220 research outputs found

    Constraint-based reachability

    Get PDF
    Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    Using abstract interpretation to add type checking for interfaces in Java bytecode verification

    Get PDF
    AbstractJava interface types support multiple inheritance. Because of this, the standard bytecode verifier ignores them, since it is not able to model the class hierarchy as a lattice. Thus, type checks on interfaces are performed at run time. We propose a verification methodology that removes the need for run-time checks. The methodology consists of: (1) an augmented verifier that is very similar to the standard one, but is also able to check for interface types in most cases; (2) for all other cases, a set of additional simpler verifiers, each one specialized for a single interface type. We obtain these verifiers in a systematic way by using abstract interpretation techniques. Finally, we describe an implementation of the methodology and evaluate it on a large set of benchmarks

    Modular Abstract Definitional Interpreters for WebAssembly

    Get PDF
    Even though static analyses can improve performance and secure programs against vulnerabilities, no static whole-program analyses exist for WebAssembly (Wasm) to date. Part of the reason is that Wasm has many complex language concerns, and it is not obvious how to adopt existing analysis frameworks for these features. This paper explores how abstract definitional interpretation can be used to develop sophisticated analyses for Wasm and other complex languages efficiently. In particular, we show that the semantics of Wasm can be decomposed into 19 language-independent components that abstract different aspects of Wasm. We have written a highly configurable definitional interpreter for full Wasm 1.0 in 1628 LOC against these components. Analysis developers can instantiate this interpreter with different value and effect abstractions to obtain abstract definitional interpreters that compute inter-procedural control and data-flow information. This way, we develop the first whole-program dead code, constant propagation, and taint analyses for Wasm, each in less than 210 LOC. We evaluate our analyses on 1458 Wasm binaries collected by others in the wild. Our implementation is based on a novel framework for definitional abstract interpretation in Scala that eliminates scalability issues of prior work

    A Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler

    Get PDF
    The Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine

    The Java Memory Model is Type Safe

    Get PDF

    Cost Reduction With Guarantees: Formal Reasoning Applied To Blockchain Technologies

    Get PDF
    Blockchain technologies are moving fast and their distributed nature as well as their high-stake (financial) applications make it crucial to “get things right”. Moreover, blockchain technologies often come with a high cost for maintaining blockchain infrastructure and for running applications. In this thesis formal reasoning is used for guaranteeing correctness while reducing the cost of (i) maintaining the infrastructure by optimising blockchain protocols, and (ii) running applications by optimising blockchain programs—so called smart contracts. Both have a clear cost measure: for protocols the amount of exchanged messages, and for smart contracts the monetary cost of execution. In the first result for blockchain protocols starting from a proof of correctness for an abstract blockchain consensus protocol using infinitely many messages and infinite state, a refinement proof transfers correctness to a concrete implementation of the protocol reducing the cost to finite resources. In the second result I move from a blockchain to a block graph. This block graph embeds the run of a deterministic byzantine fault tolerant protocol, thereby getting parallelism “for free” and reducing the exchanged messages to the point of omission. For blockchain programs, I optimise programs executed on the Ethereum blockchain. As a first result, I use superoptimisation and encode the search for cheaper, but observationally equivalent, program as a search problem for an automated theorem prover. Since solving this search problem is in itself expensive, my second result is an efficient encoding of the search problem. Finally for reusing found optimisations, my third results gives a framework to generate peephole optimisation rules for a smart contract compiler

    Towards a High-Level Implementation of Execution Primitives for Unrestricted, Independent And-Parallelism

    Get PDF
    Most efficient implementations of parallel logic programming rely on complex low-level machinery which is arguably difficult to implement and modify. We explore an alternative approach aimed at taming that complexity by raising core parts of the implementation to the source language level for the particular case of and-parallellism. We handle a significant portion of the parallel implementation at the Prolog level with the help of a comparatively small number of concurrency.related primitives which take case of lower-level tasks such as locking, thread management, stack set management, etc. The approach does not eliminate altogether modifications to the abstract machine, but it does greatly simplify them and it also facilitates experimenting with different alternatives. We show how this approach allows implementing both restricted and unrestricted (i.e., non fork-join) parallelism. Preliminary esperiments show thay the performance safcrifieced is reasonable, although granularity of unrestricted parallelism contributes to better observed speedups

    Aspects of Java program verification

    Get PDF

    Quantifying and Predicting the Influence of Execution Platform on Software Component Performance

    Get PDF
    The performance of software components depends on several factors, including the execution platform on which the software components run. To simplify cross-platform performance prediction in relocation and sizing scenarios, a novel approach is introduced in this thesis which separates the application performance profile from the platform performance profile. The approach is evaluated using transparent instrumentation of Java applications and with automated benchmarks for Java Virtual Machines
    • …
    corecore