

vec(Γ̃k) = vec(Γ̃k−1) + ΦkΩ(ω(tk))
(
y(tk)− Ω(ω(tk))

⊤ vec(Γ̃k−1)
)

−ΦkΩ(ω(tk−w))
(
y(tk−w)− Ω(ω(tk−w))

⊤ vec(C̃Πk−1)
)
,

(4.37)

with Φk = (Ũ⊤k Ũk)
−1 and Ψk = (Ũ⊤k−1Ũk−1 +Ω(ω(tk))Ω(ω(tk))

⊤)−1.

Remark 28. Similarly, Algorithm 1 can be adapted to the present scenario, with straight-

forward variations, to determine the approximation h̃◦πN,k. �
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Figure 4.4: Steady-state average heartbeat for five iteration of the experiment for
velocities from 1 to 10.5 km/h (top graph) and inclines from 0 to 8 (bottom graph).

Theorem 17. Suppose Assumptions 1, 2, 12 and 13 hold. Then

lim
t→∞

(
h(π(ω(t)))− lim

N→M
h̃◦πN,k(ω(t))

)
= 0.

Proof. Assumption 13 guarantees that the approximation Γ̃k is well-defined for all k,

whereas Assumptions 1 and 2 guarantee that Theorem 3 holds and thus that h◦π is well-
defined. The quantity ||ε(tk)|| vanishes exponentially to zero by Assumption 2. Hence, by
Assumption 12, lim

N→M
h̃◦πN,k(ω(t)) converges to h(π(ω(t))).

Remark 29. The framework presented here to approximate the moment of nonlinear

systems exploits the estimation techniques based on basis functions. However, note that

the results of the following sections hold also when the estimation techniques used to

approximate h◦π are different. In fact, the approach based on basis functions should be

considered as an example used to formalize the results of the chapter. �

4.3.2 Experiment: nonlinear moment of the average heartbeat model

An experiment has been carried out to illustrate how to estimate the moment of a nonlinear

system in a practical example. A test subject ran on a treadmill starting from a resting
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Figure 4.5: Estimated moment of the average heartbeat (solid line) and validation
dataset (circles) for the velocity experiment (top graph) and for the incline experiment
(bottom graph).

position. In the first experiment a certain constant speed (from 1 to 10.5 km/h) has been

set and the subject ran at that speed for a period of time sufficient to make his average

heartbeat constant. This value corresponds to the steady-state response of his average

heartbeat for a constant input speed, i.e. ω̇ = 0. The experiment has been iterated

five times and the measured steady-state average heartbeat values for different constant

velocities are shown in the top graph of Fig. 4.4. In the second experiment, the incline

(from option 0 to 8) of the treadmill has been considered as a constant input (for all the

incline options the speed has been kept constant to 8 km/h). The steady-state average

values of the heartbeat are shown in the bottom graph of Fig. 4.4. Also this experiment

has been iterated five times. A polynomial fitting of the data gives the estimated moment

h̃◦π9,η(ω) = −0.0003578ω8 + 0.01431ω7 − 0.2233ω6 + 1.682ω5 − 5.852ω4 + 4.429ω3

+24.44ω2 − 54.66ω + 100.2,
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for the velocity experiment and

h̃◦π4,η(ω) = 0.1169ω3 − 1.63ω2 + 11.86ω + 114.1,

for the incline experiment. Note that the basis functions for the first experiment are the

polynomials of order eight, whereas the basis functions for the second experiment are the

polynomials of order three. Instead of using (4.35), the fitting has been performed with

the function fit of MATLABTM directly using the steady-state values. Fig. 4.5 shows the

estimated moment in blu/solid line and a validation set of data, indicated with circles,

taken from a sixth iteration of the experiment for the velocity experiment (top graph)

and the incline experiment (bottom graph). Then the estimated moment can be used to

obtain a reduced order model as defined in the following section.

4.3.3 Families of reduced order models

Using the approximation given by (4.36) a reduced order model of system (4.29) can be

defined at each instant of time tk.

Definition 15. Consider system (4.29) and the signal generator (4.30). Suppose Assump-

tions 1, 2, 12 and 13 hold. Then the system

ξ̇ = φk(ξ, u), ψ = κk(ξ), (4.38)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R and φk and κk smooth mappings, is a model of

system (4.29) at (s, l) at time tk, i.e. system (4.38) has the same moment of system (4.29)

at (s, l), if the equation
∂pk
∂ω

s(ω) = φk(pk(ω), l(ω)), (4.39)

has a unique solution pk such that

h̃◦πN,k(ω) = κk(pk(ω)), (4.40)

where h̃◦πN,k(ω) is obtained by (4.35).
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Proposition 8. Let δk be such that, for all k ≥ 0,

∂pk
∂ω

s(ω)=s(pk(ω))− δk(pk(ω))l(pk(ω)) + δk(pk(ω))l(ω),

has the unique solution pk(ω) = ω and select κk(ω) = h̃◦πN,k(ω). Then the system

described by the equations

ξ̇ = s(ξ)− δk(ξ)l(ξ) + δk(ξ)u,

ψ = h̃◦πN,k(ξ),
(4.41)

is a model of system (4.29) at (s, l) for all tk.

The result is a consequence of Definition 15 and Chapter 2.

Remark 30. Similarly to the linear case (see Section 4.2.5), the conditions given in

Chapter 2 to enforce additional properties upon the reduced order model can be adapted

to hold in the present scenario. �

4.3.4 Nonlinear time-delay systems

The results developed so far can be extended to nonlinear time-delay systems. In fact,

since the output y(t) of system (3.32) can be described by the equation (4.33), Theorem 17

holds for the nonlinear time-delay system (3.32). For ease of notation we consider only

one delay in the state and one delay in the input.

Definition 16. Consider system (3.32) and the signal generator (4.30). Suppose Assump-

tions 1, 6, 12 and 13 hold. Then the system

ξ̇ = φk(ξ, ξχ1 , u, uχ2), ψ = κk(ξ), (4.42)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R, χj ∈ R>0 with j = 1, 2 and φk and κk smooth

mappings, is a model of system (3.32) at (s, l) at time tk, i.e. system (4.42) has the same

moment of system (3.32) at (s, l), if the equation

∂pk
∂ω

s(ω) = φk(pk(ω), pk(ω̄χ1), l(ω), l(ω̄χ2)), (4.43)
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Figure 4.6: The functions h(π(ω)) (solid line) and h̃◦π(ω) (dotted line) for ω ∈ (0, 0.9 ].
The seven data points are represented by squares.

has a unique solution pk such that

h̃◦πN,k(ω) = κk(pk(ω)), (4.44)

where h̃◦πN,k(ω) is obtained by (4.35).

4.3.5 Example: approximated nonlinear model of the Ćuk converter

In this section we illustrate the results of the chapter by means of two examples. Both

examples are based on the averaged model of the DC-to-DC Ćuk converter [156]. We begin

obtaining a scalar reduced order model which achieves moment matching at zero. In this

case the exact expression of the mapping h◦π is known and we can compare it directly

with the approximation obtained from a polynomial expansion. In the second part of the

section we obtain a planar reduced order model with nonlinear state dynamics using an

input generated by a nonlinear mapping l. In this case the exact expression of the mapping

π is not known and the results of the chapter are used to obtain an approximation of the

mapping h ◦ π.
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Figure 4.7: Top: time histories of the output of system (4.45) (solid line) and of the
reduced order model (dotted line) for the set of input given by ω equal to 0.35, 0.85,
0.75, 0.55, 0.33, 0.15 and 0.45. Bottom: error between the two outputs.

Table 4.1: Parameters of the model of the DC-to-DC Ćuk converter [156]

L1 = 10 mH L3 = 10 mH C2 = 22 µF

C4 = 22 µF E = 12 V G = 0.0447 S

The averaged model of the DC-to-DC Ćuk converter is given by the equations [156]

L1ẋ1 = −(1− u)x2 + E, C2ẋ2 = (1− u)x1 + ux3,

L3ẋ3 = −ux2 − x4, C4ẋ4 = x3 −Gx4,

y = x4,

(4.45)

where x1(t) ∈ R≥0 and x3(t) ∈ R≤0 describe the currents, x2(t) ∈ R≥0 and x4(t) ∈ R≤0

the voltages, L1, C2, L3, E and G positive parameters and u(t) ∈ (0, 1) a continuous

control signal which represents the slew rate of a pulse width modulation circuit used to

control the switch position in the converter. In the remaining of the chapter we used the

numerical values given in [156], reported in Table 4.1, to simulate system (4.45).
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Moment at zero

In [3], a scalar reduced order model of system (4.45) achieving moment matching at zero

has been given. It has been shown that the moment of the system is described by

h(π(ω)) = E
ω

ω − 1
.

We simulated system (4.45) with u = ω(0), where ω(0) switched every 0.05s between the

values of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. We have then applied the results of the chapter

selecting the horizon length w equal to 1 and fixing the value of h̃ ◦ π(ω) to the one just

before the switching time. Then a cubic interpolation has been used to fit the seven points

obtained from the simulations. Fig. 4.6 shows the function h(π(ω)) (solid line) and the

approximation h̃◦π(ω) (dotted line) for values of ω ∈ (0, 0.9 ]. The seven data points are

represented by squares. Note that the approximation is close to the actual moment of the

system for ω ∈ (0, 0.85].

The reduced order model is chosen as a linear system of order ν = 1 with eigenvalue equal

to −230 (to yield a reduced order model with “response time” comparable to the one of the

system). The top plot in Fig. 4.7 shows the time histories of the output of system (4.45)

(solid line) and of the reduced order model (dotted line) for the set of inputs given by ω

equal to 0.35, 0.85, 0.75, 0.55, 0.33, 0.15 and 0.45. Note that no one of these values is one

of the seven data points. The error between the two outputs is shown in the bottom graph

of Fig. 4.7. The figure shows an overall good approximation of system (4.45). The error is

comparable with the one shown in the simulation in [3] and it is due to the transient error

ε(t) caused by approximating a four dimensional nonlinear system with a scalar model.

Planar reduced order model

In the previous example the approximated moment of the system has been compared

with the exact mathematical expression. However, the example is very simple since the

generator is scalar and the input is constant. In this section we present the case in which

the input is generated by the equations

ω̇1 = −75ω2, ω̇2 = 75ω1, u = max

(
0.15,

1

2

(
ω1ω2 + ω3

1 +
1

2

))
.
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Figure 4.8: Surface obtained from the data points computed with ω(t) and y(t).

Note that this produces a positive input signal with higher order harmonics.

Simulations have been carried out with a few values of ω(0) selected in the set [0.75, 0.75]×

[0.75, 0.75], which generate inputs u in the set [0.15, 0.93]. For each simulation, once

reached the steady-state, the time-history of y(t) has been extracted over one period and

a map between y(t) and each pair (ω1(t), ω2(t)) has been extrapolated. Then the simula-

tion has been repeated for other values of ω(0). Fig. 4.8 shows the extrapolated h̃◦π(ω).

An interesting area is the foremost/blue region of the surface, where the input u is equal

to 0.93. This is close to 1: for this value the output of the converter becomes negatively

unbounded.

We use a two-dimensional polynomial fitting of order five to obtain an analytical expres-

sion of the moment for ω(0) ∈ [0.6, 0.6] × [0.6, 0.6], which generate inputs u in the set2

2A polynomial fitting of order five does not properly approximate the moment in the entire region of
Fig. 4.8. However, this is the highest order currently available in MATLABTM (function fit with the option
poly25 ). Since the coding of a better fitting function is out of the scope of this Thesis, we have restricted
the interpolation to a smaller area.
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Figure 4.9: Top graph: time histories of the output of system (4.45) (solid/blue line)
and of the nonlinear reduced order model (dotted/red line) for the input sequence
represented in the bottom graph. The switching times are indicated by solid/gray
vertical lines. Middle graph: absolute error (dashed/green line) between the two
outputs.

[0.15, 0.62], yielding

h̃ ◦ π(ω)15,η = −3.781− 3.116ω1 + 0.641ω2 − 1.71ω2
1 − 9.964ω1ω2−1.243ω2

2−12.23ω2
1ω2

+5.185ω1ω
2
2 − 1.764ω3

2 − 6.876ω2
1ω

2
2 − 3.026ω1ω

3
2 + 0.8862ω4

2 + 14.63ω2
1ω

3
2

−1.709ω1ω
4
2 + 1.173ω5

2.

(4.46)

This polynomial approximation fits well the red region of the surface in Fig. 4.8, whereas

in the blue region it does not decrease as fast as the actual output of the system. This

suggests that the following results can be improved if another fitting function is used.
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The reduced order model is chosen as in Proposition 8, with δη = 220

[
1 1

]⊤
, namely

ξ̇1 = 75ξ2 + 220

(
u−max

(
0.15,

1

2

(
ξ1ξ2 + ξ31 +

1

2

)))
,

ξ̇2 = −75ξ1 + 220

(
u−max

(
0.15,

1

2

(
ξ1ξ2 + ξ31 +

1

2

)))
,

ψ = h̃◦π(ξ)15,η.

The top graph in Fig. 4.9 shows the time histories of system (4.45) (solid/blue line) and

of the reduced order model (dotted/red line) for the input sequence represented in the

bottom graph. The input is obtained switching ω(0) every 0.5s (the switching times are

indicated by solid/gray vertical lines). ω(0) takes, in order, the values of (−0.45,−0.45),

(−0.25,−0.45), (0.15, 0.05) and (0.5, 0.5). The middle graph in Fig. 4.9 shows the absolute

error (dashed/green line) between the two outputs. We note that the larger absolute error

is in the third and fourth simulation. In the third, the error is due to poor transient

performance and the problem could be alleviated with a selection of δη as a function of ξ.

The poor approximation for the fourth input is caused by the fact that the input signal

lives at the edge of the area approximated by (4.46), where h̃◦π(ω) is not well-fitted.

4.4 Conclusion

We have presented a theoretical framework and a collection of techniques to obtain re-

duced order models by moment matching from input/output data for linear (time-delay)

systems and nonlinear (time-delay) systems. The approximations proposed in the chapter

have been exploited to construct families of reduced order models. We have shown that

these models asymptotically match the moments of the unknown system to be reduced.

Conditions to enforce additional properties upon the reduced order model have been dis-

cussed. The use of the algorithm is illustrated by several examples, experimental and

simulated.
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Chapter 5

Model reduction of power systems

with preservation of physical

properties

5.1 Introduction

Since the mathematical models used to describe power systems can easily have hundreds

of states, inputs and outputs, the simulation of power systems for dynamic analysis, tra-

jectory sensitivity analysis and control design is a computationally intensive task. Hence,

the model reduction problem, some times also referred to as the problem of dynamic equiv-

alencing in the power and energy community [157], is central to modern research on power

systems. At the basis of the use of dynamic equivalencing in power systems there is the

idea of distinguishing between a study area, the description of which is maintained in full

detail, and an external area, consisting of the remaining part of the network, which is

reduced. The study area can be precisely analyzed and controlled while still considering

the interaction of the interconnection of such area with a less faithful representation of a

larger external area. Thus, when doing model reduction of power systems the main aim

is not to obtain the best possible approximation, e.g. minimizing an error norm on the

frequency response of the system, but having a dynamic behavior of the interconnection

between the reduced order model and the study area as close as possible to the one of

the original nonlinear power system. In other words, we are interested in the faithful
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reproduction of the behavior of the system for a specific class of input signals, neglecting

the behavior outside the operating conditions.

Historically, coherency-based methods have been used in model reduction of power sys-

tems, see e.g. [158–161]. These methods are based on the physical properties of the

electrical machines connected to the network. The idea is to find coherent generators, i.e.

machines which behave similarly when the same input is applied. Once coherent genera-

tors are identified a dynamic equivalent generator is used to replace them. In recent years,

the power systems community has started to be interested in reduction techniques based

on mathematical properties instead of physical ones. One of the reasons of this interest

is the flexibility of having a reduction technique that is not based on the physics of the

generators and, as a consequence, the possibility of reducing networks with renewable en-

ergy sources. Among these methods, balanced truncation and Krylov projectors have been

successfully used in power systems reduction, see e.g. [157, 162, 163]. However, the real

applicability of the reduced order models obtained with mathematical methods is limited

by the fact that the preservation of some physical characteristics, such as some specific

modes, is of paramount importance for applications in power systems. Poorly damped

modes, also called electromechanical modes [164], are important in the small-signal sta-

bility analysis of a power system since they are responsible for most of the oscillating

behavior. Similarly, slow modes characterize how fast the response of the system reaches

the steady-state. While previous attempts to maintain these modes are essentially ad

hoc, since with the classical Krylov methods it is very hard to preserve a certain set of

eigenvalues, the problem of assigning a prescribed set of modes has been solved with the

approach reported in Chapter 2, see also [3].

The first contribution of this chapter is the validation of the model reduction techniques

presented in Chapter 2 and the study of the behavior of the obtained reduced order models.

In particular, the methods have been used to assign arbitrary eigenvalues to the reduced

order model, i.e. maintaining slow and poorly damped modes. In this chapter it is shown

that it is not necessary to increase the order of the reduced order model to improve the

quality of the approximation of the system: to achieve this goal it may be sufficient to

select a different set of eigenvalues to be preserved in the reduced order model. More-
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over, it is also shown that increasing the order of the reduced model gives no guarantee

of improving significantly the quality of the approximation if a wrong set of eigenvalues is

preserved.

The second contribution of the chapter consists in extending the techniques given in Chap-

ters 2 and 4 to multi-input, multi-output (MIMO) systems. Power systems are not only

described by a large number of states, they also have a high number of inputs and out-

puts. To deal with this, we discuss the so-called tangential interpolation problem which

is used in the model reduction of MIMO systems. An algorithm to approximate the tan-

gential directions is given and connections with the literature are drawn. Since classical

efficient Krylov algorithms suffer the usual drawback of not preserving specific modes,

we present a low computational complexity algorithm for the model reduction of MIMO

systems which is able to preserve specific properties. This algorithm is a MIMO version of

the algorithm presented in Chapter 4. The algorithm, exploiting the inputs and outputs

of the system instead of operations on large matrices, offers a computationally efficient

method to approximate MIMO reduced order models. The simulation section illustrates

the performance of the algorithm, the design of the reduced order model and the dynamic

behavior of the interconnection of the study area with the approximated model.

The rest of the chapter is organized as follows. In Section 5.2 we introduce the problem

of the reduction of MIMO systems. In Section 5.3 we derive the algorithm for the ap-

proximation of the moments of MIMO systems. In Section 5.4.1 we describe the nonlinear

model which represents the study area of the power system and the linear model which

represents the external area. In Section 5.4.2 the NETS-NYPS benchmark system is de-

scribed. In Section 5.4.3 an heuristic to approximate the tangential directions is given. In

Section 5.4.4 the reduced order model is designed. In Section 5.4.5 the use of the algorithm

is illustrated and in Section 5.4.6 the fault response of the interconnection between the

study area and the reduced order model is simulated. In this section we also perform a

study of the importance of preserving the correct set of modes versus increasing the order

of the reduced order model.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference paper [14] and in the journal
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paper [15].

5.2 Model Reduction of MIMO Systems

Consider a linear MIMO, continuous-time, system described by the equations

ẋ = Ax+Bu, y = Cx, (5.1)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Let

W (s) = C(sI −A)−1B : C 7→ Cp×m be the associated transfer function and assume that

(5.1) is minimal. If we characterize the moments of this MIMO system as in Definition 1,

we have mpν interpolation conditions (the mp components of W at ν points), whereas the

dimensions of CΠ is only pν. While a possible solution to this problem is to inflate the

order of the reduced order model, this substantially increases the dimension of the model

and the reduction may even no longer make sense if mν ≥ n, which is a likely situation in

the analysis of power systems. A workaround to this drawback consists in “merging” some

of the conditions together. However, the merging of the interpolation conditions has to be

done in a specific way to preserve the information of the original individual moments. This

is the idea behind the tangential interpolation approach, initially proposed in [165]. The

tangential interpolation approach can be embedded in the framework we have presented

with the following definition.

Definition 17. Let si ∈ C \ σ(A) and li ∈ Rm×1. The k-moment of system (5.1) at si

along li is the complex number

ηk(si) =
(−1)k
k!

[
dk

dsk
C(sI −A)−1B

]

s=si

li,

with k ≥ 0 integer.

Hence, the moment matching conditions become [63,120]

(−1)k
k!

[
dk

dsk
W (s)

]

s=si

li =
(−1)k
k!

[
dk

dsk
Ŵ (s)

]

s=si

li, (5.2)

with i = 1, . . . , ν, where Ŵ (s) is the transfer function of the reduced order model.
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Remark 31. The pν tangential interpolation conditions (5.2) are weaker than the original

pmν matching conditions. Since this approach consists in replacing m equations with one,

the resulting model is not in general as good as a model which interpolates all the m

conditions. This is the price to pay to maintain the order of the reduced order model

independent from the number of inputs. Moreover, this suggests that the selection of the

vectors li has to be done with care to obtain a reliable reduced order model. �

Remark 32. In [162] the authors present the block Krylov approach of [166]. This ap-

proach, predating the development of the tangential interpolation theory in [165], inflates

the dimension of the reduced order model to satisfy the pmν matching conditions. How-

ever, the authors have recognized this drawback and, in fact, they do not apply this method

in the application part of the paper. In fact, claiming “in order to limit the size of the

Krylov subspaces, we consider that the matrix B [...] is the sum of the input matrices”

they are applying a single input algorithm on an approximated system. They have also

pointed out that “in general, such kind of heuristics for economy in the size of the base

[...] does not work well”. Interestingly, a theoretical explanation for the poor general

performance can be given revisiting their approximated approach in the tangential frame-

work. It can be easily shown that adding the columns of the matrix B corresponds to

using moment matching with tangential directions li = [1 . . . 1]⊤. Thus, the performance

can be improved selecting different directions. �

Exploiting Definition 17, Lemma 2 can be adapted to the MIMO case. Let S ∈ Rν×ν

be a non-derogatory matrix and L = [l1 l2 . . . lν ] ∈ Rm×ν , li ∈ Rm×1, i = 1, . . . , ν, be such

that the pair (L, S) is observable. Then the moments of the system along L are in one-

to-one relation with CΠ, with Π ∈ Rn×ν the unique solution of the Sylvester equation

AΠ+BL = ΠS. (5.3)

Finally, the family of systems [3]

ξ̇ = (S −GL)ξ +Gu, ψ = CΠξ, (5.4)

with S −GL ∈ Rν×ν , G ∈ Rν×m and CΠ ∈ Rp×ν contains all the models of dimension ν

interpolating the moments of system (5.1) at S along L ifG is such that σ(S)∩ σ(S−GL) =
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∅. Hence, we say that system (5.4) is a model of (5.1) at S along L. System (5.4) is a

reduced order model of system (5.1) at S along L if ν < n.

Remark 33. The family of systems (5.4) represents reduced order models of system (5.1)

for any matrix L, i.e. for any tangential direction. However, as already remarked, the

quality of the approximation depends on the choice of L. We also note that the tangential

directions depend upon the reduced order model and the reduced order model depends

upon the tangential directions. Thus, the determination of the directions is a difficult

problem. �

Remark 34. In the interpolation framework, algorithms have been proposed to approx-

imate iteratively the vectors li, see e.g. [44]. However, these solutions do not allow to

select the interpolation points nor to preserve a prescribed set of eigenvalues. While these

algorithms may work when specific physical properties are not important, in the case of

power systems the preservation of slow and poorly damped modes is important for giving

a physical meaning to the reduced order models [14]. �

5.3 A low complexity MIMO algorithm for the computation

of the moments

In this section we extended to MIMO systems Algorithm 1 presented in Chapter 4 for

the computation of the moments of a SISO system from input/output data. Although

the algorithm has been primarily devised to compute the moments when the matrices

A, B, C are not available, it has also the advantage of being a computationally fast

method for the approximation of the moments of a system. In fact, as already pointed

out, for SISO systems the algorithm has a computational complexity of O(gν2.373) (g

is a small scalar that will be defined later), whereas the Arnoldi or Lanczos procedures

for the approximation of the moments have a computational complexity of O(νn2) (both

complexities are multiplied by p in the MIMO case).

Remark 35. We do not claim that the algorithm we are presenting here can be used

to approximate the moments from actual input/output data of power systems. In fact,

for a power system, which is a nonlinear system, we do not have any guarantee on the

approximation given by the algorithm when measurements generated by such a nonlinear

system are used. However, in addition to propose this algorithm for the fast computation
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of the moments, this chapter lays also the foundations to solve the problem of input/output

model reduction from real data in two ways: the input/ouput data of a power system can

be filtered by means of a linear filter; the nonlinear version of the algorithm proposed in

Chapter 4 can be extended to MIMO systems and used with the measured data. However,

the use of these methods for the reduction of power systems is not trivial and it would

deserve its own dedicated research. For the aims of this chapter, we limit ourself to use the

algorithm as a mean to approximate the moments without solving equation (5.3), which

is computationally expensive. �

Theorem 18. Consider the interconnection of system (5.1) with the signal generator

ω̇ = Sω, u = Lω. (5.5)

Assume σ(A) ⊂ C<0, σ(S) ⊂ C0 and that the triple (L, S, ω(0)) is minimal. Let

0 ≤ t0 < t1 < · · · < tk−h < · · · < tk < · · · < tq, with h > 0 and q ≥ h

and T h
k = {tk−h+1, . . . , tk−1, tk} and assume that the elements of T ν

k are such that

rank
([

ω(tk−ν+1) . . . ω(tk)
])

= ν for all k. Define the time-snapshots R̃k ∈ Rgν×ν

and Υ̃j
k ∈ Rgν as

R̃k =
[
ω(tk−w+1) . . . ω(tk−1) ω(tk)

]⊤

and

Υ̃j
k =

[
yj(tk−w+1) . . . yj(tk−1) yj(tk)

]⊤
,

where yj(ti) is the j-th row of y(ti). If g = 1, the matrix R̃k has full rank and

vec(C̃jΠk) = (R̃⊤k R̃k)
−1R̃⊤k Υ̃

j
k, (5.6)

is an approximation of CjΠ, with Cj the j-th row of C, i.e. there exists a sequence {tk}
such that

lim
k→∞

C̃jΠk = CjΠ.

Proof. The matrix Π defined in equation (5.3) is such that the condition

ẋ(t)|tk = ΠSω(tk) +AeAtk(x(0)−Πkω(0)) (5.7)
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holds. Consider the first equation of system (5.1) computed at tk, namely

ẋ(t)|tk = Ax(tk) +BLω(tk). (5.8)

Substituting (5.7) in equation (5.8) yields

ΠSω(tk) +AeAtk(x(0)−Πkω(0)) = Ax(tk) +BLω(tk)

and multiplying on the left-hand side by CjA−1 we obtain

CjA−1ΠSω(tk) + CjeAtk(x(0)−Πkω(0)) = Cjx(tk) + CjA−1BLω(tk).

The matrix C̃jΠk defined in equation (5.6) is such that

Cjx(tk) = yj(tk) = C̃jΠkω(tk), (5.9)

which yields

CjA−1ΠSω(tk) + CjeAtk(x(0)−Πkω(0)) = C̃jΠkω(tk) + CjA−1BLω(tk)

and (
C̃jΠk + CjA−1(BL−ΠS)

)
ω(tk) = CjeAtk(x(0)−Πω(0)).

Using equation (5.3), yields

(
C̃jΠk − CjΠ

)
ω(tk) = CjeAtk(x(0)−Πω(0)).

The rest of the proof follows from Lemma 15 and Theorem 13 in Chapter 4.

Then a MIMO version of Algorithm 1 can be formulated.

Algorithm 2. Let k be a sufficiently large integer. Select ηj > 0, with j = 1, . . . , p

sufficiently small. Select the integer g ≥ 1.

1: Construct the matrices R̃k and Υ̃
j
k for all j = 1, . . . , p.

2: If rank
(
R̃k

)
= ν then compute C̃jΠk solving equation (5.6) for all j = 1, . . . , p.

Else increase g.
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If k − gν < 0 then restart the algorithm selecting a larger initial k.

3: If
∣∣∣
∣∣∣C̃jΠk − C̃jΠk−1

∣∣∣
∣∣∣ > ηj

tk − tk−1
for some ηj then k = k + 1 go to 1.

4: Stop.

Remark 36. If g = 1 the matrix R̃k is full rank. However, in practice numerical approx-

imations in the computation of R̃k may cause loss of rank. For this reason we formulate

the algorithm with the possibility of increasing the number of measurements. As a con-

sequence Algorithm 2 gives a least square approximation of the moments. According to

our experience, good values of g can usually be selected in the set [1, 10] depending on the

system. In the simulations presented in this chapter g = 4. �

5.4 Application to Power Systems

5.4.1 Power system model

We describe a power system composed of nm-machines and nb-bus with the classical model,

see [167,168], which is normally used in the literature of model reduction of power systems,

see e.g. [157,162,163]. The model is described by the differential equations

δ̇i = ωi − ωs,

2Hi

ωs
ω̇i = TMi

−Di(ωi − ωs)− E2
iGii − Ei

nm∑

j=1, j 6=i

(EjGij cos(δi − δj) + EjBij sin(δi − δj)) ,

(5.10)

with i = 1, . . . , nm, where δi and ωi are the rotor angle and angular velocity, respectively,

of the i-th machine, ωs is the reference angular velocity, Hi and Di are the inertia and

damping coefficients, respectively, of the i-th machine, Ei is the internal voltage of the

i-th machine, Yij = Gij + ιBij is the admittance between the machines i and j, Gii is the

self-conductance of the i-th machine and TMi
is the mechanical input power of the i-th

machine.

In the literature on model reduction of power systems the study area and the external area

are sometimes modeled as two separate entities interconnected each other with np-tie-lines,

see e.g. [157, 162]. However, this is a somewhat strong approximation. In fact, note that

if the two power systems, study area and external area, are interconnected then we have

a unique large power system and the power flow analysis which defines the parameters
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of system (5.10) has to be updated. Using the tie-lines only to exchange the input and

output of the two systems gives the considerable simplification that the number of inputs

and outputs corresponds to the arbitrary number of tie-lines.

On the contrary, in this chapter the division in study area and external area is a pure

exercise of labeling. In fact, the whole power system is described by equations (5.10) and

the division in study and external area can be done over every region of the power system

using the actual buses as interconnecting lines between the two areas. This approach

has the advantage of improving the fidelity of the simulation of the power system. The

drawback is that the number of inputs of the external area is the number of machines of the

study area and the number of outputs of the external area is the number of machines of the

external area, and vice versa. However, since with the considered method the dimension

of the reduced order model does not depend upon the number of inputs and outputs, a

large number of inputs and outputs is not an issue for the technique we are presenting.

Thus, consider an external areas composed of em-machines and a study areas composed

of sm-machines, with sm + em = nm. The study area is described by system (5.10) for

i = em + 1, . . . , sm. The input of the study area (output of the external area) is δj , with

j = 1, . . . , em. The external area is described by the linearization of system (5.10) around

an equilibrium point, namely



∆δ̇

∆ω̇


 =




0 I

A21 A22






∆δ

∆ω


+




0

B2


∆u, y =

[
C1 0

]


∆δ

∆ω


 ,

(5.11)

where ∆δi = δi− δ0i , ∆ωi = ωi−ω0
i , with i = 1, . . . , em, ∆uj = uj −u0j = δj− δ0j , with j =

em+1, . . . , nm, (δ
0, ω0, u0) is an equilibrium point and the remaining matrices are defined

as A21 = ωs diag(2Hi)
−1K, A22 = −ωs diag(2Hi)

−1 diag(Di) and B2 = ωs diag(2Hi)
−1Z,

with the components of K and Z defined as

Kij = EiEjBij cos(δ
0
i − δ0j )− EiEjBij sin(δ

0
i − δ0j ), (5.12)
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Figure 5.1: Line diagram of the 68-bus system, see [164].

for i = 1, . . . , em, j = 1, . . . , em and j 6= i,

Kii =

em+sm∑

j=1, j 6=i

−EiEjBij cos(δ
0
i − δ0j ) + EiEjBij sin(δ

0
i − δ0j ), (5.13)

for i = 1, . . . , em, and

Zik = EiEkBik cos(δ
0
i − δ0k)− EiEkBik sin(δ

0
i − δ0k), (5.14)

for i = 1, . . . , em and k = em + 1, . . . , sm.

5.4.2 NETS-NYPS benchmark system

The theory presented is validated on the interconnected New England test system (NETS)

and New York test system (NYPS) 68-bus, 16-machine, 5-area power system, shown in

Fig. 5.1, see [164]. The study area, composed of the machines 14, 15 and 16, is intercon-

nected with the bus-lines 18−50, 18−49 and 41−40 to the external area, composed of the

machines from 1 to 13. The separation in study and external area follows the geographical

distribution of the power system and the tie-lines are actual bus-lines of the power system.

The system to be reduced has n = 26, m = 3, p = 13. The parameters of system (5.10)

have been computed in MATLABTM as follows. With the script Init MultiMachine.m,

which can be downloaded from [164], the line data, the power flow results, the generator

direct axis transient reactance and the inertia values Hi of the machines have been gener-
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ated. Following the theory presented in [167], see also [168], we have computed the reduced

bus admittances Yij , the equilibrium voltages Ei and the equilibrium angles δi. The me-

chanical input powers TMi
have been computed from these quantities and equations (5.10)

written at the equilibrium point. The damping coefficients Di have been generated with

the function rand. Finally, the quantities of the linearized system have been computed

directly from (5.12)-(5.13)-(5.14).

5.4.3 Approximation of L

To determine the reduced order model we have to select the interpolation points (by

constructing the signal generator) and the eigenvalues that we want to maintain. In this

section we present the heuristic that has been used to construct the matrix L of the signal

generator.

Algorithm 3. Let r = 1 and j = 1. Consider Cj the j-th row of C, Br the r-th column

of B and lri the r-th element of li.

1. Consider the system (A, B̃ = B1, C1) and design a reduced order model with l1i = 1,

for all i = 1, . . . , ν, i.e. select the interpolation points and the desired eigenvalues of

the reduced order model to achieve the desired approximation of the resulting SISO

system.

2. If r < m then r = r+ 1. Using the same interpolation points and desired eigenval-

ues compute a reduced order model of the multi-input system (A, B̃ = [B̃ Br], C1)

as min
lri

||W − Ŵ ||H2 , where || · ||H2 is the H2 norm. Repeat.

Else with the obtained matrix L, the same interpolation points and desired eigen-

values compute a reduced order model of (A,B,C).

3. Stop.

This heuristic is justified by the observation that L is involved in combining m

elements. Thus, we may expect that we can ignore the fact that the system is multi-output

in the approximation of L. In addition, one can expect that the set of interpolation points

and prescribed eigenvalues which have been selected to obtain a desired approximation

on the truncated SISO system can be used on the MIMO system. This is justified by the

observation that we still want to maintain an approximation on the truncated system as
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Figure 5.2: Eigenvalues of the linear system (5.11) (crosses) and of the reduced order
model (5.4) (squares). The dash-dotted lines represent the 10% damping ratio.

close as possible to the one we have designed. As a consequence of these observations, the

approximation of the mν elements of L has been reduced to the problem of determining

m− 1 independent scalars lri .

Remark 37. There is no guarantee that this heuristic works in general. However, our

simulations have shown that the resulting L is at least locally optimal with respect the

H2 norm. A small variation of any of the obtained elements of L causes a rapid increase

of the H2 norm. �

5.4.4 Design of the reduced order model

The selection of the interpolation points and of the eigenvalues of the reduced order model

used in this section corresponds to the “Case 4” (ν = 10) analyzed in Section 5.4.6 and

we therefore refer the reader to that section. Therein with a fault behavior analysis it is

shown that good time-domain performance can be obtained with a reduced order model

of order between 6 and 12 if the correct slow and poorly damped modes are preserved.

System (5.11) has been simulated with the input generated by the signal generator (5.5).

The matrix of the generator has been selected as S = diag(S0, 2.12 S̄, 2.79 S̄, 3.42 S̄, 5 S̄),
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with

S0 =



0 1

0 0


 , S̄ =




0 1

−1 0


 ,

which corresponds to choosing the interpolation points at 0 (zero and first order moment),

0.3374 Hz, 0.444 Hz, 0.5443 Hz and 0.7958 Hz (all zero order moments). The reduced

order model is computed with L approximated using Algorithm 3 and CΠ approximated

with Algorithm 2. We determine the six least damped and the four slowest eigenvalues

of system (5.11) and we assign them to the reduced order model (5.4). In Fig. 5.2 the

eigenvalues of system (5.11) are represented with crosses, whereas the eigenvalues of the

reduced order model are depicted with squares. In the figure the modes in the area between

the two dash-dotted lines are well-damped (more than 10% damping ratio), whereas the

others are considered poorly damped [164].

5.4.5 Approximation of the moments

In this section we illustrate the performance of Algorithm 2 by showing how the approxi-

mated reduced order model improves as k in Algorithm 2 increases. The surfaces in Fig. 5.3

represent the magnitude (left graphs) and phase (right graphs) of the elementsW1,1 (top),

W10,2 (middle), W11,3 (bottom) of the transfer matrix of the reduced order model as a

function of tk, with 3.4448 ≤ tk ≤ 48.4299 s. For comparison, the solid/black lines in-

dicate the magnitude and phase of the respective elements of the transfer matrix of the

reduced order model for the exact moments CΠ, i.e. computed solving equation (5.3). The

figures show how the approximated magnitude and phase of the reduced order model (5.4)

evolve over time and approach the respective quantities of the exact reduced order model

as tk → ∞. Finally note that we have chosen to show these three particular compo-

nents of the transfer matrix because the rest of the components are very similar to these.

These are the components that present the most distinctive graphical features. Fig. 5.4

shows the magnitude of the elements W1,1 (top), W10,2 (middle) and W11,3 (bottom) of

the transfer matrix of system (5.11) (solid lines) and of the reduced order model (dotted

lines). We note that the curves of the reduced order model are close to the curves of the

system along all the frequencies. As expected, the approximation is not uniformly good
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Figure 5.3: The mesh represents the magnitude (left graphs) and phase (right graphs)
of the elements W1,1 (top), W10,2 (middle), W11,3 (bottom) of the transfer matrix of the
reduced order model as a function of tk, with 3.4448 ≤ tk ≤ 48.4299 s. The solid/black
lines indicate the magnitude and phase of the respective elements of the transfer
matrix of the reduced order model (5.4) for the exact moments CΠ, i.e. computed
solving equation (5.3).
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Figure 5.4: Magnitude of the elements W1,1 (top), W10,2 (middle) and W11,3 (bottom) of
the transfer matrix of system (5.11) (solid lines) and of the reduced order model (5.4)
(dotted lines).

for all the elements of W . In fact, the curve in the top graph does not approximate the

given system as well as the one of the other two graphs. This is caused by the use of the

tangential interpolation, i.e. we are trying to capture more information maintaining the

same number of parameters (the order of the reduced order model).

5.4.6 Selection of the modes to be preserved

In this section we study the problem of selecting the dimension of the reduced order

model and the modes to be preserved through a fault behavior analysis of the intercon-

nected system. We first challenge the common belief that to improve the approximation

it is necessary to increase the number of interpolation points, i.e. the dimension of the

reduced order model. Then we show that to improve the approximation it is sufficient to

preserve specific modes, namely poorly damped and slow modes. Note that for each case

that we consider we show only one randomly chosen Bode plot (for the sake of this chapter,

the 2nd diagonal term of the transfer function) out of the total thirty-nine. This section

justifies the selection of the order ν = 10 and of the interpolation points and eigenvalues

to be preserved that have been used in the previous sections.
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Figure 5.5: Case 1. Eigenvalues of the linear system (5.11) (crosses) and of the reduced
order model (5.4) (squares). The dash-dotted lines represent the 10% damping ratio.

Case 1 : we start with computing a reduced order model of dimension ν = 12. The

interpolation points have been chosen to be at 0 (zero and first moment), at 0.234 Hz,

0.3374 Hz, 0.444 Hz, 0.5443 Hz, 0.7958 Hz (all zero moments). Note that the solution of

equation (5.3) can be computed with the function Sylvester of MATLAB. However, the

result is very imprecise for the MIMO system considered. Then we have implemented a cus-

tom function based on the Kronecker product, see e.g. [5]. We determine the twelve least

damped eigenvalues of system (5.11) and we assign them to the reduced order model (5.4)

(see Fig. 5.5). Fig. 5.6 shows the Bode plot of the 2nd diagonal term of the transfer matrix

of system (5.11) (solid lines) and of the reduced order model (dotted lines). We can see

that the two graphs starts to diverge already around 0.0318 Hz and that the behavior from

medium to high frequencies is very different. A dynamic simulation of the power system

is performed. A self-clearing fault at bus 14 of the study area occurring at t = 1 s and

cleared at 1.15 s is simulated. Fig. 5.7 shows the angular velocities (large) and respective

absolute errors (insert) of the study area when this is connected to the nonlinear system

describing the external area (solid lines) and when it is connected to the reduced order

model (dotted lines). The approximation given by the reduced order model is totally
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Figure 5.6: Case 1. Bode plot (2nd diagonal term of the transfer function) of the
linear system (5.11) (solid lines) and of the reduced order model (5.4) (dotted lines)
for the set of eigenvalues shown in Fig. 5.5.
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Fig. 5.5. Insert: absolute errors between the time histories.
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Figure 5.8: Case 2. Eigenvalues of the linear system (5.11) (crosses) and of the reduced
order model (5.4) (squares). The dash-dotted line represent the 10% damping ratio.

unsatisfactory. Although Fig. 5.6 shows a good approximation of the steady state (low

frequency), the interconnection of the reduced order model and the study area is unstable.

In fact, the fault generates high frequency oscillations which make the trajectories of the

system exit the region of attraction of the equilibrium point.

Case 2 : the common approach used to improve the quality of the approximation

is to increase the order of the reduced model with the hope that the new reduced order

model be able to better capture the dynamics of the system to be reduced. We show that

this is not necessary. We keep the same order ν = 12 maintaining the same matrices S

and L. This time we assign as eigenvalues the six most poorly damped modes and the six

slowest modes (see Fig. 5.8). Fig. 5.9 shows the Bode plot of the 2nd diagonal term of

the transfer matrix of system (5.11) (solid lines) and of the reduced order model (dotted

lines). We note that the two graphs are close. The dynamic simulation graph for this

case is omitted since it is similar to the next, more interesting, case. Thus we see that the

eigenvalues retained in the reduced order model play a role that can be more important

of the order of the reduction.

Case 3 : to strengthen this last observation we now decrease the order of the reduced
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Figure 5.9: Case 2. Bode plot (2nd diagonal term of the transfer function) of the
linear system (5.11) (solid lines) and of the reduced order model (5.4) (dotted lines)
for the set of eigenvalues shown in Fig. 5.8.
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Figure 5.10: Case 3. Eigenvalues of the linear system (5.11) (crosses) and of the
reduced order model (5.4) (squares). The dash-dotted lines represent the 10% damping
ratio.
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Figure 5.11: Case 3. Bode plot (2nd diagonal term of the transfer function) of the
linear system (5.11) (solid lines) and of the reduced order model (5.4) (dotted lines)
for the set of eigenvalues shown in Fig. 5.10.
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Figure 5.12: Case 3. Large: angular velocities of the study area when this is con-
nected to the nonlinear system describing the external area (solid lines) and when
it is connected to the reduced order model (5.4) (dotted lines) with the eigenvalues
shown in Fig. 5.10. Insert: absolute errors between the time histories.
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Figure 5.13: Case 4. Large: angular velocities of the study area when this is con-
nected to the nonlinear system describing the external area (solid lines) and when
it is connected to the reduced order model (5.4) (dotted lines) with the eigenvalues
shown in Fig. 5.2. Insert: absolute errors between the time histories.

model to ν = 6. The interpolation points have been chosen as a subset of the previous

case, namely 0 (zero and first moment), 0.3374 Hz and 0.5443 Hz (all zero moments).

This time we maintain the four most poorly damped modes and the two slowest modes

(see Fig. 5.10). Fig. 5.11 shows the Bode plot of the 2nd diagonal term of the transfer

matrix of system (5.11) (solid lines) and of the reduced order model (dotted lines). We see

that in this case the reduced order model is a better approximation with respect to case

1 (ν = 12 with a bad selection of eigenvalues) but obviously a worse approximation with

respect to case 2 (ν = 12 with a good selection of eigenvalues). However, for the dynamic

behavior of interest this approximation is sufficiently good. In fact, Fig. 5.12 shows the

angular velocities (large) and respective absolute errors (insert) of the study area when

this is connected to the nonlinear system describing the external area (solid lines) and

when it is connected to the reduced order model (dotted lines). We see that the two time

histories are almost indistinguishable.

Case 4 : we finally study the case ν = 10 that we have used in the previous sections.

The order of 10 is a compromise between the minimal and maximal dimensions that we
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have analyzed. Fig. 5.13 shows the angular velocities (large) and respective absolute errors

(insert) of the study area when this is connected to the nonlinear system describing the

external area (solid lines) and when it is connected to the reduced order model (dotted

lines). We see that also in this case the two time histories are almost indistinguishable.

Thus, the analysis and control of the nonlinear system describing the study area can be

performed using the interconnection of such area with the reduced order model instead of

the full nonlinear description of the external area: in fact, the dynamic response to a fault

is almost identical but the number of the equations is reduced.

5.5 Conclusion

In this chapter we have provided a validation of the theory developed in Chapters 2 and 4.

We have presented a low complexity algorithm for the fast estimation of the moments of

MIMO systems. The estimated moments have been exploited for the model reduction of

large-scale interconnected power systems. The technique that we have demonstrated offers,

simultaneously, a low computational complexity approximation of the moments and the

possibility to easily enforce constraints on the reduced order model. This possibility has

been used to preserve selected slow and poorly damped modes which are important both

from a mathematical and physical point of view. The problem of the choice of the so-called

tangential directions has also been studied and an heuristic for their approximation has

been given. The techniques have been validated with the study of the dynamic response

of the NETS-NYPS benchmark system.
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Chapter 6

Model reduction by matching the

steady-state response of explicit

signal generators

6.1 Introduction

In this chapter we generalize the model reduction by moment matching with regards to

the class of input signals considered. In Chapter 2 we have shown that the moments of

a linear system are in one-to-one relation with the eigenvalues of the dynamic matrix S

of the exogenous system ω̇ = Sω. Now, we consider input signals generated by a linear

exogenous system represented in explicit form1, i.e. an implicit (differential) form may

not exist. This direction of investigation is motivated by a large number of applications in

which standard operating conditions are associated to non-continuous or non-differential

input signals. For instance, power converters are controlled by means of pulse width

modulated (PWM) signals or sawtooth signals2, see e.g. [171], [172], [173], and [174].

To achieve this extension, a new integral equation to characterize the moments is given.

Under specific assumptions, the equivalence of this new definition and the one based on

the Sylvester equation given in Chapter 2 is proved. Finally a new family of reduced order

models is presented and connections with the family of models given in Chapter 2 are

1The terminology is taken from [169,170]. See also Definition 18.
2Note that the use of the results of this chapter for the analysis of power converters is the topic of

Chapter 8.
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drawn.

The rest of the chapter is organized as follows. In Section 6.2 we give a formal description of

the problem addressed. In Section 6.3 the definition of moment is reformulated for explicit

signal generators. In Section 6.4 a family of reduced order models for linear systems is

introduced. Finally Section 6.5 contains some concluding remarks.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference paper [16] and in the journal

paper [17].

6.2 Problem formulation

Since the moments of the system described by the equations

ẋ = Ax+Bu, y = Cx, (6.1)

are related to the solution of the Sylvester equation

AΠ+BL = ΠS, (6.2)

is based on the availability of a differential representation of the signal generator, namely

equation

ω̇ = Sω, u = Lω. (6.3)

However, there are notable applications in which this may not be the case. For instance,

as already noted in the introduction, the input of a dynamical system describing a power

electronic device can often be a PWM wave which cannot be represented as the output

of a system described by smooth differential equations. For this reason we introduce the

following definition.

Definition 18. Let x, with x(t) ∈ Rn, be the state of a dynamical system Σ. Let u, with

u(t) ∈ Rm, be the input of Σ. Let t0 and x0 = x(t0) be the initial time and the initial

state, respectively. If there exists a function φ : R× R× Rn × Rm → Rn such that

x(t) = φ(t, t0, x0, u), (6.4)
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for all t ≥ t0, we call equation (6.4) the representation in explicit form [169], or the explicit

model, of Σ.

Assume φ(t, t0, x0, u) has a continuous derivative with respect to t for every t0, x0 and u,

and there exists a function f : Rn × Rm → Rn continuous for each t over Rn × Rm such

that

ẋ = f(x, u). (6.5)

We call the differential equation (6.5) the representation in implicit form [170], or the

implicit model, of Σ.

The goal of the chapter is to extend the theory developed in Chapter 2 for linear

signal generators which have an implicit model to signal generators in explicit form.

To gain insight on the use of explicit models for signal generators, we look now at the

linear generator in equation (6.3) making two trivial observations. The first one is that

the interpolation points si, eigenvalues of S, are the poles of the Laplace transform of the

free output response of system (6.3). The second one is that an input signal which is the

sum of sinusoidal signals can be generated by equation (6.3) defining the matrix S such

that the eigenvalues of S are in relation with the angular frequencies of the sinusoidal

signals. We now try to reinterpret these two observations for a signal generator which

does not have an implicit model. To begin with consider a square wave ⊓(t) defined as

⊓(t) = sign(sin(t)) =





1, (k − 1)π < t < kπ,

0, t = kπ or t = (k + 1)π,

−1, kπ < t < (k + 1)π,

with sign(0) = 0, and k = 1, 3, 5, . . . ,+∞. The Laplace transform of this function is

L(⊓(t)) = 1− e−sπ
s(1 + e−sπ)

,

and this has the poles

s̄ = 0, s̄j = (2j + 1)ι,

with j = −∞, . . . ,−1, 0, 1, . . . ,+∞. We see, then, that if we “insist on” the relation
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between the implicit model and the Laplace transform and if we want to compute a

reduced order model with the technique presented in Chapter 2, we have to interpolate

at infinitely many points si. This is suggested also by the second observation. Since the

function ⊓(t) is periodic, it admits a Fourier series, namely

⊓(t) = 4

π

∞∑

k=1,3,5,...,+∞

1

k
sin(kt).

Then, consistently with the second observation we again have to interpolate at infinitely

many points. Both these observations suggest that we could describe ⊓(t) by means of

the infinite dimensional system [175]

ω̇ =




. . .
. . .

. . . +2ι 0

0 +ι 0

0 0 0

0 −ι 0

0 −2ι . . .

. . .
. . .




ω,

with output ⊓ = P̂ω for some “matrix” P̂ . This shows a limitation of the current approach.

In fact, to interpolate at infinitely many points we need an “infinite dimensional mapping”

Π and an infinite dimensional reduced order model (see [114]).

To overcome these issues we consider signal generators in explicit form. Thus, consider

ω(t) = Λ(t, t0)ω0, u = Lω, (6.6)

with Λ(t, t0) ∈ Rν×ν such that Λ(t0, t0) = I. Note that this model provides a very general

class of models which contains the implicit model (6.3), but that describes several other

signal generators. For instance, any periodic signal can be described by (6.6) with the

property

Λ(t, t0) = Λ(t− T, t0), t ≥ T + t0, (6.7)
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where T is the period of the signal u. Alternatively (6.6) can represent a signal generator

described by a time-varying system of the form

ω̇ = S(t)ω, u = Lω, (6.8)

in which case Λ(t, t0) is (with additional assumptions, e.g. the semigroup property) the

transition matrix associated to (6.8) [176, Section 3].

Since the definition of moment given in this chapter is based on the existence of the steady-

state response of system (6.1) driven by (6.6), we need to introduce further hypotheses on

the class of input signals (6.6).

Assumption 14. The vector ω(t) defined in equation (6.6) has a strictly proper Laplace

transform with non-negative poles.

Assumption 14 is a standard condition for the existence of a well-defined steady-

state response of the state of system (6.1) driven by (6.6) [177–179].

Assumption 15. The matrix valued function Λ(t, t0) is non-singular for all t ≥ t0.

Assumption 15 is essential to have uniqueness of the solution ω(t) of (6.6). Note,

in fact, that it is always satisfied by a generator of the form (6.3) and it is required for

the uniqueness of the solution of system (6.8) (see e.g. [176]).

Assume now that there exists a set T ⊂ R≥0 in which Λ(t, t0) is differentiable with respect

to t and consider the time-varying system described by the equation

ż(t) = G(t)⊤z(t), (6.9)

with G(t) = −Λ̇(t, t0)Λ(t, t0)−1. Let Φ(t, t0) be the transition matrix of system (6.9).

Assumption 16. The function G(t) is piecewise continuous with respect to t. Moreover,

there exist T ≥ t0 and a polynomial p(t) such that ||Φ(t, t0)⊤|| ≤ p(t) for all t ≥ T .

This last technical assumption guarantees that the norm of z(t) in system (6.9) does

not diverge to infinity exponentially [176, Section 29] and it is needed, as shown in the

next section, to guarantee that the steady-state response xs(t) of system (6.1) driven by

(6.6) can be written as xs(t) = Π(t)ω(t) for some matrix valued function Π(t). Moreover,

the piecewise continuity of G(t) guarantees that the steady-state response is unique. Note



148

that Assumption 16 is a generalization of the assumption (used through the Thesis) that

S in (6.3) is such that σ(S) ⊂ C≥0. In this case G(t) = −S and if σ(S) ⊂ C≥0, the

condition ||e−S(t−t0)|| ≤ p(t) holds trivially.

Assumption 17. The triple (L,Λ, ω(t0)) is minimal, i.e. L and ω(t0) are such that

σ(L(LΛ(t, t0)ω(t0))) = σ(L(Λ(t, t0))).

This condition is derived from the observation that the minimality of (L, S, ω(0)) is

equivalent to the condition σ(L(LeStω(0))) = σ(S). This condition guarantees, together

with the minimality of (A,B,C), that all the modes of ω are excited and observable in

the output, and captures the requirement that one wants that the dynamics of the signal

generator is fully present in the steady-state response of the system.

Remark 38. Assumptions 14, 15, 16 and 17 are “mild” assumptions. For instance, they

are satisfied by the general class of discontinuous periodic signals which are considered in

the remaining of the chapter. �

As already anticipated, among all the possible signals generated by an explicit

model, we are particularly interested in periodic signals, which are generated by sys-

tem (6.6) with the property (6.7) and its generalizations (see the next section).

6.3 Integral definition of moment

In this section we give a definition of moment in the case in which the signal generator does

not have an implicit model. We begin by showing that the interconnection of system (6.1)

with the signal generator (6.6) possesses a steady-state response xs(t) described by the

relation xs(t) = Π(t)ω(t) for some matrix valued function Π(t). The following result holds.

Theorem 19. Consider system (6.1) and the signal generator (6.6). Assume Assump-

tions 15 and 16 hold, σ(A) ⊂ C<0 and Λ(t) is almost everywhere differentiable. Let

Π(t) =

(
eA(t−t0)Π(t0) +

∫ t

t0

eA(t−τ)BLΛ(τ, t0)dτ

)
Λ(t, t0)

−1, (6.10)

be a family of matrix valued functions parametrized in Π(t0) ∈ Rn×ν . Then there exists

a unique Π∞(t0) such that, for any Π(t0), lim
t→+∞

Π(t) − Π∞(t) = 0, where Π∞(t) is the

solution of (6.10) with Π(t0) = Π∞(t0). Moreover, if x(t0) = Π∞(t0)ω(t0) then x(t) −
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Π∞(t)ω(t) = 0 for all t ≥ t0, and the set M∞ = {(x, ω) ∈ Rn+ν |x(t) = Π∞(t)ω(t)} is
attractive.

Proof. Let T ⊂ R≥0 be a set in which Λ(t, t0) is differentiable with respect to t. Differen-

tiating both sides of equation (6.10) over T yields

Π̇(t)Λ(t, t0) + Π(t)Λ̇(t, t0)−AeA(t−t0)Π(t0) = BLΛ(t, t0) +A

∫ t

t0

eA(t−τ)BLΛ(τ, t0)dτ

= BLΛ(t, t0) +AΠ(t)Λ(t, t0)−AeA(t−t0)Π(t0).

Then, since Assumption 15 holds, we have

Π̇(t) = AΠ(t) +BL−Π(t)Λ̇(t, t0)Λ(t, t0)
−1. (6.11)

Let Π1(t) and Π2(t) be the solutions of equation (6.11) with initial conditions Π1(t0) and

Π2(t0), respectively, and define the error Ê(t) = Π1(t)−Π2(t). Then

˙̂
E(t) = AΠ1(t) +BL−Π1(t)Λ̇(t, t0)Λ(t, t0)

−1 −
(
AΠ2(t) +BL−Π2(t)Λ̇(t, t0)Λ(t, t0)

−1
)

= AÊ(t)− Ê(t)Λ̇(t, t0)Λ(t, t0)−1

and (see [176, Section 11]) Ê(t) = eA(t−t0)Ê(t0)Φ(t, t0)
⊤.

Since Φ(t, t0)
⊤ is bounded by a polynomial, by Assumption 16, Ê(t) converges to zero.

This implies that there exist motions Π∞(t) to which the solutions of equation (6.11)

converge, i.e. for any Π(t0) there exists a Π∞(t0) such that lim
t→+∞

Π(t)−Π∞(t) = 0. More-

over, Π∞(t) is unique for any t ≥ t0 by the piecewise continuity of Λ̇(t, t0)Λ(t, t0)
−1, see

e.g. [1, Theorem 3.2].

By Assumption 15, the unique solution of system (6.1) with input u defined by equa-

tion (6.6) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)BLΛ(τ, t0)ω(t0)dτ.

Let x(t0) = Π∞(t0)ω(t0), straightforward computations show that

x(t)−Π∞(t)ω(t) = eA(t−t0)Π∞(t0)ω(t0) +

∫ t

t0

eA(t−τ)BLΛ(τ, t0)ω(t0)dτ

−
(
eA(t−t0)Π∞(t0) +

∫ t

t0

eA(t−τ)BLΛ(τ, t0)dτ

)
Λ(t, t0)

−1Λ(t, t0)ω(t0) = 0,

for all t ≥ t0. The attractivity of Π∞(t) and the invariance of x(t) = Π∞(t)ω(t) imply
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that the setM∞ is attractive.

Corollary 2. Under the assumptions of Theorem 19 and Assumption 14, the function

Π∞(t)ω(t) is the steady-state response xs(t) of x(t), i.e. for any x(t0) and ω(t0), lim
t→+∞

x(t)−
Π∞(t)ω(t) = 0.

Remark 39. The definition of the function Π∞(t) can be given as in (6.10) or, alterna-

tively, as the unique solution of

Π̇(t) = AΠ(t) +BL−Π(t)Λ̇(t, t0)Λ(t, t0)
−1, (6.12)

with the initial condition Π(t0) = Π∞(t0). From a practical point of view to determine

Π∞(t) from equation (6.10) or (6.12) is necessary to know the initial condition Π∞(t0).

However, since the motion Π∞(t) is attractive, any solution of the two equations converges

to Π∞(t), i.e. one could select Π(t0) = 0. �

Remark 40. The integral equation (6.10) or the differential equation (6.12) play the role

of the Sylvester equation (6.2). Unlike when we have an implicit model of the signal

generator, the matrix Π∞(t) is in general a function of time. In fact, as remarked in

section 6.2, infinitely many interpolation points arise whenever a periodic discontinuous

signal is considered. Thus, a constant Π should have infinitely many rows and columns.

�

Definition 19. Consider system (6.1) and the signal generator (6.6). Suppose Assump-

tions 14, 15 and 16 hold and σ(A) ⊂ C<0. The function CΠ∞(t)ω(t), where Π∞(t) is the

solution of equation (6.10) with Π(t0) = Π∞(t0), is defined as the moment of system (6.1)

at Λ.

Corollary 3. Consider the interconnection of system (6.1) with the signal generator (6.6).

Suppose Assumptions 14, 15, 16 and 17 hold and σ(A) ⊂ C<0. Then the moment of (6.1)

at Λ coincides with the steady-state response of the output of the interconnected system

(6.1)-(6.6).

Proof. By the hypothesis on A and Assumptions 14, 15, 16 and 17 the steady-state re-

sponse of (6.1) is well-defined and the relation xs(t) = Π∞(t)ω(t), where Π∞(t) is the

unique solution of (6.10) with Π(t0) = Π∞(t0), holds. By Theorem 19 the set M∞ is

attractive and the steady-state response of the output of the interconnected system cor-

responds to CΠ∞(t)ω(t), which by definition is the moment of the system.
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The choice of defining the moment of (6.1) as in Definition 19 is justified by the

equivalence, when an implicit model of (6.6) is available, between the new and the classical

definition given in Chapter 2. In the next result we prove that, under certain hypotheses,

the solutions of the Sylvester equation (6.2) and of the integral equation (6.10) are the

same.

Theorem 20. Consider the signal generator (6.3), suppose σ(A) ⊂ C<0 and let σ(S) ⊂
C≥0. Then the unique solution of the integral equation (6.10) with Π(t0) = Π∞(t0)

coincides with the unique solution of the Sylvester equation (6.2).

Proof. Firstly note that Assumptions 14, 15 and 16 hold for the signal generator (6.3).

Let Π̃ be the unique solution of the Sylvester equation AΠ̃ + BL = Π̃S and Π∞(t) be

the unique solution of the integral equation (6.10) with Π(t0) = Π∞(t0). Computing the

derivative of the error E(t) = Π∞(t)− Π̃ yields

Ė(t)=AΠ∞(t)−Π∞(t)S +BL− 0=AΠ∞(t)−Π∞(t)S − (AΠ̃− Π̃S)=AE(t)− E(t)S,

and (see [176, Section 11])

E(t) = eA(t−t0)E(t0)e
−S(t−t0),

which implies that Π∞(t) − Π̃ converges to zero. Since Π̃ is constant and Π∞(t) is the

limiting solution of (6.10), it follows that Π∞(t0) = Π̃, E(t0) = 0 and then E(t) = 0 for

all t ≥ t0, which proves the claim.

As anticipated in the previous section, we now focus our interest on periodic signals.

Corollary 4. Consider system (6.1) and the signal generator (6.6). Assume Assump-

tions 14, 15 and 16 hold. If for (6.6) the property

Λ(t, t0) = D(t)Λ(t− T, t0), t ≥ T + t0, (6.13)

holds with D(t) ∈ Rν×ν non-singular for all t ∈ R≥0 and T ∈ R>0, then equation (6.10)

becomes

Π∞(t) = eATΠ∞(t− T )D(t)−1 +
[∫ t

t−T
eA(t−τ)BLΛ(τ, t0)dτ

]
Λ(t− T, t0)−1D(t)−1.

(6.14)
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If D(t) = I then

Π∞(t) = (I − eAT )−1
[∫ t

t−T
eA(t−τ)BLΛ(τ, t0)dτ

]
Λ(t, t0)

−1. (6.15)

Proof. Equation (6.14) is obtained substituting

xs(t) = Π∞(t)ω(t) = Π∞(t)D(t)ω(t− T )

and ω(t− T ) = Λ(t− T, t0)ω(t0) in

xs(t) = eATxs(t− T ) +
∫ t

t−T
eA(t−τ)BLΛ(τ, t0)ω(t0)dτ.

If D(t) ≡ I, ω(t) = ω(t− T ) and the steady-state of x(t) is periodic with period T . Then
Π∞(t)ω(t) = xs(t) = xs(t− T ) = Π∞(t− T )ω(t− T ) = Π∞(t− T )ω(t) which implies that
Π∞(t) = Π∞(t− T ) and equation (6.15) follows.

Remark 41. Equation (6.13) is a generalized form of equation (6.6) with the property

(6.7) and describes a wide class of signals, possibly non-periodic. To show this note, for

instance, that (6.3) can always be written as (6.13). In fact, for any T ∈ R≥0,

ω(t) = eSTω(t− T ), Λ(t, t0) = eS(t−t0).

Thus (6.3) can be described by (6.13) with D = eST for all t. �

For periodic signals equation (6.15) defines in a simple form the periodic matrix

Π∞(t). In addition, note that this definition of Π∞(t) does not depend upon the initial

condition. As a result equation (6.15) can be used to find the initial condition Π∞(0) of

equation (6.10), as shown in the following examples.

6.3.1 Example: determination of Π∞(t0)

Consider the interconnection of system (6.1) and (6.6). The matrices of (6.1) have been

randomly generated with the function rss of MATLABTM. For the remaining of the
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Figure 6.1: Time history of the entries of the error ε(t) = Π∞(t) − Π̃(t), computed
from equation (6.10) with initial condition Π(0) = Π∞(0) and Π(0) = Π̃(0) = 2Π∞(0),
respectively.

chapter we use the selection

A =




−2.439 2.337 −1.776

−2.933 −1.096 4.221

0.09223 −4.579 −1.537



,

B =

[
0 −0.7648 −1.402

]T
,

C =

[
0 0.4882 0

]
,

L =

[
1 1

]
.

(6.16)

Let t0 = 0 and consider the matrix of square waves

Λ⊓(t, 0) =



⊓
(
2π

T
t+

π

2

)
− ⊓

(
2π

T
t

)

⊓
(
2π

T
t

)
⊓
(
2π

T
t+

π

2

)


 . (6.17)

From equation (6.15) computed for t = 0,

Π∞(0) = −A−1(I − eAT )−1
[(
e

3
4
AT − eAT + e

1
2
AT − e 1

4
AT

)
BL

+
(
e

1
2
AT − e 3

4
AT + e

1
4
AT − I

)
BLΛ⊓

(
T

4
, 0

)]
,

(6.18)
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which for T = π yields

Π∞(0) =




0.1760 −0.2786

0.3327 −0.4004

0.1349 0.1546



.

Fig. 6.1 shows the time history of the error ε(t) = Π∞(t)− Π̃(t), where Π∞(t) is computed

from equation (6.10) with initial condition Π(0) = Π∞(0) defined in (6.18) and Π̃(t) is

computed from equation (6.10) with initial condition Π(0) = Π̃(0) = 2Π∞(0). As proved

in Theorem 19 the solution Π∞(t) is exponentially attractive.

Remark 42. Signals similar to the ones given in (6.17) can be generated by an implicit

(nonlinear) model. In fact, note that the interconnection between the signals generated

by the equations

ω̇ =


 0 1

−1 0


ω, u = sign

([
1 0

]
ω
)
,

and system (6.1) can be studied with the nonlinear techniques proposed in Chapter 2.

However, in this case the partial differential equation (2.23) has to be solved to compute the

moment of the system and the general solution of this problem, especially when involving

non-smooth functions, is difficult to find. �

Remark 43. While from a computational point of view solving the partial differential

equation (2.23) and solving the integral and the matrix inversion in Π∞(t) may be equally

expensive, Π∞(t) is an exact solution, while the solution of the partial differential equation

would probably have to be approximated. Note also that, exploiting the periodicity of the

steady-state, Π∞(t) has to be computed only over a period. This can be done off-line and

the obtained values can then be used on-line for any time interval. �

Remark 44. Signals similar to the ones given in (6.17) can be also generated by hybrid

systems. In fact, the signal generator (6.6) can represent a class of explicit linear hybrid

systems. Thus, the results of the chapter can be used to extend the model reduction

method by moment matching to this class of hybrid systems. �
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Figure 6.2: Time history of the entries of the matrices Π∼ (top), Π∧ (middle) and Π⊓

(bottom).
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Figure 6.3: Time history of the output (solid lines) y∼ (top), y∧ (middle) and y⊓
(bottom) and time histories of the steady-state of the output (dotted lines) computed
as CΠ∼ω, CΠ∧ω and CΠ⊓ω.
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6.3.2 Example: time-varying moments

Consider the interconnection of system (6.1) and (6.6), the selection (6.16), the ma-

trix (6.17) and the two matrices

Λ∼(t, 0) =



cos

(
2π

T
t

)
− sin

(
2π

T
t

)

sin

(
2π

T
t

)
cos

(
2π

T
t

)




and

Λ∧(t, 0) =



∧
(
2π

T
t+

π

2

)
− ∧

(
2π

T
t

)

∧
(
2π

T
t

)
∧
(
2π

T
t+

π

2

)


 ,

where

∧(t) =





t mod (π), (k − 1)π ≤ t < kπ,

1− (t mod (π)), kπ ≤ t < (k + 1)π,

with k = 1, 3, 5, . . . ,+∞ and period T = π. Let Π∼, Π∧ and Π⊓ be the solutions of

equation (6.15) and y∼, y∧ and y⊓ be the outputs of system (6.1) for Λ∼, Λ∧ and Λ⊓,

respectively. Fig. 6.2 shows the entries of the matrices Π∼ (top), Π∧ (middle) and Π⊓

(bottom). We note that Π∼ is constant, whereas Π∧ and Π⊓ are periodic. Fig. 6.3 shows

the time history of the output (solid lines) y∼ (top), y∧ (middle) and y⊓ (bottom) and of

the steady-state value of the output (dotted lines) computed as CΠ∼ω, CΠ∧ω and CΠ⊓ω,

i.e. the moment of system (6.1) at Λ. We note that the outputs of the system approach

the steady-state responses, as expected.

6.4 Reduced order models in explicit form

In this section, exploiting the new definition of moment, a family of systems achieving

moment matching is introduced and connections with the families of models given in

Chapter 2 are drawn.

Definition 20. Consider system (6.1) and the signal generator (6.6). Suppose Assump-

tions 14, 15, 16 and 17 hold and σ(A) ⊂ C<0. Then the system described by the equations

ξ(t) = F̃ (t, t0)ξ0 +

∫ t

t0

G̃(t− τ)u(τ)dτ, ψ(t) = H̃(t)ξ(t), (6.19)
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with ξ(t) ∈ Rν , F̃ (t, t0) ∈ Rν×ν , G̃(t) ∈ Rν×1, is a model of system (6.1) at (6.6), if there

exists a unique solution P∞(t) of the equation

P (t) =

(
F̃ (t, t0)P (t0) +

∫ t

t0

G̃(t− τ)LΛ(τ, t0)dτ
)
Λ−1(t, t0), (6.20)

with P (t0) = P∞(t0) such that for any P (t0), lim
t→+∞

P (t)− P∞(t) = 0 and

CΠ∞(t) = H̃(t)P∞(t), (6.21)

where Π∞(t) is the unique solution of (6.10), with Π(t0) = Π∞(t0). System (6.19) is a

reduced order model of system (6.1) at (Λ, L) if ν < n.

Remark 45. In addition to the assumptions which guarantee the existence of the moment

of system (6.1), we need two additional conditions for the existence of the reduced order

model (6.19). Firstly the reduced order model has to be asymptotically stable, i.e. for

each ε > 0, there exists δε > 0 such that if ||ξ(0)|| < δε then ||ξ(t)|| < ε and there exists a

δ > 0 such that if ||ξ(0)|| < δ then lim
t→+∞

ξ(t) = 0. This guarantees that the function P∞(t)

exists, i.e. the moment of system (6.19) exists. Secondly we need P∞(t) to be non-singular

for all t ∈ R≥0. This guarantees the existence of H(t) for all t ∈ R≥0, i.e. the moments

are matched. �

We now discuss how to simplify the family of models (6.19) to achieve moment

matching with additional constraints.

Property 1: ideally we would like to have P∞(t) = I (as in Chapters 2 and 3), which

has proved to give a remarkable simplification in the definition of the reduced order model.

We recall that the selection P = I in Chapter 2 yields a family of systems, parametrized

by a matrix G ∈ Rν , which is complete, i.e. the family contains all systems of dimensions

ν achieving moment matching.

Property 2: at the same time we would like to bring the first equation of (6.19) to

a form for which we can easily enforce additional constraints. This form is described by

the selection

F̃ (t, t0) = eF (t−t0), G̃(t) = eFtG, (6.22)

for some F and G, which makes the first equation of (6.19) a representation in explicit

form of a linear time-invariant system which has an implicit model.
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However, differently from the family of reduced order models given in Chapter 2,

it is not possible for the reduced order model (6.19) to satisfy both properties, namely

having an implicit model and be such that P∞(t) = I. Note, for instance, that if ω(t)

belongs to the class of signals satisfying (6.7) and we use the selection (6.22), then the

steady-state ξs(t) is periodic and so it is P∞(t) (see the proof of Corollary 4). Thus, this

first route in which we simplify the problem fixing P∞(t) brings the problem of determining

F̃ (t, t0) and G̃(t) from equation (6.20) (which may not be easy) and, at the same time,

such that additional properties, e.g. stability, can be enforced on the reduced order model.

As a second route we can fix F̃ (t, t0) and G̃(t) with the selection given in (6.22) which,

however, brings the problem of finding P∞(t) and solving equation (6.21) with respect to

H̃(t).

Both the choices are viable, however, it is easier to follow the second route, namely using

the selection (6.22) and solving numerically (6.20) and (6.21). In this case the dynamics

of the state ξ can be described by a linear system in implicit form for which the solution

to the problem of selecting F and G such that additional properties are satisfied is given

in Chapter 2.

Remark 46. Both routes lead to models which are equivalent to the reduced order models

given in Chapter 2 if Λ(t, t0) = eS(t−t0). Following the first route easy computation shows

that F̃ (t, t0) = e(S−GL)(t−t0), G̃(t) = e(S−GL)tG, with G free, is a solution of equation

(6.20) with P∞(t) = I. Following the second route, by Theorem 20, equation (6.20) is

equivalent to the Sylvester equation associated to the general family of reduced order

models given in Chapter 2. �

Remark 47. As already discussed, if Λ(t, t0) = eS(t−t0) and P∞(t) = P = I, then in (6.22)

F = S −GL with G free. The family of models (6.19) reduces to the family parametrized

in G given in Chapter 2. Note also that a different selection P̄ 6= P = I yields the same

class of models through a change of coordinates in the state space representation, namely

F̄ = P̄ (S −GL)P̄−1, Ḡ = P̄G, H̄ = CΠP̄−1, and there is still only one free parameter G.

On the other hand, in the selection (6.22), we have two free parameters, namely F and G

which can be totally independent of each other (this is possible since H̃(t) in (6.21) is not

constant). �

We summarize these observations in the next statement in which we give a family
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of reduced order models in the case of periodic input signals.

Proposition 9. Consider system (6.1) and the signal generator (6.6) with the property

(6.7). Suppose Assumptions 14, 15, 16 and 17 hold and σ(A) ⊂ C<0. Then the system

ξ̇ = Fξ +Gu, ψ = CΠ∞(t)P∞(t)
−1ξ(t), (6.23)

with ξ(t) ∈ Rν , F ∈ Rν×ν , G ∈ Rν×1 and Π∞(t) defined in (6.15), is amodel of system (6.1)

at (Λ, L), if σ(F ) ⊂ C<0 and

P∞(t) = (I − eFT )−1
[∫ t

t−T
eF (t−τ)GLΛ(τ, t0)dτ

]
Λ(t, t0)

−1, (6.24)

is non-singular for all t ∈ R≥0.

Proof. In (6.19) select F̃ (t, t0) and G̃(t) as in (6.22). Since the signal generator (6.6) is

periodic and σ(F ) ⊂ C<0, equation (6.20) takes, by Corollary 4 the form given in (6.24).

By assumption, P∞(t) is non-singular and, thus, the matching condition (6.21) can be

solved with respect to H̃(t), giving H̃(t) = CΠ∞(t)P∞(t)
−1.

We conclude this section with a numerical example to illustrate this last result.

6.4.1 Example: a numerical example

Consider the interconnection of system (6.1) and (6.6) with Λ defined as in

(6.17). The matrices of (6.1), with n = 15, have been selected as A =

diag(−1/n,−2/n, . . . ,−1), B = [−1/n − 2/n . . . − 1]⊤, C = B⊤, with the initial

state x(t0) = [n/2 n/2−1 . . . −n/2+1]⊤. Using the family (6.23), two reduced or-

der models of system (6.1) have been computed. The first one is described by the

selection F = diag(−1,−0.0667) (which are the slowest and fastest modes of A) and

G = [0.0771 −0.0251]⊤, while the second one by F = diag(−0.9333,−1) (which are the

two fastest modes of A) and G = [0.0891 0.008]⊤. In both case G is such that P∞(t)

is non-singular for all t ∈ R≥0. The top graph of Fig. 6.4 shows the time history of the

output y (solid line), of the output ψI of the first reduced order model (dotted line) and of

the output ψII of the second reduced order model (dash-dotted line). The bottom graph

shows the time history of |y − ψI | (dotted line) and of |y − ψII | (dash-dotted line). The
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Figure 6.4: Top: time history of the output y (solid line) of system (6.1), with (6.17),
of the output ψI (dotted line) of system (6.23) and of the output ψII (dash-dotted
line) of system (6.23) . Bottom: time history of |y − ψI | (dotted line) and of |y − ψII |
(dash-dotted line).

figure shows that the output response of the second model converges to the output of the

system much quicker than the one of the first model.

Remark 48. The dynamics of (6.23) is the dynamics of a linear system in implicit form

“filtered” with the dynamics of a linear system in explicit form. �

6.5 Conclusion

In this chapter the limitations of the description of moment which uses the matrix S have

been investigated. With the final aim of solving the model reduction problem for a class

of input signals generated by a linear exogenous system which does not have an implicit

(differential) form, a time-varying parametrization of the steady-state of the system has

been used to extend, exploiting an integral matrix equation, the definition of moment to

this class of input signals. The equivalence of the new definition and the one based on the

Sylvester equation has been proved under specific conditions. Special attention has been

given to periodic signals for the wide range of practical applications where these are used.

Reduced order models matching the steady-state response of explicit signal generators
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have been given for linear systems and several connections between classical reduced order

models and the new ones have been drawn. The chapter is completed with numerical

examples.
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Chapter 7

Model reduction for linear

singular systems

7.1 Introduction

Singular systems, also known as generalized state-space systems, descriptor systems or

differential-algebraic systems, have been largely investigated because of their capacity

of modeling a variety of physical behaviors such as power systems, electrical networks,

chemical processes, biological systems and social economic systems, see [180], [181]. The

important characteristic of this class of systems is that they combine dynamic (differen-

tial) equations, referred as slow subsystem and static (algebraic) equations, referred as

fast subsystem. They are often the result of the interconnection of several subsystems and

the overall singular system has often large dimensionality. This justifies the interest in

the model reduction problem for this class of systems. A first result of model reduction

for singular systems has been proposed in [182] in which the chained aggregation method

has been used. As pointed out in [183] this method is computationally intensive and

another approach based on balanced realization has been proposed. However, the reduced

order model obtained therein is a non-singular one and as a consequence the technique is

not able to maintain the impulsive characteristic of singular systems. In [184] a singular

reduced order model based on the Nehari’s approximation algorithm [185] has been pre-

sented. Other results on model reduction via covariance approximation [186] and using

singular value decomposition [187] have also been proposed. In [188] the authors propose
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a moment matching method to reduce multi-input, multi-output (MIMO) systems. The

method proposed therein is based in isolating the slow and fast subsystem and in reduc-

ing only the slow part (the non-singular subsystem), leaving unreduced the fast part (the

singular subsystem).

In this chapter we extend the model reduction method developed in Chapter 2 to singu-

lar systems. Combining the interpolation-based and the steady-state-based description of

moment a partitioned projector Π is computed. In the projector, the contribution of the

fast subsystem is separated by the contribution of the slow subsystem. The information

on the fast subsystem is clearly encoded in the projector and it is not lost by the moment

matching technique. Moreover, the output of reduced order models based on this projector

approximates the output of the system only when consistent initial conditions are taken in

account. In addition, the partitioned projector allows to define several families of reduced

order models which have great flexibility in maintaining independently specific properties

of the slow and fast subsystems. Thus, purely fast, purely slow and a “simple” family

of reduced order models are proposed and the possibility of matching with the impulsive

controllability constraint is discussed.

Remark 49. The contribution of this chapter is substantially different from [188], in

both results and meaning. In [188] the fast subsystem is not reduced at all. The reason

the authors give is that if the algebraic part is reduced than the frequency error between

the system to be reduced and the reduced order model grows unbounded. Thus, their

projector is partitioned in a classical projector (for non-singular systems) and the identity.

In the method proposed here the reduction can operate independently on the algebraic

part, on the differential part, or on a combination thereof. Moreover, we believe that the

ability of reducing the algebraic part is relevant even though the error grows unbounded.

In fact, as shown in the example in Section 7.4.5, a reduced order model which has the

same output response of the system to be reduced can be determined even though for high

frequencies the error grows unbounded. Moreover, in many applications the unbounded

part is filtered out with a low-pass filter or, alternatively, the behavior for high frequencies

is not of interest as long as some degree of divergence at high frequency is maintained (both

the frequency response of the system and of the reduced order model grow unbounded).

Finally note that the results in this chapter are instrumental in deriving a model reduction
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theory for nonlinear singular systems. �

The rest of the chapter is organized as follows. In Section 7.2 we recall some basic

results for singular systems which are instrumental for the remaining. In Section 7.3

the interpolation-based description of moment is extended to singular systems. Then,

combining it with the steady-state-based description of moment, a new formulation of the

projector Π is given. In Section 7.4 several families of reduced order models are given and

the possibility to retain, reduce or eliminate the fast subsystem is investigated. Moreover,

a result to enforce impulsive controllability on the reduced order model is proposed. Two

numerical examples are used to illustrate the results. Finally Section 7.5 contains some

concluding remarks and future directions of research.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference paper [18]. The problem of

model reduction by moment matching for nonlinear singular systems is currently under

investigation.

7.2 Preliminaries on Singular Systems

In this section some basic results for singular systems are recalled. Consider a linear,

single-input, single-output, continuous-time, singular system described by the equations1

Eẋ = Ax+Bu, y = Cx, (7.1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n.

Assume that u is piecewise continuously differentiable.

Definition 21. [180] Let E ⊂ C be the set of complex numbers s such that det(sE−A) 6=
0. For any two matrices E and A, the pencil (E,A) is called regular if E 6≡ ∅.

Lemma 16. [180] The pencil (E,A) is regular if and only if there exist two nonsingular

matrices Q and Γ such that

QEΓ = diag(I,N), QAΓ = diag(A1, I),

1The results can be extended to MIMO systems as discussed in Chapter 5.
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where N ∈ Rn2×n2 is nilpotent with degree2 h and A1 ∈ Rn1×n1 , with n1 + n2 = n.

Assume system (7.1) is regular, then Q and Γ can be selected such that system (7.1)

can be written in the so-called first equivalent form, namely

slow

subsystem





ẋ1 = A1x1 +B1u,

y1 = C1x1,

fast

subsystem





Nẋ2 = x2 +B2u,

y2 = C2x2,

y = y1 + y2

(7.2)

with the coordinate transformation

[
x⊤1 x⊤2

]⊤
= Γ−1x, where x1 ∈ Rn1×n1 , x2 ∈

Rn2×n2 , and

QEΓ = diag(I,N), QB =

[
B⊤1 B⊤2

]⊤
, QAΓ = diag(A1, I), CΓ =

[
C1 C2

]
.

The state response of system (7.1) is given by

x(t) = Γ



I

0



(
eA1tx1(0) +

∫ t

0
eA1(t−τ)B1u(τ)dτ

)
− Γ



0

I




h−1∑

i=0

N iB2
di

dti
u(t). (7.3)

Differently from standard linear systems, singular systems have a unique solution only if

x(0) = Γ

[
x⊤1 (0) x⊤2 (0)

]⊤
is a consistent initial condition, namely it is such that

x(0) = Γ



I

0


x1(0)− Γ



0

I




h−1∑

i=0

N iB2
di

dti
u(t)

∣∣∣∣∣
t=0

,

where x1(0) can be freely selected.

7.3 Definition of moment

In this section we establish a one-to-one relation between the moments of system (7.1),

the unique solution of a generalized Sylvester equation and the steady-state response of

the output of a particular interconnected system.

2A nilpotent matrix is a square matrix N such that N
k = 0 for some positive integer k. The smallest

such k is called the degree of N .
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Let

W (s) = C(sE −A)−1B = C1(sI −A1)
−1B1 + C2(sN − I)−1B2,

be the transfer function associated to system (7.1) and assume that the system is minimal,

i.e. as for non-singular systems (see [180, Theorem 2-6.3]), controllable and observable.

7.3.1 Interpolation-based description of moment

We begin extending the interpolation-based description of moment. This, in conjunction

with the steady-state-based description of moment, allows to obtain a special structure

for the projector to be used in the model reduction process.

Definition 22. Let si ∈ E . The 0-moment of system (7.1) at si is the complex number

η0(si) = C(siE −A)−1B.

The k-moment of system (7.1) at si is the complex number

ηk(si) =
(−1)k
k!

[
dk

dsk
C(sE −A)−1B

]

s=si

,

with k ≥ 1 integer.

Note that each moment is the sum of two contributions, one depending on the slow

subsystem and one depending on the fast subsystem, i.e.

ηk(si) = (−1)kC1(siI −A1)
−(k+1)B1 + (−1)kC2N

k(siN − I)−(k+1)B2, (7.4)

and if k ≥ h,

ηk(si) = (−1)kC1(siI −A1)
−(k+1)B1.

The next result gives a relation between the moments and the solution of a generalized

Sylvester equation.

Lemma 17. Let si ∈ E . Consider system (7.1), then

[
η0(si) . . . ηk(si)

]
= CΠ̃Ψk,

where Ψk = diag(1,−1, 1, . . . , (−1)k) ∈ R(k+1)×(k+1) and Π̃ is the unique solution of the
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generalized Sylvester equation

AΠ̃ +BLk = EΠ̃Σk, (7.5)

with Lk = [1 0 . . . 0] ∈ R(k+1) and

Σk =




si 1 0 . . . 0

0 si 1 . . . 0
...

...
. . .

. . .
...

0 . . . 0 si 1

0 . . . . . . 0 si




∈ R(k+1)×(k+1).

Proof. Let Π̃ = [Π̃0 Π̃1 . . . Π̃k] and note that (7.5) can be rewritten as

AΠ̃0 + B = EΠ̃0si,

AΠ̃1 = EΠ̃1si + EΠ̃0,
...

AΠ̃k = EΠ̃ksi + EΠ̃k−1.

As a result

Π̃0 =(sE −A)−1B,

Π̃1 =−(sE −A)−1E(sE −A)−1B =

[
d

ds
(sE −A)−1B

]

si

,

...

Π̃k =
1

k!

[
dk

dsk
(sE −A)−1B

]

si

,

which proves the claim.

Exploiting this lemma the following result, which is a direct extension of Lemma 2,

holds.

Theorem 21. Consider system (7.1) and suppose that for a set of numbers si, with

i = 1, . . . , η, si ∈ E . Then there exists a one-to-one relation between the moments η0(s1),
. . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the matrix CΠ, where Π is the unique

solution of the generalized Sylvester equation

AΠ+BL = EΠS, (7.6)
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with S ∈ Rν×ν any non-derogatory matrix with characteristic polynomial

p(s) =

η∏

i=1

(s− si)ki , (7.7)

where ν =

η∑

i=1

ki and L such that the pair (L, S) is observable.

Proof. We begin proving that if σ(S) ⊂ E then equation (7.6) has a unique solution.

Using the vectorization transformation and the Kronecker product properties we obtain

the solution

vec(Π) = −(I ⊗A− S⊤ ⊗ E)−1 vec(BL),

which is unique if and only if

det
(
I ⊗A− S⊤ ⊗ E

)
6= 0. (7.8)

Let R be an invertible matrix such that R−1SR = JS , where JS is the complex Jordan

form of S. Multiplying on the left by (R⊗ I) and on the right by (R−1⊗ I) we obtain the
equation

det
(
I ⊗A− S⊤ ⊗ E

)
= det

(
(R⊗ I)(I ⊗A− S⊤ ⊗ E)(R−1 ⊗ I)

)

= det
(
I ⊗A− J⊤S ⊗ E

)
.

Then (7.8) holds if and only if

η∏

i=1

det (A− siE) 6= 0.

The remaining of the theorem can be proved following the same steps in the proof of

Theorem 5.

7.3.2 Steady-state-based description of moment

In this section we extend the steady-state-based description of moment to linear singular

systems. This is instrumental to derive the main technical result of the chapter, namely a

partition of the projector Π in slow and fast parts.

Theorem 22. Let S ∈ Rν×ν be any non-derogatory matrix with characteristic polyno-
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mial (7.7). Consider system (7.1) and suppose that σ(S) ⊂ E and σ(A) ⊂ C<0. Consider

the interconnection of system (7.1) with the system

ω̇ = Sω, u = Lω, (7.9)

with L and ω(0) such that the triple (L, S, ω(0)) is minimal. Then, for all consistent

initial conditions, there exists a one-to-one relation between the moments η0(s1), . . . ,

ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the steady-state response of the output of such

interconnected system.

Proof. Consider the interconnection of system (7.1) with system (7.9). By the assumptions

on the pencil (E,A) and σ(S), the interconnected system has a well-defined invariant

manifold given by M = {(x, ω) ∈ Rn+ν : x = Πω}, with Π the unique solution of the

generalized Sylvester equation (7.6). We prove now that M is attractive. Consider the

equation
˙︷ ︸︸ ︷

Ex− EΠω = Ax+BLω − EΠSω,

in which substituting (7.6), yields

˙︷ ︸︸ ︷
Ex− EΠω = A(x−Πω).

Let z = x−Πω, then

Eż = Az.

The state response of this last equation is

z(t) = Γ


 I

0


 eA1tz(0).

Thus, the output response of the interconnected system is

y(t) = CΠω(t) + CΓ


 I

0


 eA1t(x1(0)−Πω(0)).
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The claim follows observing that

CΓ


 I

0


 eA1t(x1(0)−Πω(0))

describes the transient response which vanishes exponentially.

We are now ready to give the main result of this chapter.

Theorem 23. Let S ∈ Rν×ν be any non-derogatory matrix with characteristic polyno-

mial (7.7). Consider system (7.2) and suppose that σ(S)∩σ(A1) = ∅. Then there exists a
one-to-one relation between the moments η0(s1), . . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη)

and the matrix CΠ̂, where Π̂ = Γ−1Π =
[
Π⊤1 Π⊤2

]⊤
is the unique solution of the

equations

A1Π1 −Π1S = −B1L,

Π2 = −
h−1∑

i=0

N iB2LS
i.

(7.10)

Proof. In steady-state, using the change of coordinates


 x1ss

x2ss


 = Γ−1xss = Γ−1Πω =


 Π1

Π2


ω

in (7.2), yields

Π1Sω = A1Π1ω +B1Lω,

NΠ2Sω = Π2ω +B2Lω,

from which ω can be eliminated because the two equations hold for any ω. We readily

obtain the first of equations (7.10). Applying the vectorization transformation and the

Kronecker product properties to the second equation we see that Π2 is unique if and only

if

det(I − siN) 6= 0,

for any si ∈ σ(S). This holds by definition for any si ∈ C since N is a nilpotent matrix.

Then, Π is unique if and only if σ(S) ∩ σ(A1) = ∅. To obtain the explicit expression of
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Π2, we substitute x2ss = Π2ω in the last n2 equations in (7.3) obtaining

Π2ω = −
h−1∑

i=0

N iB2L
di

dti
ω.

Observing that
di

dti
ω = Siω, yields

Π2 = −
h−1∑

i=0

N iB2LS
i,

since the equation holds for any ω.

This result has multiple implications. The contribution to the moment of the fast

subsystem is separated in the projector Π̂ from the contribution of the slow subsystem.

The condition for uniqueness of the projector is simplified and it depends only on the

eigenvalues of the slow subsystem. This is actually expected since in the first equivalent

form the k-th moment of the system can be written as (7.4), in which siN − I is full-rank

for any si.

It is clear from the form of Π̂ that the information on the fast subsystem is encoded in

the projector and it is not lost by the moment matching technique. Thus, the output of

reduced order models based on this projector approximates the output of the system only

when consistent initial conditions are taken in account, i.e. when the solution of the system

to be reduced exists. Moreover, this formulation gives high flexibility in maintaining the

properties of the fast and slow subsystems. Depending on the particular application the

fast subsystem can be preserved, reduced or eliminated independently of the reduction of

the slow subsystem. This possibility is analyzed in detail in the next section.

7.4 Reduced order models

In this section several families of reduced order models achieving moment matching are

presented. The possibility of obtaining purely fast or purely slow singular systems is

investigated and a “simple” family of singular systems is given. In addition, the solution

to the problem of matching with impulsive controllability is given.
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Definition 23. Consider system (7.1) and let S ∈ Rν×ν be any non-derogatory matrix

with characteristic polynomial (7.7). Assume σ(S)∩σ(A1) = ∅ and let L be such that the

pair (L, S) is observable. Then the system

ξ̇1 = F1ξ1 +G1u, Mξ̇2 = ξ2 +G2u,

ψ1 = H1ξ1, ψ2 = H2ξ2,

ψ = ψ1 + ψ2,

(7.11)

with ξj(t) ∈ Rν , for j = 1, 2, ψj(t) ∈ R, for j = 1, 2, F1 ∈ Rν×ν full-rank, M ∈ Rν×ν

nilpotent with degree ~, Gj ∈ Rν×1, for j = 1, 2, and Hj ∈ R1×ν , for j = 1, 2, is a model

of system (7.1) at S, if there exists a unique solution
[
P⊤1 P⊤2

]⊤
of the equations

F1P1 − P1S = −G1L,

P2 = −
~−1∑

i=0

M iG2LS
i,

(7.12)

such that

C1Π1 = H1P1,

C2Π2 = H2P2,

(7.13)

where
[
Π⊤1 Π⊤2

]⊤
is the unique solution of (7.10). System (7.11) is a reduced order

model of system (7.1) at S if 2ν < n.

We analyze now some special families of reduced order models which achieve mo-

ment matching.

7.4.1 Non-singular reduced order model

Using these results, it is easy to approximate a singular system with a non-singular sys-

tem. This was the first approach attempted, see [183]. The same authors and following

researchers, e.g. see [184], deemed the method inaccurate, since the impulsive characteristic

of the singular system is lost. However, in particular settings and as a first approximation,

it may be useful to approximate a singular system with a non-singular one. This can be
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done easily in the present framework. In fact, the system

ξ̇ = Fξ +Gu, ψ = Hξ, (7.14)

is a model of system (7.1) at S, if there exists a unique solution P of the equation

FP − PS = −GL, (7.15)

such that

CΠ = HP, (7.16)

where Π is the unique solution of (7.6). Note that the reduced order model (7.14) has

dimension ν, whereas the reduced order model (7.11) has dimension 2ν.

7.4.2 Fast reduced order model

Finally, a completely fast reduced order model which approximates the singular system

can be obtained in the present framework. The system

Mξ̇ = ξ +Gu, ψ = Hξ, (7.17)

is a model of system (7.1) at S, if

H = −CΠ
(

~−1∑

i=0

M iGLSi

)−1
, (7.18)

where Π is the unique solution of (7.6), is well-defined. The reduced order model (7.17)

has dimension ν.

7.4.3 The identity family of singular reduced order models

As already shown in Chapters 2 and 3, simple families of reduced order models are identi-

fied by the choice P = I. In the present setting it seems natural to select P1 = I keeping
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M and G2 free. Then, the system

ξ̇1 = (S −G1L)ξ1 +G1u,

Mξ̇2 = ξ2 +G2u,

ψ1 = C1Π1ξ1,

ψ2 = C2

h−1∑

i=0

N iB2LS
i

(
~−1∑

i=0

M iG2LS
i

)−1
ξ2,

ψ = ψ1 + ψ2,

(7.19)

where

[
Π⊤1 Π⊤2

]⊤
is the unique solution of (7.10), is a model of system (7.1) at S for

any G1, G2 and M such that (7.12) has a unique solution.

Remark 50. The family of systems (7.19) belongs to the family given in Definition 23.

The families (7.14) and (7.17) do not belong to the family given in Definition 23. �

7.4.4 Matching with impulsive controllability

Impulse controllability is a characteristic property of singular systems and corresponds to

the controllability of only the fast subsystem. A condition for impulse controllability is

given in [180]. System (7.1) is impulse controllable if and only if

rank



E 0 0

A E B


 = n+ rank(E). (7.20)

If the system to be reduced is impulsive controllable, it is desirable to maintain this

property also in the reduced order model.

Theorem 24. System (7.11), or (7.17), or (7.19), is impulsive controllable if M and G2

are selected such that

rank
[
M G2

]
= rank(M). (7.21)

The proof of the theorem is straightforward, however, to the best of the author’s knowledge,

the condition for impulsive controllability has not been presented in the simple form given

in (7.21).
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Proof. Following [180]

rank


 E 0 0

A E B


 = 2n1 + rank


 N 0 0

I N B2


 .

Note now that

n+ rank(E) = n1 + n2 + rank


 I 0

0 N


 .

Then condition (7.20) reduces to

rank


 E 0 0

A E B


 = 2n1 + n2 + rank

[
N B2

]
=

= n1 + n2 + rank


 I 0

0 N


 = 2n1 + n2 + rank(N),

that written for the reduced order model, yields (7.21).

Remark 51. The apparent simplicity of (7.21) hides the fact that the condition is a PBH

test for controllability of the fast subsystem. In fact, in this case the PBH test is

rank
[
I − λM G2

]
= rankM, for all λ ∈ σ(M).

Since the only eigenvalue of M is zero, the PBH test reduces to (7.21). �

Remark 52. As noted in [188], in the reduction of non-properW (s), namely systems with

a nilpotent degree larger than zero, the algebraic part should be maintained unchanged

to guarantee that the error between the system to be reduced and the reduced order

model stays bounded. This is obviously implied by the fact that the absolute value of

the frequency response grows unbounded as the the frequency increases and the slope of

this growth depends on the degree of the algebraic part of the transfer function. Thus,

to have a small H2 error norm the degree of the algebraic part should be maintained

unaltered. However, in many cases we are not interested in preserving the rate at which

the frequency response grows unbounded, but we are interested only in the maintaining

the property that it grows unbounded. Or alternatively, we may be interested only in the

output response for low frequencies. In this cases, the method in [188] is not able to reduce

the fast substystem. This limit is clearly averted with this approach which leaves to the
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Figure 7.1: (Top) Time history of the output of system (7.22) (solid line) and of
the output of the reduced order model (7.23) (dashed line). (Bottom) Magnitude of
the Bode plot of system (7.22) (dashed line) and of the reduced order model (7.23)
(dotted line).

designer the choice of reducing the fast subsystem, the slow subsystem, or a combination

thereof. �

7.4.5 Example: a classical fast subsystem example

This example has been proposed in [183], see also [184]. Consider the purely fast fifth

order singular system described by the equations

Nẋ = x+Bu, y = Cx, (7.22)

with

N=




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0




, B=




0.1

0.2

1.8

2.5

3.0




, C⊤=




0.1

0.3

1.2

1.8

2.8




.
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Let σ(S) = {0, ±2.85j} and L and ω(0) in (7.9) be randomly generated. System (7.17) is

a third order reduced order model of system (7.22), namely

Mξ̇ = ξ +Gu,

ψ = C
h−1∑

i=0

N iBLSi

(
~−1∑

i=0

M iGLSiξ

)−1
ξ,

(7.23)

where G is randomly generated and

M =




0 1 0

0 0 1

0 0 0



.

Fig. 7.1 (top) shows the time history of the output of system (7.22) (solid line) and of

the output of the reduced order model (7.23) (dashed line). The two responses overlap

because a purely fast system does not have a transient response. Fig. 7.1 (bottom) shows

the magnitude of the Bode plot of system (7.22) (dashed line) and of the reduced order

model (7.23) (dotted line). This plot gives a more indicative information of the quality of

the approximation. In fact, from the figure we see that the reduced order model is a good

approximation of the system at low frequencies (<≈3 rad/s).

Remark 53. As anticipated, the method proposed in [188] cannot be used to reduce

system (7.22). Conversely with the method proposed herein a reduced order model is

computed and the output response of system (7.22) is perfectly matched. Note also that

increasing the number of interpolation points would reduce the discrepancy shown in the

bottom graph of Fig. 7.1. When the dimension of the reduced order model reaches the

dimension of the system, the error becomes zero. �

7.4.6 Example: a large-scale singular system

Consider the singular system (7.2) with n1 = 60 and n2 = 20. Let A1 =

diag(−0.1,−0.2, . . . ,−6.0), N be a canonical nilpotent matrix of degree h = 20 and

B1, B2, C1, C2 and L be randomly generated. The matrix S is such that σ(S) =

{0, ±0.1j, ±0.5j, ±j, ±1.13j, ±5j}. The reduced order model (7.19) is computed. The

matrix G1 is selected such that σ(S −G1L) ⊂ C<0, M is a canonical nilpotent matrix of
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Figure 7.2: (Top) Time history of the output of the slow subsystem (solid line) and
the output of the slow subsystem of the reduced order model (dotted line). (Bottom)
Time history of the output of the fast subsystem (solid line) and the output of the
fast subsystem of the reduced order model (dotted line).
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Figure 7.3: (Top) Time history of the output of the system (solid line) and of the
reduced order model (dotted line). (Bottom) Absolute error between the two output
responses.
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degree ~ = 10 and G2 is selected as a truncation of B2. Fig. 7.2 (top) shows the time

history of the output of the slow subsystem (solid line) and the output of the slow subsys-

tem of the reduced order model (dotted line). Fig. 7.2 (bottom) shows the time history

of the output of the fast subsystem (solid line) and the output of the fast subsystem of

the reduced order model (dotted line). As expected the bottom plots overlap. Fig. 7.3

(top) shows the time history of the output y of the system (solid line) and of the total

output ψ of the reduced order model (dotted line). Fig. 7.3 (bottom) shows the absolute

error between the two output responses. As expected the error between the two responses

depends only on the response of the slow subsystem and goes to zero as the transient

vanishes.

7.5 Conclusion

The model reduction technique based on moment matching has been extended to linear sin-

gular systems. Combining the interpolation-based and the steady-state-based description

of moment a partitioned projector is constructed. The contribution of the slow subsystem

and the contribution of the fast subsystem to the moment are separated. The informa-

tion on the fast subsystem is encoded in the projector and it is not lost by the moment

matching technique. Moreover, the output of reduced order models based on this pro-

jector approximates the output of the system only when consistent initial conditions are

taken in account. Exploiting this partitioned projector, several families of reduced order

models have been proposed. In particular, a purely fast, a purely slow and a “simple”

family of reduced order models have been proposed. The possibility of maintaining the

impulsive controllability property has been investigated and a few examples have been

used to illustrate the results. A natural extension of the current results is represented by

the model reduction of nonlinear singular systems and by the model reduction of systems

with constraints.
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Part II

Analysis
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Chapter 8

Discontinuous phasor transform

and its application to the

steady-state analysis in power

electronics

8.1 Introduction

Power converters are inherently discontinuous1 systems: power electronics is described as a

branch of electrical and electronic engineering concerned with the analysis, simulation, de-

sign, manufacture, and application of switching-mode power converters [189], [190], [191].

Since the transient response of electric circuits decays rapidly to zero, the steady-state

analysis of power electronic devices is of paramount importance for their design [192],

[193], [194], [195]. However, a trade-off between the level of the approximation and the

difficulty of the analysis has usually to be made. Among the techniques that have been

developed for this analytic task, the phasor transform represents a powerful and flexible

mathematical tool which has been used for the study of the steady-state behavior of cir-

cuits powered by sinusoidal sources [196], [197]. The phasor transform greatly simplifies

the dynamic analysis because it changes integro-differential equations in algebraic equa-

tions, which are computationally and analytically more easily solvable. In recent years

1With some abuse of terminology, the word “discontinuous” is used in this chapter for e.g. sources,
generators, components, to mean that the generated signal is discontinuous.
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several generalizations of the phasor transform have been proposed specifically for the

analysis of power electronic devices [198], [199], [200], [201]. These methods are based

on the assumption that the phasor is a function of time and that the input signal can

be described by a complex exponential. Thus, it is assumed that the input of the cir-

cuit is a smooth signal. Periodic discontinuous signals can be analyzed using the Fourier

series, obtaining a steady-state description of the response as the sum of the phasors at

infinitely many frequencies. However, practically, only an approximation can be obtained

and, moreover, high harmonics are usually ignored because they are numerically difficult

to compute [198]. In addition, we note that these papers do not explicitly define the

time-varying phasor itself. Only the inverse phasor transform is given and the phasor is

found comparing two transformed quantities. This forces the designer to recognize and

transform known subcircuits. For instance in [200] nine categories of subcircuits have been

identified. One of those, which is not transformed, entails thousands of different configu-

rations.

This chapter originates from the observation that a phasor is a very special case of moment.

In fact, the phasors of an electric circuit are the components of the unique solution of the

Sylvester equation (2.8) associated to the system representing the circuit. The Sylvester

equation itself is proved to be the phasor transformed system describing the electric circuit.

Exploiting this equivalence, the instantaneous power and the average power are defined

utilizing the moments. The interest in revisiting the notion of phasor with the moment

theory is twofold.

1. A direct consequence is that very efficient algorithms to compute the moments of a

linear system can be used to compute the phasors of large-scale systems.

2. The most relevant reason that justifies the interest in this equivalence is that we

have generalized the description of moment beyond linear systems, in particular to

systems driven by discontinuous signals.

Thus, exploiting the equivalence discussed, and exploiting the results given in Chapter 6,

a new phasor transform is given. The new phasor transform has the following advantages:

1. differently from other analysis methods, like the state-space averaging, the new pha-

sor transform describes the steady-state response of an electric circuit powered by
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any periodic discontinuous signal in closed-form, i.e. without approximations;

2. the capability of describing the steady-state response of any electrical circuit without

approximations applies also to the study of the behaviour of non-ideal switches;

3. differently from [198–200] the definition of the phasor itself is given; this has the

consequence that it is not necessary to recognize subcircuits (although it is still

possible to proceed in this way): the phasor can be computed directly for any linear

circuits of whatever complexity;

4. the formula which we provide defines the phasors of all the currents and of the

integrals of all the currents in the circuit; as a consequence the steady-state v-i

characteristics of all the electric quantities of the circuit can be reconstructed.

To illustrate the utilization of the results of the chapter, the steady-state behavior of a

Class D CLL resonant inverter and of a wireless power transfer system with non-ideal

switches (subject to the reverse recovery effect) is analyzed. We show that the new phasor

transform is particularly useful when there is little damping in the circuit (scenario which

“preserves” the discontinuous behavior that approximating series solutions cannot fully

capture).

The rest of the chapter is organized as follows. This section continues with a precise

formulation of our problem, aim and the description of the circuits which are analyzed in

the chapter. In Section 8.2 the equivalence between moments and phasors is proved. The

use of the results are illustrated by means of an example and the definition of power is

given in terms of moments. In Section 8.3 the definition of phasor and of the inverse phasor

transform are generalized to linear circuits powered by discontinuous periodic signals. The

phasors of resistors, inductors and capacitors are given and the characterization of the

power is described in the new phasor domain. Extensive simulations show the capability

of the new phasor definition in describing the steady-state response of power electronic

devices. Section 8.5 contains some concluding remarks.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference paper [19] and in the journal

paper [20].
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8.1.1 Problem and aim

All currents and voltages in linear circuits are described by linear differential equations of

the form

an
dn

dtn
f + an−1

dn−1

dtn−1
f + · · ·+ a0f = u, (8.1)

where f : R → R represents a current or voltage, u(t) ∈ R is a current or voltage input

and ai ∈ R, with i = 0, . . . , n. Without loss of generality we assume that an 6= 0. In the

analysis of circuits is of interest to study the steady-state response of the system2. If the

input u is a sinusoidal signal of amplitude au, angular frequency ω and phase φ, then a

classical tool for the steady-state analysis of (8.1) is the phasor of f(t). This is usually

introduced by means of the inverse phasor transform which is defined in his simplest form

as

f(t) = ℜ
[
Fejωt

]
, (8.2)

where3 F : C → C is called the phasor of f(t). Several generalizations of this transform

have been proposed. The most general form presented in the literature is the so-called

power-invariant (inverse) phasor transform [200], [199] described by

f(t) = ℜ
[
F (t)ejω(t)

]
, (8.3)

where ω(t) is non-constant and the phasor F (t) is a function4 of time and ω. From (8.3)

we note that the analysis of a circuit with the phasor transform is based on the assumption

that the input is a complex exponential with frequency ω(t), i.e. u(t) = aue
j(ω(t)+φ).

In this chapter we revisit and extend the notion of phasor. In the first part of the chapter

we show that the phasors of an electric circuit are the moments at jω of the linear system

describing the circuit. In the second part of the chapter we eliminate the assumption that

the source has to be described by a complex exponential extending the notion of phasor,

as defined in (8.3), to a general class of input signals including discontinuous signals, such

as square waves and triangular waves.

2Note that this means to find the particular solution of (8.1).
3Phasors are frequency dependent. We omit the argument ω from the phasor F (ω) for ease of notation.
4We again omit the argument ω from the phasor F (t, ω) for ease of notation.
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For the sake of clarity, we now define what we mean with phasor transform of a linear

system.

Definition 24. Consider a linear, single-input, single-output, continuous-time, system

described by the equations

ẋ = Ax+Bu, y = Hx, (8.4)

with5 x(t) ∈ Cn, u(t) ∈ C, y(t) ∈ C, A ∈ Cn×n, B ∈ Cn×1 and H ∈ C1×n. The phasor

transform of the linear system (8.4) for the source u(t) = aue
j(ωt+φ), with au ∈ R, ω ∈ R

and φ ∈ R, is

Xjωejωt = AXejωt +Baue
jφejωt, Y ejωt = HXejωt. (8.5)

In what follows we only assume that the components in the circuit are ideal. We do

not make any other simplifying assumption since we aim to describe exactly the behavior

of the circuit. In Section 8.4.2 we relax the hypothesis that the components are ideal

considering non-ideal switches.

Remark 54. The theory is developed applying the Kirchhoff’s Voltage Law. We assume

that the sources are voltage sources and the state variables and the output are currents. As

a consequence we show that the moments are the phasors of the currents. An equivalent

analysis based on the Kirchhoff’s Current Law can be derived. �

Remark 55. For the sake of clarity we consider the single phase case. The results can

extend to the multiphase framework either following the approach in [200], or the multi-

input approach presented in Chapter 5 (see also [63]). �

8.1.2 Case studies

To illustrate the results of the chapter we study the steady-state response of resonant

circuits. The interest in using this typology of circuits lies upon the fact that these are

at the basis of many power converters which are normally driven by square waves. For

instance, Fig. 8.1 shows a Class D CLL resonant inverter. The circuit is powered by a

DC voltage Vi. The voltage across the capacitor C, which is the output of the subcircuit

5Usually the state x(t) of a dynamical system represents real quantities. However, herein we use the
complex domain because the quantities involved in the phasor analysis are complex valued.
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constituted by the two transistors, is a square wave. Thus, an equivalent circuit can

be derived as shown in Fig. 8.2 (see [189] for the derivation and the definition of the

equivalent quantities). We note that the analysis of the Class D CLL resonant inverter

(and of many other Class D inverters) boils down to the analysis of a RLC circuit

driven by a square wave. The techniques presented in the second part of the chapter

are developed for the study of this type of circuits. Moreover, RLC circuits arise also in

other power electronic applications. For instance, Fig. 8.3 shows a wireless power transfer

system [202, 203] and Fig. 8.4 shows its equivalent circuit which consists of two coupled

RLC circuits.











Figure 8.1: Class D CLL resonant inverter.

  






Figure 8.2: Equivalent circuit of a Class D CLL resonant inverter as derived in [189].
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Figure 8.3: Wireless power transfer system.



 

  

Figure 8.4: Equivalent circuit of the wireless power transfer system in Fig. 8.3.

The two examples are used as follows. In Section 8.2 we use the circuit of Fig. 8.4

because it offers more mathematical complexity and thus it is more helpful for showing

some important details. In Section 8.3 we first use the circuit of Fig. 8.2 illustrating the

technique for different Q factors6. We show that as the Q factor decreases, i.e. the damping

increases, the difference in quality of the approximation between the Fourier series and our

solution grows. Finally, we analyze the circuit of Fig. 8.4 driven by non-ideal switches. We

show that the technique presented in the chapter can describe, without approximations,

the reverse recovery effect which is present in the majority of commercial switches [204].

6The Q factor, or quality factor, is a parameter that describes the damping of an oscillator or resonator.

For an ideal series RLC circuit, we use the definition Q=
1

R

√

L

C
.
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8.2 Electrical equivalent of the moment theory

In this section we show that the theory of moments developed to solve the model reduction

problem has an electric equivalent. In particular we prove that the phasors of an electric

circuit, as defined in (8.2), are the moments of the system describing the circuit when a

single complex interpolation point is selected. Then, exploiting the equivalence between

moments and phasors, we define the power using the moments. Revisiting these results

is instrumental for the rest of the chapter when the notion of phasor is extended to non-

conventional sources: knowing the relation between moments and power is essential to

give a physical meaning to the newly defined quantities. For the sake of convenience we

report here the Sylvester equation (2.8), namely

AΠ+BΓ = ΠΣ, (8.6)

and the equation of the signal generator (2.10), namely

ζ̇ = Σζ, u = Γζ, (8.7)

which will be used through the chapter. Note that for notational needs the original

quantities L and S have been replaced by Γ and Σ, respectively. Finally, to streamline

the presentation, we introduce the following definition.

Definition 25. The system (8.4) and the generator (8.7) are said to be in the real con-

vention if the matrices A, B, H, Γ and Σ have real entries. They are said to be in the

mixed convention if the matrices A, B and H have real entries and the matrices Γ and Σ

have complex entries. They are said to be in the complex convention if the matrices A,

B, H, Γ and Σ have complex entries.

Note that in the real convention and in the mixed convention, for all integers k

with 2 ≤ 2k ≤ n, the component x2k of x is a current ik, whereas the component x2k−1 of

x is the integral

∫ t

t0

ik(τ)dτ .
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8.2.1 Equivalence between moments and phasors

Herein we show that writing the phasor transform of a linear electric circuit is equivalent

to writing the associated Sylvester equation. Moreover, the components of the solution

of this Sylvester equation are the phasors of all the currents (and of the integrals of the

currents) in the circuit.

Proposition 10. Consider the source u(t) = aue
j(ωt+φ), with au ∈ R, ω ∈ R and φ ∈ R,

and assume jω 6∈ σ(A). The phasor transform of system (8.4) (see Definition 24) written

in the mixed convention coincides with the Sylvester equation (8.6) with Σ = jω and

Γ = aue
jφ. The components of Π, which is the unique solution of equation (8.6), are the

phasors of the currents and of the integrals of the currents in the circuit.

Proof. We first compute the phasor transform of system (8.4) for the source u = aue
j(ωt+φ),

namely

Xjωejωt = AXejωt +Baue
jφejωt, Y ejωt = HXejωt,

by Definition 24. Since ejωt 6= 0 for all t ∈ R, it can be canceled out yielding

Xjω = AX +Baue
jφ, Y = HX.

Thus the phasors of all the currents (and their integrals) in the circuit and the phasor of

the output current are given by

X = (jωI −A)−1Bauejφ, Y = H(jωI −A)−1Bauejφ,

respectively. Consider now the signal generator (8.7) with

Σ = jω, Γ = aue
jφ.

The associated Sylvester equation (8.6) is

AΠ+Baue
jφ = Πjω,

which, if jω 6∈ σ(A), has the unique solution

Π = (jωI −A)−1Bauejφ,
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which concludes the proof.

Corollary 5. The phasor of the output response y of system (8.4) is the moment of the

system at jω, namely Y = HΠ. The inverse phasor transform of the output current y of

system (8.4) is

y(t) = ℜ
[
HΠeΣt

]
.

Proof. The first claim follows noting that the phasor of the output response of system (8.4)

is given by

Y = HΠ = H(jωI −A)−1Baueφ.

To prove the second claim we note that

ℜ
[
HΠeΣt

]
= ℜ

[
Y ejωt

]
,

which is the inverse phasor transform of the output response of system (8.4).

Remark 56. Phasors are a very special case of moments of linear systems. In fact, they

are the moments at the single complex interpolation point Σ = jω. �

Remark 57. The higher order derivatives
dnx

dtn
and the integral

∫ t

t0

x(τ)dτ are trans-

formed in the phasor domain into (jω)nXejω and
1

jω
Xejω, respectively. Similarly they

are transformed in the “moment domain” into ΣnΠejω and Σ−1Πejω, respectively. �

Remark 58. The relation between moments and phasors established with the Sylvester

equation (8.6) gives the advantage of computing the phasors using Arnoldi and Lanczos

algorithms [5, Section 14.1] or the techniques presented in Chapter 4. These techniques

offers very efficient methods to determine the moments, and thus the phasors, of very

large-scale systems, in which the matrix inversion may be computationally expensive. �

Remark 59. The main advantage of the equivalence that we have established is that this

lends itself to the extension of the phasor transform beyond the linear framework (and the

discontinuous framework of this chapter) to circuits with nonlinear elements and circuits

with delays (exploiting the results in Part I of this Thesis). �

8.2.2 Example: moments of a wireless power transfer system

We present now a worked out example which shows how to apply these results and high-

lights a few important aspects regarding the “convention” used in the approach.
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Fig. 8.4 illustrates a wireless power transfer system [203] consisting of two coils. In this

example we assume that an AC sinusoidal voltage source with an amplitude of Vs and an

angular frequency of ω is applied to the transmitter coil on the input side. A load resistor

RL is connected to the receiving coil on the output side. By applying the Kirchhoff’s

Voltage Law to the two coils, we obtain the system of equations

R1i1 + L1
di1
dt

+
1

C1

∫
i1dt+M12

di2
dt

= u(t),

M21
di1
dt

+R2Li2 + L2
di2
dt

+
1

C2

∫
i2dt = 0,

(8.8)

where i1 and i2 are the currents flowing in the coils 1 and 2, R1 and R2 are the resistances,

R2L = R2 + RL, L1 and L2 are the self-inductances, C1 and C2 are the capacitances and

M12 = M21 are the mutual inductances between the two coils. We are interested in

determining the amplitude and phase of the steady-state current in the receiving coil, i.e.

the phasor I2.

We start by solving the problem with the phasor transform approach. Transforming the

differential equations (8.8) we obtain the complex algebraic system

Z1I1 + jωM12I2 = Vs, jωM21I1 + Z2I2 = 0,

where Z1 = R1+ jωL1− j
1

ωC1
and Z2 = R2L+ jωL2− j

1

ωC2
. Solving with respect to I2

yields

I2 =
−jωM21

Z1Z2 + ω2M21M12
Vs.

Now we compute the moment of the differential system (8.8) at

ζ̇ = Σζ, u = Γζ. (8.9)

We begin using the “mixed convention” that, as highlighted later, is the most useful among

the three representations. Thus, consider Γ = Vs and Σ = jω and the state

x1(t) =

∫ t

t0

i1(τ) dτ, x2(t) = i1(t), x3(t) =

∫ t

t0

i2(τ) dτ, x4(t) = i2(t).
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System (8.8) can be represented by the first order system of differential equations (8.4)

with

A =




0 1 0 0

− L2

C1L̂
−R1L2

L̂

M12

C2L̂

M12R2L

L̂

0 0 0 1

M21

C1L̂

R1M21

L̂
− L1

C2L̂
−L1R2L

L̂




,

B =

[
0

L2

L̂
0 −M21

L̂

]⊤
,

H =

[
0 0 0 1

]
,

(8.10)

where L̂ = L1L2 −M12M21 6= 0. The solution of the Sylvester equation (8.6) is given by

Π = (jω −A)−1BVs,

and the moment of the system at (Γ,Σ) is given by

HΠ = ǫ4Π =
jω3M21

DL̂
Vs,

with

D = −ω
2

L̂

(
Z1Z2 + ω2M12M21

)

the determinant of the matrix (jωI −A). In a similar way we can prove that

[
Π1 Π2 Π3 Π4

]⊤
=

[
1

jω
I1 I1

1

jω
I2 I2

]⊤
.

It is interesting to explore which relation between phasors and moments holds when the

“real convention” is used. Consider system (8.4) with the matrices given in (8.10) and the

matrices of the signal generator (8.9) given by

Γ =

[
Vs 0

]
, Σ =



0 ω

−ω 0


 .

The input of the system is u = Vs cos(ωt) instead of u = Vs cos(ωt)+ jVs sin(ωt). It comes

with no surprises that the phasors are related to the solution of the Sylvester equation by
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the relations 


Π11 + jΠ12

Π21 + jΠ22

Π31 + jΠ32

Π41 + jΠ42



=




1

jω
I1

I1
1

jω
I2

I2




.

Finally, we investigate the use of the “complex convention”. Consider the coordinates

x1(t) = i1(t), x2(t) = i2(t) and the signal generator (8.9) with Γ = Vs and Σ = jω.

System (8.8) can be represented by a system of integro-differential equations given by

ẋ1 =
1

L̂

(
−R1L2x1 −

L2

C1

∫
x1dt+M12R2Lx2 +

M12

C2

∫
x2dt+ L2u

)
,

ẋ2 =
1

L̂

(
−R2LL1x2 −

L1

C2

∫
x2dt+M21R1x1 +

M21

C1

∫
x1dt−M21u

)
.

Exploiting Remark 57, we can write the Sylvester equation and find its solution, namely




Π1

Π2


 =




jωL̂+R1L2 +
L2

jωC1
−M12R2L −

M12

jωC2

−M21R1 −
M21

jωC1
jωL̂+ L1R2L +

L1

jωC2




−1 


L2Vs

−M21Vs




showing easily that [
Π1 Π2

]⊤
=

[
I1 I2

]⊤
.

Remark 60. When the system is linear and the source generates a sinusoidal signal, the

real convention and the mixed convention are redundant since each current appears twice

in the matrix Π (as Ik and
1

jω
Ik). However, when the input is not a complex exponential,

the steady-state of the current ik and of its time integral are not anymore linked by a

simple scaling factor. �

8.2.3 Definition of power from the moments

The phasor analysis is useful to determine the instantaneous and average power absorbed

by a load Z at steady-state. Exploiting the relation between phasors and moments we

can define these two quantities with respects to the moments. The instantaneous power

is defined as

p(t) = v(t)i(t) = ℜ
[
V ejωt

]
ℜ
[
Iejωt

]
. (8.11)
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Exploiting the properties of the real part operator we write the instantaneous power as

p(t) =
1

2
ℜ
[
V
∗
Iejωte−jωt

]
+
1

2
ℜ
[
V Iej2ωt

]
. (8.12)

Using Euler’s formula it can be proved that the average power

P =<p(t)>=
1

2
ℜ
[
V
∗
I
]

(8.13)

is equal to the first term of (8.12), and that the second term of (8.12) has zero average.

Since we have proved that I = HΠ, the instantaneous power is described by

p(t) =
1

2
ℜ
[
(HΠ)∗

Z
HΠ

]
+
1

2
ℜ
[
HΠ

Z
HΠej2ωt

]
. (8.14)

with Z the complex impedance.

Remark 61. The equivalence between the average power P and
1

2
ℜ
[
V
∗
I
]
is not a def-

inition. The relation is a consequence of the properties of the complex exponential, as

highlighted in (8.12), and we may expect that this relation does not hold if the input is

not a complex exponential. �

8.3 Generalizing the phasor to sources in explicit form

Now that we have linked the theory of phasors with the moment theory, we are able to

extend the phasor analysis to more general classes of sources. In this section instead

of considering sinusoidal sources, we study any periodic source which has the following

explicit representation

ζ(t) = Λ(t)ζ(0), u = Γζ. (8.15)

with Λ(t) such that Λ(t) = Λ(t − T ) for t ≥ T . As remarked in Chapter 6, this class

of signal generators includes possibly discontinuous signals, such as square waves and

triangular waves, which are of great interest in circuit analysis. In this chapter we develop

an electric equivalent of the results presented in Chapter 6, yielding an extension of the

phasor transform to this general class of signals. We begin by giving the definition of

the discontinuous phasor. We show that multiplying the phasor with the source signal
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and taking the real part yields the steady-state current. Then we show the relation

between voltage and current for resistors, inductors and capacitors. Finally, we show that

the phasor can be used to compute the steady-state instantaneous and average power. In

summary, we extend all the features and properties of the phasor analysis to discontinuous

sources.

Remark 62. Since (8.15) is a periodic signal, a classical phasor analysis can be carried

out exploiting the Fourier series of the signal. However, the approach that we propose

achieves a closed-form expression of the phasors and of the steady-state quantities. No ap-

proximations are introduced and non-ideal components can be considered. A comparison

between the new results and the approximation given by the Fourier series is illustrated

in the examples. �

Remark 63. The state-space averaging method is commonly used as a modeling technique

for power electronic converters [191]. However, while the averaging method provides an

approximation, the method we propose is exact. In detail, the state-space averaging

technique provides a reliable approximation of the steady-state behavior of the circuit when

the natural frequencies of the converter (the poles of its transfer function) are much smaller

than the switching frequency. The averaging method fails to give a good approximation

when the natural frequencies of the system are close or above one half of the switching

frequency [205]. On the contrary, the discontinuous phasor transform does not have this

restriction since it is not an approximation but an exact description of the steady-state

behavior of any linear circuit powered by any discontinuous source. �

Remark 64. We focus on periodic signals only because these are the most common sources

in power electronics. Note that the analysis of this section can be extended to any, possibly

non-periodic, signal generators described by an equation of the form ζ(t) = Λ(t)ζ(0), as

discussed in Chapter 6. �

Remark 65. In the remaining of the section we use the mixed convention. A similar

analysis for the real convention can be derived. The complex convention presents more

difficulties because Corollary 6 does not have an equivalent in this convention. �

8.3.1 Definition of the discontinuous phasor

We define now the phasor in the case in which the signal generator is described by (8.15).
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Definition 26. Consider system (8.4) and the signal generator (8.15). Assume Assump-

tions 14, 15, 16 and 17 hold, σ(A) ⊂ C<0 and Λ(t) is almost everywhere differentiable.

The components of the function

Π∞(t) = (I − eAT )−1
[∫ t

t−T
eA(t−τ)BΓΛ(τ)dτ

]
Λ(t)−1, (8.16)

are the discontinuous phasors of all the currents and of all the integrals of the currents

in system (8.4) for the source Λ(t). The discontinuous inverse phasor transform of the

steady-state output current i(t) of system (8.4) is

i(t) = ℜ
[
I(t)Λ(t)

]
, (8.17)

with I(t) = HΠ∞(t).

Remark 66. We remind that it is always possible to describe square waves, triangular

waves and any periodic signal which is almost everywhere differentiable in the mixed

convention to satisfy Assumptions 14, 15, 16 and 17. �

Remark 67. Like in the sinusoidal case, the instantaneous currents are recovered multi-

plying the phasor with the source and taking the real part. �

Remark 68. Differently from the sinusoidal case, the phasor I(t) is a time-dependent

periodic function. Note that if Λ(t) is sinusoidal, equation (8.16) defines the usual constant

phasor and Π∞ solves the Sylvester equation (8.6) (see Theorem 20). �

Remark 69. The inverse phasor transform (8.3) introduced in [198–200] is a particular

case of the more general phasor transform we have introduced. In fact, (8.3) is recovered

when Λ(t) = ejω(t). Note however, that the new result have a remarkable advantage.

In [198–200] the inverse phasor transform is introduced but the phasor itself (i.e. the

direct phasor transform) is not defined. Thus to apply the results of those papers one

must recognize simple subcircuits and find the v-i characteristics in the phasor domain

of the subcircuit. Although this is possible also with the new transform (8.17) (and it

is done in the following), it is not necessary. In fact, since we have the definition of the

phasor (8.16) from the system matrices A and B, we can obtain the phasors of all the

currents and voltages in the circuit in closed-form without the need of decomposing the

circuit in pre-classified subcircuits. �
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Now that we have defined the discontinuous phasor and the discontinuous inverse

phasor transform we extend the properties of the phasor circuit analysis.

8.3.2 Inductance, capacitance and resistance

Following [198–200] we describe the v-i characteristics of some common subcircuits which

constitute power electronic devices. As already remarked, this is not strictly necessary if

we want to compute simply the phasors of the overall circuit. However, describing simple

circuits in the phasor domain improves the understanding of this new tool. Moreover, to

be useful for applications we need to be able to compute the voltage across an inductor, ca-

pacitor and resistor given the phasor of the current which flows through these components.

This is of paramount importance to be able to define the power and, more in general, to

make this mathematical extension an accurate description of the physical quantities in

the circuit. The expressions that relate voltage and current in an inductor, capacitor and

resistor are, respectively,

v = L
di

dt
, v =

1

C

∫ t

0
i dτ, v = Ri. (8.18)

Utilizing the phasor transform (8.2), it can be proved that the relations

V = jωLI, V =
1

jωC
I, V = RI, (8.19)

hold. With the phasor transform (8.3) these become

V (t) = Lİ(t) + jω(t)LI(t), V̇ (t) + jω(t)V (t) =
1

C
I(t), V (t) = RI(t), (8.20)

When the source is described by the generator (8.15), these relations may not hold any-

more. Consider, for instance, a square wave, which is described by the sum of infinitely

many frequencies ωk. As noted in [16], this observation suggests that we could describe

a square wave by means of an infinite dimensional system. As a consequence, the matrix

Π would have infinitely many rows and columns and the phasor would be the sum of

infinitely many frequencies. It is exactly for this inability to deal with this type of signals

without approximations that Definition 26 has been introduced. In fact, exploiting the
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discontinuous phasor transform we obtain the following exact relations.

Theorem 25. Consider the first equation in (8.18). The relation

V (t) = Lİ(t) + L
Λ̇(t)

Λ(t)
I(t), (8.21)

holds.

Proof. Consider the first equation in (8.18). This is a scalar system with I(t) = Π∞(t) ∈ C,

A = 0, B =
1

L
, Γ = V (t). The derivative of the current is

di

dt
=

d

dt
ℜ
[
I(t)Λ(t)

]
= ℜ

[
d

dt

[
I(t)Λ(t)

]]
= ℜ

[
İ(t)Λ(t) + I(t)Λ̇(t)

]

= ℜ
[(
İ(t) + I(t)Λ̇(t)Λ(t)−1

)
Λ(t)

]

from which we recognize, by comparison with (8.17), that İ(t) + I(t)Λ̇(t)Λ(t)−1 is the

phasor.

Remark 70. If Λ(t) = ejωt, then İ(t) = 0, Λ̇(t)Λ(t)−1 = jω and (8.21) becomes the first

relation in (8.19). If we use the phasor transform (8.3) in which the phasor I(t) is not

constant, (8.21) reduces to the first relation in (8.20). �

Theorem 26. Consider the second equation in (8.18). The relation

V̇ (t) +
Λ̇(t)

Λ(t)
V (t) =

1

C
I(t), (8.22)

holds.

Proof. It is similar to the proof of Theorem 25.

Remark 71. In the mixed convention, the components with odd indeces of Π∞, computed

from (8.16), are those functions that multiplied by Λ give the steady-state of the integrals

of the currents. The following result holds. �

Corollary 6. In the mixed convention the components with odd indeces of Π∞, computed

with (8.16), are the phasors of the integrals of the currents in the circuit. Thus for the

current ik which flows in the capacitance Ck, the relation

ǫ⊤2k−1Π∞(t)

Ck

= V k(t), (8.23)

holds, where V k is the phasor of the voltage across the capacitor Ck.
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Figure 8.5: Phasor models for basic circuit elements.

This last result provides a way to compute the phasor of the voltage across a capacitor.

In fact, this value comes directly from solving (8.16).

Remark 72. In [198–200] a discussion regarding the selection of the initial conditions

of the equations (8.20) is missing. Being the phasor defined only as the solution of the

differential equations (8.20) it is not clear how the correct solution is selected among the

many identified by the differential equations. Instead, as a result of Definition 26 the

initial conditions can be computed as Π(0) = Π∞(0), using (8.16) for t = 0. In fact, this

is the most efficient way to compute the phasors, namely solving the differential equations

in the phasor domain e.g. (8.21) and (8.22), and using the computational expensive (8.16)

only for t = 0. �

Theorem 27. Consider the third equation in (8.18). The relation

V = RI(t), (8.24)

holds.

Proof. The statement holds trivially noting that the multiplication by a real constant and

the real part operator commutes.

Fig. 8.5 shows the phasor equivalent of these circuit elements. Having defined
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the differential operator, the integral operator and the multiplicative operator, the v-i

characteristics of other common circuits in the phasor domain can be easily obtained.

For instance, transformers and gyrators, in which voltages and currents are related by a

multiplication factor, show phasor equations similar to (8.24).

Remark 73. In [198, 200], transformers with variable transformation ratio s(t) are con-

sidered for their ability of replacing switches [206]. They are not needed in the present

framework since the new phasors we have introduced naturally embed switches. Thus,

these time-varying transformers are not analyzed further in the chapter. Note anyway

that since their v-i characteristics are given by the multiplication of two time-varying

functions, i.e. vt(t) = s(t)it(t), they present equations in the phasor domain similar to the

ones developed in the following section for the power p(t) = v(t)i(t), replacing p(t) with

vt(t) and v(t) with s(t). �

8.3.3 Instantaneous, average and reactive power

Using the phasor transform (8.17) the instantaneous power is defined as

p(t) = v(t)i(t) = ℜ
[
V (t)Λ(t)

]
ℜ
[
I(t)Λ(t)

]
, (8.25)

which, exploiting the properties of the real part operator, yields

p(t) =
1

2
ℜ
[
V (t)∗I(t)Λ(t)Λ(t)∗

]
+
1

2
ℜ
[
V (t)I(t)Λ(t)2

]
. (8.26)

As in the sinusoidal case the instantaneous power is separated in two terms: the average

of the first term is equal to the average power, whereas the average of the second term

is zero. However, differently from the sinusoidal case, the first term is not constant, in

general, and thus it is not equal to the average power. Hence, the average power and the

reactive power are defined as follows.

Definition 27. In the phasor domain identified by the phasor transform (8.17), the av-

erage power P and the reactive power Q are defined as

P =<p(t)>=
1

2

〈
ℜ
[
V (t)∗I(t)Λ(t)Λ(t)∗

]〉
, Q =

1

2

〈
ℑ
[
V (t)∗I(t)Λ(t)Λ(t)∗

]〉
. (8.27)

Equations (8.27) are consistent with the usual definition of average power and reactive
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power in the complex exponential case. For the non-exponential case, equations (8.27)

generalize the respective relations achievable with the phasor transforms (8.2) and (8.3).

In fact, both of these always show a time-invariant transform of the average power [200].

Moreover, the sum of the average powers (or reactive powers) generated by the Fourier

series expansion of the periodic signal Λ converges to the value given in (8.27). One can

say more when specific signals are considered. For instance, if the input signal is a square

wave, the following result holds.

Proposition 11. Assume that the signal generator (8.15) produces a square wave which

takes values in the discrete set {−1, 1}. The average power and reactive power are de-

scribed by

P =
1

4
ℜ
[
V (t)∗I(t)

]
, Q =

1

4
ℑ
[
V (t)∗I(t)

]
. (8.28)

In fact, note that the term Λ(t)Λ(t)∗ in (8.27) is constant and equal to 1 if the

driving signal is a complex exponential, it is constant and equal to
1

2
if the driving signal

is a square wave and it is a parabola if the driving signal is a triangular wave.

8.4 Analysis of inverters and wireless power transfer sys-

tems

We now apply the newly defined discontinuous phasor transform to the steady-state de-

scription of the currents flowing in a Class D resonant inverter controlled by square waves

and a wireless power transfer system with non-ideal switches (affected by the reverse

recovery effect).

8.4.1 Example: analysis of a resonant inverter

The equation

Ri+ L
di

dt
+

1

C

∫
i1dt = u(t), (8.29)

describes the circuit shown in Fig. 8.2. Consider now that we are interested in studying

the steady-state behavior of this circuit for a particular switching function. The switching

function is determined by the designer on the basis of the specific application. Thus, we

assume that the switching function is a square wave with given angular frequency ω, i.e.

⊓(ωt+π/2). This signal does not satisfy Assumption 15. However, this issue can be easily
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ĩ
7

ε
∞

r

ε
1

r

ε
3

r

ε
7

r

Figure 8.8: Top graph: time histories of the steady-state current i(t) (solid/blue line),
of the steady-state current i∞(t) (dotted/red line) and of the approximated steady-
state current computed with the Fourier series with one harmonic ĩ1(t) (dashed/black
line), three harmonics ĩ3(t) (bold dashed/black line), and seven harmonics ĩ7(t) (dash-
dotted/black line). Bottom graph: resulting relative errors (with same color coding).
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Figure 8.11: Top graph: time histories of the steady-state current i(t) (solid/blue line),
of the steady-state current i∞(t) (dotted/red line) and of the approximated steady-
state current computed with the Fourier series with one harmonic ĩ1(t) (dashed/green
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dotted/black line). Bottom graph: resulting relative errors (with same color coding).
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solved considering the extended signal ⊓(ωt+π/2)+ j⊓ (ωt). This complex signal is never

equal to zero and Assumption 15 is satisfied. Note that this is in line with the smooth

case when the source is described by ejωt = sin(ωt+ π/2) + j sin(ωt).

Thus, we write equation (8.29) in the form (8.4) using the mixed convention and we

consider the signal generator described by the equations

u(t) = Vsζ(t), ζ(t) = ⊓
(
ωt+

π

2

)
+ j ⊓ (ωt) , (8.30)

with Vs ∈ R and ⊓(t) implemented as the function square of MATLABTM . Note that in

the real convention this signal is realized by the system

u(t) = Vs

[
1 0

]
ζ(t), ζ(t) =



⊓
(
ωt+

π

2

)
− ⊓ (ωt)

⊓(ωt) ⊓
(
ωt+

π

2

)






1

0


 . (8.31)

In fact, in the smooth case the matrix Λ would reduce to the usual rotation matrix and

u(t) = cos(ωt). However, in the following we use the mixed convention which, as already

pointed out, is more compact and it results in more efficient computation.

Analysis of a resonant inverter with Q=0.1313

The parameters for the simulation have been selected as L = 229.3µH, C = 10µF ,

R = 36.47Ω, Vs = 100V and ω =
1√
LC

. Note that the inverter has a low quality factor

of Q= 0.1313. The phasors are computed using equation (8.16). The formula has been

implemented in MATLABTM with the function integral with the option ArrayValued.

Fig. 8.6 shows the real component (top graph) and the imaginary component (bottom

graph) of the phasor I(t) computed as ǫ⊤1 Π∞. Note that the phasor is time-dependent,

periodic (with period one forth of the period of the input source) and discontinuous. The

other electrical quantities of the circuit in the phasor domain can be computed as well.

For instance Fig. 8.7 shows the phasor V C(t) = ǫ⊤2 Π∞/C, computed as in equation (8.23),

of the voltage across the capacitor C. Fig. 8.8 (top graph) shows the time histories of

the steady-state current i(t) (solid/blue line), the steady-state current i∞ computed from

the phasor I(t) as i∞ = ℜ
[
I(t)Λ(t)

]
(dotted/red line) and the approximated steady-state
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current computed with the Fourier series with one harmonic ĩ1(t) (dashed/black line), three

harmonics ĩ3(t) (bold dashed/black line), and seven harmonics ĩ7(t) (dash-dotted/black

line). Note that the transient of i(t) has been eliminated simulating 50 periods of the

switching input and considering only the last period. Fig. 8.8 (bottom graph) shows the

corresponding relative errors (with the same color coding), namely ε∞r = |i− i∞|/|i| and

εkr = |i− ĩk|/|i|, with k = 1, 3, 7. The steady-state of the current i(t) is exactly described

by i∞ (the error is identically zero). The steady-state is approximated by the Fourier

series increasingly better as the number of terms grows. However, note that at the points

of discontinuity a finite number of Fourier terms cannot approximate perfectly the steady-

state, as it can be noted by the peaks of ε7r (dash-dotted/black line). Fig. 8.9 shows the

absorbed power by the load R. The solid line shows the actual steady-state instantaneous

power computed from the current i(t). The dotted line and dash-dotted line show the

steady-state instantaneous power p(t) computed as (8.26) and the steady-state average

power P computed as (8.28), respectively. The figure confirms that the quantities that

we have defined maintain their physical meaning since the power relations keep holding in

the phasor domain.

Analysis of a resonant inverter with Q=0.4789 and Q=0.0042

We expect that as the “severity” of the discontinuity increases in the system, the discrep-

ancy between the Fourier series and the discontinuous phasor response grows. We can

check this changing a few parameters: for example setting R = 10Ω (Q= 0.4789) in the

first case and L = 229.3nH and R = 36.47Ω (Q= 0.0042) in the second case. Fig. 8.10

shows the quantities in Fig. 8.8 for the intermediate quality factor Q = 0.4789. Note that

since the curves are smoother the current computed with the Fourier series approaches

the current computed with the new phasor with fewer harmonics. On the other hand,

Fig. 8.11 shows the quantities in Fig. 8.8 for the lower quality factor Q= 0.0042. In this

case the error of the Fourier series increases. These figures show that the new discontin-

uous phasor is particularly useful to describe underdamped circuits that present “severe”

discontinuities.
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Figure 8.12: Real part (top graph) and imaginary part (bottom graph) of the signal
representing a non-ideal switch with reverse recovery effect.

8.4.2 Example: analysis of a wireless power transfer system with non-

ideal switches

Consider now system (8.8) represented in the mixed convention by system (8.4) with the

matrices as in (8.10) and assume that the circuit contains non-ideal switches. In particular

we study the effect of the reverse recovery time of the switching diode BAS19 [207]. The

reverse recovery effect consists in an overshoot of the switching signal at the switching

time. Most commercially available switching diodes have a reverse recovery time ranging

from few nanoseconds to one microsecond [204]. The diode BAS19, which is considered

a fast diode, has a reverse recovery time of 50 nanoseconds that becomes relevant at

MHz switching frequencies at which some wireless power transfer systems operate [208].

Fig. 8.12 shows the behavior of the diode BAS19 at the frequency f = 1MHz. This

has been modeled with equation (8.30) in which we have added a sawtooth wave at the

switching times. The parameters for the simulation have been selected as L1 = L2 =

8.203mH, M12 = M21 = 1.545mH, C1 = 1.029nF , C2 = 1.024nF , R1 = R2L =

33.576 kΩ, Vs = 230V and ω = 2πf . Fig. 8.13 shows the time histories of the 50-th

period of the current i2, the steady-state i
∞
2 = ℜ

[
I2(t)Λ(t)

]
, and the approximation ĩ152 (t)
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computed with the Fourier series of an ideal switch with fifteen harmonics. Fig. 8.14

shows the corresponding absolute errors (top) and relative error (bottom). Note that

the new discontinuous phasor can deal with the discontinuous non-ideal source without

approximations. On the other hand, the Fourier series cannot fully describe this source.

8.5 Conclusion

We have shown that the phasors of an electric circuit are the moments on the imagi-

nary axis of the linear system describing the circuit. Exploiting this relation, we have

analyzed circuits powered by discontinuous sources. A new “discontinuous phasor trans-

form”, which allows to analyze in closed-form the steady-state behavior of discontinuous

power electronic devices, has been defined and the v-i characteristics for inductors, capac-

itors and resistors have been described in terms of this new phasor transform. The new

quantities maintain their physical meaning: the instantaneous power, the average power

and the reactive power in the phasor domain have been defined. We have illustrated the

use of this mathematical tool studying the steady-state response of power inverters and

of wireless power transfer systems with non-ideal switches. The equivalence that we have

established between moments and phasors has the potential of allowing further extensions

of the phasor transform beyond the linear framework and the discontinuous framework to

circuits with nonlinear elements and circuits with delays.
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Chapter 9

Invariance-like theorems and

“lim inf” convergence properties

9.1 Introduction

The qualitative study of asymptotic properties of trajectories of nonlinear systems is a

key problem in systems and control theory, see e.g. [1,209–212]. Among these asymptotic

properties, the most important is attractiveness, which is often established by means of

Lyapunov functions. Although this formulation is convenient from a practical point of

view, it is in general hard to find a function that fulfills the sufficient (and in some cases

necessary) conditions of the Lyapunov theorems. It is somewhat easier to find a weak Lya-

punov function, i.e. a positive definite function with negative semi-definite time derivative

along the trajectories of the systems. In this last case, for time-invariant systems, the

Krasovskii-LaSalle invariance principle allows to establish attractiveness, under additional

assumptions on the Ω−limit sets of the solutions (see e.g. [213–216]).

Another tool that is used to replace the negative definiteness condition of the Lyapunov

theorem and, in addition, can be used for time-varying systems is Matrosov Theorem (see

e.g. [217–219]). This theorem allows proving attractiveness of equilibrium points, provided

that a linear combination of positive semi-definite functions is positive definite and their

time derivatives along the trajectories of the system have a triangular structure. However,

to apply Matrosov Theorem it is necessary to assume stability of the equilibrium point.

In [220], the authors posed the question of what can be established if this stability as-
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sumption and the positive definiteness assumption are removed from Matrosov Theorem.

The answer to this question is that it is still possible to establish some convergence result,

although, with reference to the positive definiteness assumption, not as strong as one could

think borrowing from the Krasovskii-LaSalle invariance principle. We call this convergence

“lim inf” convergence, in the sense that we cannot establish asymptotic stability of the

equilibrium point, but we can show that there is an oscillating behavior with some “nice”

asymptotic properties.

Since (the classical) Matrosov Theorem relies upon the study of a triangular system of two

differential inequalities, it can be extended in different directions. A straightforward exten-

sion consists in the so-called nested Matrosov Theorem [219], in which several inequalities

are considered. Another extension, which changes radically the reach of the theorem,

consists in removing the triangular structure of the system of differential inequalities. In

this case the Matrosov inequalities, which can also be interpreted within the framework of

vector Lyapunov functions (see [221] for instance), lead (assuming additional hypotheses)

to the Lyapunov formulation of the Small-gain Theorem [222].

The Small-gain Theorem is an important tool to assess the asymptotic properties of the

trajectories of a system resulting from the interconnection of two or more subsystems. The

Small-gain Theorem has been developed in different formulations depending on which

property is used to describe the input-output behavior of each of the subsystems. For

linear systems the Lp Small-gain Theorem has been successfully used in input-output for-

mulations of the problem (see e.g. [223, Chapter 6] and [224]). For nonlinear systems

versions based on Lp-gains (see [225]), but using Lyapunov functions, have been presented

in [226–228]. In this chapter, the Lyapunov formulation given in [222] and derived from

the property of input-to-state stability (ISS) (see [229, 230]) is used. Note that within

this framework other formulations in which interconnections between possibly non-ISS

subsystems are considered (see e.g. [231–233]), have been proposed. While the Small-gain

Theorem is usually formulated for two interconnected subsystems it is often interesting,

for practical applications, to study its large-scale version. A large-scale version of the

theorem for linear systems can be found in [223], whereas a nonlinear formulation has

recently been presented in [234,235] (see also [221]).
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The outcome of this chapter is a class of theorems inspired by the Krasovskii-LaSalle

invariance principle that can establish “lim inf” convergence results, thus can “describe”

the oscillatory behavior of the solutions of dynamical systems. These theorems lead to

“lim inf” Matrosov and Small-gain Theorems which are based on a “lim inf” Barbalat’s

Lemma. In addition, technical assumptions to have “lim” convergence1 are given, and the

“lim inf” / “lim” relation and the role of some of the assumptions are discussed.

The rest of the chapter is organized as follows. This section continues with the formu-

lation of the problem and with a discussion on the connections with Matrosov Theorem

and the Small-gain Theorem. In Section 9.2 some properties of the so-called M -matrices

are recalled. We also give a small-gain-like condition and we extend the concept of ir-

reducibility to non-constant matrices. Section 9.3 presents a series of technical lemmas

which forms the core theoretical part of the chapter. The irreducible case is analyzed

and connections with Barbalat’s Lemma are drawn before studying the general reducible

case. In Section 9.4 the use of “linear gains” as opposed to “nonlinear gains” is justified

and supported by a series of counter-examples. In Section 9.5 the theorems are applied

to the study of the asymptotic behavior of solutions of dynamical systems. Sections 9.5.1

and 9.5.2 contain examples illustrating the theoretical results and Section 9.6 gives some

concluding remarks.

Most results of this chapter are original contributions developed in fulfillment of my PhD

course and they have been published in the conference paper [21] and in the journal pa-

per [22]. Early versions of some of the results presented in this chapter (Lemma 23,

Lemma 25 and Section 9.4) are due to [220,236]

Notation. A continuous function α : R≥0 → R≥0 is said to belong to class K∞, if it is

strictly increasing, α(0) = 0 and α(s) → +∞ as s → +∞. Id denotes the identity map,

i.e. Id(s) = s. [v]i denotes the i-th component of the vector v and the notation u ≤ v

has to be understood component-wise.

1“lim” convergence is an abuse of language that we use to indicate the usual concept of convergence
and that allows to clarify the distinction between the two “types of convergence”.
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9.1.1 Problem formulation

Motivated by the attempt to add a new tool to “comparison theory” for studying the

behavior of the solutions of dynamical systems, we consider the following problem.

Problem 1. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let ai : R≥0 → [−a, a] be absolutely
continuous functions and bi : R≥0 → [0, b] be continuous functions. Consider continuous,

positive definite functions αi : R≥0 → R≥0 and continuous functions βij : R≥0 → R≥0,

with i 6= j, satisfying βij(0) = 0, such that the differential inequalities

ȧ1 ≤ −α1(b1) + β12(b2) + · · ·+ β1p(bp),

ȧ2 ≤ −α2(b2) + β21(b1) + · · ·+ β2p(bp),
...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·+ βp(p−1)(bp−1),

(9.1)

hold for almost all t in R≥0.

The “lim inf” / “lim” convergence problem consists in determining the asymptotic prop-

erties of the functions bi, more precisely, in determining conditions on the functions αi

and βij such that

lim inf
t→∞

p∑

i=1

bi(t) = 0, (9.2)

or

lim
t→∞

p∑

i=1

bi(t) = 0. (9.3)

The key feature of the inequalities (9.1) is that the arguments bi of the functions αi

and βij are not related a-priori with the functions ak in the left-hand side. To illustrate

this statement we recall the (simplest) formulation of the Matrosov Theorem and of the

Small-gain Theorem.

Consider a nonlinear system described by the equation

ẋ = f(x), (9.4)

where x ∈ Rn is the state of the system and the function f : Rn → Rn is locally Lipschitz.

Assume there exists an equilibrium point which, without loss of generality, we choose as

the origin of the coordinate system, i.e. f(0) = 0.
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Theorem 28 (Matrosov Theorem [217], [218], [219], [220]). Consider system (9.4). Let

i ∈ {1, 2}. Assume there exist

1. a differentiable, positive definite and radially unbounded function V0 : R
n →

R≥0 such that V̇0 ≤ 0 along all the solutions of system (9.4);

2. two differentiable functions Vi : R
n → R and two continuous, positive semi-

definite functions hi : R
n → R≥0 such that the function h1 + h2 is positive

definite;

3. a continuous function β21 : R≥0 → R≥0, such that β21(0) = 0;

satisfying, along all the solutions of system (9.4), the inequalities

V̇1 ≤ −h1,

V̇2 ≤ −h2 + β21(h1).

(9.5)

Then the equilibrium x = 0 of system (9.4) is globally asymptotically stable.

Theorem 29 (Small-gain Theorem2 [222, 236]). Consider system (9.4). Let i ∈ {1, 2}.
Assume there exist

1. two continuously differentiable functions Vi : R
n → R≥0 such that the function

V1 + V2 is positive definite and radially unbounded;

2. two class K∞ functions αi : R≥0 → R≥0 and two continuous functions β12, β21 :

R≥0 → R≥0, such that β12(0) = β21(0) = 0;

satisfying, along all the solutions of system (9.4), the inequalities

V̇1 ≤ −α1(V1) + β12(V2),

V̇2 ≤ −α2(V2) + β21(V1).

(9.6)

If the small-gain condition

β21 ◦ α−11 ◦ β12 ◦ α−12 < Id, (9.7)

holds, then the equilibrium x = 0 of system (9.4) is globally asymptotically stable.

2The Small-gain Theorem is usually applied in the study of the stability properties of the equilibrium
point of an interconnected system. In this chapter, following the Lyapunov formulation given in [222], we
abuse the terminology saying that the Small-gain Theorem holds for the inequalities (9.6), ignoring if these
arise as the result of a composition of systems.
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Note that in Problem 1 and Theorem 28 and 29 differential inequalities with similar

structure are studied; in Theorem 28 and 29 the inequalities must hold when the functions

are evaluated along any solution. Instead in Problem 1, we restrict our attention to those

particular solutions which are bounded.

We are also interested in generalizing Theorem 28, removing the stability assump-

tion and not requiring that a linear combination of positive-semidefinite functions be

positive definite (in the spirit of LaSalle invariance principle), and Theorem 29, allowing

the arguments bi of the functions αi and βij to be not related a-priori with the functions

ak in the left-hand side (in the spirit of Matrosov Theorem). Note that as anticipated

in [236] and illustrated in detail here, the result that we prove may not hold when the

nonlinear functions αi and βij satisfy the nonlinear small-gain condition (9.7): a more

restrictive linear small-gain-like condition may be required.

9.2 Preliminary results on the test matrix

In this section we define the notion of “test matrix” associated to the inequalities (9.1)

and we recall or prove properties which are instrumental to establish the results of the

following sections.

Definition 28. A principal minor of order j of an n× n matrix A is the determinant of

the j × j sub-matrix obtained from A by deleting n− j columns and n− j rows with the
same indices.

A leading principal minor of order j of a matrix A is the determinant of its upper-left j

by j sub-matrix and is indicated by the notationMj(A).

Definition 29. [237] A Z-matrix is a matrix with non-positive off-diagonal elements.

Definition 30. [237, Condition E17, Theorem 6.2.3] A Z-matrix having all its leading

principal minors strictly positive is called a non-singular M -matrix.

Definition 31. [237] A matrix is reducible if, after some permutation of the rows and

the columns, it can be written in a lower block triangular form. Otherwise it is said to be

irreducible.

Lemma 18. [237, Theorem 6.2.7] The inverse of a non-singular M -matrix A has non-

negative entries. Moreover, if A is irreducible, the inverse has strictly positive entries.
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In the following we call test matrix the matrix Q with the (i, j) element equal to

−βij(bj), if i 6= j, or to αj(bj), if i = j, namely3

Q =




α1(b1) −β12(b2) . . . −β1p(bp)

−β21(b1) α2(b2)
. . .

...

...
. . .

. . .
...

−β(p−1)1(b1) . . . αp−1(bp−1) −β(p−1)p(bp)

−βp1(b1) . . . −βp(p−1)(bp−1) αp(bp)




.

Note that Q is a Z-matrix.

When, for all k = 1, . . . , p, l = 1, . . . , p, with k 6= l, there exist non-negative real numbers

γkl satisfying

sup
s∈(0,b̄]

βkl(s)

αl(s)
≤ γkl, (9.8)

we associate to the test matrix Q a matrix Γ defined as the matrix with off-diagonal

elements equal to −sup
s∈(0,b̄]

βkl(s)

αj(s)
and diagonal elements equal to one. Again Γ is a Z-

matrix.

Lemma 19. Assume the following.

1. The test matrix Q satisfies the following linear small-gain-like condition:

there exists a strictly positive real number ε such that, for all

j = 1, . . . , p and all (b1, . . . , bp) in [0, b̄ ]
p, we have

Mj(Q(b1, . . . , bp)) ≥ ε

j∏

k=1

αk(bk).

(9.9)

2. Each function s 7→ βkl(s)

αl(s)
is bounded.

Then the matrix Γ satisfies

Mj(Γ) ≥ ε, ∀ j = 1, . . . , p. (9.10)

Proof. Condition (9.9) is equivalent to

Mj

(
Q diag

(
1

α1
, . . . ,

1

αp

))
≥ ε, ∀ j and ∀ bi ∈ (0, b̄ ].

3Omitting the arguments of Q.
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By definition of supremum, there exist p sequences {bln} such that

βkl(bln)

αl(bln)
≤ sup

s∈(0,b̄]

βkl(s)

αl(s)
≤ βkl(bln)

αl(bln)
+
1

n
.

Since a minor is a polynomial in the entries of the matrix and the bln are bounded, this

yields

Mj(Γ) ≥ ε+ p

(
1

n

)
, ∀ j = 1, . . . , p,

where p

(
1

n

)
is a polynomial in

1

n
that goes to zero as n → ∞, i.e. p(0) = 0, hence the

claim.

Another way to make sure that (9.10) holds when the second assumption of Lemma

19 is satisfied is by defining a matrix Γ with off-diagonal elements equal to some −γkl
satisfying (9.8) and diagonal elements equal to one and check if we have

Mj(Γ) ≥ ε > 0, ∀ j = 1, . . . , p.

Indeed in this case, we have

Mj(Γ) ≥Mj(Γ)

This follows from the fact that Lemma 18 implies thatMj(Γ) is a non-increasing function

of γkl.

We show now that, when the small-gain-like condition (9.9) is satisfied, the irre-

ducibility of Q implies the boundedness of the functions s 7→ βij(s)

αj(s)
on (0, b̄].

Lemma 20. Assume the test matrix Q satisfies the linear small-gain-like condition (9.9).

If, for some index j, there exists a vector (b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p) in (0, b̄ ]

p−1 such that,

for all bj ∈ (0, b̄ ], the matrix Q(b∗1, . . . , b∗j−1, bj , b∗j+1 . . . , b
∗
p) is irreducible then, for all i 6= j,

the functions s 7→ βij(s)

αj(s)
are bounded on (0, b̄ ].

Proof. By definition, the small-gain-like condition (9.9) implies that Q(b1, . . . , bp) is an

M -matrix for all (b1, . . . , bp) in [0, b̄ ]p. It implies also that det(Q(b1, . . . , bp)) is strictly

positive for all (b1, . . . , bp) in (0, b̄ ]
p.

Let j and (b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p) in (0, b̄ ]p−1 be such that the matrix

Q(b∗1, . . . , b
∗
j−1, s, b

∗
j+1 . . . , b

∗
p) is irreducible for all s in (0, b̄ ]. Omitting the argu-
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ment (b∗1, . . . , b
∗
j−1, s, b

∗
j+1 . . . , b

∗
p) when it is not necessary, let qk, for all k, be the k-th

entry of the j-th row of adj(Q) = det(Q)Q−1. From Lemma 18 qk is strictly positive.

Also qk does not depend on s. Indeed the row j of QT depends only on s, and qk is the

determinant of the sub-matrix formed by deleting the j-th row and the k-th column of

QT . Finally, the j-th diagonal element of the matrix identity

det(Q)I = adj(Q)Q,

yields

0 < det(Q) = qj(b
∗
1, . . . , b

∗
j−1, b

∗
j+1, . . . , b

∗
p)αj(s)−

p∑

k=1
k 6=j

qk(b
∗
1, . . . , b

∗
j−1, b

∗
j+1, . . . , b

∗
p)βkj(s),

for all s ∈ (0, b̄]. Since for any i 6= j, qi is strictly positive, this implies

βij(s) +

p∑

k=1
k 6=j,i

qk(b
∗
1, . . . , b

∗
j−1, b

∗
j+1, . . . , b

∗
p)

qi(b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p)
βkj(s) <

qj(b
∗
1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p)

qi(b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p)
αj(s),

for all s ∈ (0, b̄], for all i 6= j, and therefore

βij(s)

αj(s)
<
qj(b

∗
1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p)

qi(b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p)

∀s ∈ (0, b̄], ∀i 6= j.

In view of this result we define what we mean by the fact that Q as a function of

(b1, . . . , bp) is irreducible.

Definition 32. A test matrix is said to be irreducible as a function if, for each index j,

there exists a vector (b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p) in (0, b̄ ]

p−1 such that, for all bj ∈ (0, b̄ ], the
matrix Q(b∗1, . . . , b

∗
j−1, bj , b

∗
j+1 . . . , b

∗
p) is irreducible.

The outcome of Lemma 20 is that if the inequalities in (9.1) cannot be re-written

in triangular form by means of a permutation of rows and columns or more precisely if the

associated test matrix is irreducible as a function, then the linear small-gain-like condition

implies the existence of the matrix Γ with no additional hypotheses. In other words, when

Q is irreducible as a function and (9.9) holds there is no need to assume that the functions
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s 7→ βij(s)

αj(s)
are bounded.

9.3 Main technical results

In this section we present lemmas which constitute the core theoretical part of the chapter.

They will be used to establish the results of the following sections dealing with the study

of the behavior of solutions of ordinary differential equations which are known to exist on

[0,+∞), and taking values in a compact set, as detailed in Problem 1. For this reason we

assume, without loss of generality, that all functions are bounded.

We begin with the irreducible case in the first subsection, we study the triangular reducible

case in the second and we conclude with the triangular block reducible case in the last.

9.3.1 Irreducible case

Lemma 21. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let ai : R≥0 → [−a, a] be absolutely
continuous functions and bi : R≥0 → [0, b] be continuous functions. Consider continuous,

positive definite functions αi : R≥0 → R≥0 and continuous functions βij : R≥0 → R≥0,

with i 6= j, satisfying βij(0) = 0, such that the following hold.

1. The differential inequalities

ȧ1 ≤ −α1(b1) + β12(b2) + · · ·+ β1p(bp),

ȧ2 ≤ −α2(b2) + β21(b1) + · · ·+ β2p(bp),
...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·+ βp(p−1)(bp−1),

(9.11)

hold for almost all t in R≥0.

2. The test matrix Q associated to (9.11) is irreducible as a function and satisfies the

linear small-gain-like condition (9.9).

Then we have

lim inf
t→∞

p∑

i=1

bi(t) = 0. (9.12)

If the functions bi are uniformly continuous then we have

lim
t→∞

p∑

i=1

bi(t) = 0. (9.13)
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To prove Lemma 21, we observe in the next statement that Cesàro’s summability

of an integral [238], i.e. convergence of the mean, implies the “lim inf” convergence.

Lemma 22. Let σ : R→ R be a continuous function. If

lim
t→∞

1

t

∫ t

0
σ(s)ds = 0,

then

lim inf
t→∞

|σ(t)| = 0.

Remark 74. As it will be clear from the proof, if σ has constant sign then it is sufficient

that σ be piecewise continuous. �

Proof. We prove Lemma 22 by contradiction. Assume the existence of positive real num-

bers ε and T such that, for all t ≥ T , |σ(t)| ≥ ε. Because of continuity, σ has constant

sign for all t ≥ T . We study the case σ(t) > 0. For σ(t) < 0 similar arguments can be

invoked. Integrating the previous inequality on the interval [T, t] yields

∫ t

T

σ(s)ds ≥ ε(t− T ).

Dividing by t, i.e.
1

t

∫ t

T

σ(s)ds ≥ ε(t− T )
t

,

re-writing the integral as

1

t

∫ t

0
σ(s)ds ≥ ε(t− T )

t
+
1

t

∫ T

0
σ(s)ds,

and picking t such that ∣∣∣∣
∫ T

0
σ(s)ds

∣∣∣∣ ≤
ε

2
t,

yield
1

t

∫ t

0
σ(s)ds ≥ ε

2
− εT

t
.

Since the limit for t going to +∞ of the right hand side is strictly positive, we have a

contradiction.

Proof of Lemma 21. By Lemmas 19 and 20 we know the γij defined in (9.8) exist and
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the inequality (9.10) holds. Hence the i-th line in (9.11) gives

ȧi ≤ −αi(bi) +

p∑

j=1
j 6=i

γijαj(bj). (9.14)

To rewrite this inequality in more compact notation let

a =




a1
...

ap


 , b =




b1
...

bp


 , α(b) =




α1(b1)
...

αp(bp)


 .

Then (9.14) reads

ȧi ≤
[
γi1 . . . γi(i−1) −1 γi(i+1) . . . γip

]
α(b). (9.15)

With the definition of the matrix Γ, this reduces further to

[ȧ]i ≤ [−Γα]i. (9.16)

Since, by (9.10), Γ has all leading principal minors with strictly positive determinant, by

Lemma 18, Γ−1 has all positive entries, hence the relation

[Γ−1ȧ]i ≤ [−α]i, (9.17)

holds. In fact each of the inequalities in (9.17) is obtained as a weighted sum, with positive

weights, of the inequalities in (9.16). Integrating from 0 to t each of these relations yields

∫ t

0
[α(b(s))]ids ≤ −

∫ t

0
[Γ−1ȧ(s)]ids ≤ [Γ−1(a(t)− a(0))]i.

Since the functions ai are bounded, there exists a positive real number α such that, for

all i, ∫ t

0
[α(b(s))]ids ≤ α.
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By adding all the above inequalities we have that

∫ t

0

p∑

i=1

αi(bi(s))ds < pα < +∞, (9.18)

hence, by Lemma 22, we conclude

lim inf
t→∞

p∑

i=1

αi(bi(t)) = 0.

Since the functions αi are positive definite, this implies (9.12). When the functions bi are

also uniformly continuous, the functions t 7→ αi(bi(t)) are uniformly continuous. So in this

case, by Barbalat’s Lemma, (9.18) gives

lim
t→∞

p∑

i=1

αi(bi(t)) = 0,

and therefore (9.13) follows.

9.3.2 Triangular reducible case

Lemma 23. Let p ≥ 3, i ∈ {1, . . . , p} and j ∈ {2, . . . , p}. Let ai : R≥0 → [−a, a] be
absolutely continuous functions and bi : R≥0 → [0, b] be continuous functions. Consider

continuous, positive definite functions αi : R≥0 → R≥0 and continuous functions βij :

R≥0 → R≥0, with j < i, satisfying βij(0) = 0, such that the differential inequalities

ȧ1 ≤ −α1(b1),

ȧ2 ≤ −α2(b2) + β21(b1),
...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·βp(p−1)(bp−1),

hold for almost all t in R≥0.

Then

lim
t→∞

1

t

∫ t

0

p∑

i=1

bi(s)ds = 0, (9.19)

and therefore

lim inf
t→∞

p∑

i=1

bi(t) = 0. (9.20)
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Remark 75. As opposed to the irreducible case given in Lemma 21, in the triangular

reducible case boundedness of the functions s 7→ βij(s)

αj(s)
does not play any role. �

To prove Lemma 23 we use the following sufficient condition to have Cesàro’s

summability.

Lemma 24. Let σ : R → R be a locally integrable function. If, for all ε > 0, there exits

a positive number µ such that

∣∣∣∣
∫ t

0
σ(s)ds

∣∣∣∣ ≤ εt+ µ, (9.21)

for all t ≥ 0, then

lim
t→∞

1

t

∫ t

0
σ(s)ds = 0.

Proof. Assume, by contradiction, that there exists δ > 0 and a sequence tn → ∞ such

that ∣∣∣∣
∫ tn

0
σ(s)ds

∣∣∣∣ ≥ δtn.

Select ε =
δ

2
then, by (9.21), there exists µ such that

∣∣∣∣
∫ t

0
σ(s)ds

∣∣∣∣ ≤
δ

2
t+ µ,

for all t ≥ 0. For t = tn, this gives

δtn ≤
∣∣∣∣
∫ tn

0
σ(s)ds

∣∣∣∣ ≤
δ

2
tn + µ.

Since there exists n such that tn >
2µ

δ
, we have a contradiction.

Remark 76. Lemma 22 and 24 provide a weaker version of Barbalat’s Lemma (see e.g.

[1]). In fact, the classical Barbalat’s Lemma can be recovered when the function σ is

uniformly continuous and (9.21) holds for ǫ = 0. �

Another notion that we need to introduce concerns a function ϕ associated with a

pair of functions (α, β).

Let b be a non-negative real number. To a continuous positive definite function α : R≥0 →

R≥0 and a continuous function β : R≥0 → R≥0, satisfying β(0) = 0, we associate the
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function ϕ : [1,+∞)→ R defined as

ϕ(ρ) = max
b∈[0,b]

(β(b)− (ρ− 1)α(b)) . (9.22)

Lemma 25. The function ϕ takes non-negative values and is non-increasing, Lipschitz

and such that lim
ρ→+∞

ϕ(ρ) = 0.

Proof. Since α and β are continuous and [0, b ] is compact, for each ρ ∈ [1,+∞) there

exists (at least one) b(ρ) in [0, b ] such that

ϕ(ρ) = β(b(ρ))− (ρ− 1)α(b(ρ)).

As a result, for any ρ′ ≥ ρ′′ ≥ 1,

ϕ(ρ′′) = β(b(ρ′′))− (ρ′′ − 1)α(b(ρ′′)) ≥ β(b(ρ′))− (ρ′′ − 1)α(b(ρ′))

≥ β(b(ρ′))− (ρ′ − 1)α(b(ρ′)) = ϕ(ρ′) ≥ β(b(ρ′′))− (ρ′ − 1)α(b(ρ′′)).

This yields

0 ≤ ϕ(ρ′′)− ϕ(ρ′) ≤ (ρ′ − ρ′′)α,

where

α = max
b∈[0,b ]

α(b),

i.e. the function ϕ is Lipschitz and non-increasing.

Note now that, since α is continuous and positive definite, for any sequence {ρn}, such that
lim

n→+∞
ρn = +∞, there exists N > 0 and a sequence {bn} ⊂ [0, b], satisfying lim

n→+∞
bn = 0,

and α(bn) =
1

nρn
, for all n ≥ N . In addition, since b(ρn) ∈ [0, b],

β(bn) + α(bn)−
1

n
≤ ϕ(ρn) = β(b(ρn))− (ρn − 1)α(b(ρn)),

and therefore

0 ≤ ρn α(b(ρn)) + β(bn) + α(bn) ≤ β(b(ρn)) + α(b(ρn)) +
1

n
.

This implies that lim
n→∞

α(b(ρn)) = 0 and, since α is continuous and positive definite, that
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lim
n→∞

b(ρn) = 0. Finally, since β is zero at zero and continuous,

lim
ρ→+∞

ϕ(ρ) = 0,

which also proves that ϕ takes non-negative values.

Note that Lemma 25 holds also for a linear combination of functions β(b). In this

case we use the notation

ϕj(ρ) = max
bj∈[0,b]

(βj(bj)− (ρ− 1)αj(bj)) , (9.23)

with βj(bj) =

p∑

i=1
i 6=j

kiβij(bj), where the weights ki are non-negative.

We are now ready to prove Lemma 23.

Proof of Lemma 23. The claim is proved by contradiction. To simplify the discussion

consider the case p = 3, which contains all ingredients necessary for the general proof.

Let ϕ2 : [1,+∞)→ R be defined as

ϕ2(ρ) = max
b2∈[0,b]

(β32(b2)− (ρ− 1)α2(b2)) .

Let also ε be an arbitrarily chosen strictly positive real number. Since by Lemma 25, ϕ2

is non-increasing and lim
ρ→+∞

ϕ2(ρ) = 0, we can select ψ2(ε) in [1,+∞) such that

ϕ2(ψ2(ε)) ≤
ε

2
.

Let ϕ1 : [1,+∞)→ R be defined as

ϕ1(ρ) = max
b2∈[0,b]

(ψ2(ε)β21(b1) + β31(b1)− (ρ− 1)α1(b1)) .

Similarly, for all ε > 0 we can select ψ1(ε) in [1,+∞) such that

ϕ1(ψ1(ε)) ≤
ε

2
.
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Note now that

˙︷ ︷
ψ1(ε)a1+ψ2(ε)a2+a3≤−ψ1(ε)α1(b1)+ψ2(ε)β21(b1)+β31(b1)−ψ2(ε)α2(b2)+β32(b2)−α3(b3)

≤ (ϕ1(ψ1(ε)) + ϕ2(ψ2(ε)))− (α1(b1) + α2(b2) + α3(b3)) .

As a result

∫ t

0

3∑

i=1

αi(bi(s))ds ≤ (ϕ1(ψ1(ε)) + ϕ2(ψ2(ε)))t+ (ψ1(ε)a1(0) + ψ2(ε)a2(0) + a3(0))

− (ψ1(ε)a1(t) + ψ2(ε)a2(t) + a3(t))

≤ (ϕ1(ψ1(ε)) + ϕ2(ψ2(ε)))t+ 2(ψ1(ε) + ψ2(ε) + 1)a

≤ ε t + 2(ψ1(ε) + ψ2(ε) + 1)a.

Since ε is arbitrary, the claim follows by Lemmas 22 and 24.

In the case p > 3 the claim can be proved along the same lines defining p − 1 functions

ϕj .

Remark 77. If in Lemma 23 we assume that the functions
βij
αj

are bounded and the

functions bi are uniformly continuous, then we have the “lim” convergence result

lim
t→∞

p∑

i=1

bi(t) = 0.

In fact in the previous proof we can pick

ε = 0, ψ2 = 1 + γ21, ψ1 = 1 + γ31 + γ32ψ2

and follow the same arguments as in the proof of Lemma 21. �

9.3.3 Triangular block reducible case

We are now ready to study the triangular block reducible case that can be regarded as a

generalization of the previous results. To this end, let sl = rl − rl−1, with s0 = r0 = 0, be

the dimension of the column vectors

al =

[
a(rl−1+1) a(rl−1+2) . . . arl

]T
, bl =

[
b(rl−1+1) b(rl−1+2) . . . brl

]T
,
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and define

αl(bl) =

[
α(rl−1+1)(b(rl−1+1)) α(rl−1+2)(b(rl−1+2)) . . . αrl(brl)

]T
,

δl(bl) =

rl∑

j=(rl−1+1)




δ(rl−1+1)j(bj)

δ(rl−1+2)j(bj)

...

δ(rl)j(bj)




, with δkj =





−αj if k = j

βkj if k 6= j

µlm(bm) =
rm∑

j=(rm−1+1)

µlm(bj) =

rm∑

j=(rm−1+1)




β(rl−1+1)j(bj)

β(rl−1+2)j(bj)

...

β(rl)j(bj)




.

Proposition 12. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let ai : R≥0 → [−a, a] be
absolutely continuous functions and bi : R≥0 → [0, b] be continuous functions. Consider

continuous, positive definite functions αi : R≥0 → R≥0 and continuous functions βij :

R≥0 → R≥0, with i 6= j, satisfying βij(0) = 0. Let al, bl, δl and µlm be vectors of

dimension sl, with components obtained from the ai’s, bi’s, αi’s and βij ’s, such that the

following hold.

1. The differential inequalities

ȧ1 ≤ δ1(b1),

ȧ2 ≤ µ21(b1) + δ2(b2),
...

ȧq ≤ µq1(b1) +µq2(b2) + · · ·+ δq(bq),

(9.24)

with rq = p, hold for almost all t in R≥0.

2. The matrix Ql for each diagonal element δl is irreducible as a function and satisfies

the linear small-gain-like condition (9.9).

Then

lim
t→∞

1

t

∫ t

0

p∑

i=1

bi(s)ds = 0, (9.25)
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and therefore

lim inf
t→∞

p∑

i=1

bi(t) = 0. (9.26)

Remark 78. As expected, (9.26) holds with no additional restrictions on the off-diagonal

elements µlm. However, as discussed in Remark 77, if all functions
βij
αj

in the off-diagonal

element µlm are bounded and the bi are uniformly continuous then (9.26) can be replaced

by

lim
t→∞

p∑

i=1

bi(t) = 0. (9.27)

�

Proof. We consider the case with q = 3 blocks, namely

ȧ1 ≤ δ1(b1),
ȧ2 ≤ µ21(b1) + δ2(b2),

ȧ3 ≤ µ31(b1) +µ32(b2) + δ3(b3),

which contains all the ingredients necessary for the general proof. Define Γl as the matrix

corresponding to the test matrix Ql attached to the vector δl and 1l as the row vector with

sl elements equal to 1. Let also ε be an arbitrarily chosen strictly positive real number.

In a way similar to the one followed to get (9.16), we obtain

δl(bl) ≤ −Γlα(bl)

and therefore Γ−1l δl(bl) ≤ −α(bl). This leads to

Γ−11 ȧ1 ≤ −α1(b1),

Γ−12 ȧ2 ≤ Γ−12 µ21(b1)−α2(b2),

Γ−13 ȧ3 ≤ Γ−13 µ31(b1) + Γ−13 µ32(b2)−α3(b3).

To deal with the terms in b2, we define s2 functions ϕi : [1,+∞)→ R as

ϕr1+1(ρ) = max
br1+1∈[0,b]

(13Γ
−1
3 µ32(br1+1)− (ρ− 1)αr1+1(br1+1)),

...

ϕr2(ρ) = max
br2∈[0,b]

(13Γ
−1
3 µ32(br2)− (ρ− 1)αr2(br2)).

(9.28)
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By Lemma 25, the functions ϕi are non-increasing and lim
ρ→+∞

ϕi(ρ) = 0. As a result, we

can select a vector ψ2(ε) of size s2 with components ψi(ε) in [1,+∞) such that

r2∑

i=r1+1

ϕi(ψi(ε)) ≤
ε

2
.

This gives

13Γ
−1
3 µ32(b2)−ψ2(ε)α2(b2) ≤

ε

2
− 12α2(b2).

Similarly, to deal with the terms in b1, we define s1 functions ϕi : [1,+∞)→ R as

ϕ1(ρ) = max
b1∈[0,b]

(ψ2(ε)Γ
−1
2 µ21(b1) + 13Γ

−1
3 µ31(b1)− (ρ− 1)α1(b1)),

...

ϕr1(ρ) = max
br1∈[0,b]

(ψ2(ε)Γ
−1
2 µ21(br1) + 13Γ

−1
3 µ31(br1)− (ρ− 1)αr1(br1)).

(9.29)

Again, by Lemma 25, the functions ϕi are non-increasing and lim
ρ→+∞

ϕi(ρ) = 0. So we can

select a vector ψ1(ε) of size s1 with components ψi(ε) in [1,+∞) such that

r1∑

i=1

ϕi(ψi(ε)) ≤
ε

2
.

This gives

ψ2(ε)Γ
−1
2 µ21(b1) + 13Γ

−1
3 µ31(b1)−ψ1(ε)α1(b1) ≤

ε

2
− 11α1(b1).

So we have obtained

13Γ
−1
3 ȧ3 +ψ2(ε)Γ

−1
2 ȧ2 +ψ1(ε)Γ

−1
1 ȧ1≤ε− 13α3(b3)− 12α2(b2)− 11α1(b1)≤ε−

r3∑

i=1

αi.

(9.30)

The claim follows by integrating both sides of (9.30) from 0 to t and applying Lemmas 22

and 24.

9.4 On the linear small-gain-like condition

In this section we discuss the linear small-gain condition and explain why it is necessary

to use this in the assumptions of Proposition 12 instead of the nonlinear condition. The
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discussion, for simplicity, is limited to the case p = 2, in which (9.9) yields

β12(b2)β21(b1) ≤ (1− ε)α2(b2)α1(b1), ∀(b1, b2) ∈ [0, b̄]2. (9.31)

To simplify the discussion we restrict ourselves to consider the case in which the functions

αi are invertible and the above inequality (9.31) holds for all non-negative real numbers

b1 and b2. From the theory of interconnected nonlinear systems we would expect that

stability properties be related to the nonlinear small-gain condition

β21 ◦ α−11 ◦ β12 ◦ α−12 (s) < s, ∀s > 0. (9.32)

Lemma 26. If β12 (β21 respectively) is positive definite, condition (9.31) implies, but it

is not implied by, condition (9.32).

Proof. We first show that the linear condition implies the nonlinear one. Pick any pair

(b1, b2) in ]0, b̄]
2 and note that the linear condition (9.31) yields

[
β12 ◦ α−12 (b2)

] [
β21 ◦ α−11 (b1)

]
≤ (1− ε) b1 b2 .

In particular, the selection

s > 0, b2 = s, b1 = β12 ◦ α−12 (s),

yields

b1 β21 ◦ α−11 ◦ β12 ◦ α−12 (s) ≤ (1− ε) b1 s,

which implies condition (9.32).

To show that the converse is not true, let α1(s) = s, β12(s) = s2, α2(s) = s and

β21(s) = γ
√
s. The nonlinear small-gain reduces to γs ≤ (1 − ε)s which holds for all

0 ≤ γ < 1, whereas the linear condition reduces to γ
b2√
b1

< (1 − ε) which does not hold

whatever the positive value of γ is.

As usual for small-gain conditions it is difficult to establish the true necessity of

(9.31). We now show that violation of the non-strict inequality yields the existence of

functions ai and bi such that the convergence result of Lemma 21 does not hold.
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Lemma 27. Assume there exist strictly positive real numbers b1a, b2b and b2c such that

β12(b2b)β21(b1a)

α2(b2b)α1(b1a)
> 1,

β12(b2c)β21(b1a)

α2(b2c)α1(b1a)
< 1. (9.33)

Then there exist functions ai and bi such that the convergence result in Lemma 21 does

not hold.

Remark 79. Condition (9.33) says that, with b1 = b1a, the inequality (9.31) holds for

b2 = bc but does not for b2 = b2b. �

Proof. Assume for the time being that we can find strictly positive real numbers ε1 and ε2

such that there exist strictly positive real numbers Tb and Tc satisfying the linear equations


β12(b2b)− α1(ε1) β12(b2c)− α1(ε1)

α2(b2b)− β21(ε1) α2(b2c)− β21(ε1)




Tb
Tc


 = −


β12(ε2)− α1(b1a)

α2(ε2)− β21(b1a)


 . (9.34)

Then, let b1 and b2 be piecewise constant and (1 + Tb + Tc)-periodic functions defined as

b1(t) =





b1a if t ∈ [0, 1],

ε1 if t ∈]1, 1 + Tb + Tc[,

b2(t) =





ε2 if t ∈ [0, 1],

b2b if t ∈]1, 1 + Tb],

b2c if t ∈]1 + Tb, 1 + Tb + Tc[,

As a result,

a1(1 + Tb + Tc)− a1(0) ≤ − [α1(b1a)− β12(ε2)] + [−α1(ε1) + β12(b2b)]Tb

+ [−α1(ε1) + β12(b2c)]Tc = 0,

and

a2(1 + Tb + Tc)− a2(0) ≤ − [α2(ε2)− β21(b1a)] + [−α2(b2b) + β21(ε1)]Tb

+ [−α2(b2c) + β21(ε1)]Tc = 0.

Therefore the result holds with ai any constant function.

Now to prove that Tb, Tc do exist we note that when ε1 and ε2 are both zero, the

solution of the equations (9.34) is

Tb =
α2(b2c)α1(b1a)− β12(b2c)β21(b1a)
α2(b2c)β12(b2b)− α2(b2b)β12(b2c)

, Tc =
β12(b2b)β21(b1a)− α2(b2b)α1(b1a)

α2(b2c)β12(b2b)− α2(b2b)β12(b2c)
.
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By condition (9.33) Tb and Tc are strictly positive if the denominator is strictly positive.

This is indeed the case since, multiplying the inequalities in (9.33), yields

β12(b2b)β21(b1a)α2(b2c)α1(b1a) > α2(b2b)α1(b1a)β12(b2c)β21(b1a),

where α1(b1a) > 0, since b1a > 0 and β12(b2b) > 0 because of (9.33). Therefore, by conti-

nuity, Tb and Tc are strictly positive when ε1 and ε2 are strictly positive, and sufficiently

small.

Thus, (9.31) is necessary to guarantee that there do not exist functions b1 and b2

such that the convergence result of Lemma 21 does not hold.

9.5 “lim inf” asymptotic properties in dynamical systems

Proposition 12 can be applied to study asymptotic properties of the solutions of dynamical

systems. In particular the following theorem solve Problem 1 and gives conditions to

establish the “lim inf” or “lim” convergence of such solutions.

Theorem 30. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Consider system (9.4) and let

Vi : R
n → R be continuously differentiable functions and hi : R

n → R≥0 be continuous

functions. Consider continuous, positive definite functions αi : R≥0 → R≥0, continuous

functions βij : R≥0 → R≥0, satisfying βij(0) = 0. Let V l, hl, δl and µlm be vectors of

dimension sl, with components obtained from the Vi’s, hi’s, αi’s and βij ’s
4, such that the

following hold.

1. Along the solutions of system (9.4), we have

V̇ 1(x) ≤ δ1(h1(x)),

V̇ 2(x) ≤ µ21(h1(x)) + δ2(h2(x)), ∀x ∈ Rn,
...

V̇ q(x) ≤ µq1(h1(x)) +µq2(h2(x)) + · · ·+ δq(hq(x)),

(9.35)

4In particular

V l =
[

V(rl−1+1) V(rl−1+2) . . . Vrl

]T
,

hl =
[

h(rl−1+1) h(rl−1+2) . . . hrl

]T
.
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with rq = p.

2. The matrix Ql for each diagonal element δl is irreducible as a function and satisfies

the linear small-gain-like condition (9.9).

Then, for any bounded solution t 7→ X(x, t) of (9.4),

lim
t→∞

1

t

∫ t

0

p∑

i=1

hi(X(x, s))ds = 0,

and therefore

lim inf
t→∞

p∑

i=1

hi(X(x, t)) = 0. (9.36)

Moreover,

3a. if all functions
βij
αj

of all off-diagonal elements µlm are bounded,

or

3b. if the largest invariant set Hp contained in the set

Ωh1,...,hp
= {x ∈ Rn : h1(x) = h2(x) = · · · = hp(x) = 0},

is stable,

then

lim
t→∞

p∑

i=1

hi(X(x, t)) = 0. (9.37)

Proof. Property (9.36) follows directly from Proposition 12 with hi(X(x, t)) playing the

role of bi(t).

If 3a) holds, (9.37) follows directly from Remark 78 with hi(X(x, t)) playing the role of

bi(t). Note that the uniform continuity of t 7→ hi(X(x, t)) follows from the continuity of hi,

and the boundedness of the locally Lipschitz function t 7→ X(x, t) (since f is continuous).

If 3b) holds suppose that all the blocks have dimension one and p = 3. This contains all

ingredients necessary for the general case.

Since V1 is bounded and decreasing along all the trajectories of the system by assumption,

the first inequality in (9.35), namely V̇1 ≤ −α1(h1) implies that

lim
t→∞

h1(X(x, t)) = 0.
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Since the solution is bounded, X(x, t) has an ω-limit set Ω(x) which is invariant and

compact, the previous limit implies

Ω(x) ⊂ Ωh1 = {x ∈ Rn : h1(x) = 0}.

For every xω1 ∈ Ω(x), h1(xω1) = 0 which, by the second inequality in (9.35), implies

lim
t→∞

h2(X(xω1 , t)) = 0,

and similarly to the previous discussion, this implies

Ω(xω1) ⊂ Ωh1,h2 = {x ∈ Rn : h1(x) = h2(x) = 0}.

For every xω2 ∈ Ω(xω1), h1(xω2) = h2(xω2) = 0 which, by the third inequality in (9.35),

implies

lim
t→∞

h3(X(xω2 , t)) = 0,

and again, this implies

Ω(xω2)⊂Ωh1,h2,h3={x ∈ Rn : h1(x)=h2(x)=h3(x)=0}.

This proves that, if the differential inequalities (9.35) are in triangular form and Ωh1,...,hp
is

stable, then (9.37) holds. Note that, if the first block of the differential inequalities (9.35)

has dimension greater than one, then (9.37) follows directly from Lemma 21 applied to

that block. The proof of the general triangular block case can be derived from this last

fact and the discussion carried out for the triangular case.

Now we prove that it is sufficient that the largest invariant set Hp contained in

Ωh1,...,hp
is stable. Again, for simplicity, consider the case p = 3. Assume, by contradiction,

that there exist x in Rn, ε strictly positive and a sequence tm going to infinity with m

such that

d(X(x, tm),H3) > ε.

Since H3 is stable there exists δ strictly positive such that, for any χ in Rn satisfying

d(χ,H3) ≤ δ, (9.38)
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we have

d(X(χ, s),H3) ≤ ε ∀s ≥ 0. (9.39)

Then, since Ω(x) is a closed invariant set we have Ω(xω1) ⊂ Ω(x) and since H3 is the

largest invariant set contained in the set Ωh1,h2,h3 one has Ω(xω2) ⊂ H3. Now because of

the convergence of X(xω2 , t) to its ω-limit set Ω(xω2), hence there exists T2 such that

d(X(xω2 , T2),H3) ≤ d(X(xω2 , T2),Ω(xω2)) ≤
δ

2

and

X(xω2 , T2) ∈ Ω(xω1) ⊂ Ω(x).

This means that X(xω2 , T2) is an ω-limit point of X(x, t), there exists T such that

|X(x, T )−X(xω2 , T2)| ≤
δ

2
.

As a result the triangular inequality yields

d(X(x, T ),H3) ≤ |X(x, T )−X(xω2 , T2)|+ d(X(xω2 , T2),H3) ≤ δ.

Therefore χ = X(x, T ) satisfies (9.38), which by (9.39) yields a contradiction.

Remark 80. The fact that (9.37) is implied by the stability of Ωh1,...,hp
is a restatement

of a well-known result, see for instance [230, Lemma I.4]. The fact that (9.37) is implied

by the stability of the largest invariant set Hp contained in Ωh1,...,hp
is a new result. �

Remark 81. If 3b) holds then (9.37) implies that Hp is asymptotically stable. �

9.5.1 Example: Duffing oscillator

We present an elementary example which gives a simple illustration of how the results

of the chapter can be used. Note that the convergence properties we obtain could be

established with classical tools. A more involved example follows.

Consider the 2-dimensional system describing the Duffing oscillator, namely

ẋ1 = x2,

ẋ2 = αx1 − βx2 − γx31,
(9.40)
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with (x1, x2) ∈ R2, α > 0, β > 0 and γ > 0. The equilibrium points are (x1, x2) = (0, 0),

(x1, x2) =

(
±
√
α

γ
, 0

)
.

Let

V1(x1, x2) =
1

β

(
γ
x41
4
− αx

2
1

2
+
x22
2

)
,

and

V2(x1, x2, x3) = −(αx1 − γx31)x2.

Then

V̇1 = −x22,

V̇2 = −(α− 3γx21)x
2
2 − (αx1 − γx31)2 + β(αx1 − γx31)x2.

(9.41)

Since V1 is radially unbounded, the first equality in (9.41) implies that all trajectories are

bounded. Then, selecting

c ≥ sup
t
|X1(x1, x2, t)|,

(9.41) yields

V̇2 ≤ −
1

2
(αx1 − γx31)2 +

(
3γc2 − α+ β2

2

)
x22,

which motivates the choice

α1(s) = s, β12(s) = 0, b1 = x22,

α2(s) =
1

2
s, β21(s) =

(
3γc2 − α+ β2

2

)
s, b2 =

(
αx1 − γx31

)2
.

Note that we have a triangular structure and that

sup
s>0

β21(s)

α1(s)
=
6γc2 − 2α+ β2

2
,

is finite, hence Theorem 30 yields

lim
t→+∞

X2(x1, x2, t)
2 +

(
αX1(x1, x2, t)− γX1(x1, x2, t)

3
)2
= 0,

which implies that the solutions of the system are converging to at least one equilibrium

point.
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9.5.2 Example: a more rich dynamics

Consider the class of systems described by the differential equations

ẋ1 = η x1(1− x21 − x22)xr3 + k1x2[Ψ(x1+) + xp3],

ẋ2 = η x2(1− x21 − x22)xr3 − k1x1[Ψ(x1+) + xp3],

ẋ3 = −k2xq3,

(9.42)

where (x1, x2, x3) ∈ R3, x1+ = max{x1, 0}, Ψ is a positive definite function, p and r ≥ p

are positive even integers, q is a positive odd integer, k1, k2 are positive and η ≥ 0. The

set of equilibrium points is given by {(x1, x2, x3) : x1+ = x3 = 0}. Note that

˙︷ ︷
x21 + x22 + x23 = −η(x21 + x22)(x

2
1 + x22 − 1)xr3 − k2xq+1

3 .

This shows that all solutions are bounded. Let

V1(x1, x2, x3) =
x23
2k2

and

V2(x1, x2, x3) =
x2
k1
.

Then

V̇1= −xq+1
3 ,

V̇2=
η

k1
x2(1− x21 − x22)xr3 − x1[Ψ(x1+) + xp3]

= −x1Ψ(x1+) + xp3[−x1 +
η

k1
x2(1− x21 − x22)xr−p3 ]

≤ −x1+Ψ(x1+) + xp3[x1− +
η

k1
(x2(1− x21 − x22))+xr−p3 ],

(9.43)

where x1− = −min{x1, 0}. These inequalities motivate the choice

δ1(s) = α1(s) = s
q+1
2 , δ2(s) = α2(s) = s, µ21(s) = β21(s) = cs

p
2 ,

h1(x) = b1 = x23, h2(x) = b2 = x1+Ψ(x1+),

where

c ≥ x1− +
η

k1
(x2(1− x21 − x22))+xr−p3 .
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Note that we have a triangular structure and that, for any strictly positive b̄, we have

sup
b∈(0,b̄]

β21(b)

α1(b)
= sup

b∈(0,b̄]

c

b
q−p+1

2

,

which is finite for p ≥ q + 1 and infinite otherwise. By Theorem 30

lim
t→+∞

1

t

∫ t

0
[X3(x1, x2, x3, t)

2 +X1+(x1, x2, x3, t)Ψ(X1+(x1, x2, x3, t))] = 0.

Since

lim
t→+∞

∫ t

0
X3(x1, x2, x3, t)

q+1(τ)dτ < +∞,

lim
t→+∞

X3(x1, x2, x3, t) = 0,

then

lim
t→+∞

X1+(x1, x2, x3, t)Ψ(X1+(x1, x2, x3, t)) = 0, if p ≥ q + 1,

lim inf
t→+∞

X1+(x1, x2, x3, t)Ψ(X1+(x1, x2, x3, t)) = 0, otherwise.
(9.44)

In what follows we focus on the case p = q− 1 and we show that the asymptotic property

expressed by the second of equations (9.44) cannot be improved. To this end re-write the

system using polar coordinates (θ, ρ) in the (x1, x2)-plane, i.e.

ρ̇ = ηρ(1− ρ2)xr3,

θ̇ = −k1(Ψ(ρ(cos θ)+) + xq−13 ),

ẋ3 = −k2xq3.

From the first equation, we obtain

ρ(t) =
ρ(0) exp(η

∫ t

0 x3(s)
rds)√

1− ρ(0)2 + ρ(0)2 exp(2η
∫ t

0 x3(s)
rds)

.

This implies

η = 0 ⇒ ρ(t) = ρ0

η > 0, x3(t)
r integrable ⇒ min(1, ρ0)≤ρ(t)≤max(1, ρ0)

η > 0, x3(t)
r not integrable ⇒ ρ(t)→ 1.
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From the second equation

θ(t) ≤ θ(0) − k1

∫ t

0
x3(s)

q−1ds,

and from the third equation

dx3
x3

= −k2xq−13 dt,

and then

1

k2
(log(x3(t))− log(x3(0))) = −

∫ t

0
x3(s)

q−1ds,

that can be directly substituted in the right hand side of θ(t). As a result

θ(t) ≤
[
θ(0)− k1

k2
log(x3(0))

]
+

k1
k2
log(x3(t)),

and, since lim
t→∞

x3(t) = 0, θ(t) tends to −∞ modulo 2π, i.e. θ(t) does not converge. Hence

the vector (x1(t), x2(t)) does not stop turning around the origin. This implies that

lim sup
t→+∞

x1+(t) 6= 0,

for all (x1(0), x2(0)) ∈ R2/{0}. This last equation shows that the asymptotic property

expressed by the second of equations (9.44) cannot be improved.

“lim inf” convergence case

Let p = 2, q = 3, k1 = k2 = 1, Ψ(s) = |s| and consider the three cases η = 0; η = 1 with r =

2; and η = 1 with r = 4. Fig. 9.1 shows the trajectory of the system with initial condition

x(0) =

[
0.5 0 1

]′
for the three cases, whereas Fig. 9.2 shows the time histories of the

states x1, x2 and x3. Note that the time axis is in log-scale. Fig. 9.2 highlights that all

trajectories with initial condition off the (x1, x2)-plane have an oscillatory behavior with

a period that tends to infinity. Note that trajectories with initial conditions such that

x3(0) = 0 converge to the set

{(x1, x2) | x21 + x22 = x1(0)
2 + x2(0)

2, x1 ≤ 0},
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Figure 9.1: The trajectory of system (9.42), with p = 2, q = 3, k1 = k2 = 1, Ψ(s) = |s|,
x(0) = [0.5 0 1]′, for the three considered cases. The trajectory converges to the circle
of radius ρ0 = 0.5 for η = 0 (red/dotted); of radius min(1, ρ0) ≤ ρ ≤ max(1, ρ0) for η = 1
and r = 4 (blue/solid); of radius 1 for η = 1 and r = 2 (green/dashed).
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Figure 9.2: Time histories of the states of system (9.42) with p = 2, q = 3, k1 = k2 = 1,
Ψ(s) = |s| and x(0) = [0.5 0 1]′: η = 0 (red/dotted); η = 1 and r = 4 (blue/solid); η = 1
and r = 2 (green/dashed).

i.e. to a semi-circle centered at the origin, the size of which depends upon the initial

conditions. This set is not stable, hence condition 3b) does not hold.

Remark 82. The ω-limit set of the trajectories of the system starting off the (x1, x2)-
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Figure 9.3: Time histories of the states of the system (9.42) with p = 2, q = 1, Ψ(s) = |s|,
η = 0 and x(0) = [1 0 1]′: k1 = k2 = 1 (blue/dashed); k1 = 1000, k2 = 1 (red/solid).

plane is, as detailed in [239], a chain recurrent set, which strictly contains the ω-limit set

of the trajectories of the system starting in the (x1, x2)-plane, consistently with the results

in [239] and [240] on asymptotically autonomous semiflows. �

Remark 83. As a consequence of the discussion in this section, the (x1, x2)-subsystem

of system (9.42), with p = 2 and q = 3, and x3 regarded as an input, does not possess

the converging-input converging-state property, see [241], [242] and [243]. This does not

contradict the result in [241], which highlights (among other things, and similarly to what

is done in this chapter) the importance of asymptotic stability (of an equilibrium, or of a

set) to establish asymptotic properties of solutions. �

“lim” convergence case

Let p = 2, q = 3, Ψ(s) = |s|, η = 0 and consider the two cases k1 = k2 = 1; and k1 = 1000,

k2 = 1. Figure 9.3 shows a trajectory with initial state x(0) = [1 0 1]′. Unlike the previous

case x1(t) and x2(t) converge to a point such that x1+ = 0. Note that this is the case also

if x1 and x2 undergo fast transient (solid line). Finally, Figure 9.4 shows the projection of

the phase portrait on the (x1, x2)-plane for p = 2, q = 3, k1 = k2 = 1, Ψ(s) = |s| and η = 0

and the set of initial conditions {(x1(0), x2(0), x3(0)) : x1(0)2 + x2(0)
2 ≤ 1, x3(0) = 1}.
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Figure 9.4: Projection of the phase portrait on the (x1, x2)-plane for p = 2, q = 3,
k1 = k2 = 1, Ψ(s) = |s| and η = 0 and the set of initial conditions {(x1(0), x2(0), x3(0)) :
x1(0)

2 + x2(0)
2 ≤ 1, x3(0) = 1}. The final states are represented by stars.

9.6 Conclusion

A class of theorems inspired by the Krasovskii-LaSalle invariance principle has been pre-

sented in a unified framework. The contribution of the chapter is a tool to study “lim inf”

convergence properties of solutions of dynamical systems. In particular the theorems give

sufficient conditions to determine the convergence in the mean and the “lim inf” conver-

gence. These theorems are derived by a relaxation of Matrosov and Small-gain Theorems,

and they are based on a “lim inf” Barbalat’s Lemma (Lemma 22 and 24). Additional

technical assumptions to have “lim” convergence are given. The “lim inf” / “lim” relation

and the role of some of the assumptions are illustrated by means of examples.
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Chapter 10

Approximate finite-horizon

optimal control for input-affine

nonlinear systems with input

constraints

10.1 Introduction

Given a system with known initial state and with hard constraints on the amplitude of the

control input, the aim of the finite-horizon optimal control problem is to determine the

control signal which minimizes the cost functional while satisfying the control constraints.

The general problem is hard to solve due to several difficulties such as complicated dy-

namics of the system, the “shape” of the cost functional and the type of constraints. In

this chapter the analysis is focused on a particular class of problems: time optimal control

problems for input affine systems and some related problems, as for instance the maximum

range optimal control problem. For linear systems this class of problems has a well-known

solution which relies upon the use of bang-bang controls, see e.g. the book [244]. For non-

linear systems the solution can be found solving the associated Hamilton-Jacobi-Bellman

(HJB) partial differential equation (pde). However, it might be difficult or even impossible

to solve the equation analytically.

In [245] and [246] a new method to solve, approximatively, classes of optimal control prob-
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lems has been developed. The method relies upon the use of dynamic state feedback and

does not require the solution of any pde. In particular the problem therein studied is the

linear quadratic regulator problem of an input-affine nonlinear system without constraints.

In this chapter we extend the results in [246] providing approximate solutions to a class

of finite-horizon optimal control problems with locally non-quadratic cost functionals and

in the presence of input constraints. In particular we focus our analysis on the minimum

time optimal control problem and the maximum range optimal control problem, which

have been widely studied and are of interest for both theory and application. Note that

differently from most of the literature on approximate solutions of optimal control prob-

lems, this method does not rely upon a discretization of the problem (for other continuous

time approaches see e.g. [247]).

The extension of the ideas in [246] is not straightforward. Since locally non-quadratic costs

are considered, it is not possible to exploit the solution of the algebraic Riccati equation

(ARE) associated to the linearized problem in the construction of an approximate solution

of the problem as done in [246]. The consequences of this fact are threefold. First, there is

no a priori information on the shape of the approximate solution and, second, there is the

additional difficulty of enforcing that the value function is positive definite. Finally the

non-differentiability of the value function which is inherent to problems in which there is a

hard constraint on the input leads to a feedback that may not be everywhere differentiable.

We illustrate the theory solving the approximate minimum time optimal control problem

for a bioreactor [248] and the approximate maximum range optimal control problem for a

rocket [249], the so-called Goddard problem.

The chapter is organized as follows. In Section 10.2 the formulation of the problem is given

together with some additional definitions. In Section 10.3 the main result is presented, i.e.

a dynamic control law that approximatively solves the optimal control problem. In Sec-

tion 10.4, the two case studies are discussed, and in Section 10.5 conclusions are drawn.

All the results of this chapter are original contributions developed in fulfillment of my

PhD course and they have been published in the conference paper [23] and in the journal

paper [24].
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10.2 Preliminaries

10.2.1 Problem formulation

Consider an input-affine, nonlinear, system described by the equation1

ẋ = f(x) + g(x)u, (10.1)

where x(t) ∈ Rn is the state of the system, the mappings f : Rn → Rn and g : Rn → Rn×m

are sufficiently smooth and u(t) ∈ Rm is the control input subject to the constraints

umin ≤ uj(t) ≤ umax, j = 1, 2, ...,m, ∀t ∈ R, (10.2)

with umin < umax. For convenience, to simplify the theoretical analysis, we assume

umin = −1 and umax = 1. Finally, consider the additional equation

Cx(T ) = 0, (10.3)

with C ∈ Rr×n constant, which is used to model r constraints on the final state. Note,

however, that the proposed method does not enforce this type of constraints, and that

condition (10.3) has to be checked a posteriori.

The aim of the minimum time optimal control problem is to find a control input u that

minimizes the cost functional

J(x0, u) =

∫ T

0
dt,

where T is not a priori assigned, while satisfying the constraints (10.1), (10.2) and (10.3).

To include in our study a wider class of constrained optimal control problems, as for

instance the maximum distance optimal control problem, we consider more general cost

functionals. Thus, we want to find a control input u that minimizes the cost functional

J(x0, u) =

∫ T

0
[φ(x(t)) + γ(x(t))u(t)]dt, (10.4)

1For simplicity, the arguments of the functions are dropped whenever this does not cause confusion.
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with φ : Rn → R and γ : Rn → R1×m smooth mappings, while satisfying the constraints

(10.1), (10.2) and (10.3). Hence, the optimal control problem has running cost

L(x, u) = φ(x) + γ(x)u, (10.5)

and terminal cost

T (x(T ), u(T )) = 0. (10.6)

The dynamic programming solution of this problem is based on the solution V : R×Rn →

R of the HJB pde

φ(x) + Vt + Vxf(x)− |γ(x) + Vxg(x)| = 0, (10.7)

where the notation

|γ(x) + Vxg(x)| =
m∑

j=1

|γj(x) +
n∑

i=1

Vxi
gij(x)| (10.8)

has been used, subject to the condition V (T, x) = 0.

We can now formalize the optimal control problem under analysis.

Problem 2. Consider the system (10.1), the constraints (10.2) and (10.3), and the cost

(10.4). The regional dynamic constrained finite-horizon optimal control problem consists

in finding an integer ñ ≥ 0, a dynamic control law described by equations of the form

ξ̇ = α(x, ξ, t), u = β(x, ξ, t), (10.9)

with ξ(t) ∈ Rñ, α : Rn×Rñ×R→ Rñ and β : Rn×Rñ×R→ Rm smooth mappings with

|βi(x, ξ, t)| ≤ 1 for all i ∈ [1,m], and a set Ω̄ ⊂ Rn × Rñ such that the closed-loop system

ẋ = f(x) + g(x)β(x, ξ, t), ξ̇ = α(x, ξ, t), (10.10)

satisfies the condition

J(x0, β) ≤ J((x0, ũ),

for any ũ satisfying the constraint (10.2), and any (x0, ξ0) for which the trajectory of the

system (10.10) remains in Ω̄ for all t ∈ [0, T ].
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The solution of this problem is still hard to determine. Hence, we define an ap-

proximate version of the regional dynamic finite-horizon optimal control problem.

Problem 3. Consider the system (10.1), the constraints (10.2) and (10.3), and the cost

(10.4). The approximate regional dynamic constrained finite-horizon optimal control prob-

lem consists in finding an integer ñ ≥ 0, a dynamic control law described by the equations

(10.9), a set Ω̄ ⊂ Rn×Rñ and functions ρ1 : R
n×Rñ×R→ R≥0 and ρ2 : R

n×Rñ → R≥0

such that the regional dynamic constrained finite-horizon optimal control problem is solved

with respect to the running cost

L(x, ξ, u) = φ(x) + γ(x)u+ ρ1(x, ξ, t), (10.11)

and the terminal cost

T (x(T ), ξ(T )) = ρ2(x(T ), ξ(T )). (10.12)

Remark 84. Ideally the function ρ1 and ρ2 should be as small as possible to guarantee

that the solution of the approximate problem is “close” to the solution of the original

problem. �

Remark 85. The non-negativity of ρ2 is required to avoid that the terminal cost may

become unbounded. This assumption can be relaxed requiring that ρ2 be bounded from

below. �

To simplify the forthcoming development we discuss the underlying linearized prob-

lem. Let xℓ and uℓ be the linearization point and define A =
∂f

∂x
(xℓ), F =

∂φ

∂x
(xℓ),

hsℓ = f(xℓ) + g(xℓ)uℓ, hcℓ = φ(xℓ) + γ(xℓ)uℓ, B = g(xℓ) and G = γ(xℓ). Suppose without

loss of generality that xℓ = 0 and uℓ = 0. Consider the linear system described by the

equation

ẋ = Ax+Bu+ hsℓ, (10.13)

and the cost functional

Jℓ(x0, u(t)) =

∫ T

0
[Fx(t) +Gu(t) + hcℓ]dt, (10.14)

subject to the constraints (10.2) and (10.3). The dynamic programming solution of this
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problem relies on the solution Vℓ : R× Rn → R of the HJB pde

Fx+ hcℓ + Vℓτ + Vℓx(Ax+ hℓ)− |VℓxB +G| = 0,

subject to Vℓ(T, x) = 0, where Vℓx and Vℓτ are the partial derivatives of the value function

Vℓ. Note that Vℓ may not be everywhere differentiable. For the following it is enough

assuming that Vℓ is differentiable almost everywhere.

Remark 86. In what follows we assume that the underlying linearized problem has been

solved and Vℓ has been computed. Although solving the linearized problem is in general

difficult for the cost functional (10.4), there are some significant cases in which this is

possible, e.g. the minimum time optimal control problem. As shown in the examples, with

the method proposed we aim to outperform the solution of the linearized problem when

this is known. �

Remark 87. Note that the choice of the linearization point (xℓ, uℓ) may be arbitrary.

A possibly good selection is (x(T ), u(T )), when known (e.g. in the bioreactor problem

in Section 10.4.1), or an approximation of (x(T ), u(T )) (e.g. in the Goddard problem in

Section 10.4.2). Alternatively, one may use the final values obtained solving the linearized

problem. �

10.2.2 Algebraic solution and value function

Consider the extended state (xT , τ)T , with τ̇ = 1 and assume that the HJB equation (10.7)

with t = τ can be solved algebraically, as detailed hereafter.

Definition 33. Let Σ : Rn × R → Rn×n, with xTΣ(x, τ)x non-negative for all (x, τ) ∈
Rn × R, and σ : Rn × R → R≥0. A mapping W (x, τ) = [Vℓx + ∆x(x, τ), Vℓτ + ∆τ (x, τ)],

∆x : R
n×R→ R1×n, ∆τ : R

n×R→ R, is an algebraic Ŵ solution of (10.7) if it is almost

everywhere differentiable and

0 = φ+ [Vℓτ +∆τ (x, τ)] + [Vℓx +∆x(x, τ)]f − |[Vℓx +∆x(x, τ)]g + γ|+ xTΣx+ τ2σ.

(10.15)

Using the algebraic Ŵ solution of equation (10.15), define the function

V (x, τ, ξ, s) = Vℓ(x, τ) + ∆x(ξ, s)x+∆τ (ξ, s)τ +
1

2
||x− ξ||2R +

1

2
b||τ − s||2, (10.16)



10.3 Dynamic control law 255

where ξ ∈ Rn, s ∈ R, b > 0, R = RT > 0 is a matrix of positive weights and ||v||2R = vTRv.

Remark 88. We use a different notion of algebraic solution than the one in [246]. Therein,

the solution of the ARE associated to the linear problem is exploited to ensure that the

function V is locally positive definite. Since in our case the cost functional is not quadratic,

it is not possible to use the ARE. To guarantee that the function V is locally positive

definite we also exploit the solution of the associated linearized problem, but compute the

“correction” terms in a different way. �

10.3 Dynamic control law

Consider the nonlinear system (10.1), the constraints (10.2) and (10.3), and the cost

functional (10.4). Let

Λ(ξ, s) = Ψ(ξ, s)R−1,

λ(ξ, s) = ψ(ξ, s)R−1,

where Ψ(ξ, s) ∈ Rn×n and ψ(ξ, s) ∈ R1×n are the Jacobian matrices of the mapping

∆x(ξ, s) and ∆τ (ξ, s) with respect to ξ. Let P (x), Φ(x, ξ, s), ℓ(x, τ, s), H(x, ξ, s), Π(x, τ, s),

W1(x, ξ, s), W2(x, s), D1(x, ξ, s) and D2(x, s) be almost everywhere continuous mappings

such that

f(x) = P (x)x,

∆x(x, s)−∆x(ξ, s) = (x− ξ)TΦ(x, ξ, s)T ,

∆τ (x, s)−∆τ (x, τ) = ℓ(x, τ, s)(s− τ),

∆τ (ξ, s)−∆τ (x, s) = (x− ξ)TH(x, ξ, s)(x− ξ),

∆x(x, s)−∆x(x, τ) = xTΠ(x, τ, s),

∂∆x(ξ, s)

∂s
− ∂∆x(x, s)

∂s
=W1(x, ξ, s)(x− ξ),

∂∆x(x, s)

∂s
=W2(x, s)x,

∂∆τ (ξ, s)

∂s
− ∂∆τ (x, s)

∂s
= D1(x, ξ, s)(x− ξ),
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∂∆τ (x, s)

∂s
= D2(x, s)x.

We are now ready to state the main result of the chapter.

Proposition 13. Consider the system (10.1), the constraints (10.2) and (10.3), and the

cost (10.4). Let W be an algebraic Ŵ solution of (10.15). Let R = RT > 0 and b > 0 be

such that the function V defined in (10.16) is positive definite. In addition suppose there

exists a set Ω ⊆ Rn × R× Rn × R in which


L1 L2

LT
2 L3


 <


Σ 0

0 σ


 , (10.17)

and

|L4| ≤ |L4 + (x− ξ)TRg|, (10.18)

for all (x, τ, ξ, s) ∈ Ω, where

L1 = P TΠT + ηW2 + ΛY + Y TΛT + ΛHΛT ,

L2 = Y λT + ΛHλT +
η

2
DT

2 +
η

2
ΛDT

1 ,

L3 = λHλT +
η

2
D1λ

T +
η

2
λDT

1 ,

L4 = (Vℓx +∆x(x, τ))g + γ,

Y =
1

2
(R− Φ)TP +

η

2
W1,

and η = 1− ℓ

b
. Suppose finally that

∂

∂ui

[
d

dt
(Vxgi + γi)

]
6= 0, if {Vxgi + γi} = 0. (10.19)

Then there exists k̄ such that for all k > k̄ the function V satisfies the HJB inequality

HJBI , φ+ Vxf + Vτ + Vξ ξ̇ + Vsṡ− |Vxg + γ| ≤ 0, (10.20)
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for all (x, τ, ξ, s) ∈ Ω, with ξ̇ = −kV T
ξ and ṡ = η. Hence

ṡ = η,

ξ̇ = −k(ΨTx−R(x− ξ) + ψT τ),

ui =





− sign{Vxgi + γi}, if {Vxgi + γi} 6= 0,

uisingular
, if {Vxgi + γi} = 0,

(10.21)

with uisingular
such that the derivative with respect to time of {Vxgi+γi} is identically equal

to zero, solves Problem 3 with ρ1 = −HJBI ≥ 0 and ρ2 = V (x(T ), τ(T ), ξ(T ), s(T )).

Proof. Consider the partial derivatives of the function V defined in (10.16), namely

Vx = Vℓx +∆x(ξ, s) + (x− ξ)TRT = Vℓx +∆x(x, τ) + (x− ξ)T (R− Φ)T + xTΠ,

Vτ = Vℓτ +∆τ (ξ, s) + b(τ − s) = Vℓτ +∆τ (x, s) + b(τ − s) + (x− ξ)TH(x− ξ),

Vξ = xTΨ− (x− ξ)TR+ τψ,

Vs = xT
∂∆x

∂s
(ξ, s) + τ

∂∆τ

∂s
(ξ, s)− b(τ − s),

and substitute them in (10.20). Substituting (10.15) into (10.20), yields

HJBI = µ1(x, τ, ξ, s) + µ2(x, τ, s) + µ3(x, τ),

where µ1 is a quadratic form in the variables x, (x− ξ) and τ , i.e.

µ1 , −
[
xT (x− ξ)T τ

] [
M + kCTC

]



x

(x− ξ)
τ


 , (10.22)

with C =
[
ΨT −R ψT

]
,

M =




M11 −Y T −η
2
DT

2

−Y −H −η
2
DT

1

−η
2
D2 −η

2
D1 σ



,
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and M11 = Σ− ηW2 − P TΠT . The term µ2 is defined as

µ2 , ∆τ (x, s)−∆τ (x, τ) + b(τ − s)− b(τ − s)η. (10.23)

From the definition of η it follows that µ2 is identically equal to zero for all (x, ξ, τ, s) ∈ Ω.
In fact, η = 1− ℓ

b
and ∆τ (x, s)−∆τ (x, τ)− ℓ(x, τ, s)(s− τ) = 0 by definition. Finally, the

term µ3 is defined as

µ3 , −|Vxg + γ|+ |(Vℓx +∆x(x, τ))g + γ|, (10.24)

which is nonpositive by condition (10.18).

Note now that the matrix C ∈ Rn×2n+1 has constant rank n and the columns of the matrix

Z =




In×n 0n×1

R−1ΨT R−1ψT

01×n 1



,

span the kernel of the matrix C. Condition (10.17) implies that the matrix ZTMZ is

positive definite, hence exploiting the results of [250] there exists k̄ such that, for all

k > k̄, µ1 ≤ 0.

This proves that the HJB inequality (10.20) is satisfied for all (x, ξ, τ, s) ∈ Ω.

Remark 89. The gain k in the ξ̇ equation in (10.20) can be selected as a function of

(x, ξ, τ, s) to reduce the absolute value of µ1, hence the additional running cost ρ1 in

(10.11). �

Remark 90. Note that condition (10.18) is not necessary. Suppose that there exists a

set Ω in which VξV
T
ξ is nonzero, then selecting

k(x, τ, ξ, s) = (VξV
T
ξ )

−1
[
xT (x− ξ)T τ

]
M




x

(x− ξ)
τ


− µ3 (10.25)

yields µ1 = −µ3, thus providing a solution to Problem 3 with the additional running cost

ρ1 = 0 without the need to satisfy (10.18). Note that there is no condition on the sign of

the gain k, since in this context stability requirements are not imposed. �
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Remark 91. The additional terminal cost ρ2 depends upon the gain k and the initial

condition of ξ and s. If k is chosen to minimize ρ1 as described in Remark 90, ρ2 can be

minimized selecting the initial condition of ξ and s. �

Remark 92. The left hand side of (10.17) is zero at zero. Then, if Σ(0, 0) = Σ̄ > 0 and

σ(0, 0) = σ̄ > 0, by continuity, there exists a region Ω containing the origin such that

(10.17) is satisfied for all (x, τ, ξ, s) ∈ Ω. �

10.4 Application of the approximate solution

In this section the theory is illustrated by means of two classic examples: the minimum

time optimal control problem for a bioreactor and the maximum range optimal control

problem for a rocket, the so-called Goddard problem. Proposition 13 is used to design a

dynamic control law solving an approximate problem. For both examples we compare the

optimal control law (which we denote u∗, and which can be explicitly computed) with the

control law obtained from the optimal solution of the linearized problem (which we denote

uℓ) and the dynamic control law obtained from the solution of the approximate problem

(which we denote ud).

10.4.1 Example: minimum time optimal control of a bioreactor

Several results have been obtained in the control of bioreactors, see e.g. [248], [251], [252],

[253] and references therein. In [248] an optimal policy for a class of bioreactors has been

proposed, while in [253] the optimal policy has been developed for a more general class

of bioreactors and it has been demonstrated that the optimal policy may contain singular

arcs.

A simple model that globally describes the dynamic behavior of a bioreactor is given by

the differential equations, see [248],

ż = θ(z, v) + π(z, v)u, v̇ = u, (10.26)

where

θ(z(t), v(t)) = −µ(z(t))
[
zin − z(t) +

ρ(w0)

yv(t)

]
,

π(z(t), v(t)) =
zin − z(t)
v(t)

,
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µ(z) =
µ0z

ks + z +
z2

ki

, (10.27)

and ρ(w0) = v0(x0+yz0)−yzinv0. The variable z(t) describes the substrate concentration

in the tank, v(t) the volume of water in the tank and u(t) the input water flow. In

addition x0 is the initial biomass concentration, y is the constant yield coefficient, zin

the constant substrate concentration in the input flow, ks the affinity constant, ki the

inhibition constant and µ0 the constant maximum specific growth rate. The function µ(z)

models the microbiological growth rate, which is described using the Haldane law (10.27).

The control u takes values in the interval [0, umax], with umax > 0, and the variables z

and v take non-negative values. Furthermore, when the maximum level of water in the

tank vmax is reached the control u is set to zero. Differently from [248], zin is assumed

constant.

The purpose of the bioreactor is to control the concentration z of the substrate in the tank

below a specified level zmin, before the volume reaches vf , where 0 < v(0) < vf ≤ vmax.

The cost functional to be minimized is the reaction time T , i.e. in (10.4) we have φ(x) = 1

and γ(x) = 0. Thus, this is a minimum time optimal control problem.

The first step to develop the dynamic control law consists in computing the solution of the

minimum time optimal control problem for the linearized system. The linearized system

around (zf , vf ) is described by equations of the form

ẋ1 = −ax1 + bx2 + cu+ d,

ẋ2 = u,

(10.28)

where x1 = z − zf , x2 = v − vf and a, b, c and d are constants. Note that d is zero if

the state (zf , vf ) is an equilibrium point. To compute the value function for the linear

problem, the system is integrated and the time t is eliminated, since the value function is

exactly the time needed to reach the final state. From general results on linear systems it

is known that the optimal control has at most one switching time and the control input

assumes only the extreme values. With these observations only two non-trivial situations

are possible: the control input is 0 until the switching time and umax until the final time,
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or, the control input is umax until the switching time and 0 thereafter. A simple analysis

reveals that the first candidate optimal control does not yield positive switching times,

whereas the second candidate optimal control yields a positive switching time for all states.

Let Vℓ be the value function of the linearized problem and Vℓz and Vℓv its partial derivatives

with respect to z and v, respectively.

Note that

1 + Vℓvumax + Vℓz żℓ = 0, (10.29)

where żℓ is the right hand side of the first of the equations (10.28) with u = umax.

Consistently with Definition 33 the solution for this problem relies on the solution of the

algebraic equation

1 + (Vℓv +∆v)umax + (Vℓz +∆z)[θ + πumax] = 0. (10.30)

One Ŵ solution is given by

∆z = −Vℓz, ∆v =
Vℓz żℓ
umax

.

According to (10.16) the modified value function is

V (z, v) = Vℓ(z, v) +
Vℓz(ξ1, ξ2)żℓ(ξ1, ξ2)

umax
v − Vℓz(ξ1, ξ2)z +

1

2
R1(z − ξ1)2 +

1

2
R2(v − ξ2)2.

Assuming that there exist R1 > 0 and R2 > 0 such that V (z, v) is locally positive definite,

we compute the partial derivatives of V , namely Vξ1 , Vξ2 , Vz and Vv. Proposition 13 yields

the dynamic control law2

ξ̇1 = −kVξ1 ,

ξ̇2 = −kVξ2 ,

u =





[1− sign (Vzπ + Vv)]
umax

2
, if Vzπ + Vv 6= 0,

usingular, if Vzπ + Vv = 0,

(10.31)

2The different definition of u is to adapt the proposition, developed when there is a symmetric bound
on the control, to this problem in which the bound is asymmetric.
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Figure 10.1: Time histories of the control signals u∗ (solid line), uℓ (dotted line) and
ud (dashed line) for (z0, v0) = (50, 5).
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Figure 10.2: Time history of the gain k (solid line) for the initial condition (z0, v0) =
(50, 5). k1 and k2 are as in equation (10.32).
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Figure 10.3: Time history of the additional running cost ρ1 for the initial condition
(z0, v0) = (50, 5). The discontinuity is due to the switch in the gain k.
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with usingular such that the derivative with respect time of Vzπ + Vv is identically equal

to zero.

The closed-loop system (10.26)-(10.31) has been simulated with the parameters (see [248]):

vf = 50m3, zf = 1mgl−1, umax = 0.013888889m3s−1, ks = 2mgl−1, ki = 50mgl−1,

µ0 = 0.00002s−1, y = 0.5 and zin = 300mgl−1. The initial conditions (z0, v0) have been

selected in the regions 45 ≤ z0 ≤ 55mgl−1 and 4.5 ≤ v0 ≤ 5m3. The biomass concentration

x0 has been selected as x0 = 13000+3400(5−v0)mgl−1 to recover the case studied in [248].

The gain of the dynamic control law has been defined as

k =





k1 =
1 + Vzθ + (Vzπ + Vv)u

V 2
ξ1
+ V 2

ξ2

,
if V 2

ξ1
+ V 2

ξ2
6= 0,

and k1 > 0,

k2 =
10

1 + V 2
ξ1
+ V 2

ξ2

, otherwise.

(10.32)

The selection k = k1 is in accordance with Remark 90 and guarantees that Proposition 13

holds with ρ1 = 0. Finally, the initial condition for the dynamic extension has been set to

(ξ1(0), ξ2(0)) = (1, v0) and R1 = R2 = 340.

Simulations have been carried out with the optimal control law u∗, the optimal control

law for the linearized system uℓ and the dynamic control law ud. As already discussed the

optimal control law for the linearized problem gives a batch-strategy : the reactor is filled

as fast as possible and the reaction phase is stopped when z(t) reaches zf .

Fig. 10.1 shows the time histories of the control signals u∗(t), uℓ(t) and ud(t) for the

initial state (z0, v0) = (50, 5). Note that the dynamic control approximately recovers the

optimal strategy. The final time for the optimal policy is 7071 seconds, for the dynamic

control is 7154 seconds, and for the batch-strategy is 18524 seconds. Fig. 10.2 displays

the time history of the gain k (solid line). Note that k is initially equal to k2 and at

approximatively 900 seconds it switches to k1. This behavior is consistent with the one

shown in Fig. 10.3 in which the value of ρ1 is positive when k = k2 and identically equal

to zero when k = k1. Fig. 10.4 shows the ratio
TD
T∗

for a range of initial conditions. Note

that the dynamic control law yields performance similar to the optimal one and that it

significantly outperforms the batch-strategy which gives an average ratio of 2.6.
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Figure 10.5: Time histories of the altitude resulting from the application of u∗ (solid
line), uℓ (dotted line) and ud (dashed line).

10.4.2 Example: maximum range optimal control of a rocket

The Goddard problem consists in the maximization of the altitude of a rocket in vertical

flight when atmospheric drag and gravity are considered. The model has been taken

from [249] and [254] in which optimal solutions have been proposed. The rocket is regarded

as a point of variable mass forced by a gravitational field with inverse square law. The

aerodynamic drag is described by an exponential law, namely

D(v, h) = CDbv|v|eβ(1−h),

where b and β are constants, and CD is the zero-lift drag coefficient. The dynamics of the

rocket are described by the nondimensionalized equations

ḣ = v, v̇ = −D(v, h)
m

− 1

h2
+
u

m
, ṁ = −u

c
. (10.33)

The altitude h is the distance from the Earth’s center, v the velocity of the rocket, m the

mass of the rocket, c the effective exhaust velocity of the gas flow and u the thrust of the

rocket that is bounded, i.e. 0 ≤ u ≤ umax. The initial state (h0, v0,m0) and the final mass
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Figure 10.6: Time histories of the mass and the velocity resulting from the application
of u∗ (solid line), uℓ (dotted line) and ud (dashed line).

mf are known. The problem consists in the determination of the optimal policy of the

thrust that maximizes the final altitude hf . Thus, the cost functional to be minimized is

J = −(h(tf )− h(0)) = −
∫ tf

0
ḣ(t)dt = −

∫ tf

0
v(t)dt,

i.e. in (10.4) we have φ(x) = −v and γ(x) = 0. Note that a singular arc in the optimal

control can be present.

In the simulation the initial state has been taken as (1, 0, 1), with an unknown final state

of (1 + δ, 0, 0.6) and a linearization point of (1 + ε, 0, 0.6). To compute the value function

for the linearized problem, we integrate the linearized system noting that the only possible

optimal control policy is to give full thrust until the mass reaches the final value and after

to wait until the velocity reaches zero. To simplify the computation we solve the linearized

problem with respect to the minimum time needed to finish the fuel. Let Vℓ be the value

function of this linearized problem and Vℓh, Vℓv and Vℓm its partial derivatives with respect
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to h, v and m, respectively. Note that

1 + Vℓhv + Vℓvẋℓ −
umax

c
Vℓm = 0, (10.34)

where ẋℓ is given by the second equation of the linearized system computed for u = umax.

Consistently with Definition 33 the solution for this problem relies on the solution of the

algebraic equation

(Vℓh +∆h)v − v − (Vℓv +∆v)

(
D(v, h)

m
+

1

h2

)
+

(
(Vℓv +∆v)

1

m
− 1

c
(Vℓm +∆m)

)
umax = 0.

One Ŵ solution is given by

∆h = α, ∆v = −Vℓv, ∆m = − c

umax
(Vℓvẋℓ + (1− α)v + 1).

According to (10.16) the modified value function is

V (h, v,m) = Vℓ(h, v,m) + αh− Vℓv(ξ)v −
c

umax
(Vℓv(ξ)ẋℓ(ξ) + (1− α)ξ2 + 1)m

+
1

2
R1||h− ξ1||2 +

1

2
R2||v − ξ2||2 +

1

2
R3||m− ξ3||2.

Assuming that there exist R1 > 0, R2 > 0 and R3 > 0 such that V (h, v,m) is positive

definite, we compute the partial derivatives of V , namely Vξ1 , Vξ2 , Vξ3 , Vh, Vv and Vm.

Proposition 13 yields the dynamic control law

ξ̇1 = −kVξ1 ,

ξ̇2 = −kVξ2 ,

ξ̇3 = −kVξ3 ,

u =





[
1− sign

(
Vv
m
− Vm

c

)]
umax

2
, if

Vv
m
6= Vm

c
,

usingular, if
Vv
m

=
Vm
c
,

(10.35)

with usingular such that the derivative with respect to time of
Vv
m
− Vm

c
is identically equal

to zero.
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Figure 10.7: Time histories of the thrust u∗ (solid line), uℓ (dotted line) and ud (dashed
line).

The closed-loop system (10.33)-(10.35) has been simulated with the parameters (see [255]

and [254]): CD = 0.05, b = 6200, β = 500, umax = 3.5, c = 0.5 and final mass mf = 0.6.

The gain of the dynamic control law has been defined as

k =

−v + Vhv + Vv +Wv

(
−D
m
− 1

h2

)
+

(
Vv
m
− Vm

c

)
u

V 2
ξ1
+ V 2

ξ2
+ V 2

ξ3

. (10.36)

This selection of k is in accordance with Remark 90 and guarantees that Proposition 13

holds with ρ1 = 0. The parameters of the dynamic control law have been selected as

ε = −0.2, α = 1, R1 = 180, R2 = 106 and R3 = 64. Finally, the initial condition for

the dynamic extension has been set to (ξ1(0), ξ2(0), ξ3(0)) = (1, 0.18, 0.92). Simulations

have been carried out with the optimal control law u∗(t), the optimal control law for the

linearized problem uℓ(t) and the dynamic control law ud(t).

Fig. 10.5, Fig. 10.6 and Fig. 10.7 display the time histories of the altitude, the mass,

the velocity and the thrust resulting from the application of u∗, uℓ and ud. Note that

the dynamic control law approximately recovers the optimal strategy as demonstrated by

the presence of a singular arc. Finally, taking as performance index the relative distance
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between the final altitudes, namely

ri =
h∗(T )− hi(T )
h∗(T )− h∗(0)

, with i ∈ {D, ℓ, ∗},

yields

rℓ > rD > r∗ = 0,

with rD = 0.0067 and rℓ = 0.0255.

10.5 Conclusion

The finite-horizon optimal control problem with input constraints for input-affine nonlinear

systems has been studied. The problem has been solved by means of a dynamic extension

yielding a combination of bang-bang signals and singular arcs. Simulations on a model of

an industrial wastewater treatment plant and of a rocket in vertical flight have shown the

performance of the dynamic control law, which are remarkably close to the optimal ones,

although they do not rely on the solution of any HJB.
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Conclusion

Summary of Contribution

On the topic of approximation of dynamical systems, the Thesis sheds new light on the

problem of model reduction of time-delay systems. Novelties of the proposed approach

include the possibility of obtaining reduced order models for linear time-delay systems

with an arbitrary number and types of delay. The possibility of increasing the number

of interpolation points by exploiting the delays is another unique result, for which no

equivalent method exists in the literature. The extension of model reduction by moment

matching to nonlinear time-delay systems is a new contribution.

Data-driven model reduction by moment matching is another novel result which has some

similarities to proper orthogonal decomposition, but differs in derivation, meaning and

application. The algorithms resulting from this contribution offer a method for the esti-

mation of moment with unparalleled speed. The estimation of the moments from the time

history of the output of the system is on its own a new concept.

The validation of these results in the field of power systems is a contribution which departs

from the usual area of control theory. In fact, this work has been presented in a confer-

ence and submitted to a journal of the IEEE Power and Energy Society, demonstrating

the impact of the model reduction techniques developed in the Thesis beyond the field of

linear algebra and control theory.

Even though model reduction for linear singular systems is a well-studied problem, the

partition of the projector into a fast and a slow part is a new result. However, the im-

portance of this result is diminished by the fact that a practical application and several

direct extensions have not been investigated yet.

The idea of characterizing “moments” for input signals which consist of an infinite number
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of frequencies is another totally novel idea which allowed to extend the moment matching

techniques to switching systems.

In addition to this direct consequence, this work laid the foundations to develop the

concept of discontinuous phasor transform which is the first contribution in the area of

analysis. Thus, a result that was born in the realm of model reduction had an impact on

a totally different field. In fact, the work on the discontinuous phasor has been published

in a journal belonging to the IEEE Power Electronics Society. This is another work which

will impact a field beyond the one of control and systems.

The ideas behind the results presented in Chapter 9 are due to A. Astolfi and L. Praly.

My contribution, developed in collaboration with them, has been to solve the irreducible

case, to recognize the link to the Barbalat’s lemma, to solve the triangular reducible block

case and to present the results in a fairly comprehensible and unified way.

Finally, the last original contribution of the Thesis consists of a technique to determine

approximate solutions of the HJB pde when the input of the system is constrained. More-

over, the distance from the optimal solution can be computed and a method to minimize

this distance is given.

Future Research Directions

Given a set of interpolation points, the problem of determining the remaining of the pa-

rameters of the reduced order model to obtain an optimal model with respect to some

error norm has eluded any attempt to a solution for a long time. Recent developments

carried out at New York University in collaboration with Z.-P. Jiang have shed some light

on this problem and work in this direction is underway.

The problem of model reduction for nonlinear singular systems is another research di-

rection that must be investigated to extend and conclude the research started on linear

singular systems.

Model reduction by moment matching can still be extended to several other classes of

systems, such as hybrid systems and stochastic systems. Probably the most interesting

extension is to hybrid systems, for which early contributions have already been submitted

to two conferences [25, 27].
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Another interesting and fundamental problem is the study, development and validation of

reduced order models for control purposes. Results in this direction would further increase

the impact of model reduction and may solve many problems for which the solution of

the original control problem is difficult or computationally intractable (in a certain sense

providing an alternative way to determine approximate solutions of optimal control prob-

lems).

Further extensions of the work regarding the discontinuous phasor transform can be easily

imagined with the development of a phasor transform for nonlinear circuits powered first

by sinusoidal sources and then by switching sources.
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geometric and structural automata,” in Algebraic Computing in Control, ser. Lecture



282 Bibliography

Notes in Control and Information Sciences, G. Jacob and F. Lamnabhi-Lagarrigue,

Eds. Springer, 1991, vol. 165, pp. 264–278.

[68] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Pade approxi-

mation via the Lanczos process,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 14, no. 5, pp. 639–649, May 1995.

[69] E. Grimme, D. Sorensen, and P. van Dooren, “Model reduction of state space systems

via an implicitly restarted Lanczos method,” Numer. Algorithms, vol. 12, pp. 1–31,

1995.

[70] A. C. Antoulas, “Polplatzierung bei der modellreduktion (on pole placement in

model reduction),” Automatisierungstechnik, vol. 55, no. 9, pp. 443–448–374, 2009.

[71] T. T. Georgiou, “Partial realization of covariance sequences,” Ph.D. dissertation,

University of Florida, Gainesville, 1983.

[72] H. Kimura, “A canonical form for partial realization of covariance sequences,” Tech-

nical Report 83-01, 1983.

[73] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. New

York: Macmillan, 1992.

[74] S. Gugercin and K. Willcox, “Krylov projection framework for Fourier model reduc-

tion,” Automatica, vol. 44, no. 1, pp. 209–215, 2008.

[75] L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, ser.

Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts.

Wiley, 2011.

[76] L. Farina, “Is a system representable as a compartmental system?” in 1997 European

Control Conference, July 1997, pp. 18–20.

[77] A. Astol and P. Colaneri, “A note on the existence of positive realizations,” Linear

Algebra and its applications, vol. 390, pp. 329–343, 2004.



Bibliography 283

[78] A. Isidori, Nonlinear Control Systems, 3rd ed., ser. Communications and Control

Engineering. Springer, 1995.

[79] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, ser.

AIMS Series on Applied Mathematics. Philadelphia, PA: SIAM, 2007, vol. 2.

[80] J. Huang, Nonlinear Output Regulation: Theory and Applications, ser. International

series in pure and applied mathematics. Philadelphia, PA: SIAM Advances in

Design and Control, 2004.

[81] J. K. Hale, Theory of functional differential equations, ser. Applied Mathematical

Sciences Series. Springer Verlag Gmbh, 1977.

[82] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions,

ser. Pitman research notes in mathematics series. Longman Scientific & Technical,

1989.

[83] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equa-

tions, ser. Applied Mathematical Sciences Series. New York:Springer, 1993, vol. 99.

[84] W. Michiels and S. I. Niculescu, Stability and Stabilization of Time-Delay Systems:

An Eigenvalue-Based Approach. Philadelphia: SIAM, 2007.

[85] S. I. Niculescu, Delay Effects on Stability. Heidelberg: Springer, 2001.

[86] Q. C. Zhong, Robust Control of Time-delay Systems. Germany: Springer, 2006.

[87] N. Bekiaris-Liberis and M. Krstic, Nonlinear Control Under Nonconstant Delays,

ser. Advances in Design and Control. SIAM, 2013.

[88] V. Kharitonov, “Robust stability analysis of time delay systems: A survey,” 4th

IFAC Conference on System Structure and Control, Nantes, France, 8-10 July, vol.

Penary lecture, pp. 1–12, 1998.

[89] V. B. Kolmanovskii, S. I. Niculescu, and K. Gu, “Delay effects on stability: A

survey,” Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix,

AZ, December, pp. 1993–1998, 1999.



284 Bibliography

[90] V. B. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of

Functional Differential Equations, ser. Mathematics and Its Applications. Springer,

1999.

[91] J. K. Hale and S. M. Verduyn Lunel, “Effects of small delays on stability and con-

trol,” Operator Theory: Advances and Applications, vol. 122, pp. 275–301, 2001.

[92] S. I. Niculescu, A. Trofino Nito, J. M. Dion, and L. Dugard, “Delay-dependent

stability of linear systems with delayed state: an LMI approach,” in Proceedings of

the 34th IEEE Conference on Decision and Control, vol. 2, Dec 1995, pp. 1495–1496.

[93] J. Zhang, C. R. Knospe, and P. Tsiotras, “New results for the analysis of linear

systems with time-invariant delays,” International Journal of Robust and Nonlinear

Control, vol. 13, no. 12, pp. 1149–1175, 2003.

[94] A. W. Olbrot, “A sufficiently large time delay in feedback loop must destroy ex-

ponential stability of any decay rate,” IEEE Transactions on Automatic Control,

vol. 29, pp. 367–368, 1984.

[95] R. Datko, “A paradigm of ill-posedness with respect to time delays,” IEEE Trans-

actions on Automatic Control, vol. 43, no. 7, pp. 964–967, 1998.

[96] N. MacDonald, “Two delays may not destabilize although either delay can,” Math

Biosciences, vol. 82, pp. 127–140, 1986.

[97] J. Beddington and R. M. May, “Time lags are not necessarily destabilizing,” Math.

Biosciences, vol. 27, pp. 109–117, 1986.

[98] G. Abdallah, P. Dorato, J. Benitez-Read, and R. Byrne, “Delayed positive feed-

back can stabilize oscillatory systems,” Proceedings of the 1993 American Control

Conference, San Francisco, pp. 3106–3107, 1993.

[99] A. Goubet, M. Dambrine, and J. P. Richard, “An extension of stability criteria for

linear and nonlinear time delay systems,” IFAC Conference on System Structure and

Control, Nantes, France, pp. 278–283, 1995.



Bibliography 285

[100] V. D. Blondel and A. Megretski, Unsolved Problems in Mathematical Systems and

Control Theory. Princeton University Press, 2004.
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