

 Karlsruhe Reports in Informatics 2012,23
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

The Java Memory Model is Type Safe

 Andreas Lochbihler

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

The Java Memory Model is Type Safe

ANDREAS LOCHBIHLER, Karlsruher Institut für Technologie

This work presents a machine-checked formalisation of the Java memory model and connects it to an opera-
tional semantics for Java and Java bytecode. For the whole model, I prove the data race freedom guarantee
and type safety. The model extends previous formalisations by dynamic memory allocation, thread spawns
and joins, infinite executions, the wait-notify mechanism, and thread interruption, all of which interact in
subtle ways with the memory model.

1. INTRODUCTION
Type safety and the Java security architecture distinguish the Java programming lan-
guage from other mainstream programming languages like C and C++. Another dis-
tinctive feature of Java is its built-in support for multithreading and its memory model
for executing threads in parallel [Gosling et al. 2005, §17]. To enable optimisations in
compilers and hardware, the Java memory model (JMM) allows more behaviours than
interleaving semantics. It therefore non-trivially interacts with type safety and Java’s
security guarantees. Although this is well-known [Gosling et al. 2005; Pugh 2000],
their combination has never been considered formally.

Here, I present a machine-checked model of Java and the JMM called JinjaThreads
for both Java source code and bytecode, and investigate the impact of the Java memory
model on type safety and Java’s security guarantees. In particular, my contributions
are the following:

First, I present a unified formalisation of the axiomatic JMM based on the opera-
tional JinjaThreads semantics for Java source code and bytecode (§2). This provides
the first rigorous link between a Java and the JMM, which several authors have cri-
tised as missing [Aspinall and Ševčík 2007a; Cenciarelli et al. 2007; Huisman and
Petri 2007]. My model of Java builds on 15 years of formalised Java semantics, from
Nipkow and von Oheimb [1998] to Lochbihler [2012b]. It features dynamic memory
allocation, thread spawns and joins, the wait-notify mechanism, interruption, and in-
finite executions. Each of these is well-understood and has been formalised before,
e.g., [Liu and Moore 2003; Petri and Huisman 2008; Farzan et al. 2004a; 2004b]. But
their combination with the memory model is novel and results in subtle interactions,
which previous JMM formalisations have missed [Aspinall and Ševčík 2007a; Cencia-
relli et al. 2007; Huisman and Petri 2007; Boyland 2009]. I illustrate these cases with
new examples and show how to deal with them. Dynamic allocation and the special
treatment of memory initialisation in the JMM are the main complication in the def-
initions and proofs. In particular, it does not suffice to consider only finite (prefixes of
infinite) executions. Coinductive definitions and proofs fortunately deal with terminat-
ing and infinite executions uniformly (§1.2 introduces the relevant concepts).

Second, I formally prove the data race freedom (DRF) guarantee (§3): For correctly
synchronised programs, the JMM guarantees interleaving semantics, which is also
known as sequential consistency (SC) [Lamport 1979].1 In other words: If a program-

1 A data race occurs when two confliciting accesses may happen concurrently, i.e., without synchronisation
in between; two accesses to the same (non-volatile) location conflict if they originate from different threads
and at least one writes. A program is correctly synchronised iff no SC execution contains a data race.

Preliminary versions of §1.1, §2.2 to §2.4, §2.6, §3, and §6 have appeared in [Lochbihler 2012a]. The author’s
PhD thesis [Lochbihler 2012b] contains preliminary versions of the same sections plus §4 and §5.1. This
work is partially supported by the Deutsche Forschungsgemeinschaft under grants Sn11/10-1,2.

2 Andreas Lochbihler

mer makes sure that there are no data races (e.g., by using locks), then she can forget
about the JMM and assume interleaving semantics.

In this work, I resolve the inconsistencies with initialisations of memory allocations
in previous proofs [Manson et al. 2005; Huisman and Petri 2007]. By fixing the defi-
nition of data race [Jacobs 2005], I strengthen the formal guarantee such that it now
holds also for programs that synchronise via volatiles, see Figs. 4 and 21 for examples.
Moreover, I bridge the gap between the axiomatic style of the JMM and the operational
JinjaThreads semantics. To that end, I identify the assumptions of the proof about the
single-threaded semantics and discharge them using the above link. In particular, I ex-
plicitly construct sequentially consistent executions for a given prefix by corecursion.
Hence, I am the first to prove the DRF guarantee unconditionally.

Third, I prove that the JMM allows every execution that interleaving semantics pro-
duces (§4). This is the converse of the DRF guarantee, but also holds for programs with
data races. Hence, despite its technical complexity, the JMM specification is consistent
in that it defines some behaviour for every program, not just for correctly synchronised
ones. This is non-trivial in the presence of data races and, to my knowledge, has not
been proven before.

Forth, I show type safety (§5), independent of correct synchronisation. Unfortunately,
the axiomatic nature of the JMM is not suited for standard proofs using subject reduc-
tion, as Goto et al. [2012] have observed. Direct proofs must deal with reads retrieving
type-incorrect values from the shared heap, because the JMM matches reads with
writes a posteriori. To avoid the induced complications, I rather follow a two-step ap-
proach. I prove that each value read from memory during any legal execution is of the
expected type (§5.2). Hence, the usual progress and preservation theorems [Wright
and Felleisen 1994] may assume type-correct reads and, therefore, do not depend on
the memory model. In fact, I reuse the existing type-safety proofs from previous work
[Lochbihler 2008] that were ignorant of the memory model.

Moreover, I demonstrate that type safety breaks (§5.1), when the JMM is combined
with the standard run-time type system for Java [Drossopoulou and Eisenbach 1999],
which stores type information inside the objects on the heap. The failure is caused by
a weakness in the JMM specification; attaching type information directly to the ref-
erences themselves avoids the problem. However, the same flaw in the JMM allows
behaviours that break Java’s security architecture (§5.4), independent of how type in-
formation is stored.

Fifth, the JMM is very technical and subtle, and so are the proofs; machine support
is therefore essential – as a series of false claims about the JMM and their subsequent
disproof demonstrates [Manson et al. 2005; Cenciarelli et al. 2007; Ševčík and Aspinall
2008; Torlak et al. 2010]. All my definitions and proofs have been checked mechanically
by the proof assistant Isabelle/HOL [Nipkow et al. 2002]. But this is not just the mech-
anisation. I have designed the proof structure carefully to be as abstract as possible
and reasonable: an interface of signatures and assumptions connects the concurrent
semantics and proofs to the single-threaded ones. This yields a tractable concurrency
model that does do not rely on the specifics of the concrete language. I demonstrate
this by specialising the results to both Java source code and bytecode, but they apply
to other languages and memory models as well. For example, Boehm and Adve’s proof
[2008] of the DRF guarantee for C++ also postulates sequentially consistent comple-
tions; my corecursive construction fits there, too. Hence, the challenging proofs about
the concurrent semantics have to be done just once. Moreover, the assumptions on the
single-threaded semantics have the usual format of invariants and preservation. Thus,
ordinary inductions suffice. This is a major improvement over the axiomatic style of
memory model specifications.

The Java Memory Model is Type Safe 3

class C { static int x = 0, y = 0; }

thread t1

1: int r1 = C.x;
2: C.y = 1;

thread t2

3: int r2 = C.y;
4: C.x = 1;

(a)

1
2

3
4

r1 == 0
r2 == 1

3
4

1
2

r1 == 1
r2 == 0

1
3
4

2

1
3

2
4

3
1
2

4

3
1

4
2

r1 == 0
r2 == 0

(b)

Fig. 1: Program with two threads (a) and all of its sequentially consistent schedules (b)

The presentation focuses on the relevant parts of the concurrent semantics, omits
most of the single-threaded semantics, and illustrates the subtleties rather with ex-
amples than formal definitions. A detailled description of the technical details can be
found in the author’s PhD thesis [Lochbihler 2012b]; the formalisation with all the
ugly details of mechanised proofs is available online in the Archive of Formal Proofs
[Lochbihler 2007]. In §1.1, I informally explain the JMM; the appendix summarises
Java’s concurrency primitives.

Throughout the article, I contrast my approach with others’ and discuss the ad-
vantages and drawbacks using examples. Moreover, I thoroughly review the existing
literature on the JMM (§6). Thus, this work collects the strengths and weaknesses of
the current JMM. For the next revision of the JMM, I hope that this will be a valuable
resource of what must not be missed.

1.1. Informal Introduction to the Java Memory Model
The Java memory model [Manson et al. 2005; Gosling et al. 2005, §17.4] specifies how
shared memory behaves under concurrent accesses. This section sketches the main
ideas behind the JMM.

1.1.1. Motivation. The program in Fig. 1a has two threads, each of which reads one
of C’s static fields x and y into a local variable and subsequently sets the other to 1.
Figure 1b shows all possible interleavings of the two threads, and for each schedule,
the final values for the threads’ local variables r1 and r2. All these schedules assume
sequential consistency (SC) [Lamport 1979], which is considered the most intuitive
memory model [Hill 1998]: There is a global notion of time, one thread executes at a
time, and every write to a memory location immediately becomes visible to all threads.
In particular, the result r1 == r2 == 1 is impossible under SC as the following argu-
ment shows. Suppose it was possible. Then, l. 1 executes after l. 4 and l. 3 after l. 2. As
l. 1 and l. 3 literally precede l. 2 and l. 4, respectively, one obtains the contradiction that
l. 1 executes after l. 4 after l. 3 after l. 2 after l. 1.

For efficiency reasons, modern hardware implements memory models that are
weaker than SC to allow for local caches and optimisations [Adve and Gharachorloo
1996; Sorin et al. 2011]. For example, if the threads t1 and t2 execute on different cores
of a processor, the reads in ll. 1 and 3 might still be waiting for memory to return the
values, when the writes in ll. 2 and 4 execute. If intra-processor cache communication
is faster than memory, both pending reads may return the written values, i.e., 1. This
results in r1 == r2 == 1, which is not possible under SC. Similarly, compiler optimisa-
tions might reorder the independent statements in each thread. Then, r1 == r2 == 1
is possible for the transformed program even under SC. Therefore, a correct imple-
mentation of SC must take extra precautions: As the code does not provide any clues
about how threads communicate via shared memory, it must either conservatively dis-

4 Andreas Lochbihler

able such optimisations in all code or laboriously analyse whether they are allowed
[Sura et al. 2005]. To avoid the ensuing slow-down, the JMM relaxes SC and allows
the outcome r1 == r2 == 1 in the example.

Nevertheless, the JMM provides the intuitive SC semantics under additional as-
sumptions – known as the data-race freedom guarantee [Adve and Hill 1990]. Two
accesses to the same location conflict if

(1) they originate from different threads,
(2) at least one is a write, and
(3) the location is not explicitly declared as volatile.

A data race occurs if two conflicting accesses to a location may happen concurrently,
i.e., without synchronisation in between. If the program contains no data races, the
JMM promises that it behaves like under SC. In other words: If a programmer protects
all accesses to shared data via locks or declares the fields as volatile, she can forget
about the JMM and assume interleaving semantics, i.e., SC.

In the above example, there are two data races: the write of C.y in l. 2 races with the
read in l. 3 and similarly l. 4 and l. 1 for C.x, i.e., the DRF guarantee does not apply.
To eliminate these data races, one can use Java’s synchronisation mechanisms, e.g.,
wrapping every line in its own synchronized block on C’s class object. Alternatively,
one can declare C’s static fields x and y as volatile, because accesses to such fields
never conflict.2

1.1.2. Components of a JMM Execution. Since the JMM must ensure that compilers can
implement Java on a variety of hardware with different MMs efficiently, it reduces
concrete thread operations to events, which are called inter-thread actions in JMM
terminology:

— reading (Read) from, writing (Write) to and initialising (Alloc)3 a location on the
heap,

— locking (Lock) and unlocking (Unlock) a monitor,
— interrupting (Intr) a thread and observing that it has been interrupted (Intrd),4
— spawning (Spawn) of and joining (Join) on a thread, and
— external actions (IO) – for input and output, for example, and
— Start and Finish to mark mark the start and termination of a thread, respectively.

This way, the JMM is independent from syntax and implementation techniques. It
nevertheless gets a global view on how a given program works algorithmically and on
how its threads interact, and uses this to determine the set of legal behaviours.

A JMM execution consists of a sequence of such events for each thread, three orders
on these events (program order, happens-before order, and synchronisation order), and
a function that assigns writes to reads.

2When a thread reads from a volatile field, it synchronises with all other threads that have written previ-
ously to that field. Hence, the reading thread can be sure that everything that should have happened in the
other threads prior to their writes in fact has happened prior to its read. For the formal semantics, see §2.4.
3Technically, the JMM defines initialisation actions each of which initialises only a single location. Jin-
jaThreads uses one event per memory allocation that initialises all members of the allocated object or array.
This way, allocation events keep track of allocated addresses whereas JMM initialisation actions would not
if the allocated object or array contains no members, e.g., an array of length 0. The special treatment of
allocations in the JMM (see below) ensures that this deviation does not matter semantically. For clarity, I
write Init x for initialising global variables in examples. Formally, a bootstrapping thread initialises such
variables with allocations as explained in §2.3.
4The JMM list of inter-thread actions does not mention Intr and Intrd [Gosling et al. 2005, §17.4.2], but
the definition of synchronisation points [Gosling et al. 2005, §17.4.4] includes interrupts and observing an
interruption. My events Intr and Intrd model these two points.

The Java Memory Model is Type Safe 5

α

time

definitely before
_ ≤hb α ∧ α 6≤hb _

definitely after
α ≤hb _ ∧ _ 6≤hb α

maybe concurrently
_ 6≤hb α ∧ α 6≤hb _

Fig. 2: Happens-before provides a notion of time relative to a given event α. If α is a
Read, it may see Write events in the grey area.

Program order (notation ≤po) totally orders the events of each thread according to
their occurrence in the thread’s sequence, but does not relate events from different
threads.

The (partial) happens-before order ≤hb provides a notion of time relative to a given
event α. As Fig. 2 illustrates, it partitions the other events of the execution into three
groups: those that must have happened before it (_ ≤hb α ∧ α 6≤hb _), those that
must happen after it (α ≤hb _ ∧ _ 6≤hb α), and those that may happen concurrently
(_ 6≤hb α ∧ α 6≤hb _).5 Since α’s thread knows that all of its events prior to α must have
happened and all posterior to α must not yet have happened, ≤hb always includes ≤po.
Additionally, synchronisation events, which are all events except for external actions
and reads from and writes to non-volatile locations, introduce happens-before relation-
ships between events of different threads. For example, spawning a thread t1 (event
Spawn t1 _) synchronises with t1’s start event Start. In combination with program or-
der, all events of the spawning thread before the spawning happen before any of t1’s
events. Similarly, a write to a volatile location synchronises with a read that sees it,
because the reading thread then knows that the write must have occurred before. The
synchronises-with order ≤sw captures these relationships between events of different
threads, see §2.4 for the formal definition.

Whenever α’s thread cannot deduce – using only allowed means of synchronisation
– that an event β of another thread must have happened before or will happen after
α, then α and β may happen concurrently. In particular, the thread must not make
any assumption about the relative order of two events that happen concurrently. This
permits compilers and hardware to freely reorder independent statements of a thread
without synchronisation in between.

Finally, the synchronisation order ≤so totally orders all synchronisation events and
must be consistent with happens-before. It models a global time on synchronisation
events on which all threads must agree.

Since the JMM is independent from a concrete language and sequential semantics, it
is custom to write examples such as in Fig. 1a in a simple imperative language (Fig. 3a)
rather than to obfuscate the point by irrelevant Java details. In this language, thread-
local variables start with “r”, e.g., r1, r2, whereas x, y, etc. denote shared locations.
In examples, vertical rules separate the threads, and the thread in column i has ID
ti. Above the threads, the initial values of shared locations and any necessary declara-
tions are given.

Fig. 3b shows how executions are depicted. The threads are abstracted to events
– labelled with the thread ID – and orders. Solid arrows represent program or-
der, transitive relationships are not shown. The dashed arrows denote the flow of
values from writes to reads; the write-seen function of an execution assigns to each

5For technical reasons, the JMM’s happens-before order ≤hb is reflexive, although “happens-before” would
intuitively correspond to an irreflexive order. Since an event is never write and read action at the same time,
this detail does not affect the semantics.

6 Andreas Lochbihler

initially: x = y = 0;
1: r1 = x;
2: y = 1;

3: r2 = y;
4: x = 1;

(a)

1: (t1,Read x 1)

2: (t1,Write y 1)

3: (t2,Read y 1)

4: (t2,Write x 1)

(b)

Fig. 3: Program from Fig. 1a in simpler syntax (a) and its JMM execution for the result
r1 == r2 == 1 (b).

read event the write event it sees. Dotted arrows used in later examples denote
synchronisation (synchronises-with relationships).

The JMM requires that the write-seen function respects happens-before in the follow-
ing sense: A read α may see a write β that happens before or may happen concurrently
(grey area in Fig. 2), but the write must not happen after the read. Moreover, there
must not be another write γ to that location that is known to happen between α and β,
i.e., β ≤hb γ ≤hb α.

The execution shown in Fig. 3b results in r1 == r2 == 1, which SC does not allow.
As there is no synchronisation, happens-before coincides with program order. Hence,
ll. 1 and 2 may happen concurrently with ll. 3 and 4. Therefore, l. 1 and l. 3 are allowed
to see the writes from l. 4 and l. 2, respectively. In particular, the thread on the left
must not deduce that l. 3 must have already executed from the fact that l. 1 reads the
value 1 from l. 4, because there is no synchronisation involved.

These constraints alone, which happens-before imposes on the visibility of writes,
are insufficient to enforce global time. Figure 4 shows the classic independent reads
of independent writes (IRIW) example [Boehm and Adve 2008]. In the execution de-
picted, t1 perceives l. 3 to execute before l. 4, because its reads see the former write, but
y’s initialisation instead of the latter write. Conversely, t4’s reads see l. 4 and x’s ini-
tialisation, but not l. 3. Hence, it appears to t4 as if l. 3 executes after l. 4. Such a result
is possible if, e.g., t2 and t3 execute simultaneously on different cores such that t2’s core
propagates the write to t1’s core faster than to t4’s and conversely t3’s core communi-
cates faster with t4’s than with t1’s (e.g., because they share their caches). However, no
SC execution can produce such a result. By the DRF guarantee, the JMM must not al-
low this result either, because there are no data races (all shared locations x and y are
marked as volatile). This is why volatile reads must also respect the synchronisation
order analogously to happens-before. In Fig. 4, there is no such synchronisation order,
because either l. 3 or l. 4 would be an intervening write between the initialisation of x
or y and the read in l. 2 or l. 6, respectively.

1.1.3. Values Out of Thin Air. The constraints from happens-before and synchronisation
order capture the JMM notion of a well-formed execution. However, they are still too
weak for programs with data races. Consider, e.g., the program in Fig. 5a. In this
program, the threads merely copy x to y and vice versa; the thread-local assignment
in l. 3 has no effect and could well be removed. So one would expect r1 == r2 == 0
to be the only possible result. However, a queer compiler might eliminate the local
variable r2 in the thread on the right: x = 1; x = y; is a correct implementation in
a sequential setting, but in parallel with the thread on the left, the result r1 == 1
becomes possible even under interleaving semantics (e.g., schedule x = 1; r1 = x; y
= r1; x = y;). As the original program cannot normally produce 1, 1 appears out of
thin air. Yet, the constraints mentioned so far do not forbid this behaviour even for the
original program. The reads in ll. 1 and 3 may see the writes in ll. 4 and 2, respectively,

The Java Memory Model is Type Safe 7

initially: volatile x = y = 0;
1: r1 = x;
2: r2 = y;

3: x = 1; 4: y = 1; 5: r3 = y;
6: r4 = x;

(t1,Start) (t2,Start) (t3,Start) (t4,Start)

1: (t1,Read x 1)

2: (t1,Read y 0)

3: (t2,Write x 1) 4: (t3,Write y 1) 5: (t4,Read y 1)

6: (t4,Read x 0)

(_, Init y 0) (_, Init x 0)

Fig. 4: The classic independent reads of independent writes (IRIW) example

initially: x = y = 0;
1: r1 = x;
2: y = r1;

3: r2 = 1;
4: r2 = y;
5: x = r2;

(a)

1: (t1,Read x 1)

2: (t1,Write y 1)

4: (t2,Read y 1)

5: (t2,Write x 1)

(b)

Fig. 5: JMM causality test case 4 with l. 3 added: the value 1 appears out of thin air

as they may happen concurrently and there is no synchronisation at all. Thus, Fig. 5b
shows a well-formed execution for Fig. 5a.

For type safety and Java’s security guarantees, it is vital that values do not appear
out of thin air [Pugh 2000]. Otherwise, malicious code could exploit this to forge a
pointer to an object to which it must not gain access or which it can then access in a
type-unsafe fashion. For example, if l. 3 in Fig. 5a stored in r2 such a pointer instead
of the value 1, such optimisations would enable the thread on the left to gain access to
the pointer. Therefore, the JMM must forbid values appearing out of thin air. But note
that the executions in Figs. 3b and 5b are identical when viewed in isolation. Yet, the
JMM only allows the former. Thus, one cannot decide whether an execution is allowed
by looking solely at the execution. In fact, being allowed is a second-order property.

To ban self-justifying speculations (and distinguish Fig. 3b from Fig. 5b), the JMM
adds a causality condition called legality: Reads that see concurrent writes must be
committed, i.e., there must be a justifying JMM execution that produces the same
value, but the read event α sees a write event β that happens before it (β ≤hb α).
This causality condition distinguishes the JMM from memory models of other lan-
guages like C++, where concurrent reads and writes immediately result in undefined
behaviour. For Fig. 5a, causality forbids r1 == r2 == 1, because no execution can pro-
duce the value 1 without having both reads see the concurrent writes. In contrast, it
accepts Fig. 3b, because Fig. 3a has another execution in which ll. 2 and 4 write 1 even
if ll. 1 and 3 see the initialisations. The important thing to note is that at the basis of
any sequence of justifying executions, there is one in which all reads see writes that
happen before them. Such an execution is called well-behaved.

This is where memory initialisations come into play; the JMM assumes that all
locations are initialised to their default value. To ensure that such a basis for justifying
executions always exists, these initialisation events are defined to happen before any

8 Andreas Lochbihler

other event, i.e., conceptually at the start of the execution. Thus, there is always at
least one suitable write that happens before any given read.

The details of the causality condition are the most complex part of the JMM. In fact,
there are two versions: Aspinall and Ševčík [2007a] weakened the original condition
such that more optimisations are possible while maintaining the DRF guarantee. I
have formalised both and the theorems hold for both.

1.2. A Note on Coinduction
My formalisation heavily uses coinductive definitions and proofs. They provide an ele-
gant way to handle finite and infinite executions uniformly. To make the formalisation
and proofs more accessible, I now introduce the coinductive concepts that are used
and compare them to their inductive counterparts, using a simple example. Readers
familiar with coinduction may skip this section.

1.2.1. Coinductive Definitions. Like an inductive definition, a coinductive definition is
given by inference rules; I use double horizontal bars to distinguish them from induc-
tive ones. Formally, the rules are interpreted as a fixed point of the associated (mono-
tone) functional F : the least for inductive ones and the greatest fixed point (gfp) for
coinductive ones.

The least fixed point (lfp) yields the smallest set that is closed under the rules. Hence,
for each element, there is a finite derivation tree using only the introduction rules. In
this sense, inductive definitions contain only finite elements. Therefore, one can use
induction to prove that all elements satisfy a property – abstractly, the inductive proof
shows that the property is closed under the rules, too.

For example, given a labelled transition system (LTS), the following defines the fam-
ily (Πs)s of sets of all maximal paths that start in a given state s.

P1 :
s 6→

[] ∈ Πs
====== P2 :

s
l→ s′ π ∈ Πs′

l · π ∈ Πs

=================

Here, s l→ s′ denotes that state s can transition to s′ with label l. A path is mod-
elled as a word of labels; it is maximal iff it is infinite or it leads to a state s from
which no transition is possible (notation s 6→). This example simplifies the actual con-
struction I use for connecting Java with the JMM (§2.3): the LTS corresponds to the
interleaved small-step semantics and the paths to traces of an execution. The mono-
tone functional F associated with P1 and P2 transforms a family A = (As)s of sets to
the family (F(A)s)s as follows:

F(A)s =

{
{ [] } if s 6→
{ l · π. ∃s′. s l→ s′ ∧ π ∈ As′ } otherwise

When P1 and P2 are interpreted inductively, Πs = lfp F consists of all finite maximal
paths that start in s. The paths are finite, because each rule application (i.e., every
step in F ’s fixed point iteration) adds just one label to the path. Hence, the inductive
interpretation covers only finite, terminating executions.

For the following transition system T , e.g., Πx consists of the paths (ac)nab where
n is any natural number. Here, I have omitted the cons operator · and list brackets;
πn denotes n repetitions of π and π∞ infinitely many. Inductively, one however obtains
Πw = ∅, because the only maximal path c∞ from w is infinite.

The Java Memory Model is Type Safe 9

T : x y z w
a

c

b c

In contrast, the greatest fixed point gfp F , i.e., the coinductive interpretation, de-
notes the greatest set all of whose elements are justified by one of the inference rules
– Pierce [2002] calls such sets consistent. It excludes only elements for which one can
prove (in a finite derivation) that they do not belong to the set. Of course, the gfp
contains all the finite elements with finite derivation trees. In addition, it typically
includes infinite elements backed by infinite derivation trees. Hence, there is no rule
for (structural) induction.

1.2.2. Coinduction and Infinite Derivation Trees. To show membership of an infinite ele-
ment x, one uses coinduction: find a set A with x ∈ A such that A is consistent, i.e., all
of A’s elements are justified by one of the rules (formally A ⊆ F(A)). This proof princi-
ple is derived from greatestness: the gfp is the greatest consistent set and therefore a
superset of A; in particular, it contains x. For example, c∞ ∈ Πw under the coinductive
interpretation of P1 and P2: Choose Aw = { c∞ } and As = ∅ for s 6= w. I must show
that whenever π ∈ As, either s 6→ and π = [], or π has the form l · π′ such that s l→ s′

and π′ ∈ As′ for some s′. The latter clearly holds for the chosen (As)s: c∞ = c · c∞

and w c→ w. Similarly, Πx contains also (ac)∞ under the coinductive interpretation
(provable with a different choice for (As)s).

Note that (in)finiteness describes the derivation trees, not the elements themselves.
In the example, both rules add one constructor. So, a path is finite iff it has a finite
derivation. But this does not hold in general. Suppose, e.g., that the label c signifies
an internal computation that should not show up in a trace. The following attempt
defines the family (Π′s)s of sets of all maximal paths from s from in which the label b
has been purged. It splits the rule P2 into P′2 and P′D. If the next transition has label b,
P′D does not cons the label. This breaks the correspondence between constructors and
derivation steps.

P′
1 :

s 6→
[] ∈ Π′s
====== P′

2 :
s

l→ s′ π ∈ Π′s′ l 6= c

l · π ∈ Π′s
=========================== P′

D :
s

c→ s′ π ∈ Π′s′

π ∈ Π′s
=================

Now, [] ∈ Π′w is a path of finite length, but its (only) derivation is infinite, namely in-
finitely many applications of P′D. Formally, this is again shown by coinduction: choose
Aw = { [] } and As = ∅ for s 6= w; justify [] ∈ Aw with P′D: w c→ w and [] ∈ Aw. Compu-
tationally, it is sensible to consider [] as infinite, because it models a non-terminating
computation with only internal steps.

For both c∞ ∈ Πw and [] ∈ Π′w, the justifying element in As′ was c∞ and [], respec-
tively. That is, they justified themselves. For (Πs)s, self-justification is unproblematic,
because all rules add constructors. Hence, the infinite derivation traverses all of c∞ –
it is a mere coincidence that c∞ is equal to its tail. For [] ∈ Π′w, this argument fails, be-
cause P′D applies infinitely often without changing the path, i.e., the infinite derivation
completely ignores the structure of []. In fact, Πw contains junk: coinduction similarly
shows that any path π is a member of Π′w, not just π = []. Thus, P′1, P′2, and P′D are
wrong (although they would be fine for an inductive definition).

In fact, it is hard to characterise (Π′s)s coinductively, but there is an elegant way
out: Define Π′s = {purge π. π ∈ Πs } where the function purge (defined corecursively
below) removes all occurrences of c from a list. Single-valuedness ensures that no junk
is introduced. Hence, Π′w = { [] } as desired. In §2.3, I use a similar approach to remove

10 Andreas Lochbihler

unobservable transitions in traces.
purge xs = purge′ (dropWhile (λy. y = c) xs)

purge′ [] = []
purge′ (x · xs) = x · purge′ (dropWhile (λy. y = c) xs)

As this definition steps out of the language of coinduction, coinduction as proof prin-
ciple no longer works out of the box. For example, no-c xs defined by NC1 and NC2

formalises that the list xs does not contain c. Let me show that all paths in Π′s in fact
do not contain c, i.e., that no-c (purge π) holds for any π ∈ Πs.6

NC1 :
no-c []
====== NC2 :

no-c xs x 6= c
no-c (x · xs)

================

I must use coinduction, as π and purge π may be infinite, i.e., induction is not available.
Note that in the coinductive step, every justification with NC2 must produce one label
of the (purged) path. However, dropWhile in purge’s definition may gobble arbitrarily
many labels of π. Hence, such a justification requires unbounded search for the state
that produces the next label other than c in π.

1.2.3. Termination Parameters. To avoid complicated proofs, I introduce a termination
parameter a which is taken from a well-founded order (R,≺). This way, I can delay the
justification in the coinductive step provided that a decreases in ≺.7 The parametrised
no-ca adds to no-c’s rules the delay rule NC′D. Its premise a′ ≺ a and well-foundedness
ensure that any derivation tree applies the rule NC′D only finitely many times in a row
– this avoids the junk due to self-justifications. As the other recursive rule NC′2 adds a
constructor, the termination parameter may be chosen anew after each application.

NC′
1 :

no-ca []
======= NC′

2 :
no-ca′ xs x 6= c

no-ca (x · xs)
================== NC′

D :
no-ca′ xs a′ ≺ a

no-ca xs
===================

Then, no-c xs iff no-ca xs for some a ∈ R. Thus, I can use no-ca’s coinduction principle
to prove that π ∈ Π′s does not contain c. For ≺, I take as measure the length of π’s prefix
of c labels. Hence, when the first label in π is c (and I normally would have to start an
unbounded search to gobble all c labels), I merely drop the first label and I use NC′D
for justification, as the measure decreases.

Formally, Isabelle/HOL represents the coinduction principle as an ordinary higher-
order theorem. Hence, I do not need to define no-ca explicitly and prove equivalence
to no-c. It suffices to prove the new coinduction principle with delay as a theorem like
it would be generated for no-ca. This proof is a trivial induction on well-foundedness
and can be easily automated. In this work, I use delayed coinduction when building
sequentially consistent completions (Lem. 3.20) and well-behaved executions.

2. LINKING JAVA WITH THE JAVA MEMORY MODEL
This section describes how to formally connect Java and Java bytecode with the Java
memory model. I build on the JinjaThreads model of Java and Java bytecode, which

6Actually, no-c (purge xs) holds for any list xs, not just paths π ∈ Πs. Nevertheless, to illustrate the idea of
termination parameters, I thread the premise π ∈ Πs through the coinductive proof.
7These termination parameters are orthogonal to up-to techniques that are common in bisimulation proofs
[Sangiorgi 1998; Hur et al. 2013]. Up-to techniques allow to pick the justification of elements in the coinduc-
tion invariant from a larger set, but still require that the elements are immediately justified according to one
of the rules. In contrast, my parametrisation over a well-founded order allows to defer before committing to
one rule. In the following no-c example, up-to techniques do not help to prove c being absent in paths taken
from Π′

s, because dropWhile delays the decision between NC1 and NC2 for arbitrarily many steps. Without
parametrisation, the coinduction proof requires a nested induction.

The Java Memory Model is Type Safe 11

layer source code bytecode
7 Java memory model

co
nc

ur
re

nt
se

m
an

ti
cs

6 set of traces
5 interleaved small-step

4 thread start & finish events

si
ng

le
-t

hr
ea

de
d

se
m

an
ti

cs

statements call stacks
3 & exception handling

expressions single instruction
2 native methods
1 global type information

Fig. 6: JinjaThreads stack of semantics

I have described in detail in previous work [Lochbihler 2007; 2008; 2010; 2012b;
Lochbihler and Bulwahn 2011]. It covers a substantial subset of sequential Java and
Java bytecode, e.g., local variables and assignments, objects and fields, inheritance,
dynamic dispatch, recursion, arrays, exception handling, standard control structures,
and native methods. It models the following multithreading features according to the
Java language specification (JLS) [Gosling et al. 2005]: arbitrary thread creation, syn-
chronisation through monitors, the wait-notify mechanism, joining on threads, thread
interruption, and volatile fields. JinjaThreads is executable [Lochbihler and Bulwahn
2011] and has been validated by running Java test programs [Lochbihler 2012b].

To favor reuse and sharing, I have organised the semantics in a stack (Fig. 6). It falls
into two parts: Layers 1 to 4 define the single-threaded semantics and layers 5 to 7 the
multithreaded ones. This separation nicely disentangles all intra-thread issues from
concurrency; both parts only communicate using events à la JMM inter-thread actions.
Similarly, each layer connects to the layer above through an interface of signatures and
assumptions, on which the definitions and proofs rely. Moreover, this structure favors
reuse between the source code and bytecode: their formalisations differ only in layer 3,
which defines the semantics of the language primitives.

The presentation omits some uninteresting details of the semantics. Instead, I focus
on the following challenges:

— storing runtime type information and allocating fresh memory (§2.1, §2.6),
— deriving event traces from the single-threaded semantics (§2.2, §2.3),
— formalising the JMM (§2.4)
— determining the identity of an event (§2.5),
— dealing with non-termination (§2.7), and
— modelling the wait-notify mechanism and interruption (§2.8, §2.9).

2.1. Type Information and Fresh Addresses
In the informal introduction §1.1, I have only mentioned values in heap locations. Yet,
a Java implementation must also exchange runtime type information, array lengths,8
and freshness of addresses between the threads. According to the JLS [Gosling et al.
2005, §17.4.5], checked type casts, virtual method calls, and reading the length of an
array are not part of the inter-thread actions and thus not affected by the JMM; read-

8Although the JLS specifies that every array has a final field length [Gosling et al. 2005, §6.4.5] that stores
its length, the JMM treats array lengths specially [Gosling et al. 2005, §17.4.5].

12 Andreas Lochbihler

ing types and array lengths must always return the correct data. Therefore, the JMM
provides the strong model of sequential consistency for type information, and array
lengths.

To enforce SC for types, I implement allocation and type information as a global
state. The multithreaded semantics passes this global state from one thread to the
other during execution like in interleaving semantics. Moreover, I define abstract op-
erations to query and update the global state and specify their properties. Hence, I
am able to state clearly what assumptions type safety and the DRF guarantee rely on.
Along the way, this addresses a question pointed out by Aspinall and Ševčík [2007a]:
What does it mean for an address being fresh for memory allocation?

The interface to the shared state consists of three operations:

(1) The partial function typeof-addr σ a extracts from the state σ the type information
for address a, i.e., the type of the object at a and possibly its array length.

(2) empty-σ denotes the initial state when no objects have been allocated.
(3) The partial function alloc σ T allocates a new object or array of type T 9 and returns

its fresh address and the updated state. It is undefined if all addresses are already
allocated.

The implementation must ensure two properties:

(A1) alloc is correct, i.e., if alloc σ T = b(σ′, a)c (where b_c denotes definedness), then
σ′ stores type T for a, i.e., typeof-addr σ′ a = bT c.

(A2) alloc only extends the type information in σ, i.e., if typeof-addr σ a = bT c and
alloc σ T ′ = b(σ′, a′)c, then typeof-addr σ′ a = bT c.

2.1.1. Dynamic Type Information. In fact, I actually implement the specification twice.
The first implementation stores the type of objects in the objects themselves. This fol-
lows standard practice in formalising Java [Alves-Foss 1999; Stärk et al. 2001; Liu and
Moore 2003; Klein and Nipkow 2006; Farzan et al. 2004b; Petri and Huisman 2008].
The global type information σ is like a shared heap (a map) except that it stores for
every allocated address instead of the object itself only its type and possibly the array
length, but no field values. Field values are irrelevant, because the JMM determines
them. I implement the operations as follows: typeof-addr σ a merely returns the infor-
mation that σ stores for a; empty-σ is the everywhere undefined map; and alloc σ T
picks some fresh address in σ and updates σ to store T for a. An address is fresh in
state σ iff σ contains no type information for it. This implementation is straightforward
and satisfies the above specification (A1 and A2).

However, programs with data races may have type-unsafe executions. In the follow-
ing two examples, the program gets stuck or subject reduction fails. They both exploit
that the type of an address is only determined upon allocation, but not when it is
first used. Nevertheless, the DRF guarantee applies (§3) and ensures that programs
without data races are type safe like under SC.

First, when the type of an address is not yet known, the defensive (source code)
semantics can get stuck and the aggressive virtual machine (VM) behaves in an unde-
fined way. The example in Fig. 7 has data races on x and y. The JMM allows that l. 1
reads the address a of the object allocated in l. 3 via the detour of the second thread, be-
cause an optimising compiler might move ll. 3 and 4 before l. 1. However, the semantics
does not anticipate such optimisations, but executes the program as it is. Hence, when
l. 2 calls m on a, the defensive source code semantics gets stuck and the aggressive VM

9I assume that the type of an array also specifies its length.

The Java Memory Model is Type Safe 13

class A { void m() {} } initially: x = y = null;
1: r1 = x;
2: if (r1 != null) r1.m();
3: r3 = new A();
4: y = r3;

5: r4 = y;
6: x = r4;

Fig. 7: Dynamic dispatch in l. 2 requires type information which is not yet available

class C {} class D {}
initially: b = false; x = y = null;

1: r1 = y;
2: x = r1;

3: r2 = x;
4: if (b)
5: r3 = new C();
6: else
7: r2 = new D();
8: y = r2;

9: b = true;

Fig. 8: A program with a legal execution where r2 of type D references a C object

calls an unspecified method, because a’s type information used for dynamic dispatch is
still undefined.

A temptingly simple measure would be to restrict reading such that only allocated
addresses may be read from memory. However, the semantics then misses some legal
JMM behaviours, because this restriction prohibits reordering with memory alloca-
tions. In Fig. 7, e.g., the JMM allows r1 == y in the final state, because compilers are
allowed to move l. 1 past the independent statements in ll. 3 and 4. However, the re-
stricted semantics cannot produce this result because the read in l. 1 always executes
before the allocation in l. 3, i.e., it can never return the address to be allocated.

Second, reading an address before its type is determined may also compromise sub-
ject reduction. The program in Fig. 8 is type correct if it declares x, y and r2 of type
D. However, it has a legal execution where they reference a C object (for a detailled
derivation, see Fig. 26). The problem here is that the type of an address may vary
across justifying executions. The allocation operation alloc may pick the same address
a for the allocations in ll. 5 and 7, because only one of them occurs in any one execu-
tion. Hence, it is l. 4 that decides on the type to allocate – based on whether it sees
the initialisation b = false or the concurrent write b = true. However, l. 3 may have
already read a and stored it in r2 of static type D. Then, if l. 5 allocates a C object, type
safety is broken.

2.1.2. Static Types for Addresses. To tackle the above type safety issues, I define the
following alternative implementation of the operations. It is motivated by the insight
that the core of the above problems is that the type of an address is only determined
upon allocation, but not when it is first used.

Now, it is the address itself that stores type information for the address. Hence,
an address a = (T, n) consists of its type information T and a sequence number n
to distinguish objects of the same type. The type and array length of an address is
the information stored in the address, i.e., typeof-addr σ (T, n) = bT c. In particular,
type information for every address is available from the start. Hence, the programs in
Figs. 7 and 8 are unproblematic, because with this implementation,

(1) dynamic dispatch only requires correct type information, which is now available
independent of allocations, and

(2) the allocations in ll. 5 and 7 always return different addresses.

14 Andreas Lochbihler

Now that I have stripped type information off the shared state, it only needs to
remember which addresses are fresh for allocation. Hence, the state is a map from
type information to the number of objects of that type that have already been allocated.
Allocation then merely increments that number and uses the former value as sequence
number for the new address. Obviously, this implementation satisfies the specification
A1 and A2, too.

Apart from supporting type safety, this implementation exposes a hidden communi-
cation channel via type information from which the previous suffered. For example,

class A implements I { int f() { return 0; } }
class B implements I { int f() { return 1; } }

interface I { int f(); } initially: x = 0; y = null;
1: r1 = x;
2: r2 = (r1 == 0 ? new A() : new B());
3: y = r2;

4: x = 1; 5: r3 = y;
6: r4 = r3.f();

(P1)

Classes A and B inherit method f() from their common interface I. When l. 5 sees
l. 3, dynamic dispatch at l. 6 tells the thread on the right about the left thread’s local
variable r1, although there is no synchronisation involved. In the previous implemen-
tation, the allocation in l. 2 returns the same address value, no matter whether A or B is
allocated. Hence, from the point of view of events, the thread on the right only reads an
address (in fact the same value in both cases), but behaves differently. In contrast, the
second implementation allocates A’s objects at different addresses than B’s. Hence, the
value that l. 5 reads completely determines the call target in l. 6. Analogously, threads
can communicate through array lengths instead of types, see Fig. 24 for an example.
This is why I treat array lengths as part of the type information – arrays of different
lengths have distinct addresses.

However, there is also a disadvantage over the previous implementation. Since type
information partitions the address space, each read or write of an address value not
only transfers a pointer value as on standard hardware, but simultaneously does so
for the complete run-time type information of the object it references. From an imple-
mentation point of view, this is unrealistic.

2.2. Thread Management Actions
As the global state needs to be passed between the threads, threads cannot execute in
isolation, as the JMM suggests [Gosling et al. 2005, §17.4]. Instead, I compute their in-
terleavings, which guarantees sequential consistency for the shared type information.
My interleaving semantics also takes care of mutual exclusion for locks and manages
the monitor wait sets, notifications, spawns of and joining on threads, and thread in-
terruption.

The single-threaded semantics has the form t ` (x, σ) −αs→ (x′, σ′). Local states of
thread t are denoted by x and x′, and σ, σ′ are the (global) type information that all
threads share. Source code defines a small-step semantics, the VM for bytecode uses a
functional style. Both semantics are standard except for three aspects:

(1) They can access only the local state of the current thread and the shared state
of type information, but not, e.g., the thread pool, the wait sets, or other thread’s lo-
cal states. Instead, they use a list αs of events to communicate with the interleaving
semantics. This separates the concurrency features from the sequential aspects such
that I can use the same interleaving semantics for Java source code and bytecode. Fig-
ure 9 shows the source code reduction rules for calls to Thread’s native methods start,
interrupt, and isInterrupted. As can be seen, these rules merely translate the method

The Java Memory Model is Type Safe 15

SP: t ` 〈addr a.start([]), σ〉 −[Spawn a (C, run, a)]→ 〈unit, σ〉

SPF: t ` 〈addr a.start([]), σ〉 −[ThreadEx a True]→ 〈throw IllegalThreadState, σ〉

INTR: t ` 〈addr a.interrupt([]), σ〉 −[ThreadEx a True,WakeUp a, Intr a]→ 〈unit, σ〉

INTRINEX: t ` 〈addr a.interrupt([]), σ〉 −[ThreadEx a False]→ 〈unit, σ〉

ISINTRDT: t ` 〈addr a.isInterrupted([]), σ〉 −[Intrd a]→ 〈true, σ〉

ISINTRDF: t ` 〈addr a.isInterrupted([]), σ〉 −[NotIntrd a]→ 〈false, σ〉
Fig. 9: Semantics of methods start and isInterrupted for class Thread. All rules have
the preconditions typeof-addr σ a = bT c and that T inherits the called method from
class Thread.

calls to appropriate events for the multithreaded semantics. I will discuss the specific
events below.

(2) As there is no shared state that stores the values of object fields and array cells,
the thread does not know what value should be read. Non-determinism solves this.
When a thread needs to read a field or array cell, there is a separate transition for
every value that could be read, even for type-incorrect ones. Although this produces
many impossible reductions, the JMM well-formedness and legality constraints will
later select the right ones. To that end, read and write operations are recorded in the
list αs, too. For example, the rules for reading and writing field C::F 10 of the object at
address a are as follows. Note that the shared state σ does not constrain value v at all.

FACC: t ` 〈addr a.C::F, σ〉 −[Read (a,C::F) v]→ 〈Val v, σ〉

FASS: t ` 〈addr a.C::F := Val v, σ〉 −[Write (a,C::F) v]→ 〈unit, σ〉

(3) The semantics ensure that the first transition of every thread generates the Start
event and – if the thread terminates – the last transition the Finish event. Layer 4 in
the stack of semantics takes care of this.

Just like the single-threaded semantics does not know anything about the other
threads, the multithreaded semantics is oblivious of the thread-local states and the
shared type information. The multithreaded state stores the state of all locks, the wait
sets and notifications, the pending interrupts and the threads’ local states.

When the interleaving semantics interleaves the reductions of the individual
threads (notation s −(t, αs)→ s′), it checks that the events αs of t’s reduction are in
line with the current multithreaded state s. For example, if αs contains a Lock a event,
then the lock a must not currently be held by any thread other than t. And in case of
a Spawn a _ event, the thread identified by object a must not have been spawned yet.
Implementing all this is tedious – see [Lochbihler 2012b, Ch. 3] for the definitions –,
but the full details are not relevant for the rest of this paper. I write s −tαs→∗ s′ for
the reflexive and transitive closure of _−_→ _.

Unfortunately, the events from §1.1 are insufficient to correctly implement the JLS.
Therefore, I introduce the following additional events:

(1) Detect whether a thread has already been spawned (ThreadEx),
(2) wait in a monitor (Suspend) and notification (Notify, NotifyAll, WakeUp),

10To distinguish hidden fields, a field is labelled with the class that declares it, e.g., C::F denotes F declared
in C.

16 Andreas Lochbihler

(3) clearing an interrupt (ClearIntr) and testing for a thread not being interrupted
(NotIntrd), and

(4) test whether the current thread does (not) hold a lock (HasLock, NoLock).

Technically, the last group is only a convenience, because this way, a thread need not
remember in its local state which locks it is holding. The others, however, are necessary
as the examples P2, P3, P4, P5, and Fig. 19 will show.

For ThreadEx, consider program P2 of two threads that race for spawning the same
thread:

initially: volatile t = null;
1: r1 = new Thread();
2: t = r1;

3: r2 = t;
4: r2.start();

5: r3 = t;
6: r3.start();

(P2)

Suppose both reads in ll. 3 and 5 see the write at l. 2, i.e., they read the address of
the allocated Thread object. Then, either l. 4 or l. 6 must throw an IllegalThreadState
exception, but not both. Hence, both l. 4 and l. 6 must be allowed to fail in some ex-
ecutions. Thus, the two right-most threads may just start, read the address of the
Thread object (then fail with the exception, but the JMM has no event for that), and
then finish. Hence, if each thread were run in isolation, they both would be allowed to
fail, too. Since this contradicts the specification of the start method, there is a covert
communication channel.11

For the new interruption events, consider the following program.12 Can we have
r == 0 at the end?

initially: volatile v = 0;
1: t2.interrupt();
2: while (t2.isInterrupted());
3: r = v;

4: while (!t2.isInterrupted());
5: v = 1;
6: Thread.interrupted();

(P3)

Intra-thread consistency requires that l. 3 executes only after the loop in l. 2 has ter-
minated. According to the API specification, isInterrupted() returns true as long as t2
is interrupted. As only l. 6 can clear the interrupt, l. 3 must execute after ll. 5 and 6.
As v is volatile, the read in l. 3 must see the most recent write, i.e., consistency allows
only r == 1. Without the new events ClearIntr and NotIntrd, however, one could not
express this dependency at all.

2.3. Traces
Given the interleaving semantics, the next step is to construct the execution candi-
dates (called traces) from which the JMM rules will select the well-formed and legal
ones. A trace ξ is a possibly infinite list of events labelled by the thread that generated
them. The relation s ⇓ ξ characterises all traces ξ that start in the state s, which I
define as

s ⇓ ξ ←→ (∃ξs. s ↓ ξs ∧ ξ = concat ξs) (1)

11For start, the JMM specifies synchronisation only between a successful call and the first action of the
spawned thread [Gosling et al. 2005, §17.4.4]. A JVM implementation might add more synchronisation,
but our semantics must not, since this might eliminate data races from programs, i.e., it could wrongly
certify programs with data races as DRF. In [Demange et al. 2013], a successful call synchronises also with
the failing ones. Note that this restricts the allowed compiler optimisations because these calls then have
release-acquire semantics instead of just release. For example, it is no longer allowed to move a non-volatile
read before the call; see also P7.
12The method isInterrupted returns whether the receiver thread has been interrupted. The static method
interrupted returns the interrupt status of the current thread and atomically clears the interrupt.

The Java Memory Model is Type Safe 17

where concat ξs concatenates all lists in ξs and s ↓ ξs (defined coinductively) collects the
list of lists of events labelled with the thread ID as follows:

s 6→
s ↓ []
==== STOP

s−(t, αs)→ s′ s′ ↓ ξs
s ↓ (events t αs) · ξs

======================== STEP

where _ 6→ characterises stuck states in the interleaving semantics and events t αs
retains only the original JMM inter-thread actions (as defined in §1.1) from αs and
pairs each with the thread ID t. events removes all additional events from above, be-
cause they are irrelevant for the JMM. Hence, every trace is a complete list of the JMM
events produced by running the program.

Note that the detour via a list of lists of events is necessary. If I defined s ⇓ ξ di-
rectly with the above coinductive rules STOP and STEP (i.e., prepending events t αs
to ξ instead of consing), I could derive every trace ξ for a state s that can perform an
infinite sequence of transitions without events, i.e., events t αs = [], because it would
be impossible to prove that ξ was not a trace (STEP would be applicable infinitely of-
ten as discussed in §1.2). The above approach works fine since (events t αs) · ξs adds a
constructor and concatenating the infinite list of empty lists yields the empty list [].

For the JMM, a program always comes with a fixed start state start-state. It is spec-
ified by a class, a method name, and the list of parameters it takes. It contains only a
single thread start-tID that holds no locks and is about to execute the specified method
with the given parameters. All wait sets are empty and there are no pending inter-
rupts. The shared type information has pre-allocated the start-tID Thread object and
certain system exceptions. The list start-events of start-up events contains start-tID’s
Start event and allocations for the preallocated objects.

Then, the JMM identifies a program with the set E of complete traces that start in
start-state, prefixed with start-events. Formally (++ concatenates two lists):

E = { start-events ++ ξ | ξ. start-state ⇓ ξ }

E contains many ill-formed traces, because read operations may read arbitrary values,
even not type-conforming ones that no write operation of the program can ever pro-
duce. Since such traces have no write-seen function, the JMM well-formedness rules
discard them.

Let me now present an example of E in detail. Fig. 10 shows a Java implementation
of the example in Figs. 1 and 3. There is a bootstrapping thread t0 that creates and
spawns the two threads t1 and t2 whose run methods contain the code from the exam-
ple. Since JinjaThreads does not model static fields, the shared locations x and y are
represented by the fields of a container class C.

All traces start with the following events that represent t0’s main method up to the
first call to start, abbreviated as up-to-spawn:

start-events ++ [(t0,Alloc a0 C), (t0,Alloc t1 T1), (t0,Write (t1, T1::c) a0),
(t0,Alloc t2 T2), (t0,Write (t2 T2::c) a0), (t0,Spawn t1 _))]

i.e., t0 allocates the objects for the container and the two threads at locations a0, t1 and
t2

13 and executes T1’s and T2’s constructors. Remember that the allocations initialise
the fields with default values, i.e., 0 for x and y declared in C, and Null for c declared
in T1 and T2.

Thread t1 has three structurally different traces depending on the kind of value that
reading this.c stores in the local variable c, namely (the label t1 is omitted):

13For simplicity, I assume in examples that threads are identified by the address of their associated object.

18 Andreas Lochbihler

class T0 {
public static void main(String[] args) {
C c = new C(); Thread t1 = new T1(c); Thread t2 = new T2(c);
t1.start(); t2.start(); } }

class T1 extends Thread {
C c;
T1(C c) { this.c = c; }
public void run() { C c = this.c; int r1 = c.x; c.y = 1; } }

class T2 extends Thread {
C c;
T2(C c) { this.c = c; }
public void run() { C c = this.c; int r2 = c.y; c.x = 1; } }

class C { int x, y; }

Fig. 10: Java implementation for the example in Fig. 3

(t0,Alloc a0 C)

(t0,Alloc t1 T1)

(t0,Alloc t2 T2)

(t0,Start)

(t0,Write (t1, T1::c) a0)

(t0,Write (t2, T2::c) a0)

(t0,Spawn t1 _)

(t0,Spawn t2 _)

(t0,Finish)

(t1,Start)

(t1,Read (t1, T1::c) a0)

(t1,Read (a0, C::x) v)

(t1,Write (a0, C::y) 1)

(t1,Finish)

(t2,Start)

(t2,Read (t2, T2::c) a0)

(t2,Read (a0, C::y) v′)

(t2,Write (a0, C::x) 1)

(t2,Finish)

v = Intg 0 v′ = Intg 0

v = Intg 1v′ = Intg 1

Fig. 11: Well-formed executions for the program in Fig. 10

(1) [Start,Read (a1, T1::c) (Addr a),Read (a, C::x) v,Write (a, C::y) (Intg 1),Finish],
(2) [Start,Read (a1, T1::c) Null,Finish], and
(3) [Start,Read (a1, T1::c) w],

where a is an arbitrary address, v is an arbitrary value, and w is any value other than
an address or the null pointer Null. In the first form, the address a from the Read
is then used to access the fields x and y of the referenced container. In the second, t1

The Java Memory Model is Type Safe 19

reads Null, so the subsequent field access raises the preallocated NullPointer exception
and the thread immediately terminates. In the last case, w is type-incorrect, so the
semantics gets stuck upon the next field access, i.e., there is no Finish. Thread t2 has
the same traces with x and y exchanged.

The traces in E for this program all start with up-to-spawn and then interleave the
threads. Of these, the JMM considers only those as well-formed that originate from
the first form with a = a0 and v, v′ ∈ { Intg 0, Intg 1 } (Intg injects 32 bit integers into
the type of values). In particular, the unexpected behaviour from Fig. 3 is well-formed.
In terms of the JMM, all these interleavings collapse to four well-formed executions
as shown in Fig. 11 (where I have omitted the bootstrap events for clarity – except
for t0’s Start event that is relevant for determining what happens before what). The
write-seen arrows are labelled with conditions for which they apply. All well-formed
executions are legal in this example.

2.4. Formal Definition of the Java Memory Model
Now, I formalise the JMM and connect it with the set of traces E . First, I introduce
some JMM terminology (§2.4.1) and I derive the orders of the JMM from a trace
(§2.4.2), which abstract from the concrete interleaving as explained in §2.3. Then, the
formal definitions of well-formed and legal execution builds on these orders (§2.4.3 and
§2.4.4).

2.4.1. JMM Terminology. Most JMM definitions depend on a trace ξ, which I usually at-
tach as a sub- or superscript. To simplify the notation, I drop the sub- and superscript,
when ξ is obvious from the context.

Since an event can occur multiple times in ξ, I use the index in ξ (a natural number)
to assign a unique identifier to an event, i.e., Aξ = {α. α < |ξ| } denotes the set of
events for ξ, where |ξ| denotes the length of ξ. In the following, I identify an event with
its index, i.e., I write α instead of ξ[α] when it is clear from the context. A read event
is an event of the form (t,Read (a, l) v), it reads from location (a, l) the value v; Rξ
denotes the set of read events of ξ. A write event is either a write (t,Write (a, l) v) or
an allocation (t,Alloc a T),Wξ denotes the set of write events in ξ. A write event α ∈ Wξ

writes to location (a, l) (is a write to (a, l)) iff α = (_,Write (a, l) _), or α = (_,Alloc a T)
and l is a member of T (notation l ∈ memb T). The members of a class C are all fields of
C and its super-classes, and the members of an array type T [n] are the fields of Object
and the array cells [0], . . . , [n − 1]. An allocation Alloc a T initialises all locations (a, l)
for l ∈ memb T .

I say that α accesses location (a, l) iff α is a read or write event that reads from or
writes to (a, l), respectively. locs α denotes the set of locations that α ∈ R∪W accesses;
locs α = ∅ for α ∈ A − (R ∪W).

For α ∈ W, vw α (a, l) denotes the value that α writes to location (a, l) – allocation
events (_,Alloc _ T) write default values (0, False, and Null, respectively) for all mem-
bers of T ; normal writes Write (a, l) v store the value v written themselves; vw α (a, l)
is unspecified if α does not write to (a, l).

A member l is volatile (written is-volatile l) iff l is a field C::F and class C declares F
as volatile. A read or write α is volatile iff α reads from or writes to a volatile member
of a location. In particular, array cells are never volatile by definition [Gosling et al.
2005, §8.3.1.4].

2.4.2. From Traces to Orders. A trace ξ already provides the induced total order
�ξ=≤|Aξ over Aξ, where R|A restricts the binary relation R to elements from A and ≤
is the standard order on natural numbers.

20 Andreas Lochbihler

(t,Unlock a) (t′,Lock a) (t,Alloc a T) (t′,Start)
(t,Spawn t′ _) (t′,Start) (t,Write (a, l) v) (t′,Read (a, l) v′)

(t,Finish) (t′,Join t) (t,Alloc a T) (t′,Read (a, l′) v) if l′ ∈ memb T
(t, Intr t′′) (t′, Intrd t′′)

Fig. 12: Release-acquire pairs

Since the JMM requires initialisation events (i.e. Alloc) to be ordered before the
threads’ initial events, I introduce the (total) execution order ≤ξeo on Aξ:

α ≤ξeo α′←→(if initξ α then ¬initξ α′ ∨ α �ξα′ else ¬initξ α′ ∧ α �ξα′) (2)

where initξ α predicates that α is an allocation event in ξ, i.e., ξ[α] = (_,Alloc _ _).
The program order ≤ξpo restricts ≤ξeo to events of the same thread. The synchroni-

sation order ≤ξso restricts ≤ξeo to synchronisation events. Synchronisation events are
allocations (Alloc), reads from and writes to volatile locations, locking (Lock) and un-
locking (Unlock), thread spawns (Spawn) and joins (Join), thread start (Start) and fin-
ish events (Finish), and the interruption events Intr and Intrd. The synchronises-with
order ≤ξsw restricts ≤ξso to release-acquire pairs of events. (α, α′) is a release-acquire
pair (notation α α′, definition in Fig. 12) iff

— α unlocks a monitor and α′ locks the same monitor,
— α spawns a thread whose start action is α′,
— α is the finish event of the thread on which α′ joins,
— α interrupts a thread t and α′ observes that t has been interrupted,
— α is an allocation event and α′ is a thread start event,14 or
— α writes to a location that α′ reads.15

The happens-before order ≤ξhb is the transitive closure of ≤ξpo and ≤ξsw. This concludes
the construction of orders from traces.

2.4.3. Well-formed Executions. An execution (ξ, ws) consists of a trace ξ and a write-
seen function ws that assigns to every read event in Rξ the write event it sees.
This yields the JMM notion of an execution [Gosling et al. 2005, §17.4.6] as
(E ,A,≤po,≤so, ws, vw,≤sw,≤hb).

An execution is well-formed (written (ξ, ws)
√

) iff every thread has a thread start
event that �ξ-precedes its other events except for allocation events (denoted ξ

√
Start)

and for all read events α ∈ R to some location (a, l),

(W1) ws α writes to (a, l), i.e., ws α ∈ W and (a, l) ∈ locs (ws α),
(W2) α reads the value vw (ws α) (a, l),
(W3) α 6≤hb ws α,
(W4) for all write events β to (a, l), if ws α ≤hb β ≤hb α, then β = ws α, and
(W5) if α is a volatile read, then α 6≤so ws α and for all write events β to (a, l), if

ws α ≤so β ≤so α, then β = ws α.

ξ is well-formed iff (ξ, ws)
√

for some ws.
These conditions correspond to the JMM well-formedness conditions 1 (each read

sees a write to the same location), 4 (≤hb consistency) and 5 (≤so consistency for

14There has been some unclarity whether allocations of objects without volatile fields should synchronise
with thread start events [Aspinall and Ševčík 2007a, 2007b]. I assume that all allocations synchronise with
Start events, because the DRF guarantee (§3) and consistency (§4) rely on this.
15I do not need to restrict writes and reads to volatiles explicitly like the JMM does [Gosling et al. 2005,
§17.4.4], because the synchronisation order already imposes this.

The Java Memory Model is Type Safe 21

volatiles) in [Gosling et al. 2005, §17.4.7]. (ξ, ws) meets conditions 2 (≤hb is a par-
tial order) and 3 (intra-thread consistency) by construction. Moreover, layer 4 of the
single-threaded semantics ensures that all traces ξ ∈ E satisfy ξ

√
Start.

Note that conditions W3 and W4 do not imply condition W5, because ≤hb contains
only ≤sw, but not ≤so. For example, the execution in Fig. 4 satisfies all well-formedness
conditions except W5. Remember that it is ≤so that forces all threads to agree on a
global order of synchronisation events.

The JMM constrains ≤so to be an ω-order for well-formed executions. As Aspinall
and Ševčík [Aspinall and Ševčík 2007a] already noted, in an infinitely running pro-
gram, infinitely many allocation events for volatile fields synchronise with thread start
events, which violates this constraint, i.e., the JMM would allow no behaviour at all. To
remedy this, I drop this constraint. Note that � is of order at most ω by construction,
hence ≤so is of order at most ω + ω by definition.

Reconsider the program in Fig. 5. Since there is a trace for every possible value (cf.
§2.2), E contains a trace

ξ = [. . . , (t1,Read x 1), (t2,Read y 1), (t1,Write y 1), (t2,Write x 1), . . .]

The omitted events include those necessary to allocate and to spawn the threads –
similar to the example in §2.3, but they do not constrain the write-seen function on the
events mentioned. In particular, each read may see the respective write, because they
may happen concurrently. Therefore, the execution in Fig. 5b is well-formed.

2.4.4. Legal executions. Still, the JMM disallows the execution by imposing additional
legality constraints. A legal execution is a well-formed execution (ξ, ws) that is justified
by a sequence of justifying executions (ξi, wsi, Ci, ϕi)i, where Ci are the sets of commit-
ted events and the event renaming functions ϕi inject the committed events of ξi into
ξ’s events. The legality constraints ensure that a read α in ξ sees a possibly concurrent
write ws α only if the read and writes are committed in a justifying execution i such
that the previous justifying execution i − 1 contains a write to the same location with
the value that α reads such that α may see that write and the write happens-before α
in i− 1. This makes the execution in Fig. 5b illegal, because any well-formed execution
one of whose reads does not see the ≤hb-unrelated write (i.e., it sees the initialisation
with 0), all values written to x or y are 0. Hence, no execution can produce the write of
1 necessary for justification.

Conversely, the execution in Fig. 3b is legal by the following argument: Start with an
execution in which each read sees the respective initialisation and commit the writes,
which write the value 1. Complete the justification by committing the reads and have
them see the committed, but ≤hb-unreleated write.

The formal definition of justification uses the following notation: f ‘ A denotes the
image of the set A under the function f ; inj-on f A expresses that f is injective on
A; for a binary relation R, R|C restricts R to elements from C and α ϕ−1i (R) α′ iff
(ϕi α) R (ϕi α

′); ϕ−1i (α) denotes some α′ such that α′ ∈ Ci and ϕi α′ = α; (t, e)' (t′, e′)
iff t = t′ and the events e and e′ are identical except for the values they write or read.

A sequence J = (ξi, wsi, Ci, ϕi)i justifies (ξ, ws) (notation (ξ, ws) justified-by J) iff all
of the following hold for all i:

(L1) well-formedness: (ξi, wsi)
√

and ξi ∈ E
(L2) commit sequence: C0 = ∅, and ϕi ‘ Ci ⊆ ϕi+1 ‘ Ci+1 for all i, and Aξ =

⋃
j ϕj ‘ Cj

(L3) commit only actions: Ci ⊆ Aξi
(L4) happens-before order: ≤ξihb

∣∣∣
Ci

=ϕ−1i (≤ξhb)
∣∣∣
Ci

(L5) synchronisation order: ≤ξiso
∣∣
Ci

=ϕ−1i (≤ξso)
∣∣
Ci

22 Andreas Lochbihler

(L6) value written:
vw ξi[α] (a, l) = vw ξ[ϕi α] (a, l) for all α ∈ Wξi ∩ Ci and (a, l) ∈ locs ξ[ϕi α]

(L7) write-seen: ϕi+1 (wsi+1 (ϕ−1i+1 (ϕi α))) = ws (ϕi α) for all α ∈ Rξi ∩ Ci
(L8) uncommitted reads: if ϕi+1 α /∈ ϕi ‘ Ci, then wsi+1 α ≤ξi+1

hb α for all α ∈ Rξi+1

(L9) newly committed reads: for all α ∈ Rξi+1 ∩ Ci+1, if ϕi+1 α /∈ ϕi ‘ Ci, then
ϕi+1 (wsi+1 α) ∈ ϕi ‘ Ci and ws (ϕi+1 α) ∈ ϕi ‘ Ci

(L10) external events: for all external actions α ∈ Aξi and all α′ ∈ Ci, if α ≤ξihb α′, then
α ∈ Ci

(L11) event renaming: inj-on ϕi Aξi and for all α ∈ Ci, ξi[α] ' ξ[ϕi α]

Constraints L1 and L2 ensure that all executions are well-formed, committed events
remain committed in subsequent justifying executions, and eventually all events are
committed. L3 to L10 formalise the JMM legality conditions 1 to 7 and 9 [Gosling
et al. 2005, §17.4.8] augmented with explicit renaming of events. I omit condition 8 for
two reasons: First, it relies on the transitive reduction of ≤hb, which need not exists
for infinite executions [Aspinall and Ševčík 2007b]. Second, Torlak et al. [2010] have
shown that it is irrelevant for all JMM test cases [Pugh and Manson 2004].

The novel constraint L11 deals with renaming of events. As the above discussion
of Figs. 5b and 3b has shown, legality requires to identify events across executions.
The renaming function ϕi injectively maps events from Aξi , i.e., natural numbers, to
natural numbers. L2 ensures that the image ϕi α of a committed event α is again an
event of Aξ, and L11 demands that the original event ξi[α] and the image ξ[ϕi α] be
identical except for values they read or write. Renamings identify two events α and β
as follows:

— If α originates from the execution to be justified and β from i-th justifying execu-
tion, they are identical iff ϕi β = α.

— If α and β come from the i-th and j-th justifying execution, respectively, they are
identical iff ϕi α = ϕj β.

Note that I require ϕi to be injective on all events of the justifying execution, not only
on the committed ones. This way, L8 can express that α has not been committed in
a previous justifying execution as ϕi+1 α /∈ ϕi ‘ Ci. I will discuss the issue of event
identification in more detail in §2.5.

Cenciarelli et al. [2007] noted that the legality constraints disallow some desirable
compiler optimisations. To fix this, Aspinall and Ševčík [2007a] suggested to weaken
the constraints as follows:16 They drop L5 and replace L4 and L9 with

(L4’) for all α ∈ Rξi ∩Ci, it is the case that ws (ϕi α) ≤ξhb ϕi α iff ϕ−1i (ws (ϕi α)) ≤ξihb α,
and α 6≤ξihb ϕ

−1
i (ws (ϕi α))

(L9’) for all α ∈ Rξi+1 ∩ Ci+1, if ϕi+1 α /∈ ϕi ‘ Ci, then ws (ϕi+1 α) ∈ ϕi ‘ Ci

This yields weak justification sequences and weak legality. Note that every justification
sequence also satisfies L4’ and L9’, i.e., legality implies weak legality. Aspinall and
Ševčík [2007a] showed that weak legality suffices for the DRF guarantee. In §5.2, I
will show that weak legality also suffices for type safety.

16In [Aspinall and Ševčík 2007a], they also omit L10 as they only consider the constraints relevant for the
DRF guarantee, but in [Aspinall and Ševčík 2007b], they keep L10. As noted by Torlak et al. [2010], they
change L10 in [Ševčík and Aspinall 2008; Ševčík 2008]. I keep the original formulation, because their change
seems inadvertent: It renders L10 vacuous, and they do not mention the change. Rather, their informal
description fits the original L10.

The Java Memory Model is Type Safe 23

initially: x = y = 0;
1: r1 = x;
2: if (r1 == 1) y = 1;

3: r2 = y;
4: if (r2 == 1) x = 1;
5: synchronized (new Object()) {}
6: if (r2 == 0) x = 1;

Fig. 13: JMM test case 6 [Pugh and Manson 2004] with additional synchronisation
(l. 5): the result r1 == r2 == 1 is allowed.

2.5. Identity of Events Across Executions
The JLS leaves the identity of an event unclear. It assumes that every event carries
a unique identifier, but does not tell how to assign identifiers. Moreover, justification
requires to identify events across executions. Previous JMM formalisations [Aspinall
and Ševčík 2007a; Cenciarelli et al. 2007; Huisman and Petri 2007] assume that com-
parable events across executions are identical and thus avoid the problem of identifi-
cation. However, for a mechanically-checked link between operational semantics and
the JMM, I must explicitly construct the events from the program and therefore define
identity. As the official JLS leaves this open, I judge whether an identification schemes
captures the JMM intent by studying its implications on the allowed behaviours.

In the following, I discuss previous attempts and compare them to my approach
with renaming functions. They fall in two groups: In the first group, identity depends
only on the event and the execution in which the event occurs. I show that each in
this group forbids some desirable behaviour (§2.5.1). The second group, to which my
renaming functions belong, assigns identity based on the whole justification sequence.
I discuss the additional expressiveness that they offer (§2.5.2).

2.5.1. Identity Relative to an Execution. Polyakov and Schuster [2006] first noted the prob-
lem of event identity. Their approach relies on lexical scoping; they identify two events
if the same program statement produces them in the same iteration of any surround-
ing loop. However, they note that their formalisation fails JMM test case 6 (Fig. 13
without l. 5), in which the writes in l. 4 and l. 6 must be considered identical.17 They
suggest that writes without synchronisation in between could be merged once they
have been determined to produce the same value. Still, this fails for the example in
Fig. 13, which adds redundant synchronisation to JMM test case 6. A compiler can
easily determine that the monitor cannot escape t2 and that the synchronisation is
therefore redundant [Choi et al. 1999; Ruf 2000]. As the JMM always allows to remove
such synchronisation [Manson et al. 2005], Fig. 13 is equivalent to JMM test case 6.
Therefore, the JMM allows the result r1 == r2 == 1, too.

Besides identification by lexical scope, Jin et al. [2012] suggest two further ap-
proaches. Occurrence identifies two events of the same thread in two executions if they
access the same location and the thread has previously accessed the location the same
number of times. Occurrence-val additionally distinguishes events by the value that is
read or written.

17To justify r1 == r2 == 1, start with the well-behaved execution in which all reads see the initialisations,
i.e., l. 6 writes 1 to x. Then, commit the race on x between l. 1 and l. 6 such that 1 sees l. 7, i.e., l. 2 now writes
1 to 7. In the next step, commit the race on ll. 2 and 3 such that l. 3 sees l. 2. This completes the justification.
Note that it is now l. 4 instead of l. 6 that writes 1 to x. As l. 6 has already been committed, their events must
be identified, but the lexical approach distinguishes the two writes are distinct. Hence, their model does not
allow this justification; and neither the result r1 == r2 == 1, because the above justification sequence is
the only one: To obtain r2 == 1, l. 3 must see the concurrent write in l. 2, i.e., one first must have r1 == 1
in a justifying execution. Hence, one must first commit the data race on x such that l. 1 can see the write of
1 to x. As l. 3 can only see y’s initialisation, only the write to x in l. 6 executes. However, once l. 3 sees l. 2, it
is l. 4 that generates the write to x.

24 Andreas Lochbihler

initially: x = y = z = 0;
1: r1 = x;
2: y = r1;

3: z = 1; 4: r2 = y;
5: if (r2 == 1) x = 1;
6: r3 = z;
7: if (r3 == 1) x = 1;

Fig. 14: Occurrence and occurrence-val forbid the result r1 == r2 == r3 == 1

initially: x = y = z = 0; volatile v = 0;
1: r1 = x;
2: y = r1;

3: r2 = v;
4: r3 = z;
5: x = r3;

6: r4 = y;
7: if (r4 == 1) z = 1;
8: v = 1;
9: z = 1;

Fig. 15: Occurrence and occurrence-val forbid the result r1 == r2 == r3 == r4 == 1
even under weak legality

For Fig. 14, e.g., the JMM should allow r1 == r2 == r3 == 1, because a compiler
can move ll. 6 and 7 before l. 4; then, the schedule 3, 6, 7, 1, 2, 4, 5 yields the result
even under SC. However, neither occurrence nor occurrence-val allows it. Note that one
must commit the data race on z first, i.e., ll. 3 and 6; otherwise, no write to x executes
and we are stuck with all being 0. Then, l. 7 executes x = 1, and we can commit the race
with l. 1. Since causality constraint L4 fixes the happens-before relationships between
committed events, the read of z must happen before t3’s first write x = 1. But if l. 4
reads 1 from l. 2, the write from l. 5 seizes l. 7’s identity, which illegally reverses the
happens-before relationship with the read of z.

Note that both occurrence and occurrence-val do allow the result under weak legal-
ity. However, it fails for the more intricate example in Fig. 15 to allow r1 == r2 == r3
== r4 == 1. Let me first show how to justify the result under legality – in all execu-
tions, I assume that l. 3 reads from l. 8, i.e., ll. 6 to 8 happen before ll. 3 to 5 because v
is volatile. First, commit the race on z such that l. 4 sees l. 9. This makes l. 5 write 1, so
commit the race with l. 1, such that l. 2 writes 1, too. Finally, commit the race on y such
that l. 6 reads 1 from l. 2 instead of the initial value 0. The last step inserts the write
to z from l. 7. Under occurrence-val, this write seizes the identity of the former write
from l. 9. However, l. 7 happens before l. 4 whereas l. 9 may happen concurrently with
l. 4, i.e., L4’ is violated. As l. 7 seizes the identity of l. 9 in every justification sequence
for the execution, both occurrence and occurrence-val forbid the result. Note that the
above sequence does justify the result, if the writes in ll. 7 and 9 are not identified.

2.5.2. Identity Relative to a Justification Sequence. The identification scheme by Torlak
et al. [2010] belongs to the second group. For small Java programs with finite state
(loops are unrolled), they use whole-program analysis to compute in advance identi-
fiers for all events. Although they do not provide a declarative description, their model
checking algorithm assigns event identities on a per-justification basis. This achieves
the same effect as my renaming functions and constraint L11: Their precomputation
of sharing enforces ξi[α]'ξ[ϕi α] and injectivity is added as a separate constraint for the
model checker. Renaming functions have the advantage that I do not need to construct
a universe of event identifiers. This simplifies my formalisation considerably.

To appreciate the power of event renaming, consider the JMM causality test case
18 in Fig. 16a [Pugh and Manson 2004]. The original justification sequence by Pugh
and Manson [2004] for the result r1 == r2 == r3 == 42 is incorrect, and [Ševčík and
Aspinall 2008] claimed that the JMM did not allow it at all. MemSAT by Torlak et al.

The Java Memory Model is Type Safe 25

initially: x = y = 0;
1: r3 = x;

if (r3 == 0)
2: x = 42;
3: r1 = x;
4: y = r1;

5: r2 = y;
6: x = r2;

(a)

ξ0: Iy Ix 1 2 3 4 5 6

ξ1: Iy Ix 1 2 3 4 5 6

ξ2: Iy Ix 1 2 3 4 5 6

ξ3: Iy Ix 3 2 1 4 5 6

ξ4: Iy Ix 3 2 1 4 5 6

ξ5: Iy Ix 1 2 3 4 5 6

ξ = ξ6: Iy Ix 1 3 4 5 6

(b)

Fig. 16: Causality test case 18 (a) and justification for r1 == r2 == r3 == 42 (b)

[2010] found a justification sequence, though (Fig. 16b) [personal communication, Oct.
2012]. It relies on different statements performing the same event in different execu-
tions.

The justification table in Fig. 16b uses the following notation: Each row lists the
events of an execution, they are represented by the line number of the statement that
produces them; Ix and Iy represent the initialisations of x and y, respectively. Unin-
teresting events like Start and Finish have been omitted. As before, dashed arrows
denote the flow of values, i.e., the read at the tip sees the write at the origin. To vi-
sualise the renaming functions ϕi, I have not depicted the events in execution order.
Rather, they are in the column of their image under ϕi. For example, for execution ξ4,
ϕ4 maps the read event of l. 1 to the read event of l. 3 in the final execution ξ. Shaded
events are committed, and a box around a read event indicates that the write it sees is
fixed. Remember that the execution after the one that commits a read α is the last (in
the justification sequence) to change the write that α sees (L7).

The executions ξ0 to ξ3 commit the data race on y between ll. 4 and 5. Most interest-
ing is the transition from ξ4 to ξ5. ξ4 commits the read from l. 1. Note, however, that ϕ4

identifies this read with the read from l. 3 in ξ. In contrast, ϕ5 maps the read from l. 3
to the read from l. 3, i.e., l. 3 generates the committed read from l. 1. Although ξ4 has
already committed the read from l. 1, ξ5 commits it a second time, because event re-
naming has decided that they are different events in the final execution. This change
between ϕ4 and ϕ5 is allowed, because we have not yet committed any events that
happen between between ll. 1 and 3. Otherwise, L4 would be violated. The rest of the
justification is standard, ξ6 merely changes l. 1 to see l. 6 like in the final execution.

In fact, justification of r1 == r2 == r3 == 42 requires event renaming: Any justifi-
cation sequence must first commit the race on y to get 42 into r2 and r3. Hence, ξ0 to
ξ3 are canonical in any such justification. Now, suppose we commit l. 1 in ξ4 and set its
write from ξ to l. 6 in ξ5, but ϕ4 1 = ϕ5 1. Then, l. 2 would no longer execute in ξ5, i.e.,
the uncommitted read in l. 5 would have to see the initialisation and the committed
l. 6 could not produce the value 42 any more as required by L6. Alternatively, we could
try to commit l. 3 before l. 1 such that l. 3 reads from l. 6. However, L9 requires that
we commit l. 2 before changing the write-seen to an ≤hb-unrelated write, but we must
not commit l. 2 because it has no match in the final execution. With weak legality, the
latter also yields a justification, because L9’ does not require l. 2 to be committed.

26 Andreas Lochbihler

class A { int f; }
initially: x = y = null;

1: r1 = x;
if (r1 != null)

2: r2 = r1.f;
3: r3 = new A();
4: y = r3;

5: r4 = y;
6: x = r4;

(a)

(t1,Start)

1: (t1,Read x a)

2: (t1,Read (a, A::f) 0)

3: (t1,Alloc a A)

4: (t1,Write y a)

(t1,Finish)

(t2,Start)

5: (t2,Read y a)

6: (t2,Write x a)

(t2,Finish)

(b)

Fig. 17: Program with an execution in which the read in l. 2 sees the initialisation from
l. 3, which occurs later in the program text

2.6. Initialisations
Apart from identifying events across executions, justification also complicates mem-
ory initialisation. Previous machine-checked formalisations have omitted the initiali-
sation business [Aspinall and Ševčík 2007a; Huisman and Petri 2007]. Ševčík [2008]
assumes that a special thread initialises all necessary locations and terminates before
the normal threads start. Unfortunately, this does not work for infinite executions that
allocate infinitely many objects, because the initialising thread does not terminate.
Moreover, a special initialisation thread conflicts with the final field semantics exten-
sion to the JMM, which requires to know which thread created which object [Gosling
et al. 2005, §17.5.1].

Therefore, in my model, it is dynamic memory allocation which produces the ini-
tialisation writes (Alloc). Hence, they occur in the trace of a thread when it allocates
the object. Figure 17 shows an example, a variation of Fig. 7; thread t1 generates the
events as shown from top to bottom. For the JMM, the execution order orders alloca-
tions before all other events (Eq. 2). Hence, in any well-formed execution ξ, allocations
happen before all other events, because allocations synchronise with Starts and every
thread produces its Start event �-before all of its other events. In Fig. 17b, e.g., the
allocation in l. 4 precedes all others in program order and happens-before order.

This ensures that every program has a well-behaved execution, i.e., each read sees
a write that happens before it, and consequently also at least one legal execution.
However, this also complicates the model: In Fig. 17, the read in l. 2 sees the allocation
which always executes after l. 2. In general, such subsequent allocations might depend
on the values read. As initialisations are considered to having taken place at the start
(instead of when allocations generate them), the JMM legality constraints cannot catch
such causality cycles. Consequently, the proofs have to take care of that themselves,
see §3.4 and §5.2 for examples.

2.7. Non-termination
Since allocations are special, I must consider complete executions, which may be in-
finite. I show that considering only finite prefixes of executions does not work, as the
single-threaded semantics generates the initialisation events only at allocations. First,

The Java Memory Model is Type Safe 27

class A { int f; } class B { int g; }
initially: x = y = z = w = null;

while (true) {
1: r1 = x;

if (r1 != null) {
2: r2 = r1.f;
3: r3 = new B();
4: w = r3; }
5: r4 = z;
6: if (r4 != null) r5 = r3.g;
7: r6 = new A();
8: y = r6; }

while (true) {
9: r7 = y;

10: x = r7;
11: r8 = w;
12: z = r8; }

Fig. 18: A program that has an infinite execution whose finite prefixes are eventually
all ill-formed.

reconsider Fig. 17 to illustrate the idea. Recall that the allocation event (t1,Alloc a A)
initialises a’s field f and happens before all other shown events, although the single-
threaded semantics generates it after ll. 1 and 2. Take the prefix of this execution up
to l. 2. The prefix is ill-formed, because (t1,Alloc a A) is not part of it and l. 2, therefore,
sees no write.

For Fig. 17, one could extend the affected prefix a bit (e.g., with the allocation event)
and obtain a well-formed prefix again. However, for Fig. 18, this is impossible. The
program intertwines two copies of Fig. 17a and repeats them infinitely often. Consider
the infinite execution in which each instance of l. 1 reads the address via ll. 9 and 10
of the object allocated in l. 7 of the same loop iteration and each instance of l. 5 reads
via ll. 11 and 12 the address of the object allocated in l. 3 of the next iteration. This
execution is legal. However, all finite prefixes that include at least one instance of l. 2
are ill-formed: Suppose such a prefix was well-formed. Let α2 denote the last instance
of l. 2 in the prefix and i the corresponding loop iteration (α2 exists because the prefix
is finite). By assumption, α2 reads the default value that the allocation from the i-th
instance of l. 7 writes, i.e., the prefix also contains this allocation. Hence, the prefix
also contains the i-th instance of l. 5 – which reads the address of the object that l. 3
will allocate in the i + 1-th iteration – and therefore also the read is l. 6 in the i-th
loop iteration. As the prefix is well-formed and the read can only see the allocation, the
prefix also contains the i + 1-th instance of l. 3 – and thus also l. 2’s i + 1-th instance.
This contradicts α2 being the last instance of l. 2, i.e., no such prefix is well-formed.

The program in Fig. 18 produces neither a final state nor intermediate output, so this
execution is not observable from the outside. However, a simple extension remedies
this: At the end of each iteration, let t1 output the values of r1, r3, and r4 from the
previous iteration – this requires another three local variables to save their values
till the next iteration, but this shift does not generate additional events. Then, the
execution is observable. Note that the loop must not output these local variables in
the current iteration, because the write to w in the next iteration must be committed
before the read of z can read its value (via ll. 11 and 12). As L10 requires to commit the
output no later than the write, the justification can no longer change the read value.
Shifting output by one iteration lets the output happen after the write to be committed
and L10 is easy to abide by.

In this example, the trace is infinite. Yet, some programs, e.g., while (true) ;, also
run forever without producing any events, i.e., diverge. The JMM covers this case with
thread divergence events. They “model how a thread may cause all other threads to

28 Andreas Lochbihler

stall and fail to make progress” [Gosling et al. 2005]. Thread divergence events and
deadlock can be observed as a “hang” action.

My approach with the coinductive trace definition does not need thread divergence
events. If a thread can diverge in state s, an infinite derivation with STEP yields
s ↓ repeat [], where repeat [] denotes the infinite list of empty lists. It is coinduc-
tiveness that allows such infinite derivations. Since concat (repeat []) = [], the trace of
the diverging program does not contain any events. In particular, I need not include
infinitely many thread divergence events to stop other threads from executing. Neither
do I require explicit hang events. If a finite trace does not contain Finish events for all
spawned threads, the program has either diverged or deadlocked – or the semantics
got stuck, but type safety shows that this is not possible (§5).

Moreover, the coinductive definitions (and coinduction as proof principle) allows to
treat finite and infinite executions uniformly – as can be seen in §3. This is important
because the above example shows that one must be very careful in approximating
infinite executions by their finite prefixes.

2.8. Spurious Wake-Ups and Deadlock
The JLS allows, but does not require JVMs to perform “spurious wake-ups” [Gosling
et al. 2005, §17.8.1], i.e., return from a call to wait without interruption and notifica-
tion. Spurious wake-ups are a delicate matter, because they affect when programs are
correctly synchronized. For example, the program in Fig. 19a is correctly synchronized
iff spurious wake-ups are not allowed. Only two accesses conflict, namely the write
in l. 1 and the read in l. 8. If spurious wake-ups were not allowed, there is only one
sequentially consistent execution that contains l. 8 (Fig. 19b). Line 8 can only execute
after l. 6 has terminated normally, i.e, t2 has been notified. However, only t1 can do
so and the write precedes the notification in t1’s synchronized block. When t2 returns
from wait, it reacquires m’s lock, which t1’s unlocking synchronises with. Hence, l. 1
happens before l. 8. Without spurious wake-ups, this is the only SC execution with
conflicting accesses, so Fig. 19a would be correctly synchronized.

However, Java allows spurious wake-ups, and with spurious wake-ups, the execution
in Fig. 19c is also SC. Now, t2 spuriously wakes up before the notification and leaves
the synchronized block. Hence, ll. 1 and 8 may happen in parallel, i.e., there is a data
race, so Fig. 19a is not correctly synchronised.

In my semantics, threads can wake up spuriously, but they do not have to. Two
rules apply for a thread t calling wait on monitor m provided that t is not interrupted
and has locked m. The one releases the lock on m and suspends t to m’s wait set; t
then waits until it is notified or interrupted. The other only releases the lock on m,
i.e., t instantaneously wakes up spuriously. Since I do not model a specific scheduler,
t may postpone to reacquire m’s lock as long as other threads make progress. Hence,
instantaneous wake-ups cover all spurious wake-ups, because other threads cannot
tell whether another thread has woken up spontaneously.

A simpler model for spurious wake-ups would be to include a rule without precondi-
tions that removes any thread from any wait set any time. However, this does not work
well with considering complete traces as discussed in §2.7: If there is at least only one
possibility for reduction, one such will be taken. This assumption is also the basis for
type safety proofs via progress and preservation. However, this can enforce spurious
wake-ups (rather than discouraging them as the JLS does). Consider, e.g.,

m = new Object(); synchronized (m) { m.wait(); } print "X"; (P4)

When run with Oracle’s Hotspot and OpenJDK VMs, this program with only one
thread deadlocks, because the thread waits forever for being notified or interrupted,
but there is no thread to do so. Hence, it never prints X.

The Java Memory Model is Type Safe 29

initially: m = new Object(); x = 0;
1: x = 1;
2: synchronized (m) {
3: m.notify();
4: }

5: synchronized (m) {
6: m.wait();
7: }
8: r = x;

(a)

1: (t1,Write x 1)

2: (t1,Lock m)

3: (t1,Notify m)

4: (t1,Unlock m)

5: (t2,Lock m)

6a: (t2,Unlock m)

6b: (t2,Suspend m)

6c: (t2,Lock m)

7: (t2,Unlock m)

8: (t2,Read x 1)

(b)

5: (t2,Lock m)

6a: (t2,Unlock m)

6c: (t2,Lock m)

7: (t2,Unlock m)

8: (t2,Read x 1)

1: (t1,Write x 1)

2: (t1,Lock m)

3: (t1,Notify m)

4: (t1,Unlock m)

(c)

Fig. 19: Two sequentially consistent executions for the given program which contain
l. 8. denotes the global SC order.

With the simpler model for spurious wake-ups, such a deadlock could not occur. The
semantics would wake-up the thread and run it to completion, i.e., the program would
always print X and terminate. My semantics produces both behaviours: If the call to
wait chooses to instantaneously wake up, the program prints X and terminates. Other-
wise, it chooses to wait in the wait set and deadlocks.

However, my model requires additional inter-thread events to implement wait sets.
In particular, notify and notifyAll are more than no-ops and spurious wake-ups as the
JMM suggests. For example, P5 always terminates in Java, as the following reasoning
shows. Note that the program is correctly synchronised, i.e., by the DRF guarantee, we
only need to consider SC executions. If t1 runs first, it entersm’s wait set, but t2 notifies
it and notifications must not get lost, so both terminate. Otherwise, t2 runs first; the
notification has no effect, but t1 does not call wait either. Yet, if I implemented notify as
a no-op (hoping that the thread to notify wakes up spuriously), P5 could also deadlock,
if the call to wait chooses not to spuriously wake up instantaneously.

initially: m = new Object(); x = 0;
1: synchronized (m) {
2: if (x == 0)
3: m.wait();
4: }

5: synchronized (m) {
6: m.notify();
7: x = 1;
8: }

(P5)

2.9. Consistency of Interruption and Notification
While a thread t is in a wait set, i.e., it has called wait, but the call has not yet re-
turned, it may be notified and interrupted simultaneously. The JLS demands that t
determine an order over these causes and behave accordingly. That is, if the notifica-

30 Andreas Lochbihler

initially: m = new Object();
1: synchronized (m) {
2: m.wait();
3: }

4: synchronized (m) {
5: t1.interrupt();
6: m.notify();
7: }

8: synchronized (m) {
9: m.wait();

10: }

Fig. 20: Program for which Oracle’s HotSpot VM determines that notification causes t1
to return from m’s wait set

tion comes first, t’s interrupt flag is set and the call returns normally. If the interrupt
comes first, t’s call throws an InterruptedException, but the notification must not be
lost, i.e., another thread in the wait set must be notified, if there is any.

My semantics implements these requirements as follows. In case of an interrupt, the
call to interrupt atomically removes t from the wait set (event WakeUp in INTR) and
the interleaving semantics remembers that t has left the wait set due to an interrupt.
After t has reacquired its lock, it throws the exception. Similarly, notify removes one
thread from the wait set and the interleaving semantics ensures that it will continue
normally. For details of the implementation, see [Lochbihler 2012b]. This also ensures
that the order of causes is consistent with the other orders of the JMM, in particular
≤hb.

However, the JLS does not require this order to be consistent. In fact, Oracle’s
HotSpot 6 and 7 sometimes choose an inconsistent order, e.g., for the program in
Fig. 20. When t1 and t3 both enter m’s wait set before t2 acquires m’s monitor, t1
returns normally with its interrupt flag set and t3 is deadlocked in the call to wait.
Hence, t1 determines that the notification preceded the interrupt, although the inter-
rupt happens before the notification in t2. Note that t1 does not wake up spuriously,
because otherwise, the notification would have to reach t3 and t3 therefore would have
to complete normally.

My semantics cannot produce this behaviour, because its ordering of causes is always
consistent. In principle, it would be easy to adjust my semantics to model HotSpot’s
behaviour, but this would not solve the problem. Actually, the semantics should predict
all allowed behaviours, but the current architecture does not support this. I leave this
as future work.

3. THE DATA RACE FREEDOM GUARANTEE
The JMM promises that correctly synchronised programs behave as if they were exe-
cuted under sequential consistency. In this section, I recapitulate the definitions and
identify the assumptions of this guarantee (§3.1). Then, I show that source code and
bytecode indeed satisfy these assumptions (§3.2 to §3.6).

The proof of the DRF guarantee extends over all layers of the semantics stack
(Fig. 6). Hence, the challenge consists of adequately decomposing the proof and dis-
tributing it over the layers such that each proof is as abstract as possible. This way, I
prove the DRF guarantee for both implementations of shared type information (§2.1)
and for both source code and bytecode (Thm. 3.24) almost simultaneously. To that end,
I develop the assumptions that each layer makes about the lower ones. It is crucial
that these assumptions respect the abstraction of the layer, i.e., they only refer to no-
tions of the current layer or of layers below, but not above. For example, assumptions
about the shared type information must not mention JMM executions.

Therefore, I focus on identifying and formalising these assumptions. The transition
from the global behaviour (executions and traces) to the individual steps of the small-
step semantics is the most difficult one, because it must translate global notions into
state invariants. Sometimes, it is better to strengthen assumpions: For example, lev-

The Java Memory Model is Type Safe 31

initially: volatile x = 0;
1: r = x; 2: x = 1;

1: (t1,Read x 0) 2: (t2,Write x 1)

(_, Init x 0)

Fig. 21: A volatile read need not happen before a ≤so-later write. represents ≤so-
relationships that are not in ≤hb.

els 5 and below generalise the happens-before order to the execution order, because
happens-before is hard to express as a state invariant.

To derive and motivate the low-level assumptions from those on higher levels, the
presentation starts with the proofs on the JMM level and then descends the stack of
semantics, similar to backward-style reasoning.

3.1. The DRF Guarantee
In this section, I formally state the DRF guarantee and prove it. Two events of an
execution conflict if they are read or write events to the same non-volatile location
with at least one being a write event. Two conflicting events constitute a data race if
they are not ordered by happens-before, i.e., may happen concurrently.

An execution (ξ, ws) is sequentially consistent (SC) iff every read event α ∈ R sees
the most recent write event, i.e., ws α ≤eo α, and β ≤eo ws α or α ≤eo β for all write
events β to the location that α reads from.18

A program is correctly synchronised (data race free) iff none of its SC executions
contains a data race. Formally: Whenever ξ ∈ E , (ξ, ws)

√
and (ξ, ws) is SC, then α ≤hb

α′ or α′ ≤hb α for all conflicting events α, α′ ∈ A.

THEOREM 3.1 (DRF GUARANTEE). Let the program be correctly synchronised. If
(ξ, ws) is a (weakly) legal execution, then (ξ, ws) is SC.

Thanks to the DRF guarante, a programmer can forget about the JMM and legality
in particular; she only has to avoid all data races in the program. To that end, it is
important that only SC executions must not contain a data race. Otherwise, she would
have to understand the whole JMM to see whether her program is correctly synchro-
nised and the DRF guarantee applies to it.

Moreover, it is crucial that accesses to volatile fields never race by definition. The
JLS [Gosling et al. 2005, §17.4.5] and previous proofs of the DRF guarantee [Manson
et al. 2005; Aspinall and Ševčík 2007a; Huisman and Petri 2007; Ševčík 2008] do not
explicitly exclude volatile fields from data races. Jacobs [2005] has already observed
that this prevents applying the DRF theorem to programs that use volatile fields for
synchronisation. Recall from Fig. 12 that for volatile memory accesses, only writes syn-
chronise with later reads, but not vice versa. This asymmetry can lead to the situation
that a read does not happen before a ≤so-later write to the same volatile, i.e., a data
race according to the JLS definition. In Fig. 21, e.g., l. 1 executes (in ≤so) before l. 2, but
l. 1’s read event happens neither before nor after l. 2’s write event. Hence, the program
would not be correctly synchronised in the JLS sense.

To my knowledge, I present the first proof of the DRF guarantee which addresses
this flaw. As my notion of data race is stronger, correct synchronisation is weaker, i.e.,
more programs, e.g., Figs. 4 and 21, are correctly synchronised.

18The JMM only requires that ≤po is extended to a total order over all events of all threads to determine
most recent writes [Gosling et al. 2005, §17.4.3]. Aspinall and Ševčík [Aspinall and Ševčík 2007a] showed
that, to respect mutual exclusion of locks, the total order must also extend ≤so. My execution order ≤eo
extends both by construction.

32 Andreas Lochbihler

On the level of the JMM, my proof of the DRF guarantee (Thm. 3.1) follows in struc-
ture the others’ [Aspinall and Ševčík 2007a; Huisman and Petri 2007; Manson et al.
2005]. The key idea in all of them is that in a DRF program, a well-formed execution
(ξ, ws) is SC if it is well-behaved, i.e, every read sees a write that happens before it
(Lem. 3.2). From this, the DRF guarantee (Thm. 3.1) follows. I omit the latter proof, as
it closely follows Aspinall and Ševčík’s [2007a, Thm. 1].

LEMMA 3.2 (DRF LEMMA). Let E be correctly synchronised and ξ ∈ E such that
(ξ, ws)

√
. If ws α ≤hb α for every read α in R, then (ξ, ws) is sequentially consistent.

Let me outline the proof idea, see below for the technical details. To exploit correct
synchronisation in a proof by contradiction, one first obtains a SC execution (ξ′, ws′)
from (ξ, ws) as follows: ξ′ starts like ξ until the first non-SC read α in ξ and continues
sequentially consistently from there on. Then, it suffices to find a data race between
α, ws α, and ws′ α in ξ′. For the latter, I use Lem. 3.4 (see below) to transfer happens-
before relationships between ξ and ξ′ on their common prefix. Thus, the proof rests on
two assumptions on the set of traces E :

(D1) For every sequentially consistent prefix of a well-formed execution (ξ, ws) with
ξ ∈ E , there is a trace ξ′ ∈ E with the same prefix and a write seen-function ws′

such that (ξ′, ws′)
√

and (ξ′, ws′) is SC. If ξ immediately continues with a read
after the prefix, ξ′ also continues with a read from the same location.

(D2) Every execution ξ ∈ E initialises every location at most once.

The first assumption ensures that ξ′ as required in the proof of Lem. 3.2 does exist; it is
implicit in the original proof by Manson et al. [2005], as Huisman and Petri [2007] have
pointed out. Aspinall and Ševčík [2007a] get away with a simpler “cut-and-update”
property (§3.6), because they consider only finite prefixes, which causes other problems
(§2.7). The second assumption is merely a standard well-formedness condition, but
nevertheless essential. Later, I show that source code and bytecode satisfy these. But
now, let me prove Lem. 3.2. I start with two lemmata about happens-before:

LEMMA 3.3. Let ξ
√

Start and α, α′ ∈ A with init α and ¬init α′. Then α ≤hb α
′.

PROOF. Let ι be the event Start of α′’s thread in ξ. By definition, α ≤sw ι ≤po α
′.

LEMMA 3.4 (HAPPENS-BEFORE PREFIX LEMMA). Let ξ and ξ′ be two traces such
that their first n events differ only in the values read or written, and let α, α′ < n. If
ξ′
√

Start and α ≤ξhb α′, then α ≤ξ
′

hb α
′.

PROOF. By induction on α ≤ξhb α′, which is the transitive closure of ≤ξpo and ≤ξsw. In
the base case, α ≤ξpo α′ or α ≤ξsw α′. By unfolding the definitions, α ≤ξ′po α′ or α ≤ξ′sw α′

follows from ξ[α] ' ξ′[α] and ξ[α′] ' ξ′[α′]. Hence, α ≤ξ
′

hb α
′.

In the induction step, assume α, α′′ < n, and α ≤ξhb α′, and α′ ≤ξpo α′′ or α′ ≤ξsw α′′,
and the induction hypothesis if α′ < n, then α ≤ξ

′

hb α
′. I must show that α ≤ξ

′

hb α
′′.

If ¬initξ α′ or initξ α′′, then α′ �ξ α′′ by definition of ≤ξeo, because α′ ≤ξeo α′′ follows
from either α′ ≤ξpo α′′ or α′ ≤ξsw α′′. Since α′′ < n, also α′ < n′ and the induction
hypothesis applies. Moreover, α′ ≤ξ′po α′′ or α′ ≤ξ′sw α′′ follow from α′ ≤ξpo α′′ or α′ ≤ξsw α′′

as in the base case. Therefore, α ≤ξ
′

hb α
′′.

The Java Memory Model is Type Safe 33

Otherwise, I have initξ α′ and ¬initξ α′′. Then, initξ α follows from initξ α′ by induc-
tion on α ≤ξhb α′. Since α, α′′ < n and ξ’s and ξ′’s first n actions only differ in the values
read or written, initξ′ α and ¬initξ′ α′′, too. Hence α ≤ξ

′

hb α
′′ by Lem. 3.3.

PROOF OF LEM. 3.2. By contradiction. Suppose that (ξ, ws) is not SC. Note that≤ξeo
is well-founded by construction. Let α ∈ Rξ be the ≤ξeo-minimal read event from some
location (a, l) such that ws α is not the most recent write for α in ξ. By assumption,
ws α ≤ξhb α. Then, there is another write event β ∈ Wξ to (a, l) such that β 6≤ξhb ws α
and β 6≤ξso ws α and α 6≤ξhb β and α 6≤ξso β and β ≤ξeo α – otherwise, ws α would
be the most recent write for α. First, the member l is not volatile: Assume it was.
Then, α, β, and ws α are synchronisation events. Since ≤ξso is total on synchronisation
events, ws α ≤ξso β ≤ξso α follows from β 6≤ξso ws α and α 6≤ξso β. This contradicts
the sychronisation order consistency condition W5, as β 6= ws α. Second, ¬initξ β, as
otherwise ¬initξ (ws α), because ξ initialises every location at most once (D2), and
therefore β ≤ξhb ws α by Lem. 3.3, which contradicts β 6≤ξhb ws α. With β ≤ξeo α, it
follows by definition of ≤eo that β occurs before α in ξ, i.e., β �ξ α.

By requirement D1, obtain a well-formed execution (ξ′, ws′) that starts with ξ up to
α and continues SC, with α being a read from (a, l) in ξ′. Then, α, β ∈ Aξ′ conflict and
(ξ′, ws′) is SC, so α ≤ξ

′

hb β or β ≤ξ
′

hb α by correct synchronisation. By Lem. 3.4, α ≤ξhb β
or β ≤ξhb α, too; but α 6≤ξhb β, so β ≤ξhb α.

Now, it suffices to show that ws α ≤ξhb β, as this violates the happens-before con-
sistency condition W4. If initξ (ws α), then ws α ≤ξhb β by Lem. 3.3. So, suppose
¬initξ (ws α). As ws α ≤ξhb α, ws α also occurs before α in ξ, i.e., ws α �ξ α. Hence,
β,ws α ∈ Aξ′ conflict. By correct synchronisation, β ≤ξ

′

hb ws α or ws α ≤ξ
′

hb β. Again
with Lem. 3.4, these relationships hold also in ξ: β ≤ξhb ws α or ws α ≤ξhb β, but
β 6≤ξhb ws α.

It is worth noting that none of the previous proofs of the DRF lemma [Manson et al.
2005; Huisman and Petri 2007; Aspinall and Ševčík 2007a] depended on the synchroni-
sation order≤so at all. This suggested that≤so was redundant from a DRF perspective.
Yet, Fig. 4 shows that only ≤so guarantees global time. One can also see this directly
in the proof: Since volatile locations never participate in data races by definition, I
prove that l is not volatile (“First, ...”) such that the events β and ws α conflict. This
step requires ≤ξso being total and consistent (W5). In fact, without either of them, the
non-SC execution in Fig. 4 would satisfy the assumptions of the DRF lemma, but not
the conclusion.

Initialisations complicate the proof: Prefixes of traces need not be closed under
happens-before, because the corresponding allocation event may occur in the trace af-
ter the prefix, see Fig. 17 for an example. Consequently, the proofs of Lems. 3.4 and 3.2
treat the case of initialisations specially. In particular, I require at most one initialisa-
tions per location (D2) (i.e., at most one allocation per address) and that all allocation
events synchronise with Start events, i.e., they are synchronisation events.

The latter has been unclear in the JLS: either them being synchronisation events
or not leads to inconsistencies in the JLS [Aspinall and Ševčík 2007b]. I avoid the
inconsistency by dropping causality condition 8 (see §2.4). Moreover, the proof provides
evidence that treating allocations as synchronisation events is a good choice. Indeed,
Fig. 22 shows that Lem. 3.4 and the proof of Lem. 3.2 do require this. In Fig. 22b,
we have exactly the situation as in the proof of Lem. 3.2: Each reads sees a write
that happens before, but l. 1 is the first (and only) read that does not see the most

34 Andreas Lochbihler

class C { volatile int v; }
t1 initialises x = 0;

1: r1 = x;
2: if (r1 == 0) r2 = new C();

3: x = 1;

(a) Program with a data race on x

ξb = [(t1,Start), (t1, Init x), (t2,Start),
(t2,Write x 1), (t1,Read x 0),
(t1,Alloc a C), (t1,Finish), (t2,Finish)]

(t1,Start)

(t1, Init x)

(t2,Start)

3: (t2,Write x 1)

1: (t1,Read x 0)

2: (t1,Alloc a C)

(t1,Finish)

(t2,Finish)

(b) A well-behaved execution that is not SC

ξc = [(t1,Start), (t1, Init x), (t2,Start),
(t2,Write x 1), (t1,Read x 1),
(t1,Finish), (t2,Finish)]

(t1,Start)

(t1, Init x)

(t2,Start)

3: (t2,Write x 1)

1: (t1,Read x 1)

(t1,Finish)

(t2,Finish)

(c) An SC execution that is not well-behaved

Fig. 22: Two well-formed traces and their executions for the program at the top

recent write. The proof goes on by changing l. 1 to see the most recent write from l. 3
and completing sequentially consistently, e.g., as in Fig. 22c. This makes t1 no longer
allocate the C object in l. 2, which initialises the volatile member v.

Both traces share the prefix [(t1,Start), (t1, Init x), (t2,Start), (t2,Write x 1)] fol-
lowed by t1 reading from x. If only initialisations for volatile locations synchronised
with Start (as suggested by Manson [2007]), (t1, Init x) would not synchronize with
(t2,Start), i.e., there would not be such a dotted arrow in Figs. 22b and 22c. For ξb, we
would still get (t1, Init x) ≤ξbhb (t2,Write x 1), because

(t1, Init x) ≤ξbpo (t1,Alloc a C) ≤ξbsw (t2,Start) ≤ξbpo (t2,Write x 1)

and the allocation (t1,Alloc a C) writes (initialises) the volatile member v from class C.
However, for ξc, we would have (t1, Init x) 6≤ξchb (t2,Write x 1).

Moreover, as all initialisation events synchronise with Start events, I may subsume
initialisation events in a single allocation event. Otherwise, I would have had to sepa-
rate the event for initialising ordinary members from the one for volatiles. This would
have complicated the model and therefore the proofs as well.

3.2. At Most One Initialisation
In §3.1, I have shown the DRF guarantee under two assumptions on the set E of traces.
In the remainder of this section, I discharge them for source code and bytecode by

The Java Memory Model is Type Safe 35

Java memory model

set of traces

interleaved small-step

global type information

7

6

5

1

D1

D4

D4’

D3

D3’ D3’’

K1 to K9

D2

A3

A4

Fig. 23: Assumptions of the DRF guarantee and their decomposition over the stack of
semantics

descending the stack of semantics (Fig. 6) and adapting the assumptions. They act like
an interface between the levels and ensure that I can share the proofs for all layers
that source code and bytecode share.

To help the reader follow the proofs, Fig. 23 shows how the assumptions D1 and
D2 evolve and assigns them to the level of the semantics. The arrows are stylised
implications, i.e., the assumption at the source discharges the one at the target. Where
multiple arrows point to one assumption, the conjunction of the sources imply the
target. For example, assumptions D4 and D3 together discharge D1. Layer 4 is not
shown, because layer 4 is irrelevant for the assumptions that level 5 makes. Layer 3
and 2 are the core of the semantics where the crucial parts of the assumptions are
discharged. Their assumptions about the shared state are listed at layer 1.

I start with assumption D2 that every execution initialises a location at most once.
Remember that allocation events initialise locations. When an allocation returns an
address, it was fresh before, but afterwards, it is allocated, i.e., not fresh. Hence, it
suffices to prove that the semantics correctly keeps track of all memory allocations in
the events.

To discharge D2 on the level of interleaving semantics, I extend the specification
of the shared state with an operation allocated that returns the set of allocated ad-
dresses. I require that the single-threaded semantics changes the shared state only in
accordance with allocated – assumption A3:

(A3) For every single-thread reduction t ` (x, σ)−αs→ (x′, σ′), αs contains exactly one
allocation event Alloc a T iff a is newly allocated. Formally:

allocated σ ⊆ allocated σ′ (A3a)
∀a. (a ∈ allocated σ′ − allocated σ ←→ (∃T. Alloc a T ∈ αs)) (A3b)

∀i, j < |αs|. ∀a T T ′. αs[i] = Alloc a T ∧ αs[j] = Alloc a T ′ =⇒ i = j (A3c)

The concept of allocated addresses reduces the global property of at most one initiali-
sation to a property of single reductions.

LEMMA 3.5. If start-events contains exactly one allocation event for every preallo-
cated object in start-state and the single-threaded semantics satisfies A3, then every
ξ ∈ E contains for every address a at most one event (_,Alloc a _).

PROOF. By contradiction. Suppose ξ ∈ E contains two such allocation events α and
β for address a. Without loss of generality, we may assume α < β. By assumption,
|start-events| ≤ β, because start-events contains at most one allocation event for a.
Consider the sequence of reductions from start-state to the one (exclusive) that pro-
duces β. Let σ′ denote the shared state after this sequence. If |start-events| ≤ α, too,

36 Andreas Lochbihler

this sequence contains a reduction that produces α, because α and β cannot originate
from the same reduction by assumption A3c. Denote the shared state after α’s reduc-
tion with σ. From A3b and A3a, I get a ∈ allocated σ and allocated σ ⊆ allocated σ′,
respectively. This contradicts a /∈ allocated σ′, which A3b requires for β’s reduction.
Otherwise, a is already allocated in start-state by assumption and the argument is
analogous.

Next, I also specify allocated with respect to the other operations on the shared state:

(A4) The empty heap has no allocated addresses. If successful, allocation updates the
state σ to σ′ such that the returned address is allocated in σ′, but not in σ. In any
case, the other addresses’ allocation status remains unchanged. Formally:

allocated empty-σ = ∅
alloc σ T = (σ′, bac) =⇒ allocated σ′ = { a } ∪ allocated σ ∧ a /∈ allocated σ

alloc σ T = (σ′,None) =⇒ allocated σ′ = allocated σ

Under these assumptions, it is routine to show that start-events exactly records the
pre-allocations of the start-state and that the single-threaded semantics of source code
and bytecode meet assumption A3. Thanks to the abstract specifications, these proofs
do not depend on the implementation of the shared state.

The implementations of the shared state implement allocated σ as

dom (typeof-addr σ) and { (T, n). n < σ T },

respectively. Both meet assumption A4. This concludes the proof of D2.

LEMMA 3.6 (ASSUMPTION D2).
Every execution ξ ∈ E initialises every location at most once.

3.3. Sequential Consistency Coinductively
For the DRF guarantee, assumption D1 remains to be shown. However, the JMM def-
inition of SC is not amenable to the coinductive definition of _ ↓ _ as it relies on the
notions of write-seen function and most recent write, which are only defined for traces.
Therefore, I introduce a coinductive version of SC and prove that it adequately models
SC.

A snapshot of a sequentially consistent heap (snapshot heap) H is a map from lo-
cations to values. The empty heap is written empty. The function mrw H α updates
the snapshot heap H if α is a write or initialisation event, else leaves H unchanged.
The function mrws folds mrw over finite lists of events. An event list αs is sequentially
consistent (SC’) for the snapshot heap H (denoted H ` αs

√
sc) iff

H ` []
√

sc

=========
mrw H α ` αs

√
sc α = Read (a, l) v =⇒ H (a, l) = bvc

H ` α · αs
√

sc

==

i.e., the empty list is SC’ for all snapshot heaps, and α · αs is SC’ for H iff αs is SC’ for
the updated snapshot heap mrw H α and if α reads the value v from a location (a, l),
then the snapshot heap H must store v at (a, l).

The next theorem shows that empty ` _
√

sc and sequential consistency are equiva-
lent under the following assumption:

(D3) Initialisations precede reads in ξ. If α ∈ R reads from some location (a, l), then
there is a write event β ∈ W such that β � α and init β and (a, l) ∈ locs β.

Thus, I can use coinduction to show an execution being SC. Again, coinductivity per-
mits to handle finite and infinite executions uniformly.

The Java Memory Model is Type Safe 37

THEOREM 3.7 (EQUIVALENCE OF SC AND SC’).

(a) If ξ initialises every location at most once (assumption D2) and empty ` ξ
√

sc and
ξ
√

Start, then there is a ws such that (ξ, ws)
√

and (ξ, ws) is SC.
(b) If initialisations precede reads in ξ (assumption D3) and (ξ, ws)

√
and (ξ, ws) is SC,

then empty ` ξ
√

sc.

PROOF. (a) Set ws α to be the most recent write for α ∈ R to location (a, l). empty `
ξ
√

sc ensures that there is a write event for every read, D2 guarantees the existence of
the most recent one.19 Then, (ξ, ws) is SC by definition. For (ξ, ws)

√
, only condition W2

of well-formedness, i.e., α reads vw (ws α) (a, l), is interesting. Let αs be the prefix of ξ
up to α. From empty ` ξ

√
sc, I obtain that mrws empty αs (a, l) = bvc and α reads the

value v. Since ws α is the most recent write for α in ξ, assumption D2 and empty ` ξ
√

sc
ensure that ws α < α. Hence, vw (ws α) (a, l) = v holds.

(b) Suppose (ξ, ws)
√

and (ξ, ws) is SC. Let α ∈ Rξ read v from location (a, l), and
let αs denote the prefix of ξ up to α. Since initialisations precede reads in ξ, the most
recent write ws α precedes α, i.e. ws α � α. Well-formedness condition W2 of (ξ, ws)

√

yields that v = vw (ws α) (a, l). Since ws α is the most recent write for α and ws α � α,
I also have mrws empty αs (a, l) = bvc. As this holds for all reads α, empty ` ξ

√
sc

follows by coinduction.

COROLLARY 3.8. Let unique initialisations precede reads in ξ (assumptions D2 and
D3) and ξ

√
Start. Then, empty ` ξ

√
sc iff there is a ws such that (ξ, ws)

√
and (ξ, ws) is

SC.

This equivalence holds only if the initialisation of every location (a, l) occurs before
the first read from (a, l) in the trace. For example, the ficticious trace

ξ = [(t,Start), (t,Read a[0] 0), (t,Alloc a Integer[1])]

is SC for ws 1 = 2, but not SC’, i.e. ¬ empty ` ξ
√

sc. Such problematic traces do occur in
the JMM: Figure 17 shows a (non-SC) execution of a type-correct program that violates
assumption D3: The initialisation of (a, A::f) in l. 3 occurs after the read in l. 2. Thus,
in order to exploit this equivalence, I show that initialisations precede reads in SC’
prefixes of a trace:

(D3’) If a trace ξ ∈ E has an SC’ prefix αs followed by a read from (a, l), αs initialises
(a, l).

LEMMA 3.9. Assumption D3’ implies D3 for all ξ ∈ E that are SC’.

3.4. Initialisations Precede Reads
Next, I tackle D3’ by decomposing it into smaller assumptions that no longer refer to
traces, but only to single reductions in the small-step semantics – similar to what I
did for assumption D2 above. At the same time, I prove it for a more general class of
prefixes such that I can reuse this assumption when proving consistency in §4.

A heap record H is a function from locations to sets of values – it records all values
that have been written to a location. Similar to mrw, if α is a write or initialisation
event, the function uhr H α adds the written value(s) to the heap record H, else it
leaves H unchanged. The function uhrs folds uhr over finite lists of events. An event
list αs is non-speculative with respect to the heap record H (denoted H ` αs

√
ns) iff for

19Assumption D2 is necessary. For example, suppose that ξ initialises some location (a, l) infinitely often,
but there is no Write (a, l) _. Then, a read of the default value in ξ from (a, l) would be SC’, but not SC,
because none of the initialisations is most recent.

38 Andreas Lochbihler

any read event α in αs from any location (a, l), α reads a value that has been written
to (a, l) in αs before α or that has already been in H (a, l). Formally:

H ` []
√

ns

=========
uhr H α ` αs

√
ns α = Read (a, l) v =⇒ v ∈ H (a, l)

H ` α · αs
√

ns

==

A prefix of a trace is non-speculative iff its list of events is non-speculative with respect
to the empty heap record λ_. ∅.

A snapshot heapH fits to a heap recordH iff wheneverH stores a value for a location
(a, l), then H (a, l) contains that value.

LEMMA 3.10. If αs is SC’ for H and H fits to H, then αs is non-speculative with
respect to H.

COROLLARY 3.11. An SC’ prefix of a trace is non-speculative.

This corollary shows that it suffices to prove the following assumption D3’’ instead
of D3’.

(D3’’) If a trace ξ ∈ E has a non-speculative prefix αs followed by a read from (a, l),
then αs initialises (a, l).

To discharge D3’’, it suffices to show that a thread cannot make up addresses (§3.4.1)
and it accesses only the declared fields of objects and cells within the bouds of the array
(§3.4.2). Then, since the prefix does not speculate, the read can only access an existing
member of an address that has been allocated before. Since allocation initialises all
fields and array cells, the member therefore must have been initialised. In §3.4.3, I
make this reasoning formal.

3.4.1. Addresses are not Made Up. To show that addresses are never made up, I intro-
duce the concept of known addresses. Let ka t x denote the set of addresses that thread
t with local state x knows about. This set consists of all addresses stored in the local
state x, e.g., in local variables, of t’s associated Thread object, and of the addresses of
the preallocated system exceptions. A thread learns an address a in an event list αs iff
αs contains a read event Read _ (Addr a) or an allocation Alloc a _, i.e., it either reads
the address from some location or allocates it. The function learns αs computes the set
of learnt addresses from αs. The single-threaded semantics does not invent addresses
iff ka satisfies all of the following for any reduction t ` (x, σ)−αs→ (x′, σ′):

(K1) ka t x′ ⊆ ka t x ∪ learns αs, i.e., after the reduction step, t knows only addresses
that it has known before or has learnt in this step.

(K2) Whenever Spawn t′ x′′ ∈ αs, then ka t′ x′′ ⊆ ka t x, i.e., a spawned thread may
only know those addresses that the spawning thread knows.

(K3) Whenever Read (a, _) _ ∈ αs, then a ∈ ka t x, i.e., t may only read from members
of known addresses.

(K4) If αs[i] = Write _ (Addr a) for i < |αs|, then a ∈ ka t x ∪ learns (take i αs), i.e.,
if t writes an address a into memory, it must have known a before or just learnt
(take i αs denotes the first i events from αs).

Note the asymmetry between reads and writes. It suffices to restrict the reads to
members at known addresses; the writes may write to any address, as threads cannot
read from such a location if they do not know it. Conversely, if an address value is
written to memory, the address must not be made up. I explicitly allow writing an
address that has been being learnt before in the same reduction, because this allows
to easily implement atomic operations. For example, “read-don’t-modify-write” [Boehm
2012] translates to [Read (a, l) v,Write (a, l) v]; the interleaving semantics ensures that

The Java Memory Model is Type Safe 39

they are executed atomically. Technically, it would be fine to immediately read from a
learnt address, too, but this would unnecessarily complicate the proofs.

Proving conditions K1 to K4 is standard: Induction on the small-step semantics and
case analysis on the executed instruction, respectively.

LEMMA 3.12.
The single-threaded semantics for source code and bytecode do not invent addresses.

The concept of known addresses naturally extends to multithreaded states and the
interleaving semantics. I write kas s for the set of addresses that the state s knows; it
is the union of the known addresses of all threads in s.

LEMMA 3.13. Let s−(t, αs)→s′. Then kas s′ ⊆ kas s∪learns αs. If Read (a, _) _ ∈ αs,
then a ∈ kas s.

Let the recorded addresses addrs H be the set of all addresses in the heap record
H, i.e., addrs H = { a. ∃a′ l. Addr a ∈ H (a′, l) }. Then, the interleaving semantics pre-
serves the invariant that all known or recorded addresses are allocated for non-
speculative executions (Lem. 3.14). The proof goes by case analysis of the reduction
and induction on the prefixes of αs; shr s extracts the shared state from s:

LEMMA 3.14. Let s −(t, αs)→ s′ such that H ` αs
√

ns. If kas s ∪ addrs H ⊆
allocated (shr s), then kas s′ ∪ addrs (uhrs H αs) ⊆ allocated (shr s′).

Now, I can prove that non-speculative prefixes allocate addresses before they read
from their locations, which is the first part of proving D3’’. Let start-H denote the start
heap record uhrs (λ_. ∅) start-events, let start-σ = shr start-state denote the initial
shared state, and let events’ (t, αs) denote the list of original JMM inter-thread actions
in α, i.e., events’ is like events except for not pairing the events with the thread ID t.

LEMMA 3.15. Let start-state −tαs→∗ s and s −(t, αs)→ s′ with Read (a, _) _ ∈ αs
such that λ_. ∅ ` start-events ++ concat (map events’ tαs)

√
ns. Suppose further that

kas start-state ⊆ allocated start-σ. Then, either

(a) a is preallocated, i.e., Alloc a T ∈ start-events for some T , or
(b) some reduction has allocated a, i.e., there are t′, αs′, and T such that (t′, αs′) ∈ tαs

and Alloc a T ∈ αs′.
PROOF. If a ∈ allocated start-σ, then (a) holds by construction of start-σ

and start-events. So suppose a /∈ allocated start-σ. Let αs∗ abbreviate
concat (map events’ tαs). Since allocations write default values, which are never
addresses, addrs start-H = ∅ by construction of start-events. Therefore, kas s ∪
addrs (uhrs start-H αs∗) ⊆ allocated (shr s) by Lem. 3.14 and induction on
start-state −tαs→∗ s. In particular, I have a ∈ allocated (shr s), because a ∈ kas s
by Lem. 3.13. Since a /∈ allocated start-σ, induction on start-state −tαs→∗ s yields (b)
using A3b.20

3.4.2. Reads Access Only Declared Locations. I now turn to the second part of assumption
D3’’, namely to show that the location being read is a declared field or a cell within the
bounds of an array. The proof approach combines known addresses with conformance
and monotonicity of type information. Let me first introduce types. The type of a value v
in shared state σ is for primitive values the corresponding primitive type, e.g., Integer,
or for the null reference the null type, or typeof-addr σ a if v = Addr a is an address. If
l is a member of a’s type, the type of the location (a, l) is defined as follows: If l denotes

20The attentive reader may have noticed that the proof of Lem. 3.5 requires A3b only in the direction from
right to left. This proof uses the other direction.

40 Andreas Lochbihler

a field A::f , then it is the type declared for field f in class A. If l denotes an array cell,
then it is the type of the elements of the array. A value conforms to a type (written
σ ` v :≤ T) if v’s type is defined and a subtype of T . A heap record H conforms to
σ (notation σ ` H

√
) iff all values in H conform to the location’s type, i.e., whenever

v ∈ H (a, l), then typeof-addr σ a = bT c for some T such that l is a member of T and v
conforms to (a, l)’s type.

Further, let Q denote the invariant for the subject reduction proof of the single-
threaded semantics. For source code, it consists of run-time typeability and further
conformance notions; for bytecode, it is bytecode conformance – see [Lochbihler 2012b]
for details. The standard subject reduction proof (for non-speculative reductions) shows
the following relationships between reductions and Q: Let t ` (x, σ)−αs→ (x′, σ′) such
that Q t x σ and σ ` H

√
and H ` αs

√
ns.

(K5) Type information grows monotonically under non-speculative reductions: When-
ever typeof-addr σ a = bT c, then also typeof-addr σ′ a = bT c.

(K6) Non-speculative reductions preserve Q: Q t x′ σ′ holds. Moreover, Q t′′ x′′ σ′ holds
for all spawned threads in αs, i.e., Spawn t′′ x′′ ∈ αs, and whenever Q t′′ x′′ σ,
then Q t′′ x′′ σ′, too.

(K7) Non-speculative reductions preserve conformance: σ′ ` uhrs H αs
√

holds.

Property K5 formalises that allocated objects never change their class. The other two
correspond to the standard subject reduction theorems: K6 ensures that the subject
reduction invariant Q holds for all threads in the successor state if all threads satisfy
Q in the original state. K7 represents preservation of heap conformance in a classical
type-safety proof. σ′ ` uhrs H αs

√
checks that every value that a write in αs writes

conforms to the type of the respective location.
The novel thing is to restrict reductions to non-speculative ones. Remember that

at all layers below the JMM, nothing constrains the values that are being read from
shared locations. Therefore, I must restrict my attention to reductions that contain
no junk like type-incorrect reads. For example, consider int r = new A().f; where
class A { int f; }. When the read of f executes, there are reductions for every pos-
sible value including 0 and null. While 0 is type correct, reading null would result in
a thread-local state that stores the null reference in a local variable of primitive type
int. This would immediately break the type safety invariant. I could restrict reads to
type-correct values, but this causes problems when type information is dynamic (cf.
§2.1.1). Fortunately, I am still proving the DRF guarantee and therefore, I only have to
deal with (prefixes of) SC’ executions. Non-speculative ones generalise them such that
the general type-safety proof (§5.2) can reuse this development.

Moreover, I need to make two further assumptions about the single-threaded se-
mantics. In contrast to K5 to K7, they constrain all reductions from states satisfying
Q, not only non-speculative ones. This is fine as they only restrict those parts that the
single-threaded semantics can control themselves, i.e., they do not depend on which
values are read. Let t ` (x, σ)−αs→ (x′, σ′) such that Q t x σ.

(K8) Reductions of conforming states read only type-correct locations. Whenever
Read (a, l) _ ∈ αs, then there is a T such that typeof-addr σ = bT c and
l ∈ memb T .

(K9) Allocation events record the correct type, i.e., whenever Alloc a T ∈ αs, then
typeof-addr σ′ a = bT c.

LEMMA 3.16 (ASSUMPTIONS K5 TO K9). The single-threaded semantics for source
code and bytecode satisfy assumptions K5 to K9.

The Java Memory Model is Type Safe 41

PROOF. As discussed above, K5 to K7 are reformulations of a standard subject re-
duction theorem, and so are their proofs. K8 and K9 are by induction on the semantics
or case analysis of the executed instruction. The provision that Q holds ensures that
no undefined behaviour occurs.

3.4.3. Initialisations Precede Reads. Finally, I am ready to discharge assumption D3’’ us-
ing K1 to K9 (Lem. 3.17; snd (t, α) = α is the second projection for pairs). Hence,
initialisations precede reads in non-speculative prefixes of traces and Thm. 3.7 and
Cor. 3.8 are applicable.

LEMMA 3.17 (ASSUMPTION D3’’). Let Q hold for the bootstrapping thread in
start-state, and kas start-state ⊆ allocated start-σ, and start-σ ` start-H

√
. If ξ ∈ E ,

ξ[α] = Read (a, l) v with α < |ξ|, and λ_. ∅ ` take α (map snd ξ)
√

ns, then there is a β < α
such that ξ[β] initialises (a, l).

PROOF. Since ξ ∈ E , there is tαs such that start-state ↓ tαs and ξ = start-events ++
concat (map events tαs). Since i < |ξ|, I can split tαs such that tαs = tαs′++(t, αs)·tαs′′,
and Read (a, l) v ∈ αs, and |concat (map events tαs′)| < i. Then, there are s and s′

such that start-state −tαs′→∗ s and s −(t, αs)→ s′. Since non-speculative prefixes of
executions preserve conformance (K6 and K7), (a, l) is type correct in shr s (K8), i.e.,
typeof-addr (shr s) (a, l) = bT c and l ∈ memb T for some T . It suffices to show that
there is an event Alloc a T in start-events or tαs′. This event initialises (a, l), since
l ∈ memb T .

By Lem. 3.15, the address a has been allocated before, i.e., either in start-events
or in tαs′. If Alloc a T ′ ∈ start-events for some T ′, then typeof-addr start-σ a = bT ′c
by construction of start-events, and therefore typeof-addr (shr s) a = bT ′c (K5 with
induction on start-state −tαs′→∗ s, and K6 and K7 for preserving the conformance
invariant), i.e., T = T ′. Otherwise, tαs′ = tαs∗ ++ (t∗, αs∗) · tαs∗∗ for some tαs∗, t∗,
αs∗, and tαs∗∗ such that Alloc a T ′ ∈ αs∗ for some T ′. Hence, there are states s∗ and
s∗∗ such that start-state −tαs∗→∗ s∗, s∗ −(t∗, αs∗)→ s∗∗, and s∗∗ −tαs∗∗→∗ s. By K9, I
obtain typeof-addr (shr s∗∗) = bT ′c and therefore typeof-addr (shr s) a = bT ′c (K5 and
induction as before). Hence T = T ′.

LEMMA 3.18 (START STATE). The start state satisfies the assumptions of Lem. 3.17,
i.e., Q holds for the bootstrapping thread in start-state, and kas start-state ⊆
allocated start-σ, and start-σ ` start-H

√
. Further, start-events contains no read

events.

3.5. Sequentially Consistent Completions
Assumption D1 still remains to be shown, i.e., sequentially consistent prefixes of well-
formed executions can be completed sequentially consistently. Although this sounds
trivial, it is formally not obvious, because allocations complicate things again. The
program in Fig. 24a demonstrates that ill-formed programs can have sequentially con-
sistent prefixes of executions which cannot be cut, updated, and completed sequentially
consistently. Note that the program is ill-formed only because it literally contains the
address a. However, such a program could well occur as an intermediate state while
executing a valid Java program.

In the execution in Fig. 24b, the read in l. 3 sees the write from l. 2, but the most re-
cent write would be the initialisation of location x. Suppose that l. 3 is scheduled after
l. 1, but before l. 2, as the grey area indicates. Suppose further that a is also the ad-
dress that the array allocation in l. 4 returns. Then, the prefix up to l. 1 is sequentially
consistent, but has no sequentially consistent completion when l. 3 executes next. If
l. 3 is updated to read the initial value 0, then l. 4 allocates an array of length 0 at

42 Andreas Lochbihler

class C {} initially: x = 0;
1: print a.length;
2: x = 1;

3: r1 = x;
4: new C[r1];

(a) (t1,Start)

1: (t1, IO print 1)

2: (t1,Write x 1)

(t1,Finish)

(t2,Start)

3: (t2,Read x 1)

4: (t2,Alloc a C[1])

(t2,Finish)

(_, Init x 0)

(b)

Fig. 24: An ill-formed program (a) and its execution (b) with a sequentially consistent
prefix (grey area) followed by a read (l. 3) that cannot be cut, updated, and completed
sequentially consistently.

address a, but l. 1 has already output a’s array length as 1. This violates the JLS that
array lengths are always correct [Gosling et al. 2005, §17.4.5]. Note that this example
depends on the implemenation of the shared state: The issue arises only for dynamic
type information (§2.1.1), because static types for addresses (§2.1.2) uses different ad-
dresses for arrays of different lengths, i.e., l. 4 cannot return the same address a for
both allocations.

In this example, the problem is that t1 literally contains the address a that the allo-
cation of the other thread t2 returns. This violates that a thread only knows an address
if it has allocated it itself or it has read it from memory, which I have formalised in K1
and K2 and the condition kas start-state ⊆ allocated start-σ (see Lem. 3.18 above).

I construct a sequentially consistent completion scc s H that starts with a multi-
threaded state s and a snapshot heap H. I define scc by corecursion as follows:

scc s H = (if ∃t αs s′. s−(t, αs)→ s′

then let (t, αs, s′) = ε(t, αs, s′). s−(t, αs)→ s′ ∧H ` αs
√

sc
in (t, αs) · scc s′ (mrws H αs)

else [])

(3)

Hilbert’s ε-operator (indefinite description operator) εx. P x denotes one (fixed, but
underspecified) x such that P x holds, provided P is satisfiable at all. Otherwise, it is
unspecified. Hence, in order to prove anything about scc s H, I must make sure that
the predicate to the ε-operator is satisfiable for all reachable configurations. Thus, I
presume the following:

(D4) The interleaving semantics satisfies the cut-and-update property for the start
state start-state and the start snapshot heap start-H, where start-H =
mrws empty (map snd start-events).

The cut-and-update property (C&U) for s and H (denoted C&U s H) denotes the
following. Let the state s′ be reachable from s via an SC’ event list, say s −tαs→∗ s′
such that H ` concat (map events’ tαs)

√
sc, and let H ′ denote the updated snapshot

heap mrws H (concat (map events’ tαs)). Then, for every reduction s′ −(t′, αs′)→ s′′

from s′, there are αs′′, s′′′ such that

(a) s′ −(t′, αs′′)→ s′′′,
(b) H ′ ` αs′′

√
sc, and

The Java Memory Model is Type Safe 43

(c) H ′ ` αs′ ≈ αs′′ (to be explained in a moment).

Conditions (a) and (b) predicate that all reachable, non-stuck states can reduce with
events αs′′ that are SC’ w.r.t. the current snapshot heap H ′; they suffice to prove that
scc does compute an SC’ interleaving (Lem. 3.20). In condition (c), H ′ ` αs′ ≈ αs′′

denotes that two event lists αs′ and αs′′ consist of the same events up to the first SC’-
inconsistent read in αs′ (if any) and αs′′ continues with a read from the same location.
With condition (c), given a trace that is SC’ up to a read α, I can cut the interleaving
after α, replace α with a read of the most recent value, and continue the interleaving
SC’.

LEMMA 3.19 (PRESERVATION OF C&U).
If C&U s H, s−(t, αs)→ s′, and H ` αs

√
sc, then C&U s′ (mrws H αs).

PROOF. This holds by definition of C&U because every state that is reachable via
SC’ reductions from s′ is also reachable via SC’ reductions from s by prefixing the SC’
reduction s−(t, αs)→ s′.

Under assumption D4, scc computes an SC’ execution (Lem. 3.20). By the equiva-
lence of SC and SC’ (Thm. 3.7), I then discharge the main assumption of the DRF proof
(Thm. 3.21).

LEMMA 3.20.
If C&U s H, then s ↓ scc s H and H ` concat (map events’ (scc s H))

√
sc.

THEOREM 3.21 (SC COMPLETION). Let ξ ∈ E , (ξ, ws)
√

, (ξ, ws) be SC up to a read
event (t,Read (a, l) v), say ξ = ξ1 ++ (t,Read (a, l) v) · ξ2 with ws α being the most
recent write for all reads α ∈ Rξ1 . Then, there are ξ3, v′, and ws′ such that ξ∗ := ξ1 ++
(t,Read (a, l) v′) · ξ3 ∈ E , and (ξ∗, ws′)

√
, and (ξ∗, ws′) is SC.

PROOF OF LEM. 3.20. I show s ↓ scc s H by coinduction with C&U s H as the coin-
duction invariant. If s is stuck, then scc s H = [] and I am done by STOP. Otherwise,
conditions (a) and (b) of C&U ensure that the predicate to Hilbert’s choice in (3) is
satisfiable. Hence, it does pick an SC’ reduction step s −(t, αs)→ s′ and updates H to
H ′ := mrws H αs. Note how this mimics STEP. Since SC’ reductions preserve C&U
(Lem. 3.19), and the reduction is SC’, C&U s′ H ′ holds, too. This concludes the coin-
ductive step.

For H ` concat (map events’ (scc s H))
√

sc, the standard coinduction rule is too
weak because concat is unproductive for any number of consecutive reductions without
events. Hence, I use a coinduction rule for _ ` _

√
sc, which allows to defer the next step

if one decreases in a well-founded relation, as described in §1.2. Taking as measure the
length of the maximal prefix of scc s H for whose elements events’ returns the empty
lists, I show H ` concat (map events’ (scc s H))

√
sc with the invariant C&U s H like

above.

PROOF OF THM. 3.21. Construct ξ3 as follows: First, identify the reduction
s−(t, αs)→s′ that generates (t,Read (a, l) v). Let ξ′1 be the prefix of ξ up to events (t, αs)
exclusively, which is also a prefix of ξ1. Since all reads in ξ1 (and thus ξ′1) see the
most recent write, ξ′1 is SC’ by Thm. 3.7. Since C&U holds for the start state and
the start snapshot heap and SC’ reductions preserve C&U (Lem. 3.19), C&U holds
for s and H1 = mrws empty ξ′1, too. Hence, by C&U, there are αs′ and s′′ such that
s −(t, αs′)→ s′′, H1 ` αs′

√
sc, and H1 ` αs ≈ αs′. From the latter, I know that αs and

αs′ are the same up to the read Read (a, l) v in αs (exclusively), which is Read (a, l) v′

in αs′ for the SC’-correct value v′. Now, choose ξ3 to be the rest of αs′ followed by
concat (map events (scc s (mrws H1 αs

′))).
With Lem. 3.20, I get that ξ∗ is SC’ and ξ∗ ∈ E . Thm. 3.7 yields the required ws′.

44 Andreas Lochbihler

COROLLARY 3.22.
Every program has a well-formed, sequentially consistent execution.

PROOF. Set ξ = start-events ++ concat (map events (scc s H)). Then, ξ ∈ E and
empty ` ξ

√
sc by Lem. 3.20 and definition of E and Lem. 3.18. By Thm. 3.7, there is a

ws such that (ξ, ws)
√

and (ξ, ws) is SC.

3.6. Cut and Update
For the DRF guarantee, it remains to show that the interleaving semantics satisfies
C&U for the start state (assumption D4). Similar to initialisations preceding reads, I
generalise C&U to non-speculative prefixes and reading any previously written value,
not only the most recent one. This way, I can reuse the proof for consistency in §4.

Formally, the sequential semantics has the generalised cut-and-update property
(gC&U) for a state s and heap record H iff for all states s′ reachable from s in the in-
terleaving semantics with non-speculative events αs and any reduction s−(t, αs′)→ s′,
whenever αs′[i] = Read (a, l) v for some i < |αs′| such that uhrs H αs ` take i αs′

√
ns,

then for any value v′ ∈ uhrs H (αs ++ take i αs′), there is a reduction s −(t, αs′′)→ s′′

such that i < |αs′′| ≤ |αs′| and αs′′[i] = Read (a, l) v′ and take i αs′ = take i αs′′.
Intuitively, gC&U allows to cut a trace at any read event in its non-speculative prefix

and replace it with a read from the same location that reads any value which has pre-
viously been written to that location. This might seem overly complicated, but I must
ensure that the semantics stays within defined behaviour. Speculative event lists such
as those leading to the well-formed execution in Fig. 5 may read values out of thin
air. Although the JMM legality dismisses such traces later, I must deal with them
on the level of interleaving semantics, because being illegal is hard to characterise
at this level. Since non-speculative executions preserve conformance (assumptions K6
and K7) and generalise sequential consistency (Lem. 3.10), they provide an adequate
universe of trace prefixes. In §4 and §5, I will show that non-speculative events also
contain further prefixes of interest. In particular, I restrict the updated values to pre-
viously written ones to maintain non-speculativity.

LEMMA 3.23 (GC&U IMPLIES C&U). If the interleaving semantics satisfies gC&U
for start-state and start-H and the bootstrapping thread initially satisfies Q, then it
also satisfies C&U for start-state and start-H.

PROOF. Suppose start-state−tαs→∗ s and s−(t, αs′)→ s′ such that start-H ` αs
√

sc
where αs abbreviates concat (map events’ tαs). Let H = mrws start-H αs. I must show
that there are αs′′ and s′′ such that s−(t, αs′′)→s′′, andH ` αs′′

√
sc, andH ` αs′ ≈ αs′′.

By Lem. 3.10, start-H ` αs
√

ns, i.e., gC&U allows to cut and update all reductions
from state s. Construct αs′′ iteratively as follows: Start with αs′′ = αs′ and consider
the first event in αs′′. If it is an event reading not the most recently written value
(according to the snapshot heap H), change the reduction to the most recently written
value using gC&U, then continue with the new reduction for the next event. Otherwise,
update the snapshot heap H for the event and consider the next event. This process
terminates after at most |αs′| iterations because gC&U bounds the length of the re-
placement events αs′′ to that length. The reduction thus obtained serves as witness.

The key step in the iteration is to show that H stores a most recently written value
at all. I show similar to Lem. 3.17 that start-state −tαs→∗ s initialises the location.
This ensures that H does store some value v for the location and H = uhrs start-H αs
has recorded v, too, as H fits to H. Hence, gC&U ensures that I can cut and update the
reduction as described.

Now, it remains to show that both source code and bytecode satisfy gC&U, i.e.,

The Java Memory Model is Type Safe 45

(D4’) The interleaving semantics satisfies gC&U for start-state and start-H.

Although D4’ is tedious to prove for the layers 2 to 5, these proofs are not particularly
interesting. I avoid having to reason about which values have previously been written
by generalising it further to arbitrary type-conforming values. Since gC&U involves
only non-speculative prefixes of executions, assumptions K6 and K7 ensure that these
preserve conformance. In particular, all written values conform, too. Therefore, any
value that gC&U requires to be read conforms to its type.

Thus, I am finally able to conclude that the DRF guarantee holds for source code and
bytecode.

THEOREM 3.24. The DRF guarantee holds for source code and bytecode. If the pro-
gram is correctly synchronised, then every legal execution is SC.

4. CONSISTENCY
In the previous section, I have shown that the JMM allows solely sequentially consis-
tent behaviour for correctly synchronised programs. The DRF guarantee shows that
the JMM is strong enough to disallow certain undesired behaviours. Conversely, con-
sistency requires that the JMM be not too strong: the JMM does allow some legal
behaviour for every valid Java program. Now, I prove consistency, even for incorrectly
synchronised programs. In particular, I show that any sequentially consistent execu-
tion is legal. This is not trivial, because in programs with data races, the most recent
write for a read need not happen before it. Hence, these data races must be justified.

THEOREM 4.1 (CONSISTENCY). Every source code and bytecode program has a se-
quentially consistent execution. Every sequentially consistent execution is legal.

Combining consistency with the DRF guarantee, I obtain the following:

— For correctly synchronised programs, the JMM is exactly sequential consistency.
— For programs with data races, the JMM is strictly weaker than sequential consis-

tency.

Like in the previous section, I have identified assumptions on the interfaces between
the different layers of the semantics such that I can conduct the proofs as abstractly
as possible. In fact, this section only relies on the properties of the single-threaded
semantics from the previous section. All theorems are on the layer of the interleaving
semantics or on higher ones. Like in §3, I start at the JMM layer with assumptions
about traces and then discharge these assumptions in the layers below.

At the JMM layer, the assumptions are now:

(C1) For every sequentially consistent prefix of a well-formed execution (ξ, ws) with
ξ ∈ E , there is a trace ξ′ ∈ E with the same prefix and a write seen function ws′

such that
(a) (ξ′, ws′)

√
,

(b) for all read events α ∈ Aξ′ , if α is in the prefix, then ws′ α = ws α else
ws′ α ≤ξ

′

hb α, and
(c) if ξ continues with an event β directly after the prefix, ξ′ continues with the

same β, except that if β is a read, it may read a different value.
(C2) If a well-formed execution has an SC prefix αs followed by a read from (a, l), αs

initialises (a, l).
(D2) Every execution ξ ∈ E initialises every location at most once.

Assumption C1 expresses that I can cut any execution after an SC prefix and con-
tinue such that every read in the continuation sees a write that happens before the

46 Andreas Lochbihler

(t1,Start)

(t1,Write x 1)

(t1,Finish)

(t2,Start)

(t2,Read x 1)

(t2,Finish)

(_, Init x)

(a) sequentially consistent

(t1,Start)

(t1,Write x 1)

(t1,Finish)

(t2,Start)

(t2,Read x 0)

(t2,Finish)

(_, Init x)

(b) writes happen before reads

Fig. 25: Two executions of the traces [(_, Init x), (t1,Start), (t1,Write x 1), (t1,Finish),
(t2,Start), (t2,Read x v), (t2,Finish)] for (a) v = 1 and (b) v = 0 of the program P6

read. I dub this happens-before consistent completion in analogy to sequentially con-
sistent completions for the DRF guarante (D1). The second assumption C2 is similar
to D3’ with SC’ replaced by SC. Assumptions C2 and D2 ensure that for well-formed
executions with an SC prefix followed by a read α to location (a, l),

— a most recent write α′ exists for α with α′ < α, and
— if a write α∗ to (a, l) happens before α, then α∗ < α, too.

THEOREM 4.2. Under assumptions C1, C2, and D2, every SC execution is legal.

PROOF. Let ξ ∈ E such that (ξ, ws)
√

and (ξ, ws) is SC. I must justify (ξ, ws) by a
justifying sequence (ξi, wsi, Ci, ϕi)i. For i ≤ |ξ|, choose some (ξi, wsi) with the following
properties:

— ξi ∈ E
— (ξi, wsi)

√

— i ≤ |ξi|
— take (i− 1) ξ = take (i− 1) ξi
— Suppose i > 0. If ξ[i−1] = Read (a, l) v, then ξi[i−1] = Read (a, l) v′ for some v′, else
ξ[i−1] = ξi[i−1].

— For all read events α ∈ Aξi , if α < i− 1 then wsi α = ws α, else wsi α ≤ξihb α.

Assumption C1 ensures that such (ξi, wsi) exist. Set Ci = {α. α < i }, i.e., (ξi, wsi)
commits the first i events.

For i > |ξ|, set ξi = E and wsi = ws and Ci = Aξ. Then, the sequence (ξi, wsi, Ci, ϕi)i
justifies (ξ, ws) where all renamings ϕi are the identity.

To illustrate how J = (ξi, wsi, Ci, ϕi)i justifies reads which see writes that do not
happen before, consider the following program P6 where the write in l. 1 races with
the read in l. 2. It differs from Fig. 21 in x not being volatile.

initially: x = 0;
1: x = 1; 2: r = x; (P6)

Fig. 25 shows the executions for the two traces where thread t1 on the left executes
before the one on the right (t2). I wish to justify the SC execution shown in Fig. 25a.
Suppose that we are about to commit the read event, i.e., i = 5. Fig. 25b shows (ξ4, ws4)
where the grey area contains all committed events.

The Java Memory Model is Type Safe 47

The JMM justification rules allow the write-seen function (dashed arrows) to change
only for reads that the previous justifying execution has committed for the first time.
Since (ξ5, ws5) commits the read, it must still see the allocation as there are no other
writes that happen before the read. Thus, Fig. 25b also shows (ξ5, ws5). In the next
step, (ξ6, ws6) may change the read such that it sees the write, i.e., Fig. 25a shows
(ξ6, ws6). At the same time, it also commits the last event (t2,Finish).

This offset explains why the specification of (ξi, wsi) mostly refers to i− 1. However,
one cannot shift the whole sequence by one because the JMM requires that (ξ0, ws0)
has not yet committed any events.

The proof that (ξi, wsi)i justifies (ξ, ws) is tedious and largely uninteresting, except
for the case when the i − 1-th event in ξ reads from a write that does not happen
before it. In that case, (ξi, wsi) changes the write from wsi−1 (i − 1) to ws (i − 1).
Legality condition L9 require that (ξi−1, wsi−1) has already commited both of them,
i.e., wsi−1 (i− 1) < i− 1 and ws (i− 1) < i− 1. As noted above, assumptions C2 and D2
ensure this, because ws (i − 1) is the most recent write for and wsi−1 (i − 1) happens
before i− 1.

COROLLARY 4.3. Under assumptions D2, D3’, D4, C1, and C2, every program has
a (weakly) legal execution.

PROOF. By Cor. 3.22, it has a well-formed SC execution. By Thm. 4.2, this execution
is legal. Legality implies weak legality.

Next, I show that source code and bytecode satisfy assumptions C1 and C2. Note
that the latter is equivalent to D3’ by Thm. 3.7, i.e., Lem. 3.17 discharges it.

Assumption C1 is structured similarly to D1. Thus, I construct a witness execution
by corecursion similar to scc in (3), but choose αs such that reads in αs see writes that
happen before them. Since assumptions C2 and D2 ensure that such writes precede
the reads in the execution, the prefix up to the read is non-speculative and thus gC&U
ensures that such a witness exists. Here, the crucial step is to show that such a write
exists. Note that the initialisation exists by assumption D3’’ and happens before the
read by Lem. 3.3. Then, the ≤eo-maximal write to the location that happens before the
read serves as witness. Since the proof structure is similar to sequentially consistent
completions (Lems. 3.19 and 3.20, Thm. 3.21), I omit the details.

5. TYPE SAFETY
Type safety has been one of the motivations for the JMM defining semantics for data
races, but to date, no proof of type safety for the JMM has been published. Here, I
prove that type safety holds for all Java programs, even in the presence of data races,
subject to a few side conditions (§5.2). I discuss the type safety statement (§5.3) and
its relation to the out-of-thin-air guarantee (§5.4).

5.1. Type-Unsafe Executions
Before I delve into the details, I present the difficulties and challenges in proving type
safety for the JMM. Traditionally, subject reduction is used to show type safety, i.e.,
one identifies an invariant Q that all reductions preserve [Wright and Felleisen 1994].
Typically, Q includes type-correctness of the statement and conformance of the store.
For the DRF guarantee, I have already shown preservation for non-speculative reduc-
tions (assumption K6), i.e., for programs without data races. Yet, speculation is a core
feature of the JMM, and in general, preservation does not hold.

In Fig. 5, e.g., both reads speculate to read the value 1, which is still type-correct.
However, they could have speculated null as well, and storing null in the local vari-
able r1 of type int violates conformance, i.e., breaks preservation. Legality dismisses

48 Andreas Lochbihler

ξ0: Ix 1 8 Iy 3 2 Ib 4 9 7

ξ1: Ix 1 8 Iy 3 2 Ib 4 9 7

ξ2: Ix 1 8 Iy 3 2 Ib 4 9 7

ξ3: Ix 1 8 Iy 3 2 Ib 4 9 7

ξ = ξ4: Ix 1 8 Iy 3 2 Ib 4 9 5

Fig. 26: Justification for an type-unsafe execution of Fig. 8

both executions, but this only happens in layer 7; the subject reduction proof, however,
operates below – mainly in layer 3 – and, therefore, this has to be addressed.

Of course, one can restrict traces to read only type-conforming values, but this would
be cheating: This renders the semantics type-safe by construction and therefore cannot
show that the legality constraints do ban out-of-thin-air values. Moreover, as discussed
in §2.1.1, this restriction can exclude some legal behaviours.

Moreover, I have claimed that dynamic type information (§2.1.1) leads to unsound-
ness. Figure 26 shows the justification for the type-unsafe execution ξ that I described
in §2.1.1 for Fig. 8. It uses the notation from Fig. 16b, but omits the events Start and
Finish as they are irrelevant. The trick is to justify the address of the D object allocated
in l. 7 as an out-of-thin-air value for the data races on x and y. These races have the
same pattern as in Fig. 5, where the JMM is sufficiently strong to disallow out-of-thin-
air values. However, in Fig. 8, this cycle occurs only if the then branch (l. 5) executes.
The justification in Fig. 26 first executes the else branch (l. 7) until both data races on x
and y are committed (ξ0 to ξ3). Then, ξ4 switches the branches and the address a keeps
being passed between the two data races as an out-of-thin-air value. The then branch
could then do almost anything – in the example, it allocates a C object. Although r1,
r2, x, and y already contain the address a, it has not yet been allocated in ξ4 and is
thus fresh.21 Consequently, the allocation strategy of §2.1.1 uses a for the allocation in
l. 5, which is a C object. Hence, the locations x and y of type D now refer to a C object,
which is type-unsafe.

This problem is not specific to the allocation strategy of §2.1.1. Similar examples can
be conceived for other strategies that allow to allocate objects of different types at the
same address. Static type information (§2.1.2) circumvents this issue, because C and D
objects have distinct address spaces.

5.2. Proof of Type Safety
In the following, I prove type safety for the JMM. I assume typeof-addr and derived
notions like conformance do not depend on the shared state. Static type information as
in §2.1.2 meets this assumpion. Consequently, the type of an address, a field, cell, or
value makes sense without the context of a particular execution. In particular, I now
omit the shared state σ for conformance, e.g., ` v :≤ T instead of σ ` v :≤ T .

A read or write event to location (a, l) of value v is type-correct iff a has some type T
such that l is a member of T and v conforms to (a, l)’s type. Type safety for the JMM
means that in any legal execution (ξ, ws), all read events read are type-correct. Thus,
standard type safety proofs for the language extend to the JMM.

21Note that allocation sometimes has to return an address that is already stored in some location or variable,
e.g., in Fig. 17.

The Java Memory Model is Type Safe 49

THEOREM 5.1 (JMM TYPE SAFETY). Let (ξ, ws) be a (weakly) legal execution of a
source code or bytecode program, and α be any read event in ξ. Then, α is type-correct.

Fortunately, the machinery for the DRF guarantee almost suffices to prove the as-
sumptions of the JMM type safety proof about the single-threaded semantics. This
might surprise at first, because in §3, I have paid close attention that I only talk about
non-speculative lists of events, but Thm. 5.1 also holds for speculative executions. The
key is that I can use H ` αs

√
ns to also characterise event lists of type-safe executions.

Instead of start-H, I use the largest conforming heap record H. If the address a has
some type T such that l ∈ memb T , then H (a, l) contains all values that conform to
(a, l)’s type. Otherwise, H (a, l) = ∅. Clearly, ` H

√
. Then, H ` αs

√
ns expresses that

any read α in αs is type correct provided that all writes prior to α are type correct,
too. Conversely, if all reads in αs are type correct, then H ` αs

√
ns, because H already

contains all the values that are read.
The assumptions for type safety are K6, K8, and the following two: T1 strength-

ens K7 to prefixes; and T2 generalises K9 by dropping conformance Q t x σ and non-
speculativity.

(T1) Non-speculative prefixes preserve conformance:
Let Q t x σ, and t ` (x, σ) −αs→ (x′, σ′), and ` H

√
. For all i, if H ` take i αs

√
ns,

then ` uhrs H (take i αs)
√

.
(T2) If t ` (x, σ) −αs→ (x′, σ′), and Alloc a T ∈ αs, and typeof-addr a is defined, then

typeof-addr a = bT c.
Since these assumptions are closely related to K7 and K9, discharging them is also
similar. Thus:

LEMMA 5.2.
The single-threaded semantics for source code and bytecode satisfy T1 and T2.

Before I prove type safety, I first show two lemmas about when writes and reads
are type-correct. The actual proof of Thm. 5.1 then lifts these to weak justification
sequences and legality.

LEMMA 5.3 (TYPE-CORRECT WRITES). Suppose that K6 and T1 hold. Let ξ ∈ E and
α ∈ W such that H ` map snd (take α ξ)

√
ns. Then, α is type-correct for all locations

that it writes to. More precisely, for all (a, l) ∈ locs α, (a, l) has a type T such that
` vw α (a, l) :≤ T .

PROOF. If α originates from start-events, it allocates one of the pre-allocated ob-
jects. By construction of start-state, the initialisation values conform to the locations’
types. In particular, uhrs H start-events = H. So, suppose that α is produced by
some reduction t ` (x, σ) −αs′→ (x′, σ′) such that start-state −tαs→∗ s, and s con-
tains thread t with local state x and shared state σ, and αs = start-events ++
concat (map events tαs) ++ events (t, αs′) ++ αs′′ for some rest αs′′. Let αs∗ =
concat (map events’ tαs) and H = uhrs H αs∗ and let i denote α’s index in αs. As
start-state conforms (Lem. 3.18), ` H

√
, and H ` αs∗

√
ns, the assumptions K6 and

T1 ensure that Q t x σ and ` H
√

hold (by induction on start-state −tαs→∗ s). Ap-
plying T1 for t’s reduction, I get that ` uhrs H (take (i + 1) αs′)

√
, too. Moreover

vw α (a, l) ∈ uhrs H (take (i + 1) αs′) by construction of uhrs. By definition of heap
record conformance, the claim follows.

LEMMA 5.4 (TYPE-CORRECT READS). Suppose that K6, K8, T1, and T2 hold. Let
ξ ∈ E , and (ξ, ws)

√
. Further suppose that for any read β ∈ R, if ws β 6≤hb β, then β is

type correct. Then, all reads α ∈ R are type correct.

50 Andreas Lochbihler

PROOF. By induction on α (which is a non-negative integer). If ws α 6≤hb α, I am
done by assumption. So, suppose ws α ≤hb α. Unfortunately, I cannot deduce ws α < α
like I did for consistency (§4), because C2 does not apply. In fact, Fig. 17 shows a
counterexample with allocation.

Nevertheless, suppose for now that ws α < α; I will deal with α ≤ ws α below. Then,
the prefix ξ1 = take (ws α) ξ of ξ up to ws α is non-speculative for H, because by the
inductive hypothesis, all reads α′ ∈ R with α′ < α (thus α′ < ws α) are type-correct.
Thus, Lem. 5.3 applies and ws α is type-correct, too – in particular for the location (a, l)
that α reads from. Well-formedness W2 gives that α reads the same value that ws α
writes, i.e., α is type-correct, too.

Now, consider the missing case α ≤ ws α. Then, α < ws α, because reads are never
writes. As ≤hb is consistent with the total execution order ≤eo, ws α ≤hb α implies
ws α ≤eo α. By definition of ≤eo and �, this is only possible if ws α is an allocation,
say Alloc a′ T . By W1, α reads from some location (a, l) with (a, l) ∈ locs (ws α), i.e.,
a′ = a and l ∈ memb T . It suffices to show that typeof-addr a = bT c, because then, the
location (a, l) also has a type, say T ′ and α reads the default value for T ′, which always
conforms to T ′. Yet, this is not obvious, because a’s type and T in Alloc a T need not
fit together. In particular, assumption K9 does not apply, because I cannot deduce that
the thread’s state satisfies Q when it produces ws α.

For example, consider the following scenario: α speculates a type-incorrect value, say
false instead of null. A subsequent method call with false as receiver does not raise
a null pointer exception as expected, but behaves undefinedly. And it is the undefined
behaviour that generates the allocation that α sees; but as the behaviour is undefined,
a’s type need not be T . For example, suppose that a is drawn from the addresses for
arrays of Object, but T is bool[1], i.e., an array of primitive booleans. Hence, α is
type-incorrect, but α itself causes the type-incorrect write that it sees. The legality
constraints do not catch this causal cycle, because allocations happen before the start
of the program.

Assumption T2 bans this scenario, as the following proof shows. Some reduction
s−(t, αs)→ s′ generates the read α such that start-state−tαs→∗ s, i.e., start-events ++
concat (map events tαs) is ξ’s prefix before αs. This prefix is non-speculative for H,
using the induction hypothesis analogously to ξ1 in ws α < α above. Hence, t’s thread-
local state in s satisfies Q and by assumption K8, a has some type, i.e., typeof-addr a
is defined. Then, typeof-addr a = bT c using T2, because some reduction generates
ws α.22

The next lemma shows that if a read is committed in a (weak) justification sequence,
then the write that is sees in the justified execution has already been committed. As-
pinall and Ševčík [2007a] have already used – but not mentioned – this lemma for
their proof of the DRF guarantee. It follows from L2, L9’, and L11 by induction on i.

LEMMA 5.5. Let (ξi, wsi, Ci, ϕi)i weakly justify (ξ, ws). If α ∈ Rξi ∩ Ci, then
ws (ϕi α) ∈ ϕi ‘ Ci.

Now, I am ready to prove type safety.

22The attentive reader might wonder why T2 comes with the premise that typeof-addr a be defined; without
it, this proof would be much simpler. Unfortunately, the single-threaded semantics would not satisfy T2
without this premise. Note that T2 does not (and must not) assume conformance of the thread-local state
(Q t x σ). Hence, it also holds for non-conforming states which may yield undefined behaviour. Fortunately,
the structure of JinjaThreads source code and bytecode semantics satisfies T2 even for non-conforming
states with the premise.

The Java Memory Model is Type Safe 51

PROOF OF THM. 5.1. It suffices to show the statement for weak legality, because
weak legality implies legality (§2.4). Let J = (ξi, wsi, Ci, ϕi)i be the weak justification
sequence for (ξ, ws).

First, I prove that for all i ≥ 1, all reads α ∈ Rξi are type-correct,23 by induction
on i. As induction hypothesis, I assume that all reads in Rξi−1

are type-correct if i ≥
2. I show that all reads in α ∈ Rξi are type-correct, too. By Lem. 5.4, it suffices to
consider only the case ws α 6≤ξihb α. Suppose that α reads value v from location (a, l)
in ξi. By L8, α must have already been committed in Ci−1, i.e., there is some α′ ∈
Ci−1 such that ϕi−1 α′ = ϕi α. Hence, α sees in ξi the same write as in ξ by L7, i.e.,
ws (ϕi α) = ϕi (wsi α). Moreover, as α ∈ Ci, wsi α ∈ Ci, too (Lem. 5.5). By L6, ws (ϕi α)
(= ϕi (wsi α)) writes the same as wsi α to (a, l), namely v.

Note that i ≥ 2, because C0 = ∅ (L2) and α′ ∈ Ci−1. The induction hypothesis there-
fore applies for i − 1: all reads in ξi−1 are type-correct. Thus, (every prefix of) ξi−1 is
non-speculative for H, i.e., Lem. 5.3 applies and all writes in ξi−1 are type-correct.
Thus, it suffices to find a write in Wξi−1 that writes v to the location (a, l), as this
ensures that α is type-correct, too.

Finding this write depends on whether α has already been committed in Ci−2. If so,
there is some α′′ ∈ Ci−2 such that ϕi−2 α′′ = ϕi α. Hence, ws (ϕi−1 α

′) = ϕi−1 (wsi−1 α
′)

by L7. As ϕi−1 α′ = ϕi α and ws (ϕi α) = ϕi (wsi α), the renaming functions identify
wsi α and wsi−1 α

′. Hence, they both write to (a, l) (L6), but not necessarily the same
value, because renamings do not consider values read or written. As α′ ∈ Ci−1, the
write ws (ϕi−1 α

′), which α′ sees in ξ, has already been committed in Ci−1 by Lem. 5.5.
Hence, wsi−1 α′ ∈ Ci−1, because ws (ϕi−1 α

′) = ϕi−1 (wsi−1 α
′) and ϕi−1 is injective

on Ci−1 (L11). By L11, α′ reads from (a, l), because α does. So, wsi−1 α′ writes to (a, l)
by W1. Since wsi−1 α

′ is committed, it writes the same value as ϕi−1 (wsi−1 α
′) (=

ws (ϕi α)) by L6, namely v. Hence, I have found wsi−1 α′.
Otherwise, α′ has been newly committed in Ci−1. Hence, L9’ yields that ws (ϕi α)

has been committed in Ci−1. So, there is some β ∈ Ci−1 such that ϕi−1 β = ws (ϕi α).
β is the write I am looking for: L11 ensures that β writes to (a, l), too; by L6, β and
ws (ϕi α) write the same value to (a, l), namely v.

COROLLARY 5.6. Every read in every legal execution is type correct. Justifications
need only consider type-safe executions.

5.3. Discussion
I have just proved type safety for the JMM. Now, I discuss whether its implications are
satisfactory.

Thm. 5.1 does not mention progress or subject reduction, as is typical for type safety
proofs [Wright and Felleisen 1994]. But one should not expect this, because the JMM
layer is too abstract too express these notions. Hence, Thm. 5.1 should not talk about
this, either. Rather, it enables using these well-established techniques for the single-
threaded semantics. It shows that one may assume that reading a location always re-
turns a type-correct value, provided that addresses have static types as in §2.1.2. This
suffices for typical subject reduction proofs. Hence, these proofs can completely forget
about the memory model issues. In fact, I have done so, see [Lochbihler 2007, 2012b]
for details.

23For i = 0, the legality constraints do not ensure that (ξ0, ws0) is well-behaved. Consequently, type-unsafe
executions are allowed. However, this does not matter, because justifications are existentially quantified and
(ξ0, ws0) can always be changed to a type-safe one: Whenever (ξi, wsi, Ci, ϕi)i (weakly) justifies (ξ, ws), so
does (ξ′i, ws

′
i, C

′
i, ϕ

′
i)i where ξ′0 = ξ1, ws′0 = ws1, C′

0 = ∅, ϕ′
0 = ϕ1, and ξ′i = ξi, ws′i = wsi, C′

i = Ci, ϕ′
i = ϕi

for i ≥ 1, i.e., (ξ0, ws0) is replaced by (ξ1, ws1), but without committing any events.

52 Andreas Lochbihler

class X extends Exception { int f; }
initially: b = false; x = y = null;

1: r1 = y;
2: x = r1;

3: r2 = x;
4: if (!b)
5: r2 = new X();
6: y = r2;
7: throw r2;

8: b = true;

Fig. 27: A program that the JMM allows to terminate with a raised, but unallocated
exception

Still, there are some issues with memory allocation: type safety does not express
that everything has been allocated. Consider, e.g., the program in Fig. 27, which is a
variation on Fig. 8. There is a legal execution in which t2 terminates with an uncaught
exception whose object has never been allocated. The justification is similar to Fig. 26:
First, commit both data races on y and x; then, flip the if condition such that l. 5 does
not execute. Still, y and x refer to the exception object that l. 5 would allocate, and l. 7
throws it.

Nevertheless, the JMM ensures that uninitialised memory cannot be read. Replace
l. 7 in Fig. 27 with r3 = r2.f;. Then, one cannot find a legal execution where l. 7 ac-
cesses the field f, although l. 5 has not executed, i.e., the object was not allocated: One
can still commit the races on y and x as before, but as soon as the if condition is
flipped, the execution becomes ill-formed: there is no write that the read in l. 7 can see,
as the allocation in l. 5 does not execute. Hence, well-formedness dismisses this execu-
tion; it is illegal. By the same argument, programs in general never read uninitialised
memory.

Yet, the JMM does allow writes to uninitialised memory locations. If a read of the
same location happens after such a write, the read may see the write, i.e., the write acts
like an initialisation except that does not happen before everything else. If I replace
l. 7 in the running example with r2.f = 0; r3 = r2.f;, it is a legal execution to skip
l. 5 and to have the new write and read access the field f of the unallocated X object.

5.4. Out-of-Thin-Air Values and the Java Security Architecture
Type safety and the Java security architecture [Gong 2003] have been the main moti-
vation for the (complicated) legality constraints, because they require to that programs
with data races have defined semantics. As I have explained in §1.1, they rely on values
not appearing out of thin air. Banning such values has been an important concern dur-
ing the last decade – Pugh [2000] first noticed the need to ban them and Manson et al.
[2005] expand on the issue. The recent C++11 standard bans out-of-thin-air values, too,
although informally [ISO JTC1/SC22/WG21 2011, §29.3.9]; Boehm [2007] explains the
main ideas and problems. Nevertheless, it is still unclear what actually constitutes an
out-of-thin-air value and no formal definition has been found to date.However, one can
narrow down this notion from its motivation: type safety and the security architecture.

Ševčík [2008] showed a weak form of out-of-thin-air guarantee for a class of pro-
gram transformations: If a program has no means to generate a certain value, then no
transformation of the program can output that value. For example, a program without
arithmetic only outputs numbers that literally appear in the program. His guarantee
supports neither type safety nor the SA, because they require that values do not ap-
pear at locations other than they are meant for. My type-safety proof therefore is a
stronger form of out-of-thin-air guarantee.

Now, let me approach this notion from the security point of view. According to the
JLS, “many security features of the Java programming language depend upon Strings

The Java Memory Model is Type Safe 53

being perceived as truly immutable, even if malicious code is using data races to pass
String references between threads” [Gosling et al. 2005, §17.5]. To that end, the string
contents are stored in a char array whose reference must not escape the String class.
The out-of-thin-air guarantee should prevent malicious code from forging a pointer to
the char array – otherwise, it can mutate the string contents and break the security
architecture.

Now, consider Fig. 8 again, but replace both new expressions (in ll. 5 and 7) with
new char[2];. Imagine that l. 5 allocates the char array that is to store the contents of
a String object. Now, both ll. 5 and 7 allocate an object of the same type, so it is very
likely that the allocations return the same address – even when addresses carry static
type information – because only one of them can execute in one execution. Neverthe-
less, Fig. 26 justifies an execution where r2 references the same array as r3. Hence,
data races can forge pointers under the JMM.

This example shows that the out-of-thin-air guarantee is too weak to support the
security architecture. However, it is only a theoretical example, because I do not know
of any optimisation in a compiler, a JVM, nor in hardware that could lead to such be-
haviour. Hence, this should be considered a deficiency of the JMM specification. Static
type information for addresses rescues type safety, but does not solve the fundamental
problem, which appears to be inherent to committing semantics. A real solution is still
missing.

6. RELATED WORK
A lot of work has been devoted to hardware MMs, see [Adve and Gharachorloo 1996;
Steinke and Nutt 2004; Boudol and Petri 2009] for an overview. Here, I focus on pro-
gramming language MMs, which are looser than hardware MMs (and therefore harder
to design), because they should be efficiently implementable on various hardware and
allow as many compiler optimisations as possible, but nevertheless be defined unam-
biguously.

Huisman and Petri [2007] have formalised the JMM and the proof of the DRF guar-
antee in the proof assistant Coq. They have already noted that initialisations break
the proof, but added an axiom to avoid the problem. They set out at the abstract level
of threads in isolation, without connection to an operational semantics.

Aspinall and Ševčík [2007a] have formalised parts of the JMM relevant for the DRF
guarantee and proved the latter in Isabelle/HOL — which I have found very helpful
in extending the DRF guarantee proof. Since they omit dynamic allocation, they need
to consider only finite prefixes of executions. This simplifies their proofs considerably,
as they do not need to assume that sequentially consistent completions of executions
exist. They do not provide an intra-thread semantics, either. Instead, they model a
program as an unspecified predicate that checks whether a trace of memory accesses
and synchronisation operations represents a valid execution of the thread. This does
not suffice to model the hidden communication channels between threads that the JLS
specifies, see the examples P1 and P2.

They have also studied which compiler transformations the JMM allows [Ševčík and
Aspinall 2008]. They show that weak legality improves on legality in that it always
allows to reorder memory accesses to distinct, non-volatile locations, but they have
found counterexamples to several other optimisations [Aspinall and Ševčík 2007b].

Jagadeesan et al. [2010] define an operational semantics for weak MMs with specu-
lative computations similar to the JMM, which also provides the DRF guarantee. In-
stead of validating executions a posteriori, their semantics explicitly encodes permitted
reorderings and speculation. Yet, their model is neither machine-checked nor compa-
rable to the JMM for programs with data races and synchronisation. They show that

54 Andreas Lochbihler

their semantics validates many of Aspinall’s and Ševčík’s counterexamples [2007b] to
optimisations in the JMM. Although their semantics is good at local optimisations,
eliminating redundant synchronisation is not valid in general. Neither does their se-
mantics allow reordering with memory allocation as the JMM does, which required a
major effort in the current work; for example, they do not allow the execution in Fig. 17.
Although they claim that their model bans out-of-thin-air values, their semantics al-
lows for the example from §5.4 the same out-of-thin-air value that could compromise
Java’s security architecture.

Goto et al. [2012] have extended this semantics with correspondence assertions and
a type system for which they show type safety. Yet, their type safety statement is
broken, because the definition of being stuck misses some cases, e.g., multiple spawns
of one thread as in P2. Once more, this shows that machine-support is essential in
dealing with memory models. They face a similar problem of typing speculative reads
of non-conforming values, which they call shape traps and ignore during type checking.
As initialisations are treated like ordinary writes, their proofs do not have to deal with
the additional complications such as assumptions D2, D3, C2, and T2. Their monolithic
semantics and type system lead to large and complicated proofs. In contrast, my stack
of semantics leads to modular proofs with explicit assumptions at the interfaces.

Boyland [2009] formalises in Twelf a semantics for a simple language with alloca-
tion, synchronisation, volatiles, thread spawns and joins, which may raise an error
upon a data race. He shows that a program never raises such errors iff it is data-race
free in the JMM sense. For programs with data races, the semantics misses many
behaviours that the JMM allows, e.g., reorderings as in Figs. 3 and 17, whereas my
semantics deals with the full JMM.

For a kernel language, Cenciarelli et al. [2007] define an interleaving small-step
semantics that generates configuration structures of events which an axiomatic theory
constrains. On paper, they show that they only generate behaviours that the JMM
allows, but it is unknown whether they produce every allowed behaviour and they do
not consider the DRF guarantee.

Some model checkers are aware of the JMM [De et al. 2008; Torlak et al. 2010; Jin
et al. 2012]. Each of them comes with an identification scheme for events, but none of
them presents a thorough analysis of its implications like I did in §2.5. Only the model
checker by Torlak et al. exactly captures the JMM; De et al.’s under-approximates it
(misses, e.g., Fig. 3b), Jin et al.’s over-approximates it (e.g., allows the forbidden result
for JMM test case 5 [Pugh and Manson 2004]). Using whole-program analysis, Torlak
et al.’s algorithm computes all events and memory allocations in advance. They focus
on checking small test cases with finite state rather than providing a full semantics
and proofs.

The recent C++11 standard [ISO JTC1/SC22/WG21 2011] considers programs with
data races ill-formed and assigns undefined semantics to them, but offers finer shades
of synchronisation than Java. Relaxed atomics provide visibility guarantees similar
to ordinary fields in Java, although there are subtle differences [Boehm 2007]. Boehm
and Adve [Boehm and Adve 2008] describe a preliminiary version of the memory model
and prove the DRF guarantee for programs which use only strong synchronisation
primitives. They show that such programs are characterised more intuitively as never
having conflicting events adjacent in any interleaving. For the JMM, this equivalence
does not hold, as threads can communicate without introducing happens-before rela-

The Java Memory Model is Type Safe 55

tionships.24 Similar to the Java DRF guarantee, their proof assumes that sequentially
consistent executions exist, but they do not construct them formally. Batty et al. [2011]
have formalised the memory model with a focus on rigorously defining the semantics,
and proved correct compilation schemes for synchronisation primitives. In [Batty et al.
2012], they formally proved the DRF guarantee along the lines of [Boehm and Adve
2008]. Surprisingly, they found that the intuitive characterisation of data races does
not hold for C++11 in general, because C++11 treats initialisations of atomics specially,
namely as non-atomic writes.

Ševčík et al. [2011] have verified the CompCert compiler backend with respect to
the formal memory model for x86 processors by Sewell et al. [2010], which is the first
formal correctness proof for an optimising compiler backend with respect to a weak
MM. They expose the total store order (TSO) model in a C-like programming language,
which is considerably stronger than the JMM and also provides a DRF guarantee.

Demange et al. [2013] have extended the TSO model with synchronisation primitives
(re-entrant monitors, volatiles, thread spawns and joins, but not interruption and the
wait-notify mechanism) and connected it with a Java bytecode semantics. Their model
BMM is strictly stronger than the JMM and thus inherits the DRF guarantee from
Java. They want to integrate the model in a verified compiler infrastructure targeted
to TSO hardware. Coq type-checked their definitions of the model, but they have not
formalised the proofs. Whether their model supports proofs mechanisation well, there-
fore, remains open.

Verbrugge et al. [2011] observe that the ban on out-of-thin-air values disallows ag-
gressive compiler optimisations. For example, a compiler must not reverse the iteration
order of a loop that sums up the elements of an array and stores the intermediate re-
sults in a shared location. Although such a transformation is functionally equivalent,
the intermediate results are different and therefore appear out of thin air. They sug-
gest that threads share only volatile fields, non-volatile locations are thread-local. This
breaks common programming idioms like safe publication through volatiles [Manson
et al. 2005, Fig. 3] and the performance penalty is unknown. Nevertheless, I agree
that to racy programs, the JMM should give as weak semantics as possible that still
supports type safety and the security architecture. The latter is the hard part, because
type safety could be constructed into the model. Unfortunately, C++’s (informal) ban
on out-of-thin-air values does not provide the DRF guarantee [Boehm 2007].

7. CONCLUSION AND FUTURE WORK
My machine-checked model of multithreaded Java spans from a realistic subset of Java
source code and bytecode to the Java memory model. I have proven that it provides the
DRF guarantee and is type safe. Beyond that, JinjaThreads features a compiler, which
I have not presented in this article. But it is worth to note that its verification [Lochbih-
ler 2010] relies on type safety of the bytecode language and that I have extended this
verification to the JMM using the type safety result.

24Consider the following program P7, a variation of P2:

initially: t = new Thread(); x = 0; y = 0;
1: x = 1;
2: y = 1;
3: t.start();

4: try { t.start();
} catch (IllegalThreadStateException e) {

5: r = x; }

(P7)

The read in l. 5 executes only if the left thread has spawned t before, which happens after the writes to x
and y in ll. 1 and 2. Yet, l. 1 does not happen before l. 5 according to the JMM (and my semantics), i.e., the
program is not correctly synchronised, because l. 4 does not generate any synchronisation actions. However,
there is no sequentially consistent interleaving with adjacent conflicting actions, because the write in l. 2
always separates l. 1 and l. 5.

56 Andreas Lochbihler

JinjaThreads is part of the Quis Custodiet project,25 which aims at formally ver-
ifying an infrastructure for information flow control (IFC). The DRF guarantee and
type safety are essential: the IFC algorithm assumes interleaving semantics [Giffhorn
2012], i.e., it is only sound for correctly synchronised programs. And establishing the
absence of data races relies on type safety, because intermediate representations like
control flow graphs statically approximate dynamic dispatch based on types.

To achieve this goal, my formalisation stays close to Java and tries not to palliate
its ugly corners as simple core languages often do. This article consequently cannot
describe all the formal details; it rather presents most of the model informally. Nev-
ertheless, remember that all this has been mechanised in Isabelle/HOL [Lochbihler
2007]. As a byproduct, I have found numerous new examples of corner cases that show
unexpected interactions between different features and the memory model.

In total, JinjaThreads consists of 85k lines of Isabelle definitions and proofs. Of
these, 11k are alotted to defining the JMM and to conducting the proofs abstractly at
the multithreaded level. Discharging the assumptions on the single-threaded seman-
tics requires 1.5k for source code and 1.6k for bytecode plus 1.0k shared between the
two. This demonstrates that separating the memory model from the single-threaded
semantics yields huge savings.

Initialisations and the special way the JMM handles them caused most complica-
tions in our proofs. In the future, I want to investigate simpler ways of initialising
locations. My DRF guarantee proof shows that the special treatment is irrelevant for
correctly synchronised programs. I am therefore not constrained when searching for
better options. Moreover, it is unsatisfactory that values can appear out of thin air.
However, one first needs a good understanding of what an out-of-thin-air value actu-
ally should be and what restrictions the ban imposes on compilers. In the long term,
this might lead to another revision of the JMM that tackles the open problems.

APPENDIX
In the following, I give a quick tour of the concurrency features of Java 6 as specified
in the Java language specification [Gosling et al. 2005].

Threads are parallel strands of execution with shared memory. A program controls
a thread through its associated object of (a subclass of) class Thread. To spawn a new
thread, one allocates a new object of class Thread (or any subclass thereof) and invokes
its start method. The new thread will then execute the run method of the object, in
parallel with all other threads. Each thread must be spawned at most once, every fur-
ther call to start raises an IllegalThreadState exception. The thread terminates when
run terminates, either normally or abruptly due to an exception. The static method
currentThread in class Thread returns the object associated with the executing thread.

Java offers four kinds of synchronisation between threads: locks, wait sets, joining,
and interrupts. The package java.util.concurrent in the Java API builds sophis-
ticated forms of synchronisation from these primitives and atomic compare-and-set
operations.

Every object (and array) has an associated monitor with a lock and a wait set.
Locks are mutually-exclusive, i.e., at most one thread can hold a lock at a time, but
re-entrant, i.e., a thread can acquire a lock multiple times. For locking, Java uses
synchronized blocks that take a reference to an object or array. A thread must acquire
the object’s lock before it executes the block’s body, and releases the lock afterwards. If
another thread already holds the lock, the executing thread must wait until the other

25http://pp.info.uni-karlsruhe.de/projects/quis-custodiet/

http://pp.info.uni-karlsruhe.de/projects/quis-custodiet/

The Java Memory Model is Type Safe 57

thread has released it. Thus, synchronized blocks on the same object never execute in
parallel.

To avoid busy waiting, a thread can suspend itself to the wait set of an object
by calling the object’s method wait, which class Object declares. To enter the wait
set, the thread must have locked the object’s monitor and must not be interrupted;
otherwise, an IllegalMonitorState exception or InterruptedException, respectively, is
thrown. If successful, the call also releases the monitor’s lock completely. The thread
remains in the wait set until (a) another thread interrupts or notifies it, or (b) if wait
is called with a time limit, the specified amount of time has elapsed, or (c) it wakes
up spuriously. After having been removed, the thread reacquires the lock on the mon-
itor before its execution proceeds normally or, in case of interruption, by raising an
InterruptedException. The methods notify and notifyAll remove one unspecified or all
threads from the wait set of the call’s receiver object. Like for wait, the calling thread
must hold the lock on the monitor. Thus, the notified thread continues its execution
only after the notifying thread has released the lock.

When a thread calls join on another thread, it blocks until (a) the thread that the
receiver object identifies has terminated, or (b) another thread interrupts the joining
thread, or (c) an optionally-specified amount of time has elapsed. In the second case,
the call raises an InterruptedException; otherwise, it returns normally.

Interruption provides asynchronous communication between threads. Calling the
interrupt method of a thread sets its interrupt status. If the interrupted thread is
waiting or joining, it aborts that, raises an InterruptedException, and clears its in-
terrupt status. Otherwise, interruption has no immediate effect on the interrupted
thread. Instead, class Thread implements two methods to observe the interrupt sta-
tus. First, the static method interrupt returns and resets the interrupt status of the
executing thread. Second, the method interrupted returns the interrupt status of the
receiver object’s thread without changing it.

Apart from that, class Thread also declares the methods yield and sleep. They in-
struct the scheduler to prefer other threads and cease execution for the specified time,
respectively. Since these are only recommendations to the scheduler, they cannot be
used for synchronisation.

ACKNOWLEDGMENTS

I would like to thank Joachim Breitner, Martin Hecker, Denis Lohner, Martin Mohr, and Gregor Snelting for
valuable discussions about this work. Their suggestions on previous drafts helped to focus and clarify the
presentation. I also thank Emina Torlak and Julian Dolby for contributing the justification for JMM test
case 18 (Fig. 16b).

REFERENCES
ADVE, S. V. AND GHARACHORLOO, K. 1996. Shared memory consistency models: A tutorial. Com-

puter 29, 12, 66–76.
ADVE, S. V. AND HILL, M. D. 1990. Weak ordering — a new definition. In Proceedings of the 17th Annual

International Symposium on Computer Architecture (ISCA 1990). ACM, 2–14.
ALVES-FOSS, J., Ed. 1999. Formal Syntax and Semantics of Java. Lecture Notes in Computer Science Series,

vol. 1523. Springer.
ASPINALL, D. AND ŠEVČÍK, J. 2007a. Formalising Java’s data-race-free guarantee. In Theorem Proving

in Higher Order Logics (TPHOLs 2007), K. Schneider and J. Brandt, Eds. Lecture Notes in Computer
Science Series, vol. 4732. Springer, 22–37.

ASPINALL, D. AND ŠEVČÍK, J. 2007b. Java memory model examples: Good, bad and ugly. In Verification and
Analysis of Multi-threaded Java-like Programs (VAMP 2007). technical report ICIS-R07021. University
of Nijmegen, 66–80.

58 Andreas Lochbihler

BATTY, M., MEMARIAN, K., OWENS, S., SARKAR, S., AND SEWELL, P. 2012. Clarifying and compiling C/C++
concurrency: From C++11 to POWER. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL 2012). ACM, 509–520.

BATTY, M., OWENS, S., SARKAR, S., SEWELL, P., AND WEBER, T. 2011. Mathematizing C++ concurrency.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL 2011). ACM, 55–66.

BOEHM, H.-J. 2007. Memory model rationales. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2007/n2176.html. ISO JTC1/SC22/WG21 document no. WG21/N2176.

BOEHM, H.-J. 2012. Can seqlocks get along with programming language memory models? In Proceedings
of the 2012 ACM SIGPLAN Workshop on Memory Systems Performance and Correctness (MSPC 2012).
ACM, New York, NY, USA, 12–20.

BOEHM, H.-J. AND ADVE, S. V. 2008. Foundations of the C++ concurrency memory model. In Proceedings
of the 2008 ACM SIGPLAN conference on Programming language design and implementation (PLDI
2008). ACM, 68–78.

BOUDOL, G. AND PETRI, G. 2009. Relaxed memory models: an operational approach. In Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
2009). ACM, New York, NY, USA, 392–403.

BOYLAND, J. 2009. An operational semantics including “volatile” for safe concurrency. Journal of Object
Technology 8, 4, 33–53. Formal Techniques for Java Programs 2008.

CENCIARELLI, P., KNAPP, A., AND SIBILIO, E. 2007. The Java memory model: Operationally, denotationally,
axiomatically. In Programming Languages and Systems (ESOP 2007), R. De Nicola, Ed. Lecture Notes
in Computer Science Series, vol. 4421. Springer, 331–346.

CHOI, J.-D., GUPTA, M., SERRANO, M., SREEDHAR, V. C., AND MIDKIFF, S. 1999. Escape analysis for
Java. In Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA 1999). ACM, New York, NY, USA, 1–19.

DE, A., ROYCHOUDHURY, A., AND D’SOUZA, D. 2008. Java memory model aware software validation. In
Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering (PASTE 2008). ACM, New York, NY, USA, 8–14.

DEMANGE, D., LAPORTE, V., ZHAO1, L., JAGANNATHAN, S., PICHARDIE, D., AND VITEK, J. 2013. Plan
B: A buffered memory model for Java. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 2013). To appear.

DROSSOPOULOU, S. AND EISENBACH, S. 1999. Describing the semantics of Java and proving type sound-
ness. See Alves-Foss [1999], 542–542.

FARZAN, A., CHEN, F., MESEGUER, J., AND ROŞU, G. 2004a. Formal analysis of Java programs in JavaFAN.
In Computer Aided Verification (CAV 2004), R. Alur and D. Peled, Eds. Lecture Notes in Computer
Science Series, vol. 3114. Springer, 501–505.

FARZAN, A., MESEGUER, J., AND ROŞU, G. 2004b. Formal JVM code analysis in JavaFAN. In Algebraic
Methodology and Software Technology (AMAST 2004), C. Rattray, S. Maharaj, and C. Shankland, Eds.
Lecture Notes in Computer Science Series, vol. 3116. Springer, 132–147.

GIFFHORN, D. 2012. Slicing of concurrent programs and its application to information flow control. Ph.D.
thesis, Fakultät für Informatik, Karlsruher Institut für Technologie.

GONG, L. 2003. Inside Java 2 Platform Security: Architecture, API Design, and Implementation 2nd Ed. The
Java Series. Addison-Wesley.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2005. The Java Language Specification, Third Edition.
Addison-Wesley.

GOTO, M., JAGADEESAN, R., PITCHER, C., AND RIELY, J. 2012. Types for relaxed memory models. In Pro-
ceedings of the 8th ACM SIGPLAN workshop on Types in language design and implementation (TLDI
2012). ACM, New York, NY, USA, 25–38.

HILL, M. D. 1998. Multiprocessors should support simple memory-consistency models. IEEE Com-
puter 31, 8, 28–34.

HUISMAN, M. AND PETRI, G. 2007. The Java Memory Model: a formal explanation. In Verification and
Analysis of Multi-threaded Java-like Programs (VAMP 2007). technical report ICIS-R07021. University
of Nijmegen, 81–96.

HUR, C.-K., NEIS, G., DREYER, D., AND VAFEIADIS, V. 2013. The power of parameterization in coinductive
proof. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (POPL 2013). To appear.

ISO JTC1/SC22/WG21. 2011. International standard ISO/IEC 14882:2011. information technology – pro-
gramming languages – C++. International Organization for Standardization.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2176.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2176.html

The Java Memory Model is Type Safe 59

JACOBS, B. 2005. JLS3 contains glitch concerning volatiles? Java Memory Model mailing list, post 2477.
JAGADEESAN, R., PITCHER, C., AND RIELY, J. 2010. Generative operational semantics for relaxed memory

models. In Programming Languages and Systems (ESOP 2010), A. D. Gordon, Ed. Lecture Notes in
Computer Science Series, vol. 6012. Springer, 307–326.

JIN, H., YAVUZ-KAHVECI, T., AND SANDERS, B. A. 2012. Java memory model-aware model checking. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2012), C. Flanagan and
B. König, Eds. Lecture Notes in Computer Science Series, vol. 7214. Springer, 220–236.

KLEIN, G. AND NIPKOW, T. 2006. A machine-checked model for a Java-like language, virtual machine and
compiler. ACM Transactions on Programming Languages and Systems 28, 4, 619–695.

LAMPORT, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers 28, 9, 690–691.

LIU, H. AND MOORE, J. S. 2003. Executable JVM model for analytical reasoning: A study. In Proceedings of
the 2003 workshop on Interpreters, Virtual Machines and Emulators (IVME 2003). ACM, 15–23.

LOCHBIHLER, A. 2007. Jinja with threads. Archive of Formal Proofs. http://afp.sf.net/devel-entries/
JinjaThreads.shtml, Formal proof development.

LOCHBIHLER, A. 2008. Type safe nondeterminism - a formal semantics of Java threads. In Proceedings of
the 2008 International Workshop on Foundations of Object-Oriented Languages (FOOL 2008).

LOCHBIHLER, A. 2010. Verifying a compiler for Java threads. In Programming Languages and Systems
(ESOP 2010), A. D. Gordon, Ed. Lecture Notes in Computer Science Series, vol. 6012. Springer, 427–
447.

LOCHBIHLER, A. 2012a. Java and the Java memory model – a unified, machine-checked formalisation. In
Programming Languages and Systems (ESOP 2012), H. Seidl, Ed. Lecture Notes in Computer Science
Series, vol. 7211. Springer, 497–517.

LOCHBIHLER, A. 2012b. A machine-checked, type-safe model of Java concurrency – language, virtual ma-
chine, memory model and verified compiler. Ph.D. thesis, Fakultät für Informatik, Karlsruher Institut
für Technologie.

LOCHBIHLER, A. AND BULWAHN, L. 2011. Animating the formalised semantics of a Java-like language. In
Interactive Theorem Proving (ITP 2011), M. van Eekelen, H. Geuvers, J. Schmalz, and F. Wiedijk, Eds.
Lecture Notes in Computer Science Series, vol. 6898. Springer, 216–232.

MANSON, J. 2007. The proof of DRF guarantee and initialization. Java memory model mailing list, post 62.
MANSON, J., PUGH, W., AND ADVE, S. V. 2005. The Java memory model. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL 2005). ACM, 378–391.
NIPKOW, T., PAULSON, L. C., AND WENZEL, M. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order

Logic. Lecture Notes in Computer Science Series, vol. 2283. Springer.
NIPKOW, T. AND VON OHEIMB, D. 1998. Java`ight is type-safe — definitely. In Proceedings of the 25th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL 1998). ACM, 161–170.
PETRI, G. AND HUISMAN, M. 2008. BicolanoMT: a formalization of multi-threaded Java at bytecode level.

In Bytecode semantics, Verification, Analysis and Transformation (BYTECODE 2008). Electronic Notes
in Theoretical Computer Science.

PIERCE, B. C. 2002. Types and Programming Languages. The MIT Press.
POLYAKOV, S. AND SCHUSTER, A. 2006. Verification of the Java causality requirements. In Hardware and

Software, Verification and Testing (HVC 2005), S. Ur, E. Bin, and Y. Wolfsthal, Eds. Lecture Notes in
Computer Science Series, vol. 3875. Springer, Berlin, Heidelberg, 224–246.

PUGH, W. 2000. The Java memory model is fatally flawed. Concurrency: Practice and Experience 12, 445–
455.

PUGH, W. AND MANSON, J. 2004. Causality test cases for the Java memory model. http://www.cs.umd.
edu/~pugh/java/memoryModel/CausalityTestCases.html.

RUF, E. 2000. Effective synchronization removal for Java. In Proceedings of the ACM SIGPLAN 2000 con-
ference on Programming language design and implementation (PLDI 2000). ACM, New York, NY, USA,
208–218.

SANGIORGI, D. 1998. On the bisimulation proof method. Mathematical Structures in Computer Science 8, 5,
447–479.

ŠEVČÍK, J. 2008. Program transformations in weak memory models. Ph.D. thesis, Laboratory for Founda-
tions of Computer Science, School of Informatics, University of Edinburgh.

ŠEVČÍK, J. AND ASPINALL, D. 2008. On validity of program transformations in the Java memory model. In
Proceedings of the 22nd European Conference on Object-Oriented Programming (ECOOP 2008), J. Vitek,
Ed. Lecture Notes in Computer Science Series, vol. 5142. Springer, 27–51.

http://afp.sf.net/devel-entries/JinjaThreads.shtml
http://afp.sf.net/devel-entries/JinjaThreads.shtml
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html

60 Andreas Lochbihler

ŠEVČÍK, J., VAFEIADIS, V., NARDELLI, F., JAGANNATHAN, S., AND SEWELL, P. 2011. Relaxed-memory
concurrency and verified compilation. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages (POPL 2011). ACM, 43–54.

SEWELL, P., SARKAR, S., OWENS, S., NARDELLI, F. Z., AND MYREEN, M. O. 2010. x86-TSO: a rigorous and
usable programmer’s model for x86 multiprocessors. Communications of the ACM 53, 89–97.

SORIN, D. J., HILL, M. D., AND WOOD, D. A. 2011. A Primer on Memory Consistency and Cache Coherence.
Morgan & Claypool.

STÄRK, R., SCHMID, J., AND BÖRGER, E. 2001. Java and the Java Virtual Machine. Springer.
STEINKE, R. C. AND NUTT, G. J. 2004. A unified theory of shared memory consistency. Journal of the

ACM 51, 5, 800–849.
SURA, Z., FANG, X., WONG, C.-L., MIDKIFF, S. P., LEE, J., AND PADUA, D. 2005. Compiler techniques for

high performance sequentially consistent Java programs. In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming (PPoPP 2005). ACM, New York, NY,
USA, 2–13.

TORLAK, E., VAZIRI, M., AND DOLBY, J. 2010. MemSAT: checking axiomatic specifications of memory mod-
els. In Proceedings of the 2010 ACM SIGPLAN conference on Programming language design and imple-
mentation (PLDI 2010). ACM, 341–350.

VERBRUGGE, C., KIELSTRA, A., AND ZHANG, Y. 2011. There is nothing wrong with out-of-thin-air: Compiler
optimization and memory models. In Proceedings of the 2011 ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness (MSPC 2011). ACM, New York, NY, USA, 1–6.

WRIGHT, A. K. AND FELLEISEN, M. 1994. A Syntactic Approach to Type Soundness. Information and Com-
putation 115, 1, 38–94.

	2012,22_Titelbl.pdf
	toplas-tr.pdf
	Introduction
	Informal Introduction to the Java Memory Model
	A Note on Coinduction

	Linking Java with the Java Memory Model
	Type Information and Fresh Addresses
	Thread Management Actions
	Traces
	Formal Definition of the Java Memory Model
	Identity of Events Across Executions
	Initialisations
	Non-termination
	Spurious Wake-Ups and Deadlock
	Consistency of Interruption and Notification

	The Data Race Freedom Guarantee
	The DRF Guarantee
	At Most One Initialisation
	Sequential Consistency Coinductively
	Initialisations Precede Reads
	Sequentially Consistent Completions
	Cut and Update

	Consistency
	Type Safety
	Type-Unsafe Executions
	Proof of Type Safety
	Discussion
	Out-of-Thin-Air Values and the Java Security Architecture

	Related Work
	Conclusion and Future Work

