Robot control systems evolved with genetic algorithms traditionally take the form
of floating-point neural network models. This thesis proposes that digital control systems,
such as quantised neural networks and logical networks, may also be used for
the task of robot control. The inspiration for this is the observation that the dynamics
of discrete networks may contain cyclic attractors which generate rhythmic behaviour,
and that rhythmic behaviour underlies the central pattern generators which drive lowlevel
motor activity in the biological world.
To investigate this a series of experiments were carried out in a simulated physically
realistic 3D world. The performance of evolved controllers was evaluated on two well
known control tasks—pole balancing, and locomotion of evolved morphologies. The
performance of evolved digital controllers was compared to evolved floating-point neural
networks. The results show that the digital implementations are competitive with
floating-point designs on both of the benchmark problems. In addition, the first reported
evolution from scratch of a biped walker is presented, demonstrating that when
all parameters are left open to evolutionary optimisation complex behaviour can result
from simple components