
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Fall 2017 

Event-triggering architectures for adaptive control of uncertain Event-triggering architectures for adaptive control of uncertain 

dynamical systems dynamical systems 

Ali Talib Oudah Albattat 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Mechanical Engineering Commons 

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering 

Recommended Citation Recommended Citation 
Albattat, Ali Talib Oudah, "Event-triggering architectures for adaptive control of uncertain dynamical 
systems" (2017). Doctoral Dissertations. 2616. 
https://scholarsmine.mst.edu/doctoral_dissertations/2616 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2616?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


EVENT-TRIGGERING ARCHITECTURES FOR ADAPTIVE CONTROL OF

UNCERTAIN DYNAMICAL SYSTEMS

by

ALI TALIB OUDAH ALBATTAT

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MECHANICAL ENGINEERING

2017

Approved by

Dr. Tansel Yucelen, Advisor
Dr. Jagannathan Sarangapani

Dr. S.N. Balakrishnan
Dr. Robert Landers

Dr. Douglas A. Bristow



Copyright 2017

ALI TALIB OUDAH ALBATTAT

All Rights Reserved



iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the six articles which have been submitted, or will be

submitted for publication as follows

Paper I: Pages 13-36 have been published in Journal of Dynamic Systems, Mea-

surement, and Control.

Paper II: Pages 37-75 have been published as a chapter in Adaptive Control for

Robotic Manipulators, CRC Press/Taylor & Francis Group.

Paper III: Pages 76-126 have been published in Sensors Journal.

Paper IV: Pages 127-148 have been accepted by ASME Dynamic Systems and Con-

trol Conference.

Paper V: Pages 149-177 have been submitted to American Control Conference.

Paper VI: Pages 178-220 have been accepted by AIAA Guidance, Navigation, and

Control Conference.



iv

ABSTRACT

In this dissertation, new approaches are presented for the design and implemen-

tation of networked adaptive control systems to reduce the wireless network utilization

while guaranteeing system stability in the presence of system uncertainties. Specifically,

the design and analysis of state feedback adaptive control systems over wireless networks

using event-triggering control theory is first presented. The state feedback adaptive con-

trol results are then generalized to the output feedback case for dynamical systems with

unmeasurable state vectors. This event-triggering approach is then adopted for large-scale

uncertain dynamical systems. In particular, decentralized and distributed adaptive control

methodologies are proposed with reduced wireless network utilization with stability guar-

antees.

In addition, for systems in the absence of uncertainties, a new observer-free output

feedback cooperative control architecture is developed. Specifically, the proposed architec-

ture is predicated on a nonminimal state-space realization that generates an expanded set

of states only using the filtered input and filtered output and their derivatives for each vehi-

cle, without the need for designing an observer for each vehicle. Building on the results of

this new observer-free output feedback cooperative control architecture, an event-triggering

methodology is next proposed for the output feedback cooperative control to schedule the

exchanged output measurements information between the agents in order to reduce wire-

less network utilization. Finally, the output feedback cooperative control architecture is

generalized to adaptive control for handling exogenous disturbances in the follower vehi-

cles.

For each methodology, the closed-loop system stability properties are rigorously

analyzed, the effect of the user-defined event-triggering thresholds and the controller de-

sign parameters on the overall system performance are characterized, and Zeno behavior is

shown not to occur with the proposed algorithms.
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SECTION

1. INTRODUCTION

1.1. NETWORKED SYSTEMS AND ADAPTIVE CONTROL

The last decade has witnessed an increased interest in physical systems controlled

over wireless networks (networked control systems) for their advantages in reducing cost

for the design and implementation of control systems [1, 2, 3, 4, 5]. These systems allow the

computation of control signals via processors that are not attached to the physical systems

and the feedback loops are closed over wireless networks. A critical task in the design

and implementation of networked control systems is to guarantee system stability while

reducing wireless network utilization and achieving a given system performance in the

presence of system uncertainties.

One of the fundamental problems in feedback control design is the capability of

the control system to guarantee system stability and performance in the presence of system

uncertainties resulting from mathematical modeling and degraded modes of operations. To

this end, adaptive control theory along with robust control theory have been developed

to address the problem of system uncertainties in control system design [6, 7, 8, 9, 10].

Specifically, robust control methods require the knowledge of characterized bounds result-

ing from system uncertainty parameterizations. From a practical standpoint, determina-

tion of these bounds is not necessarily easy since they can require excessive modeling and

ground testing efforts [11, 12]. In addition, adaptive control methods require less modeling

information than do robust control methods and are able to deal with high levels of system

uncertainties [8, 9, 10]. These facts make adaptive control theory an appealing candidate

for many applications.
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1.2. EVENT-TRIGGERED ADAPTIVE STATE FEEDBACK CONTROL

In the networked control systems literature, notable contributions that utilize adap-

tive control approaches to suppress the effect of system uncertainties include [13, 14, 15,

16]. In particular, the authors of [13, 14] develop adaptive control approaches to deal with

system uncertainties, where their results only consider data transmission from a physical

system to the controller, but not vice versa. The authors of [15, 16] consider the case where

data transmits from a physical system to the controller and from the controller to this phys-

ical system (i.e., two-way data exchange is allowed over a wireless network). Although

this approach is promising, their methodology requires the knowledge of a conservative

upper bound on the unknown constant gain resulting from their uncertainty parameteri-

zation. While this conservative upper bound may be available for some applications, the

actual upper bound may change and exceed its conservative estimate; for example, when an

aircraft undergoes a sudden change in dynamics as a result of reconfiguration, deployment

of a payload, docking, or structural damage [17].

In this dissertation, we first study the design and analysis of adaptive control sys-

tems over wireless networks using event-triggering control theory (see, for example, [18,

19, 20, 21, 22, 23, 24, 25] and references therein), where two-way data exchange between

the physical system and the proposed adaptive controller is considered. The proposed

event-triggered adaptive control methodology schedules the data exchange dependent upon

errors exceeding user-defined thresholds to reduce wireless network utilization and guar-

antees system stability and command following performance in the presence of system un-

certainties. Specifically, we consider a state emulator-based adaptive control methodology

[26, 27, 28, 29, 30, 31, 32, 33] since this framework has the capability to achieve stringent

performance specifications without causing high-frequency oscillations in the controller

response [32, 33] unlike standard adaptive controllers.
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First contribution of the dissertation, in particular, we analyze stability and bound-

edness of the overall closed-loop dynamical system, characterize the effect of user-defined

thresholds and adaptive controller design parameters to the system performance, and dis-

cuss conditions to make the resulting command following performance error sufficiently

small. As a byproduct, we also show that the resulting closed-loop dynamical system

performance is more sensitive to the changes in the data transmission threshold from the

physical system to the adaptive controller (sensing threshold) than the data transmission

threshold from the adaptive controller to the physical system (actuation threshold). This

means that the actuation threshold can be chosen large enough to reduce wireless net-

work utilization between the physical system and the adaptive controller without sacrificing

closed-loop dynamical system performance.

1.3. EVENT-TRIGGERED OUTPUT FEEDBACK ADAPTIVE CONTROL

As discussed in the previous section, the first contribution of this dissertation is a

new event-triggered state-feedback adaptive control architecture. Although the assump-

tion of full state feedback leads to computationally simpler control algorithms, in certain

applications of control systems the entire state vector is not available. Therefore, output

feedback is required for these applications the ones that involve high-dimensional models

such as active noise suppression, active control of flexible structures, fluid flow control

systems, and combustion control processes [34, 35, 36, 37, 38, 39, 40, 41].

Since a critical task in the design and implementation of networked control sys-

tems is to reduce wireless network utilization while guaranteeing system stability in the

presence of system uncertainties, an event-triggered adaptive control architecture is pre-

sented in an output feedback setting to schedule two-way data exchange dependent upon

errors exceeding user-defined thresholds. Specifically, we consider the output feedback

adaptive control architecture predicated on the asymptotic properties of LQG/LTR con-

trollers [39, 33, 40, 41], since this framework has the capability to achieve stringent per-
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formance specifications without causing high-frequency oscillations in the controller re-

sponse, asymptotically satisfies a strictly positive real condition for the closed-loop dynam-

ical system, and is less complex than other approaches to output feedback adaptive control

(see, for example, [35, 36, 37]). While this part of dissertation considers a particular yet

effective output feedback adaptive control formulation to present its main contributions,

the proposed approach can be used in a complimentary way with many other approaches

to output feedback adaptive control (see, for example, [42, 43, 44, 45]).

1.4. EVENT-TRIGGERED ADAPTIVE ARCHITECTURES FOR DECENTRAL-
IZED AND DISTRIBUTED CONTROL OF LARGE-SCALE MODULAR SYS-
TEMS

The design and implementation of decentralized and distributed architectures for

controlling complex, large-scale systems is a nontrivial control engineering task involv-

ing the consideration of components interacting with the physical processes to be con-

trolled. In particular, large-scale systems are characterized by a large number of highly

coupled components exchanging matter, energy or information and have become ubiqui-

tous given the recent advances in embedded sensor and computation technologies. Exam-

ples of such systems include, but are not limited to, multivehicle systems, communication

systems, power systems, process control systems and water systems (see, for example,

[46, 47, 48, 49, 50, 51] and the references therein). This part of dissertation concentrates

on an important class of large-scale systems; namely, large-scale modular systems that

consist of physically-interconnected and generally heterogeneous modules.

Two sweeping generalizations can be made about large-scale modular systems. The

first is that their complex structure and large-scale nature yield to inaccurate mathematical

module models, since it is a challenge to precisely model each module of a large-scale sys-

tem and the interconnections between these modules. As a consequence, the discrepancies

between the modules and their mathematical models, that is system uncertainties, result in
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the degradation of overall system stability and the performance of the large-scale modular

systems. To this end, adaptive control methodologies [8, 11, 10, 52, 9, 53, 31] offer an

important capability for this class of dynamical systems to learn and suppress the effect of

system uncertainties resulting from modeling and degraded modes of operation, and hence,

they offer system stability and desirable closed-loop system performance in the presence

of system uncertainties without excessively relying on mathematical models.

The second generalization about large-scale modular systems is that these systems

are often controlled over wireless networks, and hence, the communication costs between

the modules and their remote processors increase proportionally with the increase in the

number of modules and often the interconnection between these modules. To this end,

event-triggered control methodologies [54, 18, 55] offer new control execution paradigms

that relax the fixed periodic demand of computational resources and allow for the aperiodic

exchange of sensor and actuator information with the remote processor to reduce overall

communication cost over a wireless network. Note that adaptive control methodologies and

event-triggered control methodologies are often studied separately in the literature, where

it is of practical importance to theoretically integrate these two approaches to guarantee

system stability and the desirable closed-loop system performance of uncertain large-scale

modular systems with reduced communication costs over wireless networks, which is the

main focus of this part of dissertation.

More specifically, the authors of [56, 57, 58, 59, 60, 61, 17, 51] proposed decen-

tralized and distributed adaptive control architectures for large-scale systems; however,

these approaches do not make any attempts to reduce the overall communication cost over

wireless networks using, for example, event-triggered control methodologies. In addition,

the authors of [62, 63, 64, 65, 66, 67, 68] present decentralized and distributed control

architectures with event triggering; however, these approaches do not consider adaptive

control architectures and assume perfect models of the processes to be controlled; hence,

they are not practical for large-scale modular systems with significant system uncertain-
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ties. Only the authors of [13, 14, 15, 69, 70, 71] present event-triggered adaptive control

approaches for uncertain dynamical systems. In particular, the authors of [13, 14] consider

data transmission from a physical system to the controller, but not vice versa, while de-

veloping their adaptive control approaches to deal with system uncertainties. On the other

hand, the adaptive control architectures of the authors in [15, 69, 70, 71] consider two-way

data transmission over wireless networks; that is, from a physical system to the controller

and from the controller to this physical system. However, none of these approaches can be

directly applied to large-scale modular systems. This is due to the fact that large-scale mod-

ular systems require decentralized and distributed architectures, and direct application of

the results in [13, 14, 15, 69, 70, 71] to this class of systems can result in centralized archi-

tectures, which is not practically desired due to the large-scale nature of modular systems.

To summarize, there do not exist resilient adaptive control architectures for large-scale sys-

tems in the literature to deal with system uncertainties while reducing the communication

costs between the models and their remote processors.

Building of our other contributions highlighted above, the third contribution of this

dissertation is to design and analyze event-triggered decentralized and distributed adaptive

control architectures for uncertain large-scale systems controlled over wireless networks.

Specifically, the proposed decentralized and distributed adaptive architectures of this dis-

sertation guarantee overall system stability while reducing wireless network utilization and

achieving a given system performance in the presence of system uncertainties that can

result from modeling and degraded modes of operation of the modules and their intercon-

nections between each other. From a theoretical viewpoint, the proposed event-triggered

adaptive architectures here can be viewed as a significant generalization of our prior work

documented in [70, 71] to large-scale modular systems, which consider a state emulator-

based adaptive control methodology with robustness against high-frequency oscillations in

the controller response [52, 26, 27, 28, 29, 30, 31, 32]. In this generalization, we also adopt

necessary tools and methods from [17, 51] on decentralized and distributed adaptive con-
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troller construction for large-scale modular systems. In addition to the theoretical findings

including rigorous system stability and boundedness analysis of the closed-loop dynamical

system and the characterization of the effect of user-defined event-triggering thresholds,

as well as the design parameters of the proposed adaptive architectures on the overall sys-

tem performance, an illustrative numerical example is further provided to demonstrate the

efficacy of the proposed decentralized and distributed control approaches.

1.5. AN OBSERVER-FREE OUTPUT FEEDBACK COOPERATIVE
CONTROL ARCHITECTURE FOR MULTIVEHICLE SYSTEMS

Owing to the ever-increasing advances in embedded systems technologies, we are

rapidly moving toward a future in which squadrons of vehicles (henceforth, referred as

multivehicle systems) will autonomously perform a broad spectrum of tasks in both military

and civilian domains. Examples of such tasks include but are not limited to collaborative

exploration; search and rescue; nuclear, biological, and chemical attack detection; and

target tracking. Motivated from this standpoint, cooperative control enabling multivehicle

systems to work in coherence through local information exchange between vehicles has

been the focus of high research activity during the last two decades (e.g., see books [46,

47, 72, 73] for a thorough coverage of the recent progress).

In this part of dissertation, we focus on the output feedback cooperative control

problem in the context of a containment problem (i.e., outputs of the follower vehicles con-

vergence to the convex hull spanned by those of the leader vehicles). While full state feed-

back designs lead to computationally simpler cooperative control laws, output feedback de-

signs are required for most applications that involve high-dimensional vehicle models with

inaccessible states. To this end, several output feedback cooperative control approaches are

proposed in the literature for multivehicle systems (e.g., see [74, 75, 76, 77, 78, 79, 80, 81]

and references therein), where the common denominator of these approaches is that they

utilize an observer in their cooperative control laws.
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Unlike the existing literature, the fourth contribution is a new, observer-free out-

put feedback cooperative control architecture for continuous-time, minimum phase, and

high-order multivehicle systems. The proposed architecture is predicated on a nonminimal

state-space realization originally proposed in [82, 38] that generates an expanded set of

states only using the filtered input and filtered output and their derivatives for each follower

vehicle, without the need for designing an observer for each vehicle. Specifically, the pro-

posed observer-free output feedback control law consists of a vehicle-level controller and a

local cooperative controller for each vehicle as in [49], where the former addresses internal

stability of vehicles and the latter addresses the containment problem.

1.6. AN OBSERVER-FREE OUTPUT FEEDBACK COOPERATIVE
CONTROL ARCHITECTURE FOR LINEAR MULTIAGENT SYSTEMS
WITH EVENT-TRIGGERING

Building on the theoretical study of the previous section, in this part of dissertation,

we propose an event-triggering methodology for the output feedback cooperative control

to schedule the exchanged output measurements information between the agents in order

to reduce wireless network utilization. The utilized output feedback cooperative control

architecture is in the context of a containment problem (i.e., outputs of the follower agents

convergence to the convex hull spanned by those of the leader agents). While full state

feedback designs lead to computationally simpler cooperative control laws [83, 84], output

feedback designs are required for most applications that involve high-dimensional agent

models with inaccessible states, as also outlined before. To this end, several output feed-

back cooperative control with event triggering approaches are proposed in the literature

for multiagent systems (e.g., see [85, 86] and references therein), where the common de-

nominator of these approaches is that they utilize an observer in their cooperative control

laws.
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Unlike the aforementioned existing literature, our fifth contribution is an event-

triggering mechanism on the exchanged output measurements between agents that are con-

trolled by an observer-free output feedback cooperative control architecture for continuous-

time, minimum phase, and high-order linear multiagent systems, where the results reported

here can be viewed as a generalization of our recent papers in [87, 88] that do not consider

event-triggering. The key feature of our adopted controller scheme is that it is predicated

on a nonminimal state-space realization originally proposed in [82, 38] that generates an

expanded set of states only using the filtered input and filtered output and their deriva-

tives for each follower agent, without the need for designing an observer for each agent.

In addition, the proposed event-triggering methodology is applied on the relative output

measurements of the agents, where each agent has its own event-triggering threshold to

transmit its own output measurements to the neighbor agents asynchronously. Note that

our cooperative controller scheme operates in a periodic sampling instances and it uses

event-triggered output measurements transmitted from the neighboring agents.

1.7. OBSERVER-FREE OUTPUT FEEDBACK ADAPTIVE CONTROL FOR MUL-
TIVEHICLE SYSTEMS WITH EXOGENOUS DISTURBANCES

In general, vehicle system models are represented by the first principles of physics

and derived using fundamental physical laws. Due to the system complexity, nonlinearity,

and uncertainty, the simplistic approximations create inaccuracies between the model and

the the actual system as discussed. As a result of this modeling error, it is very impor-

tant for the cooperative control design to not only achieve system level objectives, but also

possess the ability to maintain the stability of each vehicle in the presence of system un-

certainties. The most notable results that address cooperative control of uncertain vehicle

systems include [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 49]. Specifically, the authors in

[89, 90, 91, 92, 93], consider the uncertain multivehicle systems problem as first and/or
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second order models which are suitable for a limited number of applications. For more

applicable system dynamics, [94, 95, 96, 97, 98, 49] use high-order vehicle models with

system uncertainties.

In particular, the authors in [94] consider linear single input and single output ve-

hicle systems with parametric uncertainties that range over an known compact set. The

work in [95] uses an internal model based distributed control scheme that makes the vehi-

cle controllers robust to small variation in their models. A finite-time disturbance observer

is proposed in [96] to estimate the system uncertainties. A distributed adaptive control

for both the uncertain follower and uncertain leaders is considered in [97], where the dis-

tributed adaptive control law is designed based on local consensus error feedback. The

authors of [98] design a decentralized adaptive tracking controller under the assumption

that the uncertain follower vehicles with Lipschitz-type disturbances are guided by a leader

with unknown input. The authors in [49] introduce cooperative control for higher-order

multivehicle systems having nonidentical nonlinear uncertain dynamics and large paramet-

ric uncertainties with no a prior information on their bound. While the above results are

promising, full state feedback is necessary for each proposed controller which requires

knowledge of the vehicle system state variables and this is not applicable when the mul-

tivehicle system state variables are unknown. Therefore, output feedback is necessary for

most applications that involve high-dimensional models with unknown system state vari-

ables, such as multiple unmanned aerial vehicles, multiple mobile robots, and multiple

manipulators.

To address this problem, [99, 100, 101, 102] propose adaptive output feedback con-

trollers for uncertain dynamical multivehicle systems. In particular, in [99, 100] the adap-

tive output feedback controller is design for consensus protocols, where the gains rely on

the global information of the network which is represented by the Laplacian matrix. The

authors of [101] adopt two observer designs, a local observer and an adaptive estimator,

for the distributed adaptive output-feedback consensus tracking control for unknown agent
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dynamics without depending on the Laplacian matrix information. Among the above men-

tioned works, the common feature is that the adaptive output feedback controller requires

an observer for estimating the unknown state variables. In a recent result [87], we em-

ploy an output feedback control architecture for dynamical multivehicle systems without

observers (outside the context of adaptive control). Specifically, the observer-free nature

of our work is an expansion of the original observer-free output feedback adaptive control

idea proposed in [103, 104, 38, 17]. In this part of dissertation, a new observer-free output

feedback adaptive control, (OF)2AC, method is proposed for continu-

ous-time, minimum phase, and high-order linear multivehicle systems subject to exogenous

disturbances (hereinafter referred to as “uncertain multivehicle systems”), where the results

reported here can be viewed as an expansion of our recent paper in [87]. In particular, sim-

ilar to the observer-free methods studied in [103, 104, 38, 17, 87], the (OF)2AC is based on

a nonminimal state-space realization for each follower vehicle of the multivehicle system,

where this realization generates an expanded set of states using the filtered input, filtered

output, and their derivatives of the follower vehicles. The (OF)2AC consists of i) a local

cooperative controller in [49] and ii) a vehicle-level controller for each follower vehicle

Specifically, part i) of the proposed control method addresses the leader-follower contain-

ment control problem by receiving the relative output measurements of the neighboring

vehicles and its part ii) consists of an augmenting adaptive controller for stabilization and

command following in the presence of exogenous disturbances.

1.8. ORGANIZATION

The organization of this dissertation report is as follows. Paper I presents the pro-

posed event-triggered state feedback adaptive control architecture. The results of this pa-

per are generalized in Paper II to the output feedback case. Paper III presents the event-

triggered decentralized and distributed adaptive control architectures for uncertain network

large scale modular systems. An observer-free output feedback cooperative control archi-
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tecture for multivehicle systems is presented in Paper IV. On the results of this paper, an

event-triggering architecture is applied in Paper V. Then, Paper VI presents the generaliza-

tion of Paper IV to adaptive control to handle the system uncertainties. Finally, conclusions

and future research suggestions are presented in Section 2.
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ABSTRACT

In this paper, we study the design and analysis of adaptive control systems over

wireless networks using event-triggering control theory. The proposed event-triggered

adaptive control methodology schedules the data exchange dependent upon errors exceed-

ing user-defined thresholds to reduce wireless network utilization and guarantees system

stability and command following performance in the presence of system uncertainties.

Specifically, we analyze stability and boundedness of the overall closed-loop dynamical

system, characterize the effect of user-defined thresholds and adaptive controller design

parameters to the system performance, and discuss conditions to make the resulting com-

mand following performance error sufficiently small. An illustrative numerical example is

provided to demonstrate the efficacy of the proposed approach.

Keywords: Networked control systems; adaptive control; event-triggering control; system

uncertainties; system stability; system performance
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1. INTRODUCTION

The last decade has witnessed an increased interest in physical systems controlled

over wireless networks (networked control systems) for their advantages in reducing cost

for the design and implementation of control systems [1, 2, 3, 4, 5]. These systems allow the

computation of control signals via processors that are not attached to the physical systems

and the feedback loops are closed over wireless networks. A critical task in the design

and implementation of networked control systems is to guarantee system stability while

reducing wireless network utilization and achieving a given system performance in the

presence of system uncertainties.

One of the fundamental problems in feedback control design is the capability of

the control system to guarantee system stability and performance in the presence of system

uncertainties resulting from mathematical modeling and degraded modes of operations. To

this end, adaptive control theory along with robust control theory have been developed

to address the problem of system uncertainties in control system design [6, 7, 8, 9, 10].

Specifically, robust control methods require the knowledge of characterized bounds result-

ing from system uncertainty parameterizations. From a practical standpoint, determina-

tion of these bounds is not necessarily easy since they can require excessive modeling and

ground testing efforts [11, 12]. In addition, adaptive control methods require less modeling

information than do robust control methods and are able to deal with high levels of system

uncertainties [8, 9, 10]. These facts make adaptive control theory an appealing candidate

for many applications.

In the networked control systems literature, notable contributions that utilize adap-

tive control approaches to suppress the effect of system uncertainties include [13, 14, 15,

16]. In particular, the authors of [13, 14] develop adaptive control approaches to deal with

system uncertainties, where their results only consider data transmission from a physical

system to the controller, but not vice versa. The authors of [15, 16] consider the case where

data transmits from a physical system to the controller and from the controller to this phys-
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ical system (i.e., two-way data exchange is allowed over a wireless network). Although

this approach is promising, their methodology requires the knowledge of a conservative

upper bound on the unknown constant gain resulting from their uncertainty parameteri-

zation. While this conservative upper bound may be available for some applications, the

actual upper bound may change and exceed its conservative estimate; for example, when an

aircraft undergoes a sudden change in dynamics as a result of reconfiguration, deployment

of a payload, docking, or structural damage [17].

In this paper, we study the design and analysis of adaptive control systems over

wireless networks using event-triggering control theory (see, for example, [18, 19, 20,

21, 22, 23, 24, 25] and references therein), where two-way data exchange between the

physical system and the proposed adaptive controller is considered. The proposed event-

triggered adaptive control methodology schedules the data exchange dependent upon errors

exceeding user-defined thresholds to reduce wireless network utilization and guarantees

system stability and command following performance in the presence of system uncertain-

ties. Specifically, we consider a state emulator-based adaptive control methodology[26, 27,

28, 29, 30, 31, 32, 33] since this framework has the capability to achieve stringent perfor-

mance specifications without causing high-frequency oscillations in the controller response

[32, 33] unlike standard adaptive controllers. We analyze stability and boundedness of the

overall closed-loop dynamical system, characterize the effect of user-defined thresholds

and adaptive controller design parameters to the system performance, and discuss condi-

tions to make the resulting command following performance error sufficiently small. As a

byproduct, we show that the resulting closed-loop dynamical system performance is more

sensitive to the changes in the data transmission threshold from the physical system to

the adaptive controller (sensing threshold) than the data transmission threshold from the

adaptive controller to the physical system (actuation threshold). This means that the actua-
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tion threshold can be chosen large enough to reduce wireless network utilization between

the physical system and the adaptive controller without sacrificing closed-loop dynamical

system performance.

2. MATHEMATICAL PRELIMINARIES

Throughout this paper, we use R for the set of real numbers, Rn for the set of n × 1

real column vectors, Rn×m for the set of n × m real matrices, R+ for the set of positive real

numbers, Rn×n
+ for the set of n × n positive-definite real matrices, Sn×n for the set of n × n

symmetric real matrices, Dn×n for the set of n× n real matrices with diagonal scalar entries,

λmin(A) (resp., λmax(A)) for the minimum (resp., maximum) eigenvalue of the Hermitian

matrix A, ‖ · ‖ for the Euclidean norm, ‖ · ‖F for the Frobenius matrix norm, “∨” for the

“or” logic operator, and “(·)” for the “not” logic operator. We also define the projection

operator needed for the results of this paper.

Definition 1. Let φ : Rn → R be a continuously differentiable convex function

given by φ(θ) ,
(
(ε θ + 1) θTθ − θ2

max
)
/
(
ε θθ

2
max

)
, where θmax ∈ R is a projection norm

bound imposed on θ ∈ Rn and ε > 0 is a projection tolerance bound. Then, for y ∈ Rn, the

projection operator Proj : Rn × Rn → Rn is defined by

Proj(θ, y) ,





y, if φ(θ) < 0,

y, if φ(θ) ≥ 0 and φ′(θ)y ≤ 0,

y −
φ′T(θ)φ′(θ)y
φ′(θ)φ′T(θ)

φ(θ), if φ(θ) ≥ 0 and φ′(θ)y > 0.

(1)

It follows from Definition 1 that (θ − θ∗)T(Proj(θ, y) − y) ≤ 0, θ∗ ∈ Rn holds [34].

The definition of the projection operator can be generalized to matrices as Projm(Θ,Y ) =(
Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))

)
, where Θ ∈ Rn×m, Y ∈ Rn×m, and

coli (·) denotes the ith column operator. In this case, tr
[
(Θ − Θ∗)T(Projm(Θ,Y ) − Y )

]
=∑m

i=1

[
coli (Θ − Θ∗)T(Proj(coli (Θ),coli (Y )) − coli (Y ))

]
≤ 0 holds, where Θ∗ ∈ Rn×m.
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We now overview necessary preliminaries on standard model reference adaptive

control problem needed for the results of this paper. Consider the uncertain dynamical

system given by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (2)

where x(t) ∈ Rn is the state vector available for feedback, u(t) ∈ Rm is the control input,

and A ∈ Rn×n and B ∈ Rn×m are unknown system and control input matrices, respectively,

such that the pair (A,B) is controllable.

Assumption 1. Unknown control input matrix is parameterized as B = DΛ, where

D ∈ Rn×m is a known input matrix and Λ ∈ Rm×m
+ ∩ Dm×m is an unknown control effec-

tiveness matrix.

Next, consider the reference system capturing a desired, ideal closed-loop dynami-

cal system performance given by

ẋri(t) = Arxri(t) + Brc(t), xri(0) = xri0, (3)

where xri(t) ∈ Rn is the ideal reference state vector, c(t) ∈ Rm is a given uniformly con-

tinuous bounded command with a bounded derivative, Ar ∈ R
n×n is the Hurwitz reference

system matrix, and Br ∈ R
n×m is the command input matrix.

Assumption 2. There exist gain matrices K1 ∈ R
m×n and K2 ∈ R

m×m such that

Ar = A + DK1 and Br = DK2 hold.

Note that Assumptions 1 and 2 are standard in the model reference adaptive control

literature (see, for example, [9, 8, 33]). Using Assumptions 1 and 2, (2) can be equivalently

written by

ẋ(t) = Arx(t) + Brc(t) + DΛ[u(t) + W T
1 x(t) + W T

2 c(t)], (4)
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where W1 , −KT
1Λ
−1 ∈ Rn×m and W2 , −KT

2Λ
−1 ∈ Rm×m are unknown matrices. Based

on the structure of the uncertain terms in (4), let the adaptive feedback control law be given

by

u(t) = −Ŵ T(t)σ (x(t),c(t)) , (5)

where σ(x(t),c(t)) =
[
xT(t),cT(t)

]T
∈ Rn+m and Ŵ (t) ∈ R(n+m)×m is the estimate of

W ,
[
W T

1 ,W
T
2
]T
∈ R(n+m)×m satisfying the weight update law

˙̂W (t) = γσ (x(t),c(t)) eT
o (t)PD, Ŵ (0) = Ŵ0. (6)

In (6), γ ∈ R+ is the learning rate, eo(t) , x(t) − xri(t) ∈ Rn is the ideal system error, and

P ∈ Rn×n
+ ∩ Sn×n is a unique solution [35] of the Lyapunov equation

0 = AT
r P + PAr + R, R ∈ Rn×n

+ ∩ Sn×n. (7)

Next, using (5), (4) can be rewritten as

ẋ(t) = Arx(t) + Brc(t) − DΛW̃ T(t)σ (x(t),c(t)) , (8)

where the ideal system error dynamics can be given using (3) and (8) as

ėo(t) = Areo(t) − DΛW̃ T(t)σ (x(t),c(t)) , eo(0) = eo0, (9)

where W̃ (t) , Ŵ (t) − W ∈ R(n+m)×m. Note from [9, 8, 33] that eo(t) satisfying (9)

asymptotically goes to zero with the standard model reference adaptive controller given by

(5) and (6).
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Finally, we overview the state emulator-based adaptive control framework [26, 27,

28, 29, 30, 31, 32, 33] considered for the results of this paper. Consider the (modified)

reference system so-called the state emulator given by

ẋr(t) = Arxr(t) + Brc(t) + L (x(t) − xr(t)) , xr(0) = xr0, (10)

where L ∈ Rn×n ∩ Sn×n is the state emulator gain. Letting x̃(t) , xr(t) − xri(t) ∈ Rn,

the reference system error dynamics capturing the difference between the ideal reference

model (3) and the state emulator-based (modified) reference model (10) is given by

˙̃x(t) = Ar x̃(t) + L(x(t) − xr(t)), x̃(0) = x̃0. (11)

In addition, letting e(t) , x(t) − xr(t) ∈ Rn to denote the system state error vector, the

(state emulator-based) system error dynamics is given by

ė(t) = Ãe(t) − DΛW̃ T(t)σ (x(t),c(t)) , e(0) = e0, (12)

using (8) and (10), where Ã , Ar − L ∈ Rn×n is Hurwitz by a suitable selection of the

state emulator gain L (e.g., Ã is Hurwitz with L = κI, κ ∈ R+, since Ar is Hurwitz). It can

be shown that x̃(t) satisfying (11) and e(t) satisfying (12) asymptotically go to zero with

the adaptive controller given by (5), (6), and (7) with eo(t) replaced with e(t) in (6) and Ar

replaced with Ã in (7) [33].

Note from [32, 33] that the state emulator-based adaptive control framework achieves

stringent transient and steady-state system performance specifications by judiciously choos-

ing the learning rate γ and the state emulator gain L without causing high-frequency os-

cillations in the controller response unlike standard model reference adaptive controllers

overviewed earlier in this section. We also note that if one selects L = 0, then the results of
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this paper holds for standard model reference adaptive controllers, and hence, there is no

loss in generality in using a state emulator-based adaptive control framework for the results

of this paper.

3. EVENT-TRIGGERED STATE FEEDBACK ADAPTIVE CONTROL

In this section, we present a state emulator-based adaptive control approach, which

reduces wireless network utilization and allows a desirable command tracking performance

during the two-way data exchange between the physical system (uncertain dynamical sys-

tem) and this controller over a wireless network. For this purpose, we utilize event-

triggering control theory to schedule the data exchange dependent upon errors exceeding

user-defined thresholds. In particular, when a predefined event occurs, the uncertain dy-

namical system sends its state signal to the adaptive controller. The kth time instants of the

state transmission is represented by the monotonic sequence {sk }
∞
k=1, where sk ∈ R+. The

controller uses this triggered system state signal to compute the control signal using state

emulator-based adaptive control architecture. When another predefined event occurs, the

updated feedback control input is transmitted to the uncertain dynamical system. The jth

time instants of the feedback control transmission is then represented by the monotonic se-

quence
{
r j

}∞
j=1

, where r j ∈ R+. As shown in Figure 1, each system state signal and control

input is held by a zero-order-hold operator (ZOH) until the next triggering event for that

signal takes place.

Considering the two-way data exchange depicted in Figure 1, the controller gen-

erates a control signal u(t) and the uncertain dynamical system is driven by the sampled

version of this control signal us(t) depending on the event-triggering mechanism to be dis-

cussed later. Likewise, the controller utilizes xs(t) that represents the sampled version of

the uncertain dynamical system state x(t). Mathematically speaking, consider the uncertain

dynamical system given by
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Uncertain Dynamical System

ZOH

Adaptive Controller

ZOH

Event Triggering Mechanism

us(t) x(t)

xs(t)u(t)

Figure 1. Event-Triggered Adaptive Control System.

ẋ(t) = Ax(t) + Bus(t), x(0) = x0, (13)

where us(t) ∈ Rm is the sampled control input vector. Using Assumptions 1 and 2, (13) can

be equivalently written by

ẋ(t) = Arx(t) + Brc(t) + DΛ[us(t) + W T
1 x(t) + W T

2 c(t)]. (14)

Now, let the adaptive feedback control law be given by

u(t) = −Ŵ T(t)σs (xs(t),c(t)) , (15)

where xs(t) ∈ Rn is the sampled state vector, σs (xs(t),c(t)) =
[
xT

s (t),cT(t)
]T
∈ Rn+m, and

Ŵ (t) satisfies the weight update law

˙̂W (t) = γ Projm[Ŵ (t),σs(xs(t),c(t))eT
s (t)PD], Ŵ (0) = Ŵ0, (16)

with es(t) , xs(t) − xr(t) ∈ Rn being the error of the triggered system state vector and

P ∈ Rn×n
+ ∩ Sn×n being a unique solution of the Lyapunov equation



22

0 = ÃTP + PÃ + R. (17)

Note that using (15), (14) can be rewritten as

ẋ(t) = Arx(t) + Brc(t) + DΛ (us(t) − u(t)) − DΛW̃ T(t)σ (x(t),c(t))

−DΛŴ T(t)
[
σs (xs(t),c(t)) − σ (x(t),c(t))

]
, (18)

Next, consider the state emulator-based reference system given by

ẋr(t) = Arxr(t) + Brc(t) + Les(t), xr(0) = xr0, (19)

The (state emulator-based) system error dynamics and the reference system error dynamics

are now respectively given by

ė(t) = Ãe(t) + DΛ (us(t) − u(t)) − DΛW̃ T(t)σ (x(t),c(t)))

− DΛŴ T(t)
[
σs (xs(t),c(t)) − σ (x(t),c(t))

]
−L (xs(t) − x(t)) , e(0) = e0, (20)

˙̃x(t) = Ar x̃(t) + Les(t), x̃(0) = x̃0. (21)

In the next section, we present user-defined event thresholds for scheduling the data ex-

change and analyze the stability and performance of the state emulator-based adaptive con-

trol approach introduced in this section using the error dynamics given by (21) and (20)

along with the adaptive feedback control law given by (15) and (16).

4. STABILITY AND PERFORMANCE ANALYSIS

In this section, we first present the user-defined event thresholds for scheduling

the two-way data exchange and analyze the uniform ultimate boundedness of the resulting

closed-loop dynamical system (Section 4.1). Then, we compute the ultimate bound and

discuss the effect of user-defined thresholds and the adaptive controller design parameters
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to this ultimate bound (Section 4.2). Since a Zeno behavior implies a continuous two-

way data exchange between the proposed controller and the physical system, and hence,

is not desired in the context of reducing wireless network utilization, we finally show that

the proposed state emulator-based adaptive controller does not yield to a Zeno behavior

(Section 4.3).

4.1. Scheduling Data Exchange and Uniform Ultimate Boundedness. Let ε x ∈

R+ be a given, user-defined sensing threshold to allow for data transmission from the un-

certain dynamical system to the controller. In addition, let εu ∈ R+ be a given, user-defined

actuation threshold to allow for data transmission from the controller to the uncertain dy-

namical system. We now define three logic rules for scheduling the two-way data exchange

E1 : ‖xs(t) − x(t)‖ ≤ ε x , (22)

E2 : ‖us(t) − u(t)‖ ≤ εu, (23)

E3 : The controller receives xs(t). (24)

Specifically, when the inequality (22) is violated at the sk moment of the kth time instant,

the uncertain dynamical system triggers the system state signal information such that xs(t)

is sent to the controller. Likewise, when (23) is violated or the controller receives a new

transmitted system state from the uncertain dynamical system (i.e., when Ē2 ∨ E3 is true),

then the adaptive controller sends a new control input us (t) to the uncertain dynamical

system at the r j moment of the jth time instant. Note that the three logic rules given above

and the ones in [15] are not the same; that is, the proposed approach of this paper does not

require the second and third logic rules of [15] and our second logic rule is different than

the logic rules of [15].
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Next, we show the uniform ultimate boundedness of the closed-loop dynamical sys-

tem subject to the proposed state emulator-based event-triggered adaptive control method-

ology utilizing the data exchange rules E1, E2, and E3 given by (22), (23), and (24), respec-

tively.

Theorem 1. Consider the uncertain dynamical system given by (13) subject to

Assumptions 1 and 2, the ideal reference system given by (3), the state emulator given by

(19), and the adaptive feedback control law given by (15) with the weight update law given

by (16). In addition, let the data transmission from the uncertain dynamical system to the

controller occur when Ē1 is true and let the data transmission from the controller to the

uncertain dynamical system occur when Ē2 ∨ E3 is true. Then, the closed-loop solution

(e(t),W̃ (t), x̃(t)) is uniformly ultimately bounded for all initial conditions.

Proof. Since the data transmission from the uncertain dynamical system to the

controller and from the controller to the uncertain dynamical system occur when Ē1 and

Ē2 ∨ E3 are true, respectively, note that ‖xs(t) − x(t)‖ ≤ ε x and ‖us(t) − u(t)‖ ≤ εu hold.

Consider the Lyapunov-like functionV (e,W̃ , x̃) = eTPe + γ−1tr(W̃Λ
1
2 )T(W̃Λ

1
2 ) +

β x̃TP̃x̃, where β ∈ R+, P ∈ Rn×n
+ ∩ Sn×n is a solution of the Lyapunov equation given by

(17) with R ∈ Rn×n
+ ∩ Sn×n, and P̃ ∈ Rn×n

+ ∩ Sn×n is a unique solution of the Lyapunov

equation given by 0 = AT
r P̃ + P̃Ar + R̃, R̃ ∈ Rn×n

+ ∩ Sn×n. Note that V (0,0,0) = 0 and

V (e,W̃ , x̃) > 0 for all (e,W̃ , x̃) , (0,0,0). The time-derivative ofV (e,W̃ , x̃) is given by

V̇ (e(t),W̃ (t), x̃(t))

≤ −λmin(R) ‖e(t)‖2 + 2 ‖xs(t) − x(t)‖ ‖PD‖F ‖Λ‖F






W̃ (t)




F
‖σs (xs(t),c(t))‖

+2 ‖e(t)‖ ‖PD‖F ‖Λ‖F ‖W ‖F ‖σs (xs(t),c(t)) − σ (x(t),c(t))‖

+ 2 ‖e(t) ‖‖ PD‖F ‖Λ‖F | |us(t) − u(t) | | + 2 ‖e(t)‖ ‖P‖F ‖L‖F ‖xs(t) − x(t)‖

− βλmin(R̃) ‖ x̃(t)‖2 + 2β ‖ x̃(t)‖ 




P̃



F
‖L‖F ‖es(t)‖ . (25)
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We now determine an upper bound for ‖σs (xs(t),c(t))‖ in (25). To this end, one can write

‖σs(xs(t),c(t))‖2 =






xT

s (t)xs(t) + cT(t)c(t)




≤ ‖xs(t)‖2 + ‖c(t)‖2 ≤ (‖xs(t)‖ + ‖c(t)‖)2,

and hence, ‖σs(xs(t),c(t))‖ ≤ ‖xs(t)‖ + ‖c(t)‖. Furthermore, letting ε̃ x to be an upper

bound of ‖xri(t)‖+ ε x + ‖c(t)‖, i.e., ‖xri(t)‖+ ε x + ‖c(t)‖ ≤ ε̃ x , and using ‖xs(t) − x(t)‖ ≤

ε x , we have ‖σs(xs(t),c(t))‖ ≤ ‖xs(t)‖+ ‖c(t)‖ = ‖e(t) + xr(t) + xs(t) − x(t)‖+ ‖c(t)‖ ≤

‖e(t)‖ + ‖xr(t)‖ + ε x + ‖c(t)‖ ≤ ‖e(t)‖ + ‖ x̃(t)‖ + ‖xri(t)‖ + ε x + ‖c(t)‖ ≤ ‖e(t)‖ +

‖ x̃(t)‖ + ε̃ x . In addition, we determine an upper bound for ‖es(t)‖ in (25) as ‖es(t)‖ =

‖e(t) + xs(t) − x(t)‖ ≤ ‖e(t)‖ + ε x . Using these upper bounds, ‖xs(t) − x(t)‖ ≤ ε x , and

‖us(t) − u(t)‖ ≤ εu, (25) can be rewritten as

V̇ (e(t),W̃ (t), x̃(t))

≤ −λmin(R) ‖e(t)‖2 + 2 ‖PD‖F ‖Λ‖F






W̃ (t)




F
‖e(t)‖ ε x + 2 ‖PD‖F ‖Λ‖F







W̃ (t)




F

· ‖ x̃(t)‖ ε x + 2 ‖PD‖F ‖Λ‖F






W̃ (t)




F
ε̃ xε x + 2 ‖e(t)‖ ‖PD‖F ‖Λ‖F ‖W ‖F ε x

+ 2 ‖e(t) ‖‖ PD‖F ‖Λ‖F εu + 2 ‖e(t)‖ ‖P‖F ‖L‖F ε x − βλmin(R̃) ‖ x̃(t)‖2

+ 2β ‖ x̃(t)‖ 




P̃



F
‖L‖F ε x + 2β ‖ x̃(t)‖ 





P̃



F
‖L‖F ‖e(t)‖ . (26)

Next, consider 2xy ≤ αx2 + 1
α y

2, x ∈ R, y ∈ R, α ∈ R+ [36], where using this

inequality for the last term in (26) yields

V̇ (e(t),W̃ (t), x̃(t)) ≤ −d1 ‖e(t)‖2 − d2 ‖ x̃(t)‖2 + d3 ‖e(t)‖ + d4 ‖ x̃(t)‖ + d5, (27)

where d1 , λmin(R)−α 





P̃





2

F
‖L‖2F > 0, d2 , βλmin(R̃)− β2

α > 0, d3 , 2 ‖PD‖F ‖Λ‖F w̃∗ε x

+2 ‖PD‖F ‖Λ‖F ‖W ‖F ε x+2 ‖PD‖F ‖Λ‖F εu+2 ‖P‖F ‖L‖F ε x , d4 , 2 ‖PD‖F ‖Λ‖F w̃∗ε x+

2β 




P̃



F
‖L‖F ε x , and d5 , 2 ‖PD‖F ‖Λ‖F w̃∗ε̃ xε x with | |W̃ (t) | |F ≤ w̃∗ due to utilizing the

projection operator in the weight update law given by (16). Note that the positiveness

of d1 and d2 can be readily assured by letting (arbitrary) positive constants α and β to

be sufficiently small. We now rearrange (27) as V̇ (e(t),W̃ (t), x̃(t)) ≤ −
(√

d1 ‖e(t)‖ −
d3

2
√

d1

)2
−
(√

d2 ‖ x̃(t)‖ − d4
2
√

d2

)2
+
(
d5 +

d2
3

4d1
+

d2
4

4d2

)
, which shows that V̇ (e(t),W̃ (t), x̃(t)) ≤ 0
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when ‖e(t)‖ ≥ ψ1 and ‖ x̃(t)‖ ≥ ψ2, where ψ1 ,
[

d3
2
√

d1
+

√
d5 +

d2
3

4d1
+

d2
4

4d2

]
/
√

d1 and

ψ2 ,
[

d4
2
√

d2
+

√
d5 +

d2
3

4d1
+

d2
4

4d2

]
/
√

d2. This argument proves uniform ultimate boundedness

of the solution (e(t),W̃ (t), x̃(t)) for all initial conditions [37, 33]. �

4.2. Computation of the Ultimate Bound. The next corollary computes the ul-

timate bound for the system error between the uncertain dynamical system and the ideal

reference model, where this bound explicitly shows the effect of user-defined thresholds

and the adaptive control design parameters to the system performance and how the result-

ing command following performance error can be made sufficiently small.

Corollary 1. Consider the uncertain dynamical system given by (13) subject to

Assumptions 1 and 2, the ideal reference system given by (3), the state emulator given

by (19), and the adaptive feedback control law given by (15) with the weight update law

given by (16). In addition, let the data transmission from the uncertain dynamical system

to the controller occur when Ē1 is true and let the data transmission from the controller to

the uncertain dynamical system occur when Ē2 ∨ E3 is true. Then, the ultimate bound of

the system error between the uncertain dynamical system and the ideal reference model is

given by

| |eo(t) | | = | |x(t) − xri(t) | | ≤ ēo , Φ̃
[
λ−1

min(P) +
(
βλmin(P̃)

)−1
] 1

2
, t ≥ T (28)

where Φ̃ ,
[
λmax(P)ψ2

1 + βλmax(P̃)ψ2
2 + γ−1w̃∗2 ‖Λ‖F

] 1
2 .

Proof. It follows from the proof of Theorem 1 that V̇ (e(t),W̃ (t), x̃(t)) ≤ 0 outside

the compact set given by S , {(e(t), x̃(t)) : ‖e(t)‖ ≤ ψ1}
⋂{

(e(t), x̃(t)) : ‖ x̃(t)‖ ≤ ψ2
}
.

That is, sinceV (e(t),W̃ (t), x̃(t)) cannot grow outside S, evolution ofV (e(t),W̃ (t), x̃(t))

is upper bounded byV (e(t),W̃ (t), x̃(t)) ≤ max(e(t),x̃(t))∈SV (e(t),W̃ (t), x̃(t)) = λmax(P)ψ2
1+

βλmax(P̃)ψ2
2 +γ−1w̃∗2 ‖Λ‖F = Φ̃2. Now, it follows from eTPe ≤ V (e,W̃ , x̃) and β x̃TP̃x̃ ≤
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V (e,W̃ , x̃) that ‖e(t)‖2 ≤ Φ̃2

λmin(P) and ‖ x̃(t)‖2 ≤ Φ̃2

βλmin(P̃) . Finally, since eo(t) = x(t) −

xr(t) + xr(t) − xri(t) = e(t) + x̃(t), and hence, ‖eo(t)‖ ≤ ‖e(t)‖ + ‖ x̃(t)‖, the ultimate

bound given by (28) is now immediate. �

Remark 1. The ultimate bound given by (28) depends on Φ1 and Φ2, where Φ1

and Φ2 depend on the magnitude of d1, d2, d3, d4, and d5. Note that, among these di, (i =

1, · · · ,5) terms only d3, d4, and d5 depend on ε x and εu. In general, since the magnitude

of the terms multiplied by ε x in d3, d4, and d5 is larger than the magnitude of the only term

multiplied by εu (i.e. in the presence of large system uncertainties), then it is expected that

ε x has a more dominating effect on the ultimate bound (28) than εu on the ultimate bound.

Remark 2. To elucidate the effect of the user-defined thresholds and the adaptive

controller design parameters to the ultimate bound given by (28) and discussed in Remark

1, let Ar = −5, D = 1, Λ = 1, W = 1, R = 1, R̃ = 1, α = 0.5, and β = 0.25. In this

case, Figure 2a shows the effect of the variation in L and γ to (28) for ε x = 1 and εu = 1.

Specifically, one can conclude from this figure that increasing γ reduces the ultimate bound

and the minimum value of this bound is obtained for L = 2. Figures 2b and 2c show the

effect of the variations in ε x and εu, respectively. From these figures and in general from
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Figure 2. Effect of a) γ ∈ [1,100] and L ∈ [0,10] to the ultimate bound (28) for ε x = 1
and εu = 1, where the arrow indicates the direction γ is increased (dashed line denotes the
case with γ = 100); b) ε x ∈ [0,1.5] to the ultimate bound (28) for εu = 1, L ∈ [0,10], and
γ = 100, where the arrow indicates the direction ε x is increased (dashed line denotes that
case with ε x = 1); c) εu ∈ [0,3] to the ultimate bound (28) for ε x = 1, L ∈ [0,10], and
γ = 100, where the arrow indicates the direction εu is increased (dashed line denotes that
case with εu = 1).
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the structure of the ultimate bound given by (28), it is of practical importance to note that

the resulting closed-loop dynamical system performance, which is characterized by the

upper bound on eo(t), is more sensitive to the changes in the sensing threshold ε x (the

data transmission threshold from the physical system to the adaptive controller) than the

actuation threshold εu (the data transmission threshold from the adaptive controller to the

physical system). This means that the actuation threshold can be chosen large enough to

reduce wireless network utilization between the physical system and the adaptive controller

without necessarily sacrificing closed-loop dynamical system performance.

4.3. Computation of the Event-triggered Intersample Time Lower Bound. For

the following result, similar to [15], we consider r k
i ∈ (sk , sk+1) to be the ith time instant

when E2 is violated over (sk , sk+1), and since {sk }
∞
k=1 is a subsequence of

{
r j

}∞
j=1

, it follows

that
{
r j

}∞
j=1

= {sk }
∞
k=1

⋃ {
r k

i

}∞,mk

k=1,i=1
, where mk ∈ N is the number of violation times of E2

over (sk , sk+1). We also let Φ1 and Φ2 to denote ‖A‖F ‖x(t)‖ + ‖D‖F ‖Λ‖F ‖us(t)‖ ≤ Φ1,

and γ
(
‖e(t)‖ + ‖ x̃(t)‖ + ε̃ x

)2 (‖e(t)‖ + ε x) ‖PD‖F +






Ŵ (t)




F

· ‖ċ(t)‖ ≤ Φ2, respectively, where the existence of positive constants Φ1 and Φ2 are guar-

anteed by Theorem 1.

Corollary 2. Consider the uncertain dynamical system given by (13) subject to

Assumptions 1 and 2, the ideal reference system given by (3), the state emulator given by

(19), and the adaptive feedback control law given by (15) with the weight update law given

by (16). In addition, let the data transmission from the uncertain dynamical system to the

controller occur when Ē1 is true and let the data transmission from the controller to the

uncertain dynamical system occur when Ē2 ∨ E3 is true. Then, there exist positive scalars

αx ,
ε x
Φ1

and αu ,
εu
Φ2

, such that

sk+1 − sk ≥ αx , ∀k ∈ N, (29)

r k
i+1 − r k

i ≥ αu, ∀i ∈ {0, ...,mk } , ∀k ∈ N. (30)

Proof. The time derivative of ‖xs(t) − x(t)‖ over t ∈ (sk , sk+1), ∀k ∈ N, is given by
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d
dt
‖xs(t) − x(t)‖ ≤ ‖ ẋs(t) − ẋ(t)‖ = ‖ ẋ(t)‖ ≤ ‖A‖F ‖x(t)‖ + ‖D‖F ‖Λ‖F ‖us(t)‖ . (31)

Using Φ1 for the upper bound of (31) and with initial condition satisfying limt→s+
k
| |xs (t) −

x(t) | | = 0, it follows from (31) that ‖xs(t) − x(t)‖ ≤ Φ1(t − sk ), t ∈ (sk , sk+1). Therefore,

when Ē1 is true, then limt→s−
k+1
‖xs (t) − x (t)‖ = ε x and it then follows that sk+1− sk ≥ αx .

Next, the time derivative of ‖us(t) − u(t)‖ over t ∈
(
r k

i ,r
k
i+1

)
,∀i ∈ N, is given by

d
dt
‖us(t) − u(t)‖ ≤ ‖u̇s(t) − u̇(t)‖ = ‖u̇(t)‖

≤ γ (‖e(t)‖ + ‖ x̃(t)‖ + ε̃ x)2 (‖e(t)‖ + ε x) ‖PD‖F

+






Ŵ (t)




F
‖ċ(t)‖ . (32)

Once again, using Φ2 for the upper bound of (32) and with initial condition satisfying

limt→rk+
i
‖us (t) − u (t)‖ = 0, it follows from (32) that ‖us(t) − u(t)‖ ≤ Φ2(t − r k

i ), t ∈(
r k

i ,r
k
i+1

)
. Therefore, when Ē2 ∨ E3 is true, then limt→rk−

i+1
‖us(t) − u(t)‖ = εu and it then

follows that r k
i+1 − r k

i ≥ αu. �

Remark 3. Zeno behavior implies a continuous two-way data exchange between

the proposed controller and the physical system (for example, when ε x = εu = 0 that yields

to an asymptotic command following performance), which is not desired in the context of

reducing wireless network utilization. Corollary 2 shows that the intersample times for

the system state vector and feedback control vector are positive scalars, and hence, the

proposed event-triggered adaptive control approach does not yield to a Zeno behavior and

reduces wireless network utilization.

5. ILLUSTRATIVE NUMERICAL EXAMPLE

To illustrate the proposed event-triggered adaptive control approach, consider an

uncertain dynamical system given by
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







ẋ1(t)

ẋ2(t)








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
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




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
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

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x1(t)

x2(t)









+









0

1









us(t),








x1(0)

x2(0)









=









0

0









. (33)

For this example, let x1(t) represent an angle in radians and x2(t) represent an angular rate

in radians per second. We choose a second-order ideal reference system that has a natural

frequency of 0.40 rad/s and a damping ratio of 0.707. Furthermore, we set R = I2 and

R̃ = I2.

Figures 3a-3d show the proposed event-triggered adaptive control approach for var-

ious γ and L settings. In particular, we set γ = 2.5 and L = 0 in Figure 3a that results in a

control response with high-frequency oscillations. In order to get rid of these oscillations,

we set L = 5I in Figure 3b. In this figure, even though such oscillations are reduced, the

command tracking performance becomes worse as we increase L. Following the discus-

sion in Remark 2, in addition to increasing L, we also increase γ in Figures 3c and 3d,

where the command tracking performance is improved without causing high-frequency os-

cillations. Finally, the state and control event triggers for the cases in Figures 3a-3d are

given in Figure 4a. If we compare L = 0 case (standard adaptive control) with L , 0 cases

(state emulator-based adaptive control), we can observe that the state emulator approach

has a recognizable effect in reducing state and control event triggers. Figure 4b also shows

a comparison of the proposed event-triggered adaptive control approach in Figures 3a-3d

with a conventional periodic (i.e., non-event-triggered) strategy in terms of state and control

transmission (a fixed period of 0.005 seconds1 is used in the execution of the conventional

periodic strategy).

1 Since a continuous-time formulation is adopted in this paper, we chose a sufficiently
small sampling time of 0.005 seconds in all simulations for discretization purposes. Specif-
ically, to make a fair comparison with the proposed event-triggered control law subject to
this sampling time, we also used the same sampling time in the execution of the conven-
tional periodic strategy that corresponds to a fixed period of 0.005 seconds for the two-way
communication between this controller and the considered uncertain dynamical system.
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(a) ε x = 0.1, εu = 0.1, γ = 2.5, and L = 0.
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(b) ε x = 0.1, εu = 0.1, γ = 2.5, and L = 5I.
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(c) ε x = 0.1, εu = 0.1, γ = 20, and L = 5I.
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(d) ε x = 0.1, εu = 0.1, γ = 40, and L = 5I.

Figure 3. Command following performance for the proposed event-triggered adaptive con-
trol approach.

6. CONCLUSION

Design and analysis of an event-triggered adaptive control methodology is pre-

sented in this paper for a class of uncertain dynamical systems in the presence of two-way

data exchange between the physical system and the proposed controller over a wireless

network. In particular, using tools and methods from nonlinear systems and Lyapunov

stability, we showed that the proposed approach reduces wireless network utilization, guar-

antees system stability and command following performance in the presence of system
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(a) State and control event triggers for the cases
presented in Figures 3a-3d.
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(b) Comparison of the proposed event-triggered
adaptive control approach in Figures 3a-3d with
a conventional periodic strategy.

Figure 4. Event triggers in Figures 3a-3d and comparison with a conventional periodic
strategy in terms of state and control transmission.

uncertainties, and does not yield to a Zeno behavior. In addition, the effect of user-defined

thresholds and adaptive controller design parameters to the system performance is char-

acterized and discussed. As a byproduct, we found that the actuation threshold (the data

transmission threshold from the adaptive controller to the physical system) can be chosen

larger than the sensing threshold (the data transmission threshold from the physical sys-

tem to the adaptive controller) to reduce wireless network utilization between the physical

system and the adaptive controller without necessarily sacrificing closed-loop dynamical

system performance. Finally, we illustrated the efficacy of the proposed adaptive control

approach in a numerical example.
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ABSTRACT

Networked control for a class of uncertain dynamical systems is studied, where

the control signals are computed via processors that are not attached to the dynamical

systems and the feedback loops are closed over wireless networks. Since a critical task

in the design and implementation of networked control systems is to reduce wireless net-

work utilization while guaranteeing system stability in the presence of system uncertainties,

an event-triggered adaptive control architecture is presented in an output feedback setting

to schedule the data exchange dependent upon errors exceeding user-defined thresholds.

Specifically, using tools and methods from nonlinear systems theory and Lyapunov stabil-

ity in particular, it is shown that the proposed approach guarantees system stability in the

presence of system uncertainties and does not yield to a Zeno behavior. In addition, the

effect of user-defined thresholds and output feedback adaptive controller design parameters

to the system performance is rigorously characterized and discussed. The efficacy of the

proposed event-triggered output feedback adaptive control approach is demonstrated in an

illustrative numerical example.

Keywords: Networked control systems; output feedback adaptive control; event-triggering

control; system uncertainties; system stability; system performance.
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1. INTRODUCTION

Networked control of dynamical systems is an appealing methodology in reducing

cost for the development and implementation of control systems [1, 2, 3, 4, 5, 6, 7, 8].

These systems allow the computation of control signals via processors that are not attached

to the dynamical systems and the feedback loops are closed over wireless networks. In

a networked control setting, since the processors computing control signals are separated

from the dynamical systems, not only the feedback control algorithms can be easily mod-

ified as necessary but also this setting allows to develop small-size physical systems for

low-cost control theory applications.

1.1. Motivation and Literature Review. A challenge in the design and imple-

mentation of networked control systems is to reduce wireless network utilization. To this

end, the last decade has witnessed an increased interest in event-triggering control theory

[9, 10, 11, 12, 13, 14], where it relaxes periodic data exchange demand of the feedback

loops closed over wireless networks. Specifically, this theory allows aperiodic data ex-

change between the processors computing control signals and the dynamical systems, and

hence, asynchronous data can be exchanged only when needed.

In networked control systems, another challenge is to guarantee system stability in

the presence of system uncertainties. Often when designing feedback controllers for dy-

namical systems, idealized assumptions, linearization, model-order reduction, exogenous

disturbances, and unexpected system changes lead to modeling inaccuracies. If not miti-

gated, the uncertainties present in the system model can result in poor system performance

and system instability [15, 16, 17, 18, 19, 20, 21, 22]. Therefore, it is essential in the

feedback control design process to achieve robust stability and a desired level of system

performance when dealing with dynamical systems subject to system uncertainties.

Motivated by these two challenges of networked control systems, this chapter stud-

ies control of uncertain dynamical systems over wireless networks with event-triggering.

To this end, we consider an adaptive control approach rather than a robust control ap-
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proach, since the former approach requires less system modeling information than the

latter and can address system uncertainties and failures effectively in response to system

variations. Notable contributions that utilize event-triggered adaptive control approaches

include [23, 24, 25, 26, 27].

In particular, [23, 24] develop neural networks-based adaptive control approaches to

guarantee system stability in the presence of system uncertainties, where these results only

consider one-way data transmission from a dynamical system to the controller. Two-way

data transmission over a wireless network; that is, from a dynamical system to the controller

and from the controller to this dynamical system, is considered in [25, 26, 27] to guarantee

system stability under system uncertainties. The major difference between the results in

[25, 26] and [27] is that the latter does not require the knowledge of a conservative upper

bound on the unknown constant gain resulting from the system uncertainty parameteriza-

tion. Finally, it should be noted that all these approaches documented in [23, 24, 25, 26, 27]

consider an event-triggered state feedback adaptive control approach. Yet, output feedback

is required for most applications that involve high-dimensional models such as active noise

suppression, active control of flexible structures, fluid flow control systems, and combus-

tion control processes [28, 29, 30, 31, 32, 33, 34, 35].

1.2. Contribution. In this chapter, networked control for a class of uncertain dy-

namical systems is studied. Since a critical task in the design and implementation of

networked control systems is to reduce wireless network utilization while guaranteeing

system stability in the presence of system uncertainties, an event-triggered adaptive con-

trol architecture is presented in an output feedback setting to schedule two-way data ex-

change dependent upon errors exceeding user-defined thresholds. Specifically, we con-

sider the output feedback adaptive control architecture predicated on the asymptotic prop-

erties of LQG/LTR controllers [33, 21, 34, 35], since this framework has the capability to

achieve stringent performance specifications without causing high-frequency oscillations
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in the controller response, asymptotically satisfies a strictly positive real condition for the

closed-loop dynamical system, and is less complex than other approaches to output feed-

back adaptive control (see, for example, [29, 30, 31]).

Building on this output feedback adaptive control architecture as well as our pre-

vious event-triggered state feedback adaptive control methodology [27], it is shown using

tools and methods from nonlinear systems theory and Lyapunov stability in particular that

the proposed feedback control approach guarantees system stability in the presence of sys-

tem uncertainties. In addition, the effect of user-defined thresholds and output feedback

adaptive controller design parameters to the system performance is rigorously character-

ized and discussed. Moreover, we show that the proposed event-triggered output feed-

back adaptive control methodology does not yield to a Zeno behavior, which implies that it

does not require a continuous two-way data exchange and reduces wireless network utiliza-

tion. Similar to the state feedback case [27], we also show that the resulting closed-loop

dynamical system performance is more sensitive to the changes in the data transmission

threshold from the physical system to the adaptive controller (sensing threshold) than the

data transmission threshold from the adaptive controller to the physical system (actuation

threshold), which implies that the actuation threshold can be chosen large enough to reduce

wireless network utilization between the physical system and the adaptive controller with-

out sacrificing closed-loop dynamical system performance. The efficacy of the proposed

event-triggered output feedback adaptive control approach is demonstrated in an illustrative

numerical example. Although this chapter considers a particular output feedback adaptive

control formulation to present its main contributions, the proposed approach can be used

in a complimentary way with many other approaches to output feedback adaptive control

concerning robotic manipulators (see, for example, [36, 37, 38, 39]).

1.3. Notation. The notation used in this chapter is fairly standard. Specifically, R

denotes the set of real numbers, Rn denotes the set of n × 1 real column vectors, Rn×m

denotes the set of n × m real matrices, R+ denotes the set of positive real numbers, Rn×n
+

denotes the set of n × n positive-definite real matrices, Sn×n denotes the set of n × n
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symmetric real matrices, Dn×n denotes the set of n × n real matrices with diagonal scalar

entries, (·)T denotes transpose, (·)−1 denotes inverse, tr(·) denotes the trace operator, and

“,” denotes equality by definition. In addition, we write λmin(A) (respectively, λmax(A))

for the minimum and respectively maximum eigenvalue of the Hermitian matrix A, ‖ · ‖ for

the Euclidean norm, and ‖ · ‖F for the Frobenius matrix norm. Furthermore, we use “∨” for

the “or” logic operator and “(·)” for the “not” logic operator.

2. OUTPUT FEEDBACK ADAPTIVE CONTROL OVERVIEW

In this section, we overview the output feedback adaptive control architecture pred-

icated on the asymptotic properties of LQG/LTR controllers [33, 21, 34, 35], which are

needed for the main results of this chapter. For this purpose, consider the uncertain dynam-

ical system given by

ẋp(t) = Apxp(t) + BpΛ
[
u(t) + ∆

(
xp(t)

)]
, xp(0) = xp0, (1)

yreg(t) = Cregxp(t), (2)

where Ap ∈ R
np×np , Bp ∈ R

np×m, and Creg ∈ R
m×np are known system matrices, xp(t) ∈ Rnp

is the state vector, which is not available for state feedback design, u(t) ∈ Rm is the control

input, Λ ∈ Rm×m
+ ∩ Dm×m is an unknown control effectiveness matrix, ∆ : Rn → Rm is a

system uncertainty, and yreg(t) ∈ Rm is the regulated output vector. In addition, we assume

that the uncertain dynamical system given by (1) and (2) has a measured output vector

yp(t) = Cpxp(t), (3)

where yp(t) ∈ Rlp ,Cp ∈ R
lp×np , and lp ≥ m such that the elements of yreg(t) are a subset

of the elements of yp(t). Throughout this chapter, we assume that the triple (Ap,Bp,Cp) is

minimal, the system uncertainty in (1) can be linearly parameterized as
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∆(xp(t)) = W T
o σo(xp(t)), (4)

where Wo ∈ R
s×m is an unknown weight matrix satisfying ‖Wo‖F ≤ ω∗, ω∗ ∈ R+, and

σo(xp(t)) is a known Lipschitz continuous basis vector satisfying

‖σo(xp) − σo( x̂p)‖ ≤ Lσ‖xp − x̂p‖, (5)

with Lσ ∈ R+. These assumptions are standard in the output feedback adaptive control

literature (see, for example, [33, 21, 34, 35, 40, 41]). For the case when the system un-

certainty given by (4) cannot be perfectly parameterized and/or the basis vector does not

satisfy (5), note that universal approximation tools such as neural networks can be used in

the basis vector on a compact subset of the state space (see, for example, [42, 43]).

Similar to the approaches documented in [40, 41, 33], we consider a state observer-

based nominal control architecture to achieve command following, where control of the

regulated outputs that are commanded include integral action and the regulated outputs

that are not commanded are subject to proportional control. For this purpose, let

yreg(t) =









yreg1(t)

yreg2(t)









=









Creg1

Creg2









xp(t), (6)

where yreg1(t) ∈ Rr ,r ≤ m, is regulated with proportional and integral control to track a

given command vector r (t) ∈ Rr , yreg2(t) ∈ Rm−r is regulated with proportional control,

Creg1 ∈ R
r×np , and Creg2 ∈ R

(m−r)×np . Now, we define the integrator dynamics as

ẋint(t) = −yreg1(t) + r (t) = −Creg1xp(t) + Irr (t), (7)

where xint(t) ∈ Rr is the integral state vector. Utilizing (1), (2), and (7), the augmented
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system dynamics are now given by

ẋ(t) =









Ap 0

−Cp1 0







︸         ︷︷         ︸

A

x(t) +









Bp

0







︸ ︷︷ ︸

B

Λ
[
u(t) + ∆(xp(t))

]
+









0

Ir







︸︷︷︸

Br

r (t), (8)

yreg(t) =

[
Creg 0

]
︸        ︷︷        ︸

CReg

x(t), (9)

where x(t) = [xT
p (t), xT

int(t)]
T ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, Br ∈ R

n×r ,CReg ∈ R
m×n, and

n = np + r . In addition, the augmented measured output vector becomes

y(t) =









yp(t)

xint(t)









=









Cp 0

0 Ir







︸       ︷︷       ︸

C

x(t) (10)

where y(t) ∈ Rl , C ∈ Rl×n, and l = lp + r .

Next, we define the feedback control law as

u(t) = un(t) + ua(t), (11)

where un(t) is a nominal control law and ua(t) is an adaptive control law. Using the output

feedback adaptive control architecture documented in [33, 21, 34, 35], we consider the

nominal controller given by

un(t) = −Kx x̂(t), (12)

where Kx ∈ R
m×n is a feedback matrix and x̂(t) is an estimate of the augmented system

state vector x(t) through a state observer to be defined later in this section. In order to de-

termine the structure of the adaptive controller, we rewrite the augmented system dynamics
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given by (8) and (9) as

ẋ(t) = Ax(t) + Bun(t) + BΛ
(
ua(t) + W Tσ

(
xp(t),un(t)

))
+ Brr (t), (13)

where W ,
[
W T

o , Im×m − Λ
−1

]T
∈ R(n+m)×m and σ

(
xp(t),un(t)

)
,

[
σT

o (xp(t)),uT
n (t)

]T
∈

Rn+m. Motivating from the structure of the system uncertainties appearing in (13), consider

the adaptive controller given by

ua(t) = −Ŵ (t)Tσ
(
x̂p(t),un(t)

)
, (14)

where σ
(
x̂p(t),un(t)

)
,

[
σT

o ( x̂p(t)),uT
n (t)

]T
∈ Rn+m and Ŵ (t) ∈ R(n+m)×m is the estimate

of the unknown weight matrix W through the weight update law

˙̂W (t) = Γ Projm
[
Ŵ (t),−σ

(
x̂p(t),un(t)

)
ỹT(t)R

− 1
2

0 ZST
]
, (15)

where Projm denotes the projection operator defined for matrices [44, 45, 21, 27], Γ ∈

R(s+m)× (s+m)
+ ∩ S(s+m)× (s+m) is a learning rate matrix, ỹ(t) ∈ Rl given by

ỹ(t) , ŷ(t) − y(t) = C( x̂(t) − x(t)), (16)

is the measured output error, and x̂(t) ∈ Rn is the estimated augmented system state ob-

tained through the state observer given by

˙̂x(t) = Ax̂(t) + Bun(t) + Lv (y(t) − ŷ(t)) + Brr (t), (17)

ŷ(t) = Cx̂(t), (18)

with Lv ∈ R
n× l being the state observer gain matrix.
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Following [33, 21], the state observer gain matrix is given by

Lv = PvCTR−1
v , (19)

with Pv ∈ R
n×n
+ being the unique solution to the algebraic Riccati equation

0 = Pv (A + ηIn×n)T + (A + ηIn×n) Pv − PvCTR−1
v CPv + Qv, η ∈ R+, (20)

Qv = Q0 +

(
v + 1
v

)
Bs BT

s , Q0 ∈ R
n×n
+ , v ∈ R+, (21)

Rv =

(
v

v + 1

)
R0, R0 ∈ R

l× l
+ . (22)

In (21), Bs = [B, B2], where B2 ∈ R
n× (l−m) is a matrix such that det(CBs) , 0 and

C(sIn×n−A)−1Bs is minimum phase. Note that l > m is assumed in the above construction,

where if l = m then B2 = 0. In addition, the observer closed-loop matrix given by

Av = A − LvC = A − PvCTR−1
v C (23)

is Hurwitz for all v ∈ R+. Moreover, let P̃v = P−1
v and S =

[
Im×m , 0m× (l−m)

]
to note

[33, 21]

P̃vB = CTR
− 1

2
0 ZST + O(v), (24)

and

AT
v P̃v + P̃v Av = −CTR−1

v C − P̃vQv P̃v − 2η P̃v < 0. (25)

In (15) and (24), Z = (UV )T, where two unitary matrices U and V result from the singular

value decomposition BT
s CTR−1/2

0 = UΣV and Σ is the diagonal matrix of the corresponding

singular values. In (24), “O(·)” denotes the Bachmann-Lundau asymptotic order nota-

tion [46, 47]. For additional details on the output feedback adaptive control architecture

overviewed in this section, we refer to [33, 21] as well as [34, 35]. To summarize, as
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previously discussed, the considered architecture has the capability to achieve stringent

performance specifications without causing high-frequency oscillations in the controller

response, asymptotically satisfies a strictly positive real condition for the closed-loop dy-

namical system, and is less complex than other approaches to output feedback adaptive

control.

Finally, for analysis purposes later in this chapter, we define the reference model

capturing the ideal closed-loop dynamical system performance given by

ẋm = Amxm(t) + Bmr (t), xm(0) = xm0, (26)

ym = CRegxm, (27)

where xm(t) ∈ Rn is the reference model state, Am = A− BKx is Hurwitz, and Bm = Br. In

addition, let

x̃(t) , x̂(t) − x(t), (28)

ê(t) , x̂(t) − xm(t), (29)

W̃ (t) , Ŵ (t) −W. (30)

be the state estimation error, the state tracking error, and the weight estimation error, re-

spectively. Now, we can write

˙̂e(t) = Amê(t) + Lv (y(t) − ŷ(t)) , (31)

using (17) and (26), and write

˙̃x(t) = (A − LvC) x̃(t) + BΛ
(
Ŵ T(t)σ

(
x̂p(t),un(t)

)
−W Tσ

(
xp(t),un(t)

))
= Av x̃(t) + BΛ

(
W̃ T(t)σ

(
x̂p(t),un(t)

)
+ g (·)

)
, (32)

using (13) and (17), where g (·) , W T
(
σ

(
x̂p(t),un(t)

)
− σ

(
xp(t),un(t)

))
.
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Uncertain Dynamical System

ZOH

Adaptive Controller

ZOH

Event Triggering Mechanism

us(t)

ys(t)u(t)

y(t)

Figure 1. Event-triggered adaptive control system.

3. EVENT-TRIGGERED OUTPUT FEEDBACK ADAPTIVE CONTROL

In this section, we present the proposed event-triggered output feedback adaptive

control architecture, which allows a desirable command following performance while the

proposed controller exchanges data with the uncertain dynamical system through a wireless

network. Mathematically speaking, the uncertain dynamical system sends its output signal

to the adaptive controller only when a predefined event occurs. The kth time instants of

the output transmission is represented by the monotonic sequence {sk }
∞
k=1, where sk ∈ R+.

The controller then uses this triggered system output signal to compute the control signal

using the output feedback control architecture. Likewise, the updated feedback control

input is transmitted to the uncertain dynamical system only when another predefined event

occurs. The jth time instants of the feedback control transmission is then represented by

the monotonic sequence
{
r j

}∞
j=1

, where r j ∈ R+. As depicted in Figure 1, each system

output signal and control input is held by a zero-order-hold operator (ZOH) until the next

triggering event for that signal takes place. In this chapter, we do not consider delay in

sampling, data transmission, and computation.



48

3.1. Proposed Event-triggered Adaptive Control Algorithm. Based on the two-

way data exchange structure depicted in Figure 1, consider the augmented uncertain dy-

namical system given by

ẋ(t) = Ax(t) + BΛ
[
us(t) + ∆(xp(t))

]
+ Brr (t), (33)

yreg(t) = CRegx(t), y(t) = Cx(t), (34)

where us(t) ∈ Rm is the sampled control input vector. Under the assumptions stated in

Section 2 and considering the feedback control law given by (11) subject to the nominal

controller given by (12) and the adaptive controller given by (14), the augmented uncertain

dynamical system given by (33) and (34) can be equivalently written as

ẋ(t) = Ax(t) + Bun(t) + BΛ
(
ua(t) + W Tσ

(
xp(t),un(t)

))
+ BΛ (us(t) − u(t)) + Brr (t),

(35)

yreg(t) = CRegx(t), y(t) = Cx(t). (36)

In addition, we consider

˙̂W (t) = Γ Projm
[
Ŵ (t),−σ

(
x̂p(t),un(t)

)
( ŷ(t) − ys(t))T R

− 1
2

0 ZST
]
, (37)

for the estimated weight matrix Ŵ (t) in (14) and

˙̂x(t) = Ax̂(t) + Bun(t) + Lv (ys(t) − ŷ(t)) + Brr (t)

= Am x̂(t) + Lv (ys(t) − ŷ(t)) + Brr (t), (38)

ŷ(t) = Cx̂(t), (39)

for the state observer, where ys(t) ∈ Rl in (37) and (38) denotes the sampled augmented

measured output vector.
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Table 1. Event-triggered output feedback adaptive control algorithm.

Augmented unc. dyn. sys. ẋ(t) = Ax(t) + BΛ
[
us(t) + ∆(xp(t))

]
+ Brr (t),

yreg(t) = CRegx(t),

y(t) = Cx(t)

Feedback control law u(t) = un(t) + ua(t)

Nominal control law un(t) = −Kx x̂(t)

Adaptive control law ua(t) = −Ŵ (t)Tσ
(
x̂p(t),un(t)

)
,

˙̂W (t) = Γ Projm
[
Ŵ (t),−σ

(
x̂p(t),un(t)

)
( ŷ(t) − ys(t))T

·R
− 1

2
0 ZST

]
State observer ˙̂x(t) = Am x̂(t) + Lv (ys(t) − ŷ(t)) + Brr (t),

ŷ(t) = Cx̂(t)

The proposed event-triggered output feedback adaptive control algorithm is sum-

marized in Table 1. Specifically, based on the two-way data exchange structure depicted in

Figure 1, the controller generates u(t) and the uncertain dynamical system is driven by the

sampled version of this control signal us(t) depending on an event-triggering mechanism.

Similarly, the controller utilizes ys(t) that represents the sampled version of the uncer-

tain dynamical system measured output y(t) depending on an event-triggering mechanism.

These event-triggering mechanisms are stated next.

3.2. Scheduling Two-way Data Exchange. Let ε y ∈ R+ be a given, user-defined

sensing threshold to allow for data transmission from the uncertain dynamical system to the

controller. In addition, let εu ∈ R+ be a given, user-defined actuation threshold to allow for

data transmission from the controller to the uncertain dynamical system. Similar in fashion
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to [25, 27], we now define three logic rules for scheduling the two-way data exchange

E1 : ‖ys(t) − y(t)‖ ≤ ε y, (40)

E2 : ‖us(t) − u(t)‖ ≤ εu, (41)

E3 : The controller receives ys(t). (42)

Specifically, when the inequality (40) is violated at the sk moment of the kth time instant,

the uncertain dynamical system triggers the measured output signal information such that

ys(t) is sent to the controller. Likewise, when (41) is violated or the controller receives

a new transmitted system output from the uncertain dynamical system (i.e., when E2 ∨

E3 is true), then the feedback controller sends a new control input us(t) to the uncertain

dynamical system at the r j moment of the jth time instant.

Finally, using the definitions given by (28), (29), and (30), we write

˙̂e(t) = Amê(t) + Lv (ys(t) − ŷ(t)) , ê(0) = ê0, (43)

˙̃x(t) = Av x̃(t) + Lv (ys(t) − y(t)) + BΛ
(
W̃ T(t)σ

(
x̂p(t),un(t)

)
+ g (·)

)
−BΛ (us(t) − u(t)) , x̃(0) = x̃0. (44)

In the next section, we analyze the stability and performance of the proposed event-triggered

output feedback adaptive control algorithm introduced in this section (see Table 1) using

the error dynamics given by (43) and (44) well as the data exchange rules E1, E2, and E3

respectively given by (40), (41), and (42).

4. STABILITY AND PERFORMANCE ANALYSIS

For organizational purposes, this section is divided into three subsections. Specifi-

cally, we analyze the uniform ultimate boundedness of the resulting closed-loop dynamical

system in Section 4.1, compute the ultimate bound and highlight the effect of user-defined
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thresholds and the adaptive controller design parameters to this ultimate bound in Section

4.2, and show that the proposed architecture does not yield to a Zeno behavior in Section

4.3.

4.1. Uniform Ultimate Boundedness Analysis. The following theorem presents

the first result of this chapter.

Theorem 1. Consider the uncertain dynamical system given by (33) and (34), the

reference model given by (26) and (27), the state observer given by (38) and (58) with the

state observer gain matrix in (19) along with (20), (21), and (22), and the feedback control

law given by (11), (12), (14), and (37). In addition, let the data transmission from the un-

certain dynamical system to the controller occur when E1 is true and the data transmission

from the controller to the uncertain dynamical system occur when E2 ∨ E3 is true. Then,

the closed-loop solution ( x̃(t),W̃ (t), ê(t)) is uniformly ultimately bounded for all initial

conditions.

Proof. Since the data transmission from the uncertain dynamical system to the

controller and from the controller to the uncertain dynamical system occur when E1 and

E2 ∨ E3 are true, respectively, note that ‖ys(t) − y(t)‖ ≤ ε y and ‖us(t) − u(t)‖ ≤ εu hold.

Consider the Lyapunov-like function given by

V ( x̃,W̃ , ê) = x̃T(t)P̃v x̃ + tr
(
(W̃Λ

1
2 )T
Γ
−1(W̃Λ

1
2 )

)
+ βêTPê, (45)

where P̃v ∈ R
n×n
+ is a solution to (25) with Rv ∈ R

l× l
+ and Qv ∈ R

n×n
+ , v ∈ R+, η ∈ R+,

β ∈ R+, and P ∈ Rn×n
+ ∩ Sn×n is a solution to

0 = AT
mP + PAm − PBR−1BTP + Q, (46)

with R ∈ Rm×m
+ and Q ∈ Rn×n

+ . Note that V (0,0,0) = 0 and V ( x̃,W̃ , ê) > 0 for all

( x̃,W̃ , ê) , (0,0,0). The time-derivative of (45) is given by
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V̇ ( x̃(t),W̃ (t), ê(t))

= 2x̃T(t)P̃v ˙̃x(t) + 2tr
(
W̃ T(t)Γ−1 ˙̃W (t)Λ

)
+ 2βêT(t)P ˙̂e(t)

= 2x̃T(t)P̃v

(
Av x̃(t) + Lv (ys(t) − y(t)) + BΛ

(
W̃ T(t)σ

(
x̂p(t),un(t)

)
+ g (·)

)
− BΛ (us(t) − u(t))

)
+ 2tr

(
W̃ T(t)Γ−1 ˙̃W (t)Λ

)
+ 2βêT(t)P ˙̂e(t)

= − x̃T(t)
(
CTR−1

v C + P̃vQv P̃v + 2η P̃v

)
x̃(t) + 2x̃T(t)P̃vLv (ys(t) − y(t)) + 2x̃T(t)

· P̃vBΛW̃ T(t)σ
(
x̂p(t),un(t)

)
+ 2x̃T(t)P̃vBΛg (·) − 2x̃T(t)P̃vBΛ (us(t) − u(t))

+ 2tr
(
W̃ T(t)Γ−1 ˙̃W (t)Λ

)
+ 2βêT(t)P ˙̂e(t)

= −

(
1 +

1
v

)
x̃T(t)CTR−1

0 Cx̃(t) − x̃T(t)P̃vQ0P̃v x̃(t) −
(
1 +

1
v

)
x̃T(t)P̃vBs BT

s P̃v x̃(t)

− 2η x̃(t)T(t)P̃v x̃(t) + 2x̃T(t)
(
CTR

− 1
2

0 ZST + O(v)
)
ΛW̃ T(t)σ

(
x̂p(t),un(t)

)
+ 2x̃T(t)P̃vBΛg (·) + 2x̃T(t)P̃vLv (ys(t) − y(t)) − 2x̃T(t)P̃vBΛ (us(t) − u(t))

+ 2tr
(
W̃ T(t)Γ−1 ˙̃W (t)Λ

)
+ 2βêT(t)P ˙̂e(t)

= −

(
1 +

1
v

)
x̃T(t)CTR−1

0 Cx̃(t) − x̃T(t)P̃vQ0P̃v x̃(t) −
(
1 +

1
v

)
x̃T(t)P̃vBs BT

s P̃v x̃(t)

− 2η x̃T(t)P̃v x̃(t) + 2x̃T(t)O(v)ΛW̃ T(t)σ
(
x̂p(t),un(t)

)
+ 2x̃T(t)P̃vBΛg (·)

+ 2x̃T(t)P̃vLv (ys(t) − y(t)) − 2x̃T(t)P̃vBΛ (us(t) − u(t)) + 2tr
(
W̃ T(t)

(
Γ
−1 ˙̃W (t)

+ σ
(
x̂p(t),un(t)

)
ỹTR

− 1
2

0 ZST
)
Λ
)

+ 2βêT(t)P (Amê(t) + Lv (ys(t) − ŷ(t))) . (47)

Now, noting ‖O(v)‖ ≤ vK , K ∈ R+, and using (37) in (47) yields

V̇ ( x̃(t)(t),W̃ (t), ê(t))

≤ −

(
1 +

1
v

)
x̃T(t)CTR−1

0 Cx̃(t) − x̃T(t)P̃vQ0P̃v x̃(t) −
(
1 +

1
v

)
x̃T(t)P̃vBs BT

s P̃v x̃(t)

− 2η x̃T(t)P̃v x̃(t) + 2x̃T(t)O(v)ΛW̃ T(t)σ
(
x̂p(t),un(t)

)
+ 2x̃T(t)P̃vBΛg (·) + 2x̃T(t)

· P̃vLv (ys(t) − y(t)) − 2x̃T(t)P̃vBΛ (us(t) − u(t)) + 2 (ys(t) − y(t))T R
− 1

2
0 ZST

Λ

· W̃ T(t)σ
(
x̂p(t),un(t)

)
− βêT(t)

(
−PBR−1BTP + Q

)
ê(t) − 2βêT(t)PLvCx̃(t)
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+ 2βêT(t)PLv (ys(t) − y(t))

≤ −

(
1 +

1
v

)
λmin(R−1

0 )‖C‖2F ‖ x̃(t)‖2 − λmin(Q0)λ2
min(P̃v) ‖ x̃(t)‖2 −

(
1 +

1
v

)
· λ2

min(P̃v) ‖Bs‖
2
F ‖ x̃(t)‖2 − 2ηλmin(P̃v) ‖ x̃(t)‖2 + 2Kv ‖Λ‖F







W̃ (t)




F

·






σ

(
x̂p(t),un(t)

)






‖ x̃(t)‖ + 2 ‖ x̃(t)‖ 





P̃vB




F
‖Λ‖F ‖g (·)‖ + 2 ‖ x̃(t)‖ 





P̃v





F
‖Lv ‖F ε y

+ 2 ‖ x̃(t)‖ 




P̃vB




F
‖Λ‖F εu + 2ε yλmin(R

− 1
2

0 ) 




ZST




F
‖Λ‖F







W̃ (t)




F






σ

(
x̂p(t),un(t)

)







− β
(
λmin(Q) − λmax(R−1) ‖PB‖2F

)
‖ê(t)‖2 + 2β ‖ê(t)‖ ‖PLvC‖F ‖ x̃(t)‖

+ 2β ‖ê(t)‖ ‖P‖F ‖Lv ‖F ε y . (48)

Next, using (5), an upper bound for ‖g (·)‖ in (48) is given by

‖g (·)‖ =






W T

(
σ

(
x̂p(t),un(t)

)
− σ

(
xp(t),un(t)

))







≤ WmaxLσ︸   ︷︷   ︸
Kg







x̂p(t) − xp(t)






≤ Kg ‖ x̃(t)‖ , (49)

where Kg ∈ R+ and | |W | |F ≤ Wmax, Wmax ∈ R+. In addition, noting 





x̂p(t)





≤ ‖ x̂(t)‖ and

using (5), one can compute an upper bound for 




σ

(
x̂p(t),un(t)

)







in (48) as







σ

(
x̂p(t),un(t)

)







=






σ

(
x̂p(t),un(t)

)
+ σ (0) − σ (0)






≤ ‖σ (0)‖ +






σ

(
x̂p(t),un(t)

)
− σ (0)






≤ bσ +


















σ
(
x̂p(t)

)
− σ (0)

un(t)


















≤ bσ +

√






σ

(
x̂p(t)

)
− σ (0)






2
+ ‖Kx ‖

2 ‖ x̂(t)‖2

≤ bσ +

√
L2
σ ‖ x̂(t)‖2 + ‖Kx ‖

2 ‖ x̂(t)‖2

≤ bσ +

√
L2
σ + ‖Kx ‖

2 ‖ x̂(t)‖ . (50)
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Furthermore, since Am is Hurwitz and r (t) is bounded in (38), there exist constants ζ1 and

ζ2 such that ‖ x̂(t)‖ ≤ ζ1 + ζ2 ‖ys(t) − ŷ(t)‖ holds [48], where this yields

‖ x̂(t)‖ ≤ ζ1 + ζ2ε y + ζ2‖C‖F ‖ x̃(t)‖ . (51)

Finally, using (51) in (50) gives







σ

(
x̂p(t),un(t)

)






≤ bσ +

√
L2
σ + ‖Kx ‖

2
(
ζ1 + ζ2ε y + ζ2‖C‖F ‖ x̃(t)‖

)
= b1 + b2ε y + b3 ‖ x̃(t)‖ , (52)

where b1 , bσ + ζ1
√

L2
σ + ‖Kx ‖

2, b2 , ζ2
√

L2
σ + ‖Kx ‖

2, and b3 , ζ2‖C‖F
√

L2
σ + ‖Kx ‖

2.

Noting that λmin(P̃v) ≥ λmin(P̃0) > 0 [21] and using the bounds given by (49) and

(52) in (48), one can write

V̇ ( x̃(t),W̃ (t), ê(t))

≤ −

(
1 +

1
v

)
λmin(R−1

0 )‖C‖2F ‖ x̃(t)‖2 − λmin(Q0)λ2
min(P̃0) ‖ x̃(t)‖2 −

(
1 +

1
v

)
‖Bs‖

2
F

· λ2
min(P̃0) ‖ x̃(t)‖2 − 2ηλmin(P̃0) ‖ x̃(t)‖2 + 2Kv ‖Λ‖F







W̃ (t)




F

(
b1 + b2ε y

+ b3 ‖ x̃(t)‖
)
‖ x̃(t)‖ + 2 





P̃vB




F
‖Λ‖F Kg ‖ x̃(t)‖2 + 2 





P̃v





F
‖Lv ‖F ε y ‖ x̃(t)‖

+ 2 




P̃vB




F
‖Λ‖F εu ‖ x̃(t)‖ + 2ε yλmin(R

− 1
2

0 ) 




ZST




F
‖Λ‖F







W̃ (t)




F

(
b1 + b2ε y

+ b3 ‖ x̃(t)‖
)
− β

(
λmin(Q) − λmax(R−1) ‖PB‖2F

)
‖ê(t)‖22 + 2β ‖ê(t)‖ ‖PLvC‖F

· ‖ x̃(t)‖ + 2β ‖P‖F ‖Lv ‖F ε y ‖ê(t)‖

= −

[ (
1 +

1
v

)
λmin(R−1

0 )‖C‖2F + λmin(Q0)λ2
min(P̃0) +

(
1 +

1
v

)
‖Bs‖

2
F λ

2
min(P̃0)

+ 2ηλmin(P̃0) − 2Kv ‖Λ‖F






W̃ (t)




F
b3 − 2 





P̃vB




F
‖Λ‖F Kg

]
‖ x̃(t)‖2 +

[
2Kv ‖Λ‖F

·






W̃ (t)




F

(
b1 + b2ε y

)
+ 2 





P̃v





F
‖Lv ‖F ε y + 2 





P̃vB




F
‖Λ‖F εu + 2ε yλmin(R

− 1
2

0 )

·






ZST




F
‖Λ‖F







W̃ (t)




F
b3

]
‖ x̃(t)‖ − β

(
λmin(Q) − λmax(R−1) ‖PB‖2F

)
‖ê(t)‖22

+ 2β ‖ê(t)‖ ‖PLvC‖F ‖ x̃(t)‖ + 2β ‖P‖F ‖Lv ‖F ε y ‖ê(t)‖ + 2ε yλmin(R
− 1

2
0 ) 





ZST




F
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· ‖Λ‖F






W̃ (t)




F

(
b1 + b2ε y

)
. (53)

Moreover, consider 2xy ≤ αx2 + 1
α y

2 that follows from Young’s inequality [49] ap-

plied to scalars in x ∈ R and y ∈ R, where α ∈ R+. Using this inequality for the

2β ‖ê(t)‖ ‖PLvC‖F ‖ x̃(t)‖ term in (53) yields

V̇ ( x̃(t),W̃ (t), ê(t))

≤ −

[ (
1 +

1
v

)
λmin(R−1

0 )‖C‖2F + λmin(Q0)λ2
min(P̃0) +

(
1 +

1
v

)
‖Bs‖

2
F λ

2
min(P̃0)

+ 2ηλmin(P̃0) − 2Kv ‖Λ‖F






W̃ (t)




F
b3 − 2 





P̃vB




F
‖Λ‖F Kg

]
‖ x̃(t)‖2 +

[
2Kv ‖Λ‖F

·






W̃ (t)




F

(
b1 + b2ε y

)
+ 2 





P̃v





F
‖Lv ‖F ε y + 2 





P̃vB




F
‖Λ‖F εu + 2ε yλmin(R

− 1
2

0 )

·






ZST




F
‖Λ‖F







W̃ (t)




F
b3

]
‖ x̃(t)‖ − β

(
λmin(Q) − λmax(R−1) ‖PB‖2F

)
‖ê(t)‖22

+ α ‖PLvC‖2F ‖ x̃(t)‖22 +
β2

α
‖ê(t)‖22 + 2β ‖P‖F ‖Lv ‖F ε y ‖ê(t)‖ + 2ε yλmin(R

− 1
2

0 )

·






ZST




F
‖Λ‖F







W̃ (t)




F
(b1 + b2ε y)

= −

[ (
1 +

1
v

)
λmin(R−1

0 )‖C‖2F + λmin(Q0)λ2
min(P̃0) +

(
1 +

1
v

)
‖Bs‖

2
F λ

2
min(P̃0)

+ 2ηλmin(P̃0) − 2Kv ‖Λ‖F






W̃ (t)




F
b3 − 2 





P̃vB




F
‖Λ‖F Kg − α ‖PLvC‖2F

]
‖ x̃(t)‖2

+

[
2Kv ‖Λ‖F







W̃ (t)




F
(b1 + b2ε y) + 2 





P̃v





F
‖Lv ‖F ε y + 2 





P̃vB




F
‖Λ‖F εu + 2ε y

· λmin(R
− 1

2
0 ) 





ZST




F
‖Λ‖F







W̃ (t)




F
b3

]
‖ x̃(t)‖ −

[
β

(
λmin(Q) − λmax(R−1) ‖PB‖2F

)
−
β2

α

]
‖ê(t)‖22 + 2β ‖P‖F ‖Lv ‖F ε y ‖ê(t)‖ + 2ε yλmin(R

− 1
2

0 ) 




ZST




F
‖Λ‖F







W̃ (t)




F

·
(
b1 + b2ε y

)
≤ −d1 ‖ x̃(t)‖2 − d2 ‖ê(t)‖22 + d3 ‖ x̃(t)‖ + d4 ‖ê(t)‖ + d5, (54)
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where d1 ,
(
1 + 1

v

)
λmin(R−1

0 )‖C‖2F + λmin(Q0)λ2
min(P̃0) +

(
1 + 1

v

)
‖Bs‖

2
F λ

2
min(P̃0) + 2η

λmin(P̃0) − 2Kv ‖Λ‖F w̃
∗b3 − 2 





P̃vB




F
‖Λ‖F Kg − α ‖PLvC‖2F ∈ R+, d2 , β

(
λmin(Q)

− λmax(R−1) ‖PB‖2F
)
−

β2

α ∈ R+, d3 , 2Kv ‖Λ‖F w̃
∗
(
b1 + b2ε y

)
+






P̃v





F
‖Lv ‖F ε y +

2 




P̃vB




F
‖Λ‖F εu + 2ε yλmin(R

− 1
2

0 ) 




ZST




F
‖Λ‖F w̃

∗b3, d4 = 2β ‖P‖F ‖Lv ‖F ε y, and d5 ,

2ε yλmin(R
− 1

2
0 ) 





ZST




F
‖Λ‖F w̃

∗
(
b1 + b2ε y

)
with 






W̃ (t)




F
≤ w̃∗ due to utilizing the projec-

tion operator in the weight update law given by (37).

Finally, we rearrange (54) as

V̇ ( x̃(t),W̃ (t), ê(t)) ≤ −
(√

d1 ‖ x̃(t)‖ −
d3

2
√

d1

)2
−
(√

d2 ‖ê(t)‖ −
d4

2
√

d2

)2

+
(
d5 +

d2
3

4d1
+

d2
4

4d2

)
, (55)

which shows that V̇ ( x̃(t),W̃ (t), ê(t)) ≤ 0 when ‖ x̃(t)‖ ≥ ψ1 and ‖ê(t)‖ ≥ ψ2, where

ψ1 ,

d3
2
√

d1
+

√
d5 +

d2
3

4d1
+

d2
4

4d2
√

d1
, (56)

ψ2 ,

d4
2
√

d2
+

√
d5 +

d2
3

4d1
+

d2
4

4d2
√

d2
. (57)

This argument proves uniform ultimate boundedness of the closed-loop solution

( x̃(t),W̃ (t), ê(t)) for all initial conditions [50, 21]. �

In the proof of Theorem 1, it is implicitly assumed that d1 ∈ R+ and d2 ∈ R+,

which can be satisfied by suitable selection of the event-triggered output feedback adaptive

controller design parameters. Although this theorem shows uniform ultimate boundedness

of the closed-loop solution ( x̃(t),W̃ (t), ê(t)) for all initial conditions, it is of practical im-

portance to compute the ultimate bound, which is given next.
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4.2. Ultimate Bound Computation. For revealing the effect of user-defined thresh-

olds and the event-triggered output feedback adaptive controller design parameters to the

system performance, the next corollary presents a computation of the ultimate bound,

which presents the second result of this chapter.

Corollary 1. Consider the uncertain dynamical system given by (33) and (34), the

reference model given by (26) and (27), the state observer given by (38) and (58) with the

state observer gain matrix in (19) along with (20), (21), and (22), and the feedback control

law given by (11), (12), (14), and (37). In addition, let the data transmission from the un-

certain dynamical system to the controller occur when E1 is true and the data transmission

from the controller to the uncertain dynamical system occur when E2 ∨ E3 is true. Then,

the ultimate bound of the system error between the uncertain dynamical system and the

reference model is given by

| |e(t) | | = | |x(t) − xm(t) | | ≤ Φ̃
[
λ−1

min(P̃v) + β−1λ−1
min(P)

] 1
2
, t ≥ T, (58)

where Φ̃ ,
[
λmax(P̃v)ψ2

1 + βλmax(P)ψ2
2 + Γ−1w̃∗2 ‖Λ‖F

] 1
2 .

Proof. It follows from the proof of Theorem 1 that V̇ ( x̃(t),W̃ (t), ê(t)) ≤ 0 outside

the compact set given by S , {( x̃(t), ê(t)) : ‖ x̃(t)‖ ≤ ψ1}
⋂{

( x̃(t), ê(t)) : ‖ê(t)‖ ≤ ψ2
}
.

That is, sinceV ( x̃(t),W̃ (t), ê(t)) cannot grow outsideS, the evolution ofV ( x̃(t),W̃ (t), ê(t))

is upper bounded by

V ( x̃(t),W̃ (t), ê(t)) ≤ max
( x̃(t),ê(t))∈S

V ( x̃(t),W̃ (t), ê(t))

= λmax(P̃v)ψ2
1 + βλmax(P)ψ2

2 + Γ−1w̃∗2 ‖Λ‖F

= Φ̃2. (59)
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It follows from x̃T(t)P̃v x̃ ≤ V ( x̃,W̃ , ê) and βêTPê ≤ V ( x̃,W̃ , ê) that ‖ x̃(t)‖2 ≤ Φ̃2

λmin(P̃v )

and ‖ê(t)‖2 ≤ Φ̃2

βλmin(P) . Finally, since e(t) = x(t) − x̂(t) + x̂(t) − xm(t), and hence,

‖e(t)‖ ≤ ‖x(t) − x̂(t)‖ + ‖ x̂(t) − xm(t)‖ = ‖ x̃(t)‖ + ‖ê(t)‖, the bound given by (58)

follows. �

To elucidate the effect of the user-defined thresholds and the event-triggered output

feedback adaptive controller design parameters to the ultimate bound given by (58), let

Ar = −5, B = 1, C = 1, W = 1, Ro = 1, R = 1,Qo = 1, Q = 1, Λ = 1, α = 0.5, and

β = 0.25. In this case, Figure 1 shows the effect of the variation in v and Γ on the system

error bound for η = 5, ε y = 0.1 and εu = 0.1. Specifically, one can conclude from this

figure that increasing Γ reduces the ultimate bound and the minimum value of this bound

is obtained for v = 0.35. Figure 4 shows the effect of the variation in v and η on the system

error bound for Γ = 100 and the same previously defined parameters. It is evident from

the figure, that increasing η increases the ultimate bound. This figure also shows that there

exists an optimum value of v for each η value, which allows the selection of the best value

of v to avoid increasing the ultimate bound.

Figures 3 and 7 show the effect of the variations in ε y and εu, respectively. In par-

ticular, these figures show that the system error bound is more sensitive to the changes in

the data transmission threshold from the physical system to the adaptive controller (sens-

ing threshold, ε y) than the data transmission threshold from the adaptive controller to the

physical system (actuation threshold, εu), which implies that the actuation threshold can

be chosen large enough to reduce wireless network utilization between the physical system

and the adaptive controller without sacrificing closed-loop dynamical system performance.

4.3. Zeno Behavior Analysis. We now show that the proposed event-triggered

output feedback adaptive control architecture does not yield to a Zeno behavior, which

implies that it does not require a continuous two-way data exchange and reduces wireless

network utilization. For the following corollary presenting the third result of this chapter,
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Figure 2. Effect of Γ ∈ [5,100] and v ∈ [0.01,1] to the ultimate bound (58) for η = 5,
ε y = 0.1 and εu = 0.1, where the arrow indicates the increase in Γ (dashed line denotes the
case with Γ= 100).
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Figure 3. Effect of η ∈ [5,20] to the ultimate bound (58) for ε y = 0.1, εu = 0.1, v ∈
[0.01,1], and Γ= 100, where the arrow indicates the increase in η (dashed line denotes the
case with η = 5).
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Figure 4. Effect of ε y ∈ [0,1] to the ultimate bound (58) for η = 5, εu = 0.1, v ∈ [0.01,1],
and Γ = 100, where the arrow indicates the increase in ε y (dashed line denotes the case
with ε y = 0.1 and blue bottom line denotes the case with ε y = 0 ).
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Figure 5. Effect of εu ∈ [0,1] to the ultimate bound (58) for η = 5, ε y = 0.1, v ∈ [0.01,1],
and Γ = 100, where the arrow indicates the increase in εu (dashed line denotes the case
with εu = 0.1).
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we consider r k
i ∈ (sk , sk+1) to be the ith time instant when E2 is violated over (sk , sk+1), and

since {sk }
∞
k=1 is a subsequence of

{
r j

}∞
j=1

, it follows that
{
r j

}∞
j=1

= {sk }
∞
k=1

⋃ {
r k

i

}∞,mk

k=1,i=1
,

where mk ∈ N is the number of violation times of E2 over (sk , sk+1).

Corollary 2. Consider the uncertain dynamical system given by (33) and (34), the

reference model given by (26) and (27), the state observer given by (38) and (58) with the

state observer gain matrix in (19) along with (20), (21), and (22), and the feedback control

law given by (11), (12), (14), and (37). In addition, let the data transmission from the un-

certain dynamical system to the controller occur when E1 is true and the data transmission

from the controller to the uncertain dynamical system occur when E2 ∨ E3 is true. Then,

sk+1 − sk > 0, ∀k ∈ N, (60)

r k
i+1 − r k

i > 0, ∀i ∈ {0, ...,mk } , ∀k ∈ N, (61)

holds.

Proof. The time derivative of ‖xs(t) − x(t)‖ over t ∈ (sk , sk+1), ∀k ∈ N, is given

by

d
dt
‖ys(t) − y(t)‖ ≤ ‖ ẏs(t) − ẏ(t)‖ = ‖Cẋ(t)‖ ≤ ‖C‖F‖ ẋ(t)‖

≤ ‖C‖F
[
‖A‖F ‖x(t)‖ + ‖B‖F ‖Λ‖F ‖us(t)‖ + ‖B‖F ‖Λ‖F ‖W ‖F

· ‖σ
(
xp(t)

)
‖ + ‖Br‖F‖r (t)‖

]
. (62)

Now, we determine an upper bound for ‖x(t)‖ in (62) as

‖x(t)‖ = ‖ x̃(t) + x̂(t)‖ ≤ ‖ x̃(t)‖ + ζ1 + ζ2ε y + ζ2‖C‖F ‖ x̃(t)‖

= ζ1 + ζ2ε y + (1 + ζ2‖C‖F) ‖ x̃(t)‖ . (63)
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In addition, we determine an upper bound for ‖σ
(
xp(t)

)
‖ in (62) as

‖σ
(
xp(t)

)
‖ =‖σ

(
xp(t)

)
− σ

(
x̂p(t)

)
+ σ

(
x̂p(t)

)
‖

≤ Lσ‖ x̃p(t)‖ + ‖σ
(
x̂p(t)

)
‖

≤ Lσ‖ x̃p(t)‖ + ‖σ
(
x̂p(t)

)
− σ (0) ‖ + ‖σ (0) ‖

≤ Lσ ‖ x̃p(t)‖︸  ︷︷  ︸
≤‖ x̃(t)‖

+Lσ ‖ x̂p(t)‖︸  ︷︷  ︸
≤‖ x̂(t)‖

+bσ

≤ Lσ‖ x̃(t)‖ + Lσ
(
ζ1 + ζ2ε y + ζ2‖C‖F ‖ x̃(t)‖

)
+ bσ

= Lσ (1 + ζ2‖C‖F) ‖ x̃(t)‖ + Lσ
(
ζ1 + ζ2ε y

)
+ bσ . (64)

Substituting (63) and (64) into (62), gives

d
dt
‖ys(t) − y(t)‖ ≤ ‖C‖F ‖A‖F

[
ζ1 + ζ2ε y + (1 + ζ2‖C‖F) ‖ x̃(t)‖

]
+ ‖C‖F‖B‖F ‖Λ‖F

· ‖us(t)‖ + ‖C‖F‖B‖F ‖Λ‖F Wmax
[
Lσ (1 + ζ2‖C‖F) ‖ x̃(t)‖

+ Lσ
(
ζ1 + ζ2ε y

)
+ bσ

]
+ ‖C‖F‖Br‖Fr (t). (65)

Since the closed-loop dynamical system is uniformly ultimately bounded by Theorem 1,

there exists an upper bound to (65). Letting Φ1 denote this upper bound and with the initial

condition satisfying limt→s+
k
| |ys(t) − y(t) | | = 0, it follows from (65) that

‖ys(t) − y(t)‖ ≤ Φ1(t − sk ), ∀t ∈ (sk , sk+1). (66)

Therefore, when E1 is true, then limt→s−
k+1
‖ys (t) − y(t)‖ = ε y and it then follows from

(66) that sk+1 − sk ≥
ε y

Φ1
.
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Similarly, the time derivative of ‖us(t) − u(t)‖ over t ∈
(
r k

i ,r
k
i+1

)
,∀i ∈ N, is given

by

d
dt
‖us(t) − u(t)‖ ≤ ‖u̇s(t) − u̇(t)‖ = ‖u̇(t)‖ ≤ ‖u̇n(t)‖ + ‖u̇a(t)‖. (67)

Now, we determine an upper bound for ‖u̇n(t)‖ in (67) as

‖u̇n(t)‖ = ‖Kx ˙̂x(t)‖

≤ ‖Kx ‖F‖ ˙̂x(t)‖

≤ ‖Kx ‖F
[
‖A‖F‖ x̂(t)‖ + ‖B‖F‖un(t)‖ + ‖Lv ‖F‖ys(t) − ŷ(t)‖ + ‖Br‖F‖r (t)‖

]
≤ ‖Kx ‖F

[
‖A‖F

[
ζ1 + ζ2ε y + ζ2‖C‖F ‖ x̃(t)‖

]
+ ‖B‖F‖un(t)‖ + ‖Lv ‖F‖C‖F‖ x̃(t)‖

+ ‖Lv ‖Fε y + ‖Br‖F‖r (t)‖
]
. (68)

Letting β1 to denote the upper bound of ‖u̇n(t)‖ , we determine the upper bound of ‖u̇a(t)‖

in (67) as

‖u̇a(t)‖ = ‖ ˙̂W T(t)σ
(
x̂p(t),un(t)

)
+ Ŵ T(t)σ̇

(
x̂p(t),un(t)

)
‖

≤ ‖SZTR
−1
2

0 ( ŷ(t) − ys(t))σT
(
x̂p(t),un(t)

)
Γσ

(
x̂p(t),un(t)

)
‖

+ ‖Ŵ (t)‖F
[
‖σ̇0

(
x̂p(t)

)
‖ + ‖u̇n(t)‖

]
≤ λmax(Γ)‖SZTR

−1
2

0 ‖F‖σ
(
x̂p(t),un(t)

)
‖2Φ1 + ‖Ŵ (t)‖F

[
σ∗ + β1

]
, (69)

where ‖σ̇
(
x̂p(t)

)
‖ ≤ σ∗. Substituting (68) and (69) into (67), gives

d
dt
‖us(t) − u(t)‖ ≤ λmax(Γ)‖SZTR

−1
2

0 ‖F‖σ
(
x̂p(t),un(t)

)
‖2Φ1 + ‖Ŵ (t)‖F

[
σ∗ + β1

]
+ β1.

(70)
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Once again, since the closed-loop dynamical system is uniformly ultimately bounded by

Theorem 1, there exists an upper bound to (70). Letting Φ2 denote this upper bound and

with the initial condition satisfying limt→rk+
i
‖us (t) − u (t)‖ = 0, it follows from (70) that

‖us(t) − u(t)‖ ≤ Φ2(t − r k
i ), ∀t ∈

(
r k

i ,r
k
i+1

)
. (71)

Therefore, when E2∨E3 is true, then limt→rk−
i+1
‖us(t) − u(t)‖ = εu and it then follows from

(71) that r k
i+1 − r k

i ≥
εu

Φ2
. �

Corollary 2 shows that the intersample times for the system output vector and feed-

back control vector are bounded away from zero, and hence, the proposed event-triggered

adaptive control approach does not yield to a Zeno behavior.

5. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, the efficacy of the proposed event-triggered output feedback adaptive

control approach is demonstrated in an illustrative numerical example. For this purpose,

we consider the uncertain dynamical system given by









ẋp1(t)

ẋp2(t)









=









0 1

0 0

















xp1(t)

xp2(t)









+









0

1









Λ
[
us(t) + ∆(xp(t))

]
,

yp(t) =









1 0

0.5 0.5

















xp1(t)

xp2(t)









, yreg(t) =

[
1 0

] 






xp1(t)

xp2(t)









. (72)

For this study, let the uncertain parameters be Λ = 0.5 and W = [−2 , 3]T, and we choose

σ(xp(t)) = xp(t) as the basis function.
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For the nominal control design, we note

A =













0 1 0

0 0 0

−1 0 0













, B =













0

1

0













, Br =













0

0

1













,

C =













1 0 0

0.5 0.5 0

0 0 1













, CReg =

[
1 0 0

]
. (73)

for (33) and (34). In particular, a linear quadratic regulator formulation is used to choose

Kx of the nominal controller as

Kx = R−1
lqr BTPlqr, (74)

0 =
(
A + ηlqrIn×n

)T
Plqr + Plqr

(
A + ηlqrIn×n

)
− PlqrBR−1

lqr BTPlqr + Qlqr, (75)

where Qlqr = diag([20,3,1]), Rlqr = 0.5, and ηlqr = 0.2 is considered, which yields Kx =

[9.6,5.2, −3.6]. Next, for the adaptive control design, we choose

B2 =













1 0

1 0

0 1













, (76)

to square up the dynamical system [21], which results in

Bs =













0 1 0

1 1 0

0 0 1













. (77)



66

In particular, with (77), det(CBs) is nonzero and G(s) = C(sIn×n − A)−1Bs is minimum

phase. To calculate the observer gain Lv given by (19), we set Q0 = I, R0 = 30I, η = 10,

and v = 0.1 for (20), (21), and (22), which yields

Lv =













20.24 −18.79 −0.97

0.72 39.84 −0.48

−0.97 0.01 20.16













(78)

Finally, note that d1 ∈ R+ and d2 ∈ R+ for α = 1 and β = 1.

Figure 6 presents the results with the proposed event-triggered output feedback

adaptive control approach when ε y = 0.3, and εu = 0.3 are chosen, where the output of the

uncertain dynamical system achieves a good command following performance. In Figures

7 and 8, we fix ε y to 0.3 and change εu to 0.1 and 0.5, respectively. As expected from the

proposed theory, the variation on εu does not alter the command following performance

significantly. In addition, in Figures 9 and 10, we fix εu to 0.3 and change ε y to 0.1 and 0.5,

respectively, where it can be seen that the variation on ε y alters the command following

performance more than the variation in εu, as discussed earlier in this chapter. Finally,

output and control event triggers for the cases in Figures 6-10 are given in Figure 11,

where it can be seen that increasing ε y (respectively, εu) yields less output event triggers

when εu (respectively, less control event triggers when ε y) is fixed, which reduces network

utilization.

6. CONCLUSION

A critical task in the design and implementation of networked control systems is

to guarantee system stability while reducing wireless network utilization and achieving

a given system performance in the presence of system uncertainties. Motivating from

this standpoint, design and analysis of an event-triggered output feedback adaptive con-

trol methodology is presented for a class of uncertain dynamical systems in the presence
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Figure 6. Command following performance for the proposed event-triggered output feed-
back adaptive control approach with Γ= 50I, ε y = 0.3, and εu = 0.3.
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Figure 7. Command following performance for the proposed event-triggered output feed-
back adaptive control approach with Γ= 50I, ε y = 0.3, and εu = 0.1.



68

0 10 20 30 40 50 60 70 80
0

1

2

3

4

y
1
(t
)

t[s]

 

 
r
y

1

y
r

y
s1

0 10 20 30 40 50 60 70 80

−5

0

5

10

15

t[s]

u
(t
)

 

 
u

n

u
a

u
u

s

Figure 8. Command following performance for the proposed event-triggered output feed-
back adaptive control approach with Γ= 50I, ε y = 0.3, and εu = 0.5.
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Figure 9. Command following performance for the proposed event-triggered output feed-
back adaptive control approach with Γ= 50I, ε y = 0.1, and εu = 0.3.
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Figure 10. Command following performance for the proposed event-triggered output feed-
back adaptive control approach with Γ= 50I, ε y = 0.5, and εu = 0.3.
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Figure 11. Output and control event triggers for the cases in Figures 7–10.
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of two-way data exchange between the physical system and the proposed controller over

a wireless network. Specifically, we showed using tools and methods from nonlinear sys-

tems theory and Lyapunov stability in particular that the proposed feedback control ap-

proach guarantees system stability in the presence of system uncertainties. In addition, we

characterized and discussed the effect of user-defined thresholds and output feedback adap-

tive controller design parameters to the system performance and showed that the proposed

methodology does not yield to a Zeno behavior. Finally, we illustrated the efficacy of the

proposed adaptive control approach in a numerical example.
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ABSTRACT

The last decade has witnessed an increased interest in physical systems controlled

over wireless networks (networked control systems). These systems allow the computa-

tion of control signals via processors that are not attached to the physical systems, and

the feedback loops are closed over wireless networks. The contribution of this paper is

to design and analyze event-triggered decentralized and distributed adaptive control ar-

chitectures for uncertain networked large-scale modular systems; that is, systems consist

of physically-interconnected modules controlled over wireless networks. Specifically, the

proposed adaptive architectures guarantee overall system stability while reducing wireless

network utilization and achieving a given system performance in the presence of system

uncertainties that can result from modeling and degraded modes of operation of the mod-

ules and their interconnections between each other. In addition to the theoretical findings

including rigorous system stability and the boundedness analysis of the closed-loop dy-

namical system, as well as the characterization of the effect of user-defined event-triggering
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thresholds and the design parameters of the proposed adaptive architectures on the overall

system performance, an illustrative numerical example is further provided to demonstrate

the efficacy of the proposed decentralized and distributed control approaches.

Keywords: large-scale modular systems; networked control systems; uncertain dynamical

systems; event-triggered control; decentralized control; distributed control; system stability

and performance

1. INTRODUCTION

The design and implementation of decentralized and distributed architectures for

controlling complex, large-scale systems is a nontrivial control engineering task involving

the consideration of components interacting with the physical processes to be controlled.

In particular, large-scale systems are characterized by a large number of highly coupled

components exchanging matter, energy or information and have become ubiquitous given

the recent advances in embedded sensor and computation technologies. Examples of such

systems include, but are not limited to, multi-vehicle systems, communication systems,

power systems, process control systems and water systems (see, for example, [1, 2, 3, 4, 5,

6] and the references therein). This paper concentrates on an important class of large-scale

systems; namely, large-scale modular systems that consist of physically-interconnected and

generally heterogeneous modules.

1.1. Motivation and Literature Review. Two sweeping generalizations can be

made about large-scale modular systems. The first is that their complex structure and

large-scale nature yield to inaccurate mathematical module models, since it is a challenge

to precisely model each module of a large-scale system and the interconnections between

these modules. As a consequence, the discrepancies between the modules and their math-

ematical models, that is system uncertainties, result in the degradation of overall system

stability and the performance of the large-scale modular systems. To this end, adaptive

control methodologies [7, 8, 9, 10, 11, 12, 13] offer an important capability for this class of
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dynamical systems to learn and suppress the effect of system uncertainties resulting from

modeling and degraded modes of operation, and hence, they offer system stability and de-

sirable closed-loop system performance in the presence of system uncertainties without

excessively relying on mathematical models.

The second generalization about large-scale modular systems is that these systems

are often controlled over wireless networks, and hence, the communication costs between

the modules and their remote processors increase proportionally with the increase in the

number of modules and often the interconnection between these modules. To this end,

event-triggered control methodologies [14, 15, 16] offer new control execution paradigms

that relax the fixed periodic demand of computational resources and allow for the aperiodic

exchange of sensor and actuator information with the remote processor to reduce overall

communication cost over a wireless network. Note that adaptive control methodologies and

event-triggered control methodologies are often studied separately in the literature, where

it is of practical importance to theoretically integrate these two approaches to guarantee

system stability and the desirable closed-loop system performance of uncertain large-scale

modular systems with reduced communication costs over wireless networks, which is the

main focus of this paper.

More specifically, the authors of [17, 18, 19, 20, 21, 22, 23, 6] proposed decen-

tralized and distributed adaptive control architectures for large-scale systems; however,

these approaches do not make any attempts to reduce the overall communication cost over

wireless networks using, for example, event-triggered control methodologies. In addition,

the authors of [24, 25, 26, 27, 28, 29, 30] present decentralized and distributed control

architectures with event triggering; however, these approaches do not consider adaptive

control architectures and assume perfect models of the processes to be controlled; hence,

they are not practical for large-scale modular systems with significant system uncertain-

ties. Only the authors of [31, 32, 33, 34, 35, 36] present event-triggered adaptive control

approaches for uncertain dynamical systems. In particular, the authors of [31, 32] consider

data transmission from a physical system to the controller, but not vice versa, while de-
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veloping their adaptive control approaches to deal with system uncertainties. On the other

hand, the adaptive control architectures of the authors in [33, 34, 35, 36] consider two-way

data transmission over wireless networks; that is, from a physical system to the controller

and from the controller to this physical system. However, none of these approaches can be

directly applied to large-scale modular systems. This is due to the fact that large-scale mod-

ular systems require decentralized and distributed architectures, and direct application of

the results in [31, 32, 33, 34, 35, 36] to this class of systems can result in centralized archi-

tectures, which is not practically desired due to the large-scale nature of modular systems.

To summarize, there do not exist resilient adaptive control architectures for large-scale sys-

tems in the literature to deal with system uncertainties while reducing the communication

costs between the models and their remote processors.

1.2. Contribution. The contribution of this paper is to design and analyze event-

triggered decentralized and distributed adaptive control architectures for uncertain large-

scale systems controlled over wireless networks. Specifically, the proposed decentralized

and distributed adaptive architectures of this paper guarantee overall system stability while

reducing wireless network utilization and achieving a given system performance in the

presence of system uncertainties that can result from modeling and degraded modes of op-

eration of the modules and their interconnections between each other. From a theoretical

viewpoint, the proposed event-triggered adaptive architectures here can be viewed as a sig-

nificant generalization of our prior work documented in [35, 36] to large-scale modular

systems, which consider a state emulator-based adaptive control methodology with robust-

ness against high-frequency oscillations in the controller response [10, 37, 38, 39, 40, 41,

13, 42]. In this generalization, we also adopt necessary tools and methods from [23, 6]

on decentralized and distributed adaptive controller construction for large-scale modular

systems. In addition to the theoretical findings including rigorous system stability and

boundedness analysis of the closed-loop dynamical system and the characterization of the

effect of user-defined event-triggering thresholds, as well as the design parameters of the
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proposed adaptive architectures on the overall system performance, an illustrative numer-

ical example is further provided to demonstrate the efficacy of the proposed decentralized

and distributed control approaches.

1.3. Organization. The contents of the paper are as follows. In Section 2, we con-

sider an event-triggered decentralized adaptive control approach for large-scale modular

systems, where the considered approach assumes that physically-interconnected modules

cannot communicate with each other for exchanging their state information. Specifically,

Theorem 1 and Corollaries 1–4 show the main results of Section 2 subject to some struc-

tural conditions on the parameters of the large-scale modular systems and the proposed

event-triggered decentralized control architecture (see Assumptions 4 and 5). In Section

3, we consider an event-triggered distributed adaptive control approach in Theorem 2 and

Corollaries 5–7 for getting rid of such structural conditions, where the considered approach

assumes that physically-interconnected modules can locally communicate with each other

for exchanging their state information. Finally, the illustrative numerical example is pre-

sented in Section 4, and conclusions are summarized in Section 5.

1.4. Notation. The notation used in this paper is fairly standard. Specifically, R de-

notes the set of real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes

the set of n × m real matrices, R+ denotes the set of positive real numbers, Rn×n
+ denotes

the set of n × n positive-definite real matrices, Sn×n denotes the set of n × n symmetric

real matrices, Dn×n denotes the set of n × n real matrices with diagonal scalar entries, (·)T

denotes transpose, (·)−1 denotes inverse, tr(·) denotes the trace operator, diag(a) denotes

diagonal matrix with the vector a on its diagonal, and “,” denotes equality by definition.

In addition, we write λmin(A) (respectively, λmax(A)) for the minimum and respectively

maximum eigenvalue of the Hermitian matrix A, ‖ · ‖ for the Euclidean norm, and ‖ · ‖F for

the Frobenius matrix norm. Furthermore, we use “∨” for the “or” logic operator and “(·)”

for the “not” logic operator.
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We adopt graphs [43] to encode physical interactions and communications between

modules. In particular, an undirected graph G is defined byVG = {1, · · · ,N } of nodes and

a set EG ∈ VG × VG , of edges. If (i, j) ∈ EG , then the nodes i and j are neighbors and the

neighboring relation is indicated with i ∼ j. The degree of a node is given by the number

of its neighbors, where di denotes the degree of node i. Lastly, the adjacency matrix of a

graph G, A(G) ∈ RN×N , is given by

[A(G)]i j ,





1, if (i, j) ∈ EG ,

0, otherwise.
(1)

2. EVENT-TRIGGERED DECENTRALIZED ADAPTIVE CONTROL

In this section, we introduce an event-triggered decentralized adaptive control archi-

tecture, where it is assumed that physically-interconnected modules cannot communicate

with each other. For organizational purposes, this section is broken up into two subsections.

Specifically, we first briefly overview a standard decentralized adaptive control architecture

without event-triggering and then present the proposed event-triggered decentralized adap-

tive control approach, which includes rigorous stability and performance analyses with no

Zeno behavior and generalizations to the state emulator case for suppressing the effect of

possible high-frequency oscillations in the controller response.

2.1. Overview of a Standard Decentralized Adaptive Control Architecture With-

out Event-triggering. Consider an uncertain large-scale modular system S consisting of

N interconnected modules Si, i ∈ VG , given by:

Si : ẋi (t) = Ai xi (t) + Bi







Λiui (t) + ∆i (xi (t)) +
∑
i∼ j

δi j (x j (t))






, xi (0) = xi0, (2)
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where xi (t) ∈ Rni is the state of Si, ui (t) ∈ Rmi is the control input applied to Si, Ai ∈

Rni×ni , Bi (t) ∈ Rni×mi are known matrices and the pair (Ai,Bi) is controllable. In addition,

Λi ∈ R
mi×mi
+ ∩Dmi×mi is an unknown module control effectiveness matrix; ∆i : Rni → Rmi

represents matched module bounded uncertainties; and δi j : Rn j → Rmi represents matched

unknown physical interconnections with respect to module j, j ∈ VG , such that (i, j) ∈ EG .

Assumption 1. The unknown module uncertainty is parameterized as:

∆i (xi (t)) = W T
oi βi (xi (t)), xi ∈ R

ni , (3)

where Woi ∈ R
gi×mi is an unknown weight matrix, which satisfies ‖Woi‖F ≤ ω

∗
i , ω∗i ∈ R+,

and βi (xi (t)) : Rni → Rgi is a known Lipschitz continuous basis function vector satisfying:

‖ βi (x1i) − βi (x2i)‖ ≤ L βi‖x1i − x2i‖, (4)

with L βi ∈ R+.

Assumption 2. The function δi j (x j (t)) in Equation (2) satisfies:

‖δi j (x j (t))‖ ≤ αi j ‖x j (t)‖, αi j > 0, x j ∈ R
n j . (5)

Next, consider the reference model Sri capturing a desired closed-loop performance

for module i, i ∈ VG given by:

Sri : ẋri (t) = Ari xri (t) + Brici (t), xri (0) = xri0, (6)

where xri (t) ∈ Rni is the reference state vector of Sri, ci (t) ∈ Rmi is a given bounded

command of Sri, Ari ∈ R
ni×ni is the reference system matrix and Bri ∈ R

ni×mi is the

command input matrix.

Assumption 3. There exist K1i ∈ R
mi×ni and K2i ∈ R

mi×mi , such that Ari =

Ai − BiK1i and Bri = BiK2i hold with Ari being Hurwitz.
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Using Assumptions 1 and 3, Equation (2) can be equivalently written as:

ẋi (t) = Ari xi (t) + Brici (t) + BiΛi
[
ui (t) + W T

i σi (xi (t),ci (t))
]

+ Bi

∑
i∼ j

δi j (x j (t)), (7)

where Wi ,
[
Λ−1

i W T
oi , Λ

−1
i KT

1i , Λ
−1
i KT

2i

]T
∈ R(gi+ni+mi )×mi is the unknown weight ma-

trix and σi
(
xi (t),ci (t)

)
,

[
βT

i (xi (t)) , xT
i (t) , cT

i (t)
]T
∈ Rgi+ni+mi . Motivated from the

structure of the uncertain terms appearing in Equation (7), let the decentralized adaptive

feedback controller of Si, i ∈ VG , be given by:

Ci : ui (t) , −Ŵi (t)Tσi (xi (t),ci (t)) , (8)

where Ŵi (t) is an estimate of Wi satisfying the update law:

˙̂Wi (t) , γiProjm
[
Ŵi (t) , σi (xi (t),ci (t)) (xi (t) − xri (t))T Pi Bi

]
, Ŵi (0) = Ŵi0, (9)

where Projm denotes the projection operator defined for matrices [44, 45, 10, 35], γi ∈ R+

being the learning rate and Pi ∈ R
ni×ni
+ ∩Sni×ni being a solution of the Lyapunov equation:

0 = AT
ri Pi + Pi Ari + Ri, (10)

with Ri ∈ R
ni×ni
+ ∩ Sni×ni . Now, letting:

ei (t) , xi (t) − xri (t), (11)

W̃i (t) , Ŵi (t) −Wi, (12)

and using Equations (6) and (7), the module-level closed-loop error dynamics are given by:

ėi (t) = Ariei (t) − BiΛiW̃ T
i (t)σi (xi (t),ci (t)) + Bi

∑
i∼ j

δi j (x j (t)), ei (t) = ei0. (13)
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2.2. Proposed Event-triggered Decentralized Adaptive Control Architecture.

We now present the proposed event-triggered decentralized adaptive control architecture

for large-scale modular systems, which reduces wireless network utilization and allows a

desirable command tracking performance during the two-way data exchange between the

module Si, i ∈ VG , and its local controller Ci, over a wireless network. For this objective,

we utilize event-triggering control theory to schedule the data exchange dependent on errors

exceeding user-defined thresholds. Specifically, the module sends its state signal to its

local adaptive controller only when a predefined event occurs. The ki-th time instants of

the state transmission of the module are represented by the monotonic sequence
{
ski

}∞
ki=1,

where ski ∈ R+. The local controller uses this triggered module state signal to compute the

control signal using adaptive control architecture. In addition, the local controller sends the

updated feedback control input to the module only when another predefined event occurs.

The ji-th time instants of the feedback control transmission are then represented by the

monotonic sequence
{
r ji

}∞
ji=1

, where r ji ∈ R+. As depicted in Figure 1, each module

state signal and its local control input are held by a zero-order-hold operator (ZOH) until

the next triggering event for the corresponding signal takes place. The delay in sampling,

data transmission and computation is not considered in this paper. Consider the uncertain

dynamical module i given by:

Si : ẋi (t) = Ai xi (t) + Bi







Λiusi (t) + ∆i (xi (t)) +
∑
i∼ j

δi j (x j (t))






, xi (0) = xi0, (14)

where usi (t) ∈ Rmi is the sampled control input vector. Using Assumptions 1 and 3, Equa-

tion (14) can be equivalently written as:

ẋi (t) = Ari xi (t) + Brici (t) + BiΛi
[
usi (t) + W T

i σi (xi (t), xsi (t),ci (t))
]

+ Bi

∑
i∼ j

δi j (x j (t))

+BiΛi (usi (t) − ui (t)) + BiK1i (xsi (t) − xi (t)), (15)
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where xsi (t) ∈ Rni is the sampled state vector, σi (xi (t), xsi (t),ci (t)) ,
[
βT

i (xi (t)) , xT
si (t)

, cT
i (t)

]T
∈ Rgi+ni+mi . Now, let the adaptive feedback control law be given by:

Ci : ui (t) = −Ŵi (t)Tσi (xsi (t),ci (t)) , (16)

where σi (xsi (t),ci (t)) =
[
βT

i (xsi (t)) , xT
si (t) , cT

i (t)
]T
∈ Rgi+ni+mi , and Ŵi (t) satisfies the

weight update law:

˙̂Wi (t) = γiProjm
[
Ŵi (t) , σi (xsi (t),ci (t)) eT

si (t)Pi Bi
]
, Ŵi (0) = Ŵi0, (17)

with esi (t) , xsi (t) − xri (t) ∈ Rni being the error of the triggered module state vector. Note

that using Equation (16), Equation (15) can be rewritten as:

ẋi (t) =Ari xi (t) + Brici (t) − BiΛiW̃ T
i (t)σi (xsi (t),ci (t)) − BiΛigi (·) + Bi

∑
i∼ j

δi j (x j (t))

+ BiΛi (usi (t) − ui (t)) + BiK1i (xsi (t) − xi (t)), (18)

where gi (·) , W T
i [σi (xsi (t),ci (t)) − σi (xi (t), xsi (t),ci (t))], and using Equations (18) and

(6), we can write the module error dynamics as:

ėi (t) =Ariei (t) − BiΛiW̃ T
i (t)σi (xsi (t),ci (t)) − BiΛigi (·) + Bi

∑
i∼ j

δi j (x j (t))

+ BiΛi (usi (t) − ui (t)) + BiK1i (xsi (t) − xi (t)) (19)

The proposed event-triggered decentralized adaptive control algorithm is based on

the two-way data exchange structure depicted in Figure 1, where the local controller gener-

ates ui (t) and the uncertain dynamical module is driven by the sampled version of its local

control signal usi (t) depending on an event-triggering mechanism. Similarly, the local con-

troller utilizes xsi (t) that represents the sampled version of the uncertain dynamical module

state xi (t) depending on an event-triggering mechanism. For this purpose, let ε xi ∈ R+ be a
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given, user-defined sensing threshold to allow for data transmission from the uncertain dy-

namical system to the controller. In addition, let εui ∈ R+ be a given, user-defined actuation

threshold to allow for data transmission from the local controller to the uncertain dynami-

cal module. Similar in fashion to [33, 35], we now define three logic rules for scheduling

the two-way data exchange:

E1i : ‖xsi (t) − xi (t)‖ ≤ ε xi, (20)

E2i : ‖usi (t) − ui (t)‖ ≤ εui, (21)

E3i : The controller receives xsi (t). (22)

Specifically, when the inequality in Equation (20) is violated at the ski moment of

the ki-th time instant, the uncertain module triggers the measured state signal information,

such that xsi (t) is sent to its local controller. Likewise, when Equation (21) is violated or

the local controller receives a new transmitted module state from the uncertain dynamical

system (i.e., when E2i ∨ E3i is true), then the local controller sends a new control input

usi (t) to the uncertain dynamical module at the r ji moment of the ji-th time instant.

We now analyze the system stability and performance of the proposed event-triggered

decentralized adaptive control algorithm introduced in this section using the error dynam-

ics given by Equation (19), as well as the data exchange rules E1i, E2i, and E3i respectively

given by Equations (20)–(22). For organizational purposes, the rest of this section, is di-

vided into four subsections. Specifically, we analyze the uniform ultimate boundedness of

the resulting closed-loop dynamical system in Section 2.2.1, compute the ultimate bound

and highlight the effect of user-defined thresholds and the adaptive controller design param-

eters on this ultimate bound in Section 2.2.2, show that the proposed architecture does not

yield to a Zeno behavior in Section 2.2.3 and generalize the decentralized event-triggered

adaptive control algorithm using a state emulator-based framework in Section 2.2.4.

2.2.1. Stability analysis and uniform ultimate boundedness. We now present

the first result of this paper, where the following assumption is needed.
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Event Triggering Mechanism

ZOH

ZOH

Uncertain Large-Scale Module

Adaptive Controller

Figure 1. Event-triggered adaptive control for large-scale modular systems.

Assumption 4. D1i , λmin(Ri)−2λmax(Pi)‖Bi‖F
∑

i∼ j αi j−
∑

i∼ j λmax(Pj )‖B j ‖Fα ji

is positive by suitable selection of the design parameters.

Theorem 1. Consider the uncertain large-scale modular system S consisting of N

interconnected modules Si described by Equation (14) subject to Assumptions 1–4. Con-

sider, in addition, the reference model given by Equation (6), and the module feedback

control law given by Equations (16) and (17). Moreover, let the data transmission from

the uncertain dynamical module to the local controller occur when E1i is true and the data

transmission from the controller to the uncertain dynamical system occur when E2i ∨ E3i

is true. Then, the closed-loop solution (ei (t),W̃i (t)) is uniformly ultimately bounded for all

i = 1,2, ...,N .

Proof. Since the data transmission from the uncertain modules to their local con-

trollers and from the local controllers to the uncertain modules occur when E1i and E2i∨E3i

are true, respectively, note that ‖xsi (t) − xi (t)‖ ≤ ε xi and ‖usi (t) − ui (t)‖ ≤ εui hold. Con-

sider now the Lyapunov-like function given by:

Vi (ei,W̃i) = eT
i Piei + γ−1

i tr
(
(W̃iΛ

1
2
i )T(W̃iΛ

1
2
i )

)
. (23)
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Note that Vi (0,0) = 0 and Vi (ei,W̃i) > 0 for all (ei,W̃i) , (0,0). The time-derivative of

Equation (23) is given by:

V̇i (ei (t),W̃i (t))

= 2eT
i (t)Pėi (t) + 2γ−1

i tr
(
W̃ T

i (t) ˙̃Wi (t)Λi
)

≤ 2eT
i (t)Pi

(
Ariei (t) − BiΛiW̃ T

i (t)σi (xsi (t),ci (t)) − BiΛigi (·) + Bi

∑
i∼ j

δi j (x j (t))

+BiΛi (usi (t) − ui (t)) + BiK1i (xsi (t) − xi (t))
)

+ 2tr
(
W̃ T

i (t)Λiσi (xsi (t),ci (t)) eT
si (t)

·Pi Bi
)

≤ −eT
i (t)Riei (t) − 2eT

i (t)Pi BiΛigi (·) + 2eT
i (t)Pi Bi

∑
i∼ j

δi j (x j (t)) + 2eT
i (t)Pi BiΛi

·(usi (t) − ui (t)) + 2eT
i (t)Pi BiK1i (xsi (t) − xi (t)) + 2tr

(
W̃ T

i (t)Λiσi (xsi (t),ci (t))

·(xsi (t) − xi (t))TPi Bi
)

≤ −λmin(Ri)‖ei (t)‖2 + 2‖ei (t)‖λmax(Pi)‖Bi‖F‖Λi‖F‖gi (·)‖

+‖2ei (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖ + 2‖ei (t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2‖ei (t)‖λmax(Pi)

·‖Bi‖F‖K1i‖Fε xi + 2‖W̃i (t)‖F‖Λi‖F‖σi (xsi (t),ci (t)) ‖ε xiλmax(Pi)‖Bi‖F. (24)

It follows from Assumption 1 that an upper bound for ‖gi (·)‖ in Equation (24) can be given

by:

‖gi (·)‖ =






W T

i [σi (xsi (t),ci (t)) − σi (xi (t), xsi (t),ci (t))]





≤ ‖Λ−1
i ‖Fω

∗
i L βi︸           ︷︷           ︸

Kgi

‖xsi (t) − xi (t)‖ ≤ Kgiε xi, (25)

where Kgi ∈ R+. In addition, one can compute an upper bound for ‖σi (xsi (t),ci (t)) ‖ in
Equation (24) as:

‖σi (xsi (t),ci (t)) ‖ ≤ ‖ βi (xsi (t))‖ + ‖xsi (t)‖ + ‖ci (t)‖

≤ L βi‖xsi (t)‖ + ‖xsi (t)‖ + ‖ci (t)‖



89

= (L βi + 1)ε xi + (L βi + 1)‖ei (t)‖ + (L βi + 1)x∗ri + ‖ci (t)‖, (26)

where ‖xri (t)‖ ≤ x∗ri. Then, using the bounds given by Equations (25) and (26) in Equa-
tion (24), one can write:

V̇i (ei (t),W̃i (t))

≤ −λmin(Ri)‖ei (t)‖2 +
(
2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+2λmax(Pi)‖Bi‖F‖K1i‖Fε xi + 2‖W̃i (t)‖F‖Λi‖F(L βi + 1)λmax(Pi)‖Bi‖Fε xi
)
‖ei (t)‖

+2‖W̃i (t)‖F‖Λi‖F
(
(L βi + 1)ε xi + (L βi + 1)x∗ri + ‖ci (t)‖

)
λmax(Pi)‖Bi‖Fε xi

+‖2ei (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖

= −c1i‖ei (t)‖2 + c2i‖ei (t)‖ + c3i + ‖2ei (t)Pi Biδi j (x j (t))‖, (27)

where c1i , λmin(Ri), c2i , 2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui +

2λmax(Pi)‖Bi‖F‖K1i‖F·ε xi + 2w̃∗i ‖Λi‖F(L βi+1)λmax(Pi)‖Bi‖Fε xi and c3i , 2w̃∗i ‖Λi‖F
(
(L βi+

1)ε xi + (L βi + 1)x∗ri + ‖ci (t)‖
)
λmax(Pi)‖Bi‖Fε xi with | |W̃i (t) | |F ≤ w̃∗i due to utilizing the

projection operator in the weight update law given by Equation (9).

Since x j (t) = e j (t) + xr j (t) with ‖xr j (t)‖ ≤ x∗r j , it follows from Assumption 2 that:

‖
∑
i∼ j

δi j (x j (t))‖ ≤
∑
i∼ j

αi j
[
‖e j (t)‖ + x∗r j

]
. (28)

Furthermore, using Equation (28) in the last term of Equation (27) results in:

‖2ei (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖ ≤ 2λmax(Pi)‖ei (t)‖‖Bi‖F‖
∑
i∼ j

δi j (x j (t))‖

≤ 2λmax(Pi)‖ei (t)‖‖Bi‖F

∑
i∼ j

αi j
[
‖e j (t)‖ + x∗r j

]
≤ λmax(Pi)‖Bi‖F

∑
i∼ j

αi j
[
2‖ei (t)‖‖e j (t)‖ + 2‖ei (t)‖x∗r j

]
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≤ λmax(Pi)‖Bi‖F

∑
i∼ j

αi j
[
2‖ei (t)‖2 + ‖e j (t)‖2 + x∗r j

2
]
, (29)

where Young’s inequality [46] is considered in the scalar form of 2xy ≤ νx2 + y2/ν, where

x, y ∈ R and ν > 0, and applied to terms ‖ei (t)‖‖e j (t)‖ and ‖ei (t)‖x∗r j with ν = 1. Hence,

Equation (27) becomes:

V̇i (ei (t),W̃i (t)) ≤ −
[

c1i − 2λmax(Pi)‖Bi‖F

∑
i∼ j

αi j︸                               ︷︷                               ︸
d1i

]
‖ei (t)‖2

+ λmax(Pi)‖Bi‖F︸            ︷︷            ︸
f i

∑
i∼ j

αi j ‖e j (t)‖2 + c2i‖ei (t)‖ + ϕi, (30)

where ϕi , c3i + λmax(Pi)‖Bi‖F
∑

i∼ j αi j x∗r j
2.

Introducing:

V (·) =

N∑
i=1

Vi (ei (t),W̃i (t)), (31)

for the uncertain system S results in:

V̇ (·) ≤
N∑

i=1

[
− d1i‖ei (t)‖2 + fi

∑
i∼ j

αi j ‖e j (t)‖2 + c2i‖ei (t)‖ + ϕi
]

=

N∑
i=1

[
−

(
d1i −

∑
i∼ j

f jα ji︸            ︷︷            ︸
D1i

)
‖ei (t)‖2 + c2i‖ei (t)‖ + ϕi

]
, (32)

where D1i > 0 is defined in Assumption 4. Letting ea (t) ,
[
‖e1(t)‖, . . . , ‖eN (t)‖

]T,

D1 , diag
( [

D11, . . . , D1N
] )

, C2 , diag
( [

c21, . . . ,c2N
] )

and ϕa ,
∑N

i=1 ϕi, Equation (32)

can equivalently be written as:

V̇ (·) ≤ −eT
a (t)D1ea (t) + C2ea (t) + ϕa

≤ −λmin(D1)‖ea (t)‖2 + λmax(C2)‖ea (t)‖ + ϕa, (33)
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When ‖ea (t)‖ > ψ, this renders V̇ (·) < 0, where ψ ,
λmax (C2)

2
√
λmin (D1)

+

√
λ2

max (C2)
4λmin (D1) +ϕa

√
λmin(D1)

. Hence,

ei (t) and W̃i (t) are uniformly ultimate bounded for all i = 1,2, ... ,N . �

2.2.2. Computation of the ultimate bound for system performance assessment.

For revealing the effect of user-defined thresholds and the event-triggered feedback adap-

tive controller design parameters to the system performance, the next corollary presents a

computation of the ultimate bound for the system S. For this purpose, we define the fol-

lowing, Pmin , diag
( [
λmin(P1) , . . . , λmin(PN )

] )
, Pmax , diag

( [
λmax(P1), . . . ,

λmax(PN )
] )

, γa , diag
( [
γ−1

1 , . . . , γ−1
N

] )
, Λa , diag ([‖Λ1‖F, . . . , ‖ΛN ‖F]), W̃a (t) ,[

‖W̃1(t)‖F, . . . , ‖W̃N (t)‖F
]T.

Corollary 1. Consider the uncertain dynamical system S consisting of N intercon-

nected modules Si described by Equation (14) subject to Assumptions 1–4. Consider, in

addition, the reference model given by Equation (6), and the module feedback control law

given by Equations (16) and (17). Moreover, let the data transmission from the uncertain

modules to their local controllers occur when E1i is true and the data transmission from

the controllers to the uncertain modules occur when E2i ∨ E3i is true. Then, the ultimate

bound of the system error between the uncertain dynamical system and the reference model

is given by:

| |ea (t) | | ≤ Φ̃λ
− 1

2
min(Pmin), t ≥ T, (34)

where:

Φ̃ ,
[
λmax(Pmax)ψ2 + λmax(γa)λmax(Λa)‖W̃a (t)‖2

] 1
2 . (35)

Proof. It follows from the proof of Theorem 1 that V̇ (ea (t),W̃a (t)) ≤ 0 outside the com-

pact set given by:

S , {ea (t) : ‖ea (t)‖ ≤ ψ} . (36)
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That is, since V (ea (t),W̃a (t)) cannot grow outside S, the evolution of V (ea (t),W̃a (t)) is

upper bounded by:

V (ea (t),W̃a (t)) ≤ max
ea (t)∈S

V (ea (t),W̃a (t))

= λmax(Pmax)ψ2 + λmax(γa)λmax(Λa)‖W̃a (t)‖2

= Φ̃
2 (37)

It follows from eT
a Pminea ≤ V (ea,W̃a) that ‖ea (t)‖2 ≤ Φ̃2

λmin(Pmin) , and Equation (34) is im-

mediate. �

2.2.3. Computation of the event-triggered inter-sample time lower bound. We

now show that the proposed event-triggered decentralized adaptive control architecture

does not yield to a Zeno behavior, which implies that it does not require a continuous

two-way data exchange and reduces wireless network utilization. For the following corol-

lary presenting the result of this subsection, we consider r ki
qi ∈

(
ski , ski+1

)
to be the qi-th

time instant when E2i is violated over
(
ski , ski+1

)
, and since

{
ski

}∞
ki=1 is a subsequence of{

r ji

}∞
ji=1

, it follows that
{
r ji

}∞
ji=1

=
{
ski

}∞
ki=1

⋃ {
r ki

qi

}∞,mki

ki=1,qi=1
, where mki ∈ N is the number

of violation times of E2i over
(
ski , ski+1

)
.

Corollary 2. Consider the uncertain dynamical system S consisting of N intercon-

nected modules Si described by Equation (14) subject to Assumptions 1–4. Consider, in

addition, the reference model given by Equation (6), and the module feedback control law

given by Equations (16) and (17). Moreover, let the data transmission from the uncertain

dynamical module to the local controller occur when E1i is true and the data transmission

from the controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then,

there exist positive scalars αxi ,
ε xi
Φ1i

and αui ,
εui
Φ2i

such that:

ski+1 − ski > αxi, ∀ki ∈ N, (38)

r ki
qi+1 − r ki

qi > αui, ∀qi ∈
{
0, ...,mki

}
, ∀ki ∈ N. (39)

Proof. The time derivative of ‖xsi (t) − xi (t)‖ over t ∈
(
ski , ski+1

)
, ∀ki ∈ N, is
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given by:

d
dt
‖xsi (t) − xi (t)‖

≤ ‖ ẋsi (t) − ẋi (t)‖ = ‖ ẋi (t)‖

≤ ‖Ari‖F
[
‖ei (t)‖ + x∗ri

]
+ ‖Bri‖F‖ci (t)‖ + ‖Bi‖F‖Λi‖Fw̃

∗
i

[
L βi

(
ε xi + ‖ei (t)‖

+ x∗ri
)

+ ‖K1i‖F
(
ε xi + ‖ei (t)‖ + x∗ri

)
+ ‖K2i‖F‖ci (t)‖

]
+ ‖Bi‖F‖Λi‖FKgiε xi

+ ‖Bi‖F

∑
i∼ j

αi j
(
‖e j (t)‖ + x∗r j

)
+ ‖Bi‖F‖Λi‖Fεui + ‖Bi‖F‖K1i‖Fε xi . (40)

Since the closed-loop dynamical system is uniformly ultimately bounded by Theorem 1,

there exists an upper bound to Equation (40). Letting Φ1i denote this upper bound and with

the initial condition satisfying limt→s+
ki
‖xsi (t) − xi (t)‖ = 0, it follows from Equation (40)

that:

‖xsi (t) − xi (t)‖ ≤ Φ1i (t − ski ), ∀t ∈ (ski , ski+1). (41)

Therefore, when E1i is true, then limt→s−
ki+1
‖xsi (t) − xi (t)‖ = ε xi, and it then follows from

Equation (41) that ski+1 − ski ≥ αxi.

Similarly, the time derivative of ‖usi (t) − ui (t)‖ over t ∈
(
r ki

qi ,r
ki
qi+1

)
,∀qi ∈ N, is

given by:

d
dt
‖usi (t) − ui (t)‖

≤ ‖u̇si (t) − u̇i (t)‖ = ‖u̇i (t)‖

=









˙̂W T
i (t)σi (xsi (t),ci (t)) + Ŵ T

i (t)σ̇i (xsi (t),ci (t))









≤ γi ‖Bi‖F λmax(Pi) ‖esi (t)‖ ‖σi (xsi (t),ci (t))‖2 + ‖Λ−1
i ‖F‖K2i‖F‖ċi (t)‖

≤ γi ‖Bi‖F λmax(Pi) (‖ei (t)‖ + ε xi)
[
L βi (ε xi + ‖ei (t)‖ + x∗ri) + ‖K1i‖F(ε xi

+ ‖ei (t)‖ + x∗ri) + ‖K2i‖F‖ci (t)‖
]2

+ ‖Λ−1
i ‖F‖K2i‖F‖ċi (t)‖. (42)
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Once again, since the closed-loop dynamical system is uniformly ultimately bounded by

Theorem 1, there exists an upper bound to Equation (42). Letting Φ2i denote this upper

bound, and with the initial condition satisfying limt→rki+qi

‖usi (t) − ui (t)‖ = 0, it follows

from Equation (42) that:

‖usi (t) − ui (t)‖ ≤ Φ2i (t − r ki
qi ), ∀t ∈

(
r ki

qi ,r
ki
qi+1

)
. (43)

Therefore, when Ē2i ∨ E3i is true, then limt→rki−
qi+1
‖usi (t) − ui (t)‖ = εui, and it then follows

from Equation (43) that r ki
qi+1 − r ki

qi ≥ αui. �

Corollary 2 shows that the inter-sample times for the module state vector and de-

centralized feedback control vector are bounded away from zero, and hence, the proposed

event-triggered adaptive control approach does not yield to a Zeno behavior. As dis-

cussed earlier, this implies that the proposed event-triggered decentralized adaptive control

methodology does not require a continuous two-way data exchange, and it reduces wireless

network utilization.

2.2.4. Generalizations to the event-triggered decentralized adaptive control

with state emulator. We now generalize our framework to a state emulator-based design,

since this framework has the capability to suppress possible high-frequency oscillation in

the control signal of the uncertain module Si [37, 38, 39, 40, 41, 13, 42, 10]. Consider the

(modified) reference system, so-called the state emulator of Si, given by:

˙̂xi (t) = Ari x̂i (t) + Brici (t) + Li (xsi (t) − x̂i (t)) , x̂i (0) = x̂i0, (44)

where Li ∈ R
ni×ni
+ ∩Dni×ni is the state emulator gain. Letting êi (t) , x̂i (t)−xri (t) ∈ Rni , the

reference model error dynamics capturing the difference between the ideal reference model

in Equation (6) and the state emulator-based (modified) reference model in Equation (44)

is given by:

˙̂ei (t) = Ari êi (t) + Li (xsi (t) − x̂i (t)) . (45)
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In addition, letting x̃i (t) , xi (t)− x̂i (t) ∈ Rni to denote the system state error vector,

the (state emulator-based) system error dynamics follows from Equations (18) and (44) as:

˙̃xi (t) = ALi x̃i (t) − BiΛiW̃ T
i (t)σi (xsi (t),ci (t)) − BiΛigi (·) + Bi

∑
i∼ j

δi j (x j (t))

+BiΛi (usi (t) − ui (t)) + (BiK1i − Li)(xsi (t) − xi (t)), x̃i (0) = x̃i0, (46)

where ALi , Ari − Li ∈ R
ni×ni is Hurwitz by a suitable selection of the state emulator

gain Li (e.g., ALi is Hurwitz with Li = κi I, κi ∈ R+, since Ari is Hurwitz). To maintain

system stability, we utilize the adaptive controller given by Equation (16) with the update

law described by:

˙̂Wi (t) , γiProjm
[
Ŵi (t) , σi (xsi (t),ci (t)) (xsi (t) − x̂i (t))TPi Bi

]
, Ŵi (0) = Ŵi0, (47)

where Pi ∈ R
ni×ni
+ ∩ Sni×ni is the unique solution of the algebraic Riccati equation:

0 = AT
Li Pi + Pi ALi − Pi Bi R−1

i BT
i Pi + Qi, (48)

with Ri ∈ R
mi×mi
+ ∩ Sni×ni and Qi ∈ R

ni×ni
+ ∩ Sni×ni .

Note from [42, 10] that the state emulator-based adaptive control framework achieves

stringent transient and steady-state system performance specifications by judiciously choos-

ing the learning rate γi and the state emulator gain Li without causing high-frequency os-

cillations in the controller response, unlike standard model reference adaptive controllers

overviewed earlier in this section. We also note that if one selects Li = 0, then the results

of this paper hold for standard model reference adaptive controllers, and hence, there is no

loss in generality in using a state emulator-based adaptive control framework for the main

results of this paper.

Consider a parameter-dependent Riccati equation [23, 47] given by:

0 = AT
ri P̃i + P̃i Ari + Q̃i, (49)

Q̃i = µi P̃i Li LT
i P̃i + Q̃oi, (50)
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where P̃i ∈ R
ni×ni
+ is a unique solution with Q̃oi ∈ R

ni×ni
+ and µi > 0.

Remark 1 [23]. Let 0 < µi < µ̄i define the largest set within which there is a

positive-definite solution for P̃i. Since P̃i > 0 for µi = 0 and P̃i > 0 depends continuously

on µi, the existence of P̃i (µi) > 0 for 0 < µi < µ̄i is assured.

The next lemma shows that for µi < µ̄i, Equations (49) and (50) can reliably be

solved for P̃i > 0 using the Potter approach given in [48]. This also implies that µ̄i can be

determined by searching for the boundary value, µ̄i. We employ notation ric(·) and dom(·)

as defined in [48].

Lemma 1 [23, 48]. Let P̃i > 0 satisfy the parameter dependent Riccati equation

given by Equations (49) and (50), and let the modified Hamiltonian be given by:

Hi =









Ari µi Li LT
i

−Q̃oi −AT
ri









. (51)

Then, for all 0 < µi < µ̄i, Hi ∈ dom(ric) and P̃i = ric(Hi).

Assumption 5. D1i , λmin(Qi) − λmin(R−1
i )λ2

max(Pi)‖Bi‖
2
F −

li
µi
− 3λmax(Pi)‖Bi‖F

·
∑

i∼ j αi j−
∑

i∼ j λmax(Pj )‖B j ‖Fα ji and D2i , liλmin(Q̃oi)−
∑

i∼ j λmax(Pj )‖B j ‖Fα ji, li > 0,

are positive by suitable selection of the design parameters.

Corollary 3. Consider the uncertain dynamical system S consisting of N inter-

connected modules Si described by Equation (14) subject to Assumptions 1–3 and 5.

Consider in addition, the ideal reference model given by Equation (6), the state emula-

tor given by Equation (44) and the module feedback control law given by Equations (16)

and (47). Moreover, let the data transmission from the uncertain dynamical module to the

local controller occur when E1i is true and the data transmission from the controller to the

uncertain dynamical system occur when E2i ∨ E3i is true. Then, the closed-loop solution

( x̃i (t),W̃i (t), êi (t)) is uniformly ultimately bounded for all i = 1,2, ...,N .

Proof. Consider the Lyapunov-like function given by:

Vi ( x̃i,W̃i, êi) = x̃T
i Pi x̃i + γ−1

i tr(W̃iΛ
1
2
i )T(W̃iΛ

1
2
i ) + li êT

i P̃i êi, (52)
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where li > 0 and P̃i > 0 satisfies the parameter dependent Riccati equation in Equa-
tions (49) and (50). Note that Vi (0,0,0) = 0 and Vi ( x̃i,W̃i, êi) > 0 for all ( x̃i,W̃i, êi) ,

(0,0,0). The time-derivative of Equation (52) is given by:

V̇i ( x̃i (t),W̃i (t), êi (t))

= 2x̃T
i (t)Pi ˙̃xi (t) + 2γ−1

i tr(W̃i (t)Λ
1
2
i )T( ˙̃Wi (t)Λ

1
2
i ) + 2li êT

i (t)P̃i ˙̂ei (t)

≤ 2x̃T
i (t)Pi

[
ALi x̃i (t) − BiΛiW̃ T

i (t)σi (xsi (t),ci (t)) − BiΛigi (·) + Bi

∑
i∼ j

δi j (x j (t))

+ BiΛi
(
usi (t) − ui (t)

)
+ (BiK1i − Li)(xsi (t) − xi (t))

]
+ 2trW̃ T

i (t)σi (xsi (t),ci (t))

· (xsi (t) − x̂i (t))TPi BiΛi + 2li êT
i (t)P̃i

[
Ari êi (t) + Li (xsi (t) − x̂i (t))

]
≤ − x̃T

i (t)Qi x̃i (t) + x̃T
i (t)Pi Bi R−1

i BT
i Pi x̃i (t) − 2x̃T

i (t)Pi BiΛigi (·) + 2x̃T
i (t)Pi Bi

·
∑
i∼ j

δi j (x j (t)) + 2x̃T
i (t)Pi BiΛi

(
usi (t) − ui (t)

)
+ 2x̃T

i (t)Pi (BiK1i − Li)(xsi (t)

− xi (t)) + 2trW̃i (t)Tσi (xsi (t),ci (t)) (xsi (t) − xi (t))TPi BiΛi − li êT
i (t)Q̃oi êi (t)

− li êT
i (t)µi P̃i Li LT

i P̃i êi (t) + 2li êT
i (t)P̃i Li (xsi (t) − xi (t)) + 2li êT

i (t)P̃i Li x̃i (t). (53)

Young’s inequality [46] applied to the last term in Equation (53) produces:

2li êT
i (t)P̃i Li x̃i (t) ≤ µili êT

i (t)P̃i Li LT
i P̃i êi (t) +

li

µi
x̃T

i (t) x̃i (t). (54)

Using Equation (54) in Equation (53) yields:

V̇i ( x̃i (t),W̃i (t), êi (t))

≤ − x̃T
i (t)Qi x̃i (t) + x̃T

i (t)Pi Bi R−1
i BT

i Pi x̃i (t) − 2x̃T
i (t)Pi BiΛigi (·) + 2x̃T

i (t)Pi Bi

·
∑
i∼ j

δi j (x j (t)) + 2x̃T
i (t)Pi BiΛi

(
usi (t) − ui (t)

)
+ 2x̃T

i (t)Pi (BiK1i − Li)(xsi (t) − xi (t))

+ 2trW̃ T
i (t)(xsi (t) − xi (t))TPi BiΛi − li êT

i (t)Q̃oi êi (t) + 2li êT
i (t)P̃i Li (xsi (t) − xi (t))

+
li

µi
x̃T

i (t) x̃i (t)
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≤ −λmin(Ri)‖ x̃i (t)‖2 + λmin(R−1
i )λ2

max(Pi)‖Bi‖
2
F‖ x̃i (t)‖2 + 2λmax(Pi)‖Bi‖F‖Λi‖F‖gi (·)‖

· ‖ x̃i (t)‖ + ‖2x̃i (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖ + 2‖ x̃i (t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2‖ x̃i (t)‖

· λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
ε xi + 2‖W̃i (t)‖F‖σi (xsi (t),ci (t)) ‖ε xiλmax(Pi)‖Bi‖F‖Λi‖F

− liλmin(Q̃oi)‖êi (t)‖2 + 2li‖êi (t)‖λmax(P̃i)‖Li‖Fε xi +
li

µi
‖ x̃i (t)‖2. (55)

Using Equations (25) and (26), Equation (55) can be written:

V̇i ( x̃i (t),W̃i (t), êi (t))

≤ −

(
λmin(Qi) − λmin(R−1

i )λ2
max(Pi)‖Bi‖

2
F −

li

µi

)
‖ x̃i (t)‖2 − liλmin(Q̃oi)‖êi (t)‖2

+
(
2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)‖Bi‖F‖K1i‖Fε xi

+ 2‖W̃i (t)‖F‖Λi‖F(L βi + 1)λmax(Pi)‖Bi‖Fε xi
)
‖ x̃i (t)‖ + 2‖W̃i (t)‖F‖Λi‖F

(
(L βi + 1)ε xi

+ (L βi + 1)x∗ri + ‖ci (t)‖
)
λmax(Pi)‖Bi‖Fε xi + ‖2x̃i (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖ + 2liλmax(P̃i)

· ‖Li‖Fε xi‖êi (t)‖

= −c1i‖ x̃i (t)‖2 − c2i‖êi (t)‖2 + c3i‖ x̃i (t)‖ + c4i‖êi (t)‖ + c5i + ‖2x̃i (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖,

(56)

where c1i , λmin(Qi) − λmin(R−1
i )λ2

max(Pi)‖Bi‖
2
F −

li
µi

, c2i , liλmin(Q̃oi), c3i ,

2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)‖Bi‖F‖K1i‖Fε xi + 2w̃∗i

‖Λi‖(L βi + 1)λmax(Pi)‖Bi‖Fε xi, c4i , 2liλmax(P̃i) ‖Li‖Fε xi and c5i , 2w̃∗i ‖Λi‖F
(
(L βi +

1)ε xi + (L βi + 1)x∗ri + ‖ci (t)‖
)
λmax(Pi)‖Bi‖Fε xi.

Since x j (t) = x̃ j (t) + ê j (t) + xr j (t), it follows from Assumption 2 that:

‖
∑
i∼ j

δi j (x j (t))‖ ≤
∑
i∼ j

αi j
[
‖ x̃ j (t)‖ + ‖ê j (t)‖ + x∗r j

]
. (57)
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Furthermore, using Equation (57) in the last term of Equation (56) results in:

‖2x̃i (t)Pi Bi

∑
i∼ j

δi j (x j (t))‖

≤ 2λmax(Pi)‖ x̃i (t)‖‖Bi‖F‖
∑
i∼ j

δi j (x j (t))‖

≤ 2λmax(Pi)‖ x̃i (t)‖‖Bi‖F

∑
i∼ j

αi j
[
‖ x̃ j (t)‖ + ‖ê j (t)‖ + x∗r j

]
≤ λmax(Pi)‖Bi‖F

∑
i∼ j

αi j
[
2‖ x̃i (t)‖‖ x̃ j (t)‖ + 2‖ x̃i (t)‖‖ê j (t)‖ + 2‖ x̃i (t)‖x∗r j

]
≤ λmax(Pi)‖Bi‖F

∑
i∼ j

αi j
[
3‖ x̃i (t)‖2 + ‖ x̃ j (t)‖2 + ‖ê j (t)‖2 + x∗r j

2
]
, (58)

where Young’s inequality [46] is considered in the scalar form of 2xy ≤ νx2 + y2/ν, with

x, y ∈ R and ν > 0, and applied to terms ‖ x̃i (t)‖‖ x̃ j (t)‖, ‖ x̃i (t)‖‖ê j (t)‖ and ‖ x̃i (t)‖x∗r j

with ν = 1. Hence, Equation (56) becomes:

V̇i ( x̃i (t),W̃i (t), êi (t))

≤ −
[

c1i − 3λmax(Pi)‖Bi‖F

∑
i∼ j

αi j︸                               ︷︷                               ︸
d1i

]
‖ x̃i (t)‖2 − c2i‖êi (t)‖2 + c3i‖ x̃i (t)‖ + c4i‖êi (t)‖

+ λmax(Pi)‖Bi‖F︸            ︷︷            ︸
f i

∑
i∼ j

αi j ‖ x̃ j (t)‖2 + λmax(Pi)‖Bi‖F︸            ︷︷            ︸
f i

∑
i∼ j

αi j ‖ê j (t)‖2 + ϕi, (59)

where ϕi , c5i + λmax(Pi)‖Bi‖F
∑

i∼ j αi j x∗r j
2. Introducing:

V (·) =

N∑
i=1

Vi ( x̃i (t),W̃i (t)êi (t)), (60)

for the uncertain system S results in:

V̇ (·) ≤
N∑

i=1

[
− d1i‖ x̃i (t)‖2 − c2i‖êi (t)‖2 + c3i‖ x̃i (t)‖

+ c4i‖êi (t)‖ + fi

∑
i∼ j

αi j ‖ x̃ j (t)‖2 + fi

∑
i∼ j

αi j ‖ê j (t)‖2 + ϕi
]
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=

N∑
i=1

[
−

(
d1i −

∑
i∼ j

f jα ji︸            ︷︷            ︸
D1i

)
‖ x̃i (t)‖2 −

(
c2i −

∑
i∼ j

f jα ji︸            ︷︷            ︸
D2i

)
‖êi (t)‖2

+ c3i‖ x̃i (t)‖ + c4i‖êi (t)‖ + ϕi
]
, (61)

where D1i > 0 and D2i > 0 are defined in Assumption 5. Letting x̃a (t) ,
[
‖ x̃1(t)‖ , . . .

, ‖ x̃N (t)‖
]T, êa (t) ,

[
‖ê1(t)‖, . . . , ‖êN (t)‖

]T, D1 , diag
( [

D11, . . . ,D1N
] )

, D2 , diag
( [

D21, . . . ,D2N
] )

, C3 , diag
( [

c31, . . . ,c3N
] )

, C4 , diag
( [

c41, . . . ,c4N
] )

and ϕa ,
∑N

i=1 ϕi,

then Equation (61) can equivalently be written as:

V̇ (·) ≤ − x̃T
a (t)D1 x̃a (t) − êT

a (t)D2êa (t) + C3 x̃a (t) + C4êa (t) + ϕa

≤ −λmin(D1)‖ x̃a (t)‖2 − λmin(D2)‖êa (t)‖2 + λmax(C3)‖ x̃a (t)‖

+ λmax(C4)‖êa (t)‖ + ϕa . (62)

Either ‖ x̃a (t)‖ > ψ1 or ‖êa (t)‖ > ψ2 renders V̇ (·) < 0, where

ψ1 ,

λmax (C3)

2
√
λmin (D1)

+

√
λ2

max (C3)
4λmin (D1) +

λ2
max (C4)

4λmin (D2) +ϕa
√
λmin(D1)

and ψ2 ,

λmax (C4)

2
√
λmin (D2)

+

√
λ2

max (C3)
4λmin (D1) +

λ2
max (C4)

4λmin (D2) +ϕa
√
λmin(D2)

, and hence,

x̃i (t), êi (t) and W̃i (t) are uniformly ultimate bounded for all i = 1,2, ... ,N . �

Corollary 4. Under the conditions of Corollary 3, we can show that ei (t) is bounded

for all i = 1,2, ...,N .

Proof. It readily follows from:

‖ei (t)‖ = ‖xi (t) − x̂(t) + x̂(t) − xr (t)‖

≤ ‖xi (t) − x̂(t)‖ + ‖ x̂(t) − xr (t)‖

≤ ‖ x̃i (t)‖ + ‖êi (t)‖, (63)

and Corollary 3 that ei (t) is bounded for all i = 1,2, ...,N . �
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Remark 2. In order to obtain the closed-loop system error ultimate bound value

for Equation (63) and the no Zeno behavior characterization, we can follow the same steps

highlighted in Corollaries 1 and 2, respectively.

3. EVENT-TRIGGERED DISTRIBUTED ADAPTIVE CONTROL

We now introduce an event-triggered distributed adaptive control architecture in this

section, where it is assumed that physically-interconnected modules can locally communi-

cate with each other for exchanging their state information. For organizational purposes,

this section is broken up into two subsections. Specifically, we first briefly overview a stan-

dard distributed adaptive control architecture without event-triggering and then present the

proposed event-triggered decentralized adaptive control approach, which includes rigorous

stability and performance analyses with no Zeno behavior and generalizations to the state

emulator case for suppressing the effect of possible high-frequency oscillations in the con-

troller response. As shown, the benefit of using the proposed distributed adaptive control

architecture versus the decentralized architecture of the previous section is that there is no

need for any structural assumptions; that is, Assumptions 4 and 5, in the distributed case to

guarantee overall system stability (for applications where modules are allowed to locally

communicate with each other).

3.1. Overview of a Standard Distributed Adaptive Control Architecture With-

out Event-triggering. The standard distributed adaptive control architecture overviewed

in this section builds on the problem formulation stated in Section 2.1 with an important

difference that the physically-interconnected modules can locally communicate with each

other for exchanging their state information, as discussed above. For this purpose, we first

replace Assumption 2 of Section 2.1 with the following assumption.

Assumption 6. The function δi j (x j (t)) in Equation (2) satisfies:

δi j (x j (t)) = QT
i jφi j (x j (t)), (64)
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where Qi j ∈ R
gj ×mi is an unknown weight matrix and φi j : Rn j → Rgj is a known Lipschitz

continuous basis function vector satisfying:

‖φi j (x1 j ) − φi j (x2 j )‖ ≤ Lφi j ‖x1 j − x2 j ‖, (65)

with Lφi j ∈ R+.

Remark 3. We can equivalently represent Equation (64) as:

∑
i∼ j

QT
i jφi j (x j (t)) , GT

i j Fi j (x j (t)), (66)

where Gi j ∈ R
gi j ×mi is the matrix combination for the ideal weight matrices of the con-

nected graph, Fi j (x j (t)) : Rni j → Rgi j is the vector combination for basis function vectors

of the connected graph, gi j =
∑

i∼ j gj , and ni j =
∑

i∼ j n j . The right hand side of Equa-

tion (66) can be given as:

GT
i j Fi j (x j (t)) = GT

i AaiFi (x j (t)), (67)

where

Aai =













[A(G)]i1 Ig1 · · · 0
...

. . .
...

0 · · · [A(G)]iN IgN













∈ Rga×ga , (68)

Gi ∈ R
ga×mi is the matrix combination for all modules’ ideal weight matrices of the system

toward Si, Fi (x j (t)) : Rna → Rga is the vector combination for all basis function vectors

of the system toward Si, ga =
∑N

j=1 gj , and na =
∑N

j=1 n j .

Next, using Assumptions 1, 3 and 6, Equation (2) can be equivalently written as:

ẋi (t) = Ari xi (t) + Brici (t) + BiΛi
[
ui (t) + W T

i σi
(
xi (t),ci (t), x j (t)

)]
, (69)
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where Wi ,
[
Λ−1

i W T
oi , Λ

−1
i KT

1i , Λ
−1
i KT

2i , Λ
−1
i GT

i j

]T
∈ R(gi+ni+mi+gi j )×mi is an unknown

weight matrix and σi
(
xi (t),ci (t), x j (t)

)
,

[
βT

i (xi (t)) , xT
i (t) , cT

i (t) , FT
i j (x j (t))

]T
∈

Rgi+ni+mi+gi j . Motivated from the structure of the uncertain terms appearing in Equa-

tion (69), let the distributed adaptive feedback controller of Si, i ∈ VG , be given by:

Ci : ui (t) = −Ŵi (t)Tσi
(
xi (t),ci (t), x j (t)

)
(70)

where Ŵi (t) is an estimate of Wi satisfying the update law:

˙̂Wi (t) = γiProjm
[
Ŵi (t) , σi

(
xi (t),ci (t), x j (t)

)
eT

i (t)Pi Bi
]
, Ŵi (0) = Ŵi0, (71)

where Pi ∈ R
ni×ni
+ ∩ Sni×ni is a solution of the Lyapunov Equation (10). Now, from Equa-

tions (6) and (69), the module-level closed-loop error dynamics can be given by:

ėi (t) = Ariei (t) − BiΛiW̃ T
i (t)σi

(
xi (t),ci (t), x j (t)

)
, ei (t) = ei0. (72)

3.2. Proposed Event-triggered Distributed Adaptive Control Architecture.

We now present the proposed event-triggered distributed adaptive control architecture for

modular systems, where each uncertain module can exchange its state information with its

interconnected neighboring modules.

Consider the uncertain dynamical module i given by:

Si : ẋi (t) = Ai xi (t) + Bi







Λiusi (t) + ∆i (xi (t)) +
∑
i∼ j

δi j (xs j (t))






, xi (0) = xi0, (73)

where δi j (xs j (t)) , QT
i jφi j (xs j (t)) and xs j (t) ∈ Rn j . Using Assumptions 1, 3 and 6,

Equation (73) can be equivalently written as:

ẋi (t) =Ari xi (t) + Brici (t) + BiΛi
[
usi (t) + W T

i σi
(
xi (t), xsi (t),ci (t), xs j (t)

)]
+ BiΛi (usi (t) − ui (t)) + BiK1i (xsi (t) − xi (t)), (74)
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where σi
(
xi (t), xsi (t),ci (t), xs j (t)

)
,

[
βT

i (xi (t)) , xT
si (t) , cT

i (t) , FT
i j (xs j (t))

]T
∈

Rgi+ni+mi+gi j , and the distributed adaptive feedback control is given by:

Ci : ui (t) = −Ŵi (t)Tσi
(
xsi (t),ci (t), xs j (t)

)
, (75)

whereσi
(
xsi (t),ci (t), xs j (t)

)
,

[
βT

i (xsi (t)) , xT
si (t) , cT

i (t) , FT
i j (xs j (t))

]T
∈ Rgi+ni+mi+gi ·di

, and Ŵi (t) satisfies the weight update law:

˙̂Wi (t) = γiProjm
[
Ŵi (t) , σi

(
xsi (t),ci (t), xs j (t)

)
eT

si (t)Pi Bi
]
, Ŵi (0) = Ŵi0, (76)

Now, using Equation (75) in Equation (74) yields:

ẋi (t) =Ari xi (t) + Brici (t) − BiΛiW̃ T
i (t)σi

(
xsi (t),ci (t), xs j (t)

)
− BiΛigi (·)

+ BiΛi (usi (t) − ui (t)) + BiK1i (xsi (t) − xi (t)), (77)

where gi (·) , W T
i

[
σi

(
xsi (t),ci (t), xs j (t)

)
− σi

(
xi (t), xsi (t),ci (t), xs j (t)

)]
, and using Equa-

tions (77) and (6), we can write the module error dynamics as:

ėi (t) = Ariei (t) − BiΛiW̃ T
i (t)σi

(
xsi (t),ci (t), xs j (t)

)
− BiΛigi (·) + BiΛi (usi (t) − ui (t))

+ BiK1i (xsi (t) − xi (t)). (78)

For organizational purposes, we now divide this section into four sections. Specif-

ically, we analyze the uniform ultimate boundedness of the resulting closed-loop dynam-

ical system in Section 3.2.1, compute the ultimate bound in Section 3.2.2, show that the

proposed architecture does not yield to a Zeno behavior in Section 3.2.3 and generalize

the distributed event-triggered adaptive control algorithm using the state emulator-based

framework in Section 3.2.4.

3.2.1. Stability analysis and uniform ultimate boundedness. Theorem 2. Con-

sider the uncertain dynamical system S consisting of N interconnected modules Si de-

scribed by Equation (73) subject to Assumptions 1, 3 and 6. Consider, in addition, the
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reference model given by Equation (6) and the module feedback control law given by

Equations (75) and (76). Moreover, let the data transmission from the uncertain dynamical

module to the local controller occur when E1i is true and the data transmission from the

controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then, the

closed-loop solution (ei (t),W̃i (t)) is uniformly ultimately bounded for all i = 1,2, ...,N .

Proof. Since the data transmission from the uncertain dynamical module to the local

controller and from the local controller to the uncertain dynamical module occur when E1i

and E2i ∨ E3i are true, respectively, note that ‖xsi (t) − xi (t)‖ ≤ ε yi and ‖usi (t) − ui (t)‖ ≤

εui hold. Consider the Lyapunov-like function given by:

Vi (ei,W̃i) = eT
i Piei + γ−1

i tr
(
(W̃iΛ

1
2
i )T(W̃iΛ

1
2
i )

)
. (79)

Note that Vi (0,0) = 0 and Vi (ei,W̃i) > 0 for all (ei,W̃i) , (0,0). The time derivative of

Equation (79) is given by:

V̇i (ei (t),W̃i (t))

= 2eT
i (t)Pėi (t) + γ−1

i 2tr
(
W̃ T

i (t) ˙̃Wi (t)Λi
)

≤ 2eT
i (t)Pi

(
Ariei (t) − BiΛiW̃ T

i (t)σi
(
xsi (t),ci (t), xs j (t)

)
− BiΛigi (·) + BiΛi (usi (t)

− ui (t)) + BiK1i (xsi (t) − xi (t))
)

+ 2tr
(
W̃ T

i (t)Λiσi
(
xsi (t),ci (t), xs j (t)

)
eT

si (t)Pi Bi
)

≤ −eT
i (t)Riei (t) − 2eT

i (t)Pi BiΛigi (·) + 2eT
i (t)Pi BiΛi (usi (t) − ui (t)) + 2eT

i (t)Pi BiK1i

· (xsi (t) − xi (t)) + 2tr
(
W̃ T

i (t)Λiσi
(
xsi (t),ci (t), xs j (t)

)
(xsi (t) − xi (t))TPi Bi

)
≤ −λmin(Ri)‖ei (t)‖2 + 2‖ei (t)‖λmax(Pi)‖Bi‖F‖Λi‖F‖gi (·)‖ + 2‖ei (t)‖λmax(Pi)‖Bi‖F

· ‖Λi‖Fεui + 2‖ei (t)‖λmax(Pi)‖Bi‖F‖K1i‖Fε xi + 2‖W̃i (t)‖F‖Λi‖F

· ‖σi
(
xsi (t),ci (t), xs j (t)

)
‖ε xiλmax(Pi)‖Bi‖F, (80)
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where the same upper bound ‖gi (·)‖ has the same result of Equation (25). In addition, one

can compute an upper bound for ‖σi
(
xsi (t),ci (t), xs j (t)

)
‖ in Equation (80) as:

‖σi
(
xsi (t),ci (t), xs j (t)

)
‖ ≤ ‖ βi (xsi (t))‖ + ‖xsi (t)‖ + ‖ci (t)‖ + ‖Fi j (xs j (t))‖

≤ L βi‖xsi (t)‖ + ‖xsi (t)‖ + ‖ci (t)‖ +
∑
i∼ j

‖φi j (x j (t))‖

= (L βi + 1)ε xi + (L βi + 1)‖ei (t)‖ + (L βi + 1)x∗ri + ‖ci (t)‖

+
∑
i∼ j

Lφi j
(
ε x j + ‖e j (t)‖ + x∗r j

)
, (81)

where ‖xri (t)‖ ≤ x∗ri and ‖xr j (t)‖ ≤ x∗r j . Then, using the bounds given by Equations (25)

and (81) in Equation (80) yields:

V̇i (ei (t),W̃i (t))

≤ −λmin(Ri)‖ei (t)‖2 + 2‖ei (t)‖λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2‖ei (t)‖λmax(Pi)‖Bi‖F

· ‖Λi‖Fεui + 2‖ei (t)‖λmax(Pi)‖Bi‖F‖K1i‖Fε xi + 2‖W̃i (t)‖F‖Λi‖F
(
(L βi + 1)ε xi

+ (L βi + 1)‖ei (t)‖ + (L βi + 1)x∗ri + ‖ci (t)‖ +
∑
i∼ j

Lφi j
(
ε x j + ‖e j (t)‖ + x∗r j

))
ε xi

· λmax(Pi)‖Bi‖F

≤ −λmin(Ri)‖ei (t)‖2 +
(
2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+ 2λmax(Pi)‖Bi‖F‖K1i‖Fε xi + 2w̃∗i ‖Λi‖F(L βi + 1)ε xiλmax(Pi)‖Bi‖F
)
‖ei (t)‖

+ 2w̃∗i ‖Λi‖F
(
(L βi + 1)ε xi + (L βi + 1)x∗ri + ‖ci (t)‖ +

∑
i∼ j

Lφi j
(
ε x j + x∗r j

))
ε xi

· λmax(Pi)‖Bi‖F + 2w̃∗i ‖Λi‖Fε xiλmax(Pi)‖Bi‖F

∑
i∼ j

Lφi j ‖e j (t)‖

≤ −d1i‖ei (t)‖2 + d2i‖ei (t)‖ + d3i + fi

∑
i∼ j

Lφi j ‖e j (t)‖, (82)
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where d1i , λmin(Ri), d2i , 2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui +

2λmax(Pi)‖Bi‖F‖K1i‖Fε xi +2w̃∗i ‖Λi‖F(L βi + 1)ε xiλmax(Pi)‖Bi‖F, d3i , 2w̃∗i ‖Λi‖F
(
(L βi +

1)ε xi + (L βi +1)x∗ri + ‖ci (t)‖+
∑

i∼ j Lφi j
(
ε x j + x∗r j

))
ε xiλmax(Pi)‖Bi‖F and fi , 2w̃∗i ‖Λi‖Fε xi

λmax(Pi)‖Bi‖F.

Introducing:

V (·) =

N∑
i=1

Vi (ei (t),W̃i (t)), (83)

for the uncertain system S results in:

V̇ (·) ≤
N∑

i=1

[
− d1i‖ei (t)‖2 + d2i‖ei (t)‖ + fi

∑
i∼ j

Lφi j ‖e j (t)‖ + d3i
]

=

N∑
i=1

[
− d1i‖ei (t)‖2 +

(
d2i +

∑
i∼ j

f j Lφ ji︸              ︷︷              ︸
D2i

)
‖ei (t)‖ + d3i

]
, (84)

where D1i > 0. Letting ea (t) ,
[
‖e1(t)‖, . . . , ‖eN (t)‖

]T, D1 , diag
( [

d11, . . . ,d1N
] )

,

D2 , diag
( [

D21, . . . ,D2N
] )

, and D3 ,
∑N

i=1 d3i, then Equation (32) can equivalently be

written as:

V̇ (·) ≤ −eT
a (t)D1ea (t) + D2ea (t) + D3

≤ −λmin(D1)‖ea (t)‖2 + λmax(D2)‖ea (t)‖ + D3. (85)

When ‖ea (t)‖ > ψ, this renders V̇ (·) < 0, where ψ ,
λmax (D2)

2
√
λmin (D1)

+

√
λ2

max (D2)
4λmin (D1) +D3

√
λmin(D1)

, and hence,

ei (t) and W̃i (t) are uniformly ultimate bounded for all i = 1,2, ... ,N . �

3.2.2. Computation of the ultimate bound for system performance assessment.

For revealing the effect of user-defined thresholds and the event-triggered output feed-

back adaptive controller design parameters to the system performance, the next corollary

presents a computation of the ultimate bound.
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Corollary 5. Consider the uncertain dynamical system S consisting of N intercon-

nected modules Si described by Equation (73) subject to Assumptions 1, 3 and 6. Consider,

in addition, the reference model given by Equation (6) and the module feedback control law

given by Equations (75) and (76). Moreover, let the data transmission from the uncertain

dynamical module to the local controller occur when E1i is true and the data transmission

from the controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then,

the ultimate bound of the system error between the uncertain dynamical system and the

reference model is given by:

| |ea (t) | | ≤ Φ̃λ
− 1

2
min(Pmin), t ≥ T, (86)

where

Φ̃ ,
[
λmax(Pmax)ψ2 + λmax(γa)λmax(Λa)‖W̃a (t)‖2

] 1
2 . (87)

Proof. The proof is similar to the proof of Corollary 1, and hence, omitted. �

3.2.3. Computation of the event-triggered inter-sample time lower bound. In

this subsection, we show that the proposed event-triggered distributed adaptive control ar-

chitecture does not yield to a Zeno behavior, which implies that it does not require a contin-

uous two-way data exchange and reduces wireless network utilization. For this purpose, we

use the same mathematical notations introduced in Section 2.2.2 and make the following

assumption.

Assumption 7. Each module Si holds the received triggered state information

δi j (xs j (t)) from its interconnected neighboring modules Sj and sends this information to

its local controller Ci when the condition E1i in Equation (20) is violated.

Corollary 6. Consider the uncertain dynamical system S consisting of N inter-

connected modules Si described by Equation (73) subject to Assumptions 1, 3, 6 and 7.

Consider, in addition, the reference model given by Equation (6) and the module feedback

control law given by Equations (75) and (76). Moreover, let the data transmission from



109

the uncertain dynamical module to the local controller occur when E1i is true and the data

transmission from the controller to the uncertain dynamical system occur when E2i ∨ E3i

is true. Then, there exist positive scalars αxi ,
ε xi
Φ1i

and αui ,
εui
Φ2i

, such that:

ski+1 − ski > αxi, ∀ki ∈ N, (88)

r ki
qi+1 − r k

qi > αui, ∀qi ∈
{
0, ...,mki

}
, ∀ki ∈ N. (89)

Proof. The proof is similar to the proof of Corollary 2, and hence, omitted. �

Corollary 6 also shows that the inter-sample times for the module state vector and

distributed feedback control vector are bounded away from zero, and hence, the proposed

event-triggered distributed adaptive control approach does not yield to a Zeno behavior.

3.2.4. Generalizations to the event-triggered distributed adaptive control with

state emulator. Similar to Section 2.2.4, consider the (modified) reference model, so-

called the state emulator, given by Equation (44) and the reference model error dynam-

ics capturing the difference between the ideal reference model Equation (6), and the state

emulator-based (modified) reference model Equation (44) is given by Equation (45). In ad-

dition, the (state emulator-based) system error dynamics follow from Equations (77) and

(44) as:

˙̃xi (t) = Ari x̃i (t) − BiΛiW̃ T
i (t)σi

(
xsi (t),ci (t), xs j (t)

)
− BiΛigi (·) + BiΛi (usi (t) − ui (t))

+(BiK1i − Li)(xsi (t) − xi (t)) − Li x̃i (t) x̃i (0) = x̃i0, (90)

where the adaptive controller Equation (75) is used and the weight update law is given by:

˙̂Wi (t) = γiProjm
[
Ŵi (t) , σi

(
xsi (t),ci (t), xs j (t)

)
(xsi (t) − x̂i (t))TPi Bi

]
, Ŵi (0) = Ŵi0, (91)

with Pi ∈ R
ni×ni
+ ∩ Sni×ni being a solution to the Lyapunov Equation (10).
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Corollary 7. Consider the uncertain dynamical system S consisting of N inter-

connected modules Si described by Equation (73) subject to Assumptions 1, 3 and 6.

Consider, in addition, the ideal reference model given by Equation (6), the state emula-

tor given by Equation (44) and the module feedback control law given by Equations (75)

and (91). Moreover, let the data transmission from the uncertain dynamical module to the

local controller occur when E1i is true and the data transmission from the controller to the

uncertain dynamical system occur when E2i ∨ E3i is true. Then, the closed-loop solution

( x̃i (t),W̃i (t), êi (t)) is uniformly ultimately bounded for all i = 1,2, ...,N .

Proof. Consider the Lyapunov-like function given by:

Vi ( x̃i,W̃i, êi) = x̃T
i Pi x̃i + γ−1

i tr(W̃iΛ
1
2
i )T(W̃iΛ

1
2
i ) + 2li‖Li‖

−1
F λmax(Pi)λmax(Ri)êT

i Pi êi . (92)

Note that Vi (0,0,0) = 0 and Vi ( x̃i,W̃i, êi) > 0 for all ( x̃i,W̃i, êi) , (0,0,0). The time-

derivative of Equation (92) is given by:

V̇i ( x̃i (t),W̃i (t), êi (t))

= 2x̃T
i (t)Pi ˙̃xi (t) + 2γ−1

i tr(W̃i (t)Λ
1
2
i )T( ˙̃Wi (t)Λ

1
2
i ) + 4li‖Li‖

−1
F λmax(Pi)λmin(Ri)êT

i Pi ˙̂ei (t)

≤ 2x̃T
i (t)Pi

[
Ari x̃i (t) − BiΛiW̃ T

i (t)σi
(
xsi (t),ci (t), xs j (t)

)
− BiΛigi (·) + BiΛi

(
usi (t)

− ui (t)
)

+ (BiK1i − Li)(xsi (t) − xi (t)) − Li x̃i (t)
]

+ 2trW̃ T
i (t)σi

(
xsi (t),ci (t), xs j (t)

)
· (xsi (t) − x̂i (t))TPi BiΛi + 4li‖Li‖

−1
F λmax(Pi)λmin(Ri)êT

i (t)Pi
[
Ari êi (t) + Li x̃i (t))

+ Li (xsi (t) − xi (t))
]

≤ − x̃T
i (t)Ri x̃i (t) − 2x̃T

i (t)Pi BiΛigi (·) + 2x̃T
i (t)Pi BiΛi

(
usi (t) − ui (t)

)
+ 2x̃T

i (t)Pi (BiK1i

− Li)(xsi (t) − xi (t)) − 2x̃T
i (t)Pi Li x̃i (t) + 2trW̃i (t)Tσi

(
xsi (t),ci (t), xs j (t)

)
(xsi (t)

− xi (t))TPi BiΛi − 2li‖Li‖
−1
F λmax(Pi)λmin(Ri)êT

i (t)Ri êi (t) + 4li‖Li‖
−1
F λmax(Pi)

· λmin(Ri)êT
i (t)Pi Li (xsi (t) − xi (t)) + 4li‖Li‖

−1
F λmax(Pi)λmin(Ri)êT

i (t)Pi Li x̃i (t)

≤ −λmin(Ri)‖ x̃i (t)‖2 + 2λmax(Pi)‖Bi‖F‖Λi‖F‖gi (·)‖‖ x̃i (t)‖ + 2‖ x̃i (t)‖λmax(Pi)‖Bi‖F
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· ‖Λi‖Fεui + 2‖ x̃i (t)‖λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
ε xi − 2λmax(Pi)‖Li‖‖ x̃i (t)‖2

+ 2‖W̃i (t)‖F‖σi
(
xsi (t),ci (t), xs j (t)

)
‖λmax(Pi)‖Bi‖F‖Λi‖Fε xi − 2li‖Li‖

−1
F λ−1

max(Pi)

· λ2
min(Ri)‖êi (t)‖2 + 4liλmin(Ri)ε xi‖êi (t)‖ + 4liλmin(Ri)‖êi (t)‖‖ x̃i (t)‖. (93)

Now, using Young’s inequality [46] for the last term in Equation (93), with µi ∈ R+, yields:

V̇i ( x̃i (t),W̃i (t), êi (t))

≤ −λmin(Ri)‖ x̃i (t)‖2 + 2λmax(Pi)‖Bi‖F‖Λi‖F‖gi (·)‖‖ x̃i (t)‖ + 2‖ x̃i (t)‖λmax(Pi)‖Bi‖F

· ‖Λi‖Fεui + 2‖ x̃i (t)‖λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
ε xi − 2λmax(Pi)‖Li‖‖ x̃i (t)‖2

+ 2‖W̃i (t)‖F‖σi
(
xsi (t),ci (t), xs j (t)

)
‖λmax(Pi)‖Bi‖F‖Λi‖Fε xi − 2li‖Li‖

−1
F λ−1

max(Pi)

· λ2
min(Ri)‖êi (t)‖2 + 4liλmin(Ri)ε xi‖êi (t)‖ + 2liµiλmin(Ri)‖êi (t)‖2

+ 2
li

µi
λmin(Ri)‖ x̃i (t)‖2. (94)

Using Equations (25) and (80), Equation (94) can be written by:

V̇i ( x̃i (t),W̃i (t), êi (t))

≤ −

[
λmin(Ri) − 2λmax(Pi)‖Li‖F − 2

li

µi
λmin(Ri)

]
‖ x̃i (t)‖2 − 2

[
li‖Li‖

−1
F λ−1

max(Pi)λ2
min(Ri)

− liµiλmin(Ri)
]
‖êi (t)‖2 +

[
2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+ 2λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
ε xi

]
‖ x̃i (t)‖ + 4liλmin(Ri)ε xi‖êi (t)‖

+ 2w̃∗i
[
(L βi + 1)ε xi + (L βi + 1)‖ x̃i (t) + êi (t)‖ + (L βi + 1)x∗ri + ‖ci (t)‖ +

∑
i∼ j

Lφi j
(
ε x j

+ ‖ x̃ j (t) + ê j (t)‖ + x∗r j
)]
λmax(Pi)‖Bi‖F‖Λi‖Fε xi

≤ −

[
λmin(Ri) − 2λmax(Pi)‖Li‖F − 2

li

µi
λmin(Ri)

]
‖ x̃i (t)‖2 − 2

[
li‖Li‖

−1
F λ−1

max(Pi)λ2
min(Ri)

− liµiλmin(Ri)
]
‖êi (t)‖2 +

[
2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+ 2λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
ε xi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi

]
‖ x̃i (t)‖

+
[
4liλmin(Ri)ε xi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi

]
‖êi (t)‖
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+ 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi
(
(L βi + 1)(ε xi + x∗ri) + ‖ci (t)‖ +

∑
i∼ j

Lφi j
(
ε x j + x∗r j

))
+ 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi

∑
i∼ j

Lφi j
(
‖ x̃ j (t)‖ + ‖ê j (t)‖

)
. (95)

then setting µi = liλmin(Ri)λ−1
max(Pi)‖Li‖

−1
F in Equation (95) yields:

V̇i ( x̃i (t),W̃i (t), êi (t))

≤ −λmin(Ri)‖ x̃i (t)‖2 − 2li‖Li‖
−1
F λ−1

max(Pi)λmin(Ri)
[
λmin(Ri) − li

]
‖êi (t)‖2

+
[
2λmax(Pi)‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)

(
‖BiK1i‖F

+ ‖Li‖F
)
ε xi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi

]
‖ x̃i (t)‖ +

[
4liλmin(Ri)ε xi + 2w̃∗i λmax(Pi)

· ‖Bi‖F‖Λi‖Fε xi
]
‖êi (t)‖ + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi

(
(L βi + 1)(ε xi + x∗ri) + ‖ci (t)‖

+
∑
i∼ j

Lφi j
(
ε x j + x∗r j

))
+ 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi

∑
i∼ j

Lφi j
(
‖ x̃ j (t)‖ + ‖ê j (t)‖

)
.

(96)

It then follows that Equation (96) can be given by:

V̇i ( x̃i (t),W̃i (t), êi (t)) ≤ −d1i‖ x̃i (t)‖2 − d2i‖êi (t)‖2 + d3i‖ x̃i (t)‖ + d4i‖êi (t)‖ + d5i

+ fi

∑
i∼ j

Lφi j ‖ x̃ j (t)‖ + fi

∑
i∼ j

Lφi j ‖ê j (t)‖, (97)

where d1i , λmin(Ri), d2i , 2li‖Li‖
−1
F λ−1

max(Pi)λmin(Ri)
[
λmin(Ri) − li

]
, d3i , 2λmax(Pi)

· ‖Bi‖F‖Λi‖FKgiε xi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
ε xi + 2w̃∗i

· λmax(Pi)‖Bi‖F‖Λi‖Fε xi, d4i , 4liλmin(Ri)ε xi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi, d5i , 2w̃∗i

· λmax(Pi)‖Bi‖F‖Λi‖Fε xi
(
(L βi + 1)(ε xi + x∗ri) + ‖ci (t)‖ +

∑
i∼ j Lφi j

(
ε x j + x∗r j

))
and fi

, 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fε xi. To ensure that d2i is positive definite, we consider li = θi

· λmin(Ri) and θi ∈ (0,1).

Introducing:

V (·) =

N∑
i=1

Vi ( x̃i (t),W̃i (t)êi (t)), (98)
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for the uncertain system S results in:

V̇i (·) ≤
N∑

i=1

[
− d1i‖ x̃i (t)‖2 − d2i‖êi (t)‖2 + d3i‖ x̃i (t)‖ + d4i‖êi (t)‖ + d5i

+ fi

∑
i∼ j

Lφi j ‖ x̃ j (t)‖ + fi

∑
i∼ j

Lφi j ‖ê j (t)‖
]

=

N∑
i=1

[
− d1i‖ x̃i (t)‖2 − d2i‖êi (t)‖2 +

(
d3i +

∑
i∼ j

f j Lφ ji︸              ︷︷              ︸
D3i

)
‖ x̃i (t)‖

+
(

d4i +
∑
i∼ j

f j Lφ ji︸              ︷︷              ︸
D4i

)
‖êi (t)‖ + d5i

]
. (99)

Letting x̃a (t) ,
[
‖ x̃1(t)‖, . . . , ‖ x̃N (t)‖

]T, êa (t) ,
[
‖ê1(t)‖, . . . , ‖êN (t)‖

]T, D1 , diag
( [

d11, . . . ,d1N
] )

,D2 , diag
( [

d21, . . . ,d2N
] )

, D3 , diag
( [

D31, . . . ,D3N
] )

, D4 , diag
( [

D41,

. . . ,D4N
] )

, and D5 ,
∑N

i=1 d5i, then Equation (99) can equivalently be written as:

V̇ (·) ≤ − x̃T
a (t)D1 x̃a (t) − êT

a (t)D2êa (t) + D3 x̃a (t) + D4ea (t) + D5

≤ −λmin(D1)‖ x̃a (t)‖2 − λmin(D2)‖êa (t)‖2 + λmax(D3)‖ x̃a (t)‖

+ λmax(D4)‖êa (t)‖ + D5. (100)

Either ‖ x̃a (t)‖ > ψ1 or ‖êa (t)‖ > ψ2, renders V̇ (·) < 0, where ψ1 ,
λmax(D3)
2λmin(D1) +√

λ2
max (D3)

4λmin (D1) +
λ2

max (D4)
4λmin (D2) +D5

√
λmin(D1)

and ψ2 ,
λmax(D4)
2λmin(D2) +

√
λ2

max (D3)
4λmin (D1) +

λ2
max (D4)

4λmin (D2) +D5
√
λmin(D2)

, and hence, x̃i (t), êi (t),

and W̃i (t) are uniformly ultimate bounded for all i = 1,2, ... ,N . �

Remark 4. To show that ei (t) is bounded for all i = 1,2, . . . ,N under the condition

of Corollary 7, we can follow Corollary 4 to show the boundedness of ei (t) for all i =

1, . . . ,N using:

‖ei (t)‖ ≤ ‖ x̃i (t)‖ + ‖êi (t)‖. (101)
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Furthermore, in order to obtain the closed-loop system error ultimate bound value

for Equation (101) and the no Zeno characterization proof, we can follow the same steps

highlighted in Corollaries 5 and 6, respectively.

4. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, the efficacy of the proposed event-triggered decentralized adaptive

control approach is demonstrated in an illustrative numerical example. For this purpose, we

consider the uncertain dynamical system, which consists of five masses connected serially

by springs and dampers as depicted in Figure 2. We use the following equations of motion

for the i-th mass:









ẋ1(t)

ẍ1(t)








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[Λ1u1(t) + ∆1 (x1(t)) + δ12(x2(t))] ,
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ẋi (t)









+









0

1
mi









[
Λiui (t) + ∆i (xi (t)) + δi j (x j (t))

]
,

i = {2,3,4} , (103)
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where mi = 1Kg, ki = 1.5 N·m−1, bi = 0.4 N·sec·m−1, Λi = 0.7, Woi = [3 , 1]T, and we set

the basis function as βi (xi (t)) = xi (t). In addition, δ12(x2(t)), δi j (x j (t)) and δ54(x4(t)),

which represent the effect of the system interconnections, are given by:
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Figure 2. Connected mass-damper-spring system.

The control objective of each module is to enforce xi (t) to track a filtered square

reference input ci (t) under the effect of uncertainties and disturbances with reduced com-

munication effort by event-triggering architecture. For our example, we choose a second-

order ideal reference model that has a natural frequency of 2 rad/s and a damping ratio of

0.707 for all Si, i = 1, . . . ,5. In addition, we use a state emulator gain Li = 9I2 and set all

initial conditions to zero for all Si, i = 1, . . . ,5.

For the event-triggered decentralized model reference adaptive control (which is

equivalent to Li = 0), we set Qi = I2 in order to compute Pi in Equation (10). The condition

in Assumption 4 holds when αi j ≤ 0.26 for i = {1,5} and αi j ≤ 0.13 for i = {2,3,4}. In

this case, Assumption 2 is satisfied for the coupling terms given in Equations (105)–(107).

For the purpose of event-triggered state emulator-based decentralized adaptive control, we

set Ri = 3 and Qi = I2×2 in order to compute Pi in Equation (48). For li = 0.001 and

Q̃0i = 250I2, the condition in Assumption 5 holds when αi j ≤ 4.2 for i = {1,5} and

αi j ≤ 2.1 for i = {2,3,4}. In addition, Assumption 2 is satisfied for coupling terms given

by Equations (105)–(107).



116

For the proposed event-triggered distributed adaptive control, we set Qi = I2 in or-

der to compute Pi in Equation (10). Note that there are no fundamental stability conditions

for the case of distributed adaptive control. Lastly, for the event-triggering thresholds, we

choose ε xi = 0.2 and εui = 0.2 for i = {1,3,5} and ε xi = 0.07 and εui = 0.07 for i = {2,4}.

For the proposed event-triggered decentralized adaptive control design of Theorem

1 and Corollary 1, Figures 3–5 represent the results for various γi and Li. In particular,

we first set γi = 50 and Li = 0 in Figure 3, which results in a control response with high-

frequency oscillations. In order to suppress these undesired oscillations, we set Li = 9I2 as

seen in Figure 4. In this figure, even though such oscillations are reduced, the command

tracking performance becomes worse as we increase Li compared to the response in Figure

3. In addition to increasing Li, we also increase γi in Figure 5, to improve command

tracking performance without causing high-frequency oscillations. In general, if one picks

Li to be greater than nine, then it may also be necessary to increase γi further to obtain a

similar closed-loop system performance. It should also be mentioned that choosing Li and

γi to produce both a control response without any significant high-frequency oscillations,

and a small uniform ultimate bound can be cast as an optimization problem, as well.

Figures 6–8 represent the results of the proposed event-triggered distributed adap-

tive control of Theorem 2 and Corollary 7 for the same γi and Li values. Specifically, we

see high frequency content in the control signal in Figure 6 when γi = 50 and Li = 0, which

is mitigated by increasing the state emulator gain to Li = 9I2, as seen in Figure 7. In order

to enhance the command tracking, which is degraded by increasing the state emulator gain,

we increase γi as seen in Figure 8.

From these results, we observe from the decentralized adaptive control case that the

state emulator-based approach not only gives stringent performance without causing high

frequencies in the controller response, but also tolerates the interconnection uncertainties

of the modules. In addition, the performance of the distributed adaptive controller is better

than the decentralized adaptive controller with the corresponding design parameter setting.

The total number of the state and control event triggers of the whole system for the cases
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in Figures 3–8 is given in Figure 9A,B, respectively. Figure 9 shows the drastic decrement

of the triggering number using the event-triggering approach and also the further triggering

number decrement due to utilizing the state emulator-based approach.
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Figure 3. Command following performance for the proposed event-triggered decentralized
adaptive control approach with γi = 50 and Li = 0.

5. CONCLUSIONS

The design and analysis of event-triggered decentralized and distributed adaptive

control architectures for uncertain networked large-scale modular systems were presented.

For the decentralized case, it is shown in Section 2 that the proposed event-triggered adap-

tive control architecture guarantees system stability and performance with no Zeno behav-

ior under some structural conditions stated in Assumptions 4 and 5 that depend on the

parameters of the large-scale modular systems and the proposed architecture. For the dis-

tributed case, it is shown in Section 3 that the proposed event-triggered adaptive control

architecture guarantees the same system stability and performance with no Zeno behav-

ior without such structural conditions under the assumption that physically-interconnected
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Figure 4. Command following performance for the proposed event-triggered decentralized
adaptive control approach with γi = 50 and Li = 9.

0 20 40 60 80 100

−2

−1

0

1

t [s]

x
1
(t
)

 

 
r
1

xm
1

x
1

x
s1

0 20 40 60 80 100

−2

−1

0

1

t [s]

x
2
(t
)

 

 
r
2

x
m2

x
2

x
s2

0 20 40 60 80 100

−2

−1

0

1

t [s]

x
3
(t
)

 

 
r
3

x
m3

x
3

x
s3

0 20 40 60 80 100

−2

−1

0

1

t [s]

x
4
(t
)

 

 
r
4

x
m4

x
4

x
s4

0 20 40 60 80 100

−2

−1

0

1

t [s]

x
5
(t
)

 

 
r
5

x
m5

x
5

x
s5

(A) State signals

0 20 40 60 80 100
−10

0

10

20

t [s]

u
1
(t
)

 

 
u

1

u
s1

0 20 40 60 80 100
−10

0

10

20

t [s]

u
2
(t
)

 

 
u

2

u
s2

0 20 40 60 80 100
−10

0

10

20

t [s]

u
3
(t
)

 

 
u

3

u
s3

0 20 40 60 80 100
−10

0

10

20

t [s]

u
4
(t
)

 

 
u

4

u
s4

0 20 40 60 80 100
−10

0

10

20

t [s]

u
5
(t
)

 

 
u

5

u
s5

(B) Control signals

Figure 5. Command following performance for the proposed event-triggered decentralized
adaptive control approach with γi = 200 and Li = 9.
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Figure 6. Command following performance for the proposed event-triggered distributed
adaptive control approach with γi = 50 and Li = 0.
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Figure 7. Command following performance for the proposed event-triggered distributed
adaptive control approach with γi = 50 and Li = 9.
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Figure 8. Command following performance for the proposed event-triggered distributed
adaptive control approach with γi = 200 and Li = 9.
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Figure 9. Number of triggers with respect to the controller design parameters.

modules can locally communicate with each other for exchanging their state information.

In addition to the presented theoretical findings, the efficacy of the proposed event-triggered

decentralized and distributed adaptive control approaches is demonstrated on an illustrative

numerical example in Section 4, where significant reduction on the overall communication

cost is obtained for large-scale modular systems in the presence of system uncertainties
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resulting from modeling and degraded modes of operation of the modules and their in-

terconnections between each other. For the future work, sampling, data transmission and

computation delays will be considered along with the proposed results of this paper, since

they also play an important role in the performance of networked control systems. Fur-

thermore, we will also consider the cases when a set of diagonal elements of the control

effectiveness matrix is zero and generalize the results of this paper to cover these so-called

loss of control cases.
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ABSTRACT

The contribution of this paper is a new, observer-free output feedback cooperative

control architecture for continuous-time, minimum phase, and high-order multivehicle sys-

tems in the context of a containment problem (i.e., outputs of the follower vehicles conver-

gence to the convex hull spanned by those of the leader vehicles). The proposed architec-

ture is predicated on a nonminimal state-space realization that generates an expanded set of

states only using the filtered input and filtered output and their derivatives for each follower

vehicle, without the need for designing an observer for each vehicle. Specifically, the pro-

posed observer-free output feedback control law consists of a vehicle-level controller and a

local cooperative controller for each vehicle, where the former addresses internal stability

of vehicles and the latter addresses the containment problem. Two illustrative numerical

examples complement the proposed theoretical contribution.

1. INTRODUCTION

Owing to the ever-increasing advances in embedded systems technologies, we are

rapidly moving toward a future in which squadrons of vehicles (henceforth, referred as

multivehicle systems) will autonomously perform a broad spectrum of tasks in both military
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and civilian domains. Examples of such tasks include but are not limited to collaborative

exploration; search and rescue; nuclear, biological, and chemical attack detection; and

target tracking. Motivated from this standpoint, cooperative control enabling multivehicle

systems to work in coherence through local information exchange between vehicles has

been the focus of high research activity during the last two decades (e.g., see books [1, 2,

3, 4] for a thorough coverage of the recent progress).

In this paper, we focus on the output feedback cooperative control problem in the

context of a containment problem (i.e., outputs of the follower vehicles convergence to the

convex hull spanned by those of the leader vehicles). While full state feedback designs lead

to computationally simpler cooperative control laws, output feedback designs are required

for most applications that involve high-dimensional vehicle models with inaccessible states.

To this end, several output feedback cooperative control approaches are proposed in the

literature for multivehicle systems (e.g., see [5, 6, 7, 8, 9, 10, 11, 12] and references therein),

where the common denominator of these approaches is that they utilize an observer in their

cooperative control laws.

Unlike the existing literature, the contribution of this paper is a new, observer-free

output feedback cooperative control architecture for continuous-time, minimum phase, and

high-order multivehicle systems. The proposed architecture is predicated on a nonminimal

state-space realization originally proposed in [13, 14] that generates an expanded set of

states only using the filtered input and filtered output and their derivatives for each follower

vehicle, without the need for designing an observer for each vehicle. Specifically, the pro-

posed observer-free output feedback control law consists of a vehicle-level controller and

a local cooperative controller for each vehicle as in [15], where the former addresses inter-

nal stability of vehicles and the latter addresses the containment problem. An illustrative

numerical example complements the proposed theoretical contribution.
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The organization of this paper is as follows. Section 3 presents the nonminimal state

space realization architecture of [13, 14] in the context of the multivehicle system setup of

this paper. The proposed output feedback cooperative control architecture is then given in

Section 4. An analysis of the proposed architecture is presented in 5, where two illustrative

numerical examples are included in Section 6. Finally, conclusions are summarized in

Section 7. Note that the results of this paper can be viewed as a generalization of some of

the state feedback cooperative control results in [15] to the output feedback one by resorting

to the nominimal state-space realization method presented in [13, 14].

2. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, R denotes the set

of real numbers; Rn denotes the set of n × 1 real column vectors; Rn×m denotes the set

of n × m real matrices; R+ denotes the set of positive real numbers; Rn×n
+ denotes the

set of n × n positive-definite real matrices; Sn×n denotes the set of n × n symmetric real

matrices; Dn×n denotes the set of n × n real matrices with diagonal scalar entries; (·)T

denotes transpose; (·)−1 denotes inverse; diag(a) denotes the diagonal matrix with the

vector a on its diagonal; and “,” denotes equality by definition. In addition, we write

λmin(A) (respectively, λmax(A)) for the minimum and respectively maximum eigenvalue

of the Hermitian matrix A and ‖ · ‖ for the Euclidean norm.

In addition, we adopt graph theoretical notation (e.g., see [16, 2]) to encode interac-

tions between vehicles. In particular, an undirected graph G is defined byVG = {1, · · · ,N }

of nodes and a set EG ∈ VG × VG of edges. If (i, j) ∈ EG , then the nodes i and j are

neighbors, and the neighboring relation is indicated with i ∼ j. The degree di of node i

is defined by the number of its neighbors and the degree matrix of graph G is then given

by D (G) , diag(d) ∈ RN×N , d = [d1, · · · ,dN ]T. A path i0i1 · · · iL is a finite sequence of

nodes such that ik−1 ∼ ik , k = 1, · · · ,L, and if any pair of district nodes has a path, then

a graph G is connected. Furthermore, we write A(G) ∈ RN×N for adjacency matrix of a
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graph G defined by

[A(G)]i j ,





1, if (i, j) ∈ EG

0, otherwise,
(1)

and B(G) ∈ RN×M for the (node-edge) incidence matrix of the graph G defined by

[B(G)]i j ,





1, if node i is the head of the edge j,

−1, if node i is the tail of the edge j,

0, otherwise,

(2)

where M is the number of edges, i is an index for the node set, and j is an index for the

edge set. Finally, the graph Laplacian matrix, L(G) ∈ R
N×N
+ ∩ SN×N , is defined by

L(G) , D (G) − A(G), (3)

or equivalently,
L(G) = B(G)B(G)T. (4)

We next recall some of the basic results for (scalar) multivehicle systems [2]. For

this purpose, let nodes and edges represent vehicles and information exchange links be-

tween vehicles, respectively. Then, we can model a given multivehicle system by a graph

G. For example, let xi (t) ∈ R be the state of node i, i = 1, ...,N , satisfying

ẋi (t) = ui (t), xi (0) = xi0, (5)

where ui (t) ∈ R is the control input. If each vehicle receives the relative state information

with respect to its neighbors, then

ui (t) = −
∑
i∼ j

(
xi (t) − x j (t)

)
, (6)

solves the rendezvous problem, where (5) subject to (6) can be written at the multivehicle

system level as
ẋ(t) = −L(G)x(t), xi (0) = xi0, (7)
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with x(t) =
[
xT

1 (t), · · · , xT
N (t)

]
denoting the aggregated state vector. Note that the spectrum

of L(G) has one zero eigenvalue and N−1 positive real eigenvalues if and only if the graph

G is connected and undirected. In this case, the solution of the multivehicle system given

by (7) evolves as x(t) → (1N 1T
N/N )x0 as t → ∞.

Finally, we recall some results on leader-follower multivehicle system frameworks.

For this purpose, let the incidence matrix (2) be partitioned as

B(G) =









BL(G)

BF(G)









, (8)

where BL(G) ∈ RNL×M and BF(G) ∈ RNF×M with NL and NF denoting cardinalities of the

leader and follower groups, respectively, such that N = NL + NF. Then, using (4) and (8)

the partitioned graph Laplacian matrix L(G) is given by

L(G) =









L(G) G(G)T

G(G) F (G)









, (9)

where L(G) , BL(G)BL(G)T, G(G) = BF(G)BL(G)T and F (G) = BF(G)BF(G)T. Note

that F (G) ∈ RNF×NF
+ ∩ SNF×NF , and hence, F (G) is nonsingular since det(F (G)) , 0.

Furthermore F (G)1NF = −G(G)1NL , or equivalently, each row of −F (G)−1G(G) has a

sum equal to 1. Now, we can model a given multivehicle system on a leader-follower

framework. In particular, let xL(t) ∈ RNL and xF(t) ∈ RNF be the aggregated state vector of

the leaders and followers, respectively. Then, the followers evolve through the Laplacian-

based dynamics as

ẋF(t) = −F (G)xF(t) − G(G)xL(t), xF(0) = xF0. (10)

Throughout this paper, we consider leaders as command generators for the neighboring

followers and that a connected, undirected graph G represents the interaction topology

between the vehicles.
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3. NONMINIMAL STATE SPACE REALIZATION FOR FOLLOWER VEHICLES

Consider controllable and observable minimum phase linear dynamical follower

vehicle system i, i = 1, · · · ,NF, given by

ẋi (t) = Axi (t) + Bui (t), xi (0) = x0i, t ≥ 0, (11)

yi (t) = Cxi (t), (12)

where xi (t) ∈ Rn, t ≥ 0 is the unknown state vector, ui (t) ∈ Rm, t ≥ 0 is the known control

input, yi (t) ∈ Rl , t ≥ 0 is the known system output. In addition, A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rl×n, are known follower system matrices and are minimal.

We use a nonminimal state-space representation method employed in [13, 14], for

the follower vehicle dynamics i, i = 1, · · · ,NF, such that an input-output equivalent (from

control inputs ui (t), t ≥ 0, to system outputs yi (t), t ≥ 0) nonminimal observer canonical

state-space model [17] of (11) and (12) for l > 1 is obtained. For this purpose, consider

ẋoi (t) = Aoxoi (t) + Boui (t), xoi (0) = xo0i, t ≥ 0, (13)

yi (t) = Coxoi (t), (14)

where xoi (t) ∈ Rln, t ≥ 0 is the state vector,

Ao =

















0 Il · · · 0
...

. . .
. . .

...

0 · · · 0 Il

−a0Il −a1Il · · · −an−1Il

















∈ Rln× ln, (15)
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Bo =

















CB

C AB
...

C An−1B

















∈ Rln×m, (16)

Co =

[
0 Il · · · 0

]
∈ Rl× ln. (17)

with ak , k = 0,1, · · · ,n − 1, in (15) being the coefficients of the characteristic polynomial

of A in (11). Defining

B̄0 , Co(a1Iln + a2 Ao + · · · + an−2 An−3
o + an−1 An−2

o + An−1
o )Bo,

(18)

B̄1 , Co(a2Iln + a3 Ao + · · · + an−1 An−3
o + An−2

o )Bo, (19)

...

B̄n−1 , CoBo, (20)

and using a known filtered expanded state vector xfi (t) ∈ Rnf , t ≥ 0, nf , (m + l)n, given

by

xfi (t) =
[
qT

1i (t), · · · ,q
T
ni (t), ν

T
1i, · · · , ν

T
ni

]T
, (21)

where qki (t) , yk−1
fi (t), νki = uk−1

fi (t), k = 1,2, · · · ,n, z(n) , dnz(t)/dtn, and where xfi (t)

is obtained by filtering ui (t) and yi (t) though the filter λn/Λ(s), where

Λ(s) = (s + λ)n =

n∑
p=0

(
n
p

)
sn−pλp

= sn + nλsn−1 + · · · + λn, (22)

is a monic Hurwitz polynomial of degree n with λ > 0, an alternative input-output equiva-

lent nonminimal controllable state-space realization of (11) and (12) is given by
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ẋfi (t) = Afxfi (t) + Bfui (t), xfi (0) = xf0i, t ≥ 0, (23)

yi (t) = Cfxfi (t), (24)

with

Af =


































0 Il 0 · · · · · · 0
...

. . .
...

0 · · · 0 Il 0 · · · · · · 0

−a0Il · · · · · · −an−1Il B̄0 · · · · · · B̄n−1

0 · · · · · · 0 Im 0 0
...

. . .
...

... · · · 0 Im

0 · · · · · · 0 −λnIm · · · · · · −nλIm


































∈ Rnf×nf , (25)

Bf =

[
0 0 · · · λnIm

]T
∈ Rnf×m, (26)

Cf =
[
− λ−n(a0Il + λnIl ) · · · · · · −λ−n(an−1Il + nλnIl )

λ−n B̄0 · · · · · · λ
−n B̄n−1

]
∈ Rl×nf . (27)

Now, following the results documented in [13, 14], the ith follower vehicle dynamics (11)

and (12) are input-output equivalent to the dynamics given by (23) and (24).

4. COOPERATIVE CONTROL DESIGN BASED ON NONMINIMAL STATE SPACE
REALIZATION

Before constructing the system controller architecture, we present the leader system

dynamics that are necessary for the considered containment problem. For this purpose,

consider the dynamics of the leader i, i = 1, · · · ,NL, given by

ẋLi (t) = ALi xLi (t) + BLici (t), xLi (0) = xL0i, t ≥ 0, (28)
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yLi (t) = CLi xLi (t), (29)

where xLi (t) ∈ Rni is the leader state vector, ci (t) ∈ Rmi is a vehicle bounded input com-

mand (i.e., ‖ci (t)‖ ≤ c∗i ) with bounded time rate change (i.e., ‖ċi (t)‖ ≤ ċ∗i ), yLi (t) ∈ Rl

is the leader output, ALi ∈ R
ni×ni is the leader system matrix, BLi ∈ R

ni×mi is the leader

command input matrix, CLi ∈ R
l×ni is the leader output matrix, (ALi,BLi,CLi) is minimal,

and ALi is Hurwitz.

To achieve the control objective of driving the follower vehicles to the convex hull

spanned by the leaders, we design a two level output feedback cooperative control for the

nonminimal state-space realization follower vehicle i, i = 1, · · · ,NF as

ui (t) = uci (t) + uvi (t). (30)

Here, uci (t) ∈ Rm is the local cooperative controller that receives the relative output mea-

surements of the neighboring vehicles in terms of yfi (t) and yLi (t) and uvi (t) ∈ Rm is the

vehicle level controller that receives the internal nonminimal state-space realization based

state measurements, i.e., xfi (t).

4.1. Vehicle-level Control Law. We consider the vehicle-level control law given

by

uvi (t) , −k xfi (t), (31)

in order to make Afr , Af−Bfk ∈ Rnf×nf Hurwitz (i.e., internal stability), where k ∈ Rmf×nf

is a feedback matrix designed using pole placement. Since Afr is Hurwitz, it follows from

converse Lyapunov theory [18] that there is exists a unique P ∈ Rnf×nf
+

⋂
Snf×nf

+ satisfying

0 = AT
frP + PAfr + R, (32)

where R ∈ Rnf×nf
+

⋂
Snf×nf

+ . Then, the follower vehicle dynamics in (23) become
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ẋfi (t) = Afrxfi (t) + Bfuci (t), xfi (0) = xf0i, t ≥ 0. (33)

Now that the internal stability of the vehicles has been addressed using the above vehicle-

level control law, we can now design the cooperative control law for the containment prob-

lem.

4.2. Local Cooperative Control Law. In order to present the cooperative con-

trol, we consider the approach in [15] and let ỹ(t) ,
[
yT

L (t), yT
f (t)

]T
∈ R(NL×NF)l be

the vector associated with the graph G, where yT
L (t) , [yT

L1(t), · · · , yT
LNL

(t)]T ∈ RNLl

denotes the first NL nodes representing the aggregated output vector of the leaders and

yT
f (t) , [yT

f1(t), · · · , yT
fNF

(t)]T ∈ RNFl denotes the last NF nodes representing the aggre-

gated filtered output vector of the follower vehicles. Note that F (G) ∈ R(NF×NF) and

G(G) ∈ R(NF×NL) are given in (9). For each vehicle i, i = 1, · · · ,NF, consider the local co-

operative controller receiving the relative output measurements of the neighboring vehicles

in terms of yfi (t), i = 1, · · · ,NF, and yLi (t), i = 1, · · · ,NL as [15]

uci (t) = Kc
[
−

∑
i∼ j

(
ỹi (t) − ỹ j (t)

)
+ θi (t)

]
, (34)

θ̇i (t) = δ
[
−

∑
i∼ j

(
ỹi (t) − ỹ j (t)

)
− ζ (θi (t) − νi (t))

]
, θi (0) = θi0, (35)

ν̇i (t) = η (θi (t) − νi (t)) , νi (0) = νi0, (36)

where Kc ∈ R
m× l is a gain matrix, θi (t) ∈ Rl is the integrator state, νi (t) ∈ Rl is the filter

state, δ ∈ R+ is the integrator gain, ζ ∈ R+ is the modification gain, and η ∈ R+ is the filter

gain. Next, applying the local cooperative controller (34), (35), and (36) to the follower

vehicle dynamics given by (33) yields

ẋfi (t) = Afrxfi (t) − BfKc

∑
i∼ j

(
ỹi (t) − ỹ j (t)

)
+ BfKcθi (t). (37)
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Letting xf(t) , [xT
f1(t), · · · , xT

fNF
(t)]T ∈ RNFnf , θ(t) , [θT

1 (t), · · · , θT
NF

(t)]T ∈ RNFl ,

and ν(t) , [νT
1 (t), · · · , νT

NF
(t)]T ∈ RNFl , and yfi (t) = Coxfi (t) where Co , [Il , · · · ,0] ∈

Rl×nf , the follower vehicle dynamics (33) subject to the local cooperative controller (34),

(35), and (36) can be written at the multivehicle system level as

ẋf(t) = (INF ⊗ Afr)xf(t) − (F (G) ⊗ BfKc)yf(t) − (G(G) ⊗ BfKc)yL(t)

+ (INF ⊗ BfKc)θ(t)

= [INF ⊗ Afr − F (G) ⊗ BfKcCo]xf(t) − (G(G) ⊗ BfKc)yL(t)

+ (INF ⊗ BfKc)θ(t), xf(0) = xf0, (38)

θ̇(t) = − δ(F (G) ⊗ Il )yf(t) − δ(G(G) ⊗ Il )yL(t) − δζ (θ(t) − ν(t))

= − δ(F (G) ⊗ Co)xf(t) − δ(G(G) ⊗ Il )yL(t) − δζ (θ(t) − ν(t)) , θ(0) = θ0, (39)

ν̇(t) = η (θ(t) − ν(t)) , ν(0) = ν0. (40)

This can further be written compactly as

ξ̇ (t) = A(G)ξ (t) + B(G)yL(t), ξ (0) = ξ0. (41)

where ξ , [xT
f (t), θT(t), νT(t)]T ∈ Rnξ , nξ , NF(nf + 2l), Aξ (G) , INF ⊗ Afr − F (G) ⊗

BfKcCo ∈ R
NFnf×NFnf , and

A(G) =













Aξ (G) INF ⊗ BfKc 0

−δ(F (G) ⊗ Co) −δζ INFl δζ INFl

0 ηINFl −ηINFl













∈ Rnξ×nξ , (42)

B(G) =













−G(G) ⊗ BfKc

−δ(G(G) ⊗ Il )

0













∈ Rnξ×NFl . (43)
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The objective of the proposed observer-free vehicle-level controller given in the

previous section is to stabilize the follower vehicle dynamics. Furthermore, the objective

of the local cooperative controller given in this section based on [15] is to solve the contain-

ment problem. For this purpose, we first need to ensure that the solution ξ (t) to (41) is L∞

stable [19], that is for every bounded yL(t), and ξ (t) is bounded. So, we know that yL(t)

is bounded, since every ALi, i = 1, · · · ,NL, are Hurwitz. Therefore, in order to conclude

that (41) is L∞ stable, A(G) needs to be Hurwitz. A necessary and sufficient condition

satisfying this requirement is given in the following remarks.

Remark 1 Similar to the results in [20, 21, 15], let µi ∈ spec(F (G)), i = 1, · · · ,NF. If

UA(G)i =













Afr − µi BfKcCo BfKc 0

−µiδCo −δζ Il δζ Il

0 ηIl ηIl













∈ R(nf+2l)× (nf+2l), (44)

is Hurwitz for i = 1, · · · ,NF, then A(G) in (42) is Hurwitz. This shows that (44) can be

made Hurwitz for i = 1, · · · ,NL by arbitrarily choosing the design parameters Kc, δ, ζ ,

and η. This further implies that the system (41) with the leader dynamical given by (28)

and (29) is L∞ stable (e.g., see Corollary 6.1 of [15]).

5. ANALYSIS

In this section, we state the main result of the this paper in the following theorem

which shows that the proposed control architecture solves the containment problem. For

this purpose, we first let ξ , [xT
f (t), θT(t), νT(t)]T ∈ Rnξ , with xf(t) ∈ RNFnf , θ(t) ∈

RNFl , and ν(t) ∈ RNFl . In addition, let AL , block-diag(AL1, · · · , ALNL ) ∈ RnL×nL , BL ,

block-diag(BL1, · · · ,BLNL ) ∈ RnL×mL , CL , block-diag(CT
L1, · · · ,C

T
LNL

)T ∈ RNLl×nL , and

c(t) , [cT
1 (t), · · · ,cT

NL
(t)]T ∈ RmL , with ‖c(t)‖ ≤ c∗, where nL =

∑NL
i=1 ni, and mL =∑NL

i=1 mi.
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Theorem 1 Consider the follower vehicle dynamics given compactly by (41) with (42)

being Hurwitz and the leader dynamics given by (28) and (29) for i = 1, · · · ,NL. First,

if the reference command is constant, then yf(t) → (M (G) ⊗ Il )yL(t) as t → ∞; that is,

yfi (t), i = 1, · · · ,NF, asymptotically converge to the convex hull formed by the leaders. If,

in addition, NL = 1, then yf(t) → 1NF ⊗ yL1(t) as t → ∞; that is , yfi (t), i = 1, · · · ,NF,

asymptotically converge to the output of the leader. Second, if the reference command is

time varying with bounded time rate of change, then yf(t) converge to the neighborhood

of the convex hull formed by (M (G) ⊗ Il )yL(t) as t → ∞. If, in addition, NL = 1, then

yf(t) converge to the neighborhood of 1NF ⊗ yL1(t) as t → ∞; that is yfi (t), i = 1, · · · ,NF,

converge to the neighborhood of the output of the leader.

Proof. Considering the augmented state vector given by

Z(t) , [xT
L(t), ξT(t)]T ∈ RnL+nξ , (45)

(28) and (41) can be written in a compact form as

Ż(t) = Az (G)Z(t) + Bzc(t), Z(0) = Z0, t ≥ 0 (46)

where

Az (G) =









AL 0

B(G)CL A(G)









∈ R(nL+nξ )× (nL+nξ ), (47)

Bz =









BL

0









∈ R(nL+nξ )×mL . (48)
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SinceA(G) is Hurwitz as shown in Remark 4 and AL is Hurwitz, it follows from the upper

triangle structure of (47) that Az (G) is Hurwitz, and hence, there exists a unique positive

definite matrix Pz such that

0 = A(G)TPz + PzA(G) + Rz, (49)

holds for a positive-definite matrix Rz.

Now, similar to the proposed analysis in [22], consider

H (t) , Z(t) +Az (G)−1Bzc(t), (50)

where Az (G) is invertible since it has a nonzero determinant. In addition, consider the

Lyapunov function candidate given by

V (H (t)) = H T(t)PzH (t), (51)

where V (0) = 0, V (H (t)) > 0 for all H (t) , 0, and V (H (t)) is radially unbounded.

The time derivative of (51) along the trajectory of (46) and (50) is given by

V̇ (H (t)) = 2H T(t)Pz
(
Ż(t) +Az (G)−1Bz ċ(t)

)
= 2H T(t)Pz

(
Az (G)Z(t) + Bzc(t)

)
+ 2H T(t)PzAz (G)−1Bz ċ(t). (52)

In the remainder of this proof, we consider two cases.

Case 1: For ċ(t) = 0, it follows from (49) and (52) that

lim
t→∞
H (t) = 0. (53)
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Next, similar to [15], since (53) implies Ż(t) → 0 as t → ∞, (46) can be written as

Az (G)Z(∞) + Bzc(∞) = 0, (54)

where Z(∞) = limt→∞Z(t) and c(∞) = limt→∞ c(t). In addition, letting xL(∞) =

limt→∞ xL(t), xf(∞) = limt→∞ xf(t), θ(∞) = limt→∞ θ(t), ν(∞) = limt→∞ ν(t), and using

the definition of Az (G) and Bz given by (47) and (48), respectively, in (54) we have

0 =ALxL(∞) + BLc(∞), (55)

0 = [INF ⊗ Afr − F (G) ⊗ BfKcCo]xf(∞) − (G(G) ⊗ BfKc)yL(∞)

+ (INF ⊗ BfKc)θ(∞), (56)

0 = − δ(F (G) ⊗ Co)xf(∞) − δ(G(G) ⊗ Il )yL(∞) − δζ (θ(∞) − ν(∞)) , (57)

0 =η (θ(∞) − ν(∞)) . (58)

Since, θ(∞) = ν(∞) in (58), (57) implies

yf(∞) = −(F (G)−1G(G) ⊗ Il )yL(∞), (59)

and hence, yfi (t), i = 1, · · · ,NF, asymptotically converge to the convex hull formed by the

leaders. In addition, if NL = 1, then −F (G)−1G(G) = 1NF and as a direct consequence of

(59) we have

yf(∞) = (1NF ⊗ Il )yL1(∞)

= 1NF ⊗ yL1(∞), (60)

and hence, yfi (t), i = 1, · · · ,NF, asymptotically converge to the output of the leader.

Case 2: We now consider ‖ċ(t)‖ ≤ ċ∗, where ċ∗ > 0. For this purpose, (52) can be

rewritten as
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V̇ (H (t)) = −H T(t)RzH (t) + 2H T(t)PzAz (G)−1Bz ċ(t)

≤ −λmin(Rz)‖H (t)‖2 + Ψ‖H (t)‖,

= −λmin(Rz)‖H (t)‖
(
‖H (t)‖ −

Ψ

λmin(Rz)

)
. (61)

where Ψ , 2‖PzAz (G)−1Bz ‖Fċ∗. It follows from (61) that V̇ (H (t)) < 0 outside the

compact set

Ω ,

{
H (t) : H (t) ≥

Ψ

λmin(Rz)

}
, (62)

which proves uniform ultimate boundedness of the closed-loop solutionZ(t)+Az (G)−1Bzc(t)

for all initial conditions[19]. Since V̇ (H (t)) < 0 outside the compact set (62), then an ul-

timate bound for the distance ofH (t) , Z(t) +Az (G)−1Bzc(t) can be computed as

‖H (t)‖ ≤

√
λmax(Pz)
λmin(Pz)

Ψ

λmin(Rz)
, t ≥ T. (63)

Note that if the right side of (63) is small, then the distance of Z(t) + Az (G)−1Bzc(t) is

small for t ≥ 0 . Therefore, a smallZ(t) +Az (G)−1Bzc(t) implies yfi (t), i = 1, · · · ,NF to

stay at the neighborhood of the convex hull formed by those of the leaders. In addition, if

NL = 1, then −F (G)−1G(G) = 1NF , implies yfi (t), i = 1, · · · ,NF stay close to the output

of the leader.

This concludes the entire proof. �

6. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two numerical examples to demonstrate the efficacy of

the proposed output feedback control architecture for multivehicle systems. For this pur-

pose, we consider a line graph of leader and follower vehicles. For the follower vehicle
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dynamics we consider system matrices given by

A =









0 1

1 1









, B =









0

1









, C =

[
1 0

]
, (64)

with zero initial conditions. In addition, for the leader vehicle dynamics we consider AL =

−0.5, BL = 0.5, CL = 1, with xL1(0) = 0. We let λ = 0.8, and

Afr =

















0 1 0 0

−6.25 −3.535 1 0

0 0 0 1

0 0 −0.64 −1.6

















, (65)

to create the nominal feedback gain k = [37,59.5,29.75,7.09] and choose Kc = 1.5, ζ =

1.5, η = 2, δ = 5 for the cooperative control design.

Throughout the simulation, in order to show efficacy of the proposed control archi-

tecture regarding the stability and convergence, we consider two types of reference com-

mand for the leader system, constant and time varying reference commands.

Example 1. For the first example, we consider a line graph with four follower

vehicles and a single leader and our aim is to track a given reference command c1(t), t ≥ 0.

This is first done for a unit step reference command as shown in Figure 1 where it is clear

the the follower vehicles asymptotically converge to the output of the leader. We then apply

a time varying reference command given by c1(t) = 0.5 sin(0.02t) as shown in Figure 4. In

this case, the outputs of the follower vehicles converge asymptotically to a neighborhood

of the leader vehicle which is consistent with the proposed approach.

Example 2. For the second example, we consider four follower vehicles and two

leaders with different reference commands. In this way, the leaders create a convex hull

for the followers to converge to. First, for a constant reference command, we consider
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Figure 1. Proposed output feedback control performance for multivehicle system with one
leader following a constant command.
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Figure 2. Proposed output feedback control performance for multivehicle system with one
leader following a time varying command.

c(t) = [1 , 0.8]T as shown in Figure 3. In Figure 7, we use the time varying commands

given by ci (t) = (−1)i+10.8 + (−1)i+10.5 sin((0.02 ∗ i)t), i = 1,2. In both cases, follower

vehicles converge to the convex hull of leader outputs.
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Figure 3. Proposed output feedback control performance for multivehicle system with two
leaders creating a constant convex hull.
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Figure 4. Proposed output feedback control performance for multivehicle system with two
leaders creating a time varying convex hull.

7. CONCLUSIONS

A new, observer-free output feedback cooperative control architecture was pre-

sented for continuous-time, minimum phase, and high-order multivehicle systems. In par-

ticular, a nonminimal state-space realization method was utilized to generate an expanded

set of states for each vehicle, where these nonminimal states were then utilized to design
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a cooperative control architecture to address the containment problem. In addition to rig-

orous analyses on the stability and convergence, two illustrative numerical examples were

further included to demonstrate the efficacy of the proposed approach. Future research will

include comparison of the proposed observer-free cooperative control architecture with

other observer-based cooperative control methods.
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ABSTRACT

An event-triggering methodology is proposed on an observer-free output feedback

cooperative control scheme for linear multiagent systems in order to schedule the ex-

changed information between the agents depending upon error exceeding user-defined

thresholds for reducing wireless network utilization. Specifically, the cooperative control

scheme is designed for continuous-time, minimum phase, and high-order linear multiagent

systems in the context of a containment problem (i.e., outputs of the follower agents con-

vergence to the convex hull spanned by those of the leader agents). The proposed observer-

free output feedback cooperative control scheme with event-triggering guarantees follower

agents’ system stability and performance, and also does not yield to a Zeno behavior. Two

illustrative numerical examples complement the proposed theoretical contribution.

1. INTRODUCTION

During the past few decades, cooperative control of multiagent systems has at-

tracted increased attention in the control engineering community owing to its diverse and

influential application in areas of science and engineering such as formation flight of un-
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manned air, land, and underwater vehicles, as well as the control of clusters of satellites and

telescopes (e.g., see [1, 2, 3, 4]). Since cooperative control enables the multiagent systems

to work coherently utilizing local information exchange between agents, a challenge in the

design and implementation of networked control systems is to reduce wireless network uti-

lization. To this end, the last decade has witnessed an increased interest in event-triggering

control theory [5, 6, 7, 8, 9].

In this paper, we propose an event-triggering methodology for the output feedback

cooperative control to schedule the exchanged output measurements information between

the agents in order to reduce wireless network utilization. The utilized output feedback

cooperative control architecture is in the context of a containment problem (i.e., outputs of

the follower agents convergence to the convex hull spanned by those of the leader agents).

While full state feedback designs lead to computationally simpler cooperative control laws

[10, 11], output feedback designs are required for most applications that involve high-

dimensional agent models with inaccessible states. To this end, several output feedback

cooperative control with event triggering approaches are proposed in the literature for mul-

tiagent systems (e.g., see [12, 13] and references therein), where the common denominator

of these approaches is that they utilize an observer in their cooperative control laws.

Unlike the aforementioned existing literature, the contribution of this paper is an

event-triggering mechanism on the exchanged output measurements between agents that

are controlled by an observer-free output feedback cooperative control architecture for

continuous-time, minimum phase, and high-order linear multiagent systems, where the re-

sults reported here can be viewed as a generalization of our recent papers in [14, 15], where

they do not consider event-triggering. The key feature of our adopted controller scheme is

that it is predicated on a nonminimal state-space realization originally proposed in [16, 17]

that generates an expanded set of states only using the filtered input and filtered output and

their derivatives for each follower agent, without the need for designing an observer for

each agent.
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Specifically, the adopted observer-free output feedback control law consists of a

agent-level controller and a local cooperative controller for each agent as in [18], where

the former addresses internal stability of agents and the latter addresses the containment

problem. In addition, the proposed event-triggering methodology is applied on the relative

output measurements of the agents, where each agent has its own event-triggering thresh-

old to transmit its own output measurements to the neighbor agents asynchronously. Since

the information exchanged happening in the event-triggering manner, additional terms in

the Laplacian matrices are observed, and these additional terms are utilized in the con-

troller scheme design. Note that our cooperative controller scheme operates in a periodic

sampling instances and it uses event-triggered output measurements transmitted from the

neighboring agents. Two illustrative numerical examples complement the proposed theo-

retical contribution.

This paper’s organization is as follows. Section 2 recalls necessary basic results

from the multiagent systems literature. Section 3 presents an over view of the nonmini-

mal state space realization architecture of [14, 15, 16, 17] in the context of the multiagent

system setup of this paper. The proposed output feedback cooperative control architec-

ture with event-triggering is then given in Section 4. User-defined event-triggering rules

are given in Section 5. A performance analysis of the proposed architecture is presented

in 6. Computing the lower bound for event-triggering intersampling time by Zeno analy-

sis is presented in 7, where two illustrative numerical examples are included in Section 8.

Finally, conclusions are summarized in Section 9.

2. NECESSARY PRELIMINARIES

The notation used in this paper is fairly standard ( e.g see [14, 15]). In addition, we

adopt graph-theoretical notation (e.g., see [19, 2]) to encode interactions between agents.

In particular, an undirected graph G is defined by VG = {1, · · · ,N } of nodes and a set

EG ∈ VG × VG of edges. If (i, j) ∈ EG , then the nodes i and j are neighbors, and
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the neighboring relation is indicated with i ∼ j. The degree di of node i is defined by

the number of its neighbors and the degree matrix of graph G is then given by D (G) ,

diag(d) ∈ RN×N , d = [d2, · · · ,dN ]T. A path i0i1 · · · iL is a finite sequence of nodes such

that ik−1 ∼ ik , k = 1, · · · ,L, and if any pair of district nodes has a path, then a graph G

is connected. Furthermore, we write A(G) ∈ RN×N for adjacency matrix of a graph G

defined by [A(G)]i j , 1 if (i, j) ∈ EG and [A(G)]i j , 0 otherwise, and B(G) ∈ RN×M

for the (node-edge) incidence matrix of the graph G, defined by [B(G)]i j , 1 if node i is

the head of the edge j, [B(G)]i j , −1 if node i is the tail of the edge j, and [B(G)]i j , 0

otherwise, where M is the number of edges, i is an index for the node set, and j is an index

for the edge set. Finally, the graph Laplacian matrix, L(G) ∈ R
N×N
+ ∩ SN×N , is defined

by L(G) , D (G) −A(G), or equivalently, L(G) = B(G)B(G)T. We next recall some of

the basic results for (scalar) multiagent systems [2]. For this purpose, let nodes and edges

represent agents and information exchange links between agents, respectively. Then, we

can model a given multiagent system by a graph G. For example, let xi (t) ∈ R be the state

of node i, i = 1, ...,N , satisfying

ẋi (t) = ui (t), xi (0) = xi0, (1)

where ui (t) ∈ R is the control input. If each agent receives the relative state information

with respect to its neighbors, then

ui (t) = −
∑
i∼ j

(
xi (t) − x j (t)

)
, (2)

solves the rendezvous problem, where (1) subject to (2) can be written at the multiagent

system level as

ẋ(t) = −L(G)x(t), xi (0) = xi0, (3)
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with x(t) =
[
xT

1 (t), · · · , xT
N (t)

]T
denoting the aggregated state vector. Note that the spec-

trum of L(G) has one zero eigenvalue and N − 1 positive real eigenvalues if and only if the

graph G is connected and undirected. In this case, the solution of the multiagent system

given by (3) evolves as x(t) → (1N 1T
N/N )x0 as t → ∞.

Finally, we recall some results on leader-follower multiagent system frameworks.

For this purpose, let the incidence matrix be partitioned as B(G) = [BL(G)T,BF(G)T]T,

where BL(G) ∈ RNL×M and BF(G) ∈ RNF×M with NL and NF denoting cardinalities of the

leader and follower groups, respectively, such that N = NL + NF. Then, using L(G) =

B(G)B(G)T and the partitioned incidence matrix the partitioned graph Laplacian matrix

L(G) is given by

L(G) =









L(G) G(G)T

G(G) F (G)









, (4)

where L(G) , BL(G)BL(G)T, G(G) = BF(G)BL(G)T and F (G) = BF(G)BF(G)T.

Note that F (G) ∈ RNF×NF
+ ∩ SNF×NF , and hence, F (G) is nonsingular since det(F (G)) ,

0. Furthermore F (G)1NF = −G(G)1NL , or equivalently, each row of −F (G)−1G(G) has

a sum equal to 1. Now, we can model a given multiagent system on a leader-follower

framework. In particular, let xL(t) ∈ RNL and xF(t) ∈ RNF be the aggregated state vector of

the leaders and followers, respectively. Then, the followers evolve through the Laplacian-

based dynamics as

ẋF(t) = −F (G)xF(t) − G(G)xL(t), xF(0) = xF0. (5)

Throughout this paper, we consider leaders as command generators for the neigh-

boring followers and that a connected, undirected graph G represents the interaction topol-

ogy between the agents.



154

Remark 2 In the case of event-triggering for the exchanged information between the agents,

(2) can be given by

ui (t) = −
∑
i∼ j

(
xi (t) − xs j (t)

)
, (6)

where xs j (t) is the event-triggered state vector of the neighboring agent. Then, (1) subject

to (6) can be written at the multiagent system level as

ẋ(t) = −Lp(G)x(t) − Ls(G)xs(t), xi (0) = xi0, (7)

where xs(t) =
[
xT

s1(t), · · · , xT
sN (t)

]T
is the aggregated event-triggered state vector, Lp(G)

is graph Laplacian matrix corresponds to the periodic state vector owing to utilizing event-

triggering, Ls(G) is graph Laplacian matrix corresponds to the event-trigged state vector.

Note that the partitioned resulting Laplacian matrices are given by

Lp(G) =









Lp(G) Gp(G)T

Gp(G) Fp(G)









, (8)

Ls(G) =









Ls(G) Gs(G)T

Gs(G) Fs(G)









, (9)

where L(G) , Lp(G) + Ls(G), Gp(G) = 0, Ls(G) = 0, Gs(G) , G(G), Lp(G) ,

L(G), and F (G) , Fp(G) + Fs(G). Now, we can model a given multiagent system on a

leader-follower framework with event-triggered state vectors that exchanged between the

multiagent systems. Then, the Laplacian-based dynamics in (5) can be given as

ẋF(t) = − Fp(G)xF(t) − Gs(G)xLs(t) − Fs(G)xFs(t), xF(0) = xF0. (10)
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Owing to proposing event-triggering methodology on the exchanged information between

the agents, we have additional different Laplacian matrices here in this paper. In addition, it

will be shown in the sequel how these additional Laplacian matrices affect on the followers

agents’ performance analysis.

3. AN OVERVIEW OF THE NONMINIMAL STATE SPACE REALIZATION

Consider controllable and observable minimum phase linear dynamical follower

agent system i, i = 1, · · · ,NF, given by

ẋi (t) = Axi (t) + Bui (t), xi (0) = x0i, t ≥ 0, (11)

yi (t) = Cxi (t), (12)

where xi (t) ∈ Rn, t ≥ 0 is the unknown state vector, ui (t) ∈ Rm, t ≥ 0 is the known control

input, yi (t) ∈ Rl , t ≥ 0 is the known system output. In addition, A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rl×n, are known follower system matrices and the triple (A,B,C) is minimal. We use a

nonminimal state-space representation method utilized in [14, 15, 16, 17] for the follower

agent dynamics i, i = 1, · · · ,NF, such that an input-output equivalent (from control inputs

ui (t), t ≥ 0, to system outputs yi (t), t ≥ 0) nonminimal observer canonical state-space

model [20] of (11) and (12) for l > 1 is obtained. An input-output equivalent nonminimal

controllable state-space realization of (11) and (12) is now given by

ẋfi (t) = Afxfi (t) + Bfui (t), xfi (0) = xf0i, t ≥ 0, (13)

yi (t) = Cfxfi (t), (14)
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with

Af =


































0 Il 0 · · · · · · 0
...

. . .
...

0 · · · 0 Il 0 · · · · · · 0

−a0Il · · · · · · −an−1Il B̄0 · · · · · · B̄n−1

0 · · · · · · 0 Im 0 0
...

. . .
...

... · · · 0 Im

0 · · · · · · 0 −λnIm · · · · · · −nλIm


































∈ Rnf×nf , (15)

Bf =

[
0 0 · · · λnIm

]T
∈ Rnf×m, (16)

Cf =
[
− λ−n(a0Il + λnIl ) · · · · · ·−λ−n(an−1Il + nλnIl ) λ−n B̄0· · · · · · λ

−n B̄n−1
]

∈ Rl×nf , (17)

where xfi (t) =
[
qT

1i (t), · · · ,q
T
ni (t), ν

T
1i, · · · , ν

T
ni

]T
∈ Rnf , i = 1, · · · ,NF, with nf , (m + l)n, is

the known expanded state vector that contains the filtered input and filtered output and their

derivatives given by qki (t) , yk−1
fi (t), νki = uk−1

fi (t), k = 1,2, · · · ,n, z(n) , dnz(t)/dtn,

ak , k = 0, . . . ,n − 1, is the coefficients of the characteristic polynomial of system matrix

for the nonmimimal observer canonical state space model of (11) and (12) for l > 1, λ is

the filter gain of the transfer function Λ(s) = λn/(s + λ)n for the known expanded state

vector xfi (t) in (13), and B̄k , k = 0, . . . ,n − 1 is the combination matrix of the nonminimal

observer canonical state-space form matrices of (11) and (12). The nonminimal state space

realization steps are omitted here due to the page limit restrictions, and the details are

available in [14].
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4. COOPERATIVE CONTROL DESIGN BASED ON NONMINIMAL STATE SPACE
REALIZATION

In order to construct the system controller architecture, we need first to introduce

the leader system dynamics that are necessary for the considered containment problem. For

this purpose, consider the dynamics of the leader i, i = 1, · · · ,NL, given by

ẋLi (t) = ALi xLi (t) + BLici (t), xLi (0) = xL0i, t ≥ 0, (18)

yLi (t) = CLi xLi (t), (19)

where xLi (t) ∈ Rni is the leader state vector, ci (t) ∈ Rmi is a agent bounded input command

(i.e., ‖ci (t)‖ ≤ c∗i ) with bounded time rate change (i.e., ‖ċi (t)‖ ≤ ċ∗i ), yLi (t) ∈ Rl is the

leader output, ALi ∈ R
ni×ni is the leader system matrix, BLi ∈ R

ni×mi is the leader command

input matrix, CLi ∈ R
l×ni is the leader output matrix, (ALi,BLi,CLi) is minimal, and ALi is

Hurwitz.

To achieve the control objective of driving the follower agents to the convex hull

spanned by the leaders, we utilize the control architecture presented in [14], where a two-

level output feedback control for the nonminimal state-space realization follower agent

i, i = 1, · · · ,NF given as

ui (t) = uci (t) + uvi (t). (20)

Here, uci (t) ∈ Rm is the local cooperative controller that receives the event-triggered rel-

ative output measurements of the neighboring agents in terms of yfsi (t) and yLsi (t) and

uvi (t) ∈ Rm is the agent level controller that receives the internal nonminimal state-space

realization based state measurements, i.e., xfi (t).
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4.1. Vehicle-level Control Law. We consider the agent-level control law given by

[14]

uvi (t) , −k xfi (t), (21)

in order to make Afr , Af−Bfk ∈ Rnf×nf Hurwitz (i.e., internal stability), where k ∈ Rmf×nf

is a feedback matrix designed using pole placement. Then, the follower agent dynamics in

(13) become

ẋfi (t) = Afrxfi (t) + Bfuci (t), xfi (0) = xf0i, t ≥ 0. (22)

4.2. Local Cooperative Control Law with Event-triggering. In order to present

the cooperative control scheme with event-triggered exchanged information, we first con-

sider the approach in [18, 14, 15] in our theoretical setup. In addition, we assume each ith,

i = 1, · · · ,NF, follower agent’s controller receives event-trigged relative output measure-

ments form the neighbor agents. For this purpose, let ỹ(t) ,
[
yT

L (t), yT
f (t)

]T
∈ R(NL×NF)l

be the vector associated with the graph G, where yT
L (t) , [yT

L1(t), · · · , yT
LNL

(t)]T ∈ RNLl

denotes the first NL nodes representing the aggregated output vector of the leaders and

yT
f (t) , [yT

f1(t), · · · , yT
fNF

(t)]T ∈ RNFl denotes the last NF nodes representing the aggregated

filtered output vector of the follower agents. Let in addition, ỹs(t) ,
[
yT

Ls(t), yT
fs(t)

]T
∈

R(NL×NF)l be the vector associated with the graph G, where yLs(t) and yfs(t) denote the

event-triggered version of yL(t) and yf(t), respectively. For each agent i, i = 1, · · · ,NF, con-

sider the local cooperative controller receiving the even-triggered relative output measure-

ments of the neighboring agents in terms of yfsi (t), i = 1, · · · ,NF, and yLsi (t), i = 1, · · · ,NL

as [18, 14, 15]

uci (t) = Kc
[
−

∑
i∼ j

(
ỹi (t) − ỹs j (t)

)
+ θi (t)

]
, (23)
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θ̇i (t) = δ
[
−

∑
i∼ j

(
ỹi (t) − ỹs j (t)

)
− ζ (θi (t) − νi (t))

]
, θi (0) = θi0, (24)

ν̇i (t) = η (θi (t) − νi (t)) , νi (0) = νi0, (25)

where Kc ∈ R
m× l is a gain matrix, θi (t) ∈ Rl is the integrator state, νi (t) ∈ Rl is the filter

state, δ ∈ R+ is the integrator gain, ζ ∈ R+ is the modification gain, and η ∈ R+ is the filter

gain. Next, applying the local cooperative controller (27), (28), and (29) to the follower

agent dynamics given by (22) yields

ẋfi (t) = Afrxfi (t) − BfKc

∑
i∼ j

(
ỹi (t) − ỹs j (t)

)
+ BfKcθi (t). (26)

Letting xf(t) , [xT
f1(t), · · · , xT

fNF
(t)]T ∈ RNFnf , θ(t) , [θT

1 (t), · · · , θT
NF

(t)]T ∈ RNFl , and

ν(t) , [νT
1 (t), · · · , νT

NF
(t)]T ∈ RNFl , and yfi (t) = Coxfi (t) where Co , [Il , · · · ,0] ∈ Rl×nf ,

the follower agent dynamics (22) subject to the local cooperative controller (23), (24), and

(25) can be written at the multiagent system level as

ẋf(t) = (INF ⊗ Afr)xf(t) − (Fp(G) ⊗ BfKc)yf(t) − (Fs(G) ⊗ BfKc)yfs(t)

− (Gs(G) ⊗ BfKc)yLs(t) + (INF ⊗ BfKc)θ(t)

= [INF ⊗ Afr − F (G) ⊗ BfKcCo]xf(t) − (G(G) ⊗ BfKc)yL(t) + (INF ⊗ BfKc)θ(t)

− (G(G) ⊗ BfKc)yLe(t) − (Fs(G) ⊗ BfKc)yfe(t), xf(0) = xf0, (27)

θ̇(t) = − δ(Fp(G) ⊗ Il )yf(t) − δ(Fs(G) ⊗ Il )yfs(t) − δ(Gs(G) ⊗ Il )yLs(t)

− δζ (θ(t) − ν(t))

= − δ (F (G) ⊗ Co) xf(t) − δ(G(G) ⊗ Il )yL(t) − δζ (θ(t) − ν(t))

− δ(Fs(G) ⊗ Il )yfe(t) − δ(G(G) ⊗ Il )yLe(t), θ(0) = θ0, (28)

ν̇(t) = η (θ(t) − ν(t)) , ν(0) = ν0. (29)

This can further be written compactly as
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ξ̇ (t) =A(G)ξ (t) + B(G)yL(t) +D1(G)yLe(t) +D2(G)yfe(t), ξ (0) = ξ0. (30)

where ξ , [xT
f (t), θT(t), νT(t)]T ∈ Rnξ , nξ , NF(nf + 2l), Aξ (G) , INF ⊗ Afr − F (G) ⊗

BfKcCo ∈ R
NFnf×NFnf , yLe(t) , yLs(t) − yL(t) ∈ RNLl , yfe(t) , yfs(t) − yf(t) ∈ RNFl and

A(G) =













Aξ (G) INF ⊗ BfKc 0

−δ (F (G) ⊗ Co) −δζ INFl δζ INFl

0 ηINFl −ηINFl













∈ Rnξ×nξ , (31)

B(G) =













−G(G) ⊗ BfKc

−δ(G(G) ⊗ Il )

0













∈ Rnξ×NFl , (32)

D1(G) =













−G(G) ⊗ BfKc

−δ(G(G) ⊗ Il )

0













∈ Rnξ×NFl , (33)

D2(G) =













−Fs(G) ⊗ BfKc

−δ(Fs(G) ⊗ Il )

0













∈ Rnξ×NFl , (34)

where (33) and (34) are additional terms due to event-triggering of the exchanged informa-

tion resulting from the communication among the agents.

As mentioned before, that the objective of the proposed observer-free agent-level

controller given in this section is to stabilize the follower agent dynamics. In addition, the

objective of the local cooperative controller given in this subsection based on [18, 14, 15]

is to solve the containment problem. For this purpose, we first need to ensure that the

solution ξ (t) to (30) is L∞ stable [21], that is for every bounded yL(t), yLe(t), and yfe(t),

ξ (t) is bounded. So, we know that yL(t), yLe(t), and yfe(t) are bounded, since every ALi, i =
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1, · · · ,NL, are Hurwitz. Therefore, in order to conclude that (30) is L∞ stable,A(G) needs

to be Hurwitz. A necessary and sufficient condition satisfying this requirement is given in

the following remark.

Remark 3 Similar to the results in [22, 23, 18], let µi ∈ spec(F (G)), i = 1, · · · ,NF. If

UA(G)i =













Afr − µi BfKcCo BfKc 0

−µiδCo −δζ Il δζ Il

0 ηIl −ηIl













∈ R(nf+2l)× (nf+2l), (35)

is Hurwitz for i = 1, · · · ,NF, then A(G) in (31) is Hurwitz. This shows that (35) can be

made Hurwitz for i = 1, · · · ,NL by arbitrarily choosing the design parameters Kc, δ, ζ ,

and η. This further implies that the system (30) with the leader dynamical given by (18)

and (19) is L∞ stable (e.g., see Corollary 6.1 of [18]).

5. USER-DEFINED EVENT-TRIGGERING RULES

Let ε yi ∈ R+ be a given, user-defined sensing threshold to allow for output data

transmission from the ith follower agent system, i = 1, · · · ,NF, to the neighboring follower

agent systems. In addition, let ε yLi ∈ R+ be a given, user-defined sensing threshold to allow

for output data transmission from the ith leader system, i = 1, · · · ,NL, to the neighboring

follower agent systems. We then define the logic rules for scheduling the data exchange:

E1i : ‖yfsi (t) − yfi (t)‖ ≤ ε yi, (36)

E2i : ‖yLsi (t) − yLi (t)‖ ≤ ε yLi . (37)

Specifically, when the inequality in Equation (36) is violated at the ski ∈ R+ moment of

the ki-th time instant, the follower agent system triggers the filtered measured output signal

information, such that yfsi (t) is sent to the neighboring agent systems along the monotonic

sequence
{
ski

}∞
ki=1. Likewise, when Equation (37) is violated, then the leader system sends
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the measured output signal information yLsi (t) to the neighboring agent systems at the

rqi ∈ R+ moment of the qi-th time instant along the monotonic sequence
{
rqi

}∞
qi=1

. Each

ith leader agent, i = 1, · · · ,NL and ith follower agent, i = 1, · · · ,NF output signal is held

by zero-order-hold operator (ZOH) until the next triggering event for the corresponding

signal take place. In addition, each ith follower agent ,i = 1, · · · ,NF, receives the event-

triggered relative output measurement form its neighboring agent and stores it by a ZOH

and update this value whenever it receives a new triggered relative output measurement

form that neighboring agent. Furthermore, each agent event-triggers its own output signal

asynchronously to the neighbor agents.

Now, consider the agent system given by (22), and compact form of multivechile

system subject to the local cooperative control given by (30). Letting the transmission

of the follower agent system filtered output to the neighboring agent systems occur when

Ē1i is true and letting the transmission of the leader system measured output signal to the

neighboring follower agent systems occur when Ē2i is true.

6. SYSTEM-THEORETIC ANALYSIS

In this section, we show the performance of the follower agents’ outputs to converge

to the leader output. In the analysis, we show that the proposed control architecture solves

the containment problem with the presence of event-triggering mechanism. For this pur-

pose, we first let AL , block-diag(AL1 , · · · , ALNL ) ∈ RnL×nL , BL , block-diag(BL1, · · · ,

BLNL ) ∈ RnL×mL , CL , block-diag(CT
L1, · · · ,C

T
LNL

)T ∈ RNLl×nL , and c(t) , [cT
1 (t), · · · ,

cT
NL

(t)]T ∈ RmL , with ‖c(t)‖ ≤ c∗, where nL =
∑NL

i=1 ni, and mL =
∑NL

i=1 mi. In order to

analyze the effect of event-triggering of communication among the agents on the closed

loop system and controller performance, we consider the dynamical system given by

˙̄ξ (t) =A(G) ξ̄ (t) + B(G)yL(t), ξ̄ (0) = ξ0, (38)
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has solution partitioned as ξ̄ , [x̄T
f (t), θ̄T(t), ν̄T(t)]T ∈ Rnξ , where x̄f(t) ∈ RNFnf with

ȳf(t) = (INF ⊗ Co) x̄f(t), θ̄(t) ∈ RNFl , and ν̄(t) ∈ RNFl .

Note that each ith, i = 1, · · · ,NF, follower agent communicates with its own con-

troller in periodic sampling instances. In addition, the received event-triggered output mea-

surements from the neighboring agents only affect on the cooperative controller scheme

performance. Since we utilize ZOH operator to hold the event-triggered outputs form the

other neighboring agents that considered as inputs to the cooperative controller, we uti-

lize standard Lyapunov analysis to analyze the performance of overall multiagent systems

[11, 24].

Theorem 2 Consider the follower agent dynamics given compactly by (30) with (31) being

Hurwitz and the leader dynamics given by (18) and (19) for i = 1, · · · ,NL, where the

reference command is time varying with bounded time rate of change. Furthermore, let the

data transmission from the ith follower systems to the neighboring follower agent systems

occur when Ē1i,i = 1, · · · ,NF, is true and let the data transmission from the ith leader agent

system to the neighboring follower agent systems occur when Ē2i, i = 1, · · · ,NL, is true.

Then, yf(t) converge to the neighborhood of the convex hull formed by (M (G) ⊗ Il )yL(t)

as t → ∞. If, in addition, NL = 1, then yf(t) converge to the neighborhood of 1NF ⊗ yL1(t)

as t → ∞; that is yfi (t), i = 1, · · · ,NF, converge to the neighborhood of the output of the

leader.

Proof. In order to analyses the convergence performance, we consider the aug-

mented state vector given byZ(t) , [xT
L(t), ξT(t)]T ∈ RnL+nξ , (18) and (30) can be written

in a compact form as

Ż(t) = Az (G)Z(t) + BzC(t), Z(0) = Z0, t ≥ 0 (39)
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where

Az (G) =









AL 0

B(G)CL A(G)









∈ R(nL+nξ )× (nL+nξ ), (40)

Bz =









BL 0 0

0 D1D2









∈ R(nL+nξ )× (mL+2NFl), (41)

and C(t) , [cT(t), yT
Le(t), yT

fe(t)]T ∈ RmL+2NFl . SinceA(G) is Hurwitz as shown in Remark

4 and AL is Hurwitz, it follows from the upper triangle structure of (40) that Az (G) is

Hurwitz, and hence, there exists a unique Pz ∈ R
(nL+nξ )× (nL+nξ )
+ ∩S

(nL+nξ )× (nL+nξ )
+ such that

0 = A(G)T
z Pz + PzAz (G) + Rz, (42)

holds for Rz ∈ R
(nL+nξ )× (nL+nξ )
+ ∩ S

(nL+nξ )× (nL+nξ )
+ . To show the effect of leader reference

command on the convergence performance with isolation of event triggering effect, con-

sider the augmented state vector given by Z̄(t) ∈ RnL+nξ , (18) and (38) can be written in a

compact form as

˙̄
Z(t) = Az (G)Z̄(t) + BzC̄(t), Z̄(0) = Z̄0, t ≥ 0 (43)

where C̄(t) , [cT(t),0,0]T ∈ RmL+2NFl . Consider in addition

˜̇
Z(t) = Az (G)Z̃(t) + BzC̃(t), Z̃(0) = Z̃0, t ≥ 0 (44)

where Z̃(t) = Z(t) − Z̄(t), and C̃(t) , [0, yT
Le(t), yT

fe(t)]T ∈ RmL+2NFl .

Next, similar to the proposed analysis in [25, 14], consider

H (t) , Z̄(t) +Az (G)−1BzC̄(t), (45)
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where Az (G) is invertible since it is Hurwitz. In addition, consider the Lyapunov function

candidate given by

V1(H (t)) = H T(t)PzH (t), (46)

where V1(0) = 0, V1(H (t)) > 0 for all H (t) , 0, and V1(H (t)) is radially unbounded.

The time derivative of (46) along the trajectory of (43) and (45) is given by

V̇1(H (t)) = 2H T(t)Pz
( ˙̄
Z(t) +Az (G)−1Bz

˙̄C(t)
)

= −H T(t)RzH (t) + 2H T(t)PzAz (G)−1Bz
˙̄C(t). (47)

In the reminder of the proof, we consider two cases.

Case 1: For ċ(t) = 0, it follows from (47) that limt→∞H (t) = 0. Next, similar to [18, 14,

15], since this limit implies ˙̄
Z(t) → 0 as t → ∞, (43) can be written as

Az (G)Z̄(∞) + BzC̄(∞) = 0, (48)

where Z̄(∞) = limt→∞ Z̄(t) and C̄(∞) = limt→∞ C̄(t). In addition, letting xL(∞) =

limt→∞ xL(t), x̄f(∞) = limt→∞ x̄f(t), θ̄(∞) = limt→∞ θ̄(t), ν̄(∞) = limt→∞ ν̄(t), and using

the definition of Az (G) and Bz given by (40) and (41), respectively, in (48) we have

0 = ALxL(∞) + BLc(∞), (49)

0 = [INF ⊗ Afr − F (G) ⊗ BfKcCo]x̄f(∞) − (G(G) ⊗ BfKc)yL(∞)

+ (INF ⊗ BfKc)θ̄(∞), (50)

0 = − δ(F (G) ⊗ Co) x̄f(∞) − δ(G(G) ⊗ Il )yL(∞) − δζ
(
θ̄(∞) − ν̄(∞)

)
, (51)

0 = η
(
θ̄(∞) − ν̄(∞)

)
. (52)

Since, θ̄(∞) = ν̄(∞) in (52), (51) implies
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ȳf(∞) = −(F (G)−1G(G) ⊗ Il )yL(∞), (53)

and hence, ȳfi (t), i = 1, · · · ,NF, asymptotically converge to the convex hull formed by the

leaders. In addition, if NL = 1, then −F (G)−1G(G) = 1NF and as a direct consequence of

(53) we have

ȳf(∞) = (1NF ⊗ Il )yL1(∞)

= 1NF ⊗ yL1(∞), (54)

and hence, ȳfi (t), i = 1, · · · ,NF, asymptotically converge to the output of the leader.

Case 2: We now consider ‖ċ(t)‖ ≤ ċ∗, where ċ∗ > 0. For this purpose, (47) can be

rewritten as

V̇1(H (t)) ≤ −λmin(Rz)‖H (t)‖
(
‖H (t)‖ −

Ψ1

λmin(Rz)

)
, (55)

whereΨ1 , 2‖PzAz (G)−1Bz ‖Fċ∗, with ‖ċ(t)‖ ≤ ċ∗. It follows from (55) that V̇1(H (t)) <

0 outside the compact set Ω1 ,
{
H (t) : H (t) < Ψ1

λmin(Rz )

}
, which proves uniform ultimate

boundedness of the closed-loop solution Z̄(t)+Az (G)−1BzC̄(t) for all initial conditions[21].

Since V̇1(H (t)) < 0 outside the compact set Ω1, then an ultimate bound for the distance of

H (t) , Z̄(t) + Az (G)−1BzC̄(t) can be computed as ‖H (t)‖ ≤
√

λmax(Pz )
λmin(Pz )

Ψ1
λmin(Rz ) , t ≥

T . Note that if the right side of last inequality is small, then the distance of Z̄(t) +

Az (G)−1BzC̄(t) is small for t ≥ 0, and this can be done by utilizing small bound of

time rate of change for the reference command. Therefore, a small Z̄(t) +Az (G)−1BzC̄(t)

implies ȳfi (t), i = 1, · · · ,NF to stay at the neighborhood of the convex hull formed by those

of the leaders.

Then, consider the Lyapunov function candidate given by

V2(Z̃(t)) = Z̃(t)T(t)PzZ̃(t), (56)
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where V2(0) = 0, V2(Z̃(t)) > 0 for all Z̃(t) , 0, and V2(Z̃(t)) is radially unbounded.

The time derivative of (56) along the trajectory of (44) is given by

V̇2(Z̃(t)) = 2Z̃(t)T(t)Pz
(
Az (G)Z̃(t) + BzC̃(t)

)
= −Z̃(t)T(t)RzZ̃(t) + 2Z̃(t)T(t)PzBzC̃(t)

≤ −λmin(Rz)‖Z̃(t)‖
(
‖Z̃(t)‖ −

Ψ2

λmin(Rz)

)
, (57)

where Ψ2 , 2‖PzBz ‖F
(
ε yL + ε y

)
. It follows from (57) that V̇2(Z̃(t)) < 0 outside the

compact set Ω2 ,
{
Z̃(t) : Z̃(t) < Ψ2

λmin(Rz )

}
, which proves uniform ultimate boundedness

of the closed-loop solution Z̃(t) for all initial conditions[21]. Since V̇2(Z̃(t)) < 0 outside

the compact set Ω2, then an ultimate bound for the distance of Z̃(t) can be computed as

‖Z̃(t)‖ ≤
√

λmax(Pz )
λmin(Pz )

Ψ2
λmin(Rz ) , t ≥ T . Note that the distance bound ‖Z̃(t)‖ can be small by

reducing the event-triggering thresholds. So, if the triggering threshold values are small

enough, thenZ(t) stays close to Z̄(t), and this implies that yf(t) stays at the neighborhood

of ȳf(t) with a distance governed by the ‖Z̃(t)‖.

Thereby, first, in case of ċ(t) = 0, as a direct consequence of (53) and (57) we have

yf(t) converges to the convex hull formed by (M (G) ⊗ Il )yL(t) as t → ∞ with uniformly

ultimately bounded deviation governed by ‖Z̃(t)‖. Second, in the case of ‖ċ(t)‖ ≤ ċ∗,

as a direct consequence of (55) and (57) we have yf(t) converges to the neighborhood of

the convex hull formed by (M (G) ⊗ Il )yL(t) as t → ∞ with uniformly ultimately bounded

deviation governed by ‖H (t)‖ + ‖Z̃(t)‖. Then, in both cases, that is yfi (t), i = 1, · · · ,NF,

converge to the neighborhood of the convex hull formed by the leaders. For a single leader

in addition, yf(t) converge to the neighborhood of 1NF ⊗ yL1(t) as t → ∞; that is yfi (t), i =

1, · · · ,NF, converge to the neighborhood of the output of the leader. �
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7. ZENO ANALYSIS

In this section, we show that the proposed event triggered communication between

the agents does not yield a Zeno behavior, which implies that it does not require a continu-

ous information exchange and reduce wireless network utilization. We utilize the theoreti-

cal Zeno analysis similar in fashion to [26, 27, 28, 29].

Corollary 1 Consider the follower agent dynamics given compactly by (30) with (31) be-

ing Hurwitz and the leader dynamics given by (18) and (19) for i = 1, · · · ,NL, where the

reference command is time varying with bounded time rate of change. In addition, let the

data transmission from the ith follower systems to the neighboring follower agent systems

occur when Ē1i, i = 1, · · · ,NF, is true and let the data transmission from the ith leader

agent system to the neighboring follower agent systems occur when Ē2i, i = 1, · · · ,NL, is

true. Then, there is exist positive scalar α1i ,
ε yi
Φ1i

and α2i ,
ε yLi

Φ2i
such that:

ski+1 − ski ≥α1i, ∀ki ∈ N, (58)

rqi+1 − rqi ≥α2i, ∀qi ∈ N, (59)

Proof. The time derivative of ‖yfsi (t) − yfi (t)‖ over t ∈ (ski+1, ski ),∀ki ∈ N is given

by:

d
dt
‖ysi (t) − yi (t)‖

≤ ‖ ẏsi (t) − ẏi (t)‖ = ‖ ẏi (t)‖ ≤ ‖Co‖F‖ ẋf(t)‖

≤ ‖Co‖F‖Afr‖F‖xf(t)‖ + ‖Co‖F‖Bfr‖FKc

∑
i∼ j

µi j + ‖Co‖F‖Bfr‖FKc‖θi (t)‖, (60)

where

µi j ,




‖yfi − yLs j ‖, if jth neighbore is a leader,

‖yfi − yfs j ‖, if jth neighbore is a follower.
(61)
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Since the closed-loop dynamical system is uniformly ultimately bounded by Theorem 2,

there exists an upper bound to the equation (C.1). Letting Φ1i denote this upper bound and

with initial condition satisfying limt→s+
ki
‖yfsi (t) − yfi (t)‖ = 0, it follows from Equation

(C.1) that ‖yfsi (t) − yfi (t)‖ ≤ Φ1i (t − ski ), ∀t ∈ (ski , ski+1). Therefore, when E1i is true,

then limt→s−
ki+1
‖yfsi (t) − yfi (t)‖ = ε yi, and it then follows that ski+1 − ski ≥ α1i.

Proof of (59) follows similarly from the above analysis, and hence, is omitted due

to page limit restrictions. �

8. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two numerical examples to demonstrate the efficacy

of the proposed output feedback control architecture for multiagent systems with event-

triggered exchanged information between each connected agents. For this purpose, we

consider a graph of leader and follower agents as shown in Figure 1. For the follower agent

dynamics we consider system matrices given by

A =









0 1

1 1









, B =









0

1









, C =

[
1 0

]
. (62)

In addition, for the leader agent dynamics we consider AL = −0.5, BL = 0.5, CL = 1.

We let λ = 0.8, and desired follower agent system eigenvalues λ(Afr) = [ −1.2500 +

i2.1651, −1.2500 − i2.1651, −0.9,−0.7] to create the nominal feedback gain k = [ 32.68,

52.58, 25.53, 5.47] and choose Kc = 1.5, ζ = 1.5, η = 2, δ = 5 for the cooperative control

design. In addition, consider event triggering thresholds ε yL = 0.1 and ε y = 0.1.

Throughout the simulation, for each example, we consider two types of reference

command for the leader system, constant and time varying reference commands.

Example 1. For the first example, we consider a graph with four follower agents

and a single leader as shown in Figure 1a, and our aim is to track a given reference com-

mand c1(t), t ≥ 0 , with the initial conditions xL01 = 0, and y0 = [0 , 0.2 , 0.1 , −0.2]T.
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L1 F1 F2 F3 F4

(a) Example 1.

L1 F1 F2 F3 L2

(b) Example 2.

Figure 1. System connection graph.

First we use a unit step reference command as shown in Figure 2, and then we then ap-

ply a time varying reference command given by c1(t) = 2.5 sin(0.06t) as shown in Figure

3. The proposed controller with event-triggering drives the multiagent system output to the

desired reference command with bounded deviation. Figure 4 shows a significant reduction

in the number of samples throughout the response time due to utilizing the event-triggering

mechanism.

Example 2. For the second example, we consider three follower agents and two

leaders, as shown in Figure 1b, with different reference commands with the initial condi-

tions xL0 = [0.1 , −0.1], and y0 = [0 , 0.2 , −0.2]T. In this case, the leaders create a

convex hull for the followers to (approximately) converge to. First, for a constant reference

command, we consider c(t) = [5 , 4]T as shown in Figure 5. In Figure 6, we use the time

varying commands given by ci (t) = 5 ∗ ((−1)i+10.8 + (−1)i+10.5 sin((0.06 ∗ i)t)), i = 1,2.

In both cases, follower agents converge to the convex hull of leader outputs. Figure 7 shows

a significant reduction in the number of samples throughout the response time with each

different type reference command due to utilizing the event-triggering mechanism.
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Figure 2. Responses of yf(t), yL(t), yfs(t), yLs(t), uv(t), and uc(t) for the multiagent system
with one leader following a constant command.
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Figure 3. Responses of yf(t), yL(t), yfs(t), yLs(t), uv(t), and uc(t) for the multiagent system
with one leader following a time varying command.

9. CONCLUSIONS

A new event-triggered observer-free output feedback cooperative control architec-

ture was presented for continuous-time, minimum phase, and high-order multiagent sys-

tems in the presence of data exchange between the agents. In particular, a nonminimal
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Figure 4. Single leader case; a) Output triggers for constant command; b) Triggers com-
parison for constant command; c) Output triggers for time varying command; d) Triggers
comparison for time varying command.
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Figure 5. Responses of yf(t), yL(t), yfs(t), yLs(t), uv(t), and uc(t) for the multiagent system
with two leaders creating a constant convex hull.

state-space realization method was utilized to generate an expanded set of states for each

agent, where these nonminimal states were then utilized to design a cooperative control ar-

chitecture to address the containment problem and event-triggering mechanism was utilized
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Figure 6. Responses of yf(t), yL(t), yfs(t), yLs(t), uv(t), and uc(t) for the multiagent system
with two leaders creating a time varying convex hull.
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Figure 7. Two leaders case; a) Output triggers for constant commands; b) Triggers com-
parison for constant commands; c) Output triggers for time varying commands; d) Triggers
comparison for time varying commands.

to schedule the exchange information between the agents to reduce the wireless network

utilization cost. In addition to rigorous analyses on the performance, two illustrative numer-

ical examples were further included to demonstrate the efficacy of the proposed approach.
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ABSTRACT

A new observer-free output feedback adaptive control, (OF)2AC, method is pro-

posed for continuous-time, minimum phase, and high-order linear multivehicle systems

subject to exogenous disturbances (hereinafter referred to as “uncertain multivehicle sys-

tems”). In particular, the (OF)2AC is based on a nonminimal state-space realization for each

follower vehicle of the multivehicle system, where this realization generates an expanded

set of states using the filtered input, filtered output, and their derivatives of the follower

vehicles. The (OF)2AC consists of i) a local cooperative controller and ii) a vehicle-level

controller for each follower vehicle. Specifically, part i) of the proposed control method

addresses the leader-follower containment control problem by receiving the relative out-

put measurements of the neighboring vehicles and its part ii) consists of an augmenting

adaptive controller for stabilization and command following in the presence of exogenous

disturbances. Two illustrative numerical examples are provided to demonstrate efficacy of

the (OF)2AC.
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1. INTRODUCTION

1.1. Literature Review. Multivehicle systems consist of a collection of mobile

dynamical systems that sense the surrounding environment and communicate with each

other based on a network protocol. In this way, they work cooperatively to achieve shared

tasks which may be challenging for an individual vehicle to handle alone. During the past

few decades, cooperative control of multivehicle systems has attracted increased attention

in the control engineering community owing to its diverse and influential application in

areas of science and engineering, such as formation flight of unmanned air, land, and un-

der water vehicles, as well as the control of clusters of satellites and telescopes (see, for

example, [1, 2, 3, 4, 5, 6], and references therein).

In general, vehicle system models are represented by the first principles of physics

and derived using fundamental physical laws. Due to the system complexity, nonlinearity,

and uncertainty, the simplistic approximations create inaccuracies between the model and

the the actual system. As a result of this modeling error, it is very important for the co-

operative control design to not only achieve system level objectives, but also possess the

ability to maintain the stability of each vehicle in the presence of system uncertainties. The

most notable results that address cooperative control of uncertain vehicle systems include

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Specifically, the authors in [7, 8, 9, 10, 11], con-

sider the uncertain multivehicle systems problem as first and/or second order models which

are suitable for a limited number of applications. For more applicable system dynamics,

[12, 13, 14, 15, 16, 17] use high-order vehicle models with system uncertainties.

In particular, the authors in [12] consider linear single input and single output ve-

hicle systems with parametric uncertainties that range over an known compact set. The

work in [13] uses an internal model based distributed control scheme that makes the vehi-

cle controllers robust to small variation in their models. A finite-time disturbance observer

is proposed in [14] to estimate the system uncertainties. A distributed adaptive control

for both the uncertain follower and uncertain leaders is considered in [15], where the dis-
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tributed adaptive control law is designed based on local consensus error feedback. The

authors of [16] design a decentralized adaptive tracking controller under the assumption

that the uncertain follower vehicles with Lipschitz-type disturbances are guided by a leader

with unknown input. The authors in [17] introduce cooperative control for higher-order

multivehicle systems having nonidentical nonlinear uncertain dynamics and large paramet-

ric uncertainties with no a prior information on their bound. While the above results are

promising, full state feedback is necessary for each proposed controller which requires

knowledge of the vehicle system state variables and this is not applicable when the mul-

tivehicle system state variables are unknown. Therefore, output feedback is necessary for

most applications that involve high-dimensional models with unknown system state vari-

ables, such as multiple unmanned aerial vehicles, multiple mobile robots, and multiple

manipulators.

To address this problem, [18, 19, 20, 21] propose adaptive output feedback con-

trollers for uncertain dynamical multivehicle systems. In particular, in [18, 19] the adaptive

output feedback controller is design for consensus protocols, where the gains rely on the

global information of the network which is represented by the Laplacian matrix. The au-

thors of [20] adopt two observer designs, a local observer and an adaptive estimator, for the

distributed adaptive output-feedback consensus tracking control for unknown agent dynam-

ics without depending on the Laplacian matrix information. Among the above mentioned

works, the common feature is that the adaptive output feedback controller requires an ob-

server for estimating the unknown state variables. In a recent result [22], we employ an

output feedback control architecture for dynamical multivehicle systems without observers

(outside the context of adaptive control). Specifically, the observer-free nature of our work

is an expansion of the original observer-free output feedback adaptive control idea proposed

in [23, 24, 25, 26].

1.2. Contribution. In this paper, a new observer-free output feedback adaptive

control, (OF)2AC, method is proposed for continuous-time, minimum phase, and high-

order linear multivehicle systems subject to exogenous disturbances (hereinafter referred
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to as “uncertain multivehicle systems”), where the results reported here can be viewed as

an expansion of our recent paper in [22]. In particular, similar to the observer-free methods

studied in [23, 24, 25, 26, 22], the (OF)2AC is based on a nonminimal state-space realiza-

tion for each follower vehicle of the multivehicle system, where this realization generates

an expanded set of states using the filtered input, filtered output, and their derivatives of

the follower vehicles. The (OF)2AC consists of i) a local cooperative controller in [17] and

ii) a vehicle-level controller for each follower vehicle. Specifically, part i) of the proposed

control method addresses the leader-follower containment control problem by receiving

the relative output measurements of the neighboring vehicles and its part ii) consists of an

augmenting adaptive controller for stabilization and command following in the presence of

exogenous disturbances. Two illustrative numerical examples are provided to demonstrate

efficacy of the (OF)2AC.

The organization of the paper is as follows. Section 2 present the notation used

throughout the paper and recalls some basic results from multivehicle systems. Section

3 presents a nonminimal state space realization [23, 24, 25, 26] technique. The proposed

method is given in Section 4. The stability of the overall multivehilce system is analyzed

in Section 5 and convergence properties are highlighted in Section 6. Two illustrative

numerical examples are provided to show the efficacy of the proposed control architecture

in Section 7. Finally, conclusions are drawn in Section 8.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard and similar to, for example, our

earlier work in [22]. For self-containedness, R denotes the set of real numbers, Rn denotes

the set of n × 1 real column vectors, Rn×m denotes the set of n × m real matrices, R+

denotes the set of positive real numbers, Rn×n
+ denotes the set of n × n positive-definite

real matrices, Sn×n denotes the set of n × n symmetric real matrices, Dn×n denotes the set

of n × n real matrices with diagonal scalar entries, (·)T denotes transpose, (·)−1 denotes
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inverse, (·)† denotes Pseudo inverse, tr(·) denotes the trace operator, diag(a) denotes the

diagonal matrix with the vector a on its diagonal, and “,” denotes equality by definition.

In addition, we write λmin(A) (respectively, λmax(A)) for the minimum and respectively

maximum eigenvalue of the Hermitian matrix A, ‖ · ‖ for the Euclidean norm, and ‖ · ‖F for

the Frobenius matrix norm.

In addition, we adopt graph theoretical notation (e.g., see excellent books on the

topic [27, 6]) to encode interactions between vehicles. In particular, an undirected graph G

is defined byVG = {1, · · · ,N } of nodes and a set EG ∈ VG × VG of edges. If (i, j) ∈ EG ,

then the nodes i and j are neighbors, and the neighboring relation is indicated with i ∼ j.

The degree di of node i is defined by the number of its neighbors and the degree matrix of

graph G is then given by D (G) , diag(d) ∈ RN×N , d = [d1, · · · ,dN ]T. A path i0i1 · · · iL

is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, · · · ,L, and if any pair of district

nodes has a path, then a graph G is connected. Furthermore, we write A(G) ∈ RN×N for

the adjacency matrix of a graph G defined by

[A(G)]i j ,





1, if (i, j) ∈ EG

0, otherwise,
(1)

and B(G) ∈ RN×M for the (node-edge) incidence matrix of the graph G defined by

[B(G)]i j ,





1, if nodei is the head of the edge j,

−1, if nodei is the tail of the edge j,

0, otherwise,

(2)

where M is the number of edges, i is an index for the node set, and j is an index for the

edge set. Finally, the graph Laplacian matrix, L(G) ∈ R
N×N
+ ∩ SN×N , is defined by

L(G) , D (G) − A(G), (3)
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or equivalently,

L(G) = B(G)B(G)T. (4)

Next, we recall some of the basic results for first-order multivehicle systems [6].

Specifically, let nodes and edges represent vehicles and information exchange links be-

tween vehicles, respectively. Then, we can model a given multivehicle system by a graph

G. For example, let xi (t) ∈ R be the state of node i, i = 1, ...,N , satisfying

ẋi (t) = ui (t), xi (0) = xi0, (5)

where ui (t) ∈ R is the control input. If each vehicle receives the relative state information

with respect to its neighbors, then

ui (t) = −
∑
i∼ j

(
xi (t) − x j (t)

)
, (6)

solves the rendezvous problem, where (5) subject to (6) can be written at the multivehicle

system level as

ẋ(t) = −L(G)x(t), xi (0) = xi0, (7)

with x(t) =
[
xT

1 (t), · · · , xT
N (t)

]
denoting the aggregated state vector. Note that the spectrum

of L(G) has one zero eigenvalue and N−1 positive real eigenvalues if and only if the graph

G is connected and undirected. In this case, the solution of the multivehicle system given

by (7) evolves as x(t) → (1N 1T
N/N )x0 as t → ∞.

Furthermore, we recall some results on leader-follower frameworks. For this pur-

pose, let the incidence matrix (2) be partitioned as

B(G) =









BL(G)

BF(G)









, (8)
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where BL(G) ∈ RNL×M and BF(G) ∈ RNF×M with NL and NF denoting cardinalities of the

leader and follower groups, respectively, such that N = NL + NF. Then, using (4) and (8)

the partitioned graph Laplacian matrix L(G) is given by

L(G) =









L(G) G(G)T

G(G) F (G)









, (9)

where L(G) , BL(G)BL(G)T, G(G) = BF(G)BL(G)T and F (G) = BF(G)BF(G)T. Note

that F (G) ∈ RNF×NF
+ ∩ SNF×NF , and hence, F (G) is nonsingular since det(F (G)) , 0.

Furthermore F (G)1NF = −G(G)1NL , or equivalently, each row of −F (G)TG(G) has a

sum equal to 1. Now, we can model a given multivehicle system with a leader-follower

framework. In particular, let xL(t) ∈ RNL and xF(t) ∈ RNF be the aggregated state vector of

the leaders and followers, respectively. Then, the followers evolve through the Laplacian-

based dynamics as

ẋF(t) = −F (G)xF(t) − G(G)xL(t), xF(0) = xF0. (10)

Throughout this paper, we consider leaders as command generators for the neighboring

followers and that a connected, undirected graph G represents the interaction topology

between the vehicles.

Finally, we provide the following definition necessary for the main results in this

paper.

Definition 1. Let φ : Rn → R be a continuously differentiable convex function

given by φ(θ) ,
(
(ε θ + 1) θT ·θ − θ2

max
)
/
(
ε θθ

2
max

)
, where θmax ∈ R is a projection norm

bound imposed on θ ∈ Rn and ε > 0 is a projection tolerance bound. Then, for y ∈ Rn, the
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projection operator Proj : Rn × Rn → Rn is defined by

Proj(θ, y) ,




y, if φ(θ) < 0,

y, if φ(θ) ≥ 0 and φ′(θ)y ≤ 0,

y −
φ′T(θ)φ′(θ)y
φ′(θ)φ′T(θ)

φ(θ), if φ(θ) ≥ 0 and φ′(θ)y > 0.

(11)

It follows from Definition 1 that (θ − θ∗)T(Proj(θ, y) − y) ≥ 0, θ∗ ∈ Rn holds [28].

The definition of the projection operator can be generalized to matrices as Projm(Θ,Y ) =(
Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))

)
, where Θ ∈ Rn×m, Y ∈ Rn×m, and

coli (·) denotes the ith column operator. In this case, tr
[
(Θ − Θ∗)T(Projm(Θ,Y ) − Y )

]
=∑m

i=1

[
coli (Θ − Θ∗)T(Proj(coli (Θ),coli (Y )) − coli (Y ))

]
≤ 0 holds, where Θ∗ ∈ Rn×m.

3. NONMINIMAL STATE SPACE REALIZATION: AN OVERVIEW

In this section, we overview the nonminimal state space representation employed in

[29, 25] in the context of the problem considered in this paper, that is, for the follower ve-

hicle dynamics i, i = 1, · · · ,NF, in order to obtain equivalent input-output system dynamics

representation for applying the (OF)2AC in the next section. For this purpose, consider the

controllable and observable minimum phase linear uncertain dynamical follower vehicle

system i, i = 1, · · · ,NF, given by

ẋi (t) = Axi (t) + Bui (t) + Bwi (t), xi (0) = x0i, t ≥ 0, (12)

yi (t) = Cxi (t), (13)

where xi (t) ∈ Rn, t ≥ 0 is the unknown state vector, ui (t) ∈ Rm, t ≥ 0 is the known

control input, yi (t) ∈ Rl , t ≥ 0 is the known system output, wi (t) ∈ Rm, t ≥ 0 is the

unknown input disturbance with ‖wi (t)‖ ≤ w∗i and ‖w(k)
i (t)‖ ≤ w(k)∗

i , where Z (k) = dZk

dk t ,

i = 1, · · · ,NF, and k = 1, · · · ,n−1. In addition, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, are known

follower system matrices and are minimal. An input-output equivalent (from control inputs
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ui (t), t ≥ 0, to system outputs yi (t), t ≥ 0) nonminimal observer canonical state-space

model of (12) and (13) for l > 1 is given by [30]

ẋoi (t) = Aoxoi (t) + Boui (t) + Bowi (t), xoi (0) = xo0i, t ≥ 0, (14)

yi (t) = Coxoi (t), (15)

where xoi (t) ∈ Rln, t ≥ 0 is the state vector,

Ao =

















0 Il · · · 0
...

. . .
. . .

...

0 · · · 0 Il

−a0Il−a1Il · · · −an−1Il

















∈ Rln× ln, (16)

Bo =

















CB

C AB
...

C An−1B

















∈ Rln×m, (17)

Co =

[
0 Il · · · 0

]
∈ Rl× ln. (18)

Note that ak , k = 0,1, · · · ,n−1, in (16) are the coefficients of the characteristic polynomial

of the matrix A in (12).

Next, define

B̄0 , Co(a1Iln + a2 Ao + · · · + an−2 An−3
o + an−1 An−2

o + An−1
o )Bo, (19)

B̄1 , Co(a2Iln + a3 Ao + · · · + an−1 An−3
o + An−2

o )Bo, (20)

...

B̄n−1 , CoBo. (21)



187

Now, an alternative input-output equivalent nonminimal controllable state-space realization

of (12) and (13) is given by

ẋfi (t) = Afxfi (t) + Bfui (t) + Dfw̄fi (t), xfi (0) = xf0i, t ≥ 0, (22)

yi (t) = Cfxfi (t), (23)

where xfi (t) ∈ Rnf , t ≥ 0, nf , (m + l)n, is the known filtered expanded state vector given

by

xfi (t) =
[
qT

1i (t), · · · ,q
T
ni (t), ν

T
1i, · · · , ν

T
ni

]T
, (24)

where qki (t) , yk−1
fi (t), νki = uk−1

fi (t), k = 1,2, · · · ,n, z(n) , dnz(t)/dtn, and where xfi (t)

is obtained by filtering ui (t) and yi (t) though the filter λn/Λ(s), where

Λ(s) = (s + λ)n =

n∑
p=0

(
n
p

)
sn−pλp = sn + nλsn−1 + · · · + λn, (25)

is a monic Hurwitz polynomial of degree n with λ > 0. In addition,

Af =


































0 Il 0 · · · · · · 0
...

. . .
...

0 · · · 0 Il 0 · · · · · · 0

−a0Il · · · · · · −an−1Il B̄0 · · · · · · B̄n−1

0 · · · · · · 0 Im 0 0
...

. . .
...

... · · · 0 Im

0 · · · · · · 0 −λnIm · · · · · · −nλIm


































∈ Rnf×nf , (26)

Bf =

[
00 · · · λnIm

]T
∈ Rnf×m, (27)



188

Cf =
[
− λ−n(a0Il + λnIl ) · · · · · ·−λ−n(an−1Il + nλnIl ) λ−n B̄0· · · · · · λ

−n B̄n−1
]
∈ Rl×nf ,

(28)

Df =

[
0 · · · 0 Il 0 · · · 00

]T
∈ Rnf× l , (29)

and

w̄fi (t) =a1CoBowfi (t) + · · · + an−1[Co An−2
o Bowfi (t) + · · · + CoBow

(n−2)
fi (t)]

+ Co An−1
o Bowfi (t) + · · · + CoBow

(n−1)
fi (t), t ≥ 0, (30)

where wfi (t) is obtained by filtering wi (t) through the filter λn/Λ(s). Now, following the

results documented in [29, 25], the ith follower vehicle dynamics (12) and (13) are input-

output equivalent to the dynamics given by (22) and (23) (e.g., see Theorem 2.1 of [25]).

4. (OF)2AC CONSTRUCTION FOR THE FOLLOWER VEHICLES

In this section, we introduce the (OF)2AC method for the follower vehicles; but

before this, we first provide the leader vehicle dynamics, i, i = 1, · · · ,NL, given by

ẋLi (t) = ALi xLi (t) + BLici (t), xLi (0) = xL0i, t ≥ 0, (31)

yLi (t) = CLi xLi (t), (32)

where xLi (t) ∈ Rni is the leader vehicle state vector, ci (t) ∈ Rmi is a leader vehicle bounded

input command (i.e., ‖ci (t)‖ ≤ c∗i ) with bounded time rate change (i.e., ‖ċi (t)‖ ≤ ċ∗i ),

yLi (t) ∈ Rl is the leader vehicle output, ALi ∈ R
ni×ni is the leader vehicle system matrix,

BLi ∈ R
ni×mi is the leader vehicle command input matrix, CLi ∈ R

l×ni is the leader vehicle

output matrix, (ALi,BLi,CLi) is minimal, and ALi is Hurwitz.
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Next, for the follower vehicle dynamics, we assume that the system (12) and (13) is

minimum phase and let d be the known smallest positive integer i such that the ith Markov

parameter of the original system (12) and (13) given by

C Ai−1B, (33)

is nonzero. In this case, it follows from (20)-(21) that

B̄n−1 = CoBo = CB = 0, (34)

B̄n−2 = Co(a1Iln + Ao)Bo = a1CB + C AB = 0, (35)

...

B̄n−d+1 = 0, (36)

B̄n−d = C Ad−1B , 0. (37)

The first Markov parameter can then be parameterized as

C Ad−1B = B̄, (38)

where B̄ ∈ Rl×m is a known matrix since A,B, and C are known.

Now, the nonminimal state-space model (22) can be separated into the set of dy-

namics similar to [25] as

q̇i (t) = A0qi (t) + B0v0i (t) + B1φi (t) + D1w̄fi (t), qi (0) = q0i, t ≥ 0, (39)

v̇i (t) = Avvi (t) + Bvui (t), vi (0) = v0i, t ≥ 0, (40)

where qi (t) , [qT
1i (t), · · · ,q

T
ni (t)]

T ∈ Rln, v0i (t) , [vT
1i (t), · · · ,v

T
(n−d)i (t)]

T ∈ Rm(n−d),

φi (t) , v(n−d+1)i (t) ∈ Rm,vi (t) , [vT
1i (t), · · · ,v

T
ni (t)]

T ∈ Rmn, i = 1, · · · ,NF,
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A0 ,

















0 Il · · · 0
...

. . .
. . .

...

0 · · · 0 Il

−a0Il−a1Il · · · −an−1Il

















∈ Rln× ln, (41)

B0 ,

















0 · · · 0
...
. . .

...

0 · · · 0

B̄o · · · B̄n−d−1

















∈ Rln×m(n−d), (42)

B1 ,
[
0 · · · 0 B̄T

]T
∈ Rln×m, (43)

D1 ,
[
0 · · · 0 Il

]T
∈ Rln× l , (44)

Av ,

















0 Im · · · 0
...

. . .
. . .

...

0 · · · 0 Im

−ζ1Im · · · · · · −ζnIm

















∈ Rmn×mn, (45)

and

Bv ,
[
0 · · · 0λnIm

]T
∈ Rmn×m, (46)

where ζ1 , λ
n, · · · , ζn , nλ.

We use a two-stage design [17] for the virtual control signal φi (t), t ≥ 0, such that

the virtual control can suppress the effect of the unmatched disturbances and stabilize the

follower vehicles, and drive the uncertain follower vehicles to the convex hull spanned by

the leaders. Then, the actual control signal ui (t), t ≥ 0, is designed using the follower sec-

ond dynamical subsystem in (39). This design process is covered in detail in the following

subsections.
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4.1. Vehicle-level Controller Design. We now design the virtual controller as

φi (t) , φni (t) + φai (t) + φci (t), (47)

where φni (t) is the nominal control, φai (t) is the adaptive control, and φci (t) is the cooper-

ative control that is addressed in the next subsection.

The vehicle-level controller consists of the nominal and adaptive control (an aug-

menting adaptive control viewpoint is adopted here), where the nominal portion is designed

as

φni (t) , Kqqi (t) − Kvv0i (t), (48)

where Kq ∈ R
m× ln and Kv ∈ R

m×m(n−d), such that Am , A0 + B1Kq is Hurwitz and

B0 , B1Kv. The existence of a virtual adaptive control φai (t), t ≥ 0 is guaranteed under the

following assumption.

Assumption 1 The matrix B̄ ∈ Rl×m has the dimension satisfying m ≥ l. In addition, if

m = l, then B̄ is nonsingular (i.e., B̄B̄−1 = B̄−1B̄ = I). Furthermore, if m > l, then B̄

satisfies B̄B̄† = I.

Using (47), (39) can be written as

q̇i (t) = Amqi (t) + B1φci (t) + B1φai (t) + D1w̄fi (t)

= Amqi (t) + B1φci (t) + B1φai (t) + D1B̄B̄†w̄fi (t)

= Amqi (t) + B1φci (t) + B1φai (t) + B1B̄†w̄fi (t)

= Amqi (t) + B1φci (t) + B1
[
φai (t) + dfi (t)

]
. (49)

where dfi (t) , B̄†w̄fi (t) is unknown. Now, consider the reference system given by

q̇mi (t) = Amqmi (t) + B1φci (t). (50)
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The error dynamics then follow from the state error vector ei (t) , qi (t) − qmi (t), (49), and

(50) as

ėi (t) = Amei (t) + B1
[
φai (t) + dfi (t)

]
. (51)

Next, let the virtual adaptive control law of the vehicle i, i = 1, · · · ,NF, be given by

φai (t) , −d̂fi (t), (52)

where, d̂fi (t) ∈ Rl is the estimate of dfi (t) satisfying the update law

˙̂dfi (t) = ΓProj
[
d̂fi (t),eT

i (t)PB1
]
, d̂fi (0) = d̂f0i (53)

where Γ= γIl ∈ R
l× l is a positive-definite learning rate matrix and P ∈ Rln× ln is a positive

definite solution of the Lyapunov equation

0 = AT
mP + PAm + R, (54)

where R ∈ Rln× ln is a positive definite matrix. It then follows that (51) can be written using

(52) as

ėi (t) = Amei (t) − B1d̃fi (t), (55)

where d̃fi (t) , d̂fi (t) − dfi (t) is the weight update error.

4.2. Local Cooperative Control Design. For the virtual control architecture, let

ỹ(t) ,
[
yT

L (t), yT
f (t)

]T
∈ R(NL×NF)l be the vector associated with the graph G, where

yT
L (t) , [yT

L1(t), · · · , yT
LNL

(t)]T ∈ RNLl denotes the first NL nodes representing the aggre-

gated output vector of the leaders and yT
f (t) , [yT

f1(t), · · · , yT
fNF

(t)]T ∈ RNFl denotes the

last NF nodes representing the aggregated output vector of the follower vehicles. Then,
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for each follower vehicle, consider the local cooperative controller, receiving the relative

output measurements of the neighboring vehicles in terms of yfi (t), i = 1, · · · ,NF, and

yLi (t), i = 1, · · · ,NL, as [17]

uci (t) = Kc
[
−

∑
i∼ j

(
ỹi (t) − ỹ j (t)

)
+ θi (t)

]
, (56)

θ̇i (t) =δ
[
−

∑
i∼ j

(
ỹi (t) − ỹ j (t)

)
− ζ (θi (t) − νi (t))

]
, θi (0) = θi0, (57)

ν̇i (t) = η (θi (t) − νi (t)) , νi (0) = νi0, (58)

where Kc ∈ R
m× l is a gain matrix, θi (t) ∈ Rl is the integrator state, νi (t) ∈ Rl is the filter

state, δ ∈ R+ is the integrator gain, ζ ∈ R+ is a modification gain, and η ∈ R+ is the filter

gain. Next, applying the local cooperative controller (56), (57), and (58) to the reference

system given by (50) yields

q̇mi (t) = Amqmi (t) − B1Kc

∑
i∼ j

(
ỹi (t) − ỹ j (t)

)
+ B1Kcθi (t). (59)

Letting qm(t) , [qT
m1(t), · · · ,qT

mNF
(t)]T ∈ RNFln, q(t) , [qT

1 (t), · · · ,qT
NF

(t)]T ∈ RNFln,

e(t) = q(t)−qm(t) ∈ RNFln, θ(t) , [θT
1 (t), · · · , θT

NF
(t)]T ∈ RNFl , ν(t) , [νT

1 (t), · · · , νT
NF

(t)]T ∈

RNFl , and

yfi (t) = Cqqi (t), (60)

where Cq , [Il , · · · ,0] ∈ Rl× ln, the reference system (50) subject to the local cooperative

controller (56), (57), and (58) can be written at the multivehicle system level as
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q̇m(t) = (INF ⊗ Am)qm(t) − (F (G) ⊗ B1Kc)yf(t) − (G(G) ⊗ B1Kc)yL(t)

+ (INF ⊗ B1Kc)θ(t)

= [INF ⊗ Am − F (G) ⊗ B1KcCq]qm(t) − (F (G) ⊗ B1KcCq)e(t)

− (G(G) ⊗ B1Kc)yL(t) + (INF ⊗ B1Kc)θ(t), qm(0) = qm0, (61)

θ̇(t) = − δ(F (G) ⊗ Il )yf(t) − δ(G(G) ⊗ Il )yL(t) − δζ (θ(t) − ν(t))

= − δ(F (G) ⊗ Cq)qm(t) − δ(F (G) ⊗ Cq)e(t) − δ(G(G) ⊗ Il )yL(t)

− δζ (θ(t) − ν(t)) , θ(0) = θ0, (62)

ν̇(t) = η (θ(t) − ν(t)) , ν(0) = ν0. (63)

Now, with ξ (t) , [qT
m(t), θT(t), νT(t)]T ∈ Rnξ , nξ , NF(ln + 2l), Aξ (G) , INF ⊗ Am −

F (G) ⊗ B1KcCq ∈ R
NFln×NFln, (61), (62), and (63) can be written in compact form as

ξ̇ (t) = A(G)ξ (t) + B(G)yL(t) + E (G)e(t), ξ (0) = ξ0, (64)

where

A(G) =













Aξ (G) INF ⊗ B1Kc 0

−δ(F (G) ⊗ Cq) −δζ INFl δζ INFl

0 ηINFl −ηINFl













∈ Rnξ×nξ , (65)

B(G) =













−G(G) ⊗ B1Kc

−δ(G(G) ⊗ Il )

0













∈ Rnξ×NFln, (66)

E (G) =













−F (G) ⊗ B1KcCq

−δ(F (G) ⊗ Cq)

0













∈ Rnξ×NFln. (67)
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The objective of the proposed observer-free vehicle-level controller given in the previous

section is to stabilize the uncertain follower vehicle dynamics. Furthermore, the objective

of the local cooperative controller given in this section based on [17] is to solve the con-

tainment problem. For this purpose, we first need to ensure that the solution ξ (t) to (64)

is L∞ stable [31]; that is, for every bounded yL(t) and e(t), then ξ (t) is either bounded.

We know that yL(t) is bounded, since every ALi, i = 1, · · · ,NL, are Hurwitz, and it will be

shown that e(t) is either lim
t→∞

e(t) = 0 or bounded in the later analysis. Therefore, in order

to conclude that (64) is L∞ stable, A(G) needs to be Hurwitz. The desired system L∞

stability can be equivalently viewed by

˙̄ξ (t) = A(G) ξ̄ (t) + B(G)yL(t), ξ̄ (0) = ξ̄0, (68)

where ξ̄ (t) ∈ Rnξ . A necessary and sufficient condition satisfying this requirement is given

in the following remark.

Remark 4 Similar to the results in [32, 33, 17], let µi ∈ spec(F (G)), i = 1, · · · ,NF. If the

matrix storing known parts of the system dynamics as well as the controller parameters

UA(G)i =













Am − µi B1KcCq B1Kc 0

−µiδCq −δζ Il δζ Il

0 ηIl ηIl













∈ R(ln+2l)× (ln+2l), (69)

is Hurwitz for i = 1, · · · ,NF, then A(G) in (53) is Hurwitz.

Note that (69) can be made Hurwitz for i = 1, · · · ,NL by judiciously choosing the

design parameters Kc, δ, ζ , and η. This further implies that the system (64) with the leader

dynamical given by (31) and (32) is L∞ stable (e.g., see Corollary 6.1 of [17]).
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4.3. Actual Control Construction. We construct the actual control signal ui (t), t >

0, for the (OF)2AC using the system dynamics in (40) as

ui (t) = v̇i (t) + ζnvni + ζn−1v(n−1)i + ζn−2v(n−2)i + · · · + ζn−d+2v(n−d+2)i + ζn−d+1v(n−d+1)i

+ ζn−dv(n−d)i + · · · + ζ2v2i + ζ1v1i, t ≥ 0. (70)

Using φ(t), t ≥ 0 given by (47), it then follows from (70) that [25]

ui (t) =φ(d)
i (t) + ζnφ

(d−1)
i (t) + ζn−1φ

(d−2)
i (t) + ζn−2φ

(d−3)
i (t) + · · · + ζn−d+2φ̇i (t) + ζn−d+1φi (t)

+ ζn−d

∫ t

0
φi (σ1)dσ1 + · · · + ζ2

(∫ t

0
· · ·

∫ t

0

(∫ t

0
φi (σ1)dσ1

)
dσ2 · · · dσn−d−1

)
+ ζ1

(∫ t

0
· · ·

∫ t

0

(∫ t

0
φi (σ1)dσ1

)
dσ2 · · · dσn−d

)
, t ≥ 0. (71)

5. STABILITY ANALYSIS OF THE (OF)2AC

In order to analyze the stability of the overall multivehicle system, let w̃(t) ,

[d̃T
f1(t), · · · , d̃T

fNF
(t)]T ∈ RNFl and ẇ(t) , [ḋT

f1(t), · · · , ḋT
fNF

(t)]T ∈ RNFl . The rest of this

section presents stability analysis, first for the constant disturbance case and then the time-

varying disturbance case. Consider in addition

˙̃ξ (t) = A(G) ξ̄ (t) + E (G)e(t), ξ̃ (0) = ξ̃0, (72)

where ξ̃ (t) , ξ (t) − ξ̄ (t), ξ̃ (t) ∈ Rnξ .

5.1. Constant Disturbance Case. In the case of ith follower vehicle, i = 1, · · · ,NF,

has constant disturbance. For stability analysis of the overall multivehicle system, consider

the vehicle error dynamics given by (51) and consider the weight update error dynamics

given by

˙̃dfi (t) = ΓProj
[
d̂fi (t),eT

i (t)PB1
]
, (73)
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for vehicle i, i = 1, · · · ,NF.

Theorem 3 Consider a multivehicle system consisting of NF nonlinear uncertain vehicles

with the dynamics given by (39), for i = 1, · · · ,NF, with constant input disturbance, subject

to Assumption 1, the reference model given by (50), the virtual vehicle-level controller

given by (47), (48), (52), and (53). In addition, let the virtual local cooperative control for

vehicle i = 1, · · · ,NF, be given by (56), (57), and (58), such that (65) is Hurwitz. Then, the

solution (e(t), ξ̃ (t), w̃(t)) is Lyapunov stable for all (e(0), ξ̃ (0), w̃(0)), and lim
t→∞

e(t) = 0

and lim
t→∞

ξ̃ (t) = 0.

Proof. To show uniform ultimate boundedness of the solution (e(t), ξ (t), w̃(t)) for

all (e(0), ξ (0), w̃(0)) ∈ RNFln × Rnξ × RNFl and t ∈ R+, first consider

V1i (ei (t), d̃fi (t)) = eT
i (t)Pei (t) + d̃T

fi (t)Γ
−1d̃fi (t), (74)

and note that V1i (0,0) = 0, V1i (ei (t), d̃fi (t)) > 0 for all (ei (t), d̃fi (t)) , (0,0), and

V1i (ei (t), d̃fi (t)) is radially unbounded. The time derivative of (74) is then given by

V̇1i (·) = 2eT
i (t)P

(
Amei (t) − B1d̃fi (t)

)
+ 2d̃T

f (t)Γ−1
(
ΓProj

[
d̂fi (t),eT

i (t)PB1
] )

≤ −eT
i (t)Rei (t). (75)

Now, by introducing

V1(e(t), w̃(t)) =

NF∑
i=1

V1i (ei (t), d̃fi (t)), (76)

it follows from (75) that

V̇1(·) ≤ −eT(t)(INF ⊗ R)e(t). (77)
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Next, consider

V2(ξ̃ (t)) = ξ̃T(t)P ξ̃ (t), (78)

where since A(G) is Hurwitz, it follows from converse Lyapunov theory [34] that there is

exists a unique P ∈ Rnξ×nξ
+ ∩ S

nξ×nξ
+ satisfying

0 = A(G)TP + PA(G) + R, (79)

with given R ∈ Rnξ×nξ
+ ∩ S

nξ×nξ
+ . Furthermore, note that V2(0) = 0, V2(ξ̃ (t)) > 0 for all

ξ̃ (t) , 0, andV2(ξ̃ (t)) is radially unbounded. Differentiation of (78) yields

V̇2(ξ̃ (t)) = 2ξ̃T(t)P
(
A(G) ξ̃ (t) + E (G)e(t)

)
= −ξ̃T(t)R ξ̃ (t) + 2ξ̃T(t)PE (G)e(t). (80)

Applying Young’s inequality [35] to the last term of (80) gives

2ξ̃T(t)PE (G)e(t) ≤
1
k

eT(t)E (G)TP2E (G)e(t) + k ξ̃T(t) ξ̃ (t), (81)

where k ∈ R+ is an arbitrary constant that satisfies R − kInξ > 0. Now, using (81) in (80)

yields

V̇2(ξ̃ (t)) ≤ −ξ̃T(t)
(
R − kInξ

)
ξ̃ (t) +

1
k

eT(t)E (G)TP2E (G)e(t). (82)

Consider now, the Lyapunov function candidate using (76) and (78) as

Vs(e(t), ξ̃ (t), w̃(t)) = V1(e(t), w̃(t)) + αV2(ξ̃ (t)), (83)
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where α , kα̃ ∈ R+ satisfies INF ⊗ R − α̃E (G)TP2E (G) > 0. Differentiating (83) along

(55), (86), and (64), and defining Q1 , INF ⊗ R − α̃E (G)TP2E (G) > 0 and Q2 , α(R −

kInξ ) > 0, it follows from (77) and (82) that

V̇s(·) ≤ − eT(t)Q1e(t) − ξ̃T(t)Q2 ξ̃ (t) ≤ 0, t ≥ 0. (84)

Hence, the solution (e(t), ξ̃ (t), w̃(t)) is Lyapunov stable for all (e(0), ξ̃ (0), w̃(0)) and t ∈

R+.

Finally, since ei (t), i = 1, · · · ,NF, in (55), is bounded for all t ∈ R+, e(t) is bounded

for all t ∈ R+. Therefore, V̈s(e(t), ξ̃ (t), w̃(t)) is bounded for all t ∈ R+. Now, it follows

from Barbalat’s Lemma [31] that

lim
t→∞
V̇s(e(t), ξ̃ (t), w̃(t)) = 0, (85)

which consequently shows that lim
t→∞

e(t) = 0 and lim
t→∞

ξ̃ (t) = 0. Then, this completes the

proof. �

Remark 5 Theorem 3 shows that lim
t→∞

ξ̃ (t) = lim
t→∞

ξ (t)− ξ̄ (t) = 0, and hence the solution of

(64) converges to the solution of (68) asymptotically. Then the solution of (64) is bounded

for vehicle i, i = 1, · · · ,NF since in Remark 4, (64) is L∞ stable. Theorem 3 in addition

implies that the solution of (12) is bounded since the solution of (64) is partitioned as ξ ,

[qT
m(t), θT(t), νT(t)]T and lim

t→∞
e(t) = 0. Therefore, the trajectories of overall mulrivehicle

system are bounded. In addition, Theorem 3 implies that the convergence properties of

overall multivehicle system in (64) are identical to the convergence properties of (68) since

q(t) → qm(t) and ξ (t) → ξ̄ (t) as t → ∞.

5.2. Time-varying Disturbance Case. In order to analyze the stability of the over-

all multivehicle system in case of ith follower vehicle, i = 1, · · · ,NF, has time-varying dis-

turbance, consider the vehicle error dynamics given by (51) and consider the weight update
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error dynamics given by

˙̃dfi (t) = ΓProj
[
d̂fi (t),eT

i (t)PB1
]
− ḋfi (t), (86)

for vehicle i, i = 1, · · · ,NF. In addition, consider the compact form of the vehicle reference

model and cooperative control given by (64).

Theorem 4 Consider a multivehicle system consisting of NF nonlinear uncertain vehicles

with the dynamics given by (39), for i = 1, · · · ,NF, with time-varying input disturbance,

subject to Assumption 1, the reference model given by (50), the virtual vehicle-level con-

troller given by (47), (48), (52), and (53). In addition, let the virtual local cooperative

control for vehicle i = 1, · · · ,NF, be given by (56), (57), and (58), such that (65) is Hur-

witz. Then, the solution (e(t), ξ̃ (t), w̃(t)) is uniformly ultimately bounded for all initial

conditions.

Proof. To show uniform ultimate boundedness of the solution (e(t), ξ̃ (t), w̃(t)) for

all (e(0), ξ̃ (0), w̃(0)) ∈ RNFln × Rnξ × RNFl and t ∈ R+, first consider (74) and note that

V1i (0,0) = 0, V1i (ei (t), d̃fi (t)) > 0 for all (ei (t), d̃fi (t)) , (0,0), and V1i (ei (t), d̃fi (t)) is

radially unbounded. The time derivative of (74) is then given by

V̇1i (·) = 2eT
i (t)P

(
Amei (t) − B1d̃fi (t)

)
+ 2d̃T

f (t)Γ−1
(
ΓProj

[
d̂fi (t),eT

i (t)PB1
]
− ḋfi (t)

)
≤ −eT

i (t)Rei (t) − 2d̃T
fi (t)Γ

−1ḋfi (t). (87)

Now, by introducing (76), it follows from (87) that

V̇1(·) ≤ −eT(t)(INF ⊗ R)e(t) − 2w̃T(t)(INF ⊗ Γ
−1)ẇ(t). (88)

Next, consider (78), where since A(G) is Hurwitz, it follows from converse Lya-

punov theory [34] that there is exists a unique P ∈ Rnξ×nξ
+ ∩ S

nξ×nξ
+ satisfying (79) with

given R ∈ Rnξ×nξ
+ ∩ S

nξ×nξ
+ . Furthermore, note that V2(0) = 0, V2(ξ (t)) > 0 for all

ξ̃ (t) , 0, andV2(ξ̃ (t)) is radially unbounded. Differentiation of (78) yields (80). Consider
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now, the Lyapnunov function candidate using (76) and (78) as (83), where α , kα̃ ∈ R+

satisfies INF ⊗ R − α̃E (G)TP2E (G) > 0. Differentiating (83) along (55), (86), and (64),

and defining Q1 , INF ⊗ R − α̃E (G)TP2E (G) > 0 and Q2 , α(R − kInξ ) > 0, it follows

from (88) and (82) that

V̇s(·) ≤ − eT(t)Q1e(t) − ξ̃T(t)Q2 ξ̃ (t) − 2w̃T(t)(INF ⊗ Γ
−1)ẇ(t)

≤ − λmin(Q1)‖e(t)‖2 − λmin(Q2)‖ ξ̃ (t)‖2 + d1, (89)

where d1 , 2w̃∗‖(INF ⊗ Γ
−1)‖Fẇ∗ with ‖w̃(t)‖ ≤ w̃∗ due to utilizing the projection

operator in the weight update law given by (86) and ‖ẇ(t)‖ ≤ ẇ∗. Now, it shows that

V̇ (e(t), ξ̃ (t), w̃(t)) < 0 when either ‖ei (t)‖ ≥ ψ1 or 




ξ̃ (t)





≥ ψ2, where ψ1 ,

√
d1/λmin(Q1)

and ψ2 ,
√

d1/λmin(Q2). This argument proves uniform ultimate boundedness of the

closed-loop solution (e(t), ξ̃ (t), w̃(t)) for all initial conditions [31, 28]. �

The next corollary presents a computation of the ultimate bound.

Corollary 2 Consider a multivehicle system consisting of NF nonlinear uncertain vehicles

with the dynamics given by (39), for i = 1, · · · ,NF, with time-varying input disturbance,

subject to Assumption 1, the reference model given by (50), the virtual vehicle-level con-

troller given by (47), (48), (52), (52), and (53). In addition, let the virtual local cooperative

control for vehicle i = 1, · · · ,NF, be given by (56), (57), and (58), such that (65) is Hurwitz.

Then, the ultimate bound of the solution (e(t), ξ̃ (t), w̃(t)) is given by

| |e(t) | | ≤ Φ̃λ
− 1

2
min(P), t ≥ T (90)

and

| | ξ̃ (t) | | ≤ Φ̃λ
− 1

2
min(P), t ≥ T (91)

where Φ̃ ,
[
λmax(P)ψ2

1 + λmax(P)ψ2
2 + λmax(Γ−1)w̃∗2

] 1
2 .
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Proof. It follows from the proof of Theorem 4 that V̇ (e(t), ξ̃ (t), w̃(t)) < 0 out-

side the compact set given by S ,
{
(e(t), ξ̃ (t)) : ‖e(t)‖ ≤ ψ1

} ⋂{
(e(t), ξ̃ (t)) : 






ξ̃ (t)





≤

ψ2
}
. That is, since V̇ (e(t), ξ̃ (t), w̃(t)) < 0, V (e(t), ξ̃ (t), w̃(t)) cannot grow outside S,

and hence, evolution of V (e(t), ξ̃ (t), w̃(t)) is upper bounded by V (e(t), ξ̃ (t), w̃(t)) ≤

max(e(t),ξ̃ (t))∈S V (e(t), ξ̃ (t), w̃(t)) = λmax(P)ψ2
1 +λmax(P)ψ2

2 +λmax(Γ−1)w̃∗2 = Φ̃2. Now,

it follows from eT(t)(INF⊗P)e(t) ≤ V (e(t), ξ̃ (t), w̃(t)) and ξ̃ (t)TP ξ̃ (t) ≤ V (e(t), ξ̃ (t), w̃(t))

that ‖e(t)‖2 ≤ Φ̃2

λmin(P) and 





ξ̃ (t)






2
≤ Φ̃2

λmin(P) . �

Remark 6 Theorem 4 shows that the solution of (64) differs that the solution of (68) with

uniform ultimate bound. Then the solution of (64) is bounded for vehicle i, i = 1, · · · ,NF

since in Remark 4, (64) is L∞ stable. Theorem 4 in addition implies that the solution of

(12) is bounded since the solution of (64) is partitioned as ξ , [qT
m(t), θT(t), νT(t)]T and

e(t) is uniformly ultimately bounded. Therefore, the trajectories of overall mulrivehicle

system are bounded. In addition, Theorem 4 implies that the convergence properties of

overall multivehicle system in (64) are different than the convergence properties of (68) with

uniform ultimate bound since ‖q(t) − qm(t)‖ ≤ Φ̃λ
− 1

2
min(P) and 






ξ (t) − ξ̄ (t)





≤ Φ̃λ

− 1
2

min(P)

at t ≥ T.

5.3. Low-frequency Learning in Adaptive Control: A Practical Extension. To

address the high-frequency oscillation prevalent in standard adaptive control with high gain

feedback [36], let ŵfi (t) ∈ Rl , t ≥ 0, be a low-pass filter weight estimate of d̂fi (t) ∈ Rl , t ≥

0, given by

˙̂wfi (t) = Γf
[
d̂fi (t) − ŵfi (t)

]
, ŵfi (0)ŵfi0, t ≥ 0, (92)

where Γf ∈ Rl× l a positive-definite filter gain matrix. Note that since ŵfi (t) ∈ Rl , t ≥ 0,

is low pass-filter estimate of d̂fi (t) ∈ Rl , t ≥ 0, the filter gain matrix Γf is chosen such that

λmax(Γf) ≤ γf,max, where γf,max > 0 is design parameter. Next, the modified update law can
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be formulated by [36]

˙̂dfi (t) = ΓProj
[
d̂fi (t),eT

i (t)PB1 − σ
(
d̂fi (t) − ŵfi (t)

)]
, d̂fi (0) = d̂f0i, t ≥ 0, (93)

where σ > 0 is a modification gain. Define w̃fi (t) , ŵfi (t) − dfi (t). Then, the weight

update error and filtered weight update error dynamics are respectively given by

˙̃dfi (t) = ΓProj
[
d̂fi (t),eT

i (t)PB1 − σ
(
d̂fi (t) − ŵfi (t)

)]
− ḋfi (t), d̃fi (0) = d̃f0i, t ≥ 0,

(94)

˙̃wfi (t) = Γf
[
d̂fi (t) − ŵfi (t)

]
− ḋfi (t), w̃fi (0) = w̃fi0, t ≥ 0, (95)

for vehicle i, i = 1, · · · ,NF. Furthermore, let w̃f(t) , [w̃T
f1(t), · · · , w̃T

fNF
(t)]T ∈ RNFl . The

next theorem presents the system stability analysis of the overall multivehicle system in the

presennce of the modified update law and is the second main result of this section.

Theorem 5 Consider a multivehicle system consisting of NF nonlinear uncertain vehicles

with the dynamics given by (39), for i = 1, · · · ,NF, with time-varying input disturbance,

subject to Assumption 1, the reference model given by (50), the virtual vehicle-level con-

troller given by (47), (48), (52), with the update laws (92) and (93). In addition, let the

virtual local cooperative control for vehicle i = 1, · · · ,NF, be given by (56), (57), and (58),

such that (65) is Hurwitz. Then, the solution (e(t), ξ̃ (t), w̃(t), w̃f(t)) is uniformly ultimately

bounded for all initial conditions.

Proof. To show uniform ultimate boundedness of the solution (e(t), ξ (t), w̃(t), w̃f(t))

for all (e(0), ξ (0), w̃(0),

w̃f(0)) ∈ RNFln × Rnξ × RNFl × RNFl and t ∈ R+, first consider

V1i (ei (t), d̃fi (t), w̃fi (t)) = eT
i (t)Pei (t) + d̃T

fi (t)Γ
−1d̃fi (t) + σw̃T

fi (t)Γ
−1
f w̃fi (t), (96)
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and note that V1i (0,0,0) = 0, V1i (ei (t), d̃fi (t), w̃fi (t)) > 0 for all (ei (t), d̃fi (t), w̃fi (t)) ,

(0,0,0), andV1i (ei (t),

d̃fi (t), w̃fi (t)) is radially unbounded. The time derivative of (96) is given by

V̇1i (·) = 2eT
i (t)P

(
Amei (t) − B1d̃fi (t)

)
+ 2d̃T

fi (t)Γ
−1

(
ΓProjm

[
d̂fi (t),eT

i (t)PB1

−σ
(
d̂fi (t) − ŵfi (t)

)]
− ḋfi (t)

)
+ 2σw̃T

fi (t)Γ
−1
f

(
Γf

[
d̃fi (t) − w̃fi (t)

]
− ḋfi (t)

)
≤ 2eT

i (t)PAmei (t) − 2σd̃T
fi (t)

(
d̂fi (t) − ŵfi (t)

)
− 2d̃T

fi (t)Γ
−1ḋfi (t)

+ 2σw̃T
fi (t)

(
d̂fi (t) − ŵfi (t)

)
− 2σw̃T

fi (t)Γ
−1
f ḋfi (t)

≤ −eT
i (t)Rei (t) − 2σ

(
d̃fi (t) − w̃fi (t)

)T (
d̃fi (t) − w̃fi (t)

)
− 2d̃T

fi (t)Γ
−1ḋfi (t)

− 2σw̃T
fi (t)Γ

−1
f ḋfi (t). (97)

By introducing

V1(e(t), w̃(t), w̃f(t)) =

NF∑
i=1

V1i (ei (t), d̃fi (t), w̃fi (t)), (98)

it follows from (97) that

V̇1(·) ≤ − eT(t)(INF ⊗ R)e(t) − 2
(
d̃f(t) − w̃f(t)

)T
(INF ⊗ σ)

(
d̃f(t) − w̃f(t)

)
− 2d̃T

f (t)(INF ⊗ Γ
−1)ḋf(t) − 2w̃T

f (t)(INF ⊗ σΓ
−1
f )ḋf(t). (99)

Next, consider the sameV2(ξ̃ (t)) in (78) and its time derivation given by (82). Using (96)

and (78), the Lyapnunov function candidate is given by

Vs(e(t), ξ̃ (t), w̃(t), w̃f(t)) = V1(e(t), w̃(t), w̃f(t)) + αV2(ξ̃ (t)), (100)

where we let α , kα̃ ∈ R+ to satisfy INF ⊗ R − α̃E (G)TP2E (G) > 0, since it is an

arbitrary constant. Differentiating (100) along (55), (64), (94), and (95), and defining Q1 ,

INF ⊗ R − α̃E (G)TP2E (G) > 0 and Q2 , α(R − kInξ ) > 0, it follows from (82) and (99)
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that

V̇s(·) ≤ − eT(t)Q1e(t) − ξ̃T(t)Q2 ξ̃ (t) − 2
(
d̃f(t) − w̃f(t)

)T
(INF ⊗ σ)

·
(
d̃f(t) − w̃f(t)

)
− 2d̃T

f (t)(INF ⊗ Γ
−1)ḋf(t) − 2w̃T

f (t)(INF ⊗ σΓ
−1
f )ḋf(t)

≤ − λmin(Q1)‖e(t)‖2 − λmin(Q2)‖ ξ̃ (t)‖2 − 2‖INF ⊗ σ‖‖d̃f(t) − w̃f(t)‖2

+ 2‖w̃(t)‖F‖(INF ⊗ Γ
−1)‖F‖ẇ(t)‖F + 2‖w̃f(t)‖F‖(INF ⊗ σΓ

−1
f )‖F‖ẇ(t)‖F

≤ − λmin(Q1)‖e(t)‖2 − λmin(Q2)‖ ξ̃ (t)‖2 − d1‖ d̃f(t) − w̃f(t)‖2 + d2, (101)

where d1 , 2‖INF ⊗ σ‖, and d2 , 2w̃∗‖(INF ⊗ Γ
−1)‖Fẇ∗ + 2w̃∗f ‖(INF ⊗ σΓ

−1
f )‖Fẇ∗ with

‖w̃f(t)‖ ≤ w̃∗f . Now, it shows that V̇ (e(t), ξ̃ (t), w̃(t), w̃f(t)) < 0 when ‖e(t)‖ ≥ ψ1, or






ξ̃ (t)





≥ ψ2, where ψ1 ,

√
d2/λmin(Q1) and ψ2 ,

√
d2/λmin(Q2). This argument proves

uniform ultimate boundedness of the closed-loop solution (e(t), ξ̃ (t), w̃(t), w̃f(t)) for all

initial conditions [31, 28]. �

Corollary 3 Consider a multivehicle system consisting of NF nonlinear uncertain vehicles

with the dynamics given by (39), for i = 1, · · · ,NF, with time-varying input disturbance,

subject to Assumption 1, the reference model given by (50), the virtual vehicle-level con-

troller given by (47), (48), (52), with the update laws (92) and (93). In addition, let the

virtual local cooperative control for vehicle i = 1, · · · ,NF, be given by (56), (57), and (58),

such that (65) is Hurwitz. Then, the ultimate bound of the solution (e(t), ξ̃ (t), w̃(t), w̃f(t))

is given by

| |e(t) | | ≤ Φ̃λ
− 1

2
min(P), t ≥ T (102)

and

| | ξ̃ (t) | | ≤ Φ̃λ
− 1

2
min(P), t ≥ T (103)

where Φ̃ ,
[
λmax(P)ψ2

1 + λmax(P)ψ2
2 + λmax(Γ−1)w̃∗2 + σλmax(Γ−1

f )w̃∗2f
] 1

2 .
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Proof. The proof follows using similar steps as the proof of Corollary 2, and hence,

is omitted. �

6. CONVERGENCE ANALYSIS OF THE (OF)2AC

This section shows that the (OF)2AC method solves the containment problem. For

overall system analysis purpose, let AL , block-diag(AL1, · · · , ALNL ) ∈ RnL×nL , BL ,

block-diag(BL1, · · · ,BLNL ) ∈ RnL×mL , CL , block-diag(CT
L1, · · · ,C

T
LNL

)T ∈ RNLl×nL , and

c(t) , [cT
1 (t), · · · ,cT

NL
(t)]T ∈ RmL , with ‖c(t)‖ ≤ c∗, where nL =

∑NL
i=1 ni, and mL =∑NL

i=1 mi. Further more, let the solution of (68) be partitioned as ξ̄ , [q̄T
m(t), θ̄T(t), ν̄T(t)]T ∈

Rnξ , with q̄m(t) ∈ RNFln, θ̄(t) ∈ RNFl , and ν̄(t) ∈ RNFl . Finally, let ȳm(t) , (INF ⊗

Cq)q̄m(t) ∈ RNFl and M (G) , F (G)−1G(G).

Theorem 6 Consider a multivehicle system consisting of NF nonlinear uncertain vehicles

with the dynamics given by (39), for i = 1, · · · ,NF, subject to Assumption 1, the reference

model given by (50), the virtual vehicle-level controller given by (47), (48), (52), and (53).

In addition, let the virtual local cooperative control for vehicle i = 1, · · · ,NF, be given by

(56), (57), and (58), such that (69) is Hurwitz for i = 1, · · · ,NF. Furthermore, consider the

leader dynamics given by (31) and (32) for i = 1, · · · ,NL. First, if the reference command

is constant (i.e. ċ∗i = 0, i = 1, · · · ,NL), then ȳm(t) → (M (G) ⊗ Il )yL(t) as t → ∞; that

is ȳmi, i = 1, · · · ,NF, asymptotically converge to the convex hull formed by the leaders. If,

in addition, NL = 1, then ȳm(t) → 1NF ⊗ yL1(t) as t → ∞; that is ymi, i = 1, · · · ,NF,

asymptotically converge to the output of the leader. Second, if reference command is time

varying with bounded time rate of change, then ȳm(t) converge to the neighborhood of

the convex hull formed by (M (G) ⊗ Il )yL(t) as t → ∞. If, in addition, NL = 1, then ȳm(t)

converge to the neighborhood of 1NF ⊗ yL1(t) as t → ∞; that is ȳmi, i = 1, · · · ,NF, converge

to the neighborhood of the output of the leader.
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Proof. Let Z̄(t) , [xT
L(t), ξ̄T(t)]T ∈ RnL+nξ , then, (31) and (68) can be written in

the compact form as

˙̄
Z(t) = Az (G)Z̄(t) + Bzc(t), Z̄(0) = Z̄0, t ≥ 0, (104)

where

Az (G) =









AL 0

B(G)CL A(G)









∈ R(nL+nξ )× (nL+nξ ), (105)

Bz =









BL

0









∈ R(nL+nξ )× (mL+NFln) . (106)

Since A(G) is Hurwitz as shown in Remark 4 and AL is Hurwitz, it follows from

the lower triangular structure of (105) that Az (G) is Hurwitz, and hence, there exists a

unique positive definite matrix Pz such that

0 = Az (G)TPz + PzAz (G) + Rz, (107)

holds for a positive-definite matrix Rz. Now, similar to the proposed analysis in [37],

consider

H̄ (t) , Z̄(t) +Az (G)−1Bzc(t), (108)

where Az (G) is invertible since it has a nonzero determinant. Using (108), consider the

Lyapunov function candidate given by

V (H̄ (t)) = H̄ T(t)PzH̄ (t), (109)

where V (0) = 0, V (H̄ (t)) > 0 for all H̄ (t) , 0, and V (H̄ (t)) is radially unbounded.
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The time derivative of (109) along the trajectory of (104) and (108) is given by

V̇ (H̄ (t)) = 2H̄ T(t)Pz
(
Ż(t) +Az (G)−1Bz ċ(t)

)
= 2H̄ TPzŻ(t) + 2H̄ T(t)PzAz (G)−1Bz ċ(t)

= 2H̄ T(t)Pz
(
Az (G)Z(t) + Bz (G)Ez (t)

)
+ 2H̄ T(t)PzAz (G)−1Bz ċ(t)

= 2H̄ T(t)PzAz (G)H̄ (t) + 2H̄ T(t)PzAz (G)−1Bz ċ(t)

= −H̄ T(t)RzH̄ (t) + 2H̄ T(t)PzAz (G)−1Bz ċ(t). (110)

In the remainder of this proof, we consider two cases.

Case 1: For ċ(t) = 0, (110) can be written as

V̇ (H̄ (t)) = −H̄ T(t)RzH̄ (t) < 0, (111)

and hence,

lim
t→∞
H̄ (t) = 0. (112)

Next, since (112) implies ˙̄
Z(t) → 0 as t → ∞, (104) can be written as

Az (G)Z̄(∞) + Bzc(∞) = 0, (113)

where Z̄(∞) = limt→∞ Z̄(t) and c(∞) = limt→∞ c(t). In addition, letting xL(∞) =

limt→∞ xL(t), q̄m(∞) = limt→∞ q̄m(t), θ̄(∞) = limt→∞ θ̄(t), ν̄(∞) = limt→∞ ν̄(t), and

using the definition of Az (G) and Bz given by (105) and (106), respectively, in (113) we

have

0 = ALxL(∞) + BLc(∞), (114)
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0 = [INF ⊗ Am − F (G) ⊗ B1KcCq]q̄m(∞) − (G(G) ⊗ B1Kc)yL(∞) + (INF ⊗ B1Kc)θ̄(∞),

(115)

0 = − δ(F (G) ⊗ Cq)q̄m(∞) − δ(G(G) ⊗ Il )yL(∞) − δζ
(
θ̄(∞) − ν̄(∞)

)
, (116)

0 =η
(
θ̄(∞) − ν̄(∞)

)
. (117)

Since, θ̄(∞) = ν̄(∞) in (117), (116) follows as

0 = −δ(F (G) ⊗ Cq)q̄m(∞) − δ(G(G) ⊗ Il )yL(∞), (118)

or, equivalently,

(F (G) ⊗ Il ) ȳm(∞) = −(G(G) ⊗ Il )yL(∞), (119)

and since (F (G) ⊗ Il ) is invertible, (119) yields

ȳm(∞) = −(F (G)−1G(G) ⊗ Il )yL(∞), (120)

and hence, ȳmi (t), i = 1, · · · ,NF, asymptotically converge to the convex hull formed by the

leaders. In addition, if NL = 1, then −F (G)−1G(G) = 1NF , and as a direct consequence of

(120) we have

ȳm(∞) = (1NF ⊗ Il )yL1(∞)

= 1NF ⊗ yL1(∞), (121)

and hence, ȳmi (t), i = 1, · · · ,NF, asymptotically convergence to the output of the leader.

Case 2: We now consider ‖ċ(t)‖ ≤ ċ∗, and ċ∗ ∈ R+. In this case, (110) follows as

V̇ (H̄ (t)) ≤ −λmin(Rz)‖H̄ (t)‖2 + 2‖PzAz (G)−1Bz ‖Fċ∗‖H̄ (t)‖
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= −λmin(Rz)‖H̄ (t)‖2 + Ψ‖H̄ (t)‖, (122)

where Ψ , 2‖PzAz (G)−1Bz ‖Fċ∗. Rearranging (122), we can equivalently write

V̇ (H̄ (t)) ≤ −λmin(Rz)‖H̄ (t)‖
(
‖H̄ (t)‖ −

Ψ

λmin(Rz)

)
. (123)

Therefore, V̇ (H̄ (t)) < 0 outside the compact set

Ω ,

{
H̄ (t) : H̄ (t) ≤

Ψ

λmin(Rz)

}
, (124)

which proves uniform ultimate boundedness of the closed-loop solution Z̄(t)+Az (G)−1Bzc(t)

for all initial conditions [31]. Since V̇ (H̄ (t)) < 0 outside the compact set (124), then an

ultimate bound for the distance of H̄ (t) , Z̄(t) +Az (G)−1Bzc(t) can be computed as

‖H̄ (t)‖ ≤

√
λmax(Pz)
λmin(Pz)

Ψ

λmin(Rz)
, t ≥ T. (125)

Specifically, if the right side of (125) is small, then the distance of Z̄(t) +Az (G)−1Bzc(t)

is small for t ≥ 0. This implies ȳmi (t), i = 1, · · · ,NF, stay in the neighborhood of the

convex hull formed by the leaders. In addition, if NL = 1, then −F (G)−1G(G) = 1NF ,

implies ȳmi (t), i = 1, · · · ,NF, stay close to the output of the leader. �

Remark 7 As a direct consequence from Theorem 3 and Remark 5, yf(t) → ym(t) and

ym(t) → ȳm(t) as t → ∞. Then first, recalling the results of constant reference input case

of Theorem 6, yields yf(t) → M (G) ⊗ Il )yL(t) as t → ∞ ; that is yfi (t), i = 1, · · · ,NF,

asymptotically converge to the convex hull formed by the leaders. In addition, for a single

leader, yf(t) → 1NF ⊗ yL1(t) as t → ∞; that is yfi (t), i = 1, · · · ,NF, asymptotically converge

to the output of the leader. Second, recalling the results of time-varying reference command

case of Theorem 6, then since the bound of ‖ ȳm(t) − yL(t)‖ is governed by the bound of

‖H̄ (t)‖ in (125), yf(t) converges with bounded divergence to the convex hull formed by

(M (G) ⊗ Il )yL(t) as t → ∞; that is yfi (t), i = 1, · · · ,NF, converge to the neighborhood of
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the convex hull formed by the leaders. For a single leader in addition, yf(t) converge to

the neighborhood of 1NF ⊗ yL1(t) as t → ∞; that is yfi (t), i = 1, · · · ,NF, converge to the

neighborhood of the output of the leader.

Remark 8 As a direct consequence from Theorem 4 and Remark 6, there is a uniformly

ultimately bounded error in (90), yields to output error bound







yf(t) − ym(t)





+ ‖ym(t) − ȳm(t)‖ ≤ 






(INF ⊗ Cq)




F
Φ̃

(
λ
− 1

2
min(P) + λ

− 1
2

min(P)
)
, t ≥ T,

(126)

and ym(t) → ȳm(t) as t → ∞. Then first, recalling the results of constant reference input

case of Theorem 6, then, yf(t) converges to the neighborhood of the convex hull formed by

(M (G) ⊗ Il )yL(t) as t → ∞ with uniformly ultimately bounded deviation equivalent to the

right side of (126) ; that is yfi (t), i = 1, · · · ,NF, converge to the neighborhood of the convex

hull formed by the leaders with uniformly ultimately bounded deviation. For a single leader

in addition, yf(t) converge to the neighborhood of 1NF ⊗ yL1(t) as t → ∞ with uniformly

ultimately bounded deviation; that is yfi (t), i = 1, · · · ,NF, converge to the neighborhood

of the output of the leader with uniformly ultimately bounded deviation. Second, recalling

the results of time-varying reference command case of Theorem 6, then since the bound

of ‖ ȳm(t) − yL(t)‖ is governed by the bound of ‖H̄ (t)‖ in (125), yf(t) converges to the

neighborhood of the convex hull formed by (M (G) ⊗ Il )yL(t) as t → ∞ with uniformly

ultimately bounded deviation







yf(t) − yL (t)





≤






yf(t) − ym(t)





+ ‖ym(t) − ȳm(t)‖ + ‖ ȳm(t) − yL(t)‖ , (127)

that is yfi (t), i = 1, · · · ,NF, converge to the neighborhood of the convex hull formed by the

leaders with uniformly ultimately bounded deviation. For a single leader in addition, yf(t)

converge to the neighborhood of 1NF ⊗ yL1(t) as t → ∞ with uniformly ultimately bounded

deviation; that is yfi (t), i = 1, · · · ,NF, converge to the neighborhood of the output of the

leader with uniformly ultimately bounded deviation.
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The next section illustrates the ability of the proposed adaptive output feedback controller

to drive follower vehicles to the output of the leader vehicle, as well as a convex hull created

by two leaders.

7. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two numerical examples to demonstrate the efficacy of

the (OF)2AC for multivehicle systems. For this purpose, we consider a line graph of leader

and follower vehicles. Specifically, for each follower vehicle, we consider the dynamics

given by (12) and (13) with

A =









0 1

1 1









, B =









0

1









, C =

[
1 0

]
, (128)

with the different vehicle-level uncertainties given by w1(t) = 0.4 sin(0.4t), w2(t) =

0.6 sin(0.2t), w3(t) = 0.4 sin(0.2t), w4(t) = −0.6 sin(0.4t), and the intial conditions

qT
10 = [0.5 , 0], qT

20 = [0.85 , 0], qT
10 = [0.5 , 0], qT

30 = [0.5 , 0], and qT
40 = [0.5 , 0]. For

the leader vehicle(s), we consider the dynamics given by (31) and (32) with AL = −0.5,

BL = 0.5, CL = 1, and xL1(0) = 0. We let λ = 10 and

Am =









0 1

−1 −2









, (129)

to create the nominal feedback gain Kq = [−1 , −1.5], Kv = 0.5. In addition, for the

cooperative control design, we choose Kc = 1.5, ζ = 1.5, η = 2, δ = 5. Furthermore, for

the adaptive control design, we use Γ= 80, R = I2, and

P =









1.5 0.5

0.5 0.5









. (130)
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Finally, for the second-order follower vehicle with d = 1, the actual control signal given by

(71) becomes

ui (t) = φ̇i (t) + 2λφi (t) + λ2
∫ t

0
φi (σ1)dσ1, t ≥ 0. (131)

Throughout this section, in order to show efficacy of the proposed (OF)2AC method,

we consider both step and sine wave reference commands.

Example 1. For the first example, we consider a line graph with four follower ve-

hicles and a single leader and our aim is to track a given reference command c1(t), t ≥ 0.

The closed-loop response along with the control signal is shown Figure 1. The proposed

controller drives the multivehicle system output to the desired reference command since

there is no input disturbance. Utilizing the (OF)2AC without the adaptive controller, Fig-

ure 2 shows an undesired closed-loop response for the disturbed follower vehicle systems

due to the existence of the input disturbance. Next, we employ the (OF)2AC with the

adaptive controller, where the closed-loop response along with the control signal can be

seen in Figure 3. Note that the proposed controller achieves better performance in terms

of command following in the presence of input disturbance, but the response still contains

high-frequency oscillations. In order to remove these oscillations, we now employ the

modified update law adaptive control with Γ= 200, Γf = 4, and σ = 0.1 for step reference

command, and Γ= 100, Γf = 4, and σ = 0.1 for sine-wave reference command. As shown

in Figure 4, the resulting closed-loop response is further improved by suppressing the high

frequency content.

Example 2. For the second example, we consider four follower vehicles and two

leaders with different reference commands. In this way, the leaders create a convex hull for

the followers to (approximately) converge to. We employ the modified update law adaptive

control with the same parameters as in Example 1. For a constant reference command, we

consider c(t) = [1 , 0.8]T as shown in Figure 5a, and in Figure 5b, we apply time varying
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(a) Step reference command.
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(b) Sine-wave reference command.

Figure 1. Responses of y(t), yL(t), and u(t) for the multivehicle system for Example 1.
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(a) Step reference command.
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(b) Sine-wave reference command.

Figure 2. Responses of y(t), yL(t), and u(t) for the multivehicle system with input distur-
bance for Example 1.

commands given by ci (t) = (−1)i+10.8+ (−1)i+10.5 sin((0.06∗ i)t), i = 1,2. In both cases,

it can be seen that the follower vehicles converge to the convex hull created by the leader

outputs.
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(a) Step reference command.
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(b) Sine-wave reference command.

Figure 3. Responses of y(t), yL(t), and u(t) for multivehicle system with proposed adaptive
output feedback control architecture in presence of input disturbance for Example 1.
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(b) Sine-wave reference command.

Figure 4. Responses of y(t), yL(t), and u(t) for the multivehicle system with low-frequency
version of the proposed adaptive output feedback control architecture in presence of input
disturbance for Example 1.

8. CONCLUSION

In this paper, a new observer-free output feedback adaptive control method was

presented for continuous-time, minimum phase, and high-order linear multivehicle systems

subject to exogenous disturbances. The proposed method was based on a nonminimal

state-space realization for each follower vehicle of the multivehicle system. In particular, it
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(a) Step reference commands for two leaders
creating a constant convex hull.

0 50 100 150

−1

−0.5

0

0.5

1

y
(t

)

 

 

y
L1

y
L2

y
f1

y
f2

y
f3

y
f4

0 50 100 150

−2

0

2

Time [s]

u
(t

)

 

 

u
1

u
2

u
3

u
4

(b) Sine-wave reference commands for two
leaders creating a time varying convex hull.

Figure 5. Responses of y(t), yL(t), and u(t) for the multivehicle system with low-frequency
version of the proposed adaptive output feedback control architecture in presence of input
disturbance for Example 2.

consisted of a local cooperative controller and a vehicle-level controller for each follower

vehicle, where the stability guarantees of the overall scheme were also derived. Finally,

two illustrated numerical examples demonstrated the efficacy of the proposed method.
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SECTION

2. CONCLUDING REMARKS AND FUTURE WORK

2.1. CONCLUDING REMARKS

A critical task in the design and implementation of networked control systems is

to guarantee system stability while reducing wireless network utilization and achieving a

given system performance in the presence of system uncertainties. Motivating from this

standpoint, in the first paper, we presented the design and analysis of an event-triggered

adaptive control methodology for a class of uncertain dynamical systems in the presence

of two-way data exchange between the physical system and the proposed controller over

a wireless network. In particular, using tools and methods from nonlinear systems and

Lyapunov stability, we showed that the proposed approach reduces wireless network uti-

lization, guarantees system stability and command following performance in the presence

of system uncertainties, and does not yield to a Zeno behavior. In addition, the effect

of user-defined thresholds and adaptive controller design parameters to the system perfor-

mance were characterized and discussed in detail. As a byproduct, we further found that

the actuation threshold can be chosen larger than the sensing threshold to reduce wireless

network utilization between the physical system and the adaptive controller without neces-

sarily sacrificing closed-loop dynamical system performance.

We then presented, in the second paper, the design and analysis of an event-triggered

output feedback adaptive control methodology for a class of uncertain dynamical systems

in the presence of two-way data exchange between the physical system and the proposed

controller over a wireless network. This approach was a generalization of the results in the

first paper where instead of considering state feedback adaptive control architecture, we
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consider output feedback adaptive control for such systems where the measuring full states

is inapplicable. Specifically, we showed using tools and methods from nonlinear systems

theory and Lyapunov stability in particular that the proposed feedback control approach

guarantees system stability in the presence of system uncertainties. In addition, we charac-

terized the effect of user-defined thresholds and output feedback adaptive controller design

parameters to the system performance and showed that the proposed methodology does not

yield to a Zeno behavior.

We next presented, in the third paper, the design and analysis of event-triggered

decentralized and distributed adaptive control architectures for uncertain networked large-

scale modular systems. For the decentralized case, we showed that the proposed event-

triggered adaptive control architecture guarantees system stability and performance with

no Zeno behavior under certain structural conditions that depend on the parameters of

the large-scale modular systems and the proposed architecture. For the distributed case,

we showed that the proposed event-triggered adaptive control architecture guarantees the

same system stability and performance with no Zeno behavior without such structural con-

ditions under the assumption that physically-interconnected modules can locally commu-

nicate with each other for exchanging their state information. In addition to the presented

theoretical findings, the efficacy of the proposed event-triggered decentralized and dis-

tributed adaptive control approaches were demonstrated on an illustrative numerical ex-

ample, where significant reduction on the overall communication cost was obtained for

large-scale modular systems in the presence of system uncertainties resulting from mod-

eling and degraded modes of operation of the modules and their interconnections between

each other.

In addition, in the fourth paper, we presented a new observer-free output feedback

cooperative control architecture. Specifically, the proposed architecture will be predicated

on a nonminimal state-space realization that generates an expanded set of states only using

the filtered input and filtered output and their derivatives for each vehicles, without the
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need for designing an observer for each vehicle. The utilized output feedback cooperative

control architecture is in the context of a containment problem (i.e., outputs of the follower

agents convergence to the convex hull spanned by those of the leader agents).

Furthermore, based on the above results, we presented in the fifth paper, an event-

triggering mechanism on the exchanged output measurements between agents that are con-

trolled by an observer-free output feedback cooperative control architecture for continuous-

time, minimum phase, and high-order linear multiagent systems. The proposed event-

triggering methodology is applied on the relative output measurements of the agents, where

each agent has its own event-triggering threshold to transmit its own output measurements

to the neighbor agents asynchronously. Since the information exchanged happening in the

event-triggering manner, additional terms in the Laplacian matrices are observed, and these

additional terms are utilized in the controller scheme design.

Finally, we presented in sixth paper, new observer-free output feedback adaptive

control, (OF)2AC, method for continuous-time, minimum phase, and high-order linear mul-

tivehicle systems subject to exogenous disturbances. The (OF)2AC consists of i) a local co-

operative controller and ii) a vehicle-level controller for each follower vehicle Specifically,

the former part of the proposed control method addresses the leader-follower containment

control problem by receiving the relative output measurements of the neighboring vehi-

cles, and the later part consists of an augmenting adaptive controller for stabilization and

command following in the presence of exogenous disturbances.

2.2. FUTURE RESEARCH SUGGESTIONS

We recommend the following future research topics: i) The results of Papers I,

II, and III can be extended by considering sampling, data transmission, and computation

delays since they also play an important role in the performance of networked control

systems. ii) The results of Papers I can be extended by optimizing the triggering thresholds

and controller parameter in order to get minimal closed loop error bound. iii) The results
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of Paper III can be extended to the output feedback adaptive control. iv) The result of

Paper IV can be extended by analyzing the stability during the intersampling time using

input-state-stability (ISS) approach in addition to the regular Lyapunov stability analysis.

v) The result of Paper IV can be extended by applying the event-triggering mechanism

on the exchanged information between the vehicles in order to save the communication

effort. vi) The result of Paper IV can be also extended by considering the time delay

in the transmitted information between the vehicles. vii) In order to mitigate the high

frequency oscillation in the adaptive controller response in Paper VI one can propose output

emulator based adaptive controller instead of using low pass filter-modified update law. The

resulting adaptive controller can have less parameter to tune in order to obtain an acceptable

response. Finally, vi) all the results reported in this dissertation can be extended first for

discrete time dynamical systems and then for hybrid dynamical systems.



APPENDIX A

SYSTEM CONTROLLABILITY AND THE STRUCTURAL

MATCHING CONDITION IN PAPER I
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The assumption on controllability of (A,B) implies that it is possible to come up

with a control strategy in order to stabilize each individual system. For example, consider

the following system matrices as an example:

A =









0 1

0 0









,B =









0

1









. (A.1)

In this case, since the given pair (A,B) is controllable, there always exists a stabilizing gain

K1 to make A − BK1 Hurwitz. On the other hand, standard Assumption 2 puts a structural

constraint on the selection of the reference model. Following the above example, consider,

for example, the following reference model system matrix:

Aref =









−α 0

0 −β









, α, β ∈ R+. (A.2)

Clearly, Aref is Hurwitz, but there does not structurally exist a K1 satisfying Aref = A− BK1

in this case with the given A and B above. Instead, for example, consider the following

reference model system matrix:

Aref =









0 1

−α −β









, α, β ∈ R+. (A.3)

Once again, Aref is Hurwitz. In this case, there always structurally exist a K1 satisfying

Aref = A − BK1. A similar comment can be identically made for Bref = BK2 case.

From this standpoint, the assumption on controllability and Assumption 2 do not

contradict each other. The later assumption actually adds a constraint on the former as-

sumption that structurally influences the selection of the reference model dynamics. Note

that Assumption 2 is a standard assumption in the literature and often referred as the match-

ing condition, where it holds for many practical systems when the control actions are gen-
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erated through moments such as in aircraft, spacecraft, underwater vehicles, and industrial

robotic systems just to mention a few. For further explanation, three different physical

examples are presented showing the validity of the adopted structural matching condition.

Example 1. Consider aircraft short-period dynamics for longitudinal motion of a

conventional aircraft from Section 10.2 of [33]









α̇(t)

q̇(t)







︸    ︷︷    ︸

ẋp(t)

=









−0.08060 1

−9.1484 −4.59







︸                       ︷︷                       ︸

Ap









α(t)

q(t)







︸    ︷︷    ︸

xp(t)

+









−0.04

−4.59







︸      ︷︷      ︸

Bp

Λ





 δe(t)︸︷︷︸

u(t)

+∆(xp(t))





 , (A.4)

where α(t) (rad) is the aircraft angle of attack, q (rad/s) is the pitch rate, δe(t) (rad) is the

elevator deflection (the control input), Λ = 0.5 represents a loss-of-control effectiveness,

and ∆(xp(t)) is the matched uncertainty of the system. In addition, let the aircraft angle of

attack α be the system regulated output given by

y(t) =

[
1 0

]
xp(t). (A.5)

Then, the system is augmented with the integrated output tracking error and yields the

extended open-loop dynamics













ėyI (t)

α̇(t)

q̇(t)











︸    ︷︷    ︸

ẋ(t)

=













0 1 0

0 −0.08060 1

0 −9.1484 −4.59











︸                      ︷︷                      ︸

A













eyI (t)

α(t)

q(t)











︸    ︷︷    ︸

x(t)

+













0

−0.04

−4.59











︸    ︷︷    ︸

B

Λ
(
δe(t) + ∆(xp(t))

)

+













−1

0

0













ycmd(t), (A.6)
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where eyI (t) = y(t)− ycmd is the system output tracking error, ycmd is bounded time varying

command. It can be easily verified that this is a controllable system. A suitable reference

model for this system is given in the same section of [33] as:

Aref =













0 1 0

−0.1328 −0.8522 0.9910

−14.5149 −14.2048 −5.5779













, (A.7)

Example 2. Consider lateral-directional motion dynamics of a conventional aircraft

from Section 11.5 of [33]

















ϕ̇(t)

β̇(t)

ṗ(t)

ṙ (t)















︸  ︷︷  ︸

ẋp(t)

=

















0 0 1 0

0.0487 −0.0829 0 −1

0 −4.56 −1.699 0.1717

0 3.382 −0.0654 −0.0893















︸                                             ︷︷                                             ︸

Ap

















ϕ(t)

β(t)

p(t)

r (t)















︸  ︷︷  ︸

xp(t)

+

















0 0

0 0.0116

27.276 0.5758

0.3952 −1.362















︸                 ︷︷                 ︸

Bp

Λ









δa (t)

δr (t)







︸   ︷︷   ︸

u(t)

, (A.8)

y(t) =









1 0 0 0

0 1 0 0







︸      ︷︷      ︸

Cp

xp(t), (A.9)

ycmd(t) =

[
ϕcmd(t) βcmd(t)

]T
(A.10)

where ϕ(t) is the bank angle , β(t) is the sideslip angle, p(t) is the roll rate, r (t) is the

vehicle yaw rate, δa (t) is the aileron trailing angle, and δr (t) is the rudder angle. The

control task is to generate control input is to stabilize the open loop system and enable the
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independent an simultaneous tracking of the bank angle and sideslip angle that are given in

(A.9). Then, the augmented system with two integral tracking errors is given by













ėϕI (t)

ėβI (t)

ẋp(t)











︸    ︷︷    ︸

ẋ(t)

=









02×2 Cp

04×2 Ap







︸       ︷︷       ︸

A













eϕI (t)

eβI (t)

xp(t)











︸    ︷︷    ︸

x(t)

+









02×2

Bp







︸  ︷︷  ︸

B

Λ









δa (t)

δr (t)







︸   ︷︷   ︸

u(t)

+









−I2×2

04×2







︸    ︷︷    ︸

Bcmd









ϕcmd(t)

βcmd(t)







︸       ︷︷       ︸

ycmd(t)

, (A.11)

y(t) =

[
02×2 Cp

]
︸       ︷︷       ︸

C

x(t) =

[
ϕ(t) β(t)

]T
(A.12)

where ėϕI (t) = ϕ(t) − ϕcmd(t), and ėβI (t) = β(t) − βcmd(t) are the dynamics of the two

integral tracking error signal. Next, a suitable reference model for this system is given in

the same section of [33] as

Aref =


























0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0.0006 −0.0366 0.0478 −0.1095 −0.0006 −0.9677

−27.2103 −6.2552 −25.0926 −8.3100 −11.3540 2.2303

−0.4647 4.2370 −0.2600 6.4665 −0.1385 −3.8807


























, (A.13)

Example 3. In this example, consider an nth dimensional system in controllable canonical

form given by





















ẋ1(t)

ẋ2(t)
...

ẋn−1(t)

ẋn(t)





















=





















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1









































x1(t)

x2(t)
...

xn−1(t)

xn(t)





















+





















0

0
...

0

1





















u(t), (A.14)
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Depending on the known system structure,one can choose Aref as

Aref =





















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a∗n −a∗n−1 −a∗n−2 · · · −a∗1





















. (A.15)

where a∗i , i = 1, · · · ,n are the desired polynomial parameters leading to an asymptotically

stable Aref.
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Nonminimal State space representation explanation . we present the explanation

of how system (22) and (23) is input-output equivalent to system (32) and (33). For tis

purpose, using the input-output equivalence of (24) and (25) with (22) and (23), it follows

that

a0yi (t) = a0Coxoi (t), t ≥ 0 (B.1)

a1 ẏi (t) = a1[Co Aoxoi (t) + CoBoui (t)], (B.2)

...

an−1y
(n−1)
i (t) =an−1[Co An−1

o xoi (t) + Co An−2
o Boui (t) + · · · + CoBou(n−2)

i (t)], (B.3)

y(n)
i (t) =Co An

oxoi (t) + Co An−1
o Boui (t) + · · · + CoBou(n−1)

i (t), (B.4)

Now, adding the n + 1 equations in (B.1) and (B.2) we obtain

y(n)
i (t) = − [a0Il a1Il · · · an−1Il]Yi (t) + [B̄0 B̄1 · · · B̄n−1]Ui (t) + Co[An

o + an−1 An−1
o

+ · · · + a1 Ao + a0Iln]xoi (t), (B.5)

where B̄0, B̄1, · · · , B̄n−1 are given in (29)-(31), and Yi (t), t ≥ 0 , and Ui (t), t ≥ 0 are defined

as

Yi (t) , [yi (t), ẏi (t), · · · , y
(n−1)
i (t)]T, (B.6)

Ui (t) , [ui (t), u̇i (t), · · · , u(n−1)
i (t)]T, (B.7)
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Next, using the Cayly-Hamilton theorem [107] to consider every square matrix is a root of

its characteristic polynomial, and noting that ak , k = 0,1, · · · ,n − 1 are the coefficients of

the characteristic polynomial of the matrix Ao in (24), it follows that

An
o + an−1 An−1

o + · · · + a1 Ao + a0Iln = 0. (B.8)

Hence, (B.5) reduces to

y(n)
i (t) = − [a0Il a1Il · · · an−1Il]Yi (t) + [B̄0 B̄1 · · · B̄n−1]Ui (t), (B.9)

Now, define the expanded state vector

xnmi (t) ,[Y T
i (t), UT

i (t)]T

=[yi (t), ẏi (t), · · · , y
(n−1)
i (t), ui (t), u̇i (t), · · · , u(n−1)

i (t)]T, (B.10)

so that(B.5) can be written as

y(n)
i (t) = Φxnmi (t), (B.11)

where

Φ = [−a0Il − a1Il · · · − an−1Il B̄0 B̄1 · · · B̄n−1] ∈ Rl×nf . (B.12)

Next consider the nf-th order nonminimal state space model given by

ẋnmi (t) =Anmxnmi (t) + Bnmu(n)
i (t), xnmi (0) = xnm0i, t ≥ 0, (B.13)

yi (t) = Cnmxnmi (t), (B.14)
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where

Anm =


































0 Il 0 · · · · · · 0
...

. . .
...

0 · · · 0 Il 0 · · · · · · 0

−a0Il · · · · · · −an−1Il B̄0 · · · · · · B̄n−1

0 · · · · · · 0 Im 0 0
...

. . .
...

... · · · 0 Im

0 · · · · · · 0


































∈ Rnf×nf , (B.15)

Bnm =

[
0 0 · · · Im

]T
∈ Rnf×m, (B.16)

Cnm =
[
Il 0 · · · · · · 0

]
∈ Rl×nf . (B.17)

To eliminate differentiating the actual input and output signals in (B.13), we filter the input

signals in (B.13)and the output signals in (B.14) through the filter λn/Λ(s), where Λ(s) is

defined by (35). In this case, the states xnmi (t), t ≥ 0 become xfi (t), t ≥ 0, given by (34).

Now, let λ̄ = [λn, · · · ,nλ]T, and note that the Laplace transform of the filtered input

signal u(n)
fi , t ≥ 0 can be written as

L{u(n)
fi (t)} =

λnsn

(s + λ)nL{ui (t)}

=
λnsn − (s + λ)n + ((s + λ)n)

(s + λ)n L{ui (t)}

=
[
sn − λ−n(s + λ)n] L{ufi (t)} + L{ui (t)}

=
[
sn − (λ−nsn + nλ−n+1s(n−1) + · · · + 1)

]
L{ufi (t)} + L{ui (t)}, (B.18)
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and after rearranging (B.18), it can be written as

L{u(n)
fi (t)} = −

[
nλs(n−1) + · · · + λn

]
L{ufi (t)} + λnL{ui (t)}, (B.19)

where L{·} denotes the Laplace transform operator. Next, the inverse Laplace transform

for (B.19) is given by

u(n)
fi (t) = −λ̄T

[
uT

fi (t), u̇T
fi (t), · · · ,u

T(n−1)
fi (t)

]T
+ λnui (t)

= −λ̄TUf(t) + λnui (t). (B.20)

Analogously, the filtered output signals can be written as

y(n)
fi (t) = −λ̄T

[
yT

fi (t), ẏ
T
fi (t), · · · , y

T(n−1)
fi (t)

]T
+ λnyi (t)

= −λ̄TYfi (t) + λnyi (t). (B.21)

Furthermore, the filtered version of (B.11) id given by

y(n)
fi (t) = Φxfi (t). (B.22)

Using (B.21) and (B.22), it follows that the actual system output is given by

y(t) =
(
λ−n
Φ +

[
λ−n λ̄T, 0

] )
xfi (t). (B.23)

Now, filtering the signal in (B.13) and (B.14), and using (B.19) and (B.23), a nonminimal

state-space realization of (22) and (23) is given by (32) and (33), where xfi (t), t ≥ 0, is

the known filtered expanded state vector given by (34) and Af ∈ R
nf×nf , Bf ∈ R

nf×m and
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Cf ∈ R
l×nf are given by (36)-(38) respectively with

Af = Anm − [0 Bnmλ̄
T], (B.24)

Bf = λnBnm, (B.25)

Cf = λ−n
Φ + [λ−n λ̄T 0]. (B.26)
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Proof: [Proof of (59) in Corollary 1 in Paper V] The time derivative of ‖yfsi (t) −

yfi (t)‖ over t ∈ (ski+1, ski ),∀ki ∈ N is given by:

d
dt
‖yLsi (t) − yLi (t)‖

≤ ‖ ẏLsi (t) − ẏLi (t)‖ = ‖ ẏLi (t)‖ ≤ ‖CLi‖F‖ ẋLi (t)‖

≤ ‖CLi‖F‖ALi‖F‖xLi (t)‖ + ‖CLi‖F‖BLi‖F‖ri (t)‖

≤ ‖CLi‖F‖ALi‖Fx∗Li + ‖CLi‖F‖BLi‖Fr∗i , (C.1)

where ‖xLi (t)‖ ≤ x∗Li. Since the closed-loop dynamical system is bounded, there exists

an upper bound to the equation (C.1). Letting Φ2i denote this upper bound and with initial

condition satisfying limt→r+
qi
‖yLsi (t) − yLi (t)‖ = 0, it follows from Equation (C.1) that

‖yLsi (t) − yLi (t)‖ ≤ Φ2i (t − rqi ), ∀t ∈ (rqi ,rqi+1). Therefore, when E2i is true, then

limt→r−
qi+1
‖yLsi (t) − yLi (t)‖ = ε yLi, and it then follows that rqi+1 − rqi ≥ α2i. �
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subsidaries.

Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS

1. Description of Service; Defined Terms. This Republication License enables the User to

obtain licenses for republication of one or more copyrighted works as described in detail on

the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”)

grants licenses through the Service on behalf of the rightsholder identified on the Order

Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the

inclusion of a Work, in whole or in part, in a new work or works, also as described on the

Order Confirmation. “User”, as used herein, means the person or entity making such

republication.

2. The terms set forth in the relevant Order Confirmation, and any terms set by the

Rightsholder with respect to a particular Work, govern the terms of use of Works in

connection with the Service. By using the Service, the person transacting for a republication

license on behalf of the User represents and warrants that he/she/it (a) has been duly

authorized by the User to accept, and hereby does accept, all such terms and conditions on

behalf of User, and (b) shall inform User of all such terms and conditions. In the event such

person is a “freelancer” or other third party independent of User and CCC, such party shall

be deemed jointly a “User” for purposes of these terms and conditions. In any event, User

shall be deemed to have accepted and agreed to all such terms and conditions if User

republishes the Work in any fashion.

3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and

exclusive property of the Rightsholder. The license created by the exchange of an Order

Confirmation (and/or any invoice) and payment by User of the full amount set forth on that

document includes only those rights expressly set forth in the Order Confirmation and in

these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not

expressly granted are hereby reserved.

3.2 General Payment Terms: You may pay by credit card or through an account with us
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payable at the end of the month. If you and we agree that you may establish a standing

account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance

Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable

upon their delivery to you (or upon our notice to you that they are available to you for

downloading). After 30 days, outstanding amounts will be subject to a service charge of

1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise

specifically set forth in the Order Confirmation or in a separate written agreement signed by

CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights

licensed immediately upon issuance of the Order Confirmation, the license is automatically

revoked and is null and void, as if it had never been issued, if complete payment for the

license is not received on a timely basis either from User directly or through a payment

agent, such as a credit card company.

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is

“one-time” (including the editions and product family specified in the license), (ii) is

non-exclusive and non-transferable and (iii) is subject to any and all limitations and

restrictions (such as, but not limited to, limitations on duration of use or circulation)

included in the Order Confirmation or invoice and/or in these terms and conditions. Upon

completion of the licensed use, User shall either secure a new permission for further use of

the Work(s) or immediately cease any new use of the Work(s) and shall render inaccessible

(such as by deleting or by removing or severing links or other locators) any further copies of

the Work (except for copies printed on paper in accordance with this license and still in

User's stock at the end of such period).

3.4 In the event that the material for which a republication license is sought includes third

party materials (such as photographs, illustrations, graphs, inserts and similar materials)

which are identified in such material as having been used by permission, User is responsible

for identifying, and seeking separate licenses (under this Service or otherwise) for, any of

such third party materials; without a separate license, such third party materials may not be

used.

3.5 Use of proper copyright notice for a Work is required as a condition of any license

granted under the Service. Unless otherwise provided in the Order Confirmation, a proper

copyright notice will read substantially as follows: “Republished with permission of

[Rightsholder’s name], from [Work's title, author, volume, edition number and year of

copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice

must be provided in a reasonably legible font size and must be placed either immediately

adjacent to the Work as used (for example, as part of a by-line or footnote but not as a

separate electronic link) or in the place where substantially all other credits or notices for the

new work containing the republished Work are located. Failure to include the required notice

results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated

damages for each such failure equal to twice the use fee specified in the Order Confirmation,

in addition to the use fee itself and any other fees and charges specified.

3.6 User may only make alterations to the Work if and as expressly set forth in the Order

Confirmation. No Work may be used in any way that is defamatory, violates the rights of

third parties (including such third parties' rights of copyright, privacy, publicity, or other

tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In

addition, User may not conjoin a Work with any other material that may result in damage to

the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any

infringement of any rights in a Work and to cooperate with any reasonable request of CCC
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or the Rightsholder in connection therewith.

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and

their respective employees and directors, against all claims, liability, damages, costs and

expenses, including legal fees and expenses, arising out of any use of a Work beyond the

scope of the rights granted herein, or any use of a Work which has been altered in any

unauthorized way by User, including claims of defamation or infringement of rights of

copyright, publicity, privacy or other tangible or intangible property.

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE

RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR

INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR

LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS

INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK,

EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their

respective employees and directors) shall not exceed the total amount actually paid by User

for this license. User assumes full liability for the actions and omissions of its principals,

employees, agents, affiliates, successors and assigns.

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC

HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER

CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL

OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,

GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE

WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED

BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE

RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of

a Work beyond the scope of the license set forth in the Order Confirmation and/or these

terms and conditions, shall be a material breach of the license created by the Order

Confirmation and these terms and conditions. Any breach not cured within 30 days of

written notice thereof shall result in immediate termination of such license without further

notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon

notice thereof may be liquidated by payment of the Rightsholder's ordinary license price

therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any

reason (including, for example, because materials containing the Work cannot reasonably be

recalled) will be subject to all remedies available at law or in equity, but in no event to a

payment of less than three times the Rightsholder's ordinary license price for the most

closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses

incurred in collecting such payment.

8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the

Service or to these terms and conditions, and CCC reserves the right to send notice to the

User by electronic mail or otherwise for the purposes of notifying User of such changes or

additions; provided that any such changes or additions shall not apply to permissions already

secured and paid for.
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8.2 Use of User-related information collected through the Service is governed by CCC’s

privacy policy, available online here: http://www.copyright.com/content/cc3/en/tools/footer

/privacypolicy.html.

8.3 The licensing transaction described in the Order Confirmation is personal to User.

Therefore, User may not assign or transfer to any other person (whether a natural person or

an organization of any kind) the license created by the Order Confirmation and these terms

and conditions or any rights granted hereunder; provided, however, that User may assign

such license in its entirety on written notice to CCC in the event of a transfer of all or

substantially all of User’s rights in the new material which includes the Work(s) licensed

under this Service.

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed

by the parties. The Rightsholder and CCC hereby object to any terms contained in any

writing prepared by the User or its principals, employees, agents or affiliates and purporting

to govern or otherwise relate to the licensing transaction described in the Order

Confirmation, which terms are in any way inconsistent with any terms set forth in the Order

Confirmation and/or in these terms and conditions or CCC's standard operating procedures,

whether such writing is prepared prior to, simultaneously with or subsequent to the Order

Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a

separate instrument.

8.5 The licensing transaction described in the Order Confirmation document shall be

governed by and construed under the law of the State of New York, USA, without regard to

the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding

arising out of, in connection with, or related to such licensing transaction shall be brought, at

CCC's sole discretion, in any federal or state court located in the County of New York, State

of New York, USA, or in any federal or state court whose geographical jurisdiction covers

the location of the Rightsholder set forth in the Order Confirmation. The parties expressly

submit to the personal jurisdiction and venue of each such federal or state court.If you have

any comments or questions about the Service or Copyright Clearance Center, please contact

us at 978-750-8400 or send an e-mail to info@copyright.com.

v 1.1

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or

+1-978-646-2777.
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