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Abstract Fault diagnosis has been at the forefront of technological developments

for several decades. Recent advances in many engineering fields have led to the net-

worked interconnection of various systems. The increased complexity of modern

systems leads to a larger number of sources of uncertainty which must be taken into

consideration and addressed properly in the design of monitoring and fault diag-

nosis architectures. This chapter reviews a model-based distributed fault diagnosis

approach for uncertain nonlinear large-scale networked systems to specifically ad-

dress: a) the presence of measurement noise by devising a filtering scheme for damp-

ening the effect of noise; b) the modeling of uncertainty by developing an adaptive

learning scheme; c) the uncertainty issues emerging when considering networked

systems, such as the presence of delays and packet dropouts in the communica-

tion networks. The proposed architecture considers in an integrated way the various

components of complex distributed systems, such as: the physical environment, the

sensor level, the fault diagnosers and the communication networks. Finally, some

actions taken after the detection of a fault, such as the identification of the fault

location and its magnitude or the learning of the fault function, are illustrated.
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1.1 Introduction: from centralised to distributed fault diagnosis

In systems and control engineering, the adoption of models describing the be-

haviour of systems is ubiquitous and of fundamental importance. However, such

models are usually affected by some uncertainty and, the sources of uncertainty

may vary quite a lot. For instance, the derivation of an accurate mathematical model

may be very difficult to obtain or even entail increased financial costs and so, less

accurate models are used. Other sources of uncertainty include the measurement

noise, the system disturbances and the changing system parameters due to the com-

ponents degradation over time. The presence of uncertainty is especially impor-

tant when considering complex large-scale systems, such as Systems-of-Systems

(SoS) [79] or Cyber Physical Systems (CPS) [4], where it is difficult to understand

and model the relationships that exist among the (possibly large) number of inter-

connected subsystems. Therefore, uncertainty represents an important challenge for

many control applications, thus motivating the research and the development of ro-

bust methods able to manage its presence and effect on the control task performance

[25, 109, 97, 67]. In some situations, the mismatch between the considered model

and the actual system behavior becomes major, due to the presence of undesired

or unexpected behaviours, possibly leading to negative consequences, such as in-

stabilities, failures in the system or deterioration of performance. Therefore, it is

important to take into consideration modeling uncertainty at the design stage, so

that if any unexpected behaviour is observed during the system operation, it will be

feasible to identify the presence of a fault, avoiding, at the same time, the occurrence

of false-alarms.

Reliability is a key requirement for modern systems. It can be defined as the

ability of a system to perform its intended function over a given period of time [7].

The inability to perform the intended function is called a failure, and it can be due

to the effects of a fault. A fault is a change in the behavior of a system, or part of it,

from the behavior that was set at design time.

As practical systems become more complex and more interconnected, the need

for enhanced robustness, fault tolerance and sustainability becomes of essential im-

portance. Potential faults could lead to major catastrophes and consequently could

trigger a chain of failing dependent systems such as electric power systems, com-

munication and water networks, along with production plants causing tremendous

economic and social damage. Therefore, safe and reliable operation of such systems

through the early detection of any “small” fault before they become serious failures

is a crucial component of the overall system performance and sustainability.

For these reasons, fault diagnosis is a research field that has been in the fore-

front of the technological evolution for a few decades and has attracted the attention

from the research and industrial communities, as testified by many important survey

papers [33, 37, 100, 101, 99, 43] and books [9, 18, 65, 44].

Generally, fault diagnosis is comprised of several steps: detection of a fault, iso-

lation and identification of the fault and fault accommodation or reconfiguration of

the system.
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Fault detection consists of understanding whether a fault has occurred or not,

while the isolation task refers to pinpointing the type of fault and its location. Fault

identification is an extra step that is carried on after isolation in order to quantify the

extent to which a fault is present. Fault accommodation addresses the problem of

how the system actively responds to the fault: for example, after a successful fault

diagnosis, the controller parameters may be adjusted to accommodate changed plant

dynamics in order to prevent failure at the system level.

A control system is comprised of mainly three parts: the actuators, the plant

components and the sensors, therefore a fault may appear in any of these (see Fig-

ure 1.1). Specifically, process faults (on the plant components) alter the dynamics of

the system, sensor faults alter the measurement readings and actuator faults modify

the controllers’ influence on the system.

Apart from the fault source, we can further distinguish between abrupt or incip-

ient faults. Abrupt faults are sudden, step-like changes that appear almost instanta-

neously and can lead to immediate component or even general system failure. On the

other hand, incipient faults are slowly developing faults that occur due to parameter

changes of the components because of their continuous operation and diminishing

lifetime. These changes develop slowly and are initially small, thus harder to detect

and may be better prevented through system maintenance.

Fig. 1.1: Fault types and FDI.
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There are mainly two methods to address the possible presence of a fault. The

first one is physical redundancy (or hardware redundancy), that is the fact that criti-

cal components of the system are replicated in a greater number than what is strictly

necessary. This is effective but implies a highly expensive solution and can be justi-

fied only for critical, potentially life-threatening systems (i.e. aviation applications).

The second method is the analytical redundancy approach which is based on a math-

ematical model of the system under healthy system behavior. In this approach, the

actual physical signals that are measured, are compared to the corresponding signals

given by the mathematical model of the process under healthy state; their difference

constitutes the residuals (residual generation stage). Under the ideal conditions of

no faults, no modeling uncertainties and no measurement noise nor disturbances, the

residuals are zero. In real applications, after the residual generation stage, the infor-

mation given by residuals is processed to take a decision regarding the healthy sta-

tus of the system and determine the potential occurrence of faults (decision making

stage). If the fault decision is positive, then further analysis is conducted to identify

the faults’ type and location, and possibly its size. Although this approach is more

affordable, it is computationally intensive and may be sensitive to false alarms due

to inaccuracies in the mathematical modeling of the system which may be mistak-

enly passed as faults. This model-based approach was born during the 1970s thanks

to the seminal works of Beard, Jones and Clark [5, 47, 22] among others (see the

survey papers [37, 45, 33, 100]).

An alternative approach to model-based methods is represented by the signal-

based techniques, in which known features of signals, such as spectral compo-

nents or statistical features, are compared to nominal ones [44, 37]. These methods

though, require some knowledge of previous behavior of the system during healthy

operation and that is the reason they are classified into the wider class of process

history fault diagnosis approaches (i.e. see [99] and the references therein).

Under the analytical redundancy framework, there are various methods to gen-

erate the residual vector, which can be divided into two main approaches: the state

estimation techniques (such as parity space approach, observer schemes and detec-

tion filters) and the parameter identification techniques. Moreover, in order to ease

the fault isolation task, residuals can be designed so as to contain specific isolation

properties. The main residual enhancement techniques are represented by structured

and directional residuals [100, 38]. In the structured residuals scheme, each fault af-

fects a specific subset of the residuals and any residual responds only to a specific

subset of faults. Therefore, due to the dependence of the residuals on the faults,

certain patterns appear on the residual vector that can be used for fault isolation.

In the directional residuals scheme, each fault amounts to a specific direction in

the residual space, and thus fault isolation is concluded by selecting the direction

that the generated residual vector lies closest to. More information regarding these

techniques can be found in the books by Gertler [39] and Isermann [44]. In the liter-

ature, many methods have been proposed for the generation of residuals, which can

mainly be classified according the following approaches:

• Parity space approach. This method consists of checking the consistency of the

mathematical equations by using the actual measurements: a fault is declared
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whenever predetermined error thresholds are exceeded. Further information can

be found in [38] and the references therein.

• Observer schemes. In this category lie many approaches, starting from the Fault

detection filter (FDF), firstly proposed by Beard and Jones in the early 70’s, to

the Diagnostic Observer approach, which has been widely adopted in the litera-

ture. According to this approach, observers are used to reconstruct the output ŷ

of the system from measurements y and the residual is represented by the output

estimation error e= y− ŷ. In the case of stochastic systems, the observers may be

substituted by Kalman filters and the residual is the innovation which under the

fault free case should be white noise with zero mean and known covariance. The

isolation of faults can be enhanced with the use of a bank of residual generators

under the Dedicated Observer Scheme (DOS) proposed by Clark [22] or the Gen-

eralized Observer Scheme (GOS) [33, 34]. In both schemes as many residuals as

the number of possible faults are generated. The difference is that in the DOS

scheme, each residual is sensitive to only a single fault, while in the GOS, each

residual is sensitive to every but one fault. The DOS scheme is appealing as it can

also isolate concurrent faults, but it cannot always be designed. Instead the GOS

can be always applied, but can only isolate non-concurrent faults. It is important

to note that, as pointed out in [34], the observers used in fault diagnosis are pri-

marily output observers which simply reconstruct the measurable part of the state

variables, rather than state observers which are required for control purposes. The

use of state observers for nonlinear systems has not been used extensively for the

FDI problem, even though analytical results regarding the stability of the nonlin-

ear observers and design procedures have been established. The main issue with

the observer approach is that the design of observers for nonlinear systems with

asymptotically stable error dynamics is not an easy task even when the nonlin-

earities are fully known. As a result, the research in fault diagnosis for nonlinear

systems utilizing state observers is more limited [36, 1, 41, 51].

• Parameter estimation. This method is particularly suited to the detection of incip-

ient faults and it is extensively studied in the survey papers by Isermann [45] and

Frank [33] and the books by Patton et al. [65] and Isermann [44]. Using system

identification methods (utilizing the input and output signals), the parameters of

a mathematical model of the system can be obtained (recursively and on-line)

across different time intervals and compared to their respective values based on

a nominal model. Any significant difference could indicate the occurrence of a

fault and, a relation between parameter changes and faults can be formed with

the use of pattern recognition methods.

An important aspect to be considered when monitoring controlled systems re-

lates to the possibly conflicting dynamic behaviors of the FDI scheme and the re-

configurable controller, namely the feedback controller may hide the presence of

faults by compensating their effects (see as example the simulation analysis in [78])

thus making the FDI task much more difficult or even impossible [3, 21, 100, 35].

This is particularly eminent in passive FDI methods, in which the status of health

of the system is analyzed by comparing input-output data for the closed-loop sys-

tem with a process model or historical data. A possible solution has been pro-
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posed for this problem when considering application use-cases allowing to affect

the closed loop dynamics by acting at run-time on the control inputs. This paves

the way to the so-called active FDI methodologies. Active FDI approaches consist

of suitably modifying the control input to improve fault detectability and isolability

capabilities [2, 71, 20, 82, 92, 87, 42, 6, 73]. The typical main limitation of ac-

tive FDI techniques concerns high computational cost and complexity. This draw-

back restricts quite a bit the applicability of this approach to low-dimensional sys-

tems [86, 73, 85, 104, 30, 105], even though some approaches have been suggested

in the literature to alleviate the computational complexity (see as examples [6, 62]).

An obvious problem in the practical implementation of model-based FDI schemes

consists of deriving accurate mathematical models of engineering systems. This is

a challenging task and thus, due to the presence of uncertainties and modelling er-

rors, the resulting residual vectors are never identically zero. In addition, generally

in the literature, the presence of measurement noise and modeling uncertainty is

often overseen. In most real world applications such uncertainties may influence

significantly the performance of fault detection schemes by causing, for example,

false alarms. Therefore, bounds on the residuals must be defined, but still the proper

choice remains a major problem. If bounds are chosen too narrow, this may lead to

false alarms, whilst if they are chosen too wide faults may pass undetected. There-

fore, dealing with the uncertainty in Fault Detection and Isolation architectures is of

fundamental importance. As a result, there is a growing demand for robust residual

generation to reduce the sensitivity of the residual against the effect of modeling

errors, noise and disturbances. This issue can be tackled either by the use of en-

hanced techniques for robust residual generation or by choosing appropriately the

level of the error threshold which can also change adaptively as discussed in the

book by Patton et al. [65]. A line of research tried to overcome the problem of ac-

curate mathematical modeling by using qualitative models, where only qualitative

information, such as sign or trend of measured variables, are used [101] as well as

classification techniques and inference methods. A more successful approach, any-

way, is based on the use of adaptive on-line approximators, such as neural networks

as example, to learn on-line the unknown or uncertain parts of the system dynamical

model or the fault model [28, 69, 98, 107, 15, 31, 16, 53, 50].

1.1.1 Distributed and networked large-scale systems

In the literature, FDI methods have been historically designed for centralized

frameworks, where information about the state of the system is gathered and pro-

cessed centrally. From a practical perspective, gathering the distributed information

into a central processing unit to implement a centralized approach for the fault di-

agnosis task is counter-productive due to communication overload and the require-

ment for higher computational power. Moreover the processing of the information

at a centralized station imposes several risks since the station constitutes a single

point of failure, thus making the architecture possibly fragile to faults. Recent ad-
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vances in communications and distributed sensing have allowed the transition from

centralized fault diagnosis approaches [33, 100, 18, 65, 9] towards the development

of hierarchical, decentralized and distributed schemes [66, 54, 102, 56, 108, 89, 15,

84, 29, 31, 48, 49, 96, 90, 76, 52, 75, 55, 8, 40, 23, 78, 14, 13].

In many cases, a distributed FDI framework is not an option but a necessity,

since many factors contribute to this formulation such as the large scale nature of

the system to be monitored, its spatial distribution, the inability to access certain

parts of the system from a remote monitoring component. Specifically, recent re-

search efforts are focused on decentralized, distributed, networked systems, Cyber

Physical Systems (CPS) [4] and Systems of Systems (SoS) [80]. Examples of these

systems include power networks, water distribution networks, transportation sys-

tems, smart buildings and complex industrial plants. The term CPS refers to sys-

tems with integrated computational and physical capabilities that can interact with

humans through many new modalities [4], expanding the capabilities of the physi-

cal world through computation, communication, and control. On the other hand, a

SoS can be considered as a composition, made of components that are themselves

systems, which is characterized by two properties that the whole must possess for it

[61]: operational and managerial independence of components. This means that the

component systems fulfill their own purposes and continue to operate to fulfill those

purposes even if disassembled from the overall system; besides, the component sys-

tems are managed (at least in part) for their own purposes rather than the purposes

of the whole.

In this chapter, we will use the term networked with two meanings: the consid-

ered system can be represented as a network of physically interconnected subsys-

tems, and the monitoring agents operate and collaborate using input-output infor-

mation obtained through a communication network.

When monitoring this kind of systems, distributed or decentralized algorithms

are usually necessary due to computational, communication, scalability and relia-

bility limits. The main benefits of using a distributed fault diagnosis scheme can

be summarized as follows: a) enhanced robustness of the monitoring architecture,

since centralized approaches are subject to single-point-of-failure, b) reduced com-

putation costs, c) scalability benefits; the distributed scheme allows for more flexi-

bility in adding subsystems with respective fault detection modules requiring fewer

and possibly local modifications in the already existing architecture. Moreover, an

emerging requirement is the design of monitoring architectures that are robust to

changes that may occur in the dynamic topology of the large scale systems, allow-

ing the addition/disconnection of subsystem to/from the network of interconnected

subsystems only requiring local operations (see for example [78, 11, 13]).

Concerning Cyber-Physical Systems, in the literature many contributions deal

with the description of the technical challenges and design and modeling issues that

need to be addressed in order to interface with these modern systems, the techno-

logical impact deriving by CPS and the requirements emerging by them ([4] and

[93, 58, 57, 83, 103, 74, 46, 59, 106]). With regards to reliability, safety and secu-

rity of CPS, some methods have been proposed ([77], including some recent works

dealing with the topic of the detection of cyber-physical attacks and attacks against
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process control systems [17, 95, 84, 26, 63, 64, 81, 88, 19]. An interesting approach

for distributed fault diagnosis is based on exploiting sensor networks [32, 110].

Another important direction of research related to the control and monitoring of

large-scale distributed networked systems is the design of distributed fault-tolerant

control (FTC) architectures based on passive [8, 10, 91, 78] or active FDI methods

[72].

1.1.2 Outline of the chapter

Motivated by the issues raised above, in this chapter we present a distributed

FDI architecture specifically designed for uncertain networked nonlinear large-scale

systems. We will consider different sources of uncertainty, namely modeling uncer-

tainty, measurement noise, network-related uncertainties, such as communication

delays, packet losses and asynchronous measurements, and the presence of possibly

unknown anomalies. In Section 1.2 the problem formulation is given and the ob-

jectives and contributions of this chapter are explained in detail. In Section 1.3 the

development of a fault detection scheme is presented in a continuous time frame-

work based on [48], where a filtering technique, which is embedded in the design of

the residual and threshold signals, is used to attenuate the measurement noise. This

allows for the design of tight thresholds, and thus enhances fault detectability whilst

guaranteeing the absence of false-alarms. This filtering approach for fault detection

is rigorously investigated, providing results regarding the class of detectable faults,

the magnitude of detectable faults and the filtering impact (according to the poles’

location and filters’ order) on the detection time.

Section 1.4 addresses the need for integration between the different levels com-

posing CPS systems, which are deeply correlated in modern systems, by present-

ing a comprehensive architecture, based on [14], where all the parts of complex

distributed systems are considered: the physical environment, the sensor level, the

diagnosers layer and the communication networks. Based on the problem formula-

tion given in Section 1.2 and on the filtering approach explained in Section 1.3, a

distributed fault-diagnosis approach is designed for distributed uncertain nonlinear

large-scale systems to specifically address the issues emerging when considering

networked diagnosis systems, such as the presence of delays and packet dropouts

in the communication networks that degrade performance and could be a source of

instability, misdetection, and false alarms.

Section 1.5 discusses some issues regarding fault diagnosis, that is the actions

taken after the detection of a fault, for identifying its location and its magnitude

or even learning the fault function so that it can be used for fault accommodation

schemes. Finally, in Section 1.6 some concluding remarks are given.
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1.2 Problem Formulation

Consider a large-scale distributed nonlinear dynamic system composed of N sub-

systems ΣI , I ∈ {1, ...,N}, each of which is described by the differential equation:

ΣI :





ẋI(t) = fI(xI(t),uI(t))+ gI(xI(t),zI(t),uI(t))+ηI(xI(t),zI(t),uI(t))

+βI(t−T0)φI(xI(t),zI(t),uI(t)) (1.1)

mI(t) = xI(t)+wI(t), (1.2)

where xI ∈R
nI , uI ∈ R

lI and mI ∈R
nI are the state, input and measured output vec-

tors of the I-th subsystem respectively, zI ∈R
n̄I is the vector of interconnection vari-

ables which are the state variables of the other subsystems J ∈ {1, . . . ,N} \ {I} that

affect the I-th subsystem, fI : RnI ×R
lI 7→R

nI is the known local function dynamics

of the I-th subsystem and gI : RnI ×R
n̄I ×R

lI 7→ R
nI is the known part of the inter-

connection function between the I-th and the other subsystems. The vector function

ηI : RnI ×R
n̄I ×R

lI 7→ R
nI is the overall modeling uncertainty associated with the

known local and interconnection function dynamics and wI ∈ DwI
⊂ R

nI (DwI
is a

compact set) represents the measurement noise. The state vectors xI , I ∈ {1, ...,N}
are considered unknown whereas their noisy counterparts mI are known. Analo-

gously, in the case of the interconnection variable zI , only its noisy counterpart

mzI(t) = zI(t)+ ςI(t) is available, where ςI(t) is composed by the components of

wJ affecting the relevant components of mJ (as before J refers to a neighboring

subsystem). The term βI(t − T0)φI(xI,zI ,uI) characterizes the fault function dy-

namics affecting the I-th subsystem including its time evolution. More specifically,

the term φI : RnI ×R
n̄I ×R

lI 7→ R
nI is the unknown fault function and the term

βI(t − T0) : R 7→ R
+ denotes the time evolution of the fault, where T0 is the un-

known time of the fault occurrence [70]. Note that the fault function φI may depend

on the interconnection state variable vector zI and not only on the local state vector

xI . In this work we consider the case of a single fault that occurs in a subsystem

(hence there is only one function φI(·)) and not the case of a distributed fault that

spans across several subsystems. Of course, the fault that occurs in a subsystem

ΣI can affect neighboring subsystems ΣJ through the interconnection terms zJ . The

fault time profile βI(t −T0) can be used to model abrupt faults or incipient faults

using a decaying exponential type function:

βI(t−T0),

{
0 if t < T0

1− e−bI(t−T0) if t ≥ T0

(1.3)

where bI > 0 is typically an unknown parameter which denotes the fault evolution

rate. Abrupt faults correspond to the limit bI → ∞, in this case, the time profile

βI(t − T0) becomes a step function. In general, small values of bI indicate slowly

developing faults (incipient faults) whereas large values of bI make the time profile

βI(t−T0) approach a step function (abrupt faults).
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In this work, subsystem ΣJ is said to affect subsystem ΣI (or in other words ΣJ is

a ”neighbor” of ΣI), if the interconnection variables of ΣI , i.e. zI(t), contains at least

one of the state variables of ΣJ , i.e. xJ(t).
The notation | · | used in this chapter indicates the absolute value of a scalar

function or the 2-norm in case of a vector. In addition, the notation y(t) =H(s)
[
x(t)

]

(which is used extensively in the adaptive control literature) denotes the output y(t)
of a linear system represented by the transfer function H(s) with x(t) as input. In

terms of more rigorous notation, let h(t) be the impulse response associated with

H(s); i.e. h(t), L −1 [H(s)], where L −1 is the inverse Laplace transform operator.

Then y(t) = H(s)
[
x(t)

]
=

∫ t
0 h(τ)x(t− τ)dτ .

The following assumptions are used throughout the chapter:

Assumption 1 For each subsystem ΣI , I ∈ {1, ...,N}, the local state variables xI(t)
and the local inputs uI(t) belong to a known compact region DxI

and DuI
respec-

tively before and after the occurrence of a fault, i.e. xI(t) ∈DxI
, uI(t) ∈ DuI

for all

t ≥ 0. �

Assumption 2 The modeling uncertainty η
(i)
I (i denotes the i-th component of ηI)

in each subsystem is an unstructured and possibly unknown nonlinear function of

xI , zI and uI but uniformly bounded by a known positive function η̄
(i)
I , i.e.,

|η
(i)
I (xI ,zI ,uI)| ≤ η̄

(i)
I (mI ,mzI,uI), i = 1,2, . . . ,nI (1.4)

for all t ≥ 0 and for all (xI ,zI ,uI) ∈DI , where mzI = zI + ςI is the measurable noisy

counterpart of zI , ςI ∈ DςI
⊂ R

n̄I and η̄
(i)
I (mI ,mzI,uI) ≥ 0 is a known bounding

function in some region of interest DI = DxI
×DzI

×DuI
⊂ R

nI ×R
n̄I ×R

lI . The

regions DςI
and DI are compact sets. �

Assumption 1 is required for well-posedness since here we do not address the

control design and fault accommodation. Assumption 2 characterizes the class of

modeling uncertainties being considered. In practice, the system can be modeled

more accurately in certain regions of the state space. Therefore, the fact that the

bound η̄I is a function of mI , mzI and uI provides more flexibility by allowing the

designer to take into consideration any prior knowledge of the system. Moreover, the

bound η̄I is required in order to distinguish the effects between modeling uncertainty

and faults. For example if the bound η̄I is not set properly and it is too low so that

(1.4) does not hold, then false alarms may occur. On the other hand, if the bound

η̄I is set too high, so that (1.4) holds, then this might lead to conservative detection

thresholds which may never be crossed, leading to undetected faults. Therefore,

the handling of the modeling uncertainty is a key design issue in fault diagnosis

architectures, which creates a trade-off between false alarms and conservative fault

detection. In Section 1.4.4 adaptive approximation methods will be used to learn the

modeling uncertainty ηI and use the learned function in order to obtain even tighter

detection thresholds and enhance fault detectability.
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Fig. 1.2: An example of the proposed multi-layer fault detection architecture. The

local state variables for each subsystem (physical layer, left) are measured by the

sensor layer (center). The sensors communicate their measurements to the LFDs by

means of the first level communication network. The second level communication

network (right) allows the diagnosers to communicate with each other exchanging

information.

Each sensor is associated with exactly one subsystem (see Fig. 1.2). The local

sensor S
(i)
I associated with the I-th subsystem provides a measurement m

(i)
I of the

i-th component of the local state vector xI according to the output equation

S
(i)
I : m

(i)
I (t) = x

(i)
I (t)+w

(i)
I (t) , i = 1, . . . ,nI , (1.5)

where w
(i)
I denotes the noise affecting the i-th sensor of the I-th subsystem.

Assumption 3 For each i-th measurement m
(i)
I , with i = 1, . . . ,nI , being the vector

component index, the measurement uncertainty term w
(i)
I is an unstructured and

unknown function of time, but it is bounded by a known positive time-function w̄
(i)
I (t)

such that

∣∣∣w(i)
I (t)

∣∣∣≤ w̄
(i)
I (t), i = 1, . . . ,nI , I = 1, . . . ,N, t ≥ 0. �

We assume that the control input is available without any error or delay (it is as-

sumed that there exist feedback controllers yielding a local control action uI such

that some desired control objectives are achieved). Each subsystem is monitored by

its respective Local Fault Diagnoser (LFD). The objective is to design and analyze
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a distributed fault detection scheme, with each subsystem ΣI being monitored by a

LFD that receives local measurements through the first communication network (see

Fig. 1.2) and partial information (i.e. the measurements mzI of the interconnection

variables) from neighboring LFDs through the second communication network. In

general, the distributed fault detection scheme is composed of N LFDs SI , one for

each subsystem ΣI . Each LFD SI requires the input and output measurements of the

subsystem ΣI that it is monitoring and also the measurements of all interconnecting

subsystems ΣJ that affect ΣI . Note that these last measurements are communicated

by neighboring LFDs SJ , and not by the subsystems ΣJ . Therefore, there is the need

of communication between the LFDs depending on their interconnections. It is im-

portant to note that, the second layer communication network mirrors the physical

coupling morphology. Note that, the information exchanged among the subsystems

is readily available since it is constituted by quantities zI that are measurable with

some uncertainty as mzI(t) = zI(t)+ ςI(t) (the noisy counterpart of zI). Therefore,

the distributed nature of the scheme stems from the fact that there is communi-

cation between the LFDs depending on their interconnections. More specifically,

each LFD receives from its local sensors the noisy state measurements forming the

vector mI = col(m
(i)
I , i = 1, . . . ,nI) (see (1.5)) and, from the J-th neighboring LFD

the noisy measurements m
(i)
zI , i = 1, . . . , n̄I of the local state variables components

x
(i)
J that influence the I-th subsystem (i.e., the variables x

(i)
J belonging to the in-

terconnection vector zI). Each LFD computes a local state estimate x̂I(t) based on

the local I-th model, by communicating the interconnection variables (and possibly

other information) to neighboring LFDs. The LFD implements a model-based fault

detection method: the local residual error vector rI(t) is compared, component–by–

component, to a time-varying detection threshold vector r̄I(t), suitably computed in

order to guarantee the absence of false–alarms.

1.2.1 Objectives and Contributions

In this chapter, a distributed fault-diagnosis methodology is presented to address the

sources of uncertainty mentioned in the introduction. More specifically:

a) a filtering-based design is embedded in a distributed fault-diagnosis methodol-

ogy to dampen the effect of the measurement noise and enhance fault detection

robustness by facilitating less conservative conditions for fault-detectability;

b) an adaptive learning approach is adopted to reduce the modeling uncertainty

and thus, further enhance fault detectability;

c) a delay compensation strategy is devised to address delays and packet losses in

the communication network between the LFDs using Time stamps and a buffer,

called diagnosis buffer (see Fig.1.4);

d) a model–based re-synchronization algorithm is embedded in the diagnosis pro-

cedure to manage asynchronous measurements. This algorithm is based on vir-
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tual sensors implemented in the LFDs and on the use of a measurements buffer

(see Fig. 1.4);

In the following, we will first present in Section 1.3 the distributed filtering ap-

proach in a continuous-time framework under the assumptions of i) global synchro-

nization, i.e. subsystems, sensors, and LFDs are assumed to share the same clock

and sampling frequency, and ii) perfect information exchange, i.e., it is assumed

that information exchanged between LFDs and communicated from the system to

the LFDs is without any error nor delay and it is immediately available at any point

of the diagnosis system. The effect of the filtering on the detectability performance

is rigorously analyzed. After that, in Section 1.4, the filtering design is adapted in a

discrete-time formulation to allow to analyze the more realistic networked scenarios,

where different strategies for managing modeling uncertainty and network-related

issues will be integrated in a comprehensive framework.

1.3 Filtering-based Distributed Fault Detection

In this section we present a filtering framework for the detection of faults in a

class of interconnected, nonlinear, continuous-time systems with modeling uncer-

tainty and measurement noise (see [48] for more details). In order to address the

measurement noise issue which can lead to conservative detection thresholds or

even false alarms if not dealt with properly, filtering is used by embedding the filters

into the design in a way that takes advantage of the filtering noise suppression prop-

erties. Essentially, filtering dampens the effect of measurement noise in a certain

frequency range allowing to set less conservative adaptive fault detection thresholds

and thus enhancing fault detectability. As a result, a robust fault detection scheme is

designed which guarantees no false alarms. The distributed fault detection scheme

is comprised of a set of interacting LFDs, in which each subsystem is monitored by

its respective detection agent.

To dampen the effect of measurement uncertainty wI(t), each measured variable

m
(i)
I is filtered by H(s), where H(s) is a p-th order filter with strictly proper transfer

function

H(s) = sHp(s), (1.6)

Hp(s) =
dp−2sp−2 + dp−3sp−3 + . . .+ d0

sp + cp−1sp−1 + . . .+ c1s+ c0

. (1.7)

Note that the strictly proper requirement is important. If the transfer function

H(s) is proper, then the noise would appear in the filter output and the noise damp-

ening would not be effective.

The choice of a particular type of filter to be used is application–dependent, and it

is made according to the available a-priori knowledge on the noise properties. Usu-

ally, measurement noise is constituted by high frequency components and therefore
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the use of low-pass filter for dampening noise is well justified. On other occasions,

one may want to focus the fault detectability on a prescribed frequency band of the

measurement signals and hence choose the filter accordingly.

Generally, each measured variable m
(i)
I (t) can be filtered by a different filter. In

this chapter, without loss of generality, we consider H(s) to be the same for all the

output variables in order to simplify the notation and presentation.

The filters H(s) and Hp(s) are asymptotically stable and hence BIBO stable.

Therefore, for bounded measurement noise wI(t) (see Assumption 3), the filtered

measurement noise εwI
(t), H(s) [wI(t)] is uniformly bounded as follows:

|ε
(i)
wI (t)| ≤ ε̄

(i)
wI i = 1,2, . . . ,nI, (1.8)

where ε̄
(i)
wI

are known bounding constants. Depending on the noise characteristics,

H(s) can be selected to reduce the bound ε̄
(i)
wI .

1.3.1 Distributed Fault Detection

In this section, we explain in detail the fault filtering framework in order to ob-

tain the residual signals rI(t) to be used for fault detection and the corresponding

detection thresholds r̄I(t). The fault detection logic is based on deriving suitable de-

tection thresholds so that in the absence of a fault the residual signals are bounded

by their corresponding detection threshold signals, guaranteeing no false alarms. To

state this formally: in the absence of a fault (i.e. for t ∈ [0,T0)), it is guaranteed that

|r
(i)
I (t)| ≤ r̄

(i)
I (t), ∀i = 1, . . . ,nI and ∀I = 1, . . . ,N. The detection decision of a fault

in the overall system is made when |r
(i)
I (t)| > r̄

(i)
I (t) at some time t for at least one

component i in any subsystem ΣI . Note that, in this chapter, only a single fault φI is

considered to occur in the large-scale distributed system.

By locally filtering the output signal mI(t) we obtain the filtered output yI, f (t):

yI, f (t) = H(s) [mI(t)] (1.9)

= H(s) [xI(t)+wI(t)] .

By using εwI
(t) = H(s) [wI(t)] and the fact that s[xI(t)] = ẋI(t)+ xI(0)δ (t) (where

δ (t) is the delta function), we obtain:

yI, f (t) = H(s) [xI(t)]+ εwI
(t)

= Hp(s) [ẋI(t)]+Hp(s) [xI(0)δ (t)]+ εwI
(t)

= Hp(s)
[

fI

(
xI(t),uI(t))+ gI(xI(t),zI(t),uI(t)

)

+ηI

(
xI(t),zI(t),uI(t)

)
+βI(t−T0)φI

(
xI(t),zI(t),uI(t)

)]

+ εwI
(t)+ hp(t)xI(0), (1.10)
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where hp(t) is the impulse response of the filter Hp(s), i.e. hp(t) , L −1 [Hp(s)].
The estimation model x̂I(t) for xI(t) under fault-free operation is generated based

on (1.1) by considering only the known components and by using the measurements

mI and mzI as follows:

˙̂xI = fI(mI(t),uI(t))+ gI(mI(t),mzI(t),uI(t)), (1.11)

with the initial condition x̂I(0) = mI(0).
The corresponding estimation model for yI, f (t), denoted by ŷI, f (t), is given by

ŷI, f (t) = H(s)
[
x̂I(t)

]
, (1.12)

and by using (1.11) and following a similar procedure as in the derivation of (1.10),

ŷI, f (t) becomes:

ŷI, f (t) =Hp(s)
[

fI

(
mI(t),uI(t)

)
+ gI

(
mI(t),mzI(t),uI(t)

)]
+ hp(t)mI(0). (1.13)

The local residual error rI(t) to be used for fault detection is defined as:

rI(t), yI, f (t)− ŷI, f (t), (1.14)

and it is readily computable from equations (1.9), (1.11) and (1.12).

Prior to the fault (t < T0), the local residual error can be written using equations

(1.10), (1.13) and (1.14) as:

rI(t) = Hp(s) [χI(t)]+ εwI
(t) (1.15)

where the total uncertainty term χI(t) is defined as:

χI(t), ∆ fI(t)+∆gI(t)+ηI

(
xI(t),zI(t),uI(t)

)
, (1.16)

∆ fI(t), fI

(
xI(t),uI(t)

)
− fI

(
xI(t)+wI(t),uI(t)

)
, (1.17)

∆gI(t), gI

(
xI(t),zI(t),uI(t)

)
− gI

(
xI(t)+wI(t),zI(t)+ ςI(t),uI(t)

)
. (1.18)

For simplicity, in the derivation of (1.15) the initial conditions xI(0) = mI(0) are

assumed to be known. If there is uncertainty in the initial conditions (i.e. xI(0) 6=
mI(0)) then that introduces the extra term hp(t)(xI(0)−mI(0)) in (1.15) which how-

ever converges to zero exponentially (since hp(t) is exponentially decaying [24])

and thus does not affect significantly the subsequent analysis.

By taking bounds on (1.15) and by using the triangle inequality for each compo-

nent i of the residual, we obtain:
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|r
(i)
I (t)| ≤ |Hp(s)

[
χ
(i)
I (t)

]
|+ |ε

(i)
wI (t)|= |

∫ t

0
hp(t− τ)χ

(i)
I (τ)dτ|+ |ε

(i)
wI (t)|

≤
∫ t

0
|hp(t− τ)||χ

(i)
I (τ)|dτ + |ε

(i)
wI
(t)|

≤

∫ t

0
h̄p(t− τ)χ̄

(i)
I (τ)dτ + ε̄

(i)
wI

(1.19)

where h̄p(t) is the impulse response (of the filter H̄p(s)) that satisfies |hp(t)| ≤ h̄p(t)

for all t > 0 (details for selecting H̄p(s) will be given in Section 1.3.2) and, χ̄
(i)
I (t)

is the bound on the total uncertainty term χ
(i)
I (t), i.e. |χ

(i)
I (t)| ≤ χ̄

(i)
I (t).

Using Assumption 2, the bound χ̄
(i)
I (t), i = 1,2, . . . ,nI is defined as:

χ̄
(i)
I (t),∆ f

(i)
I +∆g

(i)
I + η̄

(i)
I

(
mI(t),mzI(t),uI(t)

)
, (1.20)

where

∆ f
(i)
I , sup

(xI ,uI)∈DxI
×DuI

wI∈DwI

| f
(i)
I

(
xI ,uI

)
− f

(i)
I

(
xI +wI ,uI

)
| (1.21)

∆g
(i)
I , sup

(xI ,zI ,uI)∈DI

(wI ,ςI)∈DwI
×DςI

|g
(i)
I

(
xI ,zI ,uI

)
− g

(i)
I

(
xI +wI ,zI + ςI ,uI

)
|. (1.22)

Since the regions DI , DwI
and DςI

are compact sets, the suprema in (1.21) and (1.22)

are finite. In addition, note that the bound χ̄
(i)
I (t) in (1.20) depends on t because of

the bounding function η̄
(i)
I .

Finally, a suitable detection threshold r̄
(i)
I (t) can be selected as the right hand side

of (1.19) which can be rewritten as:

r̄
(i)
I (t) = H̄p(s)

[
χ̄
(i)
I (t)

]
+ ε̄

(i)
wI . (1.23)

A practical issue that requires consideration is the derivation of the bound χ̄
(i)
I (t)

given in (1.20). Specifically, the derivation of χ̄
(i)
I (t) requires the bounds ∆ f

(i)
I and

∆g
(i)
I on ∆ f

(i)
I (t) and ∆g

(i)
I (t), respectively. One approach for deriving the bound

∆ f
(i)
I in (1.21) is to consider a local Lipschitz assumption:

| f
(i)
I (xI ,uI)− f

(i)
I (xI +wI,uI)| ≤ L

f
(i)
I

|wI | (1.24)

where L
f
(i)
I

is the Lipschitz constant for the function f
(i)
I (xI ,uI) with respect to xI

in the region DxI
. Therefore, if we have a bound wM

I on the measurement noise, i.e.

|wI(t)| ≤ wM
I ∀t > 0, then we can obtain a bound on ∆ f

(i)
I (t). A similar approach

can be followed for ∆g
(i)
I (t).
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Another way of obtaining a less conservative bound than χ̄
(i)
I and, therefore fur-

ther enhance fault detectability, is by exploiting the use of filtering which can be

proved beneficial for dampening the mismatch function ∆ fI(t)+∆gI(t) which re-

sults due to the measurement noise. Among the various filters one can select, some

may lead to less conservative detection thresholds. Therefore, a significantly less

conservative detection threshold without the need for the Lipschitz constants can be

obtained by observing that the residual (1.15) can be written as

rI(t) =Hp(s)
[
ηI

(
xI(t),zI(t),uI(t)

)]
+Hp(s) [∆ fI(t)+∆gI(t)]+ εwI

(t) (1.25)

and by making the following assumption:

Assumption 4 The filtered function mismatch term ε∆I
(t),Hp(s) [∆ fI(t)+∆gI(t)]

is uniformly bounded as follows:

|ε
(i)
∆I
(t)| ≤ ε̄

(i)
∆I

i = 1,2, . . . ,nI, (1.26)

where ε̄
(i)
∆I

is a known bounding constant. �

Assumption 4 is based on the fact that filtering dampens the effect of measure-

ment noise present in the function mismatch term ∆ fI(t)+∆gI(t). A suitable selec-

tion of ε̄
(i)
∆I

can be made through the use of simulations (i.e. Monte Carlo methods)

by filtering the function mismatch term ∆ fI(t)+∆gI(t) using the known function

dynamics and the available noise characteristics (recall that the measurement noise

is assumed to take values in a compact set).

Therefore, the detection threshold becomes

r̄
(i)
I (t) =H̄p(s)

[
η̄
(i)
I

(
mI(t),mzI(t),uI(t)

)]
+ ε̄

(i)
∆I

+ ε̄
(i)
wI . (1.27)

Figure 1.3 illustrates the I-th LFD which includes the implementation of the local

filtered fault detection scheme for the I-th subsystem resulting from equations (1.9),

(1.11), (1.12), (1.14) and (1.23).

1.3.2 Selection of filter H̄p(s)

Two methods for selecting a suitable transfer function H̄p(s) with impulse re-

sponse h̄p(t) such that |hp(t)| ≤ h̄p(t) for all t ≥ 0 are illustrated.

In general though, note that if the impulse response hp(t) is non-negative, i.e.

hp(t) ≥ 0, for all t ≥ 0, then the calculation of H̄p(s) can be omitted. In this case

Hp(s) can be used instead of H̄p(s) in (1.23), as it can easily be seen from (1.19)

since |hp(t− τ)| = hp(t− τ). Necessary and sufficient conditions for non-negative

impulse response for a specific class of filters are given in [60].

• First method.
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Fig. 1.3: Local Filtered Fault Detection Scheme

The first method relies on the following lemma, which describes a methodology

for finding H̄p(s). For notational convenience, for any m× n matrix A we define

|A|E as the matrix whose elements correspond to the modulus of the element ai, j,

i = 1, . . . ,m and j = 1, . . . ,n of the matrix A.

Lemma 1. [48]. Let w(t) =CeAtB be the impulse response of a strictly proper SISO

transfer function W (s) with state space representation (A,B,C). Then, for any signal

v(t)≥ 0, the following inequality holds for all t ≥ 0:

∫ t

0
|w(t− τ)|v(τ)dτ ≤W (s) [v(t)] ,

where W (s) is given by

W (s), |CT |E (sI−Re[J])−1
∣∣T−1B

∣∣
E

(1.28)

and J = T−1AT is the Jordan form of the matrix A.

Therefore, by using Lemma 1 with w(t) = hp(t), the transfer function H̄p(s) such

that its impulse response satisfies |hp(t)| ≤ h̄p(t) can be obtained from (1.28).
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• Second method.

The second method is by using the following well-known result (see, for instance

[24]).

Lemma 2. The impulse response hp(t) of a strictly proper and asymptotically stable

transfer function Hp(s) decays exponentially; i.e., |hp(t)| ≤ κe−υt for some κ > 0,

υ > 0, for all t ≥ 0.

By using Lemma 2, a suitable impulse response h̄p(t) such that |hp(t)| ≤ h̄p(t)
for all t ≥ 0 is given by h̄p(t) = κe−υt and can be implemented using linear filtering

techniques as H̄p(s) =
κ

s+υ .

1.3.3 Fault Detectability and Detection-Time Analysis

1.3.3.1 Fault Detectability Analysis

The design and analysis of the fault detection scheme in the previous sections

were based on the derivation of suitable thresholds r̄
(i)
I (t) such that in the absence

of any fault, the residual signals r
(i)
I (t) are bounded by r̄

(i)
I (t). An important related

question is what class of faults can be detected. This is referred to as fault detectabil-

ity analysis. In this section, fault detectability conditions for the aforementioned

fault detection scheme are derived. The fault detectability analysis constitutes a the-

oretical result that characterizes quantitatively the class of faults detectable by the

proposed scheme.

Theorem 1. Consider the nonlinear system (1.1), (1.2) with the distributed fault

detection scheme described in (1.9), (1.11), (1.12), (1.14) and (1.23) in the general

case of H(s) given by (1.6). A sufficient condition for a fault φ
(i)
I (xI,zI ,uI) in the

I-th subsystem initiated at T0 to be detectable at time Td > T0 is that for some i =
1,2, . . . ,nI:

|Hp(s)
[
βI(Td−T0)φ

(i)
I

(
xI(Td),zI(Td),uI(Td)

)]
|> 2r̄

(i)
I (Td). (1.29)

Proof. In the presence of a fault that occurs at T0, equation (1.15) becomes:

r
(i)
I (t) =Hp(s)

[
χ
(i)
I (t)+βI(t−T0)φ

(i)
I

(
xI(t),zI(t),uI(t)

)]
+ ε

(i)
wI
(t).

By using the triangle inequality, for t > T0, the residual r
(i)
I (t) satisfies:
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|r
(i)
I (t)| ≥− |Hp(s)

[
χ
(i)
I (t)

]
|− |ε

(i)
wI
(t)|

+ |Hp(s)
[
βI(t−T0)φ

(i)
I

(
xI(t),zI(t),uI(t)

)]
|

≥−

∫ t

0
|hp(t− τ)||χ

(i)
I (τ)|dτ −|ε

(i)
wI (t)|

+ |Hp(s)
[
βI(t−T0)φ

(i)
I

(
xI(t),zI(t),uI(t)

)]
|

≥−

∫ t

0
h̄p(t− τ)χ̄

(i)
I (τ)dτ − ε̄

(i)
wI

+ |Hp(s)
[
βI(t−T0)φ

(i)
I

(
xI(t),zI(t),uI(t)

)]
|

≥− r̄
(i)
I (t)+ |Hp(s)

[
βI(t−T0)φ

(i)
I (xI(t),zI(t),uI(t))

]
|.

For fault detection, the inequality |r
(i)
I (t)| > r̄

(i)
I (t) must hold at some time t = Td

for some i = 1, . . . ,nI , so the final fault detectability condition given by (1.29) is

obtained.

⊓⊔

Although Theorem 1 is based on threshold (1.23), it can be readily shown that

the same result holds in the case where threshold (1.27) is used. Clearly, the fault

functions φI(xI ,zI ,uI) are typically unknown and therefore this condition cannot

be checked a priori. However, it provides useful intuition about the type of faults

that are detectable. The detectability condition given in Theorem 1 is a sufficient

condition, but not a necessary one and hence, the class of detectable faults can be

significantly larger. The use of filtering is of crucial importance in order to derive

tighter detection thresholds that guarantee no false alarms. As it can be seen in the

detectability condition given by (1.29), the detection of the fault depends on the

filtered fault function φI and as a result, the selection of the filter is very important.

Since the fault function is usually comprised of lower frequency components, it is

not affected that much by low-pass filtering in comparison to the measurement noise

which is usually of higher frequency. In addition, filtering allows the derivation of

tighter detection thresholds and, as a result, the fault detectability condition can be

met more easily. Obviously, some filter selections may lead to less conservative

thresholds than others.

The detectability properties of the proposed filtering approach are further inves-

tigated by considering a specific case for the filter Hp(s):

Hp(s) =
α p

(s+α)p
. (1.30)

This type of filter is well-suited for gaining further intuition since it contains

two parameters p and α that denote the order of the filter and the pole location,

respectively. More specifically, the order p of the filter regulates the damping effect

of the high frequency noise, whereas the value α of the filter determines the cutoff

frequency at which the damping begins. In general, more selective filter implemen-

tations can be made (i.e. Butterworth filters) which may have some implications in
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the filters required for the detection threshold implementation (due to the fact that

the impulse response may not be always positive). But, the particular filter Hp(s)
given by (1.30) is perfectly suited for the investigation of the analytical properties

of the filtering scheme. Note also that Hp(s) has a non-negative impulse response

hp(t) and therefore H̄p(s) can be selected simply as Hp(s).
In order to conduct this fault detectability analysis, we simplify Assumption 2 by

considering a constant bounding condition. It is important to note that the constant

bounding of the uncertainty may introduce additional conservativeness, thus reduc-

ing the advantage given by the tighter conditions obtained through the filtering.

Assumption 5 The modeling uncertainty η
(i)
I in each subsystem is an unstructured

and possibly unknown nonlinear function of xI , zI and uI but uniformly bounded by

a known positive scalar η̄
(i)
I , i.e.,

|η
(i)
I (xI ,zI ,uI)| ≤ η̄

(i)
I , i = 1,2, . . . ,nI (1.31)

for all t ≥ 0 and for all (xI,zI ,uI) ∈DI , where η̄
(i)
I ≥ 0 is a known bounding scalar

in some region of interest DI = DxI
×DzI

×DuI
⊂ R

nI ×R
n̄I ×R

lI . �

By using the Lipschitz assumption stated in (1.24), along with the known con-

stant bound wM
I of the measurement uncertainty |wI | and, the constant bound on the

modeling uncertainty η̄
(i)
I , as stated in Assumption 5, the bound of the total uncer-

tainty term χ̄
(i)
I (t) takes a constant value χ̄

(i)
I . Then, Theorem 2, which follows, can

be obtained (its proof can be found in [48]).

It must be pointed out that, although we use (1.23) for the detection threshold,

the adaptation of the subsequent results in the case where the threshold is given by

(1.27) is straightforward by simply replacing χ̄
(i)
I with η̄

(i)
I and adding the term ε̄

(i)
∆I

along the term ε̄
(i)
wI

in what follows.

Theorem 2. Consider the nonlinear system (1.1), (1.2) with the distributed fault de-

tection scheme described in (1.9), (1.11), (1.12), (1.14) and (1.23) in the special case

of Hp(s) given by (1.30) and with H̄p(s) = Hp(s). Suppose at least one component

φ
(i)
I (xI ,zI ,uI) of the fault vector φI(xI ,zI ,uI) satisfies the condition

|φ
(i)
I (xI(t

′),zI(t
′),uI(t

′))| ≥M, ∀ t ′ ∈ [T0, t] , (1.32)

for sufficiently large t > T0 and is continuous in the time interval t ′ ∈ [T0, t]. If M >

2(χ̄
(i)
I + ε̄

(i)
wI ), then the fault will be detected, that is |r

(i)
I (t)|> r̄

(i)
I (t).

The aforementioned theorem is conceptually different from Theorem 1. More

specifically, the detectability condition (1.29) of Theorem 1 allows the fault function

φ
(i)
I to change sign. On the other hand, Theorem 2 states that if the fault function

φ
(i)
I maintains the same sign over time and its magnitude is larger than 2(χ̄

(i)
I + ε̄

(i)
wI )

for sufficiently long, then the fault is guaranteed to be detected.
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1.3.3.2 Detection Time Analysis

The detection time of a fault, that is, the time interval between the fault occur-

rence and its detection, plays a crucial role in fault diagnosis and it constitutes a

form of performance criterion. When a fault is detected faster, then timely actions

can be undertaken to avoid more serious or even disastrous consequences. It is worth

noting that incipient faults are more difficult to detect, especially during their early

stages, and as a result the detection time of an incipient fault is generally larger than

that of an abrupt fault. In this section, an upper bound of the detection time is ob-

tained in the case where a fault is detected according to Theorem 2. Moreover, we

investigate the influence of the filter’s order p and the pole location α on the upper

bound of the detection time in order to derive some insight regarding the selection

of p and α . The results are obtained for the general case of an incipient fault; con-

cerning the dependence of the detection time on the filter’s order p, only the abrupt

fault case is addressed for the sake of simplicity.

Theorem 3. Consider the nonlinear system (1.1), (1.2) with the distributed fault

detection scheme described in (1.9), (1.11), (1.12), (1.14) and (1.23) in the special

case of Hp(s) given by (1.30) and with H̄p(s) = Hp(s). If at least one component

φ
(i)
I (xI ,zI ,uI) of the fault vector φI(xI ,zI ,uI) satisfies the condition

∣∣∣φ (i)
I

(
xI(t

′),zI(t
′),uI(t

′)
)∣∣∣≥M, ∀ t ′ ∈ [T0, t] (1.33)

where M > 2(χ̄
(i)
I + ε̄

(i)
wI ) for sufficiently large t > T0 and is continuous in the time

interval t ′ ∈ [T0, t] such that the fault can be detected according to Theorem 2, then:

(a) A sufficient condition for fault detectability is given by:

q(t,T0,α) >
2(p− 1)!

M
(χ̄

(i)
I + ε̄

(i)
wI ). (1.34)

where

q(t,T0,α), q1(t,T0,α)− q2(t,T0,α) (1.35)

q1(t,T0,α) = γ
(

p,α(t−T0)
)
, (1.36)

q2(t,T0,α) =

{
α p

p
(t−T0)

pe−α(t−T0) if α = bI

α pe−bI (t−T0)

(a−bI)p γ
(

p,(α− bI)(t−T0)
)

else,
(1.37)

and γ(·) indicates the lower incomplete Gamma function, defined as γ
(

p,z
)
,∫ z

0 wp−1e−w dw.

(b) An upper bound on the detection time Td of an incipient fault can be found by

solving the equation:
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q1(Td ,T0,α)− q2(Td ,T0,α) =
2(p− 1)!

M
r̄
(i)
I (Td), (1.38)

where r̄
(i)
I is given by

r̄
(i)
I (t) =

1

(p− 1)!
χ̄
(i)
I γ

(
p,αt

)
+ ε̄

(i)
wI
. (1.39)

(c) The upper bound Td decreases monotonically as the value of α increases.

(d) In the case of abrupt faults, the upper bound on the detection time Td increases

as the order p of the filter increases.

The proof of Theorem 3 can be found in [48]. Part (b) of the above theorem

establishes the mathematical equation whose solution gives an upper bound on the

detection time. At this point, we must stress that, although we refer to the solution

of the equation as the upper bound of the detection time (because of the requirement

(1.32)), there are cases where the solution is the actual detection time. For instance,

consider the case where the magnitude of the fault is
∣∣φ (i)

I (xI(t
′),zI(t

′),uI(t
′))

∣∣ =
M, ∀ t ′ ∈ [T0, t] and M > 2(χ̄

(i)
I + ε̄

(i)
wI ). Then, the solution of (1.38) gives the actual

detection time.

Part (c) of the theorem shows that by increasing the value of the pole α , the upper

bound on the detection time (and sometimes the actual detection time as explained

before) decreases. On the other hand, the value of α regulates the cutoff frequency

of the filter where the damping begins, so the pole location has an inherent trade-off

between noise damping and fault detection speed.

Part (d) of the theorem states that in the case of abrupt faults, the upper bound

on the detection time increases as the order p of the filter increases. Although the

proof is for the case of abrupt faults, the same behavior is observed in the case of

incipient faults as well. An obvious downside of higher order filtering is the possible

increased detection time. There is also a qualitative explanation for Part (d), as it has

necessarily to do with the phase lag introduced by the filter which increases with p.

Simply put, by increasing p results in increased phase lag or delay between the

input and output signals of the filter and since the detectability of a fault relies on

the filtered signals, the detection time increases according to the delay incurred.

Remark 1 Prior to the occurrence of a fault, the residual differs from zero due

to the effect of the filtered noise and filtered modeling uncertainty as indicated by

(1.15). When a fault occurs, the residual is permanently contaminated by the fil-

tered fault function as shown in the proof of Theorem 1. In general, the location of

the poles simply affects the effectiveness of the noise dampening. To make things

more clear, consider Theorems 2 and 3 which rely on the special case of the filter

Hp(s) given in (1.30). Theorem 2, states that in the case of a fault (abrupt or incipi-

ent), which satisfies the conditions given in the Theorem then the fault is guaranteed

to be detected. Note that this is irrespective of the location of the filters’ poles. In

fact, as shown in Theorem 3, having faster poles results in a smaller upper bound

on the detection time or even smaller actual detection time. In conclusion, the loca-

tion of the poles does not limit the duration of the residual activation when a fault
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occurs, but instead the residual is permanently affected by the filtered fault function.

Therefore, the location of the poles has an inherent trade-off between noise damping

and fault detection speed.

Simulation results showing the effectiveness of the illustrated techniques can be

found in [48].

1.4 The Cyber-Physical Networked Architecture

In this section we present a cyber-physical networked fault detection architecture

based on [14]. Let us note that the approach for distributed fault diagnosis of non-

linear uncertain large-scale systems that we have previously described is based on

some underlying assumptions that may restrict its applicability, namely:

1. global synchronization: subsystems, sensors, and LFDs were assumed to share

the same clock and sampling frequency;

2. perfect information exchange: it was assumed that information exchanged be-

tween LFDs and communicated from the system to the LFDs is without any

error nor delay and it is immediately available at any point of the diagnosis

system.

In several realistic contexts, 1) and 2) may not hold, and as a consequence, i)

some faults may become undetectable due to the fact that LFDs make detection

decisions based on outdated information; ii) delays in information exchange may

cause longer detection times; iii) the lack of accurate and timely information may

cause false-alarms.

In order to address these issues and the more complex nature of real CPS systems,

we now consider a more comprehensive framework, where the previously proposed

filtering design to reduce measurement noise is adapted in the current formulation

in discrete time.

The proposed distributed fault-detection architecture is made of three layers: the

system layer, the sensor layer and the diagnosis layer. In Fig. 1.2, this layout was

shown in a pictorial way. These three layers are briefly described next.

The system layer refers to the large-scale system to be monitored. It is described

by the continuous-time state equations for each subsystem Eq. (1.1) and the output

equations (1.2).

The sensor layer consists of the available sensors taking measurements m
(i)
I (t)

in continuous-time (see (1.5)) and sampling and sending such measurements to the

I-th LFD at time-instants t
(i)
sI that are not necessarily equally-spaced in time. As we

do not assume that the measurements delivered by the sensors are synchronized with

each other, each measurement is labeled with a Time Stamp (TS) [94] to indicate

the time instant t
(i)
sI at which the measurements are taken by sensor S

(i)
I in the time-

coordinate t.
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The communication between the sensors and the LFDs is achieved through the

first level communication network (see Fig. 1.2). This network can introduce delays

and packet losses, for instance because of collision between different sensors trying

to communicate at the same time. Therefore, measurements communicated from the

sensors to LFDs may be received at any time-instant.

The Diagnosis layer consists of the previously introduced LFDs providing a dis-

tributed fault-diagnosis procedure. The structure of each LFD is shown in Fig. 1.4.

As previously mentioned, each LFD receives the measurements from specific sen-

sors with the aim to provide local fault diagnosis decisions. The LFDs operate in a

discrete-time synchronous time-frame k ∈ Z which turns out to be more convenient

for handling any communications delays, as will be seen in the next sections. For

the sake of simplicity, the sampling time of the discrete time-frame is assumed to

be unitary and the reference time is common, that is, the origin of the discrete-time

axis is the same as that of the continuous-time axis. Therefore, the operation of the

LFDs is based on the local discrete-time models, which are the discrete-time version

of local models (1.1):

xI(k+ 1) = fI(xI(k),uI(k))+ gI(xI(k),zI(k),uI(k))+ηI(xI(k),zI(k),uI(k))

+βI(k− k0)φI(xI(k),zI(k),uI(k)) , (1.40)

where φI describes the local discretized fault effects, occurring at some discrete-

time k0 (that is, βI(k− k0)φI(xI(k),zI(k),uI(k)) = 0,k < k0). Each LFD exchanges

information with neighboring LFDs by means of the second level communication

network (see right side of Fig.1.2 and Fig. 1.4). As we will see in the following, the

exchanged information consists in the re-synchronized interconnection variables vJ .

In Fig. 1.4, an example of a two LFDs architecture is presented to provide more

insight into the structure of the proposed scheme.

In summary, two different and not reliable communication networks are consid-

ered in this work: the first level communication network allows each LFD to com-

municate with its local sensors and the second level communication network allows

the communication between different LFDs for detection purposes. Both these com-

munication networks may be subject to delays and packet losses. Given the differ-

ent nature of the networks (the first is local, while the second is connecting different

subsystems, which may be geographically apart), in the next section we provide two

different strategies to manage communication issues: a re-synchronization method

for the first level communication network and a delay compensation strategy for the

second level communication network.

1.4.1 Re-synchronization at Diagnosis Level

Let us consider a state variable x
(i)
I (t); as mentioned before, at time t = t

(i)
sI the sensor

S
(i)
I takes the measurement m

(i)
I (t

(i)
sI ) and sends it to the I-th LFD with a time-stamp
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Fig. 1.4: An example of a two LFDs architecture. The internal structure of each

LFD is shown (similarly as in [14]), composed of two buffers (the measurements

buffer and the diagnosis buffer) to collect the information received, respectively,

by the local sensors and neighboring LFDs, the Virtual Sensor (processing the re-

ceived measurements), and the Fault Detection unit, responsible for the monitoring

analysis. The communicated information between LFDs is represented.

t
(i)
sI . The I-th diagnoser receives the measurement sent by S

(i)
I at time t

(i)
aI > t

(i)
sI . Since

the LFDs run the distributed fault-diagnosis algorithm with respect to a discrete-time

framework associated with an integer k (see (1.40)), an on-line re-synchronization

procedure has to be carried out at the Diagnosis level. Moreover, the possible time-

varying delays and packet losses introduced by the communication networks be-

tween the local sensors and the corresponding LFDs have to be addressed since

they may affect the fault diagnosis decision. Note that the classical discrete-time FD

architecture assumes that quantities sampled at exactly time k are used to compute

quantities related to time k+1. Unfortunately, the LFDs may receive measurements

associated with time instants different from k, because of transmission delays and

because of the arbitrary sampling time instants of the sensors. The availability of

the time-stamp t
(i)
sI enables each LFD to implement a set of local virtual sensors by

which the re-synchronization of the measurements received at the Diagnosis level

is implemented. We assume that sensors and diagnosers share the same clock at the

local level2.

2 As example, this could be obtained in accordance with the IEEE 1588-2002 standard (“Stan-

dard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
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Specifically, each LFD collects the most recent sensors measurements in a

buffer and computes a projection m̂
(i)
I (k|t

(i)
sI ) of these latest available measurements

m
(i)
I (t

(i)
sI ), i = 1, . . . ,nI , to the discrete time instant3 k ≥ t

(i)
aI > t

(i)
sI , by integrating the

local nominal model on the time interval [t
(i)
sI ,k].

Remark 2 Let us note that measurements may be related to and could be received

also before time k− 1, without any assumption on the delay length, thus allowing

the possibility of measurement packet losses. Moreover, thanks to the use of the time

stamps and the buffers, ”‘out-of-sequence”’ packets can be managed. The same

measurement could be used by the virtual sensor more than once to obtain more

than one projections related to different discrete time instants.

The projected measurement m̂
(i)
I (k|t

(i)
sI ) can be computed by noticing that, under

healthy mode of behavior, the local nominal model (1.1) for the state component i

at any time t > t
(i)
sI can be rewritten as:

x
(i)
I (t) = x

(i)
I (t

(i)
sI )+

∫ t

t
(i)
sI

[ f
(i)
I (xI(τ),uI(τ))+ g

(i)
I (xI(τ),zI(τ),uI(τ))

+η
(i)
I (xI(τ),zI(τ),uI(τ))]dτ .

Hence, the LFD implements a virtual sensor that generates an estimate of the mea-

surement at discrete-time k given by

m̂
(i)
I (k|t

(i)
sI ) = m

(i)
I (t

(i)
sI )

+

∫ k

t
(i)
sI

[ f
(i)
I (m̂I(τ|t

(i)
sI ),uI(τ))+ g

(i)
I (m̂I(τ|t

(i)
sI ), m̂zI(τ|t

(i)
sI ),uI(τ))

+ η̂
(i)
I (m̂I(τ|t

(i)
sI ), m̂zI(τ|t

(i)
sI ),uI(τ))]dτ , (1.41)

where η̂I characterizes an adaptive approximator designed to learn the unknown

modeling uncertainty function ηI [27] and m̂zI are the projections of the measured

interconnection variables mzI . An example enhancing the re-synchronization proce-

dure for one LFD monitoring a subsystem with three state variables is illustrated in

Fig. 1.5.

Remark 3 It is worth noting that the discrete-time index k ∈ Z represents kind of

a “virtual Time Stamp” (vTS) computed by the LFDs after the re-synchronization

task and communicated in the second level communication network between LFDs.

This will be exploited in Section 1.4.2.

Systems”), where each diagnoser can be selected as a synchronization master for the sensors that

communicate with it.
3 Recall that the sampling time of the diagnosers is supposed to be unitary for simplicity.
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Fig. 1.5: The re-synchronization procedure [14] needed to manage delays and packet

losses in the communication networks between each LFD and its local sensors. A

single LFD is considered whose local model depends on three variables, which are

measured by three different sensors. The clock signals of each layer involved are

shown.

Remark 4 Although in (1.41), for analysis purposes, η̂I represents the output of

a continuous-time adaptive approximator, for implementation reasons, a suitable

discrete-time approximator will be used, designed as explained in Section 1.4.4.

The above-described projection and re-synchronization procedure gives rise to

an additional source of measurement uncertainty: the virtual measurement error,

which is defined as

ξ
(i)
I (k), m̂

(i)
I (k|t

(i)
sI )− x

(i)
I (k).

For the sake of analysis, it is worth noting that, due to synchronization and measure-

ment noise, the virtual measurement error is given by:
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ξ
(i)
I (k) =m

(i)
I (t

(i)
sI )− x

(i)
I (t

(i)
sI )

+

∫ k

t
(i)
sI

[∆synch f
(i)
I (τ)+∆synchg

(i)
I (τ)+∆synchη

(i)
I (τ)]dτ

=w
(i)
I (t

(i)
sI )+

∫ k

t
(i)
sI

[∆synch f
(i)
I (τ)+∆synchg

(i)
I (τ)+∆synchη

(i)
I (τ)]dτ ,

(1.42)

where

∆synch f
(i)
I (τ) , f

(i)
I (m̂I(τ|t

(i)
sI ),uI(τ))− f

(i)
I (xI(τ),uI(τ)) ,

∆synchg
(i)
I (τ) , g

(i)
I (m̂I(τ|t

(i)
sI ), m̂zI(τ|t

(i)
sI ),uI(τ))− g

(i)
I (xI(τ),zI(τ),uI(τ)) ,

and

∆synchη
(i)
I (τ), η̂

(i)
I (m̂I(τ|t

(i)
sI ), m̂zI(τ|t

(i)
sI ),uI(τ))−η

(i)
I (xI(τ),zI(τ),uI(τ)) .

For notational convenience, we now collect the projected measurements m̂
(i)
I (k|t

(i)
sI )

in a vector, which, in the following, we denote as yI(k), with k being its vTS:

yI(k) = col
{

m̂
(i)
I (k|t

(i)
sI ), i = 1, . . . ,nI

}
.

Therefore, it is as if the virtual sensor implemented by the LFDs takes uncertain

local measurements yI of the state xI , according to

yI(k) = xI(k)+ ξI(k),

where ξI is the unknown virtual measurement error (1.42). Moreover, in place of the

interconnection variables zI , only the vector

vI(k) = zI(k)+ ςI(k)

is available for diagnosis, as it is possible to see in Figure1.6, where ςI is composed

by the components of ξJ affecting the relevant components of yJ (as before, J refers

to a neighboring subsystem). For simplicity, we assume here that the control signal

uI is available to the diagnoser without any delays or other uncertainty.

The virtual measuring errors ξI and ςI are unstructured and unknown. For each

i = 1, . . . ,nI and j = 1, . . . , n̄I , it is possible to compute a bound for their components

using (1.42): ∣∣∣ξ (i)
I (k)

∣∣∣ ≤ ξ̄
(i)
I (k),

∣∣∣ς ( j)
I (k)

∣∣∣≤ ς̄
( j)
I (k),

where

ξ̄
(i)
I (k) = w̄

(i)
I (t

(i)
sI )+

∫ k

t
(i)
sI

∆̄synch f
(i)
I (τ)+ ∆̄synchg

(i)
I (τ)+ ∆̄synchη

(i)
I (τ)dτ (1.43)
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Fig. 1.6: An example of the multi-layer fault detection architecture. The intercon-

nection variables zI and the corresponding projected measurements vI communi-

cated among the diagnosers.

is a positive function, w̄
(i)
I is the one defined in Assumption 3,

∆̄synch f
(i)
I (τ) = max

xI∈RnI

∣∣∣ f
(i)
I (m̂I(τ),uI(τ))− f

(i)
I (xI(τ),uI(τ))

∣∣∣ ,

∆̄synchg
(i)
I (τ) = max

xI∈RnI ,zI∈R n̄I

∣∣∣g(i)I (m̂I(τ), m̂zI(τ),uI(τ))− g
(i)
I (xI(τ),zI(τ),uI(τ))

∣∣∣ ,

remembering that the sets RnI , R n̄I are the domain of the state and interconnection

variables, respectively, and ∆̄synchη
(i)
I (τ) can be computed in an analogous way as

in (1.65) (see Section 1.4.6). The bound ς̄I is computed with the same procedure

by the neighboring subsystems. In the next section, the fault-diagnosis procedure is

presented.

1.4.2 The Distributed Fault Detection Methodology

For fault detection purposes, each LFD communicates with neighboring LFDs. It is

assumed that the inter-LFD communication is carried over a packet-switched net-
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work, which we call the second level communication network, possibly subject to

packet delays and losses. In order to manage delays in this network, the data-packets

are Time Stamped, with the virtual Time Stamp, which contains the time instant the

virtual measurements are referred to. In this layer, we assume to have perfect clock

synchronization between the LFDs. In this way, all the devices of the monitoring

architecture can share the same clock, that is, they know the reference time, and the

use of Time Stamps can be valid.

Furthermore, we propose to provide each LFD with a buffer to collect the vari-

ables sent by neighbors. In the following, we denote with the superscript “b” the

most recent value of a variable (or of a communicated function value) in the cor-

responding buffer of a given LFD; for example, vb
I denotes the most recent value

of the measured interconnection vector vI contained in the buffer of the I-th LFD,

while [ fI(·)]
b denotes the most recent value of the function [ fI(·)] in the buffer.

Each LFD computes a nonlinear adaptive estimate x̃I of the associated monito-

red subsystem state xI . The local estimator, called Fault Detection Approximation

Estimator (FDAE), is based on the local discrete-time nominal model (Eq.(1.40)).

Similarly to what done in the first part of this chapter (Section 1.3), to dampen the ef-

fect of the virtual measurement error ξI(k), each measured variable y
(i)
I = x

(i)
I +ξ

(i)
I

is filtered by H(z), where H(z) is a p-th order, asymptotically stable filter (poles lie

inside the open unit disc |z|= 1) with proper transfer function

H(z) =
d0 + d1z−1 + d2z−2 + . . .+ dpz−p

1+ c1z−1 + . . .+ cpz−p
. (1.44)

Generally, each measured variable y
(i)
I (k) can be filtered by a different filter but,

without loss of generality, we consider H(z) to be the same for all the output vari-

ables, in order to simplify notation and presentation. In addition, note that the form

of H(z) allows both IIR and FIR types of digital filters. The filter H(z) can be written

as H(z) = zHp(z) where Hp(z) is the strictly proper transfer function

Hp(z) =
d0z−1 + d1z−2 + d2z−3 + . . .+ dpz−(p+1)

1+ c1z−1 + . . .+ cpz−p
. (1.45)

Note that the filter Hp(z) is also asymptotically stable since it comprises of the same

poles as H(z) with an additional pole at z = 0 (inside |z|= 1). Since the filters H(z)
and Hp(z) (with impulse responses h(t) and hp(t), respectively) are asymptotically

stable, they are also BIBO stable. Therefore, for bounded virtual measurement error

ξI(k), the filtered virtual measurement error4 ΞI(k) , H(z) [ξI(k)] is bounded as

follows:
∣∣∣Ξ (i)

I (k)
∣∣∣≤ Ξ̄

(i)
I (k) i = 1, . . . ,nI (1.46)

4 For notational convenience, we use the shorthand H(z) [ξ (k)] to denote Z −1 {H(z)Ξ (z)}.



32 Francesca Boem, Christodoulos Keliris, Thomas Parisini and Marios M. Polycarpou

where Ξ̄
(i)
I are bounding functions that can be computed as Ξ̄

(i)
I , H̄(z)[ξ̄

(i)
I ], be-

ing H̄(z) a filter with impulse response h̄(k) that satisfies |h(k)| ≤ h̄(k) and using

Eq. (1.43). The selection of suitable filters H̄(z) can be made by utilizing the meth-

ods indicated in Section 1.4.7. Note that we denote with capital letters the filtered

signals.

1.4.3 Fault Detection Estimation and Residual Generation

In this subsection, we present a method for computing the local state estimate x̃I for

fault detection purposes. The local estimation x̃
(i)
I is given by

x̃
(i)
I (k+ 1) = f

(i)
I (yI(k),uI(k))+ g

(i)
I (yI(k),v

b
I (k),uI(k))

+ η̂
(i)
I (yI(k),v

b
I (k),uI(k), ϑ̂I(k)), (1.47)

with initial condition x̃
(i)
I (0) = y

(i)
I (0), where η̂I is the output of an adaptive approx-

imator designed in Subsection 1.4.4 to learn the unknown modeling uncertainty

function ηI , ϑ̂I ∈ Θ̂I denotes its adjustable parameters vector and tb is the virtual

time stamp of the most recent information received vb
I in the buffer at time k.

The local estimation residual error rI(k) is defined as

rI(k), YI(k)− ŶI(k), (1.48)

where we obtain the filtered output YI(k) by locally filtering the measurement output

signal yI(k)
YI(k), H(z) [yI(k)] , (1.49)

and the output estimates as

ŶI(k), H(z) [x̃I(k)] . (1.50)

The residual constitutes the basis of the fault detection scheme. It can be compared,

component by component, to a suitable adaptive detection threshold r̄I ∈ R
nI , thus

generating a local fault decision attesting the status of the subsystem: healthy or

faulty. A fault in the overall system is said to be detected when |r
(i)
I (k)|> r̄

(i)
I (k), for

at least one component i in any I-th LFD.

We now analyze the filtered measurements and estimates:

YI(k) = H(z) [yI(k)] = H(z) [xI(k)+ ξI(k)]

= Hp(z) [z [xI(k)]]+ΞI(k). (1.51)

In the absence of any faults (i.e., φI

(
xI(k),zI(k),uI(k)

)
= 0), (1.51) becomes
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YI(k) = Hp(z)
[
xI(k+ 1)+ z

[
xI(0)δ (k)

]]
+ΞI(k)

= Hp(z)
[

fI

(
xI(k),uI(k)

)
+ gI

(
xI(k),zI(k),uI(k)

)
+ηI

(
xI(k),zI(k),uI(k)

)]

+ h(k)xI(0)+ΞI(k), (1.52)

where δ (k) denotes the discrete-time unit-impulse sequence.

The filtered output estimation model for YI , denoted by ŶI , can be analyzed from

the estimate provided by (1.47) as follows:

Ŷ
(i)
I (k) =Hp(z)

[
f
(i)
I

(
yI(k),uI(k)

)
+ g

(i)
I

(
yI(k),v

b
I (k),uI(k)

)

+ η̂
(i)
I

(
yI(k),v

b
I (k),uI(k), ϑ̂I(k)

)]
+ h(k)y

(i)
I (0). (1.53)

Therefore, the residual (1.48) is readily computable from (1.49) and (1.50). The

residual is analyzed in Subsection 1.4.6 to obtain a suitable adaptive detection

threshold. Now, we design the adaptive approximator η̂I , needed to compute the

state estimate (1.47) and hence (1.50).

1.4.4 Learning of the modeling uncertainty

Reducing the modeling uncertainty enables improved detection thresholds which,

in turn, results in better detection capabilities. In this subsection, we consider the

design of a nonlinear adaptive approximator, exploiting the variables available in

the local buffers in each LFD to manage communication delays (the details of the

delay compensation strategy are given in Subsection 1.4.5). The structure of the

linear-in-the-parameters nonlinear multivariable approximator is not dealt with in

this chapter (nonlinear approximation schemes like neural networks, fuzzy logic

networks, wavelet networks, spline functions, polynomials, etc. can be used).

As shown later on in this subsection, adaptation of the parameters ϑ̂I of the ap-

proximator is achieved through the design of a dynamic state estimator which takes

on the form:

x̂
(i)
I (k+1)= λ (x̂

(i)
I (k)−y

(i)
I (k))+ f

(i)
I (yI ,uI)+g

(i)
I (yI,v

b
I ,uI)+η̂

(i)
I (yI ,v

b
I ,uI , ϑ̂I),

(1.54)

where 0 < λ < 1 is a design parameter. Let us introduce the estimation error

εI(k), yI(k)− x̂I(k)

We compute the i-th state estimation error component as follows:
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ε
(i)
I (k+ 1) = y

(i)
I (k+ 1)− x̂

(i)
I (k+ 1)

= λ ε
(i)
I +∆ f

(i)
I +∆g

(i)
I +∆η

(i)
I −λ ξ

(i)
I +λ ξ

(i)
I (k)+ ξ

(i)
I (k+ 1) , (1.55)

where

∆ f
(i)
I , f

(i)
I (xI,uI)− f

(i)
I (yI ,uI) ,

∆g
(i)
I , g

(i)
I (xI,zI ,uI)− g

(i)
I (yI ,v

b
I ,uI) ,

and

∆η
(i)
I , η

(i)
I (xI ,zI ,uI)− η̂

(i)
I (yI ,v

b
I ,uI , ϑ̂I) .

From this equation, the following learning law can be derived using Lyapunov sta-

bility techniques (see [107]) for every I:

ϑ̂I(k+ 1) = PΘ̂I

[
ϑ̂I(k)+ γIL

⊤
I [εI(k+ 1)−λ εI(k)

]
, (1.56)

where L⊤I = ∂ η̂I/∂ϑ̂I is the gradient matrix of the on-line approximator with respect

to its adjustable parameters and γI = µI/ρI +
∥∥L⊤I

∥∥2

F
, with PΘ̂I

being a projection

operator restricting ϑ̂I within Θ̂I [68], ‖ ·‖F denotes the Frobenius norm and ρI > 0,

0 < µI < 2 are design constants that guarantee the stability of the learning law [68].

1.4.5 Delay Compensation Strategy

Next, we analyze the properties of the Fault Detection estimator introduced in Sub-

section 1.4.3, where the filtered measurements are used; in particular, we explain

how the estimator manages delays and packet losses in the second level communi-

cation network between diagnosers.

In order to compute (1.47) and (1.54), the generic J-th diagnoser communicates

to the neighboring LFDs the current values of the variables vI . It is worth noting

that this information exchange between diagnosers can be affected by time-varying

delays and packet losses and hence a compensation strategy has to be devised. The

delay compensation strategy is derived without any assumption on the delay length,

thus eventually dealing with the problem of packet losses and “out-of-sequence”

packets. We assume that the communication network between diagnosers is de-

signed so to avoid pathological scenarios, such as, for example, a situation in which

the communication delay is always larger than the sampling time. It is important to

note that a re-synchronization strategy like the one used in the first level communi-

cation networks cannot be used in this case, since here we consider data exchanged

between different LFDs, and each LFD, of course, does not know the model of

neighboring subsystems.

As in [12], thanks to the use of the virtual Time Stamps, the most recent measure-

ments and information are considered. When a data packet arrives, its virtual Time

Stamp vTS is compared to tb, which is the virtual Time Stamp of the information
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already in the buffer. If vTS > tb, then the novel data packet takes its place in the

buffer and tb ← vTS. At time tc, with k < tc < k+ 1, each LFD computes the esti-

mates for the time instant k+ 1 using information referred to time k. A variable in

the buffer is up-to-date if tb = k. Should a delay or a packet loss occur in the second

level communication network, we proceed as follows. If some of the interconnec-

tion variables are not up-to-date, that is tb < k, then the learning of the modeling

uncertainty function ηI (1.56) is temporarily paused. Anyway, not up-to-date in-

terconnection variables are used to compute the local value of the interconnection

function in the state estimators (1.47) and (1.54), but this error is taken into ac-

count in the computation of the detection threshold, as will be seen in the following

subsection.

1.4.6 Detection Threshold

In order to define an appropriate threshold for the detection of faults, we now ana-

lyze the dynamics of the output estimation error when the system is under healthy

mode of behavior. Since, from (1.52) we have

Y
(i)
I (k) = Hp(z)

[
f
(i)
I

(
xI(k),uI(k)

)
+ g

(i)
I

(
xI(k),zI(k),uI(k)

)

+η
(i)
I

(
xI(k),zI(k),uI(k)

)]
+ h(k)x

(i)
I (0)+Ξ

(i)
I (k), (1.57)

we are able to compute the residual defined in (1.48) by using (1.53) and (1.57):

r
(i)
I (k) =

[
χ
(i)
I (k)

]b

− ξ
(i)
I (0)h(k)+Ξ

(i)
I (k) , (1.58)

where the total uncertainty term χ
(i)
I (k) is defined as:

χ
(i)
I (k), Hp(z)

[
∆ f

(i)
I (k)+∆g

(i)
I (k)+∆η

(i)
I (k)

]
. (1.59)

The function error ∆ηI can be computed as the sum of four different terms:

∆ηI = LIϑ̃I +υI +∆η̂I +∆ητ
I . (1.60)

The first term takes into account the error due to the parameters’ estimation. This

error can be characterized by introducing an optimal weight vector [98] ϑ̂ ∗I as fol-

lows:

ϑ̂ ∗I , argmin
ϑ̂I

sup
xI ,zI ,uI

∥∥ηI(xI ,zI ,uI)− η̂I(xI ,zI ,uI , ϑ̂I

∥∥ , (1.61)

with ϑ̂I ,xI ,zI ,uI taking values in their respective domains, and by defining the pa-

rameter estimation error

ϑ̃I , ϑ̂ ∗I − ϑ̂I .
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The second term in (1.60) is the so-called Minimum Functional Approximation Er-

ror υI , which describes the least possible approximation error that can be obtained

at time k if ϑ̂I were optimally chosen:

υI(k), ηI(xI,zI ,uI)− η̂I(xI ,zI ,uI, ϑ̂
∗
I ) .

Then, a term representing the error caused by the use of the uncertain measurements

instead of the actual values of the state variables is defined:

∆η̂I , η̂I(xI ,zI ,uI , ϑ̂I)− η̂I(yI ,vI ,uI, ϑ̂I) .

Finally, the estimation error due to the use of delayed measurements is taken into

account by

∆ητ
I , η̂I(yI ,vI,uI , ϑ̂I)− η̂I(yI ,v

b
I ,uI, ϑ̂I)

where vI is the current measured variable and vb
I is the value in the buffer, which is

“old” in the presence of delays. Clearly, ∆ητ
I = 0 when up-to-date measurements

are used (in this case, vb
I = vI).

Using (1.60), the total uncertainty term χ
(i)
I (k) in (1.59) can be rewritten as

χ
(i)
I (k), Hp(z)

[
∆ f

(i)
I (k)+∆g

(i)
I (k)+L

(i)
I ϑ̃I(k)+υ

(i)
I (k)

+∆η̂
(i)
I (k)+∆η

τ(i)
I (k)

]
, (1.62)

where L
(sI )
I indicates the sI-th line of the matrix LI . Using the triangle inequality,

(1.58) satisfies:

∣∣∣r(i)I (k)
∣∣∣ ≤

∣∣∣∣∣

[
χ
(i)
I (k)

]b
∣∣∣∣∣+

∣∣∣ξ (i)
I (0)h(k)

∣∣∣+
∣∣∣Ξ (i)

I (k)
∣∣∣

≤

[∣∣∣χ (i)
I (k)

∣∣∣
]b

+ ξ̄
(i)
I (0) |h(k)|+ Ξ̄

(i)
I (k). (1.63)

From (1.62) and using again the triangle inequality, we obtain:

∣∣∣χ (i)
I (k)

∣∣∣ ≤
∣∣∣Hp(z)

[
∆ f

(i)
I (k)+∆g

(i)
I (k)+∆η

(i)
I (k)

]∣∣∣

≤
k

∑
n=0

∣∣hp(k− n)
∣∣
∣∣∣∆ f

(i)
I (n)+∆g

(i)
I (n)+L

(i)
I ϑ̃I(n)+υ

(i)
I (n)

+∆η̂
(i)
I (n)+∆η

τ(i)
I (n)

∣∣∣

≤ χ̄
(i)
I (k) , H̄p(z)

[
∆̄ f

(i)
I (k)+ ∆̄g

(i)
I (k)+ ∆̄η

(i)
I (k)

]
, (1.64)

where H̄p(z) is the transfer function with impulse response that satisfies
∣∣hp(k)

∣∣ ≤
h̄p(k) (more details for the selection of H̄p(z) are given in Subsection 1.4.7),
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∆̄ f
(i)
I (k) , max

|ξI |≤ξ̄I

{∣∣∣∆ f
(i)
I (k)

∣∣∣
}
,

∆̄g
(i)
I (k), max

|ξI |≤ξ̄I(k)
max
|ςI |≤ς̄I(k)

{∣∣∣∆g
(i)
I (k)

∣∣∣
}

and

∆̄η
(i)
I (k),

∥∥∥L
(i)
I

∥∥∥κI(ϑ̂I)+ ῡ
(i)
I (k)+ max

|ξI |≤ξ̄I (k)
max
|ςI |≤ς̄I(k)

∣∣∣∆η̂
(i)
I (k)

∣∣∣

+ max
vI∈Rv

∣∣∣η̂(i)
I (yI ,vI ,uI, ϑ̂I)− η̂

(i)
I (yI ,v

b
I (tb),uI , ϑ̂I)

∣∣∣ , (1.65)

with ῡI denoting a bound to the minimum functional approximation error, the func-

tion κI being such that κI(ϑ̂I)≥
∥∥ϑ̃I

∥∥ and RvI ⊂Rη̄I , where this last term represents

a local domain of the interconnection variable and is communicated by the neigh-

boring LFDs at k = 0. It is important to remark that RvI coincides with the domain

DzI
for subsystem I. Thanks to the way the threshold is designed from (1.63), it

is straightforward that it guarantees the absence of false-alarms, since the residual

prior to the fault occurrence always satisfies

∣∣∣r(i)I (k)
∣∣∣ ≤ r̄

(i)
I (k) ,

where the detection threshold r̄
(i)
I is defined as

r̄
(i)
I (k),

[
χ̄
(i)
I (k)

]b

+ ξ̄
(i)
I (0) |h(k)|+ Ξ̄

(i)
I (k). (1.66)

Remark 5 Notice that, even in the case of a conservative bound ξ̄
(i)
I , the second

term ξ̄
(i)
I |h(k)| affects the detection threshold only during the initial portion of the

transient (the impulse response h(k) of the filter H(z) decays exponentially). More-

over, the term Ξ̄
(i)
I in (1.65) takes into account the uncertainty due to the delays in

the communication network between LFDs. This term is instrumental to ensure the

absence of false alarms caused by these communication delays.

Remark 6 The terms ξ̄I(k) and ς̄I(k) are computed by the LFDs at each time-step

after the re-synchronization task (see (1.43)) and are available to compute the fault

detection threshold.

Remark 7 Admittedly, the bounds used in (1.64) and (1.65) give rise to conserva-

tive thresholds but have the advantage of guaranteeing the absence of false-positive

alarms and of being easily computable requiring a small amount of data to be ex-

changed between the LFDs. In the presence of a-priori knowledge on the process to

be monitored, tighter bound could be devised. For example, Lipschitz conditions on

the local models could be easily exploited to devise tighter detection thresholds.
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1.4.7 Selection of filter H̄p(z)

A practical issue that requires consideration is the selection of the filter H̄p(z) whose

impulse response must satisfy |hp(t)| ≤ h̄p(t) as stated before. In the case where

the impulse response hp(t) is non-negative, the selection H̄p(z) = Hp(z) is trivial.

Sufficient conditions for non-negative impulse response for a class of discrete-time

transfer functions are given in [60]. In the following, we present two methods for

choosing H̄p(z), one considering H(z) as a digital IIR filter and the other one as a

FIR filter.

First we consider the case where H(z) is an IIR filter. Due to the way Hp(z)
was defined, Hp(z) is strictly proper and asymptotically stable. Hence, the impulse

response hp(k) satisfies |hp(k)| ≤ κλ k for all k ∈ N, for some κ > 0 and λ ∈ [0,1).
Since |hp(k)| ≤ h̄p(k) must hold, the impulse response h̄p(k) can be selected as

h̄p(k) = κλ k and thus H̄p(z) =
κ

1−λ z−1 .

Now, let’s consider the case in which H(z) is a FIR filter. FIR filters have sev-

eral advantages, as they are inherently stable and can easily be designed to be

linear-phase which corresponds to uniform delay at all frequencies. Let H(z) be

a p-th order FIR filter given by H(z) = ∑
p
n=0 dnz−n. Therefore, Hp(z) = z−1H(z) =

∑
p
n=0 dnz−(n+1) and h̄p(k) can be selected as h̄p(k) = |hp(k)| which leads to the FIR

filter H̄p(z) = ∑
p
n=0 |dn|z

−(n+1).

1.4.8 The Local Fault Detection Algorithm

Now, all the elements needed to implement the fault detection scheme are available.

For the sake of clarity, the implementation of the local fault detection methodology

is sketched in the following Algorithm 1. Extensive simulation results showing the

effectiveness of the presented approach can be found in [14].

1.4.9 Detectability Conditions

In this subsection, we address some sufficient conditions for detectability of faults

by the proposed distributed networked fault detection scheme, thus considering the

behavior of the fault detection algorithm in the case of a faulty system. We assume

that at an unknown time k0 a fault φI occurs. The fault detectability analysis consti-

tutes a theoretical result that characterizes quantitatively (and implicitly) the class

of faults detectable by the proposed scheme.

Theorem 4 (Fault Detectability). A fault in the I-th subsystem occurring at time

k= k0 is detectable at a certain time k = kd if the fault function φ
(i)
I (xI(k),zI(k),uI(k))

satisfies the following inequality for some i = 1, . . . ,nI:
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Algorithm 1 Fault detection algorithm for the I-th LFD

Learning = ON

Initialize the estimate x̂I(0) = yI(0)
Initialize the estimate x̃I(0) = yI(0)
Compute the estimate x̂I(1) (Eq. (1.54))

Compute the estimate x̃I(1) (Eq. (1.47))

Set k = 1

while A fault is not detected do

Measurements yI(k) are acquired

Compute εI(k) = yI(k)− x̂I (k) (for learning)

Compute YI(k) (Eq. (1.49)), ŶI(k) (Eq. (1.50))

Compute the residual rI(k) =YI (k)− ŶI (k)
Information from neighbors is acquired

Compute the threshold r̄I(k) (Eq. (1.66))

Compare |rI(k)| with r̄I(k)
if |rI(k)| > r̄I(k) then

A fault is detected

Learning = OFF

end if

if Some components i of vI(k) are not received then

Learning = OFF

else

Learning = ON

v
b(i)
I (k) = v

(i)
I (k)

end if

if Learning = ON then

Update ϑ̂I(k) (Eq. (1.56))

else

ϑ̂I(k) = ϑ̂I(k−1)
end if

Compute the novel estimate x̂I(k+1) (Eq. (1.54))

Compute the novel estimate x̃I(k+1) (Eq. (1.47))

k = k+1

end while

∣∣∣∣∣
kd

∑
n=k0

hp(k− n)φ
(i)
I

(
xI(n),zI(n),uI(n)

)
∣∣∣∣∣> 2r̄

(i)
I (kd). (1.67)

Proof. After fault occurrence, that is for k > k0, equation (1.58) becomes:

r
(i)
I (k) = χ

(i)
I (k)b +Hp(z)

[
φ
(i)
I

(
xI(k),zI(k),uI(k)

)]
− ξ

(i)
I (0)h(k)+Ξ

(i)
I (k)

= χ
(i)
I (k)b− ξ

(i)
I (0)h(k)+Ξ

(i)
I (k)+Hp(z)

[
φ
(i)
I

(
xI(k),zI(k),uI(k)

)]
. (1.68)

Using the triangle inequality, from (1.68) we can write
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∣∣∣r(i)I (k)
∣∣∣≥−

∣∣∣χ (i)
I (k)b

∣∣∣−
∣∣∣ξ (i)

I (0)h(k)
∣∣∣−

∣∣∣Ξ (i)
I (k)

∣∣∣

+
∣∣∣Hp(z)

[
φ
(i)
I

(
xI(k),zI(k),uI(k)

)]∣∣∣
(1.69)

and by using a similar procedure as in the derivation of (1.66), (1.69) becomes

∣∣∣r(i)I (k)
∣∣∣≥−r̄

(i)
I (k)+

∣∣∣Hp(z)
[
φ
(i)
I

(
xI(k),zI(k),uI(k)

)]∣∣∣ . (1.70)

For fault detection at time k = kd , the inequality |r
(i)
I (kd)| > r̄

(i)
I (kd) must hold for

some i = 1, . . . ,nI , so the final fault detectability condition is obtained:

∣∣∣Hp(z)
[
φ
(i)
I (xI(kd),zI(kd),uI(kd))

]∣∣∣> 2r̄
(i)
I (kd).

This can be rewritten in the summation form (1.67) of the Theorem.

⊓⊔

This theorem provides a sufficient condition for the implicit characterization of

a class of faults that can be detected by the proposed fault detection scheme. Let

us note that the detectability condition represents the minimum cumulative magni-

tude of the fault that can be detected under a specific trajectory of the system. It is

possible to study this condition off line for representative trajectories of the system.

1.4.10 Identification of the faulty subsystem

In the next section we consider the fault diagnosis problem. More specifically, we

illustrate an approach for the adaptive learning of the local fault function after fault

detection. Before developing the adaptive approximation procedure, we present an

important remark.

A fundamental question regarding fault detectability is whether the fault that

occurs in subsystem ΣJ is detectable not only by the LFD FJ , but also by the LFD

FI of the neighboring subsystem ΣI , whose state is influenced by ΣJ dynamics.

It can be shown (the interested reader can refer to [52]), that the proposed fault

detection scheme guarantees that, a process fault φJ(·) occurring in subsystem ΣJ

which affects ΣI , can only be detected by its corresponding LFD FJ and not by

the LFD FI . This result is essentially the implication of using the measurements

of the state and interconnection variables in the estimation model given by (1.11).

Qualitatively, this can be explained as follows. When a process fault occurs in ΣJ ,

the fault affects its states which in turn affect other subsystems through the intercon-

nection variables. So, the states of ΣJ are “contaminated” by the process fault and

the measurements of these states also contain the process fault effects. Therefore,

a subsystem ΣI that is affected by ΣJ , is affected by the process fault that occurred

in ΣJ through the interconnection variables zI and the detection LFD FI makes use
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of the measurements vI which are also “contaminated” by the same fault. Hence,

the effect of the process fault that occurred in ΣJ , is “canceled out” in the LFD FI

and it is unable detect the fault. Hence, a process fault occurring in subsystem ΣJ is

detectable only by its respective detection LFD FJ and not by any other LFD FI .

This is a very important result because when a fault is detected in a subsystem, at the

same time the faulty subsystem is identified, and further fault isolation/identification

methods can be used targeting only the particular faulty subsystem.

1.5 Fault Diagnosis - Learning the Fault Function

After a fault is detected by the LFD FI at time Td , the fault isolation task is initiated

to identify the type of fault occurring in the faulty subsystem ΣI . In order to do this,

various approaches can be used, and two of them are discussed in the sequel.

1.5.1 Generalised Observer Scheme

A fault isolation logic can be implemented based on a Generalized Observer Scheme

(GOS, see [33, 65]). As in [31], it is assumed that each subsystem knows a local fault

set OI , collecting all the NOI
possible fault functions: φ l

I (xI ,zI ,uI), l ∈ {1, . . . , NOI
}.

Once a fault is detected at time Td in the I-th subsystem, the respective LFD FI

activates NOI
estimators, where each filter is sensitive to a specific fault: the generic

l–th fault isolation estimator of the I–th LFD is matched to the corresponding fault

function φ l
I , belonging to the local fault set OI . Each l–th estimator provides a local

state estimate x̂l
I of the local state xI affected by the l-th fault:

x̂
l(i)
I (k+ 1) = λ (x̂

l(i)
I (k)− y

(i)
I (k))+ f

(i)
I (yI ,uI)+ g

(i)
I (yI ,v

b
I ,uI)

+ η̂
(i)
I (yI ,v

b
I ,uI , ϑ̂I(Td))+φ

l(i)
I (yI ,v

b
I ,uI), (1.71)

where the learning of the modeling uncertainty has been stopped at time Td in or-

der not to learn the fault effect. The difference between the estimate x̂l
I and the

re-synchronized measurements yI , after filtering, consists of the fault isolation es-

timation residual r l
I , YI − Ŷ l

I , where Ŷ l
I , H(z)[x̂l

I(k)]. This residual is compared,

component by component, to some properly designed isolation thresholds r̄ l
I so that

if the j-th fault (in the fault set OI) has occurred, then it is guaranteed that

|r
j(i)

I (k)| ≤ r̄
j(i)

I (k) ∀k > Td , i = 1, . . . ,nI . (1.72)

The isolation thresholds are defined similarly as the detection threshold in (1.66),

modifying χ̄
(i)
I (k) adding the following term:
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∆̄φ
l(i)
I (k), max

|ξI |≤ξ̄I (k)
max
|ςI |≤ς̄I(k)

{∣∣∣∆φ
l(i)
I (k)

∣∣∣
}
,

being ∆φ
l(i)
I (k) = φ

l(i)
I (xI ,zI ,uI)−φ

l(i)
I (yI ,v

b
I ,uI).

If a residual crosses its corresponding threshold, then we can exclude the occur-

rence of the considered l-th fault. Therefore, if we are able to exclude all the faults

but one, then we can say that the fault is isolated.

1.5.2 Learning the fault function

In the case that the fault functions are not known a priori, we can use a different

approach based on the adaptive learning of the fault function. According to the ap-

proximation model (1.54) introduced in Subsection 1.4.4 for learning the modeling

uncertainty, when a fault is detected in the I-th subsystem, then the approximation

model starts to learn the combined effect of the modeling uncertainty and the fault

function. Assuming that the detection time Td is sufficiently long, so that the model-

ing uncertainty is learned, its estimation is given by η̂I(yI(k),v
b
I (k),uI(k), ϑ̂I(Td)).

Therefore, by allowing a sufficiently long learning period TL after the fault detection,

the approximator η̂I learns the combined effect of the modeling uncertainty and the

fault function as η̂I(yI(k),v
b
I (k),uI(k), ϑ̂I(Td +TL)) for k > Td +TL. Therefore, the

estimated fault function is given by φ̂I(k) = η̂I(yI(k),v
b
I (k),uI(k), ϑ̂I(Td + TL))−

η̂I(yI(k),v
b
I (k),uI(k), ϑ̂I(Td)), k > Td + TL. Note that, the fault could be incipient

and still be developing at the end of the learning period, so the designer may let the

learning process to continue. In this case, the estimated fault function is given by

φ̂I(k) = η̂I(yI(k),v
b
I (k),uI(k), ϑ̂I(k))− η̂I(yI(k),v

b
I (k),uI(k), ϑ̂I(Td)), k > Td + TL.

The estimated fault function can then be used for fault accommodation purposes in

order to guarantee the stability of the faulty system. For more information regarding

this approach for learning the fault function, the interested reader can refer to [53].

1.6 Concluding Remarks

This chapter has reviewed a distributed fault diagnosis framework specifically

designed for uncertain networked nonlinear large-scale systems concerning vari-

ous sources of uncertainty, namely modeling uncertainty, measurement noise and

network-related uncertainties.

In order to deal with the presence of measurement noise, a filtering scheme has

been presented by integrating a general class of filters into the design of the residual

and threshold signals in a way that takes advantage of the filtering noise suppres-

sion properties. Essentially, filtering dampens the effect of measurement noise in a

certain frequency range allowing to set tighter detection thresholds and thus enhanc-

ing fault detectability. The main implications of the filtering scheme is rigorously
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investigated providing insights on the impact of the filters’ poles and on the fault

detection time.

The modeling uncertainties are also taken into account by means of an adaptive

learning technique.

Furthermore, the chapter addressed the need for integration between the different

levels composing CPS systems, by proposing a comprehensive architecture, where

all parts of complex distributed systems are considered: the physical environment,

the sensor level, the diagnosers layer and the communication networks. By adapting

and incorporating the devised filtering scheme into the overall framework, a dis-

tributed fault-diagnosis approach has been designed for distributed uncertain nonlin-

ear large-scale systems to specifically address the issues emerging when considering

networked diagnosis systems, such as the presence of delays and packet dropouts

in the communication networks that degrade performance and could be a source of

instability, misdetection, and false alarms. Multi-rate systems, where the measure-

ments may not be synchronous, were also considered. Under the stated assumptions,

the proposed architecture guarantees the absence of false positive alarms.

Finally, some information was provided regarding the actions that can be taken

after the detection of a fault in order to isolate the potential fault by identifying its

location and magnitude, or even learning the fault function. Based on this informa-

tion, actions can be taken in order to alleviate the fault effects and safeguard the

system operation.

Modern, complex, interconnected systems can be prone to various sources of

faults due to the increased complexity or even malicious attacks which can be con-

sidered as a “type” of fault. As a result, comprehensive fault diagnosis schemes need

to be devised by considering the recent technological challenges, and this chapter

has reviewed an integrated methodology which represents a step in that direction.

References

1. K. Adjallah, D. Maquin, and J. Ragot, “Nonlinear observer-based fault detection,” in IEEE

Conference on Control Applications, no. 3, 1994, pp. 1115–1120.

2. A. Ashari, R. Nikoukhah, and S. Campbell, “Active robust fault detection in closed-loop sys-

tems: Quadratic optimization approach,” IEEE Transactions on Automatic Control, vol. 57,

no. 10, pp. 2532–2544, 2012.

3. ——, “Effects of feedback on active fault detection,” Automatica, vol. 48, no. 5, pp. 866–872,

2012.

4. K. Baheti and H. Gill, “Cyber-physical Systems,” in The Impact of Control Technology,

T. Samad and A. M. Annaswamy, Eds. IEEE Control Systems Society, 2011, pp. 161–166.

[Online]. Available: http://ieeecss.org/general/impact-control-technology

5. R. Beard, “Failure accomodation in linear systems through self–reorganization,” Technical

Report MTV-71-1, Man Vehicle Laboratory, MIT, Cambridge, MA, 1971.

6. F. Blanchini, D. Casagrande, G. Giordano, S. Miani, S. Olaru, and V. Reppa, “Active fault

isolation: A duality-based approach via convex programming,” SIAM Journal on Control and

Optimization, vol. 55, no. 3, pp. 1619–1640, 2017.

7. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault Tolerant Con-

trol. Berlin: Springer, 2003.



44 Francesca Boem, Christodoulos Keliris, Thomas Parisini and Marios M. Polycarpou

8. ——, “Distributed fault diagnosis and fault-tolerant control,” in Diagnosis and Fault-

Tolerant Control. Springer, 2016, pp. 467–518.

9. ——, Diagnosis and Fault-Tolerant Control, 2nd ed. Springer Verlag, 2010.

10. S. Bodenburg and J. Lunze, “Plug-and-play reconfiguration of locally interconnected systems

with limited model information,” IFAC-PapersOnLine, vol. 48, no. 22, pp. 20–27, 2015.

11. F. Boem, R. Carli, M. Farina, G. Ferrari-Trecate, and T. Parisini, “Scalable monitoring of

interconnected stochastic systems,” in 2016 IEEE 55th Conference on Decision and Control

(CDC), 2016, pp. 1285–1290.

12. F. Boem, R. Ferrari, T. Parisini, and M. Polycarpou, “Distributed fault detection for uncertain

nonlinear systems: a network delay compensation strategy,” in Proc. 2013 American Control

Conference, 2013.

13. F. Boem, S. Riverso, G. Ferrari-Trecate, and T. Parisini, “Plug-and-play fault detection and

isolation for large-scale nonlinear systems with stochastic uncertainties,” IEEE Transactions

on Automatic Control (In press), 2018.

14. F. Boem, R. M. Ferrari, C. Keliris, T. Parisini, and M. M. Polycarpou, “A distributed net-

worked approach for fault detection of large-scale systems,” IEEE Transactions on Automatic

Control, vol. 62, no. 1, pp. 18–33, 2017.

15. F. Boem, R. M. Ferrari, and T. Parisini, “Distributed Fault Detection and Isolation of

Continuous-Time Nonlinear Systems,” European Journal of Control, vol. 5-6, pp. 603–620,

2011.

16. F. Boem, R. M. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault diagnosis

for continuous-time nonlinear systems: The input–output case,” Annual Reviews in Control,

vol. 37, no. 1, pp. 163–169, 2013.

17. A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry, “Attacks

against process control systems: risk assessment, detection, and response,” in Proceedings

of the 6th ACM Symposium on Information, Computer and Communications Security, ser.

ASIACCS ’11. New York, NY, USA: ACM, 2011, pp. 355–366.

18. J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems.

Kluwer Academic Publishers Norwell, MA, USA, 1999.

19. P. Cheng, L. Shi, and B. Sinopoli, “Guest editorial special issue on secure control of cyber-

physical systems,” IEEE Transactions on Control of Network Systems, vol. 4, no. 1, pp. 1–3,

2017.

20. S. Cheong and I. Manchester, “Input design for discrimination between classes of lti models,”

Automatica, vol. 53, pp. 103–110, 2015.

21. L. Chiang, E. Russell, and R. Braatz, Fault Detection and Diagnosis in Industrial Systems.

Springer-Verlag, London, 2001.

22. R. Clark, “Instrument fault detection,” IEEE Transactions on Aerospace and Electronic Sys-

tems, no. 3, pp. 456–465, 1978.

23. M. Davoodi, N. Meskin, and K. Khorasani, “Simultaneous fault detection and consensus

control design for a network of multi-agent systems,” Automatica, vol. 66, pp. 185–194,

2016.

24. C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, 1st ed. Aca-

demic Press, 1975.

25. P. Dorato, R. Tempo, and G. Muscato, “Bibliography on robust control,” Automatica, vol. 29,

no. 1, pp. 201–213, 1993.

26. F. Dorfler, F. Pasqualetti, and F. Bullo, “Distributed detection of cyber-physical attacks in

power networks: A waveform relaxation approach,” in Communication, Control, and Com-

puting (Allerton), 2011 49th Annual Allerton Conference on, sept. 2011, pp. 1486 –1491.

27. J. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control: Unifying Neu-

ral, Fuzzy, and Traditional Adaptive Approximation Approaches. Hoboken, NJ: Wiley-

Interscience, 2006.

28. J. Farrell, T. Berger, and B. Appleby, “Using learning techniques to accommodate unantici-

pated faults,” vol. 13, pp. 40—49, 1993.



1 Fault Diagnosis for Uncertain Networked Systems 45

29. H. Ferdowsi, D. Raja, and S. Jagannathan, “A decentralized fault prognosis scheme for non-

linear interconnected discrete-time systems,” in American Control Conference, 2012, pp.

5900–5905.

30. L. Ferranti, Y. Wan, and T. Keviczky, “Predictive flight control with active diagnosis and

reconfiguration for actuator jamming.” IFAC-PapersOnLine, vol. 48, no. 23, pp. 166–171,

2015.

31. R. M. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault detection and isolation

of large-scale nonlinear systems: an adaptive approximation approach,” IEEE Transactions

on Automatic Control, vol. 57, no. 2, pp. 275–290, 2012.

32. E. Franco, R. Olfati-Saber, T. Parisini, and M. M. Polycarpou, “Distributed fault diagnosis

using sensor networks and consensus-based filters,” in Decision and Control, 2006 45th IEEE

Conference on. IEEE, 2006, pp. 386–391.

33. P. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redun-

dancy: A survey and some new results,” Automatica, vol. 26, no. 3, pp. 459–474, 1990.

34. P. Frank and S. X. Ding, “Survey of robust residual generation and evaluation methods in

observer-based fault detection systems,” Journal of Process Control, no. 6, pp. 403–424,

1997.

35. Z. Gao, C. Cecati, and S. Ding, “A survey of fault diagnosis and fault-tolerant tech-

niques—part i: Fault diagnosis with model-based and signal-based approaches,” IEEE Trans-

actions on Industrial Electronics, vol. 62, no. 6, pp. 3757–3767, 2015.

36. E. A. Garcia and P. Frank, “Deterministic nonlinear observer-based approaches to fault diag-

nosis: a survey,” Control Engineering Practice, vol. 5, no. 5, pp. 663–670, 1997.

37. J. Gertler, “Survey of model-based failure detection and isolation in complex plants,” IEEE

Control Systems Magazine, vol. 8, no. 6, pp. 3–11, 1988.

38. ——, “Fault detection and isolation using parity relations,” Control Engineering Practice,

vol. 5, no. 5, pp. 653–661, May 1997.

39. ——, Fault detection and diagnosis in engineering systems, 1st ed. CRC Press, 1998.

40. V. Gupta and V. Puig, “Distributed fault diagnosis using minimal structurally over-

determined sets: Application to a water distribution network,” in 3rd Conference on Control

and Fault-Tolerant Systems (SysTol). IEEE, 2016, pp. 811–818.

41. H. Hammouri, M. Kinnaert, and E. El Yaagoubi, “Observer-based approach to fault detec-

tion and isolation for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 44,

no. 10, pp. 1879–1884, 1999.

42. F. Harirchi, S. Yong, E. Jacobsen, and N. Ozay, “Active model discrimination with appli-

cations to fraud detection in smart buildings,” in IFAC World Congress, Toulouse, France,

2017.

43. I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection, Isolation, and

Reconfiguration Methods,” IEEE Transactions on Control Systems Technology, vol. 18, no. 3,

pp. 636–653, May 2010.

44. R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Toler-

ance. Springer-Verlag, 2006.

45. ——, “Process fault detection based on modeling and estimation methods - A survey,” Auto-

matica, vol. 20, no. 4, pp. 387–404, Jul. 1984.

46. K. H. Johansson, G. J. Pappas, P. Tabuada, and C. J. Tomlin, “Guest editorial special issue on

control of cyber-physical systems,” IEEE Transactions on Automatic Control, vol. 59, no. 12,

pp. 3120–3121, 2014.

47. H. Jones, “Failure detection in linear systems,” Ph.D. Thesis, Dept. of Aero and Astro, MIT,

Cambridge, MA, 1973.

48. C. Keliris, M. M. Polycarpou, and T. Parisini, “A Distributed Fault Detection Filtering Ap-

proach for a Class of Interconnected Continuous-Time Nonlinear Systems,” IEEE Transac-

tions on Automatic Control, vol. 58, no. 8, pp. 2032–2047, 2013.

49. ——, “A Distributed Fault Detection Filtering Approach for a Class of Interconnected Input-

Output Nonlinear Systems,” in Proc. of European Control Conference, 2013, pp. 422–427.



46 Francesca Boem, Christodoulos Keliris, Thomas Parisini and Marios M. Polycarpou

50. ——, “A Distributed Fault Diagnosis Approach Utilizing Adaptive Approximation for a

Class of Interconnected Continuous-Time Nonlinear Systems,” in Proc. of Control and De-

cision Conference, 2014, pp. 6536–6541.

51. ——, “A Robust Nonlinear Observer-based Approach for Distributed Fault Detection of

Input-Output Interconnected Systems,” Automatica, vol. 53, no. 3, pp. 408–415, 2015.

52. ——, “Distributed Fault Diagnosis for Process and Sensor Faults in a Class of Interconnected

Input-Output Nonlinear Discrete-Time Systems,” International Journal of Control, 2015.

53. ——, “An Integrated Learning and Filtering Approach for Fault Diagnosis of a Class of Non-

linear Dynamical Systems,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 28, no. 4, pp. 988–1004, Apr 2017.

54. S. Klinkhieo and R. J. Patton, “A Two-Level Approach to Fault-Tolerant Control of Dis-

tributed Systems Based on the Sliding Mode,” in 7th IFAC Symposium on Fault Detection,

Supervision and Safety of Technical Processes, Barcelona, Spain, 2009, pp. 1043–1048.

55. J. Lan and R. Patton, “Decentralized fault estimation and fault-tolerant control for large-

scale interconnected systems: An integrated design approach,” in UKACC 11th International

Conference on Control. IEEE, 2016, pp. 1–6.
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71. I. Punčochář, J. Široky, and M.Šimandl, “Constrained active fault detection and control,”

IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 253–258, 2015.

72. D. M. Raimondo, F. Boem, A. Gallo, and T. Parisini, “A decentralized fault-tolerant control

scheme based on active fault diagnosis,” in IEEE 55th Conference on Decision and Control,

2016, pp. 2164–2169.

73. D. Raimondo, G. Marseglia, R. Braatz, and J. Scott, “Fault-tolerant model predictive control

with active fault isolation,” in Conference on Control and Fault-Tolerant Systems (SysTol).

IEEE, 2013, pp. 444–449.

74. R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next com-

puting revolution,” in Proceedings of the 47th Design Automation Conference, ser. DAC ’10.

New York, NY, USA: ACM, 2010, pp. 731–736.

75. V. Reppa, P. Papadopoulos, M. M. Polycarpou, and C. G. Panayiotou, “A distributed archi-

tecture for hvac sensor fault detection and isolation,” IEEE Transactions on Control Systems

Technology, vol. 23, no. 4, pp. 1323–1337, 2015.

76. V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Decentralized isolation of multiple sen-

sor faults in large-scale interconnected nonlinear systems,” IEEE Transactions on Automatic

Control, vol. 60, no. 6, pp. 1582–1596, 2015.

77. ——, “Distributed sensor fault diagnosis for a network of interconnected cyberphysical sys-

tems,” IEEE Transactions on Control of Network Systems, vol. 2, no. 1, pp. 11–23, 2015.

78. S. Riverso, F. Boem, G. Ferrari-Trecate, and T. Parisini, “Plug-and-play fault detection and

control-reconfiguration for a class of nonlinear large-scale constrained systems,” IEEE Trans-

actions on Automatic Control, vol. 61, no. 12, pp. 3963–3978, 2016.

79. T. Samad and T. Parisini, “Systems of Systems,” in The Impact of Control Technology,

T. Samad and A. M. Annaswamy, Eds. IEEE Control Systems Society, 2011, pp. 175–183.

[Online]. Available: ieeecss.org/general/impact-control-technology

80. ——, “Systems of systems,” The Impact of Control Technology (T.Samad and A.Annaswamy,

eds.), 2011. [Online]. Available: www.ieeecss.org

81. H. Sandberg, S. Amin, and K. H. Johansson, “Cyberphysical security in networked control

systems: An introduction to the issue,” IEEE Control Systems, vol. 35, no. 1, pp. 20–23, Feb

2015.

82. J. Scott, R. Findeisen, R. Braatz, and D. Raimondo, “Input design for guaranteed fault diag-

nosis using zonotopes,” Automatica, vol. 50, no. 6, pp. 1580–1589, 2014.

83. L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical systems: A new frontier,”

in Machine Learning in Cyber Trust. Springer US, 2009, pp. 3–13.

84. I. Shames, A. M. Teixeira, H. Sandberg, and K. H. Johansson, “Distributed fault detection

for interconnected second-order systems,” Automatica, vol. 47, no. 12, pp. 2757–2764, 2011.

85. F. Shi and R. Patton, “Fault estimation and active fault tolerant control for linear parameter

varying descriptor systems,” International Journal of Robust and Nonlinear Control, vol. 25,

no. 5, pp. 689–706, 2015.

86. M. Simandl and I. Puncochar, “Active fault detection and control: Unified formulation and

optimal design,” Automatica, vol. 45, no. 9, pp. 2052–2059, 2009.
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