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Abstract

Finite wordlength effects in digital filters and controllers have been explored over the
last three decades. Much of the work has originated from the digital signal processing
community, with research activity in digital controllers increasing only recently as
they have become more widespread. This thesis comprehensively surveys much of
the research in both these areas. It specifically focuses on the works that deal with
the fixed-point two's complement numeric representation and on those works that
describe performance measures and the optimizations which minimize some of these
measures.

The thesis ambitiously attempts to paint a cohesive picture of the research, uti-
lizing the current filter and controller design process as the canvas. The hope is to
stimulate significant new research with the questions that surface a consequence of
such a cross-fertilization as well as to introduce and acquaint the reader with the
primary tools and techniques of the FWL research community. A short introduction
to the fixed-point numeric representation is provided.
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Chapter 1

Introduction

Either poets must become engineers, or engineers must become poets.
-Norbert Weiner

I didn't have time to write an article, so I wrote a book instead.
-Kenneth Arrow

In the last two decades, digital microcontrollers and signal processors have become

increasingly popular. Due to plummeting costs, their widespread applications now

include cellular phones, automobiles, thermostats, robotics, and many, many others.

Before the advent of digital systems, analog filters and controllers were the only

option. However, the flexibility, reliability, repeatability, and low cost of current

digital systems have made their analog counterparts relatively less common. Linear

systems theory and its applications have also had to adapt to this newcomer, which

introduced new problems and side-effects.

Since the early twentieth century, a vast amount of research and development

has occurred in the theory of linear systems. Linear time-invariant (LTI) models

very effectively describe much of the world that engineers are concerned with

small deviations from constant operating conditions - and have also been popular

due to their relative analytical simplicity. Most controllers and signal processors are

designed using LTI methods and, in a controller's case, are designed for an LTI plant



model. However, digital implementations of linear systems are inherently non-linear

due to the finiteness and consequent discretization of computer memory. Only a

finite amount of precision can be dedicated to each number, and thus computations

must be truncated after a finite number of digits. Furthermore, numbers can increase

only until a finite limit, a limit that in practice may severely restrict the engineer.

A system that is stable in infinite precision can become unstable when implemented

in finite precision, for example displaying zero-input limit cycles where the system

oscillates between non-zero states even when there is no input; more generally, overall

performance differs from that of the infinite precision design.

Significant research on these finite precision effects in digital filters and, to a lesser

extent, in digital controllers has given us many different methods to cope with these

nonlinearities, and has allowed us to continue to use the powerful and well-developed

LTI theory for the design of filters and controllers.

This thesis addresses the problem of minimizing FWL effects in fixed-point im-

plementations of controllers and signal processors.

Previous Work

Traditionally, research on finite wordlength (FWL) effects, as they are commonly

referred to, originated more in the digital signal processing (DSP) community, though

Knowles and Edwards [93] developed some of the earliest seminal work on FWL effects

in a controls (sampled-data) context. Around 1980, Moroney et. al. [119,120] also

presented some ground breaking work in FWL effects in control systems. The last 15

years or so have seen an ever increasing interest in FWL effects in digital controllers

and most recently, those involving hybrid systems (i.e. systems that combine both a

continuous time (CT) and a discrete time (DT) or digital system into one).

Different aspects of the FWL problem in digital filtering have gained and receded

in importance, depending on advances in technology. Minimizing roundoff errors and

filter sensitivity have been constant concerns. [62, 73, 78, 79,82,88,122, 169] and many

more works all address these topics. Two specific changes that have occurred recently:

(i) On most DSP chips, multiply instructions take the same number of cycles as



many other instructions and are thus not the major contributors in the cost

equation [68].

(ii) Advanced Very Large Scale Integration (VLSI) technology has made custom

chip design far more popular. From that standpoint, different design criteria

become more important. As early as 1984, Rao and Kailath [147] pointed out:

"With modern technological advances, however, the criteria for de-

signing digital filter realizations have undergone considerable transfor-

mation. In addition to classical criteria of low sensitivity with respect

to finite word-length, absence of limit-cycle and overflow oscillations,

etc., the realizations should at least also have the following desirable

properties for VLSI implementation:

a) The circuit should be of the concurrent array processor type i.e. a

cascaded interconnection of identical processors with only nearest

neighbor links. ...

b) It should be pipelineable in order to maximize throughput, i.e.

the circuit should be able to process input data at a rate that is

independent of the order of the filter."

FWL effects vary significantly depending on the underlying numeric format. Most

current microprocessors represent numbers in one of two formats, fixed-point or

floating-point. While using the fixed-point format offers many advantages, it also

exacerbates FWL effects. Thus, a lot of the research addresses FWL effects in fixed-

point implementations.

What this thesis contains

My hope is to synthesize a framework to gather, organize, and interconnect past work

while also accomplishing the following goals:

(i) to thoroughly analyze the digital filter and controller design process;



(ii) to expose obvious open questions and their importance;

(iii) to serve as a reference and as a catalyst for new work.

With this framework, a picture of current research should become relatively clear.

Distinctions among different approaches should sharpen and similarities should be-

come evident.

Using this thesis, an engineer should be able to make significant headway in an-

swering the question, "How can I optimally implement this digital filter (or controller)

using fixed-point hardware?" Implicit in this question is the need to first answer, "Op-

timal in what sense?" These two questions are the primary subjects of current and

past research in this area, and this thesis comprehensively surveys this research.

While the explicit content should serve as a reference as well as an introduction

to unfamiliar ideas, it is nonetheless the work of other scientists and engineers. My

contribution is the actual organization of the material and the resulting coherent

picture that should emerge as you read the thesis.

I will discuss many of the major works that have driven the field (such as [73,

120,122,169] and several others) and in some sense form a scaffolding for the overall

framework of FWL research. To this, I will tie in much of the additional work. With

each work, I will present a mathematical development of the main idea and also the

underlying thoughts that may help to place it in a larger context.

I assume that you, the reader, have a basic background in dynamic systems,

controls, and/or signal processing. Definitions of the terms used so far as well as

those that follow and the notation are listed in the appendices. The second chapter

has a basic presentation of finite wordlength representations. Throughout, references

will guide you to more in-depth material as well. For the actual implementation

phase, I point to some references (see for eg. [68]) to help select

* a digital signal processor,

* other hardware and software,

* and most importantly, the fixed-point or floating-point format.



The interdependence of design and implementation makes an independent dis-

cussion of either one impossible. For custom integrated circuits, design and imple-

mentation are intimately connected and can take advantage of the additional design

freedom to assign different wordlengths to individual coefficients as well as to each

data path between arithmetic components. Ideally, a software tool should rapidly

explore the FWL digital filter and controller design spaces and, based on constraints,

return several possible configurations.

What this thesis does not contain

While providing a lot of ideas in one place, I do not provide particular solutions.

Ultimately, I leave the engineer to choose an approach and use it for design and

analysis.

Furthermore, I do not include any significant discussion on limit cycles or scaling,

the process of changing the range of the coefficients so that the system's internal

variables stay within the dynamic range of the digital hardware. Section 2.3 has a

short presentation on scaling as well as some references. For references on limit cycles,

see [28,81, 151]. I also develop everything in the context of fixed-point processing so

floating point researchers may or may not find anything of use. Some authors have

noted that optimal fixed-point algorithms generally perform well in the floating-point

domain also [68, 146]. I do not discuss the choice between using fixed-point and

floating-point either. Finally, I restrict this survey to digital controllers and one-

dimensional digital filters. Gevers and Li discuss FWL effects in estimation and also

include some additional references [62, chapter 11].

Thesis Organization

Chapter 2 discusses the fixed-point representation in some detail and presents the

interaction between LTI theory and FWL effects. Chapter 3 contains one of the

original contributions of this thesis: it describes, in extensive detail, the current

digital filter and controller design process. It provides context for the remainder of

the thesis and is a very important part of the framework that is ultimately my goal.



It also helps to organize the extensive list of references in the bibliography.

I sharply split the rest of the development along the lines implied in the ques-

tion "What is the optimal realization for this system?" Chapter 4 describes many of

the performance metrics' that define the interpretation of "optimal" while Chapter

5 presents the structures or realizations that optimize each metric. This organiza-

tion separates the measure from the structure that minimizes it and also serves to

highlight the distinction between measuring a structure's performance and its actual

implementation. Some structures, while they may perform very well under the cost

functions they were designed with, might be poor performers under other measures.

I have also opted, organizationally, to highlight two other distinctions, that be-

tween DSP and controls, and that between stochastic and deterministic measures.

The requirement for the first distinction will become obvious in Chapter 3, while I

chose the second distinction somewhat arbitarily to help organize the presentation.

Other Surveys

Each of the following sources gathers and presents many connected results:

* Liu's early survey in 1971 on FWL effects in digital filters [103];

* Moroney et. al.'s 1980 paper [120] and Moroney's 1983 book [119] on digital

compensators;

* Hanselmann's 1987 survey of digital controllers [68];

* Butterweck et al.'s 1988 survey of FWL effects in digital filters (with an exten-

sive bibliography of almost 450 references) [28, 29];

* Wilkinson's 1991 text on FWL considerations in controls [185];

* and Gevers' and Li's 1993 text [62].

'Throughout, I will use the term metric and measure interchangeably.



However, none are as broad in scope as this thesis. Moreover, exciting new develop-

ments, especially in the controls community in the last decade, have not been collected

anywhere.

So, without further delay, onwards.



Chapter 2

Background

The first section of this chapter briefly describes the fixed-point numeric represen-

tation and should serve as a self-contained introduction and tutorial for reading the

rest of this thesis. Section 2.2 discusses the intrusion of FWL effects on LTI theory.

The third section contains a short discussion on scaling digital filters to reduce the

probability of overflow.

2.1 The Fixed-Point Representation

Computers use several different techniques for representing numbers internally. The

most popular and common ones are fixed- and floating-point. Here, I describe the

fixed-point representation in some detail while referring the interested reader to ref-

erences for information on the others [68, 72, 167, 182, 185].

The two types of FWL effects are quantization and overflow.

Quantization

Quantization is the process of reducing a number a represented with more than n

fractional bits down to one with only n fractional bits. A fractional bit appears after

the binary point. Two common quantization methods are roundoff and truncation.

Roundoff is the normal operation of rounding, while truncation simply discards all

bits to the right of the nth fractional bit. Thus, 0.09375(= 000011) rounded to four



fractional bits would be 0.125(= 0A0010) while truncated to four fractional bits it

would be 0.0625(= 00001). The resulting error due to quantization, e = a - Q[a],

is called the roundoff or truncation error. Characteristic curves for roundoff and

truncation (in fixed-point two's complement) are shown in Figures 2-1(a) and 2-1(b).

2nQ[a] 2Q[a]

3.0 - - 3.0

" -1 1.0,.
-3.0 -1.0 1.0 3.0 a -3.0 -1.0 1 0 3.0 n

;I I 2na 2I aI .

-1.0 -1.0

-3.0 -- 3.0

(a) Quantization plot using roundoff (b) Quantization plot using truncation

Figure 2-1: Fixed-point quantization characteristics.

Overflow

An overflow occurs when the sum or product of two numbers is outside the dynamic

range, the range of representable numbers. The two main methods of overflow han-

dling are saturation and wrapping. The saturation characteristic's curve is shown in

Figure 2-2(a). If the input is larger (smaller) than the largest (smallest) representable

number, saturation returns the largest (smallest) representable number. The other

technique, called wrapping, simply ignores overflows. For example, adding 1 (001) to

3 (011) in a 3-bit signed representation (with no fractional bits) would normally result

in 4 which cannot be represented. Saturation would return 3 (011) while wrapping

would return -4 (100). The characteristic curve is shown in Figure 2-2(b). While

both these errors occur in all numeric representations, they take a slightly different

form in each one.



Q[a]

30----- Q[a]

-1.0

-3.0 -1.0 1.0 3.0I a
-2.I O I - 2.0

S.0-1.0
-I~

--------- 3.0

------ ------------ 1.0

(a) Saturation characteristic (b) Wrapping characteristic

Figure 2-2: Overflow characteristics.

The Fixed-Point Representation

In fixed-point, a number a is represented as an integer part, a fractional part, and a

sign bit. The wordlength w is the total number of bits used to store a. Say m bits are

used for the integer part and n bits for the fractional part. Then, w = m+n+1, and

a is stored as a = amaml...aoa_a-2...a-n where am is the sign bit and A represents

the binary point. During any arithmetic operation, the location of the binary point

remains constant and hence the term fixed-point. For example, adding two numbers

does not require an operation to align the decimal places, which is usually necessary

when adding two floating-point numbers.

Some of the various fixed-point formats are

(i) Sign magnitude

The first bit stores the sign while the remainder stores the magnitude:

a= (-)am 2ai + 2-i (2.1)
\ i=0 i=1

(ii) One's complement

Positive numbers are stored as in the sign magnitude format while negative



Sign Magnitude One's Complement Two's Complement
m-1 m-1 m-1

Range (min) - E2 - E 2 Z 2'- 2- n

-n -n nn
m-1 m-1 m-1

Range (max) E2i r2 i  Y2 i

-n -n -n

+0 0000^00 0000^00 000000
-0 1000A00 1111A11 0000^00
3.75 0011^11 0011A11 0011^11
-3.75 1011A11 1100A 00  1100A01

Table 2.1: Common numeric representations.

numbers are stored as complements. The complement operation, represented as

an overbar, is defined as: 1 = 0 and 0 = 1.

m-1 n

E2iai + E2-iai
-- i=o m - i=1

i=o i=1

a>O or am=O

(2.2)
a<0 or am = 1

(iii) Two's complement

Positive numbers are stored as in the sign-magnitude format, while negative

numbers are stored in two's complement.

m-1 n

E2iai + 1
i=O i=1

m-1

S 2ii +
i=0

2-ai-i

2-ii - 2-"
i=1

a>0

a<0a < 0

or am = 0

or am = 1

Two's complementing a number turns a into -a and is carried out as follows: All O's

are switched to 1's and vice versa. 1 is added to the least significant bit (LSB) of the

fractional portion of this result.

The dynamic range for all three formats spans approximately from -2 m to 2
m .

Table 2.1 summarizes these properties and lists some examples. Each representation

(2.3)



has its advantages and disadvantages, but since most digital signal processors and

controllers (as well as most general purpose computers) use two's complement, this

thesis will focus on it.

Two's complement has a unique representation of zero and is also immune to

overflow errors during a series of additions and subtractions, as long as the final result

is within the dynamic range. An example quickly illustrates the point. Consider an

example in a 4-bit signed two's complement format (with no fractional part). The left

column indicates the correct sum, while the right column indicates the interpretation

of the sum in two's complement.

+5 +5 0101
+4 +4 0100
+9 -7 1001
+7 +7 0111

+16 0 0000
-2 -2 1110
14 -2 1110

-8 -8 1000
+6 +6 0110

Subtraction is easily implemented as two's complementation followed by addition.

Advantages and Disadvantages of the Fixed-Point Representation

The popularity and importance of the fixed-point format attest to its many advan-

tages. Fixed-point chips are cheaper, run faster and cooler, and take less space to

implement a certain level of performance than their floating point counterparts. They

dominate the markets for mass-market applications like cellular phones and where

speed is of extreme importance (e.g. in high-performance real-time systems).

Coincidentally, the additive roundoff error in fixed-point quantization yields much

more easily to analysis than the multiplicative roundoff error of the floating-point

format.

The primary disadvantage of using the fixed-point format is its higher sensitivity

to FWL effects and its limited dynamic range.



A finite dynamic range also requires a technique to handle overflows. Fixed-point

representations, when compared to floating point, have an especially limited dynamic

range and thus are much more likely to have overflows. Concerns about overflow

handling and reducing its probability of occurrence enter significantly into roundoff

error models and limit cycle analysis.

To extend the dynamic range of the fixed-point format while maintaining its ad-

vantages, Wilkinson proposed a dynamically scaled fixed-point format; see [185, chap-

ter 2] for details.

2.2 FWL Effects and LTI Systems

This section describes how FWL effects enter the picture and affect LTI models. Let's

start with the standard discrete-time state-space description,

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] (2.4)

where A E Rn n,B E nxm C E Wpxn, D E RPxm, x E Rn is the state vector, u E Rm

is the input vector, and y E IP is the output vector. The notation (A, B, C, D) or

AD ] compactly describes the system.

Notice the many places where FWL effects enter. First, each entry of the coeffi-

cient matrices must be rounded. Then, the input u[k] must be rounded also. Finally,

the result of each state update, xi[k + 1] = En aijxj[k] + Em 1 bijuj[k], needs to be

rounded.

Let's introduce the effects one at a time.

Coefficient Quantization

First, we round the coefficients in the system matrices. Let (A*, B*, C*, D*) be the

system matrices with each entry rounded to some precision:

x*[k + 1] = A*x*[k] + B*u[k]

y*[k] = C*x*[k] + D*u[k] (2.5)



where

[A* B*j =_H ] _ AAAB (2[C* I] C - zIDJ (2.6)

In the most general case (where one can control each data path for each multiply

and add), one could round each entry to a different precision depending on its impor-

tance (and that of the corresponding state) in the final system. In Sections 5.6 and

5.10, I will describe work that exploits this optimization. To initially simplify the

presentation, I will assume that all entries are rounded to B, fractional bits. Each

entry of (AA, AB, AC, AD) will thus lie in the range [- 2- B , 2-B].

Note that x* [k] does not mean the quantized state but rather the infinite precision

state evolving with the quantized system matrices. Thus, the system remains linear.

The rounded coefficients change the system matrices and properties but do not affect

linearity. Stability can be deduced by computing the eigenvalues of the new A*

matrix.

The error equations evolve as

ze[k] = x[k] - x*[k] ye[k] = y[k] - y*[k]

Substituting from (2.5) and (2.6),

Xe[k + 1] = Ax[k] + Bu[k] - (A*x*[k] + B*u[k])

ye[k] = Cx[k] + Du[k] - (C*x*[k] + D*u[k])

Xe[k + 1] = AAx[k] + A*xe[k] + ABu[k]

ye[k] = ACx[k] + C*Xe[k] + ADu[k] (2.7)

Writing (2.7) as a MISO1 system driven x[k] and u[k], one can measure the frequency

and step response of the output error.

The transfer function description

(z) N(z) bo + biz + ... + bmz m

D(z) ao + aiz + ... + anzn

1Following convention, SISO denotes a single-input/single-output system, while MIMO is multi-

input/multi-output. SIMO is single-input/multi-output, while MISO is muti-input/single-output.



will instead be realized as

N*(z) b* + btz + ... + b*z m

H*(z)=0 1 MD*(z) a* + az + ..+. + a*n

where again,

AH(z) = H(z) - H*(z)

AH(z)'s frequency and step response are also easily measured as it is simply the

sum of two linear systems. Assuming small coefficient perturbations, a first order

approximation of AH(z), useful in succeeding chapters, is

n OH(z)
AH(z) = cH( (Aci) Ic,

i=1

where the ci are the coefficients in H(z) and Aci is the perturbation in ci.

Hinting at another possible approach to analyze this problem, one could model

coefficient quantization as an additive perturbation of the controller or filter (see

Figure 2-3). I will return to this approach in Section 4.10.

Figure 2-3: Coefficient quantization modeled as an additive perturbation.

State and Input Quantization

Incorporating state and input quantization changes the model (2.5) to

x* [k + 1] = A*Q[x* [k]] + B*Q[u[k]]

y* [k] = C*Q[x* [k]] + D*Q[u[k]] (2.8)



where Q[-], the quantization operator, reduces its operand's fractional wordlength to

B, bits. Here, xQ*[k] represents the quantized state. The error equations now become

Xe[k + 1] = x[k + 1] - x* [k + 1]; ye[k] = y[k] - y [k]

Xe[k + 1] = Ax[k] + Bu[k] - (A*Q[x* [k]] + B*Q[u[k]])

ye[k] = Cx[k] + Du[k] - (C*Q[x* [k]] + D*Q[u[k]])

which, due to the non-linearity of the quantization operator, are non-linear.

2.3 Scaling

As mentioned before, the fixed-point format severely restricts dynamic range. Thus,

the size of internal numbers must be kept relatively small to avoid overflow and provide

accurate computations. Typically, each internal variable is scaled (i.e. multiplied by

a suitable number) so that it stays within the dynamic range.

In general, if f is the impulse response sequence from the input to an internal

variable, v, then v[k] = (f*u)[k] or equivalently, V(e") = F(eJw)U(ejw ) where u[k] is

the input sequence. The variable v can be any of the states in the system. Since the

variable's value depends on the input, scaling also depends on the class of inputs the

system will operate on and the importance of preventing overflow. Each different norm

applied to the input and the system's resulting impulse response sequence determines

a different scaling rule. Table 2.2 from Roberts and Mullis' textbook [151, page 365]

lists the range of the internal variables depending on the input and the appropriate

norm.

Using these inequalities, one can write some scaling rules:

00

11 scaling: Ilf Illl = Elf [k]l = 1 (2.9)
k=O

s 0 - 1/2

12 scaling: IF(z)ll2 = (f [k]) 2  = 1 (2.10)
k=O

1,o scaling: IF(z)l00 = max IF(e )l = 1 (2.11)
W



Input Class Range of internal variables (v[k])
Bounded inputs
ju[k]j < 1 Iv[k] < E, If [1] = Ilf l1

Finite energy inputs

l<k ([l]) 2  1 |v[k]I < [Ej(f[1])2] 1/ 2 = F(z)12 = Ilf I2

Sinusoidal inputs
u[k] = cos[kw] Iv[k]lI 5 max, IF(ew) I = IIF(ejw)11

White inputs
SuU(ew ) = 1 [E[(v[k])2]]1/2 - Ilf 2

Wide sense stationary inputs

ruu[k] ++ Suu(e ji )  [E[(v[k])2]]1/2 = [[102 Suu(ejw)IF(ew)12 dw]

Table 2.2: Range of internal variables v[k] = (f u) [k] for various classes of inputs u.

These rules assume zero initial conditions in the filter and neglect roundoff noise error

inputs.

The relations uL. 0 < U|, 1  U1 2 = IU112 < IIUIoo < lull1 imply that the 11

bound is the most conservative. Often, the 12 scaling rule is used in a modified form

with a factor a:

a|IF(z)12 = a (f [k])2 = 1 (2.12)

where a can be interpreted as the number of standard deviations representable with

the finite wordlength available, assuming a unit-variance white noise input.

The choice of a scaling rule represents a tradeoff between dynamic range (over-

flow errors) and roundoff errors. For example, the very pessimistic 11 scaling rule

guarantees no overflows, i.e. for any bounded input, the probability of overflow is 0.

However, that means that most of the numbers will be very small and the roundoff

error after multiplication will be a significant percentage of their magnitude. For

example, with three fractional bits, 0.021 x 0.021 = 0.000441 would be rounded to 0

with a rounding error of .000441 which is about 2%; 0.21 x 0.21 = 0.0441 would be



rounded to 0.044 with a rounding error of 10- 4 which is about 0.05%! Of course, some

choices of numbers may cause the reverse to be true, but in general, this example is

representative. In most cases, an 11 scaling wastes a lot of the dynamic range and

increases roundoff error, making modified 12 scaling the most common choice; [151]

states that a > 5 is considered conservative.

In the controls context, one would also have to include the plant model in deter-

mining scaling rules; see [119, 185] for extensive discussion of scaling rules, especially

the 12 rule, in the controls context.

The scaling rule is actually implemented so as to leave the overall transfer function

unchanged. Figure 2-4 depicts the transfer function from u to y with an internal

variable v and / = Ilf ll, If 112, or IIF(ew)lloo depending on the scaling rule chosen.

Note that the scaling rule will also change for MIMO systems.

U -k v - Y U - V D Y
F G PG

Figure 2-4: Scaling implementation.

I will discuss scaling in the state-space representation in more detail in Section

4.5.

One final note: In many practical cases, scaling is actually done by simulation. The

filter or controller is simulated with the different input signals that it is expected to

receive during operation, and the maximum of the states during operation determines

the scaling. See [166] for a description of software that facilitates the use of this

method.

2.4 Summary

So far, I have discussed the repercussions of the fixed-point representation on general

LTI theory. The error models here will serve as a starting point for further developing

the analysis in each succeeding section.

The next chapter presents a larger picture of the FWL design process i.e. the



process of starting with a CT plant and designing a FWL digital controller for it or

that of designing an FWL digital filter. It will provide context for the succeeding

presentation and will also help to categorize the large amount of literature on this

topic.



Chapter 3

Controls and Signal Processing:

Differences and Similarities

... the "separation principle", which is at the heart of much of the linear state
estimate feedback control theory, whether it be by pole placement or by LQG control,
breaks down in practice at the implementation phase of the control law. This is a
key observation that should haunt the nights of many linear or linear quadratic
control theoreticians.

- Gevers and Li in [62]

Researchers and engineers, for the past three or more decades, have been designing

digital controllers and filters that account for FWL effects and try to minimize them.

The mathematical and analytical tools and the computational resources at their dis-

posal have shaped their different views and approaches to the problem. This chapter

describes the design processes, both for digital filters and for digital controllers. The

first section gives a brief outline while the second gives a much more detailed descrip-

tion. This design process is a major part of the framework that this thesis lays out

and provides a natural organization for many of the references also. Figure 3-4 is an

annotated figure showing both the filter and controller design processes.



3.1 The Design Process: A Summary

Filter Design

In the DSP context, the design path usually involves only one step: from a DT filter

to an FWL DT filter. Sometimes, it involves a prior step, discretizing a CT filter to

a DT filter (see Figure 3-1).

Discretization FWL Optimization
CT Filter - , DT Filter - FWL DT Filter

Figure 3-1: FWL DT filter design.

Controller Design

Including the CT plant and a feedback loop fundamentally distinguish the controller

problem from the filter problem. The goal in controls is to optimize the performance

of the entire closed loop, not just that of the controller. In the controls context, a

fork marks the longer design path (solid lines in Figure 3-2).

DT Plant

CT Plant --- ------ DT Controller ---- FWL DT Controller

CT Controller

Figure 3-2: A summary of the FWL design process.

Why not a direct path from the CT plant to an FWL DT controller? Or at least to

a DT controller? The answer to the latter question is that most traditional controller

design methods deal with either continuous- or discrete-time, but not both. Starting

with a CT plant, one can either discretize the plant or design a CT controller (Figure

3-2).

If the CT domain is chosen, one proceeds as follows:

1) First, a CT controller is designed using one of many standard techniques. One

advantage of doing CT controller design is the ease of specifying and translating



performance requirements.

2) Once designed, the CT controller is discretized using one of several methods,

with sophistication varying from the simple bilinear transformation to Keller and

Anderson's discretization method [92] (Section 5.9.3) that takes the CT plant into

account.

Algorithms that perform step (2) above may be further categorized into

(a) those that do not take the plant into account, and

(b) those that take the plant, and hence the entire closed-loop behavior, into account.

For example, a digital redesign technique that matches the states of the DT con-

troller to those of the CT controller at the sampling instants would fall into the first

subgroup. A better redesign method that matches the states of the CT and DT

closed-loop systems at the sampling instants (see e.g. [58]) would fall into the latter

subgroup.

If the DT domain is chosen, one proceeds as follows:

1) First, the plant is discretized at the controller's sampling frequency.

2) Then, linear quadratic Gaussian (LQG), Ho design, or any other method is used

to compute a DT controller.

This route has two disadvantages:

* The entire process must be repeated if the sampling frequency changes.

* Some of these design methods only take plant and output behavior into account

at sampling instants. Thus, they would treat the systems generating the step

responses in Figure 3-3 as equivalent. Clearly, one is preferable.

Following either path, the DT controller must finally be optimized for FWL imple-

mentation. Again, FWL discretization can ignore the plant and treat the controller

as a filter, or it may take closed-loop performance into account.
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Figure 3-3: An example of intersample ripple.

The preceding discussion summarizes the "standard" design methods. Recent

publications (in the last decade) have provided additional options and shortcuts (indi-

cated by dashed lines in Figure 3-2) in the design methodology. Sampled-data H 2/Hoo

controller design methods now allow direct design of a DT controller in closed-loop

with a CT plant [8, 36,37,46,47, 165], leaving only the FWL optimization step. An-

other bypass, due to Liu et al.'s work [105], allows direct FWL DT controller design

based on a DT plant (using a minimum LQG cost criterion).

Similarities in the design processes

In both filter and controller design, the different discretization methods fall into one

of two categories:
of two categories:



(i) those that search for the set of optimal similarity transformations for a given

system, to minimize a given measure.

(ii) those that actually search over all possible realizations to find the set of systems

(controllers or filters, depending on the respective problem) that best meets all

the design constraints.

Mathematically, the first problem is

min M(T-1AT, T-1 B, CT, D)
{TI det T:0}

where (A, B, C, D) are fixed (determined by some other method) and T is a similarity

transformation. The second problem's statement is

min M(A, B, C, D)
(A,B,C,D)

M( ) denotes a performance measure in both cases. The latter, more difficult problem

requires a search over a much larger set of possible solutions.

Design of feedback and observer gain matrices perfectly highlights the difference.

Earlier solutions generally followed the three-step path [62] below:

1) plant discretization;

2) controller design via solution of (infinite-precision) DT Riccati design equations;

3) FWL discretization by finding the optimal transformation to minimize a perfor-

mance measure (such as LQG cost).

Liu et al. [105] describe a two-step approach:

1) plant discretization;

2) direct computation of the optimal FWL DT controller by solving DT LQG design

equations that take roundoff noise into account.

Thus, they solve different design equations than those in the infinite-precision case

(see Section 5.10 for more details on Liu et al.'s method).

The rest of this chapter explains the design process in more detail and compares

it to some of those described by other authors.



3.2 The Design Process: A Bigger Picture

Figure 3-4 shows the current FWL digital filter and controller design procedure in

finer detail. I will first describe this figure and the associated design process (already

summarized above) and then discuss how others authors have outlined the design

process.

Filters and Filtering

The relatively straightforward digital filter design process has been explored in much

more depth than the corresponding digital controller design problem. If the process

starts with a CT filter, then it proceeds down the path of discretization followed by

FWL error minimization (Figure 3-5). For the many existing DT filters, one can

simply apply the last stage of optimization for FWL performance. One could also

use H 2/H, design methods to minimize the error between a CT filter and a DT

filter. The CT filter can be approximated using fast sampling followed by lifting (an

approach developed for CT controllers in [92]). This approach may have already been

explored in the DSP literature using the idea of blocking.

One avenue that past research has not explored is shown in Figure 3-6 - a direct

route from a CT filter to an FWL DT filter. The design goal would be to minimize

some measure of the output error.

Control, Controls, and Controllers

Control is generally done for CT or analog plants, so controllers are typically based on

a CT (usually LTI 1) model of the plant. The development of control theory, since the

early '40s with the pioneering work of Bode, Black, Nyquist, and many others, to the

present, has provided many tools to design CT controllers. Current design criteria

allow controller and closed-loop specifications in the time and frequency domain.

These specifications usually follow intuition and have a physical interpretation, and

1The remaining discussion will assume an LTI model
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r [k] --- e[k]

Figure 3-5: FWL DT filter error.

K(s)

r (t) -- e(t)

H - Kd,FWL(Z)

Figure 3-6: FWL DT filter error.

consequently are easy to understand. Thus, the CT plant -+ CT controller route is

very popular.

The advent of cheaper, more reliable, repeatable and flexible digital technology

has prompted a shift towards DT controllers and FWL DT implementations of them.

What are the existing design methods that ease the shift from CT to DT controllers?

There are many of these methods, generically called discretization methods. The

categories are (as in the summary):

(a) those that take do not the plant into account;

(b) those that take the plant, and hence the entire closed-loop behavior, into account.

Methods in category (a) ignore the plant and the feedback loop, and treat the con-

troller like a filter. Thus, DSP discretization techniques all directly apply. There

are many such techniques, and most basic texts on signal processing cover several of

them [24, 130]. Since much of the research on discretization orginated in the DSP

community, many digital controllers were initially designed and implemented like fil-

ters. However, clearly stating the goal of discretizing a controller will indicate the



suboptimality of this approach: Discretization should result in a controller such that

the performance of the entire closed-loop matches that of the closed-loop system with

the CT compensator (Figure 3-9). Thus, the design methods of category (b) are far

more appropriate for controller design. Of course, performance (or minimum error)

can be measured in many different ways.

If designing a DT controller from scratch, as opposed to redesigning a proven CT

controller to function in DT, one has the option to pursue a different path, that of

discretizing the plant first. Typically, the plant is discretized at the same sampling

rate as the controller. Thus, the closed-loop system is entirely in discrete-time, and

one can use standard DT methods that, given closed-loop DT performance criteria,

return the optimal DT controller.

In either case, the DT controller must now be implemented on a DSP or a digital

controller and thus in finite precision. Floating-point implementations, especially in

modern high-end chips, generally approximate infinite-precision computation well, so

one can implement the DT design immediately. However, when implemented in fixed-

point, especially in small, low-cost, fixed-point chips, FWL effects are not negligible,

and the DT design must usually be modified to mitigate these effects. This is the

final step in the design process.

Again, the FWL discretization methods fall into two separate categories as before.

However, now, we can break each category down further:

(a) those that take do not take the plant into account:

(i) those that search for the set of optimal similarity transformations for a given

measure and a given system;

(ii) those that actually search over all possible realizations to find the set of

systems that best meet all the design constraints.

(b) those that take the plant, and hence the entire closed-loop behavior, into account:

(i) those that search for the set of optimal similarity transformations for a given

measure and a given system



(ii) those that actually search over all possible realizations to find the set of

systems that best meet all the design constraints.

The same warning that applied earlier for category (a) design methods is still in order

when used with controllers: Digital controllers should not be treated as digital filters.

If they are, the optimal FWL discretization minimizes the error (measured by some

metric) in Figure 3-5. As shown in the categorization above, the algorithms to do

this minimization can be separated into two groups.

The methods in category (b) offer more implementation options and are (as before)

more appropriate to controls problems. Figures 3-7, 3-8, and 3-9 show some of the

possibilities. Figure 3-7 minimizes the error between a DT closed-loop system with

an infinite-precision DT controller and one with an FWL DT controller. A (b)-(ii)

method controller design would perform better [105,196]. An even better solution

is to not discretize the plant and to minimize the output error as in Figure 3-8 The

only current method that does this is in [111] and it follows (b)-(i). If we want FWL

discretization to be closer to the earliest design stages, the ideal solution would be as

in Figure 3-9 - an FWL system that performs as closely as possible to an ideal CT

controller and plant combination.

Kd (z)

r [k] +e [k]

Figure 3-7: FWL DT controller error.
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Figure 3-8: FWL DT controller error.

Other views of the design process

I will now discuss how three other sets of authors have described the design pro-

cess. Hanselmann's survey of digital controllers [68] discusses discretization and filter

structures. Discretization techniques all fall under the CT controller - DT con-

troller branch. Hanselmann interestingly points out that the CT controller -4 DT

controller route may be better than CT plant -+ DT controller. The latter requires

specification of sampling frequency and computational delay and possibly other pa-

rameters, none of which may be known until an actual implementation is carried out.

Parameter changes at that stage will necessitate a complete redesign. However, I

would argue that choosing the CT controller -+ DT controller route will still require

a rediscretization due to parameter changes, and adequate testing of the new design.

Hanselmann also discusses different filter realizations for the controller, but never ties

this in explicitly with the discretization step above. His survey however includes an

excellent discussion about actually implementing digital controllers including some

discussion of signal processing and controller hardware as well as software issues. He

also discusses pipelining and time-delay issues in controllers.

Gevers and Li [62] describe the following design hierarchy progressing from the
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Figure 3-9: FWL DT controller error.

least favorable choice to the most favorable (the first three strategies assume a dis-

cretized plant):

1. Compute an ideal DT controller using any method, and then apply an FWL fil-

ter design criterion, treating the controller as a filter. This strategy corresponds

to Figure 3-5.

2. Compute an ideal DT controller and then optimize the implementation by

searching for the similarity transformations that best match its behavior to

the ideal closed loop system's behavior, where 'best' can be measured with

any of the performance metrics mentioned in the next chapter. This strategy

corresponds to Figure 3-7.

3. Optimize the FWL controller over all FWL controller realizations with the

given wordlength. Differs from (2) in that the controller transfer function itself

is modified, not just its implementation. This is the same difference as that

between the two cases mentioned in my description of the FWL discretization

stage. This strategy also corresponds to Figure 3-7 but searches over a larger

parameter space.



4. Optimize the FWL controller by comparing its performance with that of an

infinite precision DT controller, both in closed loop with the continuous time

plant itself, not with a discrete time approximation of it. This strategy also

corresponds to Figure 3-8.

In each case, performance can be measured with one of many different metrics.

Chen and Francis [36] describe the following approaches:

* Analog design followed by discretization (the CT Controller -+ DT Controller

route)

* Plant discretization followed by DT design (the CT Plant -+ DT Plant route)

* Direct DT controller design using sampled data methods (the direct CT Plant

-+ DT Controller route)

Chen and Francis however do not describe the implementation stage at all, the DT

Controller -+ FWL DT Controller.

3.3 Implementation Details

There are four implementation details that I did not see discussed much (if at all) in

the FWL literature:

1) optimal wordlength allocation for individual registers;

2) generalized-hold functions;

3) sampling rate;

4) sampling resolution.

The first of these is most relevant (or only relevant) in custom integrated circuit

design. The problem is to determine how many bits should be allocated to each

coefficient, to each state variable, and to each adder and multiplier. This very non-

linear and difficult question has received little attention. The only relevant works

that I came across were:



* Roberts and Mullis [151] discuss optimal wordlength for minimum roundoff

noise. They solve the following problem: Given a total number of bits B, how

to optimally allocate them among the state variables to minimize the roundoff

noise gain.

* Liu et al. [105] and Zhu et al. [196] both discuss optimal allocation of bits for

state variables in LQG design, and their design algorithms output wordlength.

Also, Williamson and Kadiman [186] importantly mention that reducing the

number of bits allocated to a state is a way to do partial order reduction.

* Some authors have turned to general non-linear optimization techniques such

as genetic algorithms and simulated annealing to facilitate the search for an

optimum. They include the wordlength of each state in the cost function.

Such optimization methods are completely flexible and can incorporate almost

any criteria into their cost functions. However, as the search space gets more

complicated, convergence will take longer and local maxima and minima are

more likely to fool the search algorithm. [31] and [166] describe software that

implements simulated annealing-based searches to minimize the wordlength for

coefficients and states. Sung and Kum's algorithm [166] has been implemented

in a commercial product, Cadence Design's Fixed-Point Optimizertm.

Generalized-hold hardware allows the designer more control freedom than the

standard zero-order-hold. For an excellent discussion of generalized sample-and-hold

hardware, refer to Araki's 1993 survey [6]. Additionally, [53] gives a detailed intro-

duction to generalized-hold hardware as well as examples of its use in sampled-data

systems.

I could not investigate the role of sampling rate and sampling resolution in FWL

effects, and leave it for future work.



Chapter 4

Performance Metrics

To measure how bad a certain side effect is, we can equivalently measure how well the

overall system performs in the presence of that side effect. Either way, how does one

measure "optimality"? What cost function should we minimize? Many criteria vie for

candidacy. For example, the typical ones of minimizing roundoff noise or coefficient

perturbation sensitivity may be the clear choices. Or one could additionally include

the hardware cost of implementing the particular realization. Latency restrictions

or throughput requirements may also complicate matters. These latter criteria enter

very non-linearly into cost functions and usually are not directly (or adequately)

included in models. Thus, "optimal" FWL implementations still remain an art. In

this chapter, I will discuss several performance metrics, their inter-relationships, and

similarities and tradeoffs amongst the different ones.

Usually performance analysis for each FWL effect - coefficient quantization and

state roundoff errors - is distinct, with a different measure for each. Several authors,

though, have pointed out relationships between them, and Gevers and Li [62] actually

give a synthetic measure that unifies the measurement of both effects into one number.

The coefficient quantization problem has been tackled with both stochastic and

deterministic approaches, while a stochastic model has been applied for state quanti-

zation and multiplicative roundoff error.

Maintaining the organization mentioned in the Introduction, the sections in this

chapter are organized with the DSP work first and then the sections on controls.



Within each major category, I first describe the deterministic measures and then the

stochastic ones. I chose this latter distinction (somewhat arbitrarily) to help organize

the presentation.

DSP - Deterministic Measures

A specific realization determines coefficient errors exactly, and one should be able to

analyze their effects deterministically. The mathematical tools of the deterministic

approach are sensitivity functions and their norms. Since quantization perturbs each

coefficient by a small amount, the theory of polynomial coefficient perturbations and

matrix perturbations has been extensively used to study quantization effects. Re-

searchers first used root sensitivity measures with transfer functions and then applied

eigenvalue sensitivity measures with the state-space approach.

However, none of the early work used the resulting sensitivity measures to ana-

lytically find a globally least sensitive structure. It was only in 1984 that Tav§ano'lu

and Thiele [169] published "the first purely analytical attempt to synthesize mini-

mum sensitivity state-space realizations for linear systems" [62]. I first discuss the

measure they minimized (following Gevers and Li, I will call it ML 12 ) in Section 4.1.

I also include Lutz and Hakimi's extension to MIMO systems [109]. Section 4.2 de-

scribes Gevers and Li's ML2 measure which refines the ML12 metric and also lays

some groundwork for their synthetic measure. The section also includes Xiao's ex-

tension [191] of ML2 to account for 0 and ±1 entries. Section 4.3 develops results on

root sensitivity of polynomials and then goes on to describe pole-zero sensitivity mea-

sures that incorporate the state-space approach and eigenvalue sensitivity. Section

4.4 describes how to frequency weight each of the previous measures. This frequency

weighting can help to account for colored inputs or to emphasize more important

frequency bands and deemphasize the ones where minimum FWL sensitivity is not

important.



DSP - Stochastic Measures

Section 4.5 switches to the stochastic realm and describes the ubiquitous roundoff

noise gain measure. Section 4.6 develops the stochastic model of coefficient quanti-

zation errors. Section 4.7 describes Gevers and Li's new synthetic measure, which

combines the stochastic coefficient quantization error and roundoff noise gain mea-

sures into one.

Controls - Deterministic Measures

Section 4.8 switches to the controls context and describes the differences between the

DSP measures and controller measures, reiterating some of the ideas and warnings of

Chapter 3. Section 4.9 includes the measures of sensitivity of the entire closed loop to

perturbations in the controller coefficients. It includes Madievski et al.'s development

[111] of an operator-based norm to measure controller sensitivity while taking into

account the CT plant, not a DT approximation of it. Section 4.10 develops the

modern controls paradigm and poses the sensitivitity and roundoff noise minimization

problems in the framework of stability robustness.

Controls - Stochastic Measures

Section 4.11 covers the stochastic closed-loop roundoff noise gain metric. Finally,

Section 4.12 describes some of the other measures that I did not have time to include.

It contains references and a short description for each of the measures, and I leave it

for future work to develop them in more detail.

4.1 The ML12 Measure

Coefficient quantization changes a system's transfer function but does not on its

own introduce any non-linearity. Also, it only 'affects' the system once, when the

coefficients of the realization are first rounded. Thus, a typical method to measure

coefficient quantization's impact is to measure the sensitivity of the transfer function



Measure Section Source
DSP - Deterministic measures

ML1 2 - SISO 4.1 [62, 169, 172, 173]
ML 1 2 - MIMO 4.1 [109]

ML2  4.2 [62,141,146,191,194]
Mpz 4.3 [62,157,184,185]
M* 12 4.4 [62,173]

DSP - Stochastic Sources
G 4.5 [62,78,79]

Stochastic coefficient quantization 4.6 [7, 40, 55, 62, 77, 91, 94, 119,120]
GT 4.7 [62]

Controls - Deterministic measures
Mcl,L12 - SISO 4.9 [62]

MCl,L2 - SISO 4.9 [111]
Stability Robustness - Po, rR 4.10 [100]

Controls - Stochastic measures
Stability Robustness - P0, rR 4.10 [54, 55]

Gc1  4.11 [62]
GT,cI - [62]

LQG cost - J 5.10 [62, 105, 119, 120, 185, 186, 196]

Table 4.1: Measures.

to coefficient perturbations, because the rounding process perturbs each coefficient

by up to 2-, where Bc is the number of bits for the fractional part of the coefficient

wordlength. There are at least two different definitions of a SISO system's sensitivity.

Both are developed with a state-space approach.

SISO Systems

Consider the standard discrete-time state-space description in (2.4) with a single

input and a single output i.e. B E WX1, and Ce R x" and define the following

functions:

OH(z) 0(z= (C(zI - A)-'B + D)
Oci Oci

[(zI - A)-IB]i.

F(z) H(z) -= (zI - A)- 1 B (4.2)
OC



where F(z) E Rnxl. Call the impulse response sequence from the input to the ith

state variable fi. Similarly,

G(z) z) = C(zI - A) - 1  (4.4)
OB

where G(z) E Rlxn. Call the impulse response sequence from the ith state variable

to the output gi. Note the slight abuse of notation: - , a column operator, results

in a row vector, and , a row operator, results in a column vector. Finally,

[ AOH(z)] = C(zI - A)-'ee(zI - A)-'B

= G(z)eie'F(z)

= Gi(z)Fj(z) (4.5)

OH(z) = GT(z)FT(z) (4.7)
aA

where ei and ej are unit vectors.

Now, to measure the total effect over all frequencies, Tavgano'lu and Thiele [169,

172] proposed the following measure1

SH( z) 2 OH(z) 2 OIH(z) 2
OA 1 B 2

where 1 - lip, the Lp norm of a function f(t) E C"xm is defined as

lf llip = ( If (ew )ll ) dU) (4.9)

At first glance, a 1-norm seems a little out of place. The natural correspondence

between the time and frequency domains with the 2-norm is energy, but the relation-

ship of the 1-norm to the time domain is obscure. In fact, Thiele et al. [169] used it

primarily for mathematical convenience. Gevers and Li [62] and Rao [146] develop a

measure with a more natural 2-norm for the first term also (see Section 4.2).

1As in the case of most of the other measures, this one is being developed to be optimized over the
space of similarity transformations. Thus, the D term is left out since it is coordinate independent.



Both Jackson [81] and Mullis and Roberts [151] use a similar sensitivity formula

in their textbooks:

Sj(z) = Gi(z)Fj(z) (4.10)

Thus, Sij = [ OH (z)
OAjI shall evaluate the second and third terms in (4.8) and then return to the slightly

more complicated first term.

IH(z) 2

OB 2

aH (ejw) 2

ORB F

dw

f 2- n 12= 2f Gi (e")2 dwi=1

= 2 o1 G (e -j") Gi ( j ) dw
o

i=1

= tr (W o )

where Wo is the observability Gramian of the system. Similarly,

OH(z) 2 = tr (We)

The energy in the impulse response sequence from the ith state variable to the

output is the (i, i)th entry of Wo. Similarly the energy of the impulse response

sequence from the input to the ith state variable is the (i, i)th entry of We.

For the first term, the Cauchy-Schwarz inequality gives an upper bound:

OH(z) 2
OA 1

= ( 2,GT(eJ )F( ) F d 
2

S\2 ,

2(l0
[G(e-w)GT (ew)]l/ 2 [FT (e - j )F(e )]1/2

G(e-jL)G T (ej) dw 2,r

dw)

F(e-j)FT(ej ) dw)4.11)

OH (z) 2OH (z) 22 2
aB 2 1C 2

(4.12)



Thus, combining all three terms, we get the following upper bound

_ H (z) 2 H(z) 2 2 OH(z) 2
ML 12  M 1 2  13+ + DH (4.13)aB 2 a2 2 a 2 O 2

= tr (We) tr (Wo) + tr (Wo) + tr (We)

Now would be a good time to take a short detour and develop scaling in the

state-space context. Since the (i, i)th entry of W, indicates the energy in the impulse

response sequence from the input to the ith state variable, 12 scaling (see Section 2.3)

should result in a W, with all diagonal elements equal to unity (or 1, depending on

the scaling factor a - see Section 2.3). Thus, we must first determine how Wc changes

under a similarity transformation.

00

WC = (A'B)(A'B)T
i=O

transforms to

:((T - AT ) T - B ) (T - 1AT) T - 1B) T

i=O

00

= ZT-(AiB)(AiB)TT - T
i=O

= T-'1WT - T (4.14)

To get scaled diagonal elements, simply apply the diagonal scaling matrix [T]i i =

aV . Then, tr (We) = -. That ends the detour.

Thus, for an 12 scaled system, ML 12 = -(tr (Wo) + 1) + tr (Wo).

A property of the Cauchy-Schwarz inequality is that equality holds in (4.11) if and

only if F(e-j")FT(ejw) = yG(e-j")GT (ej") for some real constant y. This condition

immediately translates into Wc = yWo for (4.12) to hold with equality [169].

I shall return to the upper bound (4.13) in Section 5.2 to discuss how its value

changes under similarity transformations and to describe the set of optimal similarity

transformations that minimize it. Coincidentally, in some cases, the transformation

that minimizes the upper bound also happens to minimize the measure itself! Finally,

this upper bound is also intimately tied to the roundoff noise gain measure (see Section



4.5). The functions trace and dgram in MATLAB can be used to easily compute the

upper bound.

Next, I present the extension of the ML12 sensitivity measure to the MIMO case.

MIMO Systems

Note that the above definitions only hold true in the SISO case. Lutz and Hakimi [109]

first proposed and solved the more complicated sensitivity function in the MIMO case,

and the development here closely follows their's. The main extension required is the

theory of derivatives of matrices with respect to matrices. In the sequel, [-]i. indicates

the ith row of a matrix while [.].j indicates the jth column of a matrix.

In the MIMO case, B C Rnx m , C E Ipxn". Let F(z) and G(z) be defined as before

F(z) = (zI - A)-IB

G(z) = C(zI - A)-

where F E Rnxm and G E WRpxn.

Then, using the definition of the matrix derivative in Appendix C.6, OH() will
OB

be a matrix of order pn x m2 where the ijth partition will be

o9[H(z)]jj T T()] T
aBis = GT(z)Eij = GT(z)eieT = [G(z)] e (4.15)

where Eij = eieT is a p x m elementary matrix. Note that the matrix in each partition

has the same shape as B.

Applying the vec operator, we can rewrite (4.15) as

OH(z)OH = [(vec GT)o...0 0(vec GT)0...-0 -0 (vec GT)]

= (vec GT(z))(vec Im)T

where each 0 matrix is of size pn x (m - 1).
OH

Similarly, will be of order p2 x nm:

[H(z)] = EjFT(z) = ei(F(z)ej)T = ei [F(z)]T  (4.16)
aCj



where Eij = eieT is a p x m elementary matrix.

Rewriting (4.16),

(vec F)T
0

0
0

(vec F)T

0

0

0

(vec F)T

= (vec I,)(vec F(z))T

Finally, to derive OH(z)
OA

we use Graham's "First Transformation Principle" [143]

(see appendix C.4) and the following property of matrices:

M-1

Ox

OH(z)
Oaij

= -M- 1 m M-1
Ox

S (z I - A)- B
Oaij

= -C(zI - A) - 1 (zI- A)
=aij

= G(z)E jF(z)

(zI - A)-1B

OH(z)
where Eij is of size n x n; is of dimension p x m.

0aij
Principle,

[H(z)] G(z)Ej
OA

Applying the Transformation

OH(z)
aC

)>



Thus = [T(z)] [F(z)] which allows us to write

I I I

[G T ].1 [F]T 
T [G T ]. [F] T [G T ]. [F]T

.21 ... [a ].lJ].
---- T --- ---- --------I I[GT][F]T

OH(z) [GT] 2 [F]. [GT ] 2 '[F 2 [G T] 2

OA
I I I

[G T ] [F] [G T] [F]TI 1 [GT] [F]

= (vec (CT))(vec F)T

OH(z)The dimensions of are pn x mn.
OA

Next, we apply norms as in the SISO case to get a sensitivity measure. To evaluate

each term in ML12 (4.8) with the new expressions for the derivatives, we first need to

evaluate the Frobenius norm of each term.

dA = Avec aH vec OA ]

= [vec ((vec GT)(vec F)T)]T[vec ((vec GT)(vec F)T)]

= [vec F 0 vec GT]T[vec F 0 vec GT]

= [vec FT 0 vec G][vec F 0 vec GT]

= [vec FTvec F] 0 [vec Gvec GT]

= |IF| 12CG||

(See [66] for properties of the vec and 0 (Kronecker product) operators.)

Similarly, for

OH 2 2 O [H vec ]
OB F = Vec a v B

= [vec ((vec G T) (vec Im)T)]T[vec ((vec GT)(vec Im)T)]

= mJJG11



and

OH 2 F H ] T[ Hc
C vF O= C LeC

= [vec ((vec I1)(vec F)T)]T[vec ((vec Ip)(vec F)T)]

= pIJF|~I

Then, substitituting the above into (4.8),

S 2 1 2 OH 2 1 27, d + dw
2l2 2 OA F 27 + j OB RF a F

1 2 7r 2 7

= 2J IFIIF IGIIF dw) + 2 m JIG|1 dw + 2p JIFI2 dw

Using the Cauchy Schwarz inequality on the first term, as in the SISO case, one gets

the bound

ML 12  ML 1 2 = tr (W.) tr (W.) + m tr (W.) + p tr W, (4.17)

I will present the transformation that minimizes the bound in Section 5.2.

4.2 The ML2 Sensitivity Measure

OH(z)
Noting that the ML 12 measure uses a 1-norm on the OA term mostly for math-

ematical convenience, [62] instead replaces it with a more natural 2-norm, resulting

in

OH(z) 2 OH(z) 2 OH(z) 2

OA 2 B 2+ 2

(We return to considering SISO systems.) Rao [146] developed the ML2 measure

also, but I chose to include Gevers' and Li's development since it is easier to follow.

Furthermore, they also present the solution to finding a structure that minimizes this

measure (see Section 5.3), while Rao [146] presents sub-optimal solutions that have

low sensitivity, but he does not find the optimal one.



The second and third terms are the same as before. The new first term is

-
2 7r27r

= - tr
27 0 A

=tr {1 f 2

25 o
aH(e jw)

aA
SOH(e jw)
OA

H
dw

OH(z) oo
Noting that OA = GT(z)FT(z) and that (zI - A) - 1 = ZAiz - (i+1)

i=O
OH(z)
OA

= GT(z)FT(z)

= (C(zI - A)- 1)T((zI - A)-'B)T

i=o Aiz- i=
i=0 i=0

AiBz-(i+l)) T
= gT(i)z-(i+1)fT(j)z-(J+1)

i=O j=0

where g(i) = CAi and f(j) = AjB. Then, combining the two summations,

OH(z)= ,g T(i)fT(j)z-(i+j+2 )

i=0 j=0

00

= Zh(k)z-(k+2)
k=O

where h(k) is the n x n matrix gT(i)fT(j) for i + j = k. Finally, we can write

OH(z)
OA

= tr{ OH(e-jw)
OA

OH(ejw)
aA

i o21
27r

(4.18)

dw

= tr 2 h (k)e-kw -j2w h(k)ejkwej2w

k=0 k=0

Since _f2" ejkw dw = 0 if k = 0, (4.19) reduces to

OH(z) 2

OA 2

00 2r

= tr Eh(k)T h(k) '2
k=O

Str (WA)

H(A 2 aH(ejw)
OA

OH(ew)
aA

)H dw

dw)4.19)

dw



resulting in the measure

ML2 = tr (WA) + tr (Wo) + tr (We)

Note that Rao's alternative expressions for

purposes:

ML2 = tr (We) + tr (Wo) + tr (Wc)tr (Wo) +

= tr (Wc) + tr (Wo) - tr (Wc)tr (Wo) +

ML2 is more useful for computational

oo00 n n

2Z [WT]. A'ejejA [WT]k
i=O j=1 k=1

2x TMy

where x and y are vectors defined as

S=
xi = xp Wo Yp,

Yi = YT Wxpi

1 1 1

1 1 1

M = 1- A2A -1 - 1A2  X H

1 1 1

1 - AA H- nf 12 I12

xp, and y, are the right and left eigenvectors respectively of A. See [146] for the

derivation.

Yan and Moore [194] also give the measure in relation to the solution of a Lyapunov

equation.

The ML, minimizing SISO realization is in Section 5.3.

Madievski et al. [111] develop an operator-based MIMO version of the ML2 mea-

sure for minimizing sensitivity in the sampled-data controls setup. One should be

able to easily apply it in the simpler filtering case also (see Section 4.9).

Relationship between ML2 and ML12 norms

Gevers and Li [62, Chapter 5] prove that ML2 > ML1 2 , with equality only in the

pathological case that H(A F is constant over all w. Furthermore, they investi-

gate how a realization that minimizes the ML12 measure performs under ML2. Their



example shows that an ML12 optimal realization performs well under ML2 and vice

versa.

Extending the ML2 measure to account for 0, ±1 terms

Noting that quantization does not perturb 0 and ±1 terms, Xiao [191] suggests a

modified ML2 metric for SISO systems. In fact, any integer coefficient will be realized

exactly and will not contribute to sensitivity or roundoff error. Also, any coefficients

that have a fractional part that is a sum of negative powers of two will be realized

exactly as long as the wordlength is long enough. However, these coefficients will

contribute to roundoff error. Xiao's measure does not account for these situations.

(It is a trivial modification to include the integer coefficients, and I will point it out

below).

Xiao's modified measure, which he calls SI, requires some additional terms. Let

OH(z) = G(zeieTF(z)¢
Saik =- G\ai G(z)e e F(z)ik

OH =(z)
Sbi = Obi G (z) eObi

SOH(z) =
SCk a e kOck

where

Oik {

cPi=

Ok

for aik = O, ±l

for aik 5 0, ±1

for bi = 0, ±1

for bi # O, +1

for ck = 0, ±1

for ck O, +1

The simple modification to exclude integer coefficients is to let kik, i, and k be zero

if the corresponding coefficient is integral. Then,

S ~~$ik [C 0] R(i, k) [c 0 } + i w [Wo]ii + EVk[Wc ]kk
i=1 k=1 i=1 k=1



where R(i, k) is a symmetric matrix that satisfies the equation

R(i, k) - [ Aee ] R(i, k) [ AT 

For the proof, refer to [191].

For a fully parametrized system, computing SI requires solving n2 Lyapunov equa-

tions. Moreover, Xiao does not propose how to find the realization that minimizes

SI. Sparse realizations generated by Amit and Shaked's 0, 1 algorithm (see Section

5.11) are good candidates for comparing ML2, SI, the corresponding roundoff noise

gain measure G, and the measure used by Amit and Shaked.

4.3 Pole-Zero Sensitivity

Mathematicians have studied root sensitivity of general polynomials for a long time2.

The results used in linear system theory are largely re-interpretations of older results.

Kaiser's analysis [87, 88] was one of the first to consider how pole sensitivity changes

with sampling rate and filter order. He gave word length bounds, also as functions

of sampling rate and filter order. Not only is following Kaiser's development of root

sensitivity instructive, but it motivates study of the FWL problem and the search for

low sensitivity system implementations.

Polynomial Root Sensitivity

Consider a CT TF and the bilinear discretization of its denominator 3 ,D(z-1), defined

as

n

D(z 1 ) = (s - pi) 1 2 (1-z-1)

I (1 +  
T- )

i=1 - -z

2In mathematics, a long time signifies a century or more.
3D is not related to the system matrix D in state-space realizations but rather stands for the

denominator of the TF.



Thus, the pole pi gets mapped to

1- pT
z= 2

1+ T
2

See Appendix C.3 for a more detailed computation. Now, if piT| < 1,

1 piT

1+p 2

zi z 1 - piT

One can see that as T gets smaller, all the DT poles will cluster around z = 1.

To estimate the order of the perturbations necessary to move a root of D(z - 1) to

z-1 = 1, consider:

n n

D(z- )lz-=l = (1i - zi) = J7piT (4.20)
i=1 i=1

Another form of the denominator is

n n

D(z-1)z-= = 1 + aiz - z-1 = 1 + ai (4.21)
i=1 i=1

n

If any of the ai are changed by F0 A 1 + Eaj, then (4.21) can be zero, which
j=1

would mean a pole at z = 1. Though this bound is very crude, one can still comment

on the relationship of wordlength and sampling rate/system order.

Equating (4.20) and (4.21) implies that coefficient accuracy is affected by the

sampling rate and by the system order. Thus, going from an nth order filter to a

(2n)th order filter will require approximately twice as many digits of accuracy to

represent the ai. Similarly, doubling the sampling rate for an nth order filter will

require n additional bits to represent the aj. In both cases, the crudest perturbation

bound for destabilizing the transfer function will significantly decrease, thus requiring

additional wordlength.

Tightening the bound further, Kaiser computes the sensitivity of the poles to small

changes in the coefficients. Equating the two forms of D(z-1),

n n

1 + Ealz-' = J(1 - Z)
l=1 j=1 Z2



leads to the sensitivity with respect to a coefficient:

azi z + 1

Oak 1 (1_ )

The total differential change (to a first order approximation) is

dzi = Ok dak
k=1

Note that as the poles cluster together, the term 1 - ' will get smaller and its

reciprocal will get larger, displaying the commonly known fact that pole sensitivity

increases as the poles get closer together.

With state-space structures, the eigenvalues of the A matrix are the roots of the

denominator and determine stability. Thus, I turn to eigenvalue analysis next.

Eigenvalue Sensitivity

One can measure the sensitivity of the poles, which are the eigenvalues of A, and

of the zeros, the eigenvalues of Z = A - BD-1C (assuming a SISO system and a

non-zero D term). Skelton and Wagie [157] considered pole sensitivity minimization

and defined pole sensitivity as

i=1

where Tpi = -A 2 (4.22)

Williamson [184] developed a norm to measure the sensitivity of zeros. He defines

n

Tz = EZ zi

i=1

where Tzi = -vi 2
aZ F

where vi is the ith zero. Two observations about Tz are in order:

(i) This measure only applies to systems with a non-zero D matrix, since Z is

well-defined only in those cases.



(ii) Gevers and Li [62] point out that this metric measures the sensitivity of the

zeros to the entries of the Z matrix, not to the entries of the coefficient matrices

(A, B, C, D). They present a much more general measure that combines both

pole and zero sensitivity:

nI 1 A 2 i 2 + ,i 2 i 2 i 2

M z = WA + dC +
=1 + A OA F F F D F

n

= wI:,Fpi + wv, Qzi
i=1

where the {w, > 0, i = 1, 2, ..., n} and {w,, 2 0, i = 1, 2, ..., n} weight each term and

reflect the importance the designer wants to place on the ith pole or zero.

Why Frobenius norms and not some other norm? Consider modeling each coeffi-

cient quantization error as a uniformly distributed zero mean random variable with

variance 2 -2B. Then, to a first-order approximation, the variances of the pole and

zero deviations, 16Ail and 16vi , are 2-2BC i and 2-c i [100]. I shall develop the

stochastic coefficient quantization error model in Section 4.6.

Setting all the wX, to 1 and the wv to 0 in Mpz recovers Skelton and Wagie's

measure.

4.3.1 Pole Sensitivity Minimization

Mathematicians have applied elaborate theory to eigenvalue sensitivity, or eigenvalue

perturbation analysis, documenting their results in an extensive literature (see for

example [163] and the references therein). The strongest result for eigenvalue sensi-

tivity uses the theory of Gerschgorin disks [163]. The eigenvalue senstivity analyses

that most authors (in controls and signal processing) use rest on the differentiability

of A with respect to A, which in turn requires distinct eigenvalues [62].

A derivation and discussion of eigenvalue sensitivity is listed in [62, chapter 6].

This derivation assumes distinct eigenvalues, i.e. algebraic multiplicity of Ai is one

for all i. Thus, A has a linearly independent set of eigenvectors. The result of the



derivation is

(A- T = XEiX -1  
(4.23)

where X is the matrix of right eigenvectors of A, and Ei = eie T . Now we must

compute the norm, p9i = i = tr(aAj T A
OA F tK A / A

Independent eigenvectors allow the A matrix to be decomposed as A = XAX -1

where A = diag(Al, A2 , ... , A,). It immediately follows that X-1A = AX -1 which

means that the rows of X -1 are the left eigenvectors of A. Call the matrix of left

eigenvectors (arranged in columns) Y. Then, YH = X - 1 and yHx = 1 (since YHX =

I). Normalizing the right eigenvectors (xHxi = 1) gives

= tr { (XeieTX - 1) (X-HeieTX H )} (4.24)

= tr (xi y H H)

= tr (XHxyHy i)

The sensitivity measure of an eigenvalue is always greater than or equal to one [62,

page 137]. Then, the measure is minimized if all eigenvalue sensitivities equal one,

and the minimum of the measure will be n.

From linear algebra [97, page 176], the following conditions are equivalent:

(i) A is normal

(ii) AAH = AHA

(iii) XHX = I where X is the matrix of normalized right eigenvectors

(iv) A has an orthogonal set of eigenvectors

Gevers and Li [62] prove the following

lYkl = 1 Xk = Yk # XHX = I



Thus, a normal matrix minimizes overall pole sensitivity. Even for the weighted pole

sensitivity metric, a normal matrix still minimizes the measure since any non-normal

realization will only increase (at least) one of the 'pi (and thus raise the overall

sensitivity).

Can similarity transformations change any matrix to normal form? Yes, assuming

that it has a linearly independent set of eigenvectors, which is always true when all

eigenvalues are distinct.

To transform an arbitrary A (with distinct eigenvalues) to normal form, apply the

following similarity transformation

T = (XD- 2XH)1/ 2Q

where X is the matrix of the right eigenvectors of A, D is any positive definite

diagonal matrix, and Q is an arbitrary orthogonal matrix [62]. In the simplest case,

let D = Q = I. Then, T = (XXH)1/2. The square root always exists since a positive

(semi) definite D guarantees that XDXH will be positive (semi) definite (see [62] for

a proof).

Several authors have used normality to measure how good a realization is. As

auxiliary measures, Williamson [184] suggests

S, = IAA - ATA ; Sz = IZZT- ZTZ

for pole sensitivity and zero sensitivity (section 4.3.2), respectively. Skelton and

Wagie [157] also add a penalty in the design process based on AAT - ATA 112

Most authors stop here. However, it is intriguing to probe a little further into all

the examples that do not satisfy the assumptions required by the above development.

The astute reader may note that for normality, we can in fact drop the requirement

that A have distinct eigenvalues. Instead, we can impose the milder condition that

all eigenvalues of A have geometric multiplicity equal to one or equivalently, they

have an index equal to one. This condition, also equivalent to each Jordan block

having size 1 x 1, guarantees a linearly independent set of eigenvectors. However,

we must be careful to not immediately take this result backwards and assume that



eigenvalue sensitivity (when algebraic multiplicity is greater than one but geometric

multiplicity is equal to one) is still minimized by the normality condition. A derivation

for eigenvalues with algebraic multiplicity greater than one requires a higher order

expansion of the perturbation and needs to be examined more carefully. Refer to

[97, 163] for more details on higher-order expansions.

Some authors have erroneously concluded that repeated eigenvalues have infinite

sensitivity. That is not true since the sensitivity derivation they rely on assumes the

differentiability of A with respect to A which breaks down in the case of repeated

eigenvalues. This sensitivity measure is undefined in those cases [62].

How is this eigenvalue sensitivity measure related to the one Kaiser develops for the

poles of a TF? Kaiser uses a TF description and while the state-space approach
Oak

uses a . Thus, to relate the measures, one must relate ak to aij. In general, the

ak will be related to several coefficients of A and their complex relationship can be

deduced by the expansion of det (zI - A). It would also be interesting to characterize

the relationship between the two sensitivities in terms of the coefficients and perhaps

show an equivalence.

Finally, Kaiser sought to tightly bound the size of the minimum perturbation in

an ai that would destabilize the TF. In state-space, Gevers and Li [100, 101] and

Fialho and Georgiou [54] ask what is the minimum perturbation in an aij that would

destabilize the system (see Section 4.10). The latter problem is easily extensible to

search the space of similar realizations.

4.3.2 Zero Sensitivity Minimization

In the SISO case, zeros are the eigenvalues of Z A - BD-'C. Again, to simplify

analysis, most authors assume that Z has distinct eigenvalues. Then, to derive the

partial derivatives with respect to the coefficient matrices, Gevers and Li [62] apply the

chain rule and use the earlier expressions due to Williamson [184]. In the following,

D = d. D is used in the expressions that carry over to the MIMO case without

modification while d is used in expressions specific to the SISO case.
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to be the set of right and left eigenvectors of Z respectively. Then, substituting

(4.25)-(4.28) into (4.23) and (4.24) and replacing Ai with vi and A with Z,

i tr{(yzj )(yzjJ H + tr (a YziY)
_,j = tr f (Y 2 , H 2 2

+tr (2 xZ, x, ) + ai 2z

where

SId ZHCT Id-1 Cxzi2  (4.29)

SAdB-1 Tyz 2  (4.30)

With normalized right eigenvectors {zx }, T'zk reduces to

Tzi =YiH Yi(1 + a2 ) + O2 + a'i2

Note that this measure is restricted to a narrow set of systems, those with a direct

feedthrough term (equivalently, those with as many zeros as poles) and a Z matrix

with a full set of distinct eigenvalues i.e. all zeros are distinct. Ideally, one would like

results to the most general problem: sensitivity of the transmission zeros of a MIMO

system to coefficients in the system matrices.

This problem seems to have attracted little interest relative to the pole sensitivity

problem (presumably since the latter directly impacts stability), and would probably

be a good research problem.

4.3.3 Combined Pole-Zero Sensitivity Minimization

Combining the results of the previous two sections, [62] express the Mp, measure as

2n

Mpz = Etr (HiH) + tr (My) + tr (M,) + c
i=1



where

H = w 1/2 HH = w ,i ypip, i = 1,..., n

= W2z zH2_, i = n + 1, ... , 2n

n

i=1

= Ydiag(w, ,2 W, 02 zH

M = w1 z yzH

ik=1

= Xdiag(w, , ... , w ) zH

k=1

The set of transformations that minimizes this combined measure appears in Sec-

tion 5.4.

4.4 Frequency Weighted Sensitivity Minimization

With each of the previous sensitivity criteria, ML12, ML 2 , and Mz, one can introduce

a frequency dependent weighting term. FWL sensitivity may not be important at

frequency bands where the system will never operate. Thus, one can sacrifice quality

in some frequency ranges to improve the response in others.

Thiele [173] first examined frequency weighted sensitivity functions in the context

of colored noise input. For example, if the input to the filter had a spectrum I(z),

then the power in the sequence from the input to xi, the ith state variable, will be

T, f0 Fi(e ")F(e ")T I(e") 2 dw. One would use this information to modify the

scaling rule. Thiele solved the general problem of computing weighted Gramians

which arise when using these modified sensitivity functions (see [173] for a discussion

and solution of weighted Gramians). This solution addresses the important case of

colored input as well as colored roundoff noise (which would result in a weighted

observability Gramian). However, it leaves out the general case.



Gevers and Li [62] develop the more general framework. Let WA(z), WB(z), and

Wc(z) be scalar weighting functions (rational in z4) for the matrices A, B, and C

respectively5 . Then, the ML12 sensitivity function (4.8) changes to

H(z) 2 H(z) 2 H(z) 2M = WA(z) O  + WB(z) H() 2 + W(z) II2
aA 1 aB 2C

Factor WA(z) into W(z)W2(z) where Wi(z) and W2(z) are any factors of WA(Z).

Then, using the Cauchy Schwarz inequality on the first term as before,

WA(Z) OA IW= 1(z)G T (z)W 2 (z)F (z) 1

< IW(z)G(z)l| IIW2(z)F(z)1

The upper bound of the frequency weighted measure is

M 2 < R 2 a IWl(z)G(z)l IIW2(z)F(z)

+ IIWB(z)G(z) + IIWc(z)F(z)F()

Each of these terms can be thought of as a weighted Gramian. Call these terms

Kol, Kc2, KoB, andKec (the first term is the observability Gramian weighted by W 1 (z)

and so on). Then, M 1 2 reduces to

M 1 2 = tr (Kol)tr (Kc2 ) + tr (KoB) + tr (Kec)

One can compute the value of ML, using the algorithm given in [173]. The

transformation that minimizes this upper bound is given in Section 5.5.

The general idea of frequency weighting applies in many contexts and can be

applied to most measures. The norm-based measures discussed so far can all naturally

incorporate frequency weighting just as in the ML12 case. However, a method to

compute the measure may not always follow so easily. For the M~1 2 case, Thiele

developed the weighted Gramian solutions. The ML2 and Mpz measures would require

4The condition of rational weighting functions is only required for a tractable computational
routine.

5WA here has nothing to do with the WA term in the definition of ML2 sensitivity.



something similar. Moreover, after developing the measure, the more interesting

question is how to find the transformation that minimizes it?

Other measures, not based on frequency norms, may also include frequency de-

pendent error tolerances. Crochiere [40], in his problem description for digital filter

design, allows a frequency dependent error tolerance for the transfer function magni-

tude.

4.5 Roundoff Noise Gain

Roundoff noise gain, one of the earliest stochastic measures, originates from modeling

roundoff error after multiplication as noise. Multiplying two B-bit numbers yields a

(2B - 1)-bit number (assuming both numbers are signed). Further multiplications

would keep extending the wordlength of the result unless a quantizer truncates or

rounds it back down to B-bits after each multiply. The error that results from this

"chopping" is modeled as an additive white noise source, uniformly distributed from
-2-B to 2-B (see Figure 4-1), assuming rounding is used to do the chopping. If

truncation is used instead, then the error distribution will be from [0, 2-B).

b b
x-4-- bx +x bx + eb

( 2-B 2- B
e- u nif 2 7 2-)

Figure 4-1: Multiplier with roundoff error modeled as noise.

Each noise source (one associated with each multiplier) is assumed to be uncorre-

lated with any others and with the input sequence quantization errors. Extensive test-

ing over the years has borne out this model's validity (Roberts and Mullis [151, page

346] cite [20,183] as references). [161] presented necessary and sufficient conditions

for the quantization model to be valid. It is important to remember the distinction

between quantizer noise and roundoff noise. Quantizer noise results from an A/D

quantization while roundoff noise is the error in the B least significant bits after a

mulitplication. Wong, in [189], gave sufficient conditions for the quantization error



and roundoff noise to be uniformly distributed and white up to the first- and second-

order moments, and for them to be mutually uncorrelated. He also investigated the

effects of adding dithering to the input to the quantizer and concluded that adding

dithering will almost always be adequate to guarantee the correctness of the white

noise assumption. In [190], he specifically analyzed the roundoff noise in FIR filters.

Barnes et al. [15] also studied the white noise assumption for the multiplicative error

model.

In the many cases that do not satisfy these conditions, authors have presented

persuasive arguments or experimental data to still justify the use of the uniform

white noise model [185].

Essentially, the conditions require that the sequence is 'sufficiently exciting', i.e.

it has a rich harmonic content and its amplitude spans several quantization steps.

Also, the probability of overflow must be sufficiently low.

Stochastic noise models quantization error well not only in FWL cases, but also

for A/D quantization [67, 69]. Stochastic noise could in fact potentially model any

quantizer. Returning to our specific case, there are two methods to model roundoff

error in the state-space model. Consider the state update equations

n

zi[k + 1] = Zaixj[k] + biu[k]
j=1

We can quantize each subproduct aijxj[k] and biu[k] and then sum them (rounding

before summation), or we can quantize the entire sum (rounding after summation).

This sometimes sloppy distinction in the literature deserves some extra space here.

Case 1:

Each subproduct is quantized. Thus,
n

xi[k + 1] = EQ[aijxc[k]] + Q[biu[k]].
j=1

Applying the stochastic model for multipliers and assuming that all states have the

same number of fractional bits, B,, the variance of xi[k + 1] will be (n + 1)a 2 where a2

is the variance of each noise source ( 2 2B in this case). This variance assumes that all

aij and bi cause roundoff error. In reality, 0, ±1, and positive integer coefficients with



no fractional part do not cause any roundoff error. The output error variance, a2y[k]

will also be (n + 1)a 2. Using a result from stochastic processes, the overall roundoff

noise gain will be the variance of the input times the energy gain of the system,

02 = nE 1]gi 12 + 1 r2
Si=1

= (n tr (Wo) + n + 1)U2

where, as before, gi represent the impulse response sequence from the ith state variable

to the output. The "+1" comes from quantization at the output node.

In the more general case, 0, ±1 and integral coefficients do not induce roundoff

error. Thus, a more accurate roundoff noise gain definition is

a = (tr (QW) I)a2

where Q is a diagonal matrix with [Q]ii equal to the number of non-integral coefficients

on the ith row of [A B].

Case 2:

The subproducts are not quantized until after they are summed.

x [k + 1] = Q [ asxii [k] + biu[k]

This model requires the use of a double precision accumulator. Since there is only

one roundoff, the error variance of xi[k + 1] is only U 2 . The overall roundoff noise

gain will be

2 i=

(tr (Wo) + 1)2

This case is more appropriate for current high-end digital signal processors which

provide double length (or longer) accumulators. Note also that in this case, a sparser

realization with some 0, +1, and integral coefficients will not decrease the output vari-

ance as it would with Case 1 (though a sparse realization may offer other advantages



such as increased speed/fewer operations). See Section 5.11 for Amit and Shaked's

algorithm that generates sparse realizations.

Whichever case a particular implementation falls into, the literature defines the

roundoff noise gain G as

G - tr (Wo)

In solving many problems formulated with the roundoff noise model of Case 1,

the simplifying assumption is made that all coefficients contribute to roundoff noise.

In this case, minimizing roundoff noise gain for both cases reduces to minimizing G.

Mullis and Roberts [122] and Hwang [73] first solved the minimum roundoff noise

structure problem. See Section 5.6 for the optimal realization.

Note that for Case 1, minimizing tr (Wo) may not actually produce the optimal

solution, i.e. the one that minimizes the sum tr (QWo)+I, which I shall call the actual

roundoff noise. Increasing a diagonal element of Wo while significantly reducing one

of Q may in fact lower the actual roundoff noise while increasing G.

Roundoff Noise Gain and Sensitivity

One would expect that a low sensitivity system would have low roundoff noise gain

and vice versa. In fact, consider the two expressions:

ML 12 = tr (Wc) tr (Wo) + tr (Wo) + tr (We)

G = tr (Wo)

L M L12 = G(tr (We) + 1) + tr (W)

For an 12-scaled system (with a = 1), ML1 2 = (n + 1)G + n. More generally, ML1 2

(U + 1)G + 1. Since G > 0, those realizations that minimize G also minimize ML 12.

Thus, the roundoff noise gain bounds sensitivity. Does sensitivity somehow bound

roundoff noise gain also? The next section, which develops a stochastic sensitivity

measure, provides an answer. I will also say more about this comparison in Section

5.6, where I discuss the realizations that minimize roundoff noise.



No one to my knowledge has developed the roundoff noise gain measure in the

MIMO context. Note that the development of the synthetic measure in Section 4.7

shows the derivation of the noise gain of a MISO system.

4.6 Stochastic Models of Coefficient Quantization

Several authors, starting with Knowles and Olcayto [94, 132] and including Aven-

haus [7], Crochiere [40], Moroney et. al. [119, 120], and more recently, Kawamata

and Higuchi [91], Iwatsuki et. al. [77], and Gevers and Li [62] have proposed using

a stochastic model for coefficient variation also. The basic idea is to assume that

the coefficient quantization errors are uncorrelated random variables, uniformly dis-

tributed with zero mean and variance 12 . A justification for this is: At the earlier

design stages, neither the coefficients nor the exact realization is known. In some

sense, one can think of the 'ensemble' of structures under consideration. In fact, even

the wordlength may not be known; in this case, though, it is not clear what the lim-

its of the uniform distribution should be, and consequently what variance should be

used. Kawamata and Higuchi present experimental evidence that also supports this

stochastic model.

Knowles and Olcayto [94] first proposed this idea with the following measure

2 = E 1 H(ej) - H*(eIw)12 dw = E 27r H(ew)2 dw

where AH(z) models the errors with the following first-order approximation

AH(z) = _ H (Aai)
i=1

Avenhaus [7] suggests using the variance of the error in the transfer function

magnitude (IH(e jw) 2 ) as a measure. If Hmag = IH(ej) 12 and Hag = IH*(eJ) 2,

then with a first order approximation,

Hag = Hmag + AHmag

OHma



Crochiere [40] furthers Avenhaus' development and uses this stochastic model

specifically to design filters to match frequency response magnitude specifications.

He presents synthesis methods that result in filter designs meeting magnitude specifi-

cations with a minimal wordlength. Given a filter design, T(z), he uses a "statistical

wordlength" to compute the minimum wordlength required for the filter to meet the

magnitude specifications with some tolerance. This tolerance term was mentioned

earlier in the context of frequency weighted sensitivity functions. Crochiere's work

easily extends to functions other than just magnitude.

Moroney et al. [119,120] applied the stochastic model in the LQG context. In the

process, they derive expressions for the second-order sensitivity, with respect to the

realization coefficients, of a function of the coefficients (for example, LQG cost).

Kawamata and Higuchi [91] were the first to apply the stochastic quantization

error model in the state-space. They were also the first to analyze output error due

to coefficient quantization, as most earlier work considered coefficient quantization

in the context of sensitivity while measuring output error performance with roundoff

noise. They develop expressions using both a deterministic and stochastic model. The

stochastic model, developed with a first-order approximation, results in an output

variance expression that is equivalent to the roundoff noise gain (of Case 1 in Section

4.5). Kawamata and Higuchi define statistical sensitivity as S, tr (QW o) (= G).

Thus, they complete the circle and show that minimizing sensitivity is equivalent to

minimizing roundoff noise if one uses a first-order approximation and a stochastic

quantization error model. That roundoff noise bounds sensitivity was known before

(see Section 4.1), since ML12 is a multiple of G. Kawamata and Higuchi's result [91]

now relates coefficient quantization error (as measured by a stochastic sensitivity

function) to roundoff noise gain.

In [77], they extend the work in [91] to take into account coefficients that do not

have any quantization error, i.e. x = Q[x].

In the controls context, Fialho and Georgiou [54] develop a stability robustness

measure, also assuming stochastic coefficient quantization (see Section 4.10).

Gevers and Li also use a stochastic coefficient quantization error model in their



synthetic measures (one for filters and one for controllers), which unifies the measure-

ment of the effects of coefficient quantization and roundoff noise into one performance

metric. I elaborate on this in the next section.

4.7 A Synthetic Measure

Gevers and Li [62, Chapter 7] develop a synthetic measure that combines state quan-

tization noise and coefficient sensitivity. The unified treatment (albeit stochastic) of

roundoff noise and coefficient quantization results in a weighted measure, the syn-

thetic noise gain. The interesting development of this measure ties together the ML2

metric, the stochastic coefficient quantization measures, and roundoff noise.

Starting with the model description that takes into account all FWL effects (equa-

tion (2.8), listed here again for convenience)

x* [k + 1] = A*Q[x* [k]] + B*Q[u[k]]

y* [k] = C*Q[x* [k]] + D*Q[u[k]] (4.31)

the roundoff noise is

ex[k] - x* [k] - Q[zx* [k]]

Including the roundoff noise using the uniform, white noise model in (4.31) and as-

suming that the input u[k] has zero quantization error,

X*4[k + 1] = A*x* [k] + B*u[k] - A*ex[k]

y,[k] = C*x*[k] + D*u[k] - C*ex[k]

Define the degradation in output as the difference

Ay[k] = y[k] - y [k] = (y[k] - y*[k]) + (y*[k] - y [k])

= Ay*[k] + Ay*[k]

The first term can be thought of as the error due to coefficient quantization and the

second term, the roundoff error due to state quantization. The input u[k] drives the



output Ay* [k], while the roundoff noise ex [k] drives the output AyQ [k]. Note that the

white-noise roundoff error model allows this neat separation of the different errors.

Since these two inputs are assumed to be independent and since both outputs are

zero-mean, the output error variance can be separated as

2 2 2
JAy[k] = 1 + 2

where a is the variance due to coefficient quantization and a2 is the variance due to

roundoff noise.

The error due to the first term is

Ay*[k] = y[k] - y*[k] = (h[k] - h*[k])*u[k]

= Ah[k]*u[k]

which, in the frequency domain and with a first order approximation,

AH(z) = H(z) - H*(z) = zci (Aci)
i=1

where the ci denote the coefficients in H(z). Adopting the stochastic coefficient

quantization model developed in Section 4.6, each of the Aci will be a uniformly

distributed random variable with zero mean and variance 2-2B. Also, they are all

uncorrelated with each other. Then,

n f 2W )T aHH(e") H(ew) 2

i= S 27ci aci
i=1

where oa2 is the variance of the Aci. All the cross terms drop since the Aci are

zero-mean and uncorrelated.

In the state-space setting, the ci are entries of the system matrices, so the above

simplifies to

1f 2, H(e2) 2 H(e" ) H(e") 2 H(z) 2
E[(Ay*[k]) 2 ] = cA + B + C + o

2 o A F B F + F d+ D F

2 2 2 2

aA 2 2 2 iD 2

= tr (WA + Wc + Wo) + 1

= (ML 2 + 1)2 (4.32)



As mentioned before, since the goal is to ultimately search for the optimal transfor-

mation to minimize this measure, the coordinate independent D term is not useful.

We can therefore reduce (4.32) to

0 M 2a2 (4.34)

This reappearance of the ML2 measure with a stochastic coefficient quantization

model confirms that it is a more appropriate measure of sensitivity than ML12 .

Now, to compute the variance due to the second term, we must first compute

y*[k] - y*[k]:

y'[k] = y*[k] - y* [k] = C*(x*[k] - Q[x* [k]])

= C*(x*[k] - (x*[k] - ex[k]))

= C*(x*[k] - x* [k]) + C*ex[k]

Define a new state vector, x'[k] = x*[k] - x*4[k]. Then

x'[k + 1] = A*x'[k] + A*ex[k]

y'[k] = C*x'[k] + C*ex[k]

This system is MISO. Thus, we will have to carry out the noise analysis again (since

the earlier roundoff noise gain calculations assumed a SISO system). Note that

x'[k] = Z(A*)A*ex[k - 1 - i]
i=O

Substituting into the output equation,

y'[k] = C*x'[k] + C*ex[k]

= C* [Z(A*)A*ex[k - 1 - i]+ C*ex[k]

Computing the steady-state error variance,

U2 = {tr [(A*)TWo*A*] + C*(C*)T } a2



The noise gain of this system will be tr (Wo*)as, where Wo is the observability Gramian

for the pair (A*, C*) and a, is the variance for each signal roundoff and is equal to

2 -2Bs

12

Combining or2 and or,

21 

2

a-2 = 02 + 02
1 2

= ML02 + tr (W O)ao2

Dividing by a2 and approximating tr (W*) by tr (Wo), we get the synthetic total noise

gain, GT.

GT A tr (WA + Wo +Wc) + tr (Wo)

= ML2 + p2G (4.35)

where p2 = = = 22(Bc-B,). This weighted measure ties together the two FWL effects

on linear systems into one. The weighting factor p allows the designer to emphasize

one type of error over the other.

A larger Bc will cause p to get larger and favor roundoff noise minimization while

the converse will favor minimizing coefficient quantization error. Note that if p = 0,

we recover the measure for coefficient quantization, and if p = 00, we recover the

roundoff noise gain measure (in the sense that minimizing GT in this case will yield

the same solution as minimizing the roundoff noise gain).

The realization that minimizes this measure is given in Section 5.7.

4.8 The Controls Context

As mentioned earlier, in the FWL controls problem, the goal is (or at least should

be) to minimize the sensitivity of the entire closed loop to coefficient perturbations

and roundoff errors in the controller. As such, the above measures are not adequate

and need to be extended. Ideally, since most controllers are used with CT plants,

one would like to include the CT model in the minimization problem. However, the

mixing of the CT/DT domains leads to more difficulties, which have only recently



been addressed. Prior to that, most FWL controls problems assumed a discretized

plant (discretized at the sampling frequency of the controller) and presented a solution

for this problem.

Following the layout earlier in the chapter, I present the deterministic sensitivity

measures first and then the stochastic ones.

I will briefly set up the controls context along with some of the machinery to

address it.

Discrete Time I u Y Discrete Time
Input Output

DT Plant

Gain

- -L Two-input,X = Ad + Bu - L(y - ) + one-output
Observer one-output

S C I I Gain" state feedback
Observer controller

Discrete Time
Input Kl(z), A B y

SK2(z)1 C
Controller DT Plant

y

u(t) = Kl (z)r(t) - K2(z)y(t)

Figure 4-2: Feedback-based state estimate observer.

The plant model is

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] (4.36)



The observer to estimate the states of the plant evolves according to

:[k + 1] = Ai[k] + Bu[k] - L(y - Y)

:[k] = C i[k] (4.37)

with an observer gain L. Combining a static feedback law of the form u[k] = Fi[k] +

r[k] (F is the feedback gain matrix) with (4.36) and (4.37) results in

x[k + 1] = Ax[k] + B(F [k] + r[k])

y[k] = Cx[k]

and

&[k + 1] = Ai[k] + B(Fi[k] + r[k]) - L(Cx - C&)

y[k] = Ci[k]

(4.38)

(4.39)

I will assume that both the F and L matrices were designed using standard methods

like pole-placement and/or solving the Kalman design equations.

Combining the two state vectors,

x[k + 1] L A BF + L [k] + B r[k] (4.40)
[k +1] -LC A + BF + LC] [k] B

Sy[k] C 0 x[k]
y [k] 0 C_ "[k]

Changing coordinates to the standard observer form where 2 = x - A is the state

error vector,

x[k + 1] A + BF -BF x[k] + [B]r[]
0[k + 1] +0 A + LC [k]k

y[k] C 0 x[k]
Lk[k] 0 Cr[ k ] (4.41)

Equation (4.41) displays the celebrated 'separation principle'. Since the eigenvalues

of (A + BF) and (A + LC) sepearately comprise the eigenvalues of the closed-loop



system, one can independently design the corresponding feedback and observer gain

matrices.

That is the development in the infinite precision case. However, introducing co-

efficient quantization breaks down the 'separation principle'. Let Fo, Lo denote the

quantized versions of F and L while Ao, Bo, Co denote the finite precision system ma-

trices of the observer. Substituting into (4.38) and (4.39), the error equation becomes

x =x- x

= Ax + BFox + Br - Ao, - BoFo4 - Bor + Lo(Cx - Co.)

= (A - LoC)x - (Ao - LoCo)J + ABFO, + ABr

and the overall state space transforms to

x[k + 1] 1_ [ A + BF, -BFo [k] 1 Brk]
i[k + 1] AA + LoAC + ABF A + LoCo + ABFo [k] Bo r[

y[k] _ C o x [k] 1
y[k] 0 Co [k]

The new cross term AA + LoAC + ABFo couples the plant and the error dynamics

of the observer. Thus, the 'separation principle' breaks down, and pole-placement for

the plant and for the error dynamics cannot be done independently. Note that if

AA, AB, AC are all zero, we recover the original plant and error dynamics.

The immediate question is how to measure (and then minimize) the effects of coef-

ficient quantization. The second question, of how to measure (and minimize) roundoff

noise due to state quantization (which is completely ignored in the above equations),

will continue to lurk in the background for the moment. Before proceeding, it is im-

portant to reiterate the point made earlier: we can minimize the sensitivity of F, L to

coefficient quantization by finding a different realization using similarity transforma-

tions, or we can redesign F, L taking into account FWL effects and the entire closed

loop.

The first approach seeks to find the infinite-precision coefficients of F and L using

the standard design equations (pole-placement etc.) and then to find a transformation



to minimize the sensitivity of the resulting realization over the set of all equivalent

realizations. The latter would probably require a stochastic approach to coefficient

quantization. Currently, there is no known deterministic or stochastic solution for

doing feedback/observer design while including coefficient quantization errors.

I will present a coefficient perturbation sensitivity measure that Gevers and Li

included in [62]. Their solution is of the former type - it returns the optimal similarity

transformation for the given F, L. They also mention that one could set up and

probably solve a (hard) H, problem to find a solution to the latter design problem. 6

Much of the material in the following section draws heavily from Gevers and Li's

text [62]. They are in the minority to consider FWL effects in pole-placement outside

the LQG framework.

4.9 Closed-Loop Sensitivity

The quantity Mcl,L12 measures closed loop sensitivity to perturbations in the com-

pensator coefficients (with a discretized version of the CT plant) [62]. Based on the

picture and machinery developed above, we shall proceed with writing the McI,L1 2

sensitivity. Using (4.40), let

SA BF]; B= = [ 0
-LC 4 B '

where the output of (A, B, C) is y[k] and P = A + BF+ LC. The closed-loop transfer

function HeI(z) is then

Hc (z) = C(zI - A)-1

The resulting sensitivity measure then is

SOH (z) 2 OH (z) 2 0H6 (z) 2 + OHe (z) 2

, 12  1 O 2 OL 2 OF 2

The reader is referred to [62, chapter 9] for details on the computations of the

measure.

6Such a problem description would be: Find the controller to minimize the H, norm of the
difference in the transfer functions in the setup of Figure 3-7



Closed-Loop Sensitivity Using a Continuous Model of the Plant

Madievski et al. [111] developed an operator-based measure which allows a time-

domain analysis. It does not require discretization of the CT plant at the sampling

frequency of the controller. When the measure is ultimately evaluated, a discrete

approximation of the CT plant is used, but the approximation's behavior can be

made arbitrarily close to that of the CT plant (i.e. the discretization rate is not

restricted to be the sampling rate of the controller). Such a discretization allows one

to practically eliminate intersample effects.

The system setup is as shown in Figure B-2, repeated here in Figure 4-3 for

convenience.

r(t) , I P(s) I y(t)

H K(z) E

Figure 4-3: A hybrid system.

(In the MIMO case, 4,, H, E will be diagonal operators.) The closed-loop linear

periodically time-varying operator R- from r(t) to y(t) is

7- = PHKE((I + PHKE )- 1  (4.42)

with an associated causal impulse response 7-(t, s) such that

y(t) = j'7i(t, s)u(s) ds

l-(t + 7, S + 7) = l(t, s)

The derivative of (4.42) with respect to a coefficient a in the controller K is

'7t = OK
=V KW

Oa Ba

where

V = (I + PHKE)- 1 PH

w = E'Q(I + PHKE#)- 1



Note that V and W can be thought of simply as operators between different in-

put/output points in the closed-loop.

Then,

D7t
aai,j

= (IL + PHKE2)- 1PHC(zIR- A)-'eeT(zIR - A)-B-'BE(IL + PHKED)- 1

= VAeieTWA

where

VA = VC(zIR- A)-'

WA = (ZR - A)- 1 BW

VA and WA are also stable operators between different input/output points in the

closed-loop. Similarly,

Db, = VAeieTW

,1.I

SVeie TWA
O3Gci,j

Applying Graham's First Transformation Principle [143],

DMk,l

OA

07k,

OB

dlik,l

OC

= VATeke T T

- VTee T T

- eke l WAT

Finally, using these operator derivatives, we can define the measure M2:

t2 ( dkl 2 D?-k,l 2 I k,l I2
,l A 2 2 D

The norms are not induced norms, but rather "simply associated with the impulse

response representation of a stable operator" and defined as

IIUl = dto 
-oo

|U(t, s) F d2 ]



where U(t, s) is a periodic matrix impulse response defined in the half-plane s < t and

U(t + T, s + T) = U(t, s). Because of the periodicity of U(t, s), this norm takes into

account all values of U without requiring integration with respect to t from (-oo, oo).

U should have the (exponential) stability property

JIU( t , s)llF < ae- (t-S)

for some a, p > 0.

Madievski et. al. [111] importantly note that this measure is "intrinsically a time-

domain rather than a frequency-domain one." Moreover, just as Gevers and Li [62]

did, they use an L2 norm for the first term, which makes much more sense due to the

relation between the time and frequency domain of the norms, via Parseval's relation.

They do not however impose a scaling constraint on the controller coefficients. It

is not obvious how one would impose a scaling constraint with an operator represen-

tation.

Evaluating the norms above is difficult, but an algorithm is given in [111]. The

key idea is the approximation of the CT plant with a fast-sampled discretization

(based on Keller and Anderson's work [92]). See Section 5.9.3 for more details on fast

discretization and [111] for proofs and further details with regard to the M2 measure.

The work to evaluate and minimize the ML2 measure for MIMO filters is also

embedded within [111]. Note that the MIMO filter sensitivity measure will be a

simpler version of the M2 measure given.

4.10 Stability Robustness Measures

Recently, Li [100] and Fialho and Georgiou [54,55] have treated the FWL problem

as a stability robustness problem. The "stability robustness" problem is the same

one mentioned before: How much (as measured with an appropriate norm) can we

perturb the controller parameters and still maintain closed-loop stability? Note,

however, that before we were concerned with filter stability, not closed-loop stability.

The term stability robustness is used more in the modern controls paradigm, with all

the machinery of robust controls.



I will briefly set the problem up here and then describe Li's deterministic approach.

Fialho and Giorgiou's stochastic approximation appears after that.

Consider a general DT closed-loop system, with a discretized CT component (usu-

ally composed of a CT plant and an anti-aliasing filter) (Ac, Bc, Cc, 0) and a DT con-

troller K = (Ad, Bd, Cd, Dd). The closed-loop system's 'A'-matrix as a function of the

controller K will be

A, 0 B Dd Cc 0A (K) [ ]+ [Bc o] [Dd ] ,]
0 0 0 I Ad]L 0 1]

A Mo + M1 KM 2

The controller parameters are all in the K matrix. Perturbing K to K + A will

change A(K) to A(K) + M1AM 2. The stability robustness problem asks for what

set of perturbations A one can guarantee stability. To mathematically formulate

the problem, we need to first decide how to measure the magnitude or 'energy' of a

perturbation matrix A. This magnitude will be the appropriate norm that defines

the "how much" in this section's opening question. One measure of magnitude, which

I will call J(-), is simply the maximum of all the matrix entries:

,/(A) A max IAi

Then, the stability robustness problem is to find the largest perturbation, call it

Po(K), that will not destabilize the closed-loop. Equivalently, Po(K) is the smallest

perturbation that will destabilize the closed-loop.

Po(K) inf{p(A)|A(K) + M1AM 2 is unstable.}

The resulting -o gives the following guarantee: Given a specific controller K, no mat-

ter which A is applied, as long as all of its entries are less than the bound po(K), one

can guarantee that A(K) + M1 AM 2 is stable. The general solution to this minimiza-

tion problem with this norm is unknown.

A slightly simpler formulation with a different norm does have a known solution.

The real stability radius problem is defined as:

rR(K) A inf{llAI 2 IA(K) + M1AM 2 is unstable.}



where IlA(l 2 is the induced matrix 2-norm (equivalently, the maximum singular value,

7max(A)). What this bound says is that, given a specific controller K, no matter

which A is applied, one can guarantee that A(K) + MIAM 2 is stable as long as its

maximum singular value is less than rR(K). Note that since maxi,j Al I 1All25

Po(K) < rR(K).' In general, the two bounds can be quite far apart, depending on

the exact size and structure of A [55, 100].

Restricting the perturbations to be FWL quantizations gives much more useful

and pertinent information. If 0uo(K) > 2B, then /Po's exact value does not matter.

Stability is always guaranteed since all entries of A are always less than 2 -Bc. By2

definition of rR(K), if IlAll2, which is a function of the wordlength BC, is less than

rR(K), then stability is also guaranteed.

Li continues in a more interesting direction. He poses the problem: What sim-

ilarity transformation, T, applied to K will maximize performance (which can be

measured in different ways)? If performance is measured in terms of the stability

robustness bound, then the optimization problem translates to finding the transfor-

mation that will allow the entries of A to be large but still will not destabilize the

closed-loop system. Mathematically,

sup {/o(K)}
{TIK=(T-1AT,T- 1B ,CT,D)}

The real stability radius problem translates to finding the T such that

sup {rR(K)}
{TIK=(T-1AT,T-1 B,CT,D)}

Both po(K) and rR(K) change in a very complicated way as K varies over the set

of equivalent realizations, and the solution of neither of the above problems is known.

Instead of directly trying to solve either problem, Li uses eigenvalue sensitivity along

with these robustness measures to develop a tractable function of K which he then

minimizes. The presentation given here follows [100].

7 The proof is as follows: Let akl = maxi,j jAijI. amax(A) = max IAxI 2 . Then, choose x
(x14/2=1

el > acmax(A) > IIAx112 = akl
(i= 1



The stability margin, m, of a stable eigenvalue A of A is the smallest distance

between A and the unit circle: m 1 - JAI, i.e. the pole must be perturbed by

at least magnitude m for it to become an unstable pole. Choose a perturbation

A such that p(AK) = pL(K). Then, by definition of po, one of the poles (call it

Ak) must be unstable and has been moved by more than mk. Thus, for this pole,

mk Ak(A + AA) - Ak(A) .

Li makes the following assumption: Mo(K) is small. If po(K) were large, the

controller structure would not matter much (at least as far as measuring stability

robustness) since all structures would be stable. Thus, it makes sense to assume

pO(K) is small. Using a first-order approximation for the eigenvalue perturbation,

mnk Ak Acij

OAk 2ij 09

,2

< (K)2k 2

= o(K) ( Ak )2

cij

where cij are the coefficients of the controller K. The last inequality is due to the fact

that ( ai n a?. Tightening the bound by accounting for 0, +1 coefficients,
i=1 ) i=1

m ~k 5 Po(K) NZ 6 (cj)(Ak )2

where 6 (cij) = 0 for cij = 0, 1, else 6(cij) = 1, and N is the number of non-zero

elements in K. Note that one could also take into account integer coefficients by

setting 6(cij) to 0 for those cases too. The remainder of the presentation does not

factor in this extension.



Summing over all the poles,

2
po (K) > k A(k

where Tpk, the pole sensitivity (4.22), is

fpk = 6(cij) )2
i,j=1

Li then defines the new measure po*(K) as

p (K) A min (kk

From the definition of o(K), it immediately follows that the system is stable if

p(AK) < M(K)

Using the equations of Section 4.3.1, one can compute pole sensitivity and hence the

measure [p (K). The only difference between the computations in Section 4.3.1 and

the ones in this section is that the ones here are for a controller, not for a filter as
OAk OAk OAk OAk

before. The partials that are now necessary are , and
OAd aBd C d ' ODd

Li then develops the change in the measure under different transformations with

the goal of maximizing it. He restricts the search space to the space of similarity

transformations for a given controller, K0o, i.e.

max p; (Ko)
{TIdetT#O}

See [100] for the optimal transformation.

Another contribution of [100] is an extension and adaption of Amit and Shaked's

0, ±1 algorithm for sparse controller design (see Section 5.11 for a discussion of this

algorithm).

Refer to [100] for details and proofs.

The Stochastic Coefficient Quantization Approach

Fialho and Georgiou [55] investigate the minimum wordlength required to maintain

stability. They use the following theorem: Assuming no unstable pole/zero cancella-

tion between the plant and the anti-aliasing filter and assuming a non-pathological



sampling rate [36], the continuous-time feedback system [P, HKED] is L 2 input-

output stable if and only if the discrete-time feedback system [EPH, K] is stable.

Thus, a discretization of the CT component, I)P, does not in any way change the sta-

bility, i.e. some method that included the CT components as CT components instead

of discrete-time approximations would get no different or better stability results.

Fialho and Georgiou use the mean and variance of IIAIIF to bound the wordlength:

22 - 2 B e  2-4B
E[IIA1 = N B2 -E[A ] = 12 ' a = N 12

where N is the number of non-zero entries in A. Any integer entry will not contribute

to quantization errors . Applying the Central Limit Theorem, IIA |2 will be normally

distributed with the above mean and variance. This gives a distribution of an upper

bound of ||Al| 2 as a function of the quantization step. Then, the minimum wordlength

Bc,min is

Bc,min = 2log2 2

They also solve for the minimal wordlength needed for performance robustness. Refer

to [55] for details.

4.11 Closed-Loop Noise Gain

Just as the Mcl,L 12 measure parallels ML12, the closed-loop roundoff noise gain, GI,

developed in this section will parallel roundoff noise gain, G, developed earlier for

digital filters.

First, I will develop the closed-loop equations for the system with roundoff noise. I

will assume that the system matrices are realized without any coefficient quantization

error. Define 2" to be the rounded observer state and x* and y* to be the infinite-

precision state and output of the CT system evolving with Q[u[k]] instead of u[k]

8Actually, any coefficient that can be realized exactly will not contribute.



and Q[r[k]] instead of r[k]. Let u[k] = F:i[k] + r[k] as before. To ease the notational

strain, for this example I will use , [k + 1] and , = [k] for all variables.

First, define e. ~ - Q[i*]. Then,

u = F(. + e,) + (r + er)

= A(i* - ex) + Bu - L((y* - ey) - (* - e )

= A(* - ex) + B(F(i* - ex) + (r - er)) - L((y* - e) - (y* - e)

= (A + BF)* - (A + BF)ex + Br - Ber

= (A + BF + LC).,* - (A + BF + LC)e

ex
= 4.* + Br - [ ( B -L O] er

eu

- L(Cx* - ey) + L(C(i* - ex)

+ Br - Ber - L(Cx* - ey)

(4.43)

i* = Ax* + BQ[u]

= Ax* + B(F(.* - ex) + (r - er) - eu)

= Ax* + BFi* - BFex + Br - Ber - Be,

= Ax* + BF.* - [BF B

Define

A BF ]
-LC )

Then,

IX I
= Ao0  + Bor- E

X*

c[x*]

where Co = [C 0],E = [ex er ey eu ]T, and = BF BOBL
B-L 0

Finally, define the combined state error vector

x[- x[k] A y[k] = y[k] - y*[k]- i*[k]z'[k] = [k]:x[k]

and

ex
er

[e u

B = [B ]

(4.44)

(4.45)

(4.46)



Then, combining (4.43), (4.44), (4.45), and (4.46),

x'[k + 1] = Aox'[k] + riE[k]

Ay[k] = Cox'[k]

The steady-state output error variance is

UAy[k] = tr (Wo 7T)u 2

See [62, Chapter 9] for more details.

4.12 Other Measures

Due to lack of time, I could not include the development of some other measures.

I will leave them for future work. However, I have included citations and a short

description of them here.

Gevers and Li [62] develop a synthetic measure for controllers that takes into

account closed-loop performance. This synthetic measure combines the closed-loop

noise gain and the closed-loop sensitivity measures developed in the previous two

sections.

I include in Section 5.10 a development of the LQG cost (due to Liu et al. [105])

that takes into account roundoff noise.

Rotea and Williamson [152] derive optimal realizations based on either H 2 or H,

roundoff noise gain measures, subject to H2 or H, scaling constraints. The H.

noise gain "gives the maximum possible variance when the quantization error has

bounded variance but an unknown power spectral density (PSD)" [152]. They also

give synthesis algorithms to solve the problem of controller/filter design, optimizing

for the chosen noise and scaling norms.

The next chapter will present most of the corresponding realizations that minimize

(or maximize) each of these measures.



Chapter 5

Optimizations

Every "optimal" or "suboptimal, but good" realization is optimal or good with respect

to a measure (perhaps more than one). The previous chapter discussed many of the

currently popular measures and suggests more. This chapter delves into the actual

optimal structures for each measure. Organized like the previous one, this chapter

first develops optimal filter structures and then discusses controller structures. Within

these categories, I have tried to maintain the distinction between the deterministic

and stochastic realms, but I cross over the line where it will improve the presentation.

The first section describes some common filter realizations. The first subsection

starts with the direct-form structures and their poor FWL performance, and thereby

motivates the remaining subsections, which include filter designs that perform signif-

icantly better. Many of these filter structures are quite well known and are described

in detail in most introductory DSP texts (for eg. [130]. Though not optimal with

respect to any particular measure, they still have good overall performance in terms

of coefficient quantization sensitivity and roundoff noise gain. Sections 5.2, 5.3, 5.4,

and 5.5 each present the transformations that minimize ML1 2, ML2 , Mp, and M 2

respectively. Sections 5.6 and 5.7 describe the minimum roundoff noise gain and min-

imum synthetic noise gain realizations. Section 5.8 covers block processing, which

can reduce computation and roundoff noise. Block processing has found interesting

application in controls problems under the name 'lifting'. Section 5.9 moves one step

up (or back) in the design hierarchy into discrete (or digital) redesign techniques.



The premise is to design a digital filter or controller based on the coefficients of an

ideal CT filter or controller. The first subsections cover filter redesign. Again, this

area is well understood and much of the material can be found in introductory DSP

text books. The later subsections cover compensator discretization and introduce

some novel ideas like lifting to take into account the plant model in the discretization

process. The subsections also mention direct DT controller design from CT plants.

Section 5.10 mentions the LQG design methods of Moroney et al. and then describes

in detail Liu et al.'s 'shortcut' that does direct FWL LQG design for a discretized

plant. Section 5.11 discusses sparseness in controllers and filters and includes Amit

and Shaked's 0,1 algorithm [3] (an extension of Bomar and Hung's work [23]). Fi-

nally, Section 5.12 gives references to the optimizations that I did not have a chance

to develop in this thesis. I leave them for future work.

As in earlier chapters, one must remember throughout this chapter that digital

signal processing problems and solutions are a subset of controls problems and so-

lutions. After all, a digital compensator is a digital filter if one ignores the plant.

However, a compensator has to satisfy more severe constraints, such as on computa-

tional delay. For example, pipelining a digital filter will not affect filter performance

since the critical measure is throughput. For a controller, though, latency is much

more important, and thus pipelining is not always feasible (see [119] for more details

on architectural issues). Let us continue our journey.

5.1 Realization Structures

Researchers have developed many structures that, assuming infinite precision, imple-

ment the same transfer function

H(z) N(z) _ bo + bz + ... + bmz m

D(z) ao + az + ... +a

from an input/output standpoint. However, they all have very different performance

characteristics with respect to FWL effects. Starting with the simple (and very sen-

sitive) direct-form structures, the next few subsections describe several of the more

complicated structures as well as the advantages and disadvantages of each.



The state-space form can represent most of the structures. However, to fully cap-

ture FWL effects, the state-space notation must incorporate the order of operations.

Several authors have suggested alternatives. I will briefly mention some of the ones

I came across. Belter and Bass [19] describe notation to capture arbitrary circuit

topology. Chan [33] developed a notation that extends the state-space to include a

notion of precedence levels. Precedence levels impose an order of operations and also

indicate which sets of operations can occur in parallel and which these sets must be

executed sequentially. Moroney et al. extended Chan's notation to account for com-

pensators. Roberts and Mullis [151] discuss the 'factored' state variable description

which is similar to the standard state-space description but also captures the order

of operations in the realization. Judging from the dearth of literature, though, none

of these notations has been particularly popular, at least in FWL research.

I begin with the simplest structures, which realize the TF as directly as possible.

5.1.1 Direct Forms I and II

The Direct Form (DF) structures are two of the simplest structures. The DF II

structure, shown in Figure 5-1, is also called a canonicalform since it has the minimum

number of delays that an nth-order system will have. In terms of hardware cost, this

structure is the cheapest since the number of multipliers required is minimal (assuming

that multipliers dominate the cost function). Nowadays though, in many DSPs and

integrated circuits, a multiply may not take any more time or space/money than

other arithmetic operations, often nullifying this advantage.

The direct form's biggest disadvantage is its sensitivity to parameter perturba-

tions, especially as the filter order increases [88]. Increasing sampling rate while

discretizing a CT filter to design a DT filter also increases sensitivity, setting up

conflicting (and somewhat counterintuitive) goals. A higher sampling rate better

approximates the original CT filter but also has much poorer FWL performance'

1In the controls context, a higher sampling reduces aliasing effects and may be required, depending
on the CL bandwidth of the controller or filter. Thus, discretizing the CT controller at this higher
rate and implementing it in direct form will lead to a poor FWL compensator.
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Figure 5-1: Direct Form II.

The DF I structure, shown in Figure 5-2, reverses the order of the two sections

that make up the DFII structure. Why would someone choose the DF I structure?

Why introduce additional delay blocks? Because the sensitivity/roundoff noise may

be lower than for the DF II structures, depending on the noise norm being used

[78, 79, 81].

The transposed DF I and DF II structures also minimize different noise measures.

Transposition simply reverses the direction of each signal and exchanges the input

and output. A cursory comparison of Figures 5-2 and 5-4 and of Figures 5-1 and 5-3

will clarify transposition.

Since increased sensitivity is a property of any higher-order polynomial, one would

expect the same sensitivity problems in high-order finite impulse response (FIR)

filters. However, the difference is that generally FIR filters, used for their linear
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Figure 5-2: Direct Form I.

phase properties, satisfy a symmetry condition on their coefficients:

bi = ±bm-i

When quantized, the coefficients will still satisfy the symmetry constraint. Thus, only

the magnitude response of the filter will change. Zeros on the unit circle will stay

on the unit circle unless they are perturbed enough to come together and split into

reciprocal pairs [81, Chapter 11].

Since the sensitivity and noise gain for higher-order systems for each of these

four structures is very large, higher-order systems are usually decomposed into lower-

order subsections. The two simplest decompositions are the cascade and parallel

decompositions.
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Figure 5-3: Direct Form II Transpose.

5.1.2 Cascade Decomposition

One can decompose a higher-order transfer function into a cascade of first- and second-

order sections that can each be implemented in direct form (or in another realization),

see Figure 5-5. Each smaller second-order section is significantly less sensitive since

it is of much lower order, and also since tightly clustered poles, a cause of high

sensitivity, can be put in separate subfilters.

Another advantage of decomposing a system into second-order subsections is that

the number of multiply instructions per output sample is linear in the order of the

system. A state-space system with low roundoff noise may require on the order of

n2 instructions per output sample while the direct form nth order structure requires

only 2n + 1 instructions. A decomposition usually compromises between the two and

provides good (but suboptimal) roundoff noise performance as well as a linear number

of operations per output sample.

Note the design variability inherently introduced by this decomposition. For ex-



ample consider the decomposition,

(s + 1)(s2 + 1) s2+1 s+1 1
(5.1)(s + 2)(s + 3)(s2 3) s2+3 s+2 s+3

Different pole-zero pairings and different orderings of the subsections change FWL

performance, sometimes significantly [81, 104]. Another direction of design freedom

is deciding the realization of each individual subsection. One could simply choose a

direct form or could opt for any number of different realizations like the lattice or

ladder forms (refer to a DSP text for many of these filter structures). Roberts and

Mullis [151] also describe second-order block optimal and sectional optimal forms.

Due to the simplicity and popular use of second-order decompositions, a large number

of works focus on them (see for eg. [2,9, 11, 12, 22,82, 104, 171]).

Again, it is important to reiterate that these decompositions and their associated

properties are only relevant in the FWL context.2

Pole-Zero Pairing Problem

In a cascade decomposition, one must select which zeros should be paired with which

poles in each subsection. Each different pairing may result in different FWL behavior.

The pole-zero pairing problem is to find the pairing that minimizes output noise gain.

One could of course use measures other than output noise gain. Currently, there is

no known method to analytically solve the pairing (or ordering) problem. Applying

the brute force approach of trying all possible combinations leads to a computational

problem that grows approximately as (n!) 2/(n - m)! (m = degree of numerator and n

= degree of denominator). Some authors have suggested heuristics that significantly

reduce the computational burden. Jackson [78,81] proposed the following:

(i) Pair the poles closest to the unit circle with the zeros closest to the unit circle.

Poles provide gain, which in the context of FWL effects and limited dynamic range is

bad, and zeros provide attenuation. Such a pairing then maintains each subsection's

2 Acutally, some low senstivity FWL filter designs, such as wave digital filters (WDF) originate
from low sensitivity analog filter designs.



gain as close to unity as possible.

Ordering Problem

FWL effects remove the commutativity property of cascaded systems. Thus, a re-

ordering of the subsections can result in significantly different FWL performance.

Jackson's rule of thumb for ordering is

(ii) Order the sections such that the most peaked sections (usually the ones with

poles closest to the unit circle) appear last.

The exact rule for ordering, however, depends on the noise gain measure used. One

has the choice to use an H 2 or H. measure ( [81, 152]).

The MATLAB commands zp2sos and ss2sos use both these rules to produce

second-order sections from pole-zero or state-space descriptions, respectively.

Liu and Peled in [104] address both problems with a heuristic that partially uses

brute force. They suggest the following optimization algorithm:

(i) Generate a random ordering of the zeros and the poles.

(ii) Perform a local optimization by keeping the zero ordering fixed while inter-

changing all possible pairs of pole sections. The local optimum from this start

is the pairing that generates the minimum output roundoff error E 2 . This step

requires (n(n - 1)/2 + 1) evaluations of the output error equation.

(iii) Repeat steps (i) and (ii) M times where M is an arbitrary number.

(iv) The best of the M "locally optimal" assignments in step 2 is taken as the "near

optimal" assignment. Thus, the total number of output error evaluations is

approximately Mn2/2.

They show that most of the time, this heuristic algorithm determines an arrange-

ment with almost the same performance as that of the optimal one as determined by

dynamic programming.



5.1.3 Parallel Decomposition

A partial fraction decomposition of an nth order system will also result in first- and

second-order subsections, though these will be connected in parallel (Figure 5-6).

This decomposition uniquely determines pole-zero pairing and does not require any

choices by the designer.

Problems with a Parallel Decomposition

Unfortunately, computing a partial fraction decomposition is a numerically unstable

problem. With tightly clustered poles, a small change in a coefficient (such as due

to roundoff error) can cause arbitrarily large changes in the resulting decomposition.

Furthermore, a parallel decomposition into second-order sections is not always possi-

ble. In fact, it is only possible with distinct poles. Taking these two considerations

into account, one might be better off decomposing a system into paralleled higher-

order sections, each of which includes identical poles and poles close to each other in

a cascade. A particular 'paralleled cascade' decomposition may then read something

like

H(z) = H,(z)H_l1(z) + ... + H 6 (z)H 5 (z)H 4 (z)H3 (z) + H2 (z) + Hi(z)

where each of the Hi(z) is a second-order section; H3 (z), H 4 (z), H5 (z), and H6 (z) have

poles that are identical or very close to each other, and so the sections are cascaded.

Surprisingly, practically none of the digital signal processing texts that I referred to

mentioned the numerical instability, and most also describe the parallel decomposition

(into second-order sections) as a possibility for every H(z). The only references

that did mention the numerical instabilities were the help command for residue in

MATLAB and Hanselmann's survey [68] on digital controllers.

Interestingly, [62] points out that if one considers the state transition matrix of

the overall system, a parallel decomposition results in a block diagonal form while a

cascade decomposition results in a block triangular form, both of which are in Schur

form. However, this Schur form usually does not belong to the optimal (with respect

to sensitivity or roundoff noise measures) realization set. Going the other way, an
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algorithm to transform an nth order Schur-form optimal realization into a cascade of

second-order sections is not known either.

Another possible decomposition for state-space systems is the Jordan decomposi-

tion. However, computing the Jordan decomposition is also a numerically unstable

problem. See [139,179] for excellent discussions on numerical aspects of linear systems

and controls algorithms.

Differences between a parallel and cascade decomposition

Apart from the fact that every TF has a cascade decomposition and not a parallel

one, there are some other differences between the two. Jackson [81] points out that

in a cascade decomposition, the coefficients in each subsection's denominator depend

only on the coefficients in the denominator of the original TF and similarly with the

numerator. In a parallel decomposition though, the decomposed sections' numerator

coefficients depend on the coefficients of both the numerator and denominator of the

original TF. Since the zeros significantly affect magnitude characteristics, the design

should be rechecked after a parallel decomposition, if attenuation requirements are

stringent, to ensure that the quantized transfer function still meets the specifications

[81].

5.1.4 Other Filter Structures

Several researchers have proposed different filter realizations that have low sensitivity

and good roundoff noise properties. Some of the more popular ones include:

* Lattice structures ( [102,113,114])

* Wave Digital Filters (WDF) - which include the lattice and ladder structures

and other more general structures (Fettweis has an excellent survey article [52]

and Rao and Kailath discuss VLSI implementation of these structures [147]).

* The sectional and block optimal forms (see Sections 5.6.1 and 5.6.2 respectively)
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* Block processing and other interleaved/pipelined architectures for high through-

put rates (see Section 5.8).

Bomar [22] developed several new structures, starting with the following basic idea:

Take a second-order (symbolic) state-space structure, compute its input/output de-

scription, and match the coefficients with a transfer function. A fully parametrized

state-space structure has eight coefficients while the transfer function only has four

variables. Thus, one can impose upto four more constraints. Two important ones

are the scaling constraints on the controllability Gramian, We: [W,]ii = 1 for i = 1, 2

(see Section 2.3). To minimize the trace of the observability Gramian, W, (defined

as the roundoff noise gain, G in Section 4.5), or some other measure, the remaining

two parameters can be chosen freely and are what lead to a variety of different final

structures. For example, choosing all = a22 and bicl = b2c2 yields the minimum-noise

structure. Using all = 0 and bl = 0 yields the familiar canonical form. He develops a

few more structures and also compares the performance of several of these structures.

Other structures have been proposed in the literature and including them all could

fill up several more pages. Unfortunately, I will have to leave those for future work.

The usefulness of many of these structures in the controls context has not specif-

ically been investigated. Obviously, their desirable properties as filters carry over

when they are used for digital controller implementations. However, any particular

advantage or optimization with respect to controls is unknown (see the discussion on

block processing in Section 5.8 for some specific suggestions for areas of investigation).

5.1.5 Non-Minimal Realizations

One could reasonably ask why should the search for the optimal structure leave out

non-minimal realizations? After all, "hiding" noise in the unobservable and/or un-

controllable modes may reduce output noise. Indeed, some researchers have followed

up on this. Beex and Debrunner in [18] examine the influence of introducing (judi-

ciously placed) pole-zero cancellations while Tokaji and Barnes in [174] examine the

same question for roundoff noise from the state-space view.
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Beex and Debrunner show that for low-order systems, one can add pole/zero can-

cellations to reduce sensitivity while maintaining a low-computation Direct Form II

structure. However, for higher-order systems (10th-order all-pole low-pass Butter-

worth in their example), the sensitivity of the Direct Form, even after introducing

some pole-zero cancellations, is still orders of magnitude above that of the minimum

roundoff noise optimal form. Their example also shows another advantage of the op-

timal form (which is introduced in Section 5.6): its sensitivity stays constant as the

filter bandwidth decreases, while that of the Direct Form increases without bound.

Note that the scattered look-ahead (SLA) filters and some of the other pipelining

methods mentioned in Section 5.8 use the cancellation of additional poles and zeros

to pipeline IIR filters. Comparing the roundoff noise analyses for the SLA filters with

the techniques used by Beex and Debrunner may also point to an interesting overlap.

I have grouped Tokaji and Barnes' work with the material on roundoff noise in

Section 5.6.3.

5.2 Minimum ML12 Sensitivity Realization

The ML 12 measure, given in Section 4.1, is

&8H(z) 2 OH(z) 2 H(z) 2
L12  A 1 B 2 C

with a SISO upper bound

ML12 = tr (We) tr (Wo) + tr (Wo) + tr Wc

Thiele [172] first proved the following:

tr (Wc)tr (Wo) ( i (5.2)

Each of the vi is termed a second-order mode of the state-space system. A second-

order mode, also called a Hankel singular value, is an eigenvalue of the product WcWo.

Note that these eigenvalues are invariant under similarity transformations on the sys-

tem (because WeWo is also transformed by similarity). Thus, the second-order modes
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characterize the system, and the similarity transformations that make tr (Wc)tr (Wo)

achieve equality in (5.2) are candidates for being optimal transformations. One can

also easily show that
n

tr (We) + tr (Wo) 2 2Zvi (5.3)
i=1

by starting with the inequality

(vtr (We) - tr (Wo)) > 0

tr (W) + tr (Wo) > 2 Vtr (W)tr (Wo)

=2 i=

= 2Evi
i=1

Thiele [172] proved that equality in (5.2) holds if and only if Wo = aWc for a scalar

o~ 7 0, while equality in (5.3) holds if and only if Wo = Wc. Thus, the realizations

that minimize the upper bound are those that have equal observability and control-

lability Gramians. These realizations are called the internally balanced realizations.

In [173], he also proved that the internally balanced realizations minimize not only

the upper bound ML~1 but in fact minimize ML12 itself. ML12 is the equal to ML12

for the optimal transformations. See [62, 172] for a characterization of the optimal

similarity transformations that will change any system to an internally balanced real-

ization. In MATLAB , the commands balreal and ssbal produce internally balanced

realizations.

Optimizing a MIMO realization for ML1 2

The upper bound, ML12 , in the MIMO case is, from (4.17), given by

ML1 2 = tr (W) tr (Wo) + m tr (Wo) + p tr (We)

To determine the realization that will minimize this measure, consider each term.

From the SISO case, we know that

tr (W)tr (Wo) >i (5.4)
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with equality if and only if

We = aWo (5.5)

for some scalar a 4 0.

Thus, (5.4) bounds the first term. To bound the second and third term, [109] use

the following argument:

[ vptrW - Vmtr Wo 2 > >0

mtr Wo + ptr W, _ 2 pm(tr (WC)tr (Wo))

mtr Wo + ptr Wc 2\ij--
2i=1P_

with equality if and only if Wc = (m/p)Wo.

Satisfying the condition for minimality for the second and third term automatically

satisfies (5.5). Thus, the upper bound has the following minimum:

ML 12 i=
+ V(ZPi=1

Amazingly, the lower bound is no more complicated than a scaled version of the

minimum in the SISO case.

To find the realization that achieves this minimum, first find the balanced realiza-

tion of H(z). For the balanced realization, W, = Wo = E. Then, apply the transfor-

mation T = p/mI. The resulting We, W,1 will be Wc = Em/pE and Wo = mE

with W, = " W o, achieving the minimum.
p

5.3 Minimum ML2 Sensitivity Realization

The ML2 measure, derived in Section 4.2, is

H(z) 2 H( 2 + H) 2 + H(z) 2

2 &A 2 2 2
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The first term reduced to

OH(Z 2 hT [k]h[k] dw
2 2 r .LJ=O

= tr (Eh T[k]h[k]

Str (WA)

where h[k] is defined in (4.18). ML2 then simplifies to

ML 2 = tr (WA) + tr (Wo) + tr (We)

To find the measure's minimum and the corresponding set of optimal transformations,

we must first study how the measure changes with similarity transformations. Using

the definitions of W, and Wo, we can easily compute W, -+ T-1WT - T and Wo -+

TTWoT. Also, using the definition of h[k] in (4.18), WA changes to

00

WA= TT ho[k ]T - T T - 'h T [k]T
k=O

where the subscript 0 indicates the matrix defined by the original system (A, B, C, D),

SO

ML 2 = tr ( TTho[k]T-T- h[[k]T + tr (TTWoT) + tr (T-WT - T)
(k=0

where W° and Woo are the Gramians of the original system. Reordering the matrices

and definining P = TTT,

ML2 = R(P) A tr (Po[k]P-h 0[k] + tr(PWo) tr(P 1 W).

Gevers and Li prove that R(P) has a globally unique minimum, and it is achieved

only by a positive definite P [62, Chapter 5]. Since the form they present ML2 in

leads to no obvious analytical solution, they compute the derivative of R(P) with

respect to P and then use a gradient descent equation of the form

R(P) =P[k]P[k + 1] = P[k] - p P=P[k]
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where p is a positive step size. The descent is guaranteed to converge to the global

minimum (since it is unique) with a small enough step size p and a positive definite

initial condition. There are no hard-and-fast rules for selecting a proper step size

[62]. When doing simulations, I used a step size that modified iteself as the search

progressed. If after 10 or 15 update steps the solution is still positive definite, it means

the search is going in the right direction, and thus, I attempt to double the step size.

If the resulting P at any point is negative definite, the algorithm backs up, reduces the
OR(P)step size in half, and continues. The convergence condition is that OP be small.

The convergence is significantly faster if started with a 'good' initial realization, such

as the ML12 optimal realization (which can be computed analytically).

Once Popt is determined, the optimal transformation Topt is any square root

Topt = XA1/ 2XT

where X is the matrix of right eigenvectors of P and A is the diagonal matrix of eigen-

values of P. Since P is symmetric, it always has a full set of orthogonal eigenvectors,

and since it is positive definite, all entries of A are greater than zero.

Note that the development in this chapter ignored the 12 scaling constraint. The

next section shows how to incorporate the constraint using Lagrange multipliers.

5.4 Minimum Mpz Sensitivity Realization

Recall that Mpz is defined as

A Aj 2 ( i 2 2 i 2 + 2
MpZ= wA +wv B ac a

Ai=1F AF F F DF/

2n

= tr (HiH ) + tr (My) + tr (Mx) + c
i=1

in Section 4.3.

Including the changes due to the similarity transformation T on the eigenvectors
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of A and Z,

2n

Mpz = tr (PHkP-HkH ) + tr (PMy) + tr (P-'M,) + c
i=1

A R(P)

where P = TTT and

1k 1/2 0 OH I nHkw Xk p k XP k = 1,..., n

Sw/2 0 kxOH k = n + 1,..., 2n

n

M = Cwk 20 OHMY = . akYk Yzkz
k=1

= Xdiag(w,a 2..., Y)X°H
nC= Z]WVk OZk k

k=1

where ak and /k are coordinate independent and defined in (4.29) and (4.30) and

repeated here:

A dIXHCT12 
= d 1Czk 2k = Id- x~cT = ld-'CxZk I

N - Id-BTyzkl 2

The superscript o indicates the left and right eigenvectors corresponding to the original

system (A, B, C, D).

Just as in the case for ML2, solving for P analytically seems impossible, and

Gevers and Li turn to gradient descent after proving that a unique, positive definite

P is guaranteed to exist and achieves the globally unique minimum of the measure.

With the following expression for the partial of R(P),

oR(P) 2n - P-lM 1= EHkP-1HkH- P-1HkHPHkP- 1 + M- P 1MP-
k=1
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they apply the gradient equation,

&R(P)
P(k + 1) = P(k) - p -- IP=P(k)

One is guaranteed to reach the minimum (as long as It is small enough) since there

are no local maxima or minima.

Now, to include the 12 constraint, one needs to use Lagrange multipliers

L(P, A) = R(P) + A[tr (W°P - 1) - n]

dL 2n
- = 2HkP-1H H- P-1HHPHkp-1 + My - p-1M -

k=1

OL = tr [W°P - 1] - n = 0

and then use the simultaneous gradient descent equations

OL(P, A)
P(k + 1) = P(k) - -ui

9P

A(k +1) =
OL(P, A)

A(k) - A2 )
aA

- AP-1W 0Op - 1 = 0

P=P(k)
A=X(k)

P=P(k)X,=A,(k)

5.5 Minimum Frequency-Weighted

tions

The frequency weighted measure, M 12 from Section 4.4, is

ML 12

OH(z) 2MI WA(Z) A 2

+ IIWB(z)G(z)Ili + IWc(z)F(z)I112

with an upper bound

MI W -IlW(z)G(z)I IW2(z)F(z)ll 112

+ IIWB(z)G(z)12 + IIWc(z)F(z)l12

where the weighting function for the derivative with respect to A is WA (z) = W (z) W 2 (z)

(see Section 4.4 for more details about the measure).
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Applying a transformation T to the system, the frequency weighted Gramians

change as their corresponding Gramians (observability or controllability) do:

Kol - TTK o l T; Kc 2 - T - 1 K c2T - T

KoB - TTKoBT; KcC -+ T - 1K cC T - T

resulting in the following upper bound minimization problem:

min M12 = tr (TTKolT)tr (T-Kc 2T - T ) + tr (TTKoBT) + tr (T- 1KecT -T )
{TI det TO}

Since tr (BA) = tr (AB), the above reduces to

R(P) - I l2 = tr (KolP)tr (Kc2P - 1) + tr (KoB) + tr (KecP - 1)

where, as before, P L TTT. Gevers and Li once more use the same approach: prove

that there exists a unique positive definite P that achieves the upper bound with
OR(P)equality, and then after computing , they apply a gradient descent to find

PP
Popt .

The optimal solution above minimizes the upper bound. In the special case that

W1 (z) = W2 (z), the optimal solution will minimize the M1 2 measure itself.

This idea of using gradient descent is a powerful one, but to use it successfully, one

must first prove the existence and uniqueness of a global minimum. Gevers and Li

use it several times throughout their text [62]. If the minimum is not unique though,

a gradient descent may get caught in local maxima and minima, and one must be

more careful with regards to what search technique is used.

5.6 Minimum Roundoff Noise Structures

Roberts and Mullis, with their 1976 publications, and Hwang in 1977 significantly

altered the approach to roundoff noise and sensitivity minimization. They used the

state-space setting instead of transfer functions which had dominated FWL analysis

until then. Their analyses also clearly depict the connection between scaling and

roundoff noise, and lead into the development of the transformations that minimize

roundoff noise.
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I will follow the development in [151] to show how the controllability and observ-

ability Gramians change under similarity transformations, since these two matrices

determine scaling and roundoff noise properties.

The observability Gramian, Wo, is the solution of the Lyapunov equation Wo =

ATWoA + CTC.

00

Wo = E(AT)iCTCAi
i=O

Then, under the similarity transformation T, (A, B, C) - (T-1AT, T- 1B, CT) and

Wo will change to TTWoT. In Section 4.1, I developed a similar expression for We,

see (4.14). W, changes to T-WT -T.

Now, consider the diagonal transformation determined by the 12 scaling rule:

[T]ii = a v/[W]. Under this transformation, the diagonal elements of W, change

to - as expected and desired. However, the effect on the diagonal elements of Wo is

[W ]ii = TT [Wo]i i T = a2 [W]ii [Wo]i i . The total roundoff noise gain, tr (Wo), for the

unscaled filter will change to
n

2 , = a2 2 [W]ii [Wo]ii (5.6)

i=1

where a 2 is the variance of one noise source. As a is increased, the probability of

overflow will decrease, but the output noise variance will increase. Thus, one should

increase a only as much as is necessary.

To investigate minimum roundoff noise structures, consider how the product WWo

changes under a similarity transformation T:

Wc - T-1WcT-T; Wo -+ TTWoT

WeW o - T-1WWoT (5.7)

The eigenvalues of WcWo, the second order modes of the system, are thus also invari-

ant under similarity transformations, as noted earlier.

One can generate minimal noise structures by either allocating an equal number of

bits to all state registers (the equal wordlength (EWL) case) or by optimally allocating

bits to state registers (the optimal wordlength (OWL) case), i.e. allocate more bits
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to the 'more important' states. In both cases, we have a fixed number of total bits,

nB to allocate. Thus, Ei= Bi = nB where Bi is the number of bits allocated to the

ith state variable's register.

Optimal Wordlength (OWL) case

The ith state variable (or register) has a quantization step 2
- B i with a resulting

variance a? = 2-2B Substituting into (5.6),

(5.8)
22 n [W iWoi

total = - : (2 )2
=12. (2BO

Using the arithmetic-geometric mean inequality,

a Wod ii [Weii

n 22Bi
i=1

[Wo]i [Wei1
22Bi 

i

i= 1

(5.9)

To optimize the choice of Bi, we choose them so that equality is achieved, i.e.

terms are equal. Let

(5.10)

and choose Bi such that EB = nB, resulting in

1--[ [wol,,[wd]
Cn i=1  22Bi

2 Bi

2 i= 1

S [Wol] [wC]1 i=1 22B,

22nB

Taking logarithms and substituting back with the original definition of c in (5.10),

B, = B + log2 W ii2 lo , ii) - I , o10g2 ([Wclj j [Wo]jj)
j=1

which achieves equality in (5.9) and gives an output noise of

2
-total,OWL -

n
12

2B

KB

n 1/n

[g IWi=l Ew 1ii

112

(5.11)

(5.12)

[Wo],i Wc]ii
22B,
22B,



Note that (5.11) typically does not give integral values for the Bi, and (5.12) says

nothing about how to search for a similarity transformation to achieve the minimum

value for the right hand side. Mullis and Roberts use Hadamard's inequality to

minimize (5.12), the geometric mean of the diagonal elements of W, and Wo. They

derive the condition

2 n ()M (5.13)

t~otal,OWL = 1 [e(W/ (5.13)

where

Mg = [det(WcWo)] 1 1/2=n [i 2 =

and where e(A) is the scalar defined as

0 < e(A) = detA 1/< 1

Equation (5.13) is minimized when e(Wc) = e(Wo) = 1. By Hadamard's inequal-

ity, this will be true if and only if both Wc and Wo are simultaneously diagonal (see

Section C.1 in appendix C for a more detailed derivation), in which case

2talOWL [n (a)2] M2
Ortotal,OWL  1 2

Mullis and Roberts leave off here, noting that the simultaneous diagonalization of

two symmetric matrices is a common linear algebra problem. They more specifically

address the case of equal wordlength (EWL) optimization.

Equal Wordlength (EWL) case

If all Bi = B, then (5.8) reduces to

- i=1

The following result (due to [122]) leads to the minimization of this problem:

1 n  1 n

nZ[Wc lii[o]i >_ Ma, Ma = nEv
i=1 i=1
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with equality if and only if

Wc = DWoD, D = diag {d, d , ... , d }

[W]ii [Wo]ii = [Wc]jj [Wo]jj , i, j = 1, 2, ... , n

Thus,

e(Wc) = e(W.) = (M)n

ootal,EWL= [ 2 M (5.14)

Ma is the noise gain of the EWL filter. The ratio of M2/Ma is the advantage one

can expect to gain by distributing bits optimally among the registers, with the largest

number for the ith state variable if vi is the largest second-order mode. Williamson

in [185] also discusses optimal (unequal) distribution of bits. He also points out that

reducing the number of bits assigned to a state variable is equivalent to doing partial

order reduction. Thus, this method offers more flexibility than other order reduction

methods which produce an all-or-none answer. I will revisit this idea in Section 5.10

in the context of LQG controller design.

The transformation that brings an abritrary realization (A, B, C, D) to a realiza-

tion that achieves the minimum noise (5.14) was originally constructed by Hwang [73]

and is given in [62] as:

Topt = ToUXV
T

where

(i) To is a square root of W, such that ToTo = c,

n \1/2

(ii) X = diag(Il, ... ,xn) where xi = 1

(iii) U is an orthogonal matrix such that UT(ToTWoT)U is diagonal, and
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(iv) V is an orthogonal matrix such that all the diagonal elements of VX-2VT are

equal to one.

For the proof, see [73], and for details on computing the optimal transformation,

see [73] or [62].

5.6.1 Sectional Optimal Structures

Noting that most minimum roundoff noise structures are fully parametrized (i.e. have

no 0 or +1 coefficients in the system matrices), Mullis and Roberts suggest a 'sec-

tional' optimal decomposition, a second-order cascade decomposition where each sub-

section is realized as a minimum roundoff noise structure. The overall cascade will

then require about 4n multiplies per output sample, a significant improvement over

the n2 multiplies required for a fully parametrized nth order state-space structure.

This advantage becomes larger as filter order increases.

Each subsection H(z) of the cascade is scaled assuming a white noise input and

then transformed into a minimum noise structure. [82] shows that sectional opti-

mal second-order filters are equivalent to minimum noise filters when the following

conditions are imposed:

all = a2 2

blc 1 = b2C2

and the filter is 12 scaled.

The importance of the pairing problem (discussed in Section 5.1.2) decreases sig-

nificantly if each section is realized with an optimal (i.e. minimal noise) realization.

The number of multipliers required increases to about 4n from the approximately

2.5n multipliers required for a cascade decomposition where each section is realized

in direct-form. However, by applying scaling one can reduce this number further to

3n. Bomar in [22] shows several different structures that have near optimal roundoff

noise performance and use only seven multipliers per second-order section. The de-

sign equations for doing sectional optimal design are given in [151, Chapter 9], along

with several design examples.
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Note that scaling is done assuming a white noise input for each section; however,

downstream sections actually receive colored noise. Thus, the performance of the

overall cascade is suboptimal.

5.6.2 Block-Optimal Structures

A block-optimal realization of a cascade of N second-order sections minimizes the

roundoff noise gain of each Hi(z) so that the output roundoff noise of the overall cas-

cade is minimized. Block optimal structures differ from sectional optimal structures

in the 12 scaling used. The scaling in a block optimal structure is done taking into

account the fact that downstream filters will receive colored noise as input instead of

white noise. The design equations are given in [151, Chapter 9].

5.6.3 Non-Minimal Realizations

Tokaji and Barnes [174] prove the following (rather remarkable and surprisingly sim-

ple) result: Over the set of non-minimal realizations of dimension m, the minimal

attainable noise gain (under an 12 scaling constraint) is

m)n)mn

m

n

where n is the dimension of the minimal realization and (Gn)min = ±(Zvi)2 as given
i=1

earlier in equation (5.14). They go on to point out the impracticality of reducing

roundoff noise gain by using non-minimal realizations. To reduce G by 1/2, one

would have to double the dimension of the state-space realization, whereas adding 1

bit to the wordlength will decrease G by a factor of 4.

Finally, their result has one other interesting consequence: Minimal noise gain will

be attained if and only if all uncontrollable modes are also unobservable. See [174]

for details.
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5.7 Minimum Synthetic Noise Gain Realizations

The synthetic noise gain measure presented in Section 4.7 combines the effects of

coefficient quantization and roundoff noise into one measure. The measure ((4.35))

again is
a 2

GT A tr (WA + Wo + Wc) + tr (Wo)

= ML 2 + p2 G

where G is the roundoff noise gain measure.

Using the earlier expressions from Section 5.3 for the ML2 minimization problem

and from Section 5.6 for the roundoff noise gain term,

R(P) _ GT(T) = tr Pho(i)P-'h (i)
i=0

+ tr (PMO)

where P = TTT and Mo A (1 + p2)W.

We now have a constrained minimization problem, namely that of minimizing

R(P) under the constraint that [T - 1W2OT-T]ii = 1 Vi.

Using Lagrange multipliers,

dLO
P= f {ho(i)P-l h (i) - P- 1'h(i)Pho(i)P-' + Mo

i=O

OL
= tr (W!OP-1) - naA -(

The solution is via a gradient search method.

8L(P, A)P(k + 1) = P(k) - pi

A(k + 1) = A(k) - P2 A)

See [62, Chapter 7] for more details.

5.8 Block Processing Filters

- p-1WcOp-1 _ Ap- 1 WOp- 1 }

P=P(k)
X=X(k)

P=P(k)

The idea for block signal processing dates back to at least 1968 [63]. Consider a

standard state-space system. Then, instead of processing a single sample of the input
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at the time step, block processing suggests processing several samples at once. So the

'blocked' state-space model is

x[k + L] -

y[k]
y[k + 1]

y[k + L- 1]

(5.15)

AL [k]

C

CA

CAL- 1

u[k + 1]
+ AL-1B AL-2B ' B 1]

u[k + L- 1]

x[k] +

D

CB

CAB

CAL-2B

0 0

D 0

CB D

. . ". .

"' 0

C B 
0

• " " 0

CB D

u[k]
u[k + 1]

u[k + L - 1]]

where L is called the blocklength. The actual implementation of block processing

requires buffering the input and the output.

One can immediately see where block processing's alternate name - state decima-

tion - comes from. State updates only need to be computed every Lth sample.

The advantages of block processing include:

(i) Reduced multiplications

(ii) Reduced roundoff noise

Zeman and Lindgren [195] showed that the number of multiplications required for

each output sample is

n(n + L) + L(n + L+1)
M= 2

L

M is minimized for a block length of Lopt = nvI-2 where n is the number of state

variables. For the optimal block length, the number of multiplications per output

sample drops to about Mopt = 3.41n + 0.5. Thus, even fully parametrized state-space

systems only require order n operations per output sample3 , making them much more

3Direct Form realizations require the minimum 2n + 1 operations per output sample
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cost effective. One can have the roundoff noise performance of a minimum roundoff

noise structure with a performance level that's almost as good as the direct form.

Further cost savings in the number of multiplications are made if one blocks a

parallel decomposition with each second-order section realized as a minimum noise

realization or a normal structure. The optimal block length becomes Lopt = 2/n,

and the number of multiplications per output sample drops to 2n + 2Fi- + 0.5.

Rather obvious from the notation, pole sensitivity will also drop, since the eigen-

values of AL are the eigenvalues of A, each raised to the Lth power. Poles clustered

near z = 1 will move away from that point. Complex eigenvalues will move both

in magnitude and angle, spreading apart and fanning out. If L is increased enough,

they will circle around and start returning towards the positive real axis. It would be

interesting to characterize the distance between closely spaced eigenvalues as block

length changes.

Barnes and Shinnaka [14] give a detailed derivation of the reduction in roundoff

noise (per output sample). The noise variance goes down to

2 2
LY

where a 2 is the output error variance in the SISO case. Thus, output noise drops by

a factor of L. The MIMO blocked systems inherit many of the properties of the SISO

system that make up the individual blocks. For example, applying a transformation

T to (A, B, C, D) results in a blocked system (T-1A'T, T-1 B', C'T, D').

Blocking opens up many possibilities for improving performance in a filter.

Parallel computation of the entire output block of L samples requires the same

amount of computation time as that for a conventional filter (even with pipelining)

to deliver one output sample. One could imagine different scenarios where this could

seriously improve performance such as in a time-shared signal processing system.

Another idea suggested in [14] is that a multi-rate blocked structure could be used

to utilize longer block lengths for sensitive poles that are close to z = 1 (to reduce

roundoff noise to an acceptable level) and shorter blocks for poles that are closer to

the origin.
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Applying blocking to digital compensators raises new, more interesting questions.

Surprisingly, I did not come across any work in the FWL literature that investigates

this idea. So what happens in the controls setting? The latency for getting a single

output goes up to L * Ts where T, is the sampling rate of the original compensator.

Thus, unless T, is increased by a factor of L, the phase margin of the closed-loop

system will significantly decrease due to the added time delay. In signal processing,

latency is usually not important. What is important is throughput, and that is

maintained constant at one sample per T,. What if the sampling rate were increased

to TI/L?

If sampling rate is increased, another consideration becomes important: If the

time constants of the plant are relatively slow, sampling too fast will result in suc-

cessive samples being almost equal (and thus, their quantization errors will be highly

correlated). The roundoff noise model that is used to predict FWL performance then

breaks down. All of these different options require much more thorough investigation

and would be fruitful areas of research.

One cautionary note: Coefficient quantization results in the blocked system being

(slightly) periodically time-varying. Zeman and Lindgren [195] reported that these

effects become neglible for coefficient wordlengths of 16 bits or more. Reng et al. [150]

also analyze 'aliasing' effects in periodically time-varying blocked systems.

The earlier works on block processing include [26, 27, 115, 116, 118, 181]. See

[135,136] for extensive details on the scattered look-ahead (SLA) and decomposition

techniques. Parhi and Messerschmitt [135] describe how to pipeline recursive filters

for efficient implementation in VLSI design. They also mention some of the associ-

ated finite wordlength effects but state that additional research is required. In [136],

a companion paper, they combine scattered look-ahead, clustered look-ahead, de-

composition, and incremental output computation to extensively pipeline filters and

achieve very high throughput. Parhi in [134] presented a short analysis of FWL

effects in SLA filters and concludes that SLA filters have good FWL performance.

Chang and Bliss [34] extensively analyzed FWL effects in SLA filters and charac-

terized both roundoff noise and coefficient quantization effects (using the stochastic
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model). [85,86,106] include additional ideas for pipelining and improving throughput

rates for filters. These design techniques all support the statement in the introduction

from [147], that for filter designs, good finite wordlength properties are desirable, but

the designs must also have other characteristics that make VLSI implementations

simpler and cheaper.

Again, it would be interesting to see what kinds of applications such high-throughput

filter designs would have in a controls context (if any at all).

5.9 Discrete (or Digital) Redesign

With the topic of discrete redesign, I move one step back in the design hierarchy of

Figure 3-4. Discrete redesign's goal is to generate a DT TF from a CT TF. Steiglitz

[162] investigated maps from the s-plane to the z-plane. The goal of discretization

is to find the mapping that will most closely preserve the CT filter's performance

characteristics in the DT filter i.e. to minimize the error in Figure 5-7. As before,

the magnitude of the error can be measured in many different ways.

Filter Discretization

Discrete filter redesign is covered extensively in many signal processing and filter de-

sign texts, and I refer the reader to them [24,81,130]. Surveying filter discretization

techniques could be the topic of another thesis altogether. I will only briefly men-

tion one of the simplest and most common techniques, the bilinear transformation.

What is more relevant to my thesis, however, is the relationship of discretization to

FWL effects. As I mentioned in the design process chapter, discretization is usually

separated from FWL optimization. Thus, a design is discretized with regard to its

DT performance, but without any consideration of its FWL performance. Minimizing

the error in Figure 5-8 would be a more ideal solution than the two-step process of

minimizing the error in Figure 5-7 followed by FWL optimization of Kd(z).
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Controller Discretization

As mentioned in Chapter 3, a controller is often treated as a filter and optimized

for FWL implementation. However, this technique is suboptimal and does not take

closed-loop performance into account. Similarly, at the discretization stage, one can

treat the compensator as a filter and discretize it for optimal performance, or one

can take the entire closed-loop into account and discretize the CT compensator for

optimal closed-loop performance.

There are also different levels of sophistication for taking the closed-loop into

account. Refer to Section 3.2 for more details.

Exciting new controller discretization techniques, introduced over the last decade,

show promise for stimulating further research and better designs. I did not extensively

survey the complete literature for filter or controller discretization, but I did search

for some of the more recent research in controller discretization, and the following

subsections present some of what I found.

5.9.1 Bilinear Transform

The earliest CT filter redesigns used the bilinear transform (also called the Tustin

transform or Tustin's method). The transform isomorphically maps the s-plane to

the z-plane. The jw axis maps to the unit-circle, and the left half-plane maps to the

interior of the unit-circle [162]. Thus, a stable CT filter results in a stable DT filter.

The transform is defined as

H(z - ) = H(s) S (1-z-1)

or equivalently,

H(z) = H(s) 4 (z-
T (z+l)

Note that the transform is a function of the sampling frequency. In fact, Kaiser's

analysis (see Appendix C.3) showed that as the sampling frequency gets higher, the

poles and zeros of the DT TF tend to cluster more tightly, significantly degrading
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FWL performance. Tightly clustered poles increase TF sensitivity, thus requiring a

longer wordlength to guarantee stability.

The bilinear transform has the property that

Z(HI(s)H2 (s)) = Z(Hi(s))Z(H2(s))

where Z(.) represents the bilinear transform operator [88]. I will now move to dis-

cussing controller discretizations. For more discussion about other filter discretiza-

tions such as the impulse invariant, step invariant, and ramp invariant methods, refer

to the digital signal processing texts mentioned earlier.

5.9.2 Controller Discretization

Tabak [168] applied discretization to a controller using the bilinear transform (treating

it as a filter). He noted that the controller's sampling rate usually had to be increased

sufficiently high so that the closed-loop performance of the original CT system was

maintained. Rattan [148] proposed a redesign that matched the frequency response

(at a finite number of points) of the closed-loop system using a CT compensator with

that of the closed-loop using a DT compensator (and sample-and-hold hardware).

Several controller redesign techniques compute the DT feedback gain matrix, Fd,

using the CT plant and the CT feedback gain matrix, F. F, has presumably already

been designed to place the closed-loop poles at desirable locations. The CT system

setup is shown in Figure 5-9 and the desired DT setup is shown in Figure 5-10.

Kuo [95] and Tsai et al. [176] both proposed different methods to compute the

feedback and feedforward gain matrices for the digital system, Ed and Kd (see Figure

5-10). Their goals were to match the states at the sampling instants of the system

using the CT compensator with those of the system using a DT compensator. Shieh

et al. [155] proposed a 'locally optimal' redesign method that results in feedback gain

matrices which minimize the quadratic cost function

1 1 fkT +T

Jk A J(kT) = e(kT + T)TQe(kT + T) + - TekT (t)Re(t) dt
2 2 kT

where Q, R > 0 are symmetric weighting matrices. The first part of Jk represents the

error at the sampling instant while the second term represents intersample error.
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In [154], Shieh et. al. describe another digital redesign that they state is based on

the "Law of Mean" or the mean value theorem. However, the claim that the redesign

is based on is not, in general, true. The generalized version of the mean value theorem

states

f(x) g (x) dx= f(c) g(x) dx

where c E [a, b] and with the assumption that g(x) does not change sign over (a, b),

f (x) is continuous, and both are integrable on the open interval.

They claim (without proof) the following: "The above relationship can be closely

extended to a matrix-valued function case as follows:
f kT+T kT+T

eA(kT+T-7)Buc(T) dT = uc(t,) eA(kT+T-7)B dr
kT fkT

where 0 < v < 1 and t, = kT + vT E (kT, kT + T)"; T is the sampling rate.

This claim is, in general, false for cases where there is more than one state, i.e. in

the non-scalar case. The rest of their development does not rely on this generalization,

though it is the motivation for the work.

They suggest an error criterion based on time response to select the best particular

sampling instant within the sampling interval. The cost function is

Je(V) = (tf Xc,(t) - Xd, (t)| dt

where xi and Xd, are the ith states of the plant with a CT compensator and a DT

compensator, respectively; tf is the finite time of interest over which to match the

responses; v, titled a tuning parameter by the authors, is the percentage of the interval

T after which the sampler samples. They demonstrate their scheme with a system

tuned with a step input and responding to a step input. It is interesting to ask how

the system would respond to an input that it had not been "trained" on?

5.9.3 Fast discretization of the plant

Keller and Anderson [92] describe a novel technique to incorporate a continuous-time

plant into a discrete-time controller redesign for a sampled-data system. The idea
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derives from the signal processing concept of 'blocking' (see Section 5.8). The plant is

fast-sampled at a super-multiple of the controller sampling frequency and then 'lifted'

to form a MIMO LTI system. Chen and Francis [36] have also intensely explored fast-

sampling followed by lifting. Here, I discuss fast discretization as proposed by [92].

What is the advantage of a faster discretization (or equivalently, a better plant

approximation)? Normally, the plant is discretized at the controller's sampling fre-

quency. For one thing, sampling faster allows the optimization routine or measure-

ment function to take intersample behavior into account. Thus, a better approxima-

tion of the plant allows a sensitivity function to more accurately measure closed-loop

performance.

Fast sampling the plant, however, makes the resulting closed-loop system multi-

rate. Blocking is the tool that brings it back into the LTI domain, as an LTI MIMO

system.

Consider Figure 5-11. Let the controller sampling rate be Tk and the plant dis-

cretization rate Tp = Tk/L. The zero-order hold (ZOH) discretization of the plant

(Ap, Bp, C,, Dp) will be

Fp= eAPT; G = f eAPBp dT;

Hp = Cp; Ep = Dp;

Next, we perform the blocking operation using the blocking equation (5.15), sub-

stituting A = Fp, B = G,, C = Hp, and D = E,.

Now, we must remedy the apparent incompatibility of signal dimensions and rates

in the closed-loop: The Hold - Plant - Sample combination outputs L samples

every Tk seconds while the controller only reads in one sample every Tk seconds. The

solution is to insert two devices into the closed-loop. A decimator (commonly used

in signal processing) with rate K outputs one sample every K time units and throws

away its input at the other K - 1 time units. Thus, in our setup, we should insert

a decimator with rate L between the blocked plant output and the controller input.

On the output of the controller, we install a repeater which simply outputs the same

value every Tk/L seconds. It receives a new value every Tk seconds. Then, the entire
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decimator-controller-repeater combination could be written as

-1-

Repeater 1[ Kd(zk)[l 1 0 O ]}Decimator

zk and zp are simply the transform variables associated with the different delay times,

Tk and T. In the limit as L -+ oc, we recover the CT plant and the standard sampling

and ZOH operators from the decimator and repeater respectively.

For multi-variable systems, each 1 in the decimator and repeater would be replaced

by an identity matrix, and each 0 by a zero matrix of appropriate size.

Using fast discretization for filter and controller design

Using fast discretization, we can easily reduce the problem of controller design to

an Hco problem (see Figure 5-12) that can then be solved with standard software.

(Actually, it is inaccurate to say that because of fast discretization, we can use the

H, framework. We could have used the Ho framework before, with a CT component

discretized at the controller's sampling frequency. The fast discretization will simply

produce a much better controller, since the approximation of the plant and other CT

components is better, and can account for arbitrarily fast intersample ripples. The

difference between the DT controller approximation and the CT controller is fed in as

a perturbation, A, of the controller. D(s) is an anti-aliasing filter (see Figure 5-13).

Define the cost function

Jc A(I + P(s)K(s))-'P(s)

= AW(s)

IJc| = max (5.16)
uE(L 2 [0,00)) Ju (12

where A = (K(s) - HTkK(s)ETk(s)). The small-gain theorem requires

IJcH < 1 (5.17)

for the loop to be BIBO stable. The controller design objective is to find a Cd(zk)

not only to satisfy (5.17) but to minimize ||Ji|.
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Fast discretizing the CT operators W(s), D(s), HTk (S), and K(s), we obtain the

DT operator, Jd. Jd converges to Jc as sampling time tends to 0 (the sampling time

for the approximations, not for the DT controller Kd(zk)). See [92] for the proof.

Using multi-rate filtering solutions

Let K(Zk), 4(Zk), and W(zk) represent the blocked CT controller, anti-aliasing filter,

and (I + P(s)K(s))-lp(s), respectively.

Then, rearranging Jd using the blocked discretization,

Jd (Zk) = K(z - [:] Kd(zk) [1 0*** ] 1(zk) W(Zk) (5.18)

where Kd(zk) is the DT controller running at sampling rate Tk.

To turn this into an H, problem, we need the important result that norms are

preserved under the blocking operation. Consider

ud(lT)T Ud(ITp) = E ud(mTk)Td (mTk)
1 m

1 ed(lTp)Ted(lTp) = ed d(mp)Ted(mTp)
1 m

which implies that

IIUdIp = IItdIIp

IledlIp = I16dllp

Thus, the norm of the signal is preserved under the blocking operation, ensuring that

the operator induced norms Jd and Jd are equal also.

One of the powerful results that follows from this problem setup and its solution:

"A measure for the impact of the sampling time on controller discretization is the

value of IIJdi.oo for an optimal controller Kd(Zk), and the effect of varying sampling

time can be easily examined. If, for an optimal controller, IJdioo = 1, an upper bound

for the sampling period T based on a sufficient condition for stability is reached" [92].

Refer to [153] for a procedure to solve the H. problem for Kd(Zk)-

127



5.10 Minimum LQG Cost Realization

Take the standard discrete-time (MIMO) model of a plant with measurement and

output noise added:

xp[k + 1] = Ax,[k] + Bpu[k] + Dpwp[k]

zp[k] = Mpx, [k] + vp [k]

yp[k] = Cpxp[k]

where v, and wp are assumed to be mutually independent, zero mean, discrete white

noise sources with covariance matrices V and W,, and z, is the measurement vector.

This model is slightly more general than the one used by most authors, which includes

noise in the output, not in a different measurement vector. Including a measurement

vector, z,, allows one to separate the output from the measurement in the cost func-

tion. The cost function J is a quadratic function of the output y[k] and the control

input u[k]:

J = lim E {yp[k]TQ py [k] + u[k]TRu[k] } + A
k-+o qi=1

If the measurement and output are the same, then minimizing the cost function also

minimizes the measurement, but this is not a requirement. In fact, in the actual cost

function, the difference will be reflected in the weighting matrix that multiplies the

measurement noise. If zp and y, are the same, then the noise is multiplied by the

weighting matrix Q, while if z, is different from y,, the measurement noise is weighted

by the matrix R.

The desired controller is of the form

xc[k + 1] = Acxc[k] + Bczp[k]

u[k] = Ccxc[k] + Dcz,[k]

Now, we introduce the quantization effects. Of the handful of papers that address

this problem, most models in the current literature on FWL effects in LQG controllers

include roundoff error but ignore coefficient quantization. Liu et al. [105] have solved
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the problem of optimal compensator design for an LQG cost that takes into account

roundoff error. Before delving into their solution, it is important to discuss the other

works on compensator design with the LQG criterion, as they include ideas that could

be used to extend Liu et al.'s work.

The first major work to incorporate FWL errors in LQG design was Moroney et

al. [120]. They solved the following problem: Under infinite-precision optimal control,

assume the cost value is J. Then, find the minimal wordlength required to implement

the controller such that the degradation of the cost function is less than some amount,

E0 . They introduce coefficient quantization error into the cost function using the

stochastic coefficient quantization model. They develop the statistical wordlength

(SWL) to find the minimum wordlength that will, with a certain probability, achieve

the cost degradation bound (see Section 4.6 for a discussion of the stochastic coefficient

quantization model).

They also present an algorithm to find the transformation to minimize the increase

in J due to roundoff noise. Note how this differs from Gevers and Li's closed-loop

noise gain criterion. Gevers and Li minimize the noise gain of the closed-loop system

for roundoff errors while Moroney et al. minimize the increase in J due to roundoff

noise. It would be interesting to compare how the resulting optimal realizations

perform under the two measures (i.e. the performance of the Ge1-optimal realization

measured through J, and vice versa).

Both these algorithms are similar in that they restrict their search space to that

of similarity transformations, i.e. they use the gain matrices computed by using

the infinite precision Riccati equations and then find the transformation that will

minimize the degradation in the performance measure.

Williamson and Kadiman [186] proposed an iterative design scheme:

(i) Compute optimal gains F, L for the plant using modified design equations

(ii) Compute the optimal transformation based on the gains to transform the plant

model

(iii) Apply the transformation to the plant model and return to step (i)
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Their scheme is much closer to an ideal design scheme since it does not restrict the

search for optimal gains over the set of similarity transformations on the compensator.

However, it does not guarantee an optimal solution, either.

Next, I will develop Liu et al.'s solution to the LQG FWL implementation design

problem. They give necessary conditions for the design to be optimal and then present

an algorithm to find the controller matrices that will satisfy these conditions. It is

unknown if Williamson and Kadiman's iterative scheme converges to a solution that

satisfies these necessary conditions and hence is optimal.

Gevers and Li present a closed-loop sensitivity measure, but this algorithm simply

searches for the optimal transformation, not the optimal design. They do suggest

that one could formulate the design problem as follows: minimize the H. norm of

the difference between the transfer function of the system with an ideal controller

and one with an FWL controller. Minimizing this norm over all possible F and L

matrices would then give the optimal design. Such a formulation would however

ignore roundoff noise.

Liu et al. [105] choose to not optimize with respect to coefficient quantization

errors directly since, they claim, these errors are multiplicative and lead to non-linear

equations. However, they do not consider modeling the coefficient quantizations errors

stochastically. Such an approach may in fact allow a global solution to minimum cost

in the presence of both coefficient quantization and roundoff noise. In fact, Gevers

and Li [62] state that it should be relatively straightforward to incorporate stochastic

coefficient quantization into Liu et al.'s design framework.

Returning to the models, taking state and output quantization into consideration

changes them to

xp[k + 1] = Apxp[k] + BpQ[u[k]] + Dpwp[k]

zp[k] = Mpxp[k] + vp [k]

yp[k] = Cpxp[k]
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and

xz[k + 1] = AcQ[xc[k]] + BcQ[zp[k]]

u[k] = CcQ[xc[k]] + DcQ[zp[k]]

where Q[.] represents the quantization operator. Assume that the matrices Ac, Bc, Cc,

and Dc can be implemented exactly. Modeling roundoff error as uniform white noise

with zero mean, let

ex [k] = zx[k] - Q[zxc[k]]

ez,[k] = z,- Q [z]

eu[k] = u[k] - Q[u[k]]

with covariance matrices

1E, A qiij where qi = 122-2i

1Ez qzI where qz = 12-2u12

E, qI where q = 12 - 2P"

where /i is the wordlength for the ith state variable and z and ,u are the fractional

parts of the wordlengths for the A/D and D/A respectively. One of the extensions in

Zhu et al.'s paper [196] was to assume that each A/D and D/A could be assigned a

different wordlength i.e. Ez and Eu would change to

E qz, 6ij where qz = 12-2z
12

E a qu, ij where q, = 122-2ui

where each of the 3,j and p,/ indicate the fractional parts of the wordlengths of the

ith A/D and D/A converter respectively. I shall continue the development without

this generalization.

xp[k + 1] = Apxp[k] + Bp(u[k] - e,[k]) + Dpwp[k]

zp[k] = Mpxp[k] + vp[k]

y,[k] = Cx p[k]
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and

xc[k + 1] = Ac(x,[k] - ex, [k]) + B (zp[k] - ezp[k])

u[k] = Cc(xc[k] - ex,, [k]) + Dc(z,[k] - ez,[k])

The LQG cost function to minimize is

J = lim E {y[k]TQ py[k] + u[k]TRu[k]} + A
k-+oo q

where n is the number of states, Q, and R are positive definite weighting matrices,

Pi is the weighting factor for the penalty on the wordlength of the ith state variable,

i3, and qj is the variance of the error in the ith state variable (qi = _2-2i).

Combining the plant and controller states into one state vector, we get

x [k] ' 0 0 I

u[k] 0 0 '

x[k + 1] = (A + BGM)x[k] + [D BGI ] [k] + [BGI2 BG1i B ] ez[k]

y[k] = (C + IoGM)x[k] + IoGIiv,[k] + IoGI 2 xe[k] + IoGIez[k] (5.20)

and the simplified cost function

J = lim E{y[k]TQy[k]} + pT
k--oo

where p is the vector of weights and p is the vector of variances qj. Substituting the
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expression for y[k] into J,

J = tr (X[C + IoGM]TQ[C + IoGM])

+tr (V,(loGI1)TQ(IoGI1))

+tr (E(oGI2)TQ (IoGI2))

+tr (Ez (loGI)T Q(IoGI)) + pTO

where X is the state covariance matrix satisfying the modified Lyapunov equation

X = (A + BGM)X(A + BGM)T + DWDT + (BGII)V(BGI1 )T + BIiE,(BIi)T

+(BGI1 ) Ez(BGI1 )T + (BGI2)Ex(BGI 2)T

Since the above equation is linear, we can split it into X = X, + Xe where X,

represents the error due to disturbances and roundoff errors in the A/D and D/A,

and Xe represents the error solely due to roundoff noise. This will allow us to also

split the cost term into J = J, + Je. Note that the cost due to disturbance inputs and

A/D and D/A errors will be independent of the coordinates of the controller. Hence,

only the Je portion of the cost will depend on the controller's realization. Including

the standard 12 scaling constraint, the optimization problem can be restated as

min J = min J, + Je
G,O, G,Oi

subject to the constraint

[X,(2, 2)]ii = a

where a is a scaling factor (a can be thought of as the number of standard deviations

that are representable in the register of the ith state variable). See the discussion in

Section 2.3 for more details about scaling.

The scaling constraint complicates the design equations. Liu et al. break the

problem up into two separate ones: finding the optimal controller G and wordlengths

fi and then finding the transformation T such that the scaling constraint is also
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satisfied. Thus,

min J = min (J, + Je) = min min(J, + Je)]
G,T,O, G,T,i G,f, LT J

= min [J + min J] (5.21)
G,OL T

The overall algorithm to determine the optimal controller, LQGFw, is:

1) solve for 3i and G using a gradient search and equations given in [105];

2) compute the optimal transformation, T, based on the above G;

3) G= [ 1 G [10 ] is the optimal LQGFW controller.

Zhu et al. [196] give two additional equations that are included in the gradient search

and these equations give the wordlengths for the fractional parts of the A/D and D/A

converters. Their paper also allows for skewed sampling.

Refer to Liu et al. [105] and Zhu et al. [196] for detailed design equations, algo-

rithms, and proofs.

As mentioned before, both these schemes allow one to do partial model order

reduction. If a particular state is not that important, it will be assigned less bits,

instead of being completely eliminated. Meanwhile, important states will be allocated

more bits. As Liu et al. put it, "[W]e allow the mathematics to assign the appropriate

(small or large) computational resources to [each state]."

It would be particularly interesting to extend Liu et al.'s LQG framework to

include coefficient quantization through the use of a stochastic coefficient quantization

error model. Ideally, one would like an algorithm that could output the number of

bits that should be allocated to each state variable and coefficient.

5.11 Sparseness Considerations

Bomar and Hung [23], extending Chan's work [33], present an algorithm that starts

with an initial realization that is optimal (in terms of roundoff noise performance) and

then "leads" entries (of the system matrices) closest to powers-of-2 to the power-of-2
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while keeping the transfer function constant. The algorithm maintains the 12 scaling

contraint during the procedure, and roundoff noise is kept at an almost optimal level.

The resulting state-space realization requires only (3n + 2) multiplies and requires

(n2 - n - 1) powers-of-2 shifts.

The key to Bomar and Hung's algorithm is a transformation matrix T(t) that

takes the system to the destination form as it evolves as a function of its param-

eter, t. In each iteration, a selected non-trivial coefficient is targeted. At each

time step, the matrix T(t) is used to transform the system (A(t),B(t),C(t)) to

(A(t + 1), B(t + 1), C(t + 1)) 4. Then, derivatives of all the relevant matrices (see

below) are recomputed, and the next update is then performed. Ultimately, an entry

of either A, B, or C reaches a target value, and the algorithm restarts with a new

non-trivial coefficient. This process continues for (n2 - n - 1) steps.

Define the transformation, T(t), as a continuously differentiable function of the

variable t. Then, the state-space system can be defined as

x[k + 1] = A(t)x[k] + B(t)u[k]

y[k] = C(t)x[k] + Du[k]

where

A(t) = T(t)-1A(O)T(t)

B(t) = T(t)-1B(O)

C(t) = C(O)T(t)

The main idea is to let the system evolve along the path dictated by its derivatives

towards the system with powers-of-2 coefficients that are the valleys. We control the

direction of evolution by directing it towards a decreasing derivative that still main-

tains the 12 scaling constraint and keeps the observability Gramian (or equivalently,

the roundoff noise) about the same.

4 The evolution actually occurs in continuous time so the indices are a slight abuse of notation.
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Using (5.7), the observability and controllability Gramians change as follows:

We(t) -+ T(t)-IWc(O)T(t)-T; Wo(t) - T(t)TWo(O)T(t)

We(t)Wo(t) - T(t)-'WeWoT(t)

W(t)and Wo(t) can of course also be written as E[A(t)kB(t)][A(t)kB(t)]T and
k=O

E[C(t) T A(t)k][C(t)A(t)k]T , respectively.
k=O

The scaling conditions remain the standard 12 constraint: [W(t)]ii = 1 for i =

1, 2, ..., n (or [We(t)] = a).

The t-varying variance is

a(t) = v[1 + tr (W 0 (t))]a2

where v = 1 for roundoff after summation (and multiplication) and v = n + 1 for

rounding before addition.

Also, the minimum value of G(t) is given by

n 
2

Gi = =

where the vi(t) are the eigenvalues of the product W,(t)Wo(t). Analogous to the

case of constant system matrices, the necessary and sufficient condition for minimum

roundoff noise gain is W,(t) = 7(t)2Wo(t) where

v(t) (t)

i=1

Now, they present the definitions of the derivatives of each of the above terms

A(t) = -T-l(t)T(t)T(t)-l(t)A(O)T(t) + T(t)-IA(O)T(t)

= -T -1 (t)TA(t) + A(t)T-'(t)T(t)

= A(t)F(t) - F(t)A(t)

where

F(t) = T- 1(t)T(t)
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Similarly,

B(t) = -F(t)B(t)

C(t) = C(t)F(t)

IW(t) = -[F(t)Wc(t) + We(t)F T (t)]

G(t) = tr [FT (t)Wo(t) + Wo(t)F(t)]

The individual elements of aij(t) and fij(t) of A(t) and F(t) respectively are
n

aij (t) = Eai (t)fkj(
k=1

n

t) - fik(t)akj(t)
k=1

n n

= E6JEaik(t)k (t)-
1=1 k=1

n n

6iljakj (t) flk(t)
1=1 k=1

Switching the order of summation,
n n n n

ai (t) = 6aik (t) kl (t)- ilak fk (t)

1=1 k=1

n n

= Z [ jaik (t)
1=1 k=1

k=1 l=1

- ikalj]fkl(t)

n n

= ZZSi(t, i, j)fkl(t)
1=1 k=1

where

SA (t, i, j) A aik (t) - Jika j

Proceeding similarly for B, C, We, and G,
n n

B(t) = ZZSi (t, i)fk(t)
l=1 k=1

n n

Ci(t) = ZE Sg(t, i)fk(t)
1=1 k=1

n n

= S (t,i)fkl(t)
l=1 k=l

n n

G(t) = EES (t)fkl(t)
t=1 k=1
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where

sB (t, i) = -6ikBl(t)

Sc (t, i) = - 6 ikC (t)

sc (t, i) = -2 6 ik[Wc(t)]lk(t)

SG(t) = 2[Wo(t)]lk

Using the vec operator, the notation simplifies to

vec A(t) = SA(t)vec F(t)

vec B(t) = SB(t)vec F(t)

vec C(t) = Sc(t)vec F(t)

[Wc(t)]ii = SWc(t, i)vec F(t), i = 1, 2, ..., n

G(t) = SG(t)vec F(t)

where SA(t) E Rn2
n

2 , SB(t) and S C (t) E Rnxn 2 , SW (t, i) E R 1xn
2 and

SG (t) E ]Rlxn 2 are made up respectively of SA, SB, SCSW(t,i), and SG(t) as~1~II~lLICUYICYCL ~ 1k' V 1Jk' 1k'IC 1)Uk' ' 1k

defined in (5.22).

Now, to simplify notation further, introduce the vector of coeffecients of the system

matrices:

vec A(t)

( vec B(t)
vec C(t)

Then, the derivatives can be combined into

e(t) = Se(t)vec F(t)

where
[vec SA(t)

Se (t) = vec S (t)
vec Sc(t)
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Finally, introduce the (m + n + 1) x n2 matrix

SWC(t, 1)

SW (t, n)

Lm(t) = SG(t)

sil(t)

Sme(t)

Then, impose the three following constraints

[W(t)]ii = 1, i = 1, 2, ..., n

G(t) = tr (Wo(t))

Oi(t) = Oi

which translate to maintaining the original scaling, the original roundoff noise gain,

and keeping constant the parameters that have already been set. Thus, the derivatives

of each of these terms should be maintained at zero, which results in

Lm(t)vec F(t) = 0

Thus, vec F(t) must belong to the null space of Lm(t) i.e. vec F(t) E A[Lm(t)].

Each time an additional parameter reaches its target, Lm is augmented and

JN[Lm(t)] shrinks by one, allowing the process to be repeated at most n2 - n- 1

times.

Note that if the integration step is set too small, it can prevent most coefficients

from reaching their destination power-of-two value. This probably means there is no

minimium noise structure with that many powers-of-two coefficients, and that one

must deviate a little from minimum noise in order to reach more powers-of-two coeffi-

cients. They go on to describe integration techniques and the actual implementation

details in their paper.

Amit and Shaked [3] extend Bomar and Hung's algorithm, setting the target values

to be 0 and ±1 instead of powers-of-2. They show that if one uses the actual roundoff
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noise (tr ((QWo) + I)) as the measure to minimize instead of the theoretical roundoff

noise (tr (Wo)), the new structures generated by their algorithm are not only sparse

but also perform better than the optimal, minimum noise realization structures of

Mullis, Roberts, and Hwang when measuring actual roundoff noise.

They also extend the work of Moroney et. al. [119, 120], solving the LQG cost

minimization problem while including the actual roundoff noise instead of the theo-

retical noise. It would be interesting to try and incorporate Amit and Shaked's work

with that of Liu et al. mentioned in Section 5.10. Optimizing for actual roundoff

noise would result in a sparse and optimal LQG structure.

Gevers and Li [62] also point out a useful extension to Bomar and Hung's algo-

rithm: By changing G(t) and G(t), one can use the same algorithm to find sparse

structures that minimize measures other than the actual roundoff noise measure (while

maintaining the 12 scaling constraint).

Smith and Bomar [158] present an algorithm that starts with the Direct Form and

then directs matrix entries in order to lower the overall roundoff noise and maintain a

scaling constraint. Their method however only results in an upper or lower triangular

matrix, so it still requires order n2 operations per output sample. They suggest that

their algorithm is particularly useful for two-dimensional filters, where decomposition

into subfilters is not possible.

5.12 Other Optimizations

Many of the optimizations for the corresponding measures in Chapter 4 did not make

it into this chapter due to lack of time. I am including citations to the relevant

references, and leave the development of these optimizations for future work.

The optimal transformations for the Closed-Loop Noise Gain (Get), Closed-Loop

Sensitivity (Mcl,L 12 ), and the Closed-Loop Synthetic Measure (GT,,c) all appear in [62].

The minimal transformation for the M2 measure is in [111]. The Closed-Loop Pole

Sensitivity minimizing transformation is given in [100].

One of the discrete-time redesign techniques that I did not get a chance to include
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was that of Fujimoto and Kawamura [57, 58]. They use a generalized-hold device for

the controller output. They call the overall system N-Delay control.

Generalized hold devices are essentially multi-rate hold devices, i.e. they change

their hold output every T/L seconds, where T is the output rate of the controller.

However, they are not the same as a zero-order hold running at a rate T/L seconds.

The generalized hold computes its output for the (L - 1) sampling times without

any input from the controller. Thus, it outputs a fixed-shape signal but changes the

amplitude of each subsample based on a table or a similar device that it contains.

For example, let Hg(T) denote the output of a generalized hold with sampling rate

T, with L = 2 for simplicity, and let y[k] be the input to the hold at time t = kT.

Then a possible equation to describe Hg(T) may be

i.05y[k] kT < t < kT + T/2
y[k] kT + T/2 < t < kT + T

There seems to be no research investigating the impact of fixed-point hardware, or

even finite-precision hardware, for generalized holds and their ability to help control

systems.

Another area I did not get a chance to include material about is Error Spectrum

Shaping (ESS). The idea involves feeding back the state quantization error and has

been alternatively called residue feedback. The 6-operator realizations, popularized

by Middleton and Goodwin in the 80's [117], also fall into the category of ESS.

See [10, 53, 70, 71, 96, 124, 185, 187, 188] for various discussions on FWL effects and

ESS.

The next chapter describes these and many other open questions and also suggests

a design idea for a software tool to facilitate design.
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Figure 5-4: Direct Form I Transpose.
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H(z) = HN(z)HN-1(z)... HI(z) I

x[k Hi(z) H2(z) ------ HN(Z) y[k]

Figure 5-5: Cascade decomposition of H(z).

-.---------------- ~11-1-----------------
H(z) = Hi(z) + H 2(z) + ..+ HN(Z)

Hi(z)

H2(Z)

x[k-~ ,+ y[k]

HN(Z)

Figure 5-6: Parallel decomposition of H(z).

K(s)

[(t) e(t)

E Kd(z) H

Figure 5-7: FWL filter error.

K(s)

r(t) e(t)

S E Kd,FWL(Z) H

Figure 5-8: FWL DT filter error.
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Continuous Time
Input -

Continuous Time

Figure 5-9: Continuous time system.

Continuous Time
Output

Continuous Time
Output

Figure 5-10: Digital redesign.

Figure 5-11: A lifted closed-loop system.

-------- -- ---l-------------------- ---------Erk Kd(Zk) HTk

I+

|K(s)
S(t

-- - -- - - -- - - - - -

r (t)
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r(t) y[k]

A(s, z = esT, t)

y(t)

Figure 5-12: DT controller approximation error.



y(t)

Figure 5-13: Approximation error as a disturbance.
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Chapter 6

Conclusion

The woods are lovely, dark and deep,
But I have promises to keep,

And miles to go before I sleep,
And miles to go before I sleep.

-Robert Frost

And so, we near the end of our journey. But, it is far from any end. Research on

FWL effects is relatively young, with many new results, especially in the controls con-

text, being published in the last decade. I have hoped to show throughout this thesis

the many smaller and larger questions that still loom. Apart from answering these

questions and developing the research on FWL effects, a very important direction of

development is software.

Currently, there seems to be little available software to explore the many possible

design options. Tools like SIMULINK from The MathWorks, Inc. and System Build

from ISI help one to evaluate specific designs but do little to facilitate the search of

the very large, non-linear design space. What features would the ideal tool have?

What kind of paradigm might it operate in? These are perhaps the most critical

questions whose answers will move much of the current research onto the desktops of

more engineers. I shall speculate on these questions and suggest a possible direction
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for further work.

Ideally, then, a filter design tool would ask the designer for specifications including

memory limitations, speed requirements, accuracy requirements, processor limitations

(operations/sec), and of course, the desired frequency and time response characteris-

tics. It would then try out many of the optimizations listed in the previous chapter,

partly in a structured way based on the relationships of the optimizations and partly

just with a random search. As it tries different optimizations, the tool would also

use different measures and apply it to each design. Finally when it has found several

possible candidates, it would return them to the designer who could then choose to

either use one of them, rerun the search with different parameters, or focus the search

to a specific region of the design space using only two or three measures.

Controller design would additionally require plant parameters and design con-

straints for the sample and hold devices, such as sampling rate, sampling resolution,

and the types of possible output holds.

As an abstract description, this tool sounds ideal, the magic wand of fixed-point

design. How realistic is it? Some of its lowest level building blocks would be functions

to evaluate a given realization with each measure. The functions can be implemented

using the algorithms in many of the references in this docuemnt. Next, one would need

to implement a heuristic to decide how to search the design space. This open-ended

problem's solution could range from random search to an extremely sophisticated

non-linear search algorithm. Finally, such a tool would have to have a user interface

that would allow easy specification of design constraints, not a simple task either. But

the utility of such a tool cannot be doubted. In fact, even a simpler, less feature-rich

version of such software would be incredibly useful, in applications engineering and

research.

I would like to pose and answer another question: What exactly is this 'design

space' that I mention? I would best characterize it by its 'design points'. One

point might be an nth order pipelined filter with m zeros, realized with some cascade

sections, some sections as lattices, and perhaps another section as a minimum roundoff

noise structure. Another point may be an (n + 5)th order filter with two sections
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realized as minimium ML2 sensitivity sections and some sections realized in second-

order direct form. One can see the immense number of possibilities. My statement

in the introduction, that the available tools and computational resources shape our

approaches and views of a problem, is reflected in my vision of this software tool.

What are some of the interesting theoretical or mathematical questions? One

direction is the modern controls paradigm. Fialho and Giorgiu [55] and Li [100]

explored stability robustness and performance. Li's model assumed a DT plant model

as did the one in [55]. Along with Keller and Anderson's work [92] and Chen and

Francis' explorations [36] of fast sampling and lifting, one should be able to better

include the effects of the plant in the closed loop, in turn leading to more accurate

measures and better FWL controller designs. The stochastic coefficient quantization

model also seems to offer hope for a cohesive roundoff noise/coefficient quantization

model. Combining the stochastic models with the modern controls paradigm may

also lead one closer to a direct route from CT Plant -+ FWL DT controller. I

also mentioned several different possibilities for incorporating block processing in

controller design in Section 5.8. Another area that seems completely unexplored is

the use of generalized holds with fixed-point hardware. Indeed, the possibilities seem

endless.

And these are all ideas that synthesize current research. New research in sampled-

data systems and robust controls will surely provide many more directions to explore.

What about for digital filters? One question that I would like to see investigated

is that of coeficient wordlength: how much can one shorten the wordlength of each

coefficient and still maintain a certain performance level? Sung and Kum's [166]

optimization routines do exactly this optimization using a brute force search. To put

the optimization in an analytical framework, perhaps using the stochastic coefficient

quantization error model, should be relatively straightforward (assign each associated

random variable a different variance) and may yield interesting results. However,

there is some question as to how far one can push this stochastic model [80]. Another

approach to filter design may be to apply some of the machinery of robust or H2/Hoo

controller design, perhaps to yield a direct path from CT filter -+ FWL DT filter. For
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filters that operate with analog signals, analyzing some of the different sample and

hold hardware in the context of FWL effects would be useful. Perhaps one of the most

exciting research area is VLSI design and implementation of filters. Unfortunately,

I did not have much time to evaluate this area more thoroughly, and I leave it for

future work.

Looking towards the future, I bring this journey towards its inevitable end and

wish you well, my reader, on your own explorations of the world of finite wordlength

effects.

THE END
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- Continuous Time

- Discrete Time

- Digital Signal Processing

- Digital Signal Processor

- Finite Word Length

- Transfer Function

- the space of n-dimensional vectors (the standard Euclidean space).

- the space of real m x n matrices.

- the space of n-dimensional vectors and m x n matrices with integer

valued entries.

- the matrix transpose operator.

- the matrix Hermitian operator (conjugate transpose).

- Expected value operator.

- ijth entry of the matrix A.

- Quantization operator. Q[x] returns the quantized value of x.

150

Appendix A

Notation

CT

DT

DSP

FWL

TF

R "

Rmx

Zn, Zmxn

H

E[-]

[A]ij = aij

Q[.]



Appendix B

Definitions

Arithmetic Component A digital multiplier, adder, or delay element.

notationally as:

X1 + x2

x - bx

(a) Add Element (b) Multiply Element

x[k+l] x[k]
D

(c) Delay Element

Figure B-I: Arithmetic Components

Arithmetic-Geometric Mean Inequality

n

n
i=1

i]
where ri E R and ri > 0, i = 1, 2, ... , n. Equality holds if and only if rl = r2

Blocking See Section 5.8.

Cauchy-Schwarz Inequality A special case of H51der's inequality with p = q = 2:

n-1

Zlbcjl <
j=O

j=n-

2)

where bj, cj E R.
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Controllability (or Reachability) Gramian (Reachable means that any state is

reachable from the origin while controllable means that any state is controllable

to the origin. The difference between the two is only relevant in the DT context

[41].)

Discrete Time:

The positive definite solution W, to the Lyaponov equation

W, = AWA T + BBT (B.1)

which is

00

WC = EAkBBT(AT)k (B.2)
k=0

where the reachable eigenvalues of A all have magnitude less than 1.

Continuous Time:

The positive definite solution W, to the Lyaponov equation

AWe + WcA T = -BBT (B.3)

which is

We= eA BB T(e(A))T dT (B.4)

where the reachable eigenvalues of A all have negative real parts.

Many authors use the letter K instead of We.

Eigenvectors A left eigenvector of a matrix A is a nonzero vector y such that ATy -

Ay where A is the associated eigenvalue. A right eigenvector of a matrix A is

a nonzero vector x such that Ax = Ax where A is the associated eigenvalue. A

is normal (ATA = AAT) if and only if X, the matrix of right eigenvectors is

orthogonal.

152



Frequency Transformation A frequency transformation F(z) is a function such

that, given a DT filter H(z), the composition G(z) = H(F(z)) results in a

filter with desired frequency response characteristics. Typically, an acceptable

low-pass filter H(z) is given and the problem is to design an F(z) so that the

composition has the required pass bands [151, page 203], [24, Table 3.5].

F(z) must have the following properties

1. F(z) should map the unit circle into itself, i.e.

F(ejd) = ejo(O)

so that the frequency response of G(z) should be related to that of H(z)

by the relationship

G(ej O) = H(ejo(O))

2. If H(z) is stable and minimum phase, then G(z) should have the same

properties. If A is a pole (zero) of G, then F(A) is a pole (zero) of H.

Therefore if I A < 1 implies |F(A)I < 1, then these properties will be

preserved.

Thus, F(z) is a frequency transformation if

Izi > 1 IF(z) > 1

zi = 1 = IF(z)I = 1

IzI < 1 * IF(z)| < 1

Generalized Sample-and-Hold A hold circuit produces a CT output signal u(t)

based on the DT input v[k] at t = kT. A general hold circuit can be expressed

as

u(t) = h(t - kT)v[k]
k=O

where the response function h(t) may be a matrix (in the MIMO case) and T

is the hold sampling period.
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If h(t) $ 0 only for t E (0, To), the circuit is called a finite-response hold. If

To = NT, it is called an N-interval hold. The 1-interval hold with a general

response function h(t) is called Chammas-Leondes' generalized hold or simply

generalized hold [6].

Gramians See Observability Gramian and Controllability Gramian.

Haddamard's inequality Let A be an arbitrary n x n nonsingular matrix with real

elements. Then

(det A) 2 < a2

i=1 k=1

If A is a positive definite, symmetric matrix, we can reduce the above to

[ det A 1/2

0 1 i=[A]ii  <_ 1

Hankel Singular Values The Hankel Singular Values, vi, are the square roots of

the eigenvalues of the product of the observability and controllability Gramians:

{vi} = VAi(WcWo), i = 1, ..., n

Note that the Hankel Singular values are invariant under similarity transforma-

tions and under frequency transformations [121].

Hessenberg form A matrix A = {aij} E Rnxn is in upper Hessenberg form if aij = 0

for i - j > 2, i, j E {1, 2, ..., n}. A 3 x 3 matrix in Hessenberg form would look

like

0*

For any matrix A, there exists an orthogonal T E R n x such that T-1AT is in

Hessenberg form [62].

A SISO system realization (A, B, C, D) is in system Hessenberg form if A is of

Hessenberg form and all the entries of either B or C are zero except the first

one. Every SISO system can be reduced to system Hessenberg form [109]. The

proof for Lutz and Hakimi's idea is in [62, page 189].
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Hlder's inequality

i=1 j=1 j=1 i=1

where ai,j are nonnegative real numbers for i = 1,..., u and j = 1, ..., v, and the

rj are nonnegative real numbers such that Ej= rj = 1.

This inequality holds as ri - 0, or equivalently, for -+ oo.

Renaming the terms and specializing the inequality, it can be reduced to
1 1

E lbjcjI < E bj E cjl q

j=0 j=o j=o

where bj, cj are real numbers and + = 1.

Hybrid Systems A hybrid system refers to a mixed continuous- and discrete-time

system in a single feedback loop. A typical setup is depicted in Figure B-2.

Much research in recent years has focused on hybrid systems as use of discrete

time controllers has surged. The hold block typically represents a zero-order-

hold but can also be a generalized hold function.

r(t) ctplan(t)

aafilt

hold dtctrl sampl(

Figure B-2: A Hybrid System

Kronecker Product The Kronecker product of two matrices, A and B, where A is

p x q and B is m x n, is denoted A 0 B:

[aB 1i ... laqB

AOB= :I BI .. ,---a---
SapiB l .. lapqBJ

The elements of A 0 B consist of all possible products aijbrs and the matrix has

dimension pm x qn. See [97].
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The LQG Problem The (steady-state) linear quadratic Gaussian (LQG) problem

in CT is defined as follows.

Assume the following system description:

±t(t) = Ax(t) + Bu(t) + w,(t)

y(t) = Cx(t) + Du(t) + wy(t)

where A E Rnx",B B Rnxm,C E Rpxn, and D E IRpxm; x E R is the state

vector, u E Rm is the input vector, and y C IR is the output vector; wu E Rm is

the uncorrelated white noise input disturbance with covariance matrix ,u while

wy E Rp is the uncorrelated white noise output disturbance with covariance

matrix Ey.

Represent the performance of the system with the following scalar quadratic

function of the states and the input:

Jc - E lim _ (x ( t )Q x ( t ) + u'(t)Ru(t)) dt (B.5)
[r-+oo 2T J I

where the weighting matrices satisfy R > 0 and Q > 0.

The objective then is to minimize J, with a compensator.

Latency The total time difference between the time a sample is input into a filter

and the time of its corresponding effect on the output.

Lifting See Section 5.9.3

Norms The Frobenius norm of a matrix A is defined as

||A|| f = tr (A T A)

and is simply the root sum of the squares of each of the entries of A, i.e.

IfA 1 = Eij a?. Note that the Frobenius norm of a matrix can also be written

using the vec operator.

IIA l = (vec A)H(vec A)
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Signal Norms

The Frobenius norm of f(e jw) is

n M 1/2

1 f(e{) fF ( k l )(ej) 12

\ i=1 k=1

= {tr [fT (e-j) f (ej)]}1/ 2

The Lp norm of f(t) E Cn m is

(B.6)lfl, = f jLfo I )|l dw 1

System Norms

Let G(s) be a p x m transfer matrix. Then,

IlG12 =

1f00

tr [G(jw)HG(jw)]

IIG(jw)IIF dw}

} 1/2
dW

IGlllo0 = sup Omax(G(jw))

where amaxG(jw) denotes the maximum singular value of G(jw). See [45] for

more details.

Observability Gramian Discrete Time:

The solution Wo to the Lyaponov equation

Wo = A TW A + CTC (B.7)

The solution is

(B.8)Wo = J(AT)kCTCAk
k=0
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where the observable eigenvalues of A all have magnitude less than 1.

Continuous Time:

The solution Wo to the Lyaponov equation

WoA + ATWo = -CTC (B.9)

The solution is

Wo = (e-A )TCTCerA dr (B.10)

where the observable eigenvalues of A all have negative real parts.

Many authors use the letter W instead of Wo.

Realization A realization is a particular implementation of a system. It specifies

the coefficients and, in many cases, the order of operations.

When using infinite precision, performing a non-singular similarity transforma-

tion on a state-space system results in an identical system (in terms of the

input/output description). However, its realization has changed since the co-

efficients have changed. A different order of operations but with the same

coefficients, such as the Direct Forms I and II, are also considered different

realizations.

Two important issues related to realizations arise in the context of FWL effects:

Non-singular similarity transformations do not change the system to equiv-

alent forms. Some transformations are "better" than others. Searching for

the best transformation is in fact a key challenge in finding the "optimal"

realization of a system.

With an infinite-precision representation, any non-singular transformation

of the state variables results in an equivalent system.
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Order of operations is not irrelevant. The exact order of additions and mul-

tiplications becomes important since quantization takes place after each

operation. Several authors have presented different notations to capture

the circuit topology in the matrix notation of the state-space description

(e.g. [19,119,151]) and discuss transformations based on the new notation.

Sampled-data System See Hybrid System.

Schur form A realization (A, B, C, D) is a Schur realization if the A matrix is in

the real Schur form

A l l x ... x ... x
0 A22"' X-.. X

A= . .. Aii

where each Aii is either a real number or a 2 x 2 matrix with complex conjugate

eigenvalues [62].

Any matrix A E R x n can be transformed to a Schur realization by orthogonal

similarity transformations. Furthermore, any realization can be transformed to

the following optimal Schur realization with at least n(n - 1) zero elements.

The optimal Schur realization has an A matrix as described above and a B

vector in the form B = [0, x, 0, x, ..., 0, x]T [62]. This form is only for 2 x 2

blocks.

Second-order modes See Hankel Singular Values.

Similarity Transformations A similarity transformation, T, is an invertible ma-

trix T which is applied to the state vector and results in a new state vector:

x -4- Tx.

Some of the consequences of applying a similarity transformation are:
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* Given a system with the input-output description H = C(sI - A)-'B +

D and applying a tranformation T still results in the same input-output

relation.

* Eigenvalues of a matrix are unchanged under a similarity transformation.

(Linear) State-Space System A set of linear constant-coefficient differential or

difference equations represented in matrix notation as:

Continuous Time:

x (t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Discrete Time:

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]

where A I RnXn, B e Rnxm, C E ]PXn, and D E RPxm; x E Rn is the state

vector, u E Rm is the input vector, and y E RP is the output vector.

For time varying systems, the A, B, C, and D matrices could all be functions of

time.

A periodically time varying system has system matrices of the form: A(t+T) =

A(t), Vt E R, where T is the period. Similarly, in discrete time, A[k + L] = A[k]

Vk E Z where L is the period.

Unless otherwise explicitly noted, all system descriptions are assumed to be

minimal.

Throughput The number of samples output per unit time.

Transfer Function An input/output description of a linear system given in Laplace

transform notation:

N(s)
H(s) =(s)

D(s)

bo + bls + ... + bsm

ao + als + ... + ansn
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while in z-transform notation:

N(z)
H(z) D(z)

bo + b1z + ... + bmz m

ao + a 1z + ... + anZn (B.12)

Transforms The Laplace transform of the function f (t) is

F(s) = j f (t)e - st dt
OO

(B.13)

while its Fourier transform (assuming it exists) is

(B.14)

The (one-sided) z-transform is

(B.15)H(z) = Zf (k) z - k

k=O

while its associated frequency response is

(B.16)
k=O

Vec The vectorization operator vec applied to a matrix M of dimension m x n returns

a vector of length mn whose elements are the columns of M stacked.

Zero-order-hold Given a continuous signal, x(t), outputs a stairstep signal with the

value x(kT) for kT < t < kT + T where T is the sampling period. The usual

model assumes instantaneous transitions and ignores what happens at t = kT.

161

F(jw) = jf (t)e - j t dt
oo

H(ei n) = f (ejf)e j k



Appendix C

Derivations

C.1 Hadamard's Inequality

Let A be an arbitrary n x n nonsingular matrix with real elements. Then

(det A) 2 <
2aik) (C.1)

The term on the right side is the product of the euclidean norms of each row.

Note that this is equivalent to the ith diagonal entry of ATA.

n

- aik _ [ATA]ii
k=1

If A is restricted to be a positive definite, symmetric matrix, then we can continue:

aik [A2]ii
k=1

since AT = A. Thus, (C.1) reduces to
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n

(det A) 2 < Jj[A2],
i=1

(det A) 2 
<

L=1[A2] -
(det A) 2

(I, [A]ii) 2

det A
<1

[ detA 1/2<

Note that equality will hold iff (det A) 2 = 1IL1 [A2], which will only be true if A

is diagonal.

C.2 H6lder's Inequality

F1 arj' < Hi( ai)
i=1j=1 j= l

where aij are nonnegative real numbers for i = 1,..., u and j = 1, ..., v, and the rj

are nonnegative real numbers such that -=1 rj = 1.

This inequality holds as ri -+ oo, or equivalently, for 1 -4 0.)

Let

n = 2;p rl = 2;q 2 = 2;

bj A alj; cj A g2,j;

163



Then, rewriting the general version, and noting that

1
m-1 1 1 n-1

j=0 i=O i=0 j=0

1 1
m-1 n-1 ro n-1 rl

(aoj) (aj) < ao(j  al
j=0 j=0 j=0

1 1
m-1 n-l n-1 q

e bj c j  = ) = cq

j=0 j=0 \3=0

If bi, ci 0 Vi, then we can instead state

m-1

Zbjllcjl <
j=0

Finally, since

m-1

j=0

m-1

j=0

If p = q = 2, we get the Cauchy

m-1

=Ibjcjl <
j=O

m-1

j=0

1 1
n-1 P n-1 q

I bj P  CjI q

j=0o j=o

Schwarz inequality

1 1
n-1 2 n-1 2

j=o j=o

C.3 Transfer Function Pole Sensitivity Analysis

I summarize here Kaiser's derivation of sensitivity of Direct Form realizations and

their dependence on sampling rate and system order. A shortened version of the

discussion here has already appeared in Section 4.3.

He starts out with the model that the digital filter design is being done to ap-

proximate a continuous-time filter with a rational transfer function. He takes the two
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common methods of the bilinear z-transform and the "standard" z-transformation

methods.

The bilinear z-transform is defined as:

H(z - 1) = H(s)ls 2 (1z-
T (1+z- )

where z = esT.

The standard z-transformation method requires a partial fraction expansion of

H(s). Then, transform each partial fraction using the relationship

1 T-4

s + a 1 - e-aTz - 1

Now, this is the important part. In both cases, the resulting H(z - 1) is of the form

S "=o biz - i

H(z) 1 + E
i=1~= aiz-2

N(z- 1) N(z- 1)

D(z-1) nL, l -
1-L=1( Z-)-

Note that only simple poles are assumed for the 'basically' low-pass transfer function

H(s),

N(s)
H(s) = (S P)nH=1(s - pi)

With the standard z-transformation,

n

D(z-1) = H(1
i=1

- epiTz - 1 )

where pi represents the ith pole of H(s) and may be complex.
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For the bilinear transform,
n

D(z-l) = H(s - pi) l, 2 (1-z
-
1)

i=1 T I+z-l)

n 2 (1 - z- ) p

i=1 T (1 + z- 1)

n 1 piT
z=1 (1 + z-1) 2
n

=1 (1- p T (1+z-1)

Note that the terms that came out from the denominator are shifted into the numer-

ator polynomial. Assume that 1 is greater then twice the Nyquist frequency.

Normalizing with respect to the sampling frequency,

I+i --=r 2

7rT Wn

where wn is the Nyquist frequency. Assuming there is no aliasing, ]piI < 1 Vi. As the

sampling frequency increases, the pi decrease from one towards zero.

The standard and bilinear cases transform in the limit as T -+ 0 as follows

[1 - ePiTz - ] - [1 - (1 + Pir)z- 1]

(1+ I ) Z_ [ + Pii)Z -I]
1 - _ _z1 - [1 - (1 + r)

(2-]

higher order terms. Thus, the two methods yield the same polynomial in the limit.

The zeros of this polynomial (not to be confused with the zeros of H(z-1) or H(s))

all tend to

1
Zi  -i=r1 + 6it1j
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The filter will become unstable if any of the zeros of D(z- ') move inside the unit

circle. To estimate the order of the perturbation necessary to move a zero of D(z- 1)

to the point z - 1 = 1, consider:

n n

D(z-1 )lz- = = = i = piT (C.2)
i=1 i=1

n n

= 1+ aiz-z-l= = 1 + a (C.3)
i=1 i=1

If any of the bi is changed by F0 A 1 + Ebj, then (C.3) can be zero, which would
j=1

mean a pole on the unit circle. For example, say

bi, = bi - Fo

then
n n

Zb 1= bj + bi2

j=1 j=1,joi

n

E bj+bi-F0
j=l,joi

=0

Thus, D(z- 1) will have a zero on the unit circle. Of course, this bound is very crude.

However, one can still make some comments regarding the relationship of wordlength

and sampling rate/system order.

(C.2) implies that coefficient accuracy is affected by the sampling rate and by

the system order. Thus, going from an nth order filter to a (2n)th order filter will

require approximately twice as many bits to represent the ai. Similarly, doubling the

sampling rate for an nth order filter will require n additional bits to represent the ai.

Interestingly, (C.3) can be interpreted as the return difference at zero frequency

when the filter H(z- 1) is realized in direct form i.e. it will be very small since the

filter will pass everything through. (See Figure 5-1).

Also, the problem is further aggravated as T approaches 0 since the ai tend to

approach in magnitude the binomial coefficients (n), and tend to alternate in sign,
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leading to computational problems in evaluating D(z-') due to the differences of large

numbers. This idea leads to a tighter bound on coefficient accuracy. The largest ai

is given approximately by

[n/2max a 2 (

4 2n

which yields the bound (C.4), listed here

md > 1 + - log 2n+2

2n 2
V/~1r

JPkT
k=1

(C.4)

Trying to tighten the bound further, Kaiser computes the sensitivity of the poles

to changes in the coefficients.
n

1 + Eaiz-
1=1

1=1

n

=I (1

n ini
z-k E H

j=l I=110j

Z-k z-=zz, l
j=1 1=1

1963

n

zh 1=1

1=1

(1

az i  
z k + 1

l= i

which results in a total differential change of

dz = n zi

k=1

z)
Zl

(-1) OaZi

Z2 aak

zj

Oak 1
9 n -1

= ak " ( 1 - )
j=1

-1
(1-

-1-Z Iz

)IZ 1Z

z-i)
Z

z 1Ozizi O~ak

dak
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Note that as the poles cluster together, the term 1- - will get smaller and its

reciprocal will get larger, pointing to the commonly known fact that pole sensitivity

increases as the poles get closer together.

Refer to [88] for more details, including a unique approach which analyzes sensi-

tivity using the root locus method.

C.4 Matrix Derivatives

There are at least three possible ways to define the matrix derivative with respect to

a matrix,

(C.5)
OA

where H is a function of A, and both H and A are matrices.

The following is the development in [143]: Let Y E Rpx q have elements [ykl] whose

elements are functions of the elements of X = [xij] C Rmxn. Then, the definition of
DYkl

the derivative of Y = Y(X) depends on how the pqmn elements are arranged
dxij

in a rectangular matrix.

The three definitions are:

DY
1. The derivative is a partitioned matrix [ ] whose ijth partition is derived

j 
ykI

from Y by replacing each element Ykl with the derivatives -a.2

2. The derivative is a partitioned matrix [t9Yk ] whose klth partition is derivedaX
dyk

from X by replacing each element xij with the derivatives
Dxij

DYC has elements [DYkI 1
3. This vectorial definition, denoted has elements arranged in the

same way as the elements [l ] in the product vec Y0 (vec X)T .This derivative

0vec Y
has been ascribed the notation

Dvec 'X

Pollock extensively discusses all three in [143] and describes their inter-relationships.

He goes on to conclude that the "correct" definition of the matrix derivative is the
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third one. However, Lutz and Hakimi [109] use the second one, the most common

one, to define the sensitivity function for MIMO systems.
DY

Thus, the matrix derivative of is an mp x nq matrix,dX partitioned into the

m x n submatrices with the

OY

DX

dylklklth partition equal to
dX

I I I

(Y11 a y12 IYlq

dX dx dX
----- 1----- -----

9Y2 1 1 dY 22  dY2q

DX OdX I dX
-L ------- - - - - -.I I

I I
S I I I

I I I
I I

Dyki
The derivative of Ykl with respect to X, denoted kl

Dykl
order as X whose ijth entry is

09xij

is a matrix of the same

dH(z) dH(z)Now, to derive , [109] first computes and then, using Graham's
DA Da,

8[H(z)]j"First Transformation Principle" [66], computes O i I will present the discus-
OA

sion of Graham's "First Transformation Principle" presented in Lutz and Hakimi's

paper.

Consider a matrix product of the form Y = MXN where X = [Xrs] is of order

m x n, Y = [yij] is of order 1 x q, and M and N are matrices compatible with X and

are independent of X. Then,

yij = MT EijNT

DX

where Eij = eieT is an elementary matrix of the same order as the matrix Y.

Also,

aY (MXN) ME
Xrs= MEXsNdzs dlZrs

where Ers is an elementary matrix of the same order as the matrix X.
dyij"First Transformation Principle" states that -- is a transformation of
170X

170

Graham's
DY
Xrs and

OxS

(C.6)



vice versa. For example, to obtain , from , replace M by MT, N by NT,
OX Oxes

and Ers by Eij (changing the size of the elementary matrix if necessary).

Applying this idea yields

aH(z)
OA

I I I

I I I
---------------- ------

-T ------- LTG1F2T I IGF T

I : I
I I I
I I I

I I I

= (vec G)(vec F)T

where Gi, Fj represent the ith and jth column of G and F respectively.

C.5 Using the Cauchy-Schwarz Inequality to bound

ML 12

Applying the Cauchy-Schwarz inequality to the first term, call it M1, in both ML12

measures,

M = 2 IGIIFIIFIIF d 2

= tr (Wo)tr (We)
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A slightly more detailed explanation:

E OH(z)1IA = Si,(z) = Gi(z)F(z)

Applying the 1-norm,

S (J112 27r d 2

|S(z)II = 2JIS(eJw) IF dw

where IIS(eJ')IIF = | IISij(e j°)ll2

i j

= 2 , IG (ej")F (ej) F dw

I

= 2 [G(e-Jw)GT(e ')F(e-w)FT(eJw)]1/ 2 dw)

< ( 27r G(e-ji)G T (e) dw

(2; F(e- J)FT(ew ) dw)

OH(z) 2 ac(z) 2

An alternative way to reach the same result:

Si (ej) 
f 2 i Sij (ei) IF dw )

1lo 2 2

27r ( Gij(eJ) F(ew JIF dw

( f 27r||Gi(e)|2 dw 2

= [wd]i[Wo]h

Summing both sides over all i, j,

E sij(ej') 2 E[Wo]ii[wc]jj = Tr(Wo)Tr(Wc)
ij ii
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