1,991 research outputs found

    Decentralized Optimal Control With Application In Power System

    Get PDF
    An output-feedback decentralized optimal controller is proposed for power systems with renewable energy penetration. Renewable energy source is modeled similar to the classical generator model and is equipped with the unified power flow controller (UPFC). The transient performance of power system is considered and stability of the dynamical states are investigated. An offline decentralized optimal controller is designed that utilizes only the local states. The network comprises conventional synchronous generators as well as renewable sources with inverter equipped with UPFC. Subsequently, the optimal decentralized controller is compared to the initial stabilizing controller used to obtain the optimal controller. An online decentralized optimal controller is designed for discrete-time system. Two neuro networks are utilized to estimate value function and optimal control strategy. Furthermore, a novel observer-based decentralized optimal controller is developed on small scale discrete-time power system. The system is trained followed by least square rules and successive approximation. Simulation results on IEEE 14-, 30-, and 118-bus power system benchmarks shows satisfactory performance of the online decentralized controller. And also, simulation results demonstrate great performance of the observer and the optimal controller compare to the centralized optimal controller

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio

    Event-triggering architectures for adaptive control of uncertain dynamical systems

    Get PDF
    In this dissertation, new approaches are presented for the design and implementation of networked adaptive control systems to reduce the wireless network utilization while guaranteeing system stability in the presence of system uncertainties. Specifically, the design and analysis of state feedback adaptive control systems over wireless networks using event-triggering control theory is first presented. The state feedback adaptive control results are then generalized to the output feedback case for dynamical systems with unmeasurable state vectors. This event-triggering approach is then adopted for large-scale uncertain dynamical systems. In particular, decentralized and distributed adaptive control methodologies are proposed with reduced wireless network utilization with stability guarantees. In addition, for systems in the absence of uncertainties, a new observer-free output feedback cooperative control architecture is developed. Specifically, the proposed architecture is predicated on a nonminimal state-space realization that generates an expanded set of states only using the filtered input and filtered output and their derivatives for each vehicle, without the need for designing an observer for each vehicle. Building on the results of this new observer-free output feedback cooperative control architecture, an event-triggering methodology is next proposed for the output feedback cooperative control to schedule the exchanged output measurements information between the agents in order to reduce wireless network utilization. Finally, the output feedback cooperative control architecture is generalized to adaptive control for handling exogenous disturbances in the follower vehicles. For each methodology, the closed-loop system stability properties are rigorously analyzed, the effect of the user-defined event-triggering thresholds and the controller design parameters on the overall system performance are characterized, and Zeno behavior is shown not to occur with the proposed algorithms --Abstract, page iv

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization

    Extended state observer based load frequency controller for three area interconnected power system

    Get PDF
    In this paper, we develop a new extended state variable observer based LFC scheme for three-area interconnected power systems. The extended state observerbased load frequency controllers are developed which utilize disturbance estimation techniques. The propose control approach assures that the fluctuating things of the load frequencies reaches to a safer range and the load frequencies can also be made at a very minimal not to have an effect on power quality and power flow in multi-area interconnected power system. The results of the simulations using MATLAB/SIMULINK done did not only address that the proposed newly control method works effectively but also change powerfully the parameter variations of the interconnected areas of the power system. Especially, it works very well to limit disturbances impact on interconnected areas in the system. Therefore, the performance of interconnected power system under different multi-conditions is simulated with the new control method to demonstrate the feasibility of the system

    Methods of pre-identification of TITO systems

    Get PDF
    The content of this article is the presentation of methods used to identify systems before actual control, namely decentralized control of systems with Two Inputs, Two Outputs (TITO) and with two interactions. First, theoretical assumptions and reasons for using these methods are given. Subsequently, two methods for systems identification are described. At the end of this article, these specific methods are presented as the pre-identification of the chosen example. The Introduction part of the paper deals with the description of decentralized control, adaptive control, decentralized control in robotics and problem formulation (fixing the identification time at the existing decentralized self-tuning controller at the beginning of control and at the beginning of any set-point change) with the goal of a new method of identification. The Materials and methods section describes the used decentralized control method, recursive identification using approximation polynomials and least-squares with directional forgetting, recursive instrumental variable, self-tuning controller and suboptimal quadratic tracking controller, so all methods described in the section are those ones that already exist. Another section, named Assumptions, newly formulates the necessary background information, such as decentralized controllability and the system model, for the new identification method formulated in Pre-identification section. This section is followed by a section showing the results obtained by simulations and in real-time on a Coupled Drives model in the laboratory. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Ministry of Education, Science, research and Sport of the Slovak Republic [1247/2018]Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky; European Regional Development Fund, ERDF: CZ.1.05/2.1.00/03.008

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    Model based fault diagnosis and prognosis of nonlinear systems

    Get PDF
    Rapid technological advances have led to more and more complex industrial systems with significantly higher risk of failures. Therefore, in this dissertation, a model-based fault diagnosis and prognosis framework has been developed for fast and reliable detection of faults and prediction of failures in nonlinear systems. In the first paper, a unified model-based fault diagnosis scheme capable of detecting both additive system faults and multiplicative actuator faults, as well as approximating the fault dynamics, performing fault type determination and time-to-failure determination, is designed. Stability of the observer and online approximator is guaranteed via an adaptive update law. Since outliers can degrade the performance of fault diagnostics, the second paper introduces an online neural network (NN) based outlier identification and removal scheme which is then combined with a fault detection scheme to enhance its performance. Outliers are detected based on the estimation error and a novel tuning law prevents the NN weights from being affected by outliers. In the third paper, in contrast to papers I and II, fault diagnosis of large-scale interconnected systems is investigated. A decentralized fault prognosis scheme is developed for such systems by using a network of local fault detectors (LFD) where each LFD only requires the local measurements. The online approximators in each LFD learn the unknown interconnection functions and the fault dynamics. Derivation of robust detection thresholds and detectability conditions are also included. The fourth paper extends the decentralized fault detection from paper III and develops an accommodation scheme for nonlinear continuous-time systems. By using both detection and accommodation online approximators, the control inputs are adjusted in order to minimize the fault effects. Finally in the fifth paper, the model-based fault diagnosis of distributed parameter systems (DPS) with parabolic PDE representation in continuous-time is discussed where a PDE-based observer is designed to perform fault detection as well as estimating the unavailable system states. An adaptive online approximator is incorporated in the observer to identify unknown fault parameters. Adaptive update law guarantees the convergence of estimations and allows determination of remaining useful life --Abstract, page iv
    • …
    corecore