39 research outputs found

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright Ā© 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Decentralised sliding mode control for nonlinear interconnected systems with uncertainties

    Get PDF
    With the advances in science and technology, nonlinear large-scale interconnected systems have widely appeared in the real life. Traditional centralised control methods have inevitable disadvantages when they are used to deal with complex nonlinear interconnected systems with uncertainties. In connection with this, people desire to develop the novel control strategy which can be applied to complex interconnected systems. Therefore, decentralised sliding mode control (SMC) for interconnected systems has attracted great attention in related fields due to its advantages, for instance, simple structure, low cost of calculation, fast response, reduced-order sliding mode dynamics and insensitivity to matched variation of parameters and disturbances in systems. This thesis focuses on the development of decentralised SMC for nonlinear interconnected systems with uncertainties under certain assumptions. Several methods and different techniques have been considered in design of the controller to improve the robustness. The main contributions of this thesis include: ā€¢ The state feedback decentralised SMC is developed for nonlinear interconnected systems with matched uncertainty and mismatched unknown interconnections. A state feedback decentralised SMC strategy, under the assumption that all system states are accessible, is proposed to attenuate the impact of the uncertainties by using bounds on uncertainties and interconnections. The bounds used in the design are fully nonlinear which provide higher applicability for different complex interconnected systems. Especially, for this fully nonlinear system, the proposed method does not need to use the technique of linearisation, which is widely used in existing work to deal with nonlinear interconnected systems with uncertainties. ā€¢ The dynamic observer is applied to complex nonlinear interconnected systems with matched and mismatched uncertainties. This dynamic observer can estimate the system states which can not be achieved during the controller design. The proposed method has great identification ability with small estimated errors for the states of nonlinear interconnected systems with matched and mismatched uncertainties. It should be pointed out that the considered uncertainties of nonlinear interconnected systems have general forms, which means that the proposed method can be effectively used in more generalised nonlinear interconnected systems. ā€¢ A variable structure observer-based decentralised SMC is proposed to control a class of nonlinear interconnected systems with matched and mismatched uncertainties. Based on the designed dynamic observer, a dynamic decentralised output feedback SMC using outputs and estimated states is presented to control the interconnected systems with matched and mismatched uncertainties. The nonlinear interconnections are employed in the control design to reduce the conservatism of the developed results. The bounds of the uncertainties are relaxed which are nonlinear and take more general forms. Moreover, the limitation for the interconnected system is reduced when compared with the existing results in which the proposed strategies adopt the full-order observer. Besides that, the presented method improves the robustness of nonlinear interconnected systems to be against the effects of uncertainties. This thesis also provides several numerical and practical simulations to demonstrate the effectiveness of the proposed decentralised SMC for nonlinear interconnected systems with matched uncertainty, mismatched uncertainty and nonlinear interconnections

    Communication Efficiency in Information Gathering through Dynamic Information Flow

    Get PDF
    This thesis addresses the problem of how to improve the performance of multi-robot information gathering tasks by actively controlling the rate of communication between robots. Examples of such tasks include cooperative tracking and cooperative environmental monitoring. Communication is essential in such systems for both decentralised data fusion and decision making, but wireless networks impose capacity constraints that are frequently overlooked. While existing research has focussed on improving available communication throughput, the aim in this thesis is to develop algorithms that make more efficient use of the available communication capacity. Since information may be shared at various levels of abstraction, another challenge is the decision of where information should be processed based on limits of the computational resources available. Therefore, the flow of information needs to be controlled based on the trade-off between communication limits, computation limits and information value. In this thesis, we approach the trade-off by introducing the dynamic information flow (DIF) problem. We suggest variants of DIF that either consider data fusion communication independently or both data fusion and decision making communication simultaneously. For the data fusion case, we propose efficient decentralised solutions that dynamically adjust the flow of information. For the decision making case, we present an algorithm for communication efficiency based on local LQ approximations of information gathering problems. The algorithm is then integrated with our solution for the data fusion case to produce a complete communication efficiency solution for information gathering. We analyse our suggested algorithms and present important performance guarantees. The algorithms are validated in a custom-designed decentralised simulation framework and through field-robotic experimental demonstrations

    Adaptive heterogeneous parallelism for semi-empirical lattice dynamics in computational materials science.

    Get PDF
    With the variability in performance of the multitude of parallel environments available today, the conceptual overhead created by the need to anticipate runtime information to make design-time decisions has become overwhelming. Performance-critical applications and libraries carry implicit assumptions based on incidental metrics that are not portable to emerging computational platforms or even alternative contemporary architectures. Furthermore, the significance of runtime concerns such as makespan, energy efficiency and fault tolerance depends on the situational context. This thesis presents a case study in the application of both Mattsons prescriptive pattern-oriented approach and the more principled structured parallelism formalism to the computational simulation of inelastic neutron scattering spectra on hybrid CPU/GPU platforms. The original ad hoc implementation as well as new patternbased and structured implementations are evaluated for relative performance and scalability. Two new structural abstractions are introduced to facilitate adaptation by lazy optimisation and runtime feedback. A deferred-choice abstraction represents a unified space of alternative structural program variants, allowing static adaptation through model-specific exhaustive calibration with regards to the extrafunctional concerns of runtime, average instantaneous power and total energy usage. Instrumented queues serve as mechanism for structural composition and provide a representation of extrafunctional state that allows realisation of a market-based decentralised coordination heuristic for competitive resource allocation and the Lyapunov drift algorithm for cooperative scheduling

    Heterogeneous and hybrid control with application in automotive systems

    Get PDF
    Control systems for automotive systems have acquired a new level of complexity. To fulfill the requirements of the controller specifications new technologies are needed. In many cases high performance and robust control cannot be provided by a simple conventional controller anymore. In this case hybrid combinations of local controllers, gain scheduled controllers and global stabilisation concepts are necessary. A considerable number of state-of-the-art automotive controllers (anti-lock brake system (ABS), electronic stabilising program (ESP)) already incorporate heterogeneous and hybrid control concepts as ad-hoc solutions. In this work a heterogeneous/hybrid control system is developed for a test vehicle in order to solve a clearly specified and relevant automotive control problem. The control system will be evaluated against a state-of-the-art conventional controller to clearly show the benefits and advantages arising from the novel approach. A multiple model-based observer/estimator for the estimation of parameters is developed to reset the parameter estimate in a conventional Lyapunov based nonlinear adaptive controller. The advantage of combining both approaches is that the performance of the controller with respect to disturbances can be improved considerably because a reduced controller gain will increase the robustness of the approach with respect to noise and unmodelled dynamics. Several alternative resetting criteria are developed based on a control Lyapunov function, such that resetting guarantees a decrease in the Lyapunov function. Since ABS systems have to operate on different possibly fast changing road surfaces the application of hybrid methodologies is apparent. Four different model based wheel slip controllers will be presented: two nonlinear approaches combined with parameter resetting, a simple linear controller that has been designed using the technique of simultaneously stabilising a set of linear plants as well as a sub-optimal linear quadratic (LQ)-controller. All wheel slip controllers operate as low level controllers in a modular structure that has been developed for the ABS problem. The controllers will be applied to a real Mercedes E-class passenger car. The vehicle is equipped with a brake-by-wire system and electromechanical brake actuators. Extensive real life tests show the benefits of the hybrid approaches in a fast changing environment

    Digital control networks for virtual creatures

    Get PDF
    Robot control systems evolved with genetic algorithms traditionally take the form of floating-point neural network models. This thesis proposes that digital control systems, such as quantised neural networks and logical networks, may also be used for the task of robot control. The inspiration for this is the observation that the dynamics of discrete networks may contain cyclic attractors which generate rhythmic behaviour, and that rhythmic behaviour underlies the central pattern generators which drive lowlevel motor activity in the biological world. To investigate this a series of experiments were carried out in a simulated physically realistic 3D world. The performance of evolved controllers was evaluated on two well known control tasksā€”pole balancing, and locomotion of evolved morphologies. The performance of evolved digital controllers was compared to evolved floating-point neural networks. The results show that the digital implementations are competitive with floating-point designs on both of the benchmark problems. In addition, the first reported evolution from scratch of a biped walker is presented, demonstrating that when all parameters are left open to evolutionary optimisation complex behaviour can result from simple components

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC
    corecore