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A B S T R A C T

With the variability in performance of the multitude of parallel environments available
today, the conceptual overhead created by the need to anticipate runtime information
to make design-time decisions has become overwhelming. Performance-critical applic-
ations and libraries carry implicit assumptions based on incidental metrics that are not
portable to emerging computational platforms or even alternative contemporary archi-
tectures. Furthermore, the significance of runtime concerns such as makespan, energy
efficiency and fault tolerance depends on the situational context.

This thesis presents a case study in the application of both Mattson’s prescript-
ive pattern-oriented approach and the more principled structured parallelism formal-
ism to the computational simulation of inelastic neutron scattering spectra on hybrid
CPU/GPU platforms. The original ad hoc implementation as well as new pattern-
based and structured implementations are evaluated for relative performance and
scalability. Two new structural abstractions are introduced to facilitate adaptation by
lazy optimisation and runtime feedback. A deferred-choice abstraction represents a
unified space of alternative structural program variants, allowing static adaptation
through model-specific exhaustive calibration with regards to the extrafunctional con-
cerns of runtime, average instantaneous power and total energy usage. Instrumented
queues serve as mechanism for structural composition and provide a representation of
extrafunctional state that allows realisation of a market-based decentralised coordin-
ation heuristic for competitive resource allocation and the Lyapunov drift algorithm
for cooperative scheduling.
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1
I N T R O D U C T I O N

The multicore era that started with the sudden shift from higher CPU clock rates
towards multiple integrated on-chip cores is now firmly established. Manycore accel-
erators, with at least an order of magnitude more computational cores, represent a
leap in the sophistication of these devices. In theory, for certain classes of workloads,
these general-purpose computational accelerators should be able to achieve perform-
ance comparable to a small CPU cluster at a fraction of the previous cost and energy
requirements. In practice, however, heroic efforts are often necessary to achieve that
level of efficiency.

Today, there is a proliferation of manycore accelerators with tens or hundreds of
cores from different manufacturers and radical new designs on the horizon. Examples
include different models of low to high-end GPUs from Nvidia and AMD/ATI, Accel-
erated Processing Units (APUs) that integrate onboard CPUs on a GPU, Intel’s new
Many Integrated Core (MIC) architecture termed Xeon Phi and upcoming general
purpose field programmable gate arrays (FPGAs) from Altera. Each accelerator from
any of several families carries unique performance characteristics, usage constraints
and programming idioms that are critical to the performance and efficiency of an
application.

The heterogeneous host platforms themselves may be drawn from a much wider
range of possible hardware configurations with interconnection characteristics that
are impossible to anticipate during development. The task of tuning and adapting
an application for a limited set of execution platforms is itself a daunting challenge,
highly divergent possibilities for code deployment in mobile, desktop, cloud and HPC
are usually met with compromise or sheer resignation.

This situation is not without historical precedent. It is possible to draw parallels with
the early days of the computing industry when manufacturers created proprietary
and incompatible architectural configurations. Application software was frequently
developed for a specific machine. In the best case, only minor modifications would be
necessary when new models were released by the manufacturer. At the other extreme,
major changes or a complete rewrite of the codebase would be necessary to account
for new capabilities, innovations and restrictions on the hardware.

Thus, although reaching the limits of Moore’s law has forced the adoption of new
parallel architectures, and these modern incarnations are highly unlikely to be as sym-
metric, homogeneous and predictable as their parallel supercomputer predecessors,
an opportunity now exists to rethink the way software is constructed, taking into ac-
count the insights and best practices from related domains. However, this may be
done without the burden of legacy tools and established practices that, despite the

1
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substantial investment they represent constituting strongly entrenched interests, have
proven inadequate for new heterogeneous platforms.

The hardware crisis was mitigated by abstraction and the adoption of vendor-neutral
standards and protocols, with operating systems taking over responsibility for man-
aging low level hardware and exposing consistent and reliable interfaces to applica-
tions. Modern virtualisation technology and runtime virtual machines have arguably
solved the portability problem.

Separation of concerns is the motivation behind attempts to develop parallel mid-
dleware that has the potential to bridge the growing divide created by the relentless
advance of hardware sophistication and lagging capability of existing software. As an
alternative to constructing novel parallel Domain Specific Languages (DSLs), middle-
ware may take advantage of existing language infrastructure and expertise to enable
incremental updates to existing applications while allowing new programs to take full
advantage of a set of structural patterns that facilitate portability and efficiency across
multiple heterogeneous accelerators and deployment environments.

As computers become ever more ubiquitous, extra-functional considerations which
are secondary to the intended application are growing in significance. Maintaining
performance or quality of service while maximising energy efficiency and fault toler-
ance have become engineering problems in their own right.

This thesis takes the position that part of the complexity inherent in parallel pro-
gramming is created by the need to anticipate runtime information during develop-
ment. With the multitude of parallel environments and variability in performance, this
conceptual overhead has become overwhelming for the programmer and constraining
for the application. It proposes that these choices should be deferred until as late as is
practical in the program lifecycle in an approach that may be described as lazy design.

1.1 contribution

Too frequently, the outcomes of research into idealised theoretical systems and artifi-
cial problems are disconnected from the incidental complexities of actual applications.
Their usefulness may further be limited by the institutional resistance that arises when
they neglect to account for social, technical and economic considerations. Outside the
research community, commenters have called the observed tendency towards failure
of solutions that are, in principle, technically superior “worse is better.” It arguably ex-
plains why historic attempts to introduce many parallel languages and architectures
outside the niche of high performance computing research have been unsuccessful.

From the perspective of a real application in computational science, this thesis ap-
proaches the research question:

Given existing and emerging computational accelerators, execution envir-
onments and increasingly sophisticated extrafunctional user concerns, how
can application software take advantage of the capabilities of the hetero-
geneous resources available, subject to their unique constraints, without
compromising performance?
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It proposes the hypothesis that

As performance relies on endogeneous and exogeneous factors that are
impossible to anticipate completely during development, avoiding prema-
ture choices, such as program structure, based on incidental measurements
allows the systematic exploration of a decision space to determine the op-
timal configuration pro re nata.

Therefore, the objective is

to demonstrate that using simple and minimally intrusive abstractions can
allow applications and frameworks to adapt to environmental variation,
evolving extrafunctional user concerns and application-specific demands.

The outcomes of this project will be the development of

1. adaptation mechanisms for heterogeneous platforms that may form the basis
of pattern-oriented parallel middleware, an algorithmic skeleton library or the
runtime of a domain specific language.

2. high performance simulation codes for computational investigation of mater-
ials by inelastic neutron spectroscopy. The results would constitute a signific-
ant contribution to the ability of researchers within the domain to revisit well-
understood materials for additional insights into their physical properties and
approach new materials with an expanded analysis toolbox.

1.2 organisation

This rest of this thesis is organised as follows:

Chapter 2 is the background, providing a historical overview, survey of the literat-
ure and description of the application domain that places this work in context.

Chapter 3 presents a definition of a descriptive structured domain specific lan-
guage that represents structured parallel programs as directed flow graphs connect-
ing queues and informally describes the semantics and transformation rules. This is
extended into a high-level structural adaptation framework that is based on the instru-
mented queue and deferred choice operator abstractions.

Chapter 4 is a case study in the implementation of pattern-based parallelism to high
performance polyCINS modeling. It presents an initial pattern-based re-implementation
of the Scatter code that represents the composition of the Monte Carlo and dense lin-
ear algebra dwarfs. While it demonstrates that this principled approach is scalable
across traditional multicore and multinode environments, subsequent chapters intro-
duce adaptive functionality by the deployment of our framework.

Chapter 5 considers the application of the deferred choice abstraction for describ-
ing structural variants of a program. It presents an implementation of numerical linear
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algebra routines central to the Scatter application targeting GPU architectures. Integ-
rated into the an alternative structured implementation, it demonstrates static adapt-
ation with regards to multiple runtime environments, application-specific demands
and extrafunctional user concerns including runtime, total energy consumption and
instantaneous power requirements.

Chapter 6 is an examination of dynamic runtime adaptation in the structured Scatter

implementations and two implementations of an ancillary validation application for
the linear algebra kernels. The instrumented queue abstraction allow description of
structural application variants and incorporation of heuristic coordination mechan-
isms for centralised coordination with a Lyapunov drift algorithm and decentralised
control with a market-based framework.

Chapter 7 restates the conclusions and outlines some possibilities for future work.
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B A C K G R O U N D

In a widely influential paper [13], Asanovic et al identify the inadequacy of software
as the most significant obstacle to connecting user applications with emerging paral-
lel architectures. They propose a research agenda that aims to create programming
frameworks that ease the development of portable, efficient and correct programs that
are able to scale to the increasing number of cores available today and in the future.

These frameworks will provide tools such as compilers, libraries, code generators
and runtime systems that allow:

1. productivity through the provision of reusable primitives and composable pat-
terns that separate coordination from computation and allow domain experts
and other programmers to build applications without the added complexity in-
troduced by the low-level management of parallelism and concurrency.

2. efficiency through

a) schedulers that take advantage of the expertise of parallel computing spe-
cialists and awareness of the patterns being deployed

b) autotuners that choose optimal parametric configurations for algorithms

3. portability across parallel architectures such as multicore systems, FPGAs and
manycore accelerators like the Xeon Phi

4. scalability across execution environments to include mobile, cloud environments,
HPC and desktop

5. satisfaction of runtime objectives that include

a) traditional objectives e.g. performance and makespan

b) nontraditional objectives e.g. energy efficiency and fault tolerance.

2.1 patterns

Christopher Alexander’s work, A Pattern Language [5], introduced the concept of pat-
terns as named elements of a language for describing solutions to design problems
in Architecture and Urban Planning. Similar to actual languages, there are associated
rules that govern the hierarchical composition of patterns into larger designs. While
patterns simplify complex design problems and represent collective expertise accu-
mulated over time, they serve the dual purpose of allowing concise communication
between practitioners in a domain.

This systematic approach was brought into software engineering by Gamma et
al [55] in the context of object-oriented design as the influential Design Patterns that

5



6 background

Finding Concurrency

Algorithm Structure

Supporting Structures

Implementation

Mechanism

Figure 2.1: Mattson’s Parallel Pattern hierarchy for the development of parallel programs.[89]

document names, intentions, motivations, applicability, collaboration and constraints
as well as the larger architectural forms of entire software systems [51]. As an example,
the Model-View-Controller (MVC) pattern has been particularly successful in the de-
velopment of graphical user interface (GUI) applications and libraries and further
forms the basis of high-productivity web development frameworks such as Ruby on
Rails [58].

However, Norvig [96], using the functional language Lisp as a counter-example, has
argued that some of these patterns may only be necessary when the implementation
languages do not provide sufficiently powerful abstractions. Recent updates to the C++
and Java languages have adopted features previously found in functional languages
such as lambda expressions and closures [134, 72, 78].

Influenced by Gamma et al, Mattson et al [89, 88] propose a pattern language that is
applicable to a broad range of parallel programming problems and is analogous to the
design patterns that have found widespread adoption in the methodology of object
oriented design. In their view, the progression towards a parallel implementation of a
program can be decomposed into the distinct stages outlined in Figure 2.1 on page 6

and Table 2.1 on page 7. Mattson’s process draws heavily on experience and the selec-
tion between overlapping alternative patterns and interpretation of their definitions to
user judgement.

Edsger Dijkstra’s paper “Go To Statement Considered Harmful” [38], a reaction to
the complexity of low-level code that had the tendency to become unmanageable,
started the practice of structured programming [35]. The Böhm-Jacopini theorem [19],
the theoretical basis, states that arbitrary programs may be composed of simple control
structures that allow:

1. Sequential execution of statements

2. Conditional execution
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Stage Description

Finding Concurrency

An attempt is made to identify potential concurrency within the
application at as many levels as possible. The results of this
phase should include a task decomposition with potential for
concurrent execution, the associated data required by each task
and an understanding of the dependencies that may exist
between these tasks.

Algorithm Structure

This follows from the previous phase. The objective is to select
a major algorithmic organising principle that will form the
basis of the task decomposition previously identified.
Constraints imposed by the target platform are taken into
account, alongside the sometimes conflicting objectives of
efficiency, simplicity, portability and scalability. The result is a
parallel algorithm that specifies how the cooperating tasks solve
the problem.

Supporting Structure

An intermediate stage between design and implementation,
these “supporting structures” describe the manner in which the
algorithm will find expression in a programming environment.
Typical program structuring patterns include the SPMD (Single
Program Multiple Data), Master-Worker, Loop Parallelism and
Fork-Join patterns. These patterns are not necessarily exclusive
and frequently overlap.

Implementation
Mechanisms

Here the design is mapped onto an existing implementation
framework that provides the management of the execution
environment and processing elements, synchronisation and
communication that is required by the parallel program. The
program is expressed in terms of the low-level operations in an
implementation language.

Table 2.1: Mattson’s Parallel Pattern hierarchy for the development of parallel programs.
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3. Iteration

Thus well-formed structured programs are characterised by a single input and a single
output from arbitrary procedures or functions. Although, given the widespread ad-
option of object oriented and functional programming abstractions, goto statements
persist in modern programming languages and strict adherence to structured pro-
gramming is no longer prevalent. However, it is widely accepted that their use should
be avoided.

It may be argued that structured parallelism is a similar reaction to the complexity
of parallel programs where issues relating to concurrency, synchronisation and shared
state can rapidly lead to unmanageable complexity. Structured parallelism advocates
the construction of programs from a restricted set of patterns with specified composi-
tional semantics. This approach was pioneered by Cole [32] using functional notation
to define algorithmic skeletons as higher order functions that capture the structure of
classes of parallel programs.

Asanovic et al [12] present thirteen “dwarfs” of high performance computing that
represent commonly occuring patterns of computation and communication covering
a broad class of applications:

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce or Monte Carlo

8. Combinational Logic

9. Graph Traversal

10. Dynamic Programming

11. Backtrack and Branch & Bound

12. Graphical Models

13. Finite State Machine

These dwarfs represent common patterns of computation and coordination that recur
across the high performance computing application domain. The Monte Carlo dwarf
in particular, characterised by the absence of dependencies between tasks, allows scal-
able parallel implementations to be easily realised in principle. However, in practice,
large scale, potentially geographically distributed and dynamic environments with
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heterogeneous computational resources and interconnection characteristics raise prob-
lems that include data partitioning, failure handling, efficient resource utilisation, man-
agement of large datasets and communication to achieve scalability. These problems
are addressed by frameworks such as CONDOR [85] and BOINC [6] for combining
dedicated resources and opportunistic execution on distributed volunteer machines.
More recently, MapReduce [37, 135] has been deployed in large scale data analysis
for web, scientific workloads [120, 130, 66] and big data applications [27, 2]. Similarly,
Spark [138] has been developed for iterative processing such as may arise in machine
learning applications.

These frameworks are intended to orchestrate coarse grained computation over
distributed resources that frequently involve nested compositions of other patterns
within the Monte Carlo structural form. The mechanism of this composition is usually
a non-relational distributed data store that is characterised by high availability and
designed to be resilient to node failures and network partitions [139, 122, 114]. Thus,
these frameworks appear to have been influenced [137] by the tuple space model of dis-
tributed computation proposed by Gelernter for the coordination language Linda [59,
61, 60]. While the language extensions proposed in Linda did not gain widespread
acceptance, the tuple space concept persists in the architecture of large distributed
applications [95, 44, 16] where temporal decoupling and the avoidance of rendezvous
greatly facilitates the composability of systems.

In contrast, the fine-grained counterparts to these frameworks, such as StreamIt [121],
Skandium [83], Fastflow [4] and Intel Threading Building Blocks [104], that are optim-
ised for multicore shared-memory parallelism involving threads, expose the primitive
functions to be composed by a skeleton into an application directly to the user as
overridable methods. From this perspective, composition occurs via queues that are
relegated to the status of mere implementation artifacts that are typically hidden and
understandably lightweight. Therefore, when instrumented for profiling, it is not un-
common for these frameworks to ignore queue behaviour in lieu of user functions.

2.2 performance

Structured parallelism, as implemented in algorithmic skeleton frameworks, enables
a separation of the two orthogonal concerns of computation and coordination [13].
At the productivity layer, middleware should expose high-level, and possibly domain-
specific, primitives for programmers to specify computation and structure. The lower-
level performance layer should provide the necessary distributed coordination, mes-
saging, scheduling and error recovery. The performance layer may be heavily optim-
ised and tuned by parallel domain experts. Although complexity is introduced in the
attempt to reconcile the algorithmic skeleton abstraction with the imperative or object-
oriented paradigms of their implementation languages, the potential to isolate the
user from the complexity of managing concurrent execution and shared state may jus-
tify this conceptual overhead. Therefore, the existence of efficiency-oriented heuristic
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coordination runtimes would constitute a strong argument for the adoption of these
frameworks. However, the specific methods by which this may be achieved remains
an open problem.

Performance requirements are evolving as platforms mature in execution environ-
ments that include clusters, grids, cloud resources, volunteer computing and mobile
devices. Alternative performance metrics for high performance computing applica-
tions are now being considered for their effect on operational costs that include meas-
ures of FLOPs-per-watt for energy efficiency, carbon emissions and heat dissipation
requirements [48, 76]. Large scale frameworks such as MapReduce implementations
and BOINC have experienced such extensive deployment on significant problems that
performance criteria other than makespan have become relevant [73].

Autotuners, deployed extensively for linear algebra libraries, explore the search
space of parametric variations for algorithms within the library, converging on value
combinations that optimise for cache characteristics and other attributes of the specific
host architecture at install-time. The importance of autotuners has risen with the emer-
gence of GPU architectures where they provide isolation from the low-level hardware
details of changing hardware models [84, 132].

2.3 general purpose computing on gpus

The Compute Unified Device Architecture (CUDA) is NVIDIA’s proprietary platform
for GPU computing. As represented in the OpenCL standard, other GPUs conform to
this general architecture. CUDA allows the execution of kernels, written in CUDA C, on
the GPU device. A kernel executes as a configurable grid of independent thread blocks
that may contain up to 1024 threads in second generation CUDA devices. A Single
Instruction Multiple Thread (SIMT) abstraction, where threads within a block execute
identical instructions and may operate on different memory locations, allows fine-
grained data parallelism within thread blocks and task parallelism with independent
execution of multiple blocks at the kernel level [94]. Thread blocks are divided into
warps of 32 threads in second generation CUDA devices. For a given block, only one
of these warps is scheduled to execute on the actual hardware at any time. Therefore,
GPUs do not fit neatly into Flynns taxonomy [49].

Although GPU accelerators are well suited to exploiting fine-grained parallelism,
they require complete translation of code to a new language using low-level constructs
that are closely tied to the hardware. GPU memory is hierarchically organised and
independent from host memory. Global memory, high-latency and high-bandwidth
DRAM, is the primary memory available on the device and is accessible by all ex-
ecuting kernels as well as for host to GPU data transfer. Limited high-speed shared
memory, essentially a user-managed cache, exists locally on each streaming multipro-
cessor to allow the explicit avoidance of expensive off-chip global memory accesses.
Also present are register, texture and constant memories with various performance
characteristics. The low-bandwith and latency of data transfer between host memory,
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global memory and thread register memory on the GPU constitute the predomin-
ant restriction on achievable performance. For optimising bandwidth usage within
the memory hierarchy, a critical performance consideration is that high-cost global
memory operations can be performed simultaneously or coalesced for a thread warp if
certain access constraints are satisfied. In practice, significant efforts are usually ded-
icated to maximising the compute to global memory access (CGMA) ratio [77] by what
is, in essence, a hit-or-miss attempt to balance between conflicting trade-offs. Further-
more, for efficient execution on the device, it is necessary to avoid complex control
flow and conditional branching as thread divergence incurs a significant performance
penalty [97, 77].

In general, the efficient computation problem makes it more practical to identify
smaller kernels within programs that constitute bottlenecks and obtain speed-ups by
relocation to the GPU. Ideally, these kernels may be identified and implemented to
facilitate reuse as building blocks in other programs. High performance implementa-
tions may be further optimised to target multiple parallel architectures with aggressive
optimisation such as through the use of autotuners [132]. This approach has been ap-
plied to linear algebra computations that are fundamental to numerical analysis and
computational science applications [123, 84]. Different authors have suggested various
approaches to optimising memory usage for scientific applications in GPU architec-
tures, such as the use of cache analysis techniques to improve tiling algorithms [64],
the deployment of low-level compiler annotations within CUDA source files to steer
traversal of the memory hierarchy [126], ad-hoc data structures [87], and the automatic
translation of OpenMP structures into CUDA primitives [82].

Accounting for memory transfer overheads becomes a critical consideration when
optimised kernels are integrated with existing parallel applications. Therefore, even
when efficient kernels exist, a related coordination problem remains in scheduling ker-
nel execution on the resources available in a heterogeneous parallel environment with
potentially multiple GPUs. The StarPU scheduling infrastructure [14], as deployed in
Magma [124], provides a unified machine abstraction that allows the implementation
of function variants for different architectures while transparently handling data trans-
fers, caching and dependencies for different environments. Extensive efforts are also
geared towards the use of platform-agnostic GPU frameworks which can deal with
standard unified language deployments such as CUDA and OpenCL [42, 68]. How-
ever, approaches such as this make limited use of structural information that would
otherwise be available to a pattern-based or algorithmic skeleton framework.

With growth in the use of environments such as mobile and cloud computing,
the definition of what constitutes a performance measure has broadened to include
runtime concerns such as energy efficiency and economic cost. Inefficiencies that may
be acceptable over shorter program runs or smaller data sets may scale up to represent
a significant performance compromise for larger applications. These scheduling de-
cisions are further complicated by the range of possible variation in performance and
memory hierarchy characteristics between different applications, environments and
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GPU architectures. Broadly stated, these aspects of the coordination problem are rep-
resentative of variation in the execution environment, application-specific demands,
and runtime concerns of the user. It may be argued that these separate but related
problems of computation and coordination are the reason why the full potential of these
accelerators is yet to be attained outside their original application domain in real-time
3D graphics and gaming.

2.4 application : computational neutron scattering

2.4.1 Inelastic Neutron Spectroscopy

In condensed matter research, Inelastic Neutron Spectroscopy (INS) is an experimental
technique that is widely used to investigate the vibrational characteristics of materials.
There has been limited application of coherent inelastic neutron spectroscopy (CINS)
to polycrystalline materials given the complexity of the spectra generated by the su-
perimposition of scattering intensities over all orientations of the crystalline material
and the tendency of this method to lose relevant information that is available from the
direct measurement of dispersion curves using a Triple Axis Spectrometer. Therefore
INS experiments have traditionally been restricted to either incoherent scattering from
polycrystals or coherent scattering from single crystals.

Nevertheless, a broad class of important materials, particularly nanomaterials, are
only obtainable in polycrystalline form. The development of new methods of interpret-
ing the coherent scattering data from such samples is therefore an important research
problem. The complexity and significant resource demands that arise from the applic-
ation of computational modelling techniques to this problem require new approaches
and the support of advanced computational infrastructure.

The purpose of an INS experiment is to determine the scattering function S(Q,ω),
which provides information about the relative position and motion of each atom in a
target sample. As originally derived by Van Hove [127], this scattering function can
be expressed in terms of the respective coherent and incoherent scattering functions.
These scattering functions, as presented in Eqns. (2.1) and (2.2), depend only on the
interactions between the nuclei and define the corresponding cross sections [116]. The
coherent component depends on the average value of the scattering amplitude and
contains all the information about the relative positions and motions of every nuclear
pair. The incoherent scattering contribution depends only on the motions of each atom
taken in isolation.

In Eqns. (2.1) and (2.2), Scoh(Q,ω) and Sinc(Q,ω) are respectively the coherent
and incoherent scattering functions in a system of d atoms, for phonon mode s, recip-
rocal lattice vector τ, scattering length bd, atomic mass Md, Debye-Waller factor Wd,
momentum transfer vector Q, atomic position rd, polarisation vector eds, frequency
ω, and phonon wavevector q with neutron energy gain/loss

〈
ns +

1
2 ∓

1
2

〉
δ(ω±ωs).

N represents the number of atoms in the unit cell in the (non-Bravais) system.
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∑
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The energy transfer of inelastic scattering results from the neutron energy gain or
loss on interaction with the lattice. For a given momentum transfer vector Q repres-
enting the momentum change between incident and scattered wave vectors, and a
vibrational frequency of the quantised lattice vibration (or phonon) created or anni-
hilated by the scattering event, the frequency of the phonon is directly related to the
modulus of the energy transfer between the target material and the scattered neutron,
as determined by momentum and energy conservation and the principle of detailed
balance [116].

2.4.2 Neutron Scattering in GULP

The General Utility Lattice Program (Gulp) is a generalised symmetry-adapted lattice
dynamics and simulation environment for the study of solid materials that provides
routines for the modelling, prediction and interpretation of experimental data in the
study of atomic, molecular, and bulk crystalline structures [53]. Gulp is intended to
solve a range of problems in molecular modelling and experimental data interpreta-
tion, with routines covering potential applications that range from simulation to model
fitting. Symmetry is exploited within Gulp to minimise redundant computation and
provide a performance advantage over existing software in the same problem do-
main [53].

As a research tool in the physical sciences with interdisciplinary applications in
chemistry, physics, and material science, Gulp is available as an open source software
package for non-commercial use and as part of the Materials Studio from Accelrys.
Execution options, required and optional simulation parameters, general program op-
tions, and structural information are specified in the input deck. Gulp outputs results
to file or standard output alongside intermediate files that may contain data relev-
ant to their interpretation. The time and space complexities of these Gulp routines
are directly related to the parametric and structural characteristics of the solid under
investigation.

Scatter, a new routine, makes extensive use of existing functionality to bring co-
herent and incoherent inelastic neutron scattering (INS) capabilities for lattice mod-
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els to Gulp [105, 106]. Until recently, INS was considered impractical on account of
its significant computational requirements and the high cost and general unavailab-
ility of neutron scattering experimental facilities and instrumentation. However, INS
modelling is experiencing increasing popularity for structural determination in solids
among the materials science community, as a result of its suitability to problems such
as those that occur in the study of nano-materials. A growing need has been created
for tools that aid in the effective interpretation of the complex data generated [105].
Nonetheless, the implementation of efficient parallel INS solutions remains an open
problem.

Scatter allows the comparison and refinement of theoretical models against exper-
imentally obtained results on the accuracy of which space sampling resolution has
direct bearing. However, determinations of the scattering function for all values of
a large set of magnitudes and directions create a significant computational load, fre-
quently requiring days to weeks of execution time. Different authors have employed
ab-initio approaches with Gulp to produce several computational models [70, 125].
The analogously computationally demanding nature of molecular dynamics [103] is
believed to be of particular relevance to an implementation of Scatter.

Other libraries for INS modelling include Phonon [100] and a-Climax [26]. How-
ever, these packages focus on modelling INS datasets from ab-initio and density func-
tional theory techniques, and lack semi-empirical modelling capabilities, which are
of core interest in the study of a wide range of technological nanocarbons, hydrogen
storage materials and carbon composite materials.

2.4.3 The Scatter Code

Materials researchers already employ neutron scattering simulations as a means of
validating and refining their models [70]. Nevertheless, limited research has been de-
voted to the systematic application of computational solutions for the modelling of
polycrystalline materials in current simulation packages (such as a-Climax [26, 102] or
Phonon [101]) that require model output from ab initio software, such as Castep [113]
or Vasp [80]. The Scatter code allows the generation of poly-CINS modelling data
using semi-empirical potential models (as well as output from the DFT codes men-
tioned) via the General Utility Lattice Program (Gulp) software package [53, 54], a
widely used lattice dynamics and simulation package in the materials science com-
munity.

The methodology behind the application of this software to systems with small unit
cells (such as aluminium [108] or graphite [107]) has been presented elsewhere. The
present work has been motivated by the need to allow the application of Scatter

to the analysis of polycrystalline samples with large unit cells, as well as to enable
future real-time instrumentation applications, where simulations may be conducted
alongside an inelastic neutron scattering experiment and theoretical models refined
in real time as the data becomes available. Typical experimental run-times for the
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Figure 2.2: Reciprocal Space Onion Sampling in Scatter. Concentric shells are traced in recip-
rocal space as the momentum transfer vector Q varies in magnitude and orientation
in a spherical polar coordinate system.
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collection of poly-CINS data even on high-flux instruments can exceed 24 hours, as
excellent statistics are required to resolve one-phonon features in experimental data.
New instruments and beam-lines are under development that will provide unpreced-
ented neutron fluxes, allowing orders of magnitude more neutrons on sample in a
given time period than are currently available, even at high flux beam-lines such as
those found at the Spallation Neutron Source, ORNL, USA. For this reason alone, an
investment in effective performance is critical to ensure that researchers using these
methods are well positioned to take advantage of the next generation of distributed,
GPU architectures entering the market over the next decade.

As described in the work of Roach et al [106, 108], Scatter samples reciprocal
space and models the one-phonon scattering of neutrons incident on single crystal and
polycrystalline samples, predicting the coherent and incoherent scattering intensities
of Equations 2.1 and 2.2. Here the phonons are determined from the analytic second
derivatives of a force field model using the program Gulp [105, 106].

The coherent component of the scattering intensity in Equation 2.1 takes into ac-
count cross-correlation of pairwise interactions of the nuclei in the system and de-
scribes inelastic interference effects, which provide information on the positions and
vibrational modes of planes of atoms. Equation 2.2 represents the self-correlation, inco-
herent component of the scattering intensity, arising from the vibrational contributions
of individual atoms considered in isolation, without this interference term. Scatter is
capable of determining both cross-correlation and self-correlation components, how-
ever the primary application of this method is for models of coherent scattering. Car-
bon is particularly notable in this regard as it has an entirely coherent cross-section.

For simulations of single crystal experimental configurations, it is sufficient to per-
form these calculations along fixed directions in reciprocal space. However, general
application to the broad range of materials that are usually available only in polycrys-
talline powder form requires calculation over the full range of magnitudes and spatial
orientations of the momentum transfer vector Q in three dimensions.

Scatter implements several space sampling techniques that determine the closest
corresponding lattice vectors q, and the Brillouin zones for each Q. The Reciprocal
Space Onion (RSO) sampling method, illustrated in Figure 2.2 on page 15, takes values
of Q as it is rotated about a series of concentric spheres of varying magnitude |Q| at
angles θ and φ in a spherical polar coordinate system [106]. RSO sampling traces
concentric shells that correspond to the trajectory of modern multi-chopper time-of-
flight (ToF) neutron spectrometers in multi-angle configurations to facilitate the direct
comparison of these theoretical models with experimental data.

Scatter performs a weighted sum over the calculated scattering contributions for
each sampled q-point to generate the polycrystalline-averaged scattering intensities of
equation (2.3) [90] where ω is the phonon frequency:

S(Q,ω)powder =
1

4π

∫
S(Q,ω)dQ (2.3)
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In practice, the quality of results obtained is a function of the density of spatial
sampling. For higher values of |Q|, where sampling is increasingly sparse, artifacts in
the final output may begin to appear in the form of additional texture in the intensity
plots. For a high-resolution RSO grid, the generation and diagonalisation of large dy-
namical matrices for each determination of Equation 2.1 over the full range of values
for Q is achieved at significant computational expense. Complete solution of the as-
sociated Hermitian eigensystems is a dominant aspect of this process and a trade-off
is typically necessary between the desired model resolution and the actual execution
time.

2.4.4 Eigenproblems in Lattice Dynamics

Neutrons interact with the collective vibrational excitations or phonons of the constitu-
ent atoms of a crystalline lattice. Given an interatomic potential model, a dynamical
matrix may be computed whose eigenvectors are the polarisation vectors of the recip-
rocal space atoms and eigenvalues are the frequencies corresponding to the phonon
modes of the lattice [41]. The interatomic force constants and potentials determine the
magnitude and phase characteristics of the associated phonons.

For a lattice with a unit cell of n atoms, the dynamical matrix is a sparse 3n× 3n
complex symmetric or Hermitian matrix with 3n phonon modes. Although, a linear
relationship exists between the number of atoms in the unit cell of a material and the
size of the associated dynamical matrices, the computational complexity of solving
these eigensystems is of order O(n3) [15]. However, lattice symmetries may result in
degenerate modes that may be exploited to simplify the problem. There is a strong di-
agonal dominance in the dynamical matrix that follows from the nature of interatomic
bonds in the lattice.

The Gulp program generates the dynamical matrix for a broad class of potential
models [53, 54]. Scatter, as part of Gulp, makes extensive use of the Eispack [39] and
Lapack [7] libraries for linear algebra. Specifically, phonon modes are calculated with
the support of Eispack.

Dense numerical linear algebra is one of the thirteen dwarfs identified in the Berke-
ley technical report. They are the fundamental algorithms behind a large class of sci-
entific computing problems and their importance in high performance computing is
evident as they form the basis of the Linpack benchmarks used to rank the top super-
computers. Their inherent data parallelism make these problems well suited to GPU
accelerators which were originally designed to solve three dimensional computations,
themselves matrix operations.



18 background

2.4.5 Hermitian Eigensystems

A Hermitian matrix H is a complex matrix that is invariant under the operation of
conjugate transposition (Equation 2.4).

H = H† (2.4)

Given a general square matrix A, a non-zero vector v is an eigenvector of the matrix
A, if and only if there exists a corresponding non-zero scalar λ, or eigenvalue, that
satisfies Equation 2.5. It may be demonstrated that all eigenvalues λi of a Hermitian
matrix are real.

Av = λv (2.5)

Given the relationship of Equation 2.6 and an invertible matrix T , the matrices A
and B are said to be similar and they share several important properties that include
identical eigenvalues λi and closely related eigenvectors (Equation 2.7).

T−1AT = B (2.6)

EA = TEB (2.7)

Equation 2.6 describes similarity transformations are the basis of several matrix al-
gorithms. When possible, a reduction of a given matrix to a similar matrix may allow
the use of algorithms that are more efficient or direct. The Schur decomposition of A
is a representation of the matrix as the result of a similarity transformation (Equation
2.8) on a strictly upper-triangular matrix S with a unitary matrix Q.

A = QSQ−1 (2.8)

A transformation such as Equation 2.8 preserves symmetry when Q is unitary i.e.
QQ† = Q†Q = I. Thus, if A is Hermitian and S is strictly upper triangular then S
must be a diagonal matrix. Since AQ = QS, the columns of Q must be eigenvectors
of A and the diagonal entries of S are the corresponding eigenvalues. Therefore, the
Hermitian eigensystem problem is equivalent to determining the Schur decomposition
of the Hermitian matrix A.

To compute the Schur decomposition, the matrix is typically reduced to a similar
Hessenberg matrix via a potentially infinite sequence of symmetry-preserving similar-
ity transformations. Since an upper Hessenberg matrix has all entries below the first
subdiagonal set to zero (Equation 2.9), another property which follows from symmetry
is that the Hessenberg form of a Hermitian matrix is tridiagonal. In practice, a finite
number of these elementary Householder or Givens reflections will cause off-diagonal
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Routine Description

htridi Reduction of complex Hermitian matrix to real
symmetric tridiagonal matrix via unitary similarity
transformations.

tql2 Eigenvalues and eigenvectors of symmetric
tridiagonal matrix by QL method.

htribk Eigenvectors of complex Hermitian matrix by
back-transformation of corresponding real
symmetric tridiagonal matrix.

Table 2.2: Relevant Hermitian Eigensystem routines in Eispack used by the ch driver

elements to effectively reach zero as they are reduced to less than machine roundoff
error. 

a11 a12 a13 ... a1(n−1) a1n

a21 a22 a23 ... a2(n−1) a2n

0 a32 a33 ... a3(n−1) a3n
...

...
...

. . .
...

...

0 0 0 ... a(n−1)(n−1) a(n−1)n

0 0 0 ... an(n−1) ann


(2.9)

The eigenvalues and eigenvectors of the tridiagonalised matrix are evaluated via the
QR algorithm. While the eigenvalues are identical, the actual eigenvectors EA of the
original matrix are retrieved by back-transforming the computed eigenvectors.

2.4.6 Eigensystem Solvers

Eispack, and its expanded successor Lapack, provide dense linear algebra routines
that have arguably become the de facto standard in mathematical and scientific com-
puting applications. The accuracy and numerical stability of Eispack and Lapack have
been established by numerous deployments over the past three decades [115, 40]. The
original Eispack library was developed as a Fortran port of a set of Algol routines
for numerical computation set out in the Handbook for Automatic Computation [133].
Under the ch driver for double precision Hermitian matrices, Eispack relies on the
three subroutines outlined in Table 2.2. Lapack provides multiple implementations
of the same algorithms with variants for real and complex matrices with single or
double precision floating point entries. In this application domain, the dynamical
matrices are double precision to maximise accuracy. The Magma library is such an ef-
fort that now provides many hybrid multicore-CPU/GPU implementations of Lapack

routines [124] with substantial impact in the physical sciences [3]. For sparse eigensys-
tems, Arpack employs Arnoldi iteration and Krylov subspace methods.
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2.5 research gap

Asanovic et al present an argument, drawn from experience, that powerful frame-
works are not invented but mined from successful applications and state

“The goal of research into parallel computing should be to find compel-
ling applications that thirst for more computing than is currently available
and absorb biennially increasing number of cores for the next decade or
two.”

The existence of efficiency-oriented heuristic coordination runtimes would constitute a
strong argument for the adoption of parallel frameworks. However, the specific meth-
ods by which this may be achieved remains an open problem.

Although structural transformations have been considered, there is little investiga-
tion of systematic ways to represent structural variants of a program and exploration
of this space is typically done on an ad hoc basis. Applications of autotuners have
been primarily parametric, e.g. optimising block sizes and integrated into libraries.

Thus, in the context of the Scatter application, a large-scale workload with im-
portant research implications in its own right, we propose to investigate mechanisms
and abstractions that allow the representation of structural program information to
facilitate offline and offline adaptation and runtime coordination in heterogeneous
CPU/GPU environments. Here, our definition of an adaptive system is intended to
capture the possible variations in the runtime environment between and during execu-
tion, changing application requirements and evolving extra-functional user concerns
such as energy efficiency.
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A S T R U C T U R A L A D A P TAT I O N F R A M E W O R K

This chapter presents a descriptive structured domain specific language that repres-
ents structured parallel programs as directed flow graphs connecting intermediate
queues and informally describes the semantics and transformation rules that will be
used subsequently. This is extended into a high-level structural adaptation framework
where the instrumented queue and deferred choice operator abstractions are intro-
duced to allow the representation of adaptation as the stochastic optimisation of func-
tions that are representative of extra-functional runtime concerns.

3.1 preliminaries

3.1.1 Generalised Queues

A generalised queue C is any shared resource that supports the operations:

1. put(C, x) adds the item x to a collection,

2. get(C) returns an item x and removes it from the collection.

Therefore, lists, stacks, sets, multisets(bags) and FIFO queues may be considered as
instances of generalised queues [112]. However, this broad definition also applies to
resources that are not data structures e.g. NoSQL databases, files, and UNIX pipes.

3.1.2 A Descriptive Domain Specific Language (DSL)

Here, we present the notation that will subsequently be used to describe structural
patterns and the transformation of programs that is based on the presentation in [83].
An important distinction from the implemention in the Skandium framework is that
we consider a subset of the structural forms and their composition defined in terms
of queues. As the intent is not to establish a formal theory, these concepts are neither
rigorously defined nor their transformation rules strictly formalised. Instead, a de-
scriptive convention is adopted to allow concise communication between domain ex-
perts [5]. Knowledge of the transformation rules associated with these patterns is an
integral part of this domain expertise. Nevertheless, these constructs may be imple-
mented as functions and primitives of a domain specific language1 or algorithmic
skeleton framework.

1 A simple python implementation of this DSL is used to generate the figures in this thesis via output
to the Graphviz visualisation tool [43]. These functions may be directly adapted for constructing actual
realisations of the corresponding flow graphs. The source code is available in appendix A on page 131

21



22 a structural adaptation framework

A Bs C s’

Figure 3.1: SEQ(A,B,C) represents sequential composition.

C s’Bs A

Figure 3.2: PIPE(A,B,C) represents concurrent composition into a pipeline with intermediate
queues between stages

3.1.2.1 Structural Forms

Consider two stateless and referentially transparent functions or operations A and B
that perform some computation. Then we define the composition of these two func-
tions A ·B as a function that applies the operation B to the output of A.

SEQ(A1 , A2 , . . . , An) is a higher order function that, given an input and output
queue pair (s , s ′), repeatedly applies the composed function A1 · A2 · . . . · An
on data derived from the input queue and places the results in the output queue.
Applied to some data x, SEQ(A1A2 , . . .An) is equivalent to the invocation
An( . . .A2(A1(x))).

Although defined in terms of queues, SEQ represents the sequential composition of
functions. We may now consider an analogous concurrent composition.

PIPE(A1 , A2 , . . . , An) is a higher order function that, given an input and output
queue pair (s , s ′), constructs a series of n − 1 intermediate queues, and con-
currently executes the functions SEQ(Ai) such that, for i > 1, the input to
SEQ(Ai) is the output of SEQ(Ai−1), the input of SEQ(A1) is s and the
output of SEQ(An) is s ′.

As the application of SEQ(A) to the queue entries are independent operations,
they may be executed concurrently. Thus PIPE(A1, ...,An) is the parallel analogue
of SEQ(A1, ...,An) with the introduction of intermediate queues as the mechanism for
concurrent function composition.

s

A

A

A

A

s’

Figure 3.3: FARM(A) represents multiple instances of A executing concurrently
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FARM(A) is a higher order function that, given an input and output queue pair
(s , s ′), concurrently executes SEQ(A) multiple times with the same input and
output queue pair.

3.1.2.2 Production Rules

In this domain language, some valid program transformations that introduce parallel-
ism may be represented by production or rewrite rules. We define a valid transforma-
tion as an expression that generates a directed graph where a sequence of functionally
equivalent edges are visited in all directed walks from the source node s to sink nodes
s ′. The directed flow graphs generated by the application of these transformation rules
represent the same computation. The symbol→ represents a transformation.

A → SEQ(A)

SEQ(A) → FARM(A)

SEQ(A,B) → PIPE(A,B)

3.1.2.3 Compositional Semantics and Identities

As a critical performance optimisation, redundant queues are not permitted in this
representation. Therefore, the following composed expressions generate identical dir-
ected graphs as the simplified expressions.

SEQ(A, SEQ(B,C)) = SEQ(SEQ(A,B),C) = SEQ(A,B,C)

FARM(FARM(A)) = FARM(A)

PIPE(PIPE(A,B),C) = PIPE(A, PIPE(B,C)) = PIPE(A,B,C)

Therefore, the only singly nested expressions that may not be simplified are altern-
ate compositions of the FARM and PIPE constructs.

PIPE(FARM(A), FARM(B))

FARM(PIPE(A,B))

These identities and composed forms are summarised in Figure 3.4 on page 24.

3.2 adaptation framework

The three fundamental characteristics of general adaptive systems are variation, feed-
back and selection [71]. We define an adaptive program as possessing the ability to
select between run-time alternatives in a manner that tends towards optimisation of
some extra-functional performance measure, that provides feedback, subject to vari-
ations in the performance measure itself, environmental factors and application-specific de-
mands.
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A B C s’s

(a)
SEQ(A, SEQ(B,C)) = SEQ(SEQ(A,B),C) = SEQ(A,B,C)

C s’Bs A

(b)
PIPE(A, PIPE(B,C)) = PIPE(PIPE(A,B),C) = PIPE(A,B,C)

A

s’s

A

A

A

(c)
FARM(FARM(A)) = FARM(A)

A B

s’

A B

A B

A B

s

(d)
FARM(PIPE(A,B))

B

s’

A

B

B

B

s

A

A

A

(e)
PIPE(FARM(A), FARM(B))

Figure 3.4: Compositional semantics of nested patterns avoid redundant queues.
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For example, changes in the performance measure may result from evolving user
concerns. Environmental factors that affect the application may include hardware or
software configuration and the effect of competing workloads. Application-specific
demands may include changing load profiles that correspond to computational phases
in the application.

In general, program dynamics, environmental variations and the effects of select
actions on the performance measure are stochastic. Redefining the structured paral-
lel constructs in terms of operations on queues allows the formulation of a Markov
decision problem with the following elements:

3.2.1 Queues as Extra-functional State

The state space S is the set of all possible queue levels. St is the queue state vector at
time t with components s1, s2, ..., sn where si ∈ Z?, the set of non-negative integers.

The queues characterise the extra-functional state of the program. If we consider the
state of the program queues to be a vector in an n-dimensional state space, or queue
space, then, it is possible to represent the individual throughputs at each stage TA, TB
and TC as velocity vectors for which:

1. The n components of the state vector are the n queue levels

2. The velocity vector magnitudes are the magnitudes of the throughput Ti

3. The velocity vector orientations follow from the dataflow topology i.e. stages
between queues (e.g. TB in Figure 6.10 on page 102) have a negative component
on the incoming queue and a positive component on the outgoing queue state
vector components

4. The overall system trajectory is in the direction of the resultant velocity vector

To support this usage, it is necessary to extend the definition of a generalised queue to
include operations that allow gathering of feedback and configuration of queuing be-
haviour. This definition is the basis of the dynamic adaptation mechanisms considered
in Chapter 6.
An instrumented queue2 Q, with functional attributes hash, put_filter and get_filter,
is a generalised queue that supports the additional operations:

1. put(Q, x,m) adds the item x, with associated metadata m, to a collection if the
condition put_filter(m) is true. If put_filter(m) is false then the behaviour is
implementation-dependent and will either fail, block until it becomes true or a
timeout occurs.

2. get(Q,m) removes and returns an item x from the collection for which the condi-
tion get_filter(m) is true form, the metadata associated with x. If get_filter(m)

2 Unless otherwise stated, in the rest of this thesis usage of the term ’queue’ will refer to instrumented
queues.
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s’?

A

B

C

s

Figure 3.5: ANY(A,B,C) represents the lazy or deferred choice operator, selecting between
functionally equivalent alternatives A,B or C by an indeterminate mechanism.

is false then the behaviour is implementation-dependent and will either fail,
block until it becomes true or a timeout occurs.

3. reduce(Q,operator) returns the result of a reduction operation on the metadata
associated with all items in the collection. operator is a function of two argu-
ments.

For the set M of all possible metadata associated with items in Q, the functional
attributes are:

1. a function hash :M→ R determines the the queuing discipline. Items returned
by get operations are ordered by key or priority value hash(m) in descending
order.

2. a function put_filter :M→ {true, false}.

3. a function get_filter :M→ {true, false}.

3.2.2 Operations as Decision Space

The set of all actions A, contains all transition paths, operations or functions between
queue pairs. Structural information about the program is contained in the input and
output queue pairs associated with any operation. This information determines the
effect of any operation on the extra-functional program state.

The ANY Operator

Let us introduce ANY as the lazy or deferred choice operator between functionally
equivalent alternatives,

ANY(A1 , . . . , An) is a higher order function that may be evaluated to return any one
of Ai .

ANY is intended to explicitly capture otherwise implicit choices in the program
design space that may also be made entirely statically (e.g. manually, at source level,
compilation or install time), or dynamically at run-time by some generic mechanism.

ANY allows the structural specification of alternatives that may be made by the
framework. Since these alternatives are functionally equivalent, we propose an ap-
proach where the choices are determined by an external optimiser. In this context:
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1. Static Adaptation may be achieved by forcing evaluation of the ANY operator
at any stage before program execution. The actual decisions may be based on
a multitude of criteria including historical profiling information or direct user
intervention. Whether the mechanism of this selection is via human agency or
software tooling is irrelevant. The output of this process may be generated or
runtime-specialised code, configuration files or program parameters. However,
implementation of ANY as a compiler or language construct may be necessary.

2. Dynamic Adaptation may be achieved by re-evaluating the ANY operator dur-
ing the execution of the program or deploying structures that implicitly make
these choices at run-time. These decisions may be based on criteria including
online performance metrics. The effect of this is a change in run-time behaviour.

3.2.3 Performance Measure as Feedback

We define a reward function R(St,At,St+1) as the expectation value of the perform-
ance metric when the action At causes a transition from St to St+1. The feedback
needed from any operation is determined by a function f executed before and after
that operation is performed where the cost is defined as the difference in computed
values. The cost function may be considered as a negative reinforcement signal that
captures the specific non-functional requirements that are the external preferences of
a user or environment. Cost functions may also describe qualitative attributes that
would otherwise be difficult to clearly describe and offer an opportunity to realise
behavioural programs.

In this scheme, the queue vector also forms the basis of adaptive decision making
with the objective of achieving a compromise between maximising some performance
metric and minimising a measure of overall program queue state.

3.3 adaptive parallelism

3.3.1 Static Adaptation with ANY

Static adaptation is equivalent to selection between runtime alternatives or variants be-
fore program execution. The ANY construct allows the description of these structural
variants of the program subject to the only restriction being their sequential equival-
ence. In many applications, a significant part of the development effort is devoted to
the manual, incremental and often ad hoc traversal of this decision space.

We may introduce a static adaptation function S,

S(E,p, i) = E ′

where E is an arbitrary expression in our DSL, p is a set of relevant run-time paramet-
ers and i provides optional profiling information that is collected after every program
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execution. Invocation of S forces evaluation of all instances of ANY in E to generate a
simplified expression E ′, using p and i to guide the choices between alternatives. The
new expression E ′ describes a functional subgraph of E.
S allows adaptive selection between program variants by returning a subexpres-

sion of E, E ′, that describes a functionally equivalent subgraph of the flow graph to
be constructed. The profiling information i is feedback of the measured value of a
performance metric collected from previous decisions and allows the adaptation func-
tion S to decide between alternatives based on their learned suitability for run-time
parameters p.

3.3.2 Dynamic Adaptation with Instrumented Queues

At run-time, execution resources on the platform, whether CPU cores or streaming
multiprocessors on a GPU, need to be matched to computational operations. To ex-
ecute on the device, these operations must be performed in the context of operating
system threads or processes. Thus, there are two sets of pairwise mappings between
three sets, (i) the execution resources available on the hardware platform, (ii) the op-
erating system threads and processes and (iii) the computational operations to be
performed.

Although ANY is potentially able to represent a wide range of functionally equi-
valent programs including alternative structures and refactorings, we only consider
the mapping of execution resources in a runtime environment to the computational
operations of a program. Two implementation forms of the structured graphs will be
considered:

1. Competitive Scheduling with Native Threads or Processes:
A one-to-one mapping between operations and native threads or processes as
in FastFlow, Intel TBB and similar frameworks [4, 104]. The complexity, in terms
of the number of operations is constrained by the performance overhead and
limitations on the number of threads and processes imposed by the operating
system. As effectively, only the mapping from threads or processes to hardware
resources remains, there is limited scope for runtime decision making.

2. Cooperative Scheduling with Dynamic Thread or Process Pools:

Sets of dynamic thread or process pools are allocated to subsets of the available
computational operations as determined by their hardware requirements. The
pools themselves may be threads (as with OpenMP and pthreads) or processes
(as with MPI or native processes) and are individually mapped on some primary
hardware resource. This implementation style circumvents the operating system
limitations and performance penalties associated with larger programs of greater
complexity and allows decisions to be made with a broader range of possibilities.

To allow redirection of resources to stages as determined by the requirements
of the program in a runtime environment, a thread or process pool is allocated
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to subsets of all available pipeline stages. Alternative stages are selectively ex-
ecuted on available hardware as determined by a heuristic algorithm. Thus, the
effect of the adaptive runtime policy is to determine the probability pij(t) of
executing pipeline stage i at any time t. This stochastic allocation avoids the pre-
mature choice that is associated with a one-to-one mapping of individual stages
to native operating system threads or processes and follows our deferred choice
approach.

Given a run-time performance metric, we may formulate this as a Markov Decision
Problem over the space of queue vectors where P(St+1|St,At) describes the dynamics
of the system as the probability that the effect of action At performed in state St is a
transition to state St+1.

The typical approaches for solving Markov Decision Problems involve dynamic pro-
gramming and the application of policy and value iteration algorithms to determine
the optimal policy function π : S → A that provides a mapping between state St and
an optimal action At. However, the policy and value iteration schemes require a priori
knowledge of the transition probabilities.

The cost or penalty function is a mapping from the set of states to a real number
c : S → R. In the language of Markov Decision Processes, the cost function is related
to the value function that completely describes a policy by determining the associated
value of any chosen action in a given state. It is related to but distinct from the overall
objective function that is to be optimised.

3.4 summary

Therefore our adaptive run-time may be realised as a higher order function with the
following arguments Table 3.1 on page 30:

1. a structured flow graph, with associated operations,

2. a static adaptation function that takes profiling information and returns a spe-
cialised subgraph

3. a filter function for the expression get(q, filter), this determines the selection
criteria

4. a reduce function to perform a measure on the associated queue

5. a hash function to determine the queuing discipline

6. a local feedback function to be performed before and after an operation, this
determines the associated metadata

7. a global state cost function



30 a structural adaptation framework

Function Arguments Returns Description

hash
item,

metadata
real

number
hash function to determine the queuing

discipline

reduction
operator

metadata
real

number
reduction operator for summary of queue

information, e.g. count, mean, max, etc

filter metadata item selection criteria

reward
item,

metadata
real

number

called before and after an operation,
(operation, post_reward-pre_reward) is

appended to item’s metadata

static
adapter

graph graph returns a subgraph of the program

Table 3.1: Function parameters in the generalised adaptation framework for static and dynamic
adaptation.
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H I G H P E R F O R M A N C E P O LY C I N S M O D E L L I N G

This chapter introduces the Scatter application as a case study in high performance
computing to which the adaptation framework presented in Chapter 3 will be applied
in subsequent chapters. While it presents a scalable pattern-based implementation
following Mattson’s approach, the following represent a direct contribution to the
research domain:

1. A high performance parallel implementation of the Scatter code.

2. A new graphical analysis frontend, the Profile Refinement Tool Prefit, that is a
software interface to the novel polyCINS analysis methodology. Prefit facilitates
the identification of coherence features in theoretical models and experimental
data that serve as inputs to a multi-stage iterative refinement process Figure 4.16

on page 55.

3. Integration with Paraview [25, 46], the high performance analysis and visualisa-
tion package from Sandia National Laboratories. Paraview’s multi-tier architec-
ture allows dynamic visualisations in distributed parallel environments of the
large datasets arising from simulation in Scatter.

Appendix C presents details of Prefit and Paraview integration, a high level overview
of the analysis process and examples of visualisations and their use for coherence
feature identification.

4.1 Scatter on shared and distributed memory platforms

The practical feasibility of INS modelling in Scatter depends on the availability of a
high performance implementation. While previous attempts by the Gulp authors to in-
corporate parallelism have resulted in modest performance gains with limited scalab-
ility, larger models require significant computational resources. Therefore, a high per-
formance implementation of Scatter, and the relevant modules of the Gulp program,
has been undertaken to target both shared and distributed memory parallel platforms
as well as platforms with integrated GPU accelerators (Chapter 5). This implementa-
tion, derived from the original serial version, systematically follows the prescriptive
pattern approach of Mattson [89].

4.1.1 Finding Concurrency

The initial stage of the pattern approach examines the performance of Scatter for an
indicative model and attempts to identify computational bottlenecks. Profile-driven

31



32 high performance polycins modelling

Figure 4.1: changemaxscat and phonon dominate execution time.

analysis provides insights into the relationship between model complexity, input para-
meters and execution time that are relevant to the identification of potential concur-
rency.

4.1.1.1 Execution Profiling

The time demand of various Scatter subroutines are obtained by execution profiling
[129] to inform the subsequent optimisation and parallelisation process. Information
about the sequence, frequency and total time spent in functions or subroutines are
extracted from the profiling data obtained with the GNU profiler gprof [65], which
is widely available as part of the GNU Compiler Collection (GCC) and is extensively
used for the generation of flat and hierarchical profiles.

With gprof, an example coarse-resolution test model in the serial version of Scatter,
with 200 shells (nq_step) and 20 angular steps (nq_intstep) in θ and φ, produces the
hierarchical call graph in Appendix B (some entries are omitted for brevity). This
information is presented graphically in (Figure 4.1 on page 32).

The profiler output indicates that 99% of execution time is spent in Scatter itself, of
which 76.2 % and 21.7 % are dedicated to the changemaxscat and phonon subroutines
respectively. The relevant subroutine invocations exist within a nested loop structure
(Listing 4.1), supporting the observation that the most significant fraction of computa-
tion time for scientific and technical programs is spent in loop execution [10].

For the coarse-resolution test model, there are predictably (nq_step×nq_intstep)
= 4000 iterations of the nested kernel evaluation loops. These nested loops domin-
ate Scatter execution and correspond to the evaluations of scattering for individual
points in RSO-sampled space. In principle, individual iterations should be independ-
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1 do shellcount = 1, nq_step
...

3 do thetacount = 1, nq_intstep
...

5 call changemaxscat
...

7 call phonon(.true.,fc)

9 ! initiate calls to scattering kernels...
call cscatter(nq_intstep,Qvector,tauvector,scatlencoh,sofomega,sflag)

11 ...
enddo ! over theta

13 ...
enddo ! over shells �

Listing 4.1: Primary Nested Loop Structure in Scatter. The Profile indicates that 99% of
execution time is spent in these loops.

ent operations that allow the adoption of several possible parallel partitioning schemes.
However, incidental dependencies introduced in the course of a sequential implement-
ation in a highly procedural Fortran style, with deeply nested loops and multiple
global arrays in modules shared over a significantly large codebase require resolution
before this is possible.

4.1.2 Algorithm Structure

The pattern approach classifies parallel algorithm structures into three types on the
basis of organisation [89]. They may be organised by:

1. Task (Task Parallelism, Divide and Conquer)

2. Data Decomposition (Geometric Decomposition, Recursive Data)

3. Flow of Data (Pipeline, Event Based Coordination)

In principle, the distinct tasks corresponding to individual loop iterations identified
in the previous section are completely independent and this problem falls into the em-
barrassingly parallel class of problems to which a task parallel algorithm is particularly
applicable [89].

The choice of task parallelism is justified by the following considerations:

1. These tasks are associated with loop iterations, are completely defined in number
and scope at the start of computation and must all complete before the solution
is found.

2. The individual tasks present the same computational requirements and gen-
erally constitute balanced loads to the execution elements. This translates to
higher efficiency as resources may otherwise be wasted in the absence of com-
plex scheduling.
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Figure 4.2: Coordination and communication structure between MPI processes in Scatter.

3. The associated computation within the tasks is sufficiently significant to justify
any overhead created for task initiation and management by the implementation.

4.1.3 Supporting Structure

In identifying the supporting structure, the transition from design to implementation
begins. Typical, and occasionally overlapping, patterns at this level include the SPMD
(Single Program Multiple Data), Master-Worker or Farm, Loop Parallelism and Fork-
Join structural patterns.

A Loop Parallelism supporting structure with individual iterations distributed between
execution units is natural given that loops form basis of the task parallelism described
in the algorithm structure.

The SPMD model and the supporting message passing framework provided by MPI
is already used by other Gulp routines. All processing elements execute the same
program on different data, making use of the process rank as a unique identifier to
select subsets of a larger data structure and to achieve customised behaviour.

Figure 4.2 on page 34 outlines Scatter implemented with the SPMD model. Paral-
lel execution begins with the initial program input deck, of relatively small size, read
via standard input and distributed to cooperating processes by the root process (Pro-
cess 0). With complete details of all execution parameters, each process proceeds to
independently generate the entire global sample space and perform the actual Scat-
ter kernel evaluation. In the final stages, each process generates a three-dimensional
S(Q,ω) “histogram” representing the polycrystalline average for the relevant region
of the partitioned sampled space that represents a local contribution to the final result.
A final global summation reduction operation communicates these results to the root
process, merging the data generated from each task into a polycrystalline average that
is written to a specified output file.
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Figure 4.3: Complete pattern outline for the parallel Scatter implementation

4.1.4 Implementation Mechanism

The implementation mechanism forms the low-level framework and interface that
provides facilities for the management of:

1. Processing Elements

2. Synchronisation

3. Communication

and provides an execution environment for the parallel program.

4.1.4.1 Preliminary Optimisations

1. Dynamical Matrix

Scatter’s Reciprocal Space Onion (RSO) sampling yields a discrete grid of
points in spherical polar coordinates over which scattering contributions are eval-
uated. These evaluations are computationally demanding for systems of even
moderate complexity. For each unique triple (|Q|,θ,φ), corresponding to a point
P in RSO-sampled space, Gulp derives a new dynamical matrix, by summation
of phased second derivative contributions of neighbouring atoms within a cut-
off distance, and proceeds to compute the associated phonon modes required
by Scatter. Repeated derivation of the dynamical matrix corresponding to each
of these points in the spherical grid is computationally expensive for potential
models that consider large numbers of nearest neighbour interactions.
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do shellcount = 1,nq_step
2 ...

do thetacount = 1, nq_intstep
4 phi = 0.0_dp

...
6

call changemaxscat
8 ...

10 call funct(2_i4,nvar,xc,fc,gc)
call phonon(.true.,fc)

12

!calls to scattering kernels...
14 call cscatter(nq_intstep,...)

...
16 enddo ! over theta

...
18 enddo ! over shells �

Listing 4.2: Pre-optimised primary loop in Scatter. changemaxscat is invoked in every
iteration, leading to significant overhead.

Figure 4.4 on page 37 is a visualisation of a representative dynamical matrix
based on the potential model of D.W. Brenner [20] for a 240-Carbon atom sys-
tem, the low temperature cubic phase of C60. It illustrates a pattern of sparsely
regular non-zero blocks corresponding to the pairwise derivatives of the nth
nearest neighbour atoms at a given phase angle. The Brenner potential is not-
ably expensive to calculate in Gulp as it has a relatively complex form (being a
bond order potential) and accounts for a large number of possible neighbour in-
teractions (having a long spatial cutoff). As an optimisation strategy, the interme-
diate first and second order derivative vectors for each atom may be cached in a
space-efficient dynamic linked list to avoid recalculation. Subsequent dynamical
matrices are generated by summation of the cached vectors at the appropriate
phase angle.

In principle, this optimisation approach is applicable to a wider range of models
and effectively reduces the dominant aspect of the computation to eigenvector
and eigenvalue determination, leaving a standard numerical linear algebra prob-
lem for which efficient numerical solution techniques exist, as extensively dis-
cussed in [69, 40].

2. Redundant Memory Allocation

In Section 4.1.1.1, profiling Scatter reveals that approximately 75 % of execution
time is spent in the changemaxscat subroutine. This overhead is created by the
repeated reallocation of several large arrays for every iteration of the inner loop
in listing 4.2. However, the dimensions of the dynamic arrays allocated remain
constant between iterations.
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Figure 4.4: Sparse visualisation of the Hermitian dynamical matrix for a 240-atom Carbon
nanotube model with 720 modes.
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call changemaxscat
2 do shellcount = 1,nq_step

...
4 do thetacount = 1, nq_intstep

phi = 0.0_dp
6 ...

call funct(2_i4,nvar,xc,fc,gc)
8 call phonon(.true.,fc)

10 !calls to scattering kernels...
call cscatter(nq_intstep,...)

12 ...
enddo ! over theta

14 ...
enddo ! over shells �
Listing 4.3: Post-optimised primary loop in Scatter. changemaxscat is invoked only once

before the loop, significant overhead is eliminated leading to improved
performance of 450 % in the test case.

Invoking changemaxscat once before the loop and reusing memory between it-
erations can avoid this performance penalty. The impact of this minor modific-
ation (listing 4.3) is significant. Further profiling reveals that time spent in the
changemaxscat subroutine is almost completely eliminated, leading to a perform-
ance increase of 450 % for the test model.

4.1.4.2 Partitioning by Loop Splitting

As part of the supporting structure, loop parallelism minimises the need for a detailed
understanding of the complex algorithms that provide Scatter functionality. One of
the guiding principles behind loop parallelism is a sequential equivalence or the ex-
pectation that both sequential and parallel versions of the program produce identical
output, disregarding round-off errors.

Partitioning of the loop iteration space relies on transformations to the sequential
loop that are semantically neutral. While the code fragments that follow are based on
Fortran 90 and the Gulp SPMD model, the underlying transformations are language
agnostic and can be expressed with equal validity in other languages and implement-
ation platforms.

1. Dependency Elimination.

The new statements

Qmodu = init_par(1) + init_par(3) * (shellcount - 1)

theta = 0.0_dp + init_par(4) * (thetacount - 1) �
decouple the cumulatively increasing values of Qmodu and theta from previous
iterations in the program, a modification necessary to satisfy the dependency
conditions.

Also relevant are deeply nested implicit dependencies in the code from sub-
routine calls and their own nested loop structures that are non-evident. These
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Figure 4.5: Hierarchical execution profile of Scatter after reorganisation. The changemaxscat
overhead is eliminated, achieving a 450 % performance increase.

dependencies are ad hoc artifacts of an implementation. Although compilers
may perform extensive dependency analysis [74], no tools exist to allow a sat-
isfactory and systematic approach to their identification and elimination. Ulti-
mately, these dependencies were resolved by extensive testing and review of the
code .

2. Loop Collapse

This transformation combines nested loops into a single larger loop. Applied to
nested loops, the result is a larger merged iteration space that is more readily
parallelised. The loop transformation takes the following general loop structure

do i = 1, M

2 do j = 1, N

F(i,j)

4 enddo

enddo �
and transforms it into

1 do k = 1, M*N

i = (k-1) / N + 1

3 j = (k-1) % N + 1

F(i,j)

5 enddo �
A necessary condition for the validity of this transformation is that the loop
iterations are independent i.e. F(i, j) does not depend on F(k, l) for all i 6= k and
j 6= l.
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Figure 4.6: Example block and cyclic loop partitioning schemes for 14 iterations over 4 pro-
cessors [9].

This approach has the advantage of increasing the number of iterations that may
be distributed between tasks, improving the granularity and scalability of the
parallel implementation to a larger number of execution elements.

3. Loop Partitioning

With semantically neutral transformations applied, the loop iterations are com-
pletely independent. The next problem is the division of loop iterations between
execution elements. As a basic requirement for efficiency, the number of loop
iterations should exceed the number of execution elements or resources will be
underutilised. Two techniques for achieving this data distribution include (Fig-
ure 4.6 on page 40):

a) Block Partitioning
The loop iterations are split into n contiguous chunks allocated to n dif-
ferent processes. Data locality and cache coherence improve performance
and reduce communication costs in problems where dependencies exist. In
the simplest cases, the number of loop iterations to be split is an exact mul-
tiple of the number of execution elements and an exact distribution can be
achieved with ideal balancing between these processes. However, this is not
generally the case and it may be necessary to apply an uneven partitioning
scheme.

b) Cyclic Partitioning
The loop iterations are distributed consecutively between execution ele-
ments until the last execution element is reached and subsequent assign-
ment continues from the first in a cyclical manner. Cyclic distribution is
straightforward to implement and ensures good load distribution in a simple
implementation. However, communication costs may be higher than that of
block distribution if it is necessary to use the results of adjacent compu-
tations and cache behaviour may be inefficient for fine-grained problems.
Cyclic distribution is appropriate to this problem, allowing good load dis-
tribution with minimal modifications to existing code.
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Figure 4.7: Cyclic parallel partitioning scheme for a single process. Dark regions represent
constant-φ values. The light sections of the RSO grid are ignored by this process.
A round-robin assignment of circles of constant φ between processes provides a
compromise between simplicity and the availability of sufficient independent work
units to scale to a large number of parallel processes.

The evaluations of scattering for points in RSO-sampled space are, in principle,
independent operations that allow the adoption of several possible parallel par-
titioning schemes. Given the large number of points in a typical RSO grid, a
cyclic space decomposition, with a round-robin assignment of constant-φ circles
between processes (Figure 4.7 on page 41), provides sufficient independent tasks
to scale to a large number of parallel processes. As a possible optimisation, block
partitioning may eliminate some of the redundancy associated with the calcula-
tion of energies for a given value of θ, however this offers only marginal per-
formance gains for current models when other optimisations are applied.

The two variables nprocs and procid are introduced to represent the number of
parallel executing processes and the unique identifier for each parallel process
respectively (0 6 procid < nprocs). Where the starting position for each process
is offset by its procid and nprocs is the stride, a general cyclic partitioning takes
the following form:

1 do i = start, finish

...

3 enddo �
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1 call changemaxscat
do stcount = procid+1, nq_step*nq_intstep, nprocs

3 shellcount = (stcount - 1)/nq_intstep + 1
thetacount = mod(stcount - 1, nq_intstep) + 1

5

Qmodu = init_par(1) + init_par(3) * (shellcount - 1)
7 theta = 0.0_dp + init_par(4) * (thetacount - 1)

...
9 call funct(2_i4,nvar,xc,fc,gc)

call phonon(.true.,fc)
11

! initiate calls to scattering kernels...
13 call cscatter(nq_intstep,...)

...
15 enddo ! over theta

...
17 enddo ! over shells �

Listing 4.4: Transformed Scatter primary loop structure with eliminated dependencies,
collapsed loops and cyclic partitioning

1 do i = start + procid, finish, nprocs

...

3 enddo �
and for a nested loop with loop collapse:

1 do i = 1, M

do j = 1, N

3 F(i,j)

enddo

5 enddo �
1 do k = procid + 1, M*N, nprocs

i = (k-1) / N + 1

3 j = (k-1) % N + 1

F(i,j)

5 enddo �
After the application of all of these transformations, the original kernel evalu-
ation loop structure in Listing 4.1 assumes the form of Listing 4.4.

4. I/O

Input is distributed to cooperating processes by the root process in a MPI broad-
cast operation at program initiation. With complete details of all execution para-
meters, each process independently computes S(Q,ω) over an appropriate sub-
set of the global sample space in a rank-based domain-decomposition of the
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IBM BladeCenter JS21 IBM pSeries 575
(Huygens)

Nodes 4 101

Processing Elements per
Node

4 32

Processor Clock 2.3 GHz 4.7 GHz

Architecture IBM PowerPC 970MP IBM Power6

Memory per Node 4 GB 128 GB

Network FastEthernet 100 Mbps Infiniband 160 Gbit/s

Operating System Redhat Linux (kernel
26.18-8)

GNU Linux (kernel
2.6.27)

Compiler GCC gfortran 4.1.2
(-O3)

GCC gfortran 4.3.2
(-O3)

IBM XL Fortran for
Linux, V12.1

(-O3 -qstrict -qarch=auto
-qtune=auto)

MPI Version OpenMPI 1.4.3 OpenMPI 1.3.3

Table 4.1: Multicore/Multinode Test Configurations

primary Scatter loop iteration space. A final global summation reduction oper-
ation merges these contributions to the root process into a final polycrystalline
average for the scattering system.

The intermediate calculation results, detailing individual eigenvector contribu-
tions at each point to the overall scattering intensities, have an important role
in subsequent analysis. A new HDF5 output format over MPI/IO replaces the
previous verbose textual output. MPI/IO provides scalable, distributed, simul-
taneous output of this large dataset, allowing nodes in a cluster environment to
take advantage of dedicated high-speed interconnects that are capable of signi-
ficantly reducing the associated communication overhead.
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Dell Precision T7500
Workstation

Xookik

Nodes 1 4

Processing Elements per
Node

4 12

Processor Clock 2.0 GHz 3.07 GHz

Architecture Intel x86-64

Memory per Node 4 GB 50 GB

Network FastEthernet 100 Mbps Infiniband 160 Gbit/s

Operating System
Ubuntu Linux 11.04

(kernel 2.6.38-8)
GNU Linux (kernel

2.6.27)

Compiler
GCC gfortran 4.4.5

(-O3)
GCC gfortran 4.3.2

(-O3)

MPI Version OpenMPI 1.4.3 OpenMPI 1.3.3

Table 4.2: Heterogeneous Test Configurations

4.2 evaluation

4.2.1 Optimisation

For the optimisations of subsubsection4.1.4.1, Figure 4.8 on page 45 represents the
un-optimised and optimised runtimes for a 40-atom Single-Walled Carbon Nanotube
model, C(10, 10), and a 60-atom C60 Buckminsterfullerene model, both involving
the Brenner potential, on the Dell Precision T7500 Server. Optimisation significantly
lowers the computational cost of calculating the dynamical matrix for the class of mod-
els that use the Brenner potential, yielding model-dependent performance increases
between a factor of 10 and 50 in overall runtime. The remaining runtime is dominated
by calculation of eigenvectors and eigenvalues of the dynamical matrix.

4.2.2 Comparative Performance

Comparing the performance of the unoptimised pattern-based Scatter implementa-
tion against the original ad hoc Gulp implementation on the IBM BladeCenter JS21,
Figure 4.9 on page 46 shows ideal scaling in the new version for a simulation of
Graphite with the Young-Koppel potential with up to 16 processes across 4 nodes. In
contrast, the original Gulp implementation begins to exhibit significant performance
degradation at 6 processes and above.
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Figure 4.8: Unoptimised and optimised runtimes for 40-atom Single-Walled Carbon Nanotube,
C(10, 10), and 60-atom C60, Buckminsterfullerene models with the Brenner poten-
tial. Optimisation significantly lowers the computational cost of calculating the dy-
namical matrix for the class of models that use the Brenner potential, yielding
model-dependent performance increases of between 10× to 50× in overall runtime.

Performance however deviates from ideal for the un-optimised run of the Brenner
model in Figure 4.10 on page 47 where the nature of the model reveals the limitations
of the interconnecting network and limiting characteristics of the machine appear as
discernible consecutive groupings of four timing values with a consistent pattern of
variation. Here, the original Scatter implementation fails to complete for all but a
few test cases where the number of processes is a factor of 10.
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Figure 4.9: Execution time in seconds for the Young Koppel Model on the test machine with 1

to 16 processes compared against ideal scaling (dotted line). Our version of Scatter

exhibits ideal scaling up to 16 processes.

4.2.3 Scalability

4.2.3.1 Calibration

The runtime of a Scatter model may be predicted from the relationship of (4.1) where
t is the approximate completion time, k is a constant for a given execution environ-
ment and model, |Q|max − |Q|min is the difference between the maximum and min-
imum magnitudes of the momentum transfer vector Q, δQ is the finite increment in
momentum transfer between successive RSO shells and δθ = δφ is the finite change
in angular orientation of the momentum transfer vector.

t ≈ k
(
|Q|max − |Q|min

δ|Q|

)
×
(
2π

δθ

)2
(4.1)
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Figure 4.10: Execution time in seconds for the unoptimised Brenner Model on the test machine
with 1 to 16 processes compared against ideal scaling (dotted line). Our version
of Scatter deviates moderately from ideal scaling. The Gulp version fails to run
for most test cases.
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Figure 4.11: Predicted (solid line) vs. actual (data points with dashed line fit) problem scal-

ing by model resolution for a 60-atom Carbon nanotube with (a)
(
|Q|max−|Q|min

δQ

)
shells demonstrating linear scaling and (b) 2πδθ angular steps in θ and φ demon-
strating quadratic scaling.
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The runtime t is determined by the number of points P(|Q|, θ,φ) in RSO space for
a given model resolution as specified in the parametric inputs to the program. These
integer-valued parameters are the number of shells,

(
|Q|max−|Q|min

δ|Q|

)
, and the number

of angular steps, 2πδθ = 2π
δφ . Figure 4.11 on page 48 compares predicted and actual prob-

lem scaling for a 60-atom model. (4.1) allows the estimation of full model runtime by
calibration against a low-resolution test case to determine k for an execution environ-
ment.

4.2.3.2 Scalability Testing

Figure 4.12 on page 50 presents the execution times for the 60-Carbon atom model
with 4, 8, and 16 processes on the IBM JS21 BladeCenter. Scatter demonstrates linear
scaling across multiple cores and multiple nodes. Scaling is compared against the
estimated sequential runtime obtained from a calibration run with a coarse RSO grid
as predicted by Equation 4.1.

Subsequently, the complete performance evaluation has been conducted on the
PRACE supercomputing prototype (huygens) located at SARA, the Dutch National
High Performance Computing and e-Science Support Centre. This prototype has large
shared memory (4-8 GB/core) and fast I/O configuration with the new IBM Power6

processors and IBM Power Cluster fat node architecture. In order to find the most suit-
able system optimisations, both the GNU Fortran and the IBM XL Fortran compiler
have been employed as shown in the last column of Table 4.1 on page 43.

The huygens system [111] has 1664 dual core processors, offering 3328 cores in total,
15.25 terabytes of main memory, and 700 terabytes of secondary memory storage. The
input dataset was a 40-atom single-walled carbon nanotube model, C(10,10), with
RSO Grid resolution parameters

(
|Q|max−|Q|min

δ|Q|

)
= 256, and 2π

δθ = 2π
δφ = 200. An

initial calibration run with coarse angular resolution provided an estimated time-to-
completion for the full model using (4.1).

The results of the initial calibration run in Figure 4.13 on page 52 indicate signific-
antly improved performance with the IBM XL Fortran compiler over GNU Fortran.
This difference may be attributed to the ability of the IBM XL Fortran compiler to
exploit the on-chip parallelism and other architecture-specific optimisations.

The estimated sequential completion time for the full model was originally 2733

hours (114 days) with the GNU Fortran version and 552 hours (23 days) with the
IBM XL Fortran version on a single processor. This initial calibration also revealed
near-linear scaling up to 128 processes with a small discontinuity between 32 to 64

processes indicating moderately degraded performance at the intra-node to inter-node
transition boundary.

Execution times for the model at full resolution over 32, 64, 128 and 256 processes
are presented in Figure 4.14 on page 53 for a simple block partitioning scheme. This
version, compiled with the IBM XL Fortran compiler, exhibits linear scaling [57] in
the multi-node case, despite a memory and I/O intensive nature. We believe that the
fast interconnection at Huygens and the MPI implementation have made a significant
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Figure 4.12: Linear scaling for the C60 model with 4, 8, 12 and 16 MPI processes on the initial
IBM JS21 BladeCenter test cluster.
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difference in easing the bottleneck. The final version of Scatter, with a cyclic loop
partitioning over the finer-grained iteration space exposed by the loop collapse trans-
formation, demonstrates near-ideal scaling for up to 1024 MPI Processes (Figure 4.15

on page 54).

4.3 discussion

The high performance implementation of Scatter presented in this chapter makes
it possible to model significantly larger systems than was previously practical – a
critical contribution to the computational feasibility of the new analysis method. In
conjunction with the visual presentation and analysis of the large datasets generated
in Prefit and Paraview, investigations may be conducted with an expanded analysis
toolbox to allow new insights into the dynamics of these systems.

Application of Mattson’s design hierarchy, in conjunction with performance tools
has led to a demonstrably scalable parallel implementation that is an improvement
over the original ad hoc implementation. In the context of pure multicore and mul-
tinode systems, this application is an instance of the Monte Carlo or MapReduce
dwarf. The scalability of this implementation is consistent with the expectations of
this class of applications.

From the application perspective, the work outlined in this chapter has been a fun-
damental contribution to the development of a new analysis method for spectroscopic
data from PolyCINS experiments from powder materials that is based on the iterative
minimisation of discrepancies between experimental results and predicted simulation
output to derive the appropriate force constant parameters of crystalline systems [108].
Bulk properties of solids such as the Young’s modulus of elasticity, thermal expansion
coefficient and various chemical properties may be predicted from these force-constant
parameters and the dynamics of their lattice systems. Using the Scatter software
to perform semi-empirical simulation with initial starting parameters obtained from
density functional theory (DFT) codes such as CASTEP and VASP, Roach’s method has
been validated on Aluminium, a well-understood reference material, and is currently
being applied to the investigation of other systems.

Experience has shown that the viability of this approach rests on the ability to lever-
age high performance computing resources for large scale simulation, data handling
and visualisation. Thus, the three fundamental tools presented have been central to
the development of this new iterative workflow (Figure 4.16 on page 55).
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Figure 4.13: Performance of GNU Fortran and IBM XL Fortran (with architecture-specific op-
timisations) versions of Gulp with 2n processes a (10,10) Carbon Nanotube model
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Figure 4.14: Computation times for the actual (10,10) Carbon Nanotube model with nq_step
= 256 and nq_intstep = 200, generating a 120GB dataset. Results indicate near-
linear scalability for 32, 64, 128 and 256 processes in the multi-node configuration.
Scalability is limited by block partitioning over nq_step loop iterations.
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Figure 4.15: Revised computation times for the actual (10,10) Carbon Nanotube in 4.14 for
the final implementation. Cyclic loop partitioning over the finer-grained iteration
space exposed by the loop collapse transformation achieves moderately improved
performance for 256 processes and near-linear scaling up to 1024 processes.
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Figure 4.16: An iterative workflow for polyCINS analysis leverages high performance com-
puting resources for large scale simulation, data handling and visualisation. The
sequence of bold arrows (2-3-5-6) represents the iterative process.





5
S TAT I C S T R U C T U R A L A D A P TAT I O N I N H E T E R O G E N E O U S
A R C H I T E C T U R E S

The previous chapter presented a scalable implementation of the Scatter code on
multicore and multinode systems. For models based on the Brenner potential, the op-
timisations outlined reduces the computationally expensive aspects of Scatter to the
determination of polarisation vectors and frequencies of the phonon modes. These
are respectively the eigenvectors and eigenvalues of the Hermitian dynamical mat-
rix for each point in reciprocal space [116]. Eispack and Lapack are used extensively
within Gulp for problems of this kind. However, as GPU accelerators are naturally
suited to the inherent data parallelism of dense and sparse linear algebra problems,
computational accelerators present a significant opportunity to meet the computa-
tional requirements of larger crystalline systems such as the low-temperature phase
of Buckminsterfullerene (C60) that presents as a lattice with a 240-atom basis and 720

vibrational modes. This chapter considers the integration of support for GPU acceler-
ators, a composition of the dense linear algebra dwarf within the Monte Carlo pattern
exposed in the course of the parallel implementation, and demonstrates the need cre-
ated for static adaptation in hybrid CPU/GPU codes.

5.1 gpu acceleration for hermitian eigensystems

In early 2011, although work on Magma [3, 123, 124], a re-implementation of Lapack

for heterogeneous multicore/GPU architectures, was underway, no efficient imple-
mentations of GPU solvers for Hermitian eigensystems were widely available. Driven
by the practical requirements of Scatter, the development of a new GPU solver
for Hermitian eigensystems was undertaken with the required functional subset of
Eispack as a basis [56]. While the challenges of achieving efficient performance on a
GPU may have justified the extended effort of developing custom algorithms suited
to the specific strengths of the platform [128], the original algorithms of the legacy
Eispack library were retained for several reasons:

1. This work was motivated by a practical application for which the Eispack eigen-
solver had proven adequate.

2. As Eispack has been in production use for nearly 40 years, the numerical char-
acteristics and accuracy have been established by exhaustive application and
testing.

57
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Figure 5.1: Stepwise progression from CPU to GPU implementation of Hermitian eigensystem
kernels before optimisation and performance tuning

3. The problem of creating a data-parallel GPU version is conceptually similar to
that of creating a vector-processor version of the Eispack routines. A vector im-
plementation was created for the IBM 3090-VF in 1989 [31].

4. While alternative algorithms used in Lapack exhibit superior cache usage char-
acteristics and performance in modern processor architectures, they provide this
at the expense of software complexity and reliance on an efficient Blas imple-
mentation [8].

Therefore, the intention was to gain parallel performance in heterogeneous CPU/GPU
architectures while preserving the original high-quality algorithmic implementation of
Eispack. This was in anticipation of advances in the Magma project that have brought
wider algorithmic coverage and steady performance improvements between releases.
As of Magma v1.6, released in 2015, several highly tuned implementations of Lapack

eigensolver routines are available. However, given that Magma’s exploitation of the
data parallelism available in larger matrices may lead to inefficiency for smaller prob-
lems, the Eispack implementation presented here has remained an alternative that
may be preferable in some contexts. The changing performance profile of Magma

between releases, model parameters, algorithmic variants and across environments
highlights the need for adaptation.
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5.1.1 An Implementation Outline

Eispack provides the ch driver for double-precision Hermitian matrices as a con-
venient wrapper around the subroutines shown in Table 2.2. Subsequent references
to Eispack will be restricted to this subset. These subroutines serve as the basis of
functionally-equivalent GPU kernels, requiring source-level translation into equival-
ent C code for compatibility with the C/C++-based CUDA SDK and compilation
toolchain. The f2c source-to-source compiler [47] allows direct compilation of stand-
ard Fortran77 code into functionally equivalent C code with transparent handling of
notable language incompatibilites such as the row-major vs. column-major array rep-
resentation formats.

The implementation of all three kernels followed the sequence of stages outlined
in Figure 5.1 on page 58. To maintain correctness, each stage is succeeded by testing
and verification for sequential equivalence against the original program as low-level
CUDA code has a tendency towards opaque errors that are difficult to locate. It may
be argued that this constitutes a viable methodology for porting legacy codes to GPU
platforms that manages the complexity of debugging large and complex kernels.

For each routine, an initial proto-kernel is implemented without any CUDA parallel
constructs to test code execution on the GPU for data transfer, kernel launch and data
retrieval using a single thread. This proto-kernel is highly inefficient as it makes only
marginal use of the computational capabilities of the device.

With the execution model and interaction between the disjoint memory spaces of
the computational processors verified, synchronisation constructs are necessary for
global memory operations to avoid race conditions before the actual fine-grained work
distribution is introduced. Performance gains emerge as data-parallel operations are
distributed between cooperating threads. These loops are identified from source-level
line-profiling on the original CPU version of Eispack with callgrind, part of the Val-
grind framework [93], the rationale being that CPU performance is strongly indicative
of potential performance hotspots in the GPU kernels. This is a necessary workaround
as the relatively basic CUDA profiling tools provide no information at this level of
granularity.

5.1.2 Performance Considerations

Arguably, optimisation is currently the most challenging aspect of GPU programming
and, as memory transfer constitutes the predominant limit to achievable performance,
the objective is usually to maximise the Compute to Global Memory Access (CGMA)
ratio by minimising global memory access operations and exploiting coalesced access
patterns when possible. On account of the novelty and complexity of the platform,
the compilation tools do not provide the same level of optimised code generation
that traditional CPUs have available. As a result, this responsibility rests with the
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__global__ void htribk_kernel(integer *nm, integer *n,
doublereal *tau, integer *m,

3 doublereal *zr, doublereal *zi) {

int blockId = (gridDim.x * blockIdx.y) + blockIdx.x;

zr += blockId * *nm * *n;
8 zi += blockId * *nm * *n;

tau += blockId * 2 * *n;

/* Parameter adjustments for 0 based indexing in C */
tau -= 3;

13 zi -= (1 + *nm);
zr -= (1 + *nm);

...
} �

Listing 5.1: Work distribution by block

programmer and a mental model of the hardware architecture of the GPU platform is
necessary.

5.1.2.1 Work Distribution Patterns

Multiple independent blocks provide coarse-grained block-level parallelism, allowing
the GPU to solve several independent eigensystems simultaneously in a single ker-
nel invocation. While, the CUDA platform provides the __syncthreads() primitive for
thread synchronisation within a block, global kernel synchronisation across different
thread blocks is unsupported.

In this implementation, a number of thread blocks independently handle the solu-
tion of multiple eigensystems in parallel. With a thread block or cooperative thread
array (CTA) mapped to an input problem set, parallelism is available at both inde-
pendent block and cooperative thread levels.

Inherently data-parallel operations on arrays that are identified within the algorithms
are distributed between threads in a thread block to realise parallel equivalents. In
these operations, tiling allows the actual dimensions of the thread block to remain
independent of the dimensions of the matrix problem. Many of the work distribution
operations are instances of the following recurring patterns [17]:

1. Transformations or mappings are operations that assign new computed values
to an array based on the original values of the entries. An example is scaling of
a row, in matrices ar and ai by a constant factor scale in the tridiagonalisation
kernel htridi (Listing 5.2)

arij = arij × scale

aiij = aiij × scale
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As the entries are independent, this pattern is straighforward to implement effi-
ciently with coalesced read and write global memory accesses.

2. Reductions such as summation operations combine multiple entries into a single
value. An example is the evaluation of the value f within the htridi kernel (List-
ing 5.3)

fi =
∑
j

(ejarij − τ2j+2aiij)

Accesses to global memory are only necessary to read values into a thread block
and can be coalesced. For efficiency, the reduction operation is performed in
shared memory that is private to that thread block.

3. Reorderings retrieve subsets of values from one array and assign new indices in
an output array. For example, in Listing 5.4:

di = arii

In general, because the indices in the source array are arbitrary functions of the
output indices, coalesced access may only be possible for the output array.

4. Composite Operations
Many of the application-specific operations in the Eispack routines are not simply
categorised as transformations, reductions or re-orderings and require further
consideration for efficiency. When possible, performance is greatly enhanced by
the opportunity to interleave the simpler patterns into more complex operations
that compose them.
For example, in the Householder tridiagonalisation kernel htridi, for 1 6 j 6 l,
there is a mapping of each entry of ej and τ2j to the value of a sum of several
elements in the arrays ar and ai (Listing 5.5).

ej =
1

h

 j∑
k=1

(arjkarik + aijkaiik) +

l∑
k=j+1

(arkjarik − aikjaiik)


τ2j+2 =

1

h

 j∑
k=1

(−arjkaiik + aijkaiik) −

l∑
k=j+1

(arkjaiik + aikjarik)


In terms of the patterns above, the calculation of each new entry in ej and τ2j –
themselves instances of the transformation operation – may be decomposed into
four separate reductions over two input arrays.

ej =
1

h

 j∑
k=1

arjkarik +

j∑
k=1

aijkaiik +

l∑
k=j+1

arkjarik −

l∑
k=j+1

aikjaiik


τ2j+2 =

1

h

− j∑
k=1

arjkaiik +

j∑
k=1

aijkarik −

l∑
k=j+1

arkjaiik −

l∑
k=j+1

aikjarik
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However, an alternative decomposition is possible that eliminates redundant
memory operations1.

ej =
1

h

 j∑
k=1

(arjkarik + aijkaiik) +

l∑
k=j+1

(arkjarik − aikjaiik)


=

1

h

l∑
k=1

(arjkarik + aijkaiik)[k 6 j] +
1

h

l∑
k=1

(arkjarik − aikjaiik)[k > j]

=
1

h

l∑
k=1

(arik(arjk[k 6 j] + arkj[k > j]) + aiik(aijk[k 6 j] − aikj[k > j]))

τ2j+2 =
1

h

 j∑
k=1

(−arjkaiik + aijkarik) −

l∑
k=j+1

(arkjaiik + aikjarik)


=

1

h

l∑
k=1

(−arjkaiik + aijkarik)[k 6 j] −
1

h

l∑
k=1

(arkjaiik + aikjarik)[k > j]

=
1

h

l∑
k=1

(−aiik(arjk[k 6 j] + arkj[k > j]) + arik(aijk[k 6 j] − aikj[k > j]))

Defining the conditional terms in both expression as new variables,

arjk = arjk[k 6 j] + arkj[k > j]

aijk = aijk[k 6 j] − aikj[k > j]

The following simplified expressions for ej and τ2j are obtained

ej =
1

h

l∑
k=1

(arikarjk+ aiikaijk)

τ2j+2 =
1

h

l∑
k=1

(−aiikarjk+ arikaijk)

The original expressions may have been realised as two separate mapping op-
erations, each requiring eight separate reduction operations per element with
two global memory read operations per reduction term. The combined kernel
of 5.6 takes advantage of the overlap between argument values to evaluate the
expressions using only four global memory read operations in a single reduction
nested within a single map operation. Further avoided is the associated overhead
and synchronisation that would have been incurred by multiple summations.

5.1.2.2 Structural Alternatives

While the CUDA platform documentation provides a guide to performance best prac-
tices [97], trade-offs remain necessary between possible efficiency measures. Limited

1 We use Iverson’s notation [p] to denote a term that evaluates to 1 if the condition p is true and 0 otherwise.
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Listing 5.2: A row scaling transformation of matrices ar and ai by a constant factor scale
in the tridiagonalisation kernel htridi. Independent entries allow efficient imple-
mentation with coalesced read and write global memory accesses

/* Serial Transformation */
for (k = 1; k <= l; ++k) {
ar[i + k * *nm] = scale * ar[i + k * *nm];
ai[i + k * *nm] = scale * ai[i + k * *nm];

}

/* Kernel Operation */
k = threadId + 1;
while (k <= l){
ar[k + i * *nm] *= scale;
ai[k + i * *nm] *= scale;
k += blockDim.x*blockDim.y;

} �

Listing 5.3: A reduction operation in the the htridi kernel evaluates the value f as the sum of
values from multiple arrays.

/* Serial Reduction */
for (j = 1; j <= i__2; ++j) {
...
f = f + e[j] * ar[i + j * *nm]

- tau[(j << 1) + 2] * ai[i + j * *nm];
}

/* Kernel Operation */
int threadId = (blockDim.x * threadIdx.y) + threadIdx.x;
j = threadId + 1;
memblock[threadId] = 0;
while (j <= l){
memblock[threadId] += e[j] * ar[j + i__ * *nm]

- tau[(j << 1) + 2] * ai[j + i__ * *nm];
j += blockDim.x*blockDim.y;

}
for (integer stride = 1;

stride < l && stride < blockDim.x*blockDim.y; stride *= 2){
__syncthreads();
if (threadId % (2*stride) == 0 && (threadId + stride) < l

&& (threadId + stride) < blockDim.x*blockDim.y){
memblock[threadId] += memblock[threadId + stride];

}
} �
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Listing 5.4: A reordering retrieves subsets of values from one array and assigns new indices in
an output array. Source indices are arbitrary functions of the output indices and
coalesced access may only be possible for the output array.

/* A Selection */
for (i = 1; i <= i__1; ++i) {

d[i] = ar[i + i * *nm];
}

/* Kernel Operation */
k = (blockDim.x * threadIdx.y) + threadIdx.x + 1;
while (k <= *n) {
d[k] = ar[k + k * *nm];
k += blockDim.x*blockDim.y;

} �

for (j = 1; j <= l; ++j) {
g = 0.;
gi = 0.;

4

/* .......... form element of a*u .......... */
for (k = 1; k <= j; ++k) {

g = g + ar[j + k * *nm] * ar[i + k * *nm]
+ ai[j + k * *nm] * ai[i + k * *nm];

9 gi = gi - ar[j + k * *nm] * ai[i + k * *nm]
+ ai[j + k * *nm] * ar[i + k * *nm];

}

jp1 = j + 1;
14

if (l < jp1) {
goto L220;

}

19 j = l;

for (k = jp1; k <= j; ++k) {
g = g + ar[k + j * *nm] * ar[i + k * *nm]

- ai[k + j * *nm] * ai[i + k * *nm];
24 gi = gi - ar[k + j * *nm] * ai[i + k * *nm]

- ai[k + j * *nm] * ar[i + k * *nm];
}

/* .......... form element of p .......... */
29 L220:

e[j] = g / h;
tau[(j << 1) + 2] = gi / h;
f = f + e[j] * ar[i + j * *nm] - tau[(j << 1) + 2] * ai[i + j * *nm];

} �
Listing 5.5: A mapping of each entry of ej and τ2j to the value of a sum of several elements in

the arrays ar and ai in the Householder tridiagonalisation kernel htridi.
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g_sh = (doublereal*)&memblock[blockDim.x * threadIdx.y];
2 gi_sh = (doublereal*)&g_sh[blockDim.x * blockDim.y];

...
/* .......... form element of a*u .......... */

doublereal arjk, arik, aijk, aiik;
7 j = threadIdx.y + 1;

while (j-threadIdx.y <= l){

g_sh[threadIdx.x] = 0;
12 gi_sh[threadIdx.x] = 0;

arjk = arik = aijk = aiik = 0;

k = threadIdx.x + 1;
17

while (j <= l && k <= l){
if (k > j){
arjk = ar[j + k * *nm];
aijk = -ai[j + k * *nm];

22 } else {
arjk = ar[k + j * *nm];
aijk = ai[k + j * *nm];

}

27 arik = ar[k + i__ * *nm];
aiik = ai[k + i__ * *nm];

g_sh[threadIdx.x] += arjk * arik + aijk * aiik;
gi_sh[threadIdx.x] += -arjk * aiik + aijk * arik;

32

k += blockDim.x;
}

for (integer stride = blockDim.x>>1; stride > 0; stride >>=1 ){
37 __syncthreads();

if (threadIdx.x < stride){
g_sh[threadIdx.x] += g_sh[threadIdx.x + stride];
gi_sh[threadIdx.x] += gi_sh[threadIdx.x + stride];

}
42 }

__syncthreads();

g = g_sh[0];
47 gi = gi_sh[0];

/* .......... form element of p .......... */
if (j <= l){
e[j] = g / h__;

52 tau[(j << 1) + 2] = gi / h__;
}

j += blockDim.y;
} �
Listing 5.6: A composite operation performs mapping of each entry of ej and τ2j to the

value of a sum of several elements in the arrays ar and ai in the Householder
tridiagonalisation kernel htridi, combining transformation, reordering and
reduction into a single kernel eliminates redundant memory accesses and the
overhead of multiple summation reductions.
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exploration of the space of possible parametric optimisations, such as optimal block
dimensions and tile size, was facilitated by the code generation tools in PyCUDA [79],
the high-level Python language bindings to the CUDA API.

However, using the ANY abstraction, choices between alternatives that arise in the
course of optimisation may be represented structurally. The original Hermitian eigen-
solver in the Eispack library may represented as

E → SEQ(htridi, tql2,htribk)

and the direct implementation of the kernels corresponding to the relevant Eispack

subroutines may be represented as the transformation

SEQ(htridi, tql2,htribk) → SEQ(htridi
′
, tql2

′
,htribk

′
)

where the notation A
′

represents a functional equivalent of A. Each functionally equi-
valent reimplementation creates a new variant. All combinations of possible eigensolv-
ers using these functions may be represented as

E → SEQ(ANY(htridi,htridi
′
), ANY(tql2, tql2

′
), ANY(htribk,htribk

′
))

However, further possible optimisations exist. In all cases, for these optimisations to
be valid, the combined costs of the split kernels and associated multiple kernel launch
overheads must be less than the performance gained from transposed memory access
and reduced register usage.

1. For coalesced memory access in the htridi ′ kernel, array accesses may be trans-
posed. In this case, the negation of the imaginary matrix is necessary to represent
the operation of complex conjugation. Thus, we introduce a kernel that performs
matrix negation:

htridi
′ → SEQ(negate,htridi

′′
)

2. The tql2 ′ kernel concludes with an ordering of eigenvectors by eigenvalue. Sep-
aration of the ordering step into a smaller kernel that may execute with large
thread blocks due to lower register usage is a possible optimisation.

tql2
′ → SEQ(tql2

′′
,order)

3. The htribk ′ kernel may be decomposed into two smaller kernels

htribk ′ → SEQ(htribkA,htribkB)
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with the new htribkB kernel operating on pitched memory. This must be pre-
ceeded and succeeded by a matrix transposition for coalesced access without
altering correctness

htribkB → SEQ(transpose,htribkB
′
, transpose)

Combining all of these possible optimisations considered,

EE → SEQ(

ANY(htridi,htridi
′
,

SEQ(negate,htridi
′′
)),

ANY(tql2, tql2
′
,

SEQ(tql2
′′
,order)),

ANY(htribk,htribk
′
,

SEQ(htribkA,

ANY(htribkB,

SEQ(transpose,htribkB
′
, transpose)))))

5.2 structural application variants

5.2.1 Hermitian Eigensystem Variants

The space of possible Hermitian eigensystem solver components of Scatter incorpor-
ates routines from different library options.

E → ANY(EE,EL,EM)

E combines EE, the Hermitian eigensolvers described above, EL, the CPU-only routines
available in the Lapack library and EM, the recent GPU re-implementation in the
Magma library of Lapack functions.

Here, the equivalent functions in Lapack and Magma are

EL → ANY(lapack_zheev, lapack_zheevd, lapack_zheevr, lapack_zheevx)

EM → ANY(magma_zheevd,magma_zheevd_gpu,magma_zheevd_m,

magma_zheevdx,magma_zheevdx_2stage,magma_zheevdx_2stage_m,

magma_zheevdx_gpu,magma_zheevdx_m,

zheevr, zheevr_gpu, zheevx, zheevx_gpu)

Figure 5.2 on page 69 is a graphical representation of E. Any path from the left ter-
minal node to the right terminal node, constitutes a valid eigensolver. Although, the
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/* Check if matrix is very small then just call LAPACK on CPU,
no need for GPU */

if (n <= 128) {
4 #ifdef ENABLE_DEBUG

printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n");
printf("warning matrix too small N=%d NB=%d, calling lapack on CPU\n", (int) n, (int) nb

);
printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n");
#endif

9 lapackf77_zheevr(jobz_, range_, uplo_,
&n, a, &lda, &vl, &vu, &il, &iu, &abstol, m,
w, z, &ldz, isuppz, work, &lwork,
rwork, &lrwork, iwork, &liwork, info);

return *info;
14 } �

Listing 5.7: Implicit variant selection in Magma. Assumptions about the relative performance
of Lapack and Magma are not valid on all platforms .

routines of Lapack and Magma appear trivial in this representation, implicit choices
have already been made in these libraries that are not exposed. Listing 5.7 is an ex-
ample of implicit variant selection in the Magma library that is performed on an ad
hoc basis. The zheevr function defaults to CPU execution for matrix sizes under 128,
an assumption that is not necessarily valid for all platforms.

5.2.2 Scatter Variants

The Scatter program may be represented as

FOR(SEQ(P,E,C),n)

where P represents the production of a new dynamical matrix, E the calculation of
eigenvectors and eigenvalues and C the calculation of scattering contributions.

Similarly, the pattern-based parallel implementation presented in Chapter 4 may be
represented as the transformation

FOR(SEQ(P,E,C),n) → FARM(SEQ(P,E,C))

Multiple alternative implementations of the Hermitian eigensolver E now exist for
execution on both CPU and GPU resources. Therefore, we may consider direct in-
tegration of the Lapack and Magma libraries. However, the GPU implementation of
Eispack is a special case that requires batched inputs to amortise the cost of memory
transfer operations and minimise idling on the device.

FOR(SEQ(P,E,C),n) → FARM(SEQ(P,E,C))

→ FARM(SEQ(P, ANY(EL,EM),C))



5.2 structural application variants 69

tr
an
sp
o
se

zh
ee
v

zh
ee
v
d

zh
ee
v

zh
ee
v
x

zh
ee
v
d

zh
ee
v
d
_
g
p
u

zh
ee
v
d
_
m

zh
ee
v
d
x

zh
ee
v
d
x
_
2
st
ag
e

zh
ee
v
d
x
_
2
st
ag
e_
m

zh
ee
v
d
x
_
g
p
u

zh
ee
v
d
x
_
m

zh
ee
v
r

zh
ee
v
r_
g
p
u

zh
ee
v
x

zh
ee
v
x
_
g
p
u

h
tr
id
i

?

h
tr
id
i’

n
eg
at
e

ht
ri
di
’’

tq
l2

?

tq
l2
’

tq
l2
’’

o
rd
er

h
tr
ib
k

h
tr
ib
k
’

h
tr
ib
k
A

?

h
tr
ib
k
B

tr
an
sp
o
se

h
tr
ib
k
B
’

?

? ?

?

Fi
gu

re
5
.2

:P
os

si
bl

e
ei

ge
ns

ol
ve

r
va

ri
an

ts
in

cl
ud

in
g

Ei
s
p
a

c
k

,E
i
s
p
a

c
k
g
p
u

,L
a

p
a

c
k

an
d

M
a

g
m

a
al

te
rn

at
iv

es
de

sc
ri

be
d

w
it

h
A

N
Y

.A
ny

di
re

ct
ed

pa
th

fr
om

th
e

le
ft

te
rm

in
al

to
th

e
ri

gh
t

te
rm

in
al

co
ns

ti
tu

te
s

a
va

lid
ei

ge
ns

ol
ve

r.



70 static structural adaptation in heterogeneous architectures

The pipeline structural form, with intermediate queues, allows a computational stage
to collect b queue entries into a batch, decoupling the size of the farm from the number
of simultaneous eigensystems being solved on the GPU. Therefore, we consider the
alternate pipeline structural form, with nested farm stages, and elect to include the
Magma library as the effect of this decoupling may conceivably confer a performance
gain from increased utilisation.

FOR(SEQ(P,E,C),n) → PIPE(P,E,C)

→ PIPE(P, ANY(EE,EM),C)

→ PIPE(FARM(P), FARM(ANY(EE,EM)), FARM(C))

For this application, with a decomposition based on native processes, the NoSQL
datastore Redis [110, 22, 23, 67], noted for performance and extensive language bind-
ings, provides an out-of-process shared instrumented queue that supports distributed
access and persistence. The queues form the mechanism of composition across hetero-
geneous resources, decoupling the concurrently executing processes on the CPU host
from the concurrently executing kernels on the GPU streaming multiprocessors.

The final program specification combines all of these structural alternatives

FOR(SEQ(P,E,C),n) → ANY(

FARM(SEQ(P, ANY(EL,EM),C)),

PIPE(FARM(P), FARM(ANY(EE,EM)), FARM(C)))

5.2.3 Variant Selection

Variant selection is driven by an adaptive launcher program that takes the Scatter in-
put file, containing relevant model parameters, and a structured graph as arguments.

In the structured graph specification, all individual SEQ nodes are associated with
executable binaries that interface to the queue implementation via the Redis client lib-
rary. A corollary of this architectural style and the capabilities of Redis is that distrib-
uted check-pointing and fault-tolerance become realisable. In exhaustive calibration
mode, feasible variants, represented as directed paths through the structured graph
encoded with ANY, are evaluated on a coarse-resolution grid to gather performance
metrics. Nodes in the graph that are unassociated with an executable file, render the
variant associated with that path unfeasible and are ignored. This allows the incre-
mental introduction of new variants paths as they become available. Subsequently, the
full model is executed with the optimal selected variant.

To avoid redundant re-calibration, performance metrics are memoised as historic
profiling information. These look-up tables are keyed by variant and relevant model
parameters parsed from the Scatter input file that include lattice parameters and
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Figure 5.4: Variant selection is driven by a launcher script that takes the Scatter input file,
containing relevant model parameters, and a structured graph as inputs.

potential functions. Selective re-calibration is performed for new or updated program
binaries associated with graph nodes as they become available.

5.3 evaluation

5.3.1 Eigensolver Performance

Performance evaluations have been carried out using a 64-bit Dell Precision T7500

Server Host machine (Table 5.2) with 4 Intel Xeon 2GHz CPU cores, 4GB RAM and a
NVIDIA Tesla C2050 GPU connected via a PCI express interface running Version 3.2



5.3 evaluation 73

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

   32 64 128  256  512  1024  2048

E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

Matrix Order N

EISPACK GPU

EISPACK CPU

LAPACK zheevr

MAGMA zheevr

Figure 5.5: Execution times for 1000 double precision Hermitian matrices of order N
(32, 64, 128, 256, 1024, 2048) for four different implementations: (i) the Eispack GPU
implementation; (ii) the reference Eispack CPU implementation; (iii) the Lapack

zheevr eigensolver; and, (iv) the Magma zheevr solver using one NVIDIA Tesla
C2050 GPU.

of the CUDA SDK on 64-bit Ubuntu 10.04 Linux. Given that the second-generation
NVIDIA Tesla C2050 GPU is designed specifically for scientific and numerical com-
puting applications, it offers 14 streaming multiprocessors (SM), each providing 32

streaming processors (SP), for a total count of 448 parallel cores. While earlier GPUs
completely lacked double precision support, the Tesla GPU provides improved double-
precision floating point performance.

Figure 5.5 on page 73 compares runtimes for 1000 N-order input matrices with the
reference Eispack implementation, the zheevr routines from Lapack and Magma and
our Eispackgpu implementation. GPU times are collected via the platform timers and
are inclusive of memory transfer overhead. Notably, the Eispackgpu implementation
benefits from batched execution.

Within a critical window (N = 512−2048), the current GPU implementation is cap-
able of yielding performance increases of between 50−100× over the reference Eispack

implementation, a result of performance gains at both thread and block levels. As the
matrix order increases, the GPU memory is able to accommodate fewer matrices to
provide any block-level performance advantage and resource idling increases. There-
fore, the scalability of the approach is restricted for higher values of N by the hard
limit that memory places on GPU occupancy despite the still-observable benefits of
thread-level parallelism.

The superior Lapack cache behaviour delivers consistently higher performance over
Eispack for larger values of N. While equivalent routines in both Lapack and Eispack
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Figure 5.6: Individual and total Execution time per 720-order matrix at various CUDA grid
sizes for htridi, tql2, and htribk, the main three Eispack kernels from the ch driver
(as described in Table 2.2). Each block in the grid maps to a single eigensystem.

are of storage order O(n2), Lapack reuses the same input matrix memory for output
and is therefore more memory efficient.

At smaller problem sizes, our GPU implementation delivers appreciable speedups
even when the overhead of using the Magma libraries results in a performance slow-
down. Within a critical window (N = 512 − 2048), the current GPU routine yields
performance increases of between 50 to 90 times over the baseline Eispack implement-
ation, and one order of magnitude over Lapack, a result of performance gains at both
thread and block levels. As the matrix order increases, the GPU memory is able to
accommodate fewer matrices to provide any block-level performance advantage and
execution resources begin to idle. Therefore, the scalability of the approach is restric-
ted for higher values of N by the hard limit that memory places on GPU occupancy
despite the still-observable benefits of thread-level parallelism. However, Magma per-
formance exhibits a distinct improvement at this point as it is well suited to larger
problems.

The extent to which block-level parallelism is important in our implementation is
demonstrated in Figure 5.6 on page 74, allowing comparison of the effect of different
grid sizes on the average completion time of each of the main kernels in a 720-order
matrix eigensystem. Low grid sizes with few simultaneous input matrices provide
little block-level parallelism and make poor use of the available hardware resources.
Local minima at block sizes that are integral multiples of 14 deliver the best perform-
ance, a reflection of the 14 SMs in the C2050.
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5.3.2 Scatter Variants

Four structural variants (Table 5.3) of Scatter with the SEQ and PIPE forms integrat-
ing the Eispackgpu eigensolvers and the Lapack and Magma equivalents zheevr were
evaluated for execution time with different test models on the Dell Precision Server
and Xookik. In addition, energy requirements were collected for the Dell Precision
Server using a Prodigit 2000MU Plug-in Power and Energy Monitor. Two possible
variants are excluded from this examination:

1. SEQ(P,EG,C), the sequential structural variant integrating the Eispackgpu solver,
requires batched kernels for efficiency.

2. PIPE(P,EL,C), the pipeline structural variant of the Lapack solver would be sub-
jected to overhead that is difficult to justify given that no use of heterogeneous
resources would be made. This leads to consistently worse performance than the
sequential variant SEQ(P,EL,C).

Test Model parameters on the Dell Precision Server and Xookik are outlined in
Tables 5.5a and 5.4a respectively. Total runtime and energy consumption (for Dell
Precision Server) are presented in Tables 5.5 and 5.4.

5.3.3 Modelling C60 Buckminsterfullerene

C60 remains of interest to materials scientists as, despite extensive study since its dis-
covery, the vibrational modes are yet to be completely and definitively assigned. To
date, the most complete assignment process is the work by Parker et al [99], which
compares INS, Raman and infrared spectroscopic data to ab initio model calculations
of the vibrational frequencies for the two phases of polycrystalline C60 at low and
ambient temperatures. However, this treatment still has significant limitations, espe-
cially with assignment of inter-molecular vibrational modes that are poorly described
by density functional theory, and it has proven necessary to apply a semi-empirical
approach (at least initially) to the correct assignment of these modes. Furthermore, the
low temperature ordered phase of C60 has a lattice structure with a 240 atom basis,
presenting matrices for diagonalisation of order 720.

Figure 5.7 on page 76 presents a visualisation of scattering intensities for a the
low-temperature phase of C60, at a constant momentum transfer of Q = 19.5, after
execution on all four nodes on the Xookik cluster. The selected Scatter variant for
this environment and model, as determined by the calibration data presented in Table
5.4 was the Magma version. Figure 5.8 on page 77 presents 3 selected mode contri-
butions and the associated frequencies to the scattering intensity at this value of Q.
Simulation shows that, although the symmetry of the system remains evident, there
is significantly increased complexity in comparison to Aluminium.
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Figure 5.7: Scattering intensity in reciprocal space at a constant momentum transfer of Q =
19.5 for the low temperature phase of C60.
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(a) Mode 1

(b) Mode 10

(c) Mode 101

Figure 5.8: Scattering intensity contributions to 5.7
by mode (left) with frequencies (right) for 3 select modes out of 720

of the low temperature phase of C60 at constant momentum transfer (Q = 19.5).



78 static structural adaptation in heterogeneous architectures

5.4 discussion

The heterogeneous structured implementation combines pattern-based farm and struc-
tured pipeline forms with the ANY construct. Although adaptation has been reduced
to a graph traversal problem via structural abstraction, the results of empirical op-
timisation as static adaptation strategy demonstrate conclusively that, even in this
relatively simple case, there is no optimal structural form for possible variations in:

1. Environmental Conditions

The different execution platforms (Dell Workstation and Xookik) present differ-
ent hardware and software environments with specific constraints e.g. available
CPU and GPU memory. The optimal variant, for the execution time perform-
ance metric and any given model, is generally different in each of these plat-
forms. For example, the variant PIPE(P,EG,C), using our Eispack eigensolver
in a pipeline pattern, is the optimal variant in all but one case on the Dell Work-
station. On the less resource-constrained Xookik however, the FARM(P,EL,C)
and FARM(P,EM,C) variants, with Lapack and Magma are consistently super-
ior.

Further, runtime parameters (e.g. number of processes) and the software environ-
ment (e.g compilers and library versions) alter relative performance profiles. In
particular, software libraries are subject to performance variations over time with
new releases or different compilation and configuration options. Counterintuit-
ively, the Lapack versions of the program, without use of GPU resources are of-
ten the best choice, particularly for smaller systems. Here, the Xookik installation
benefits from an optimised and tuned version of the Blas libraries and avoids the
overhead of memory transfer to the GPU. The eigensolver benchmarks demon-
strate that despite the diminishing popularity of Eispack, it provides an effective
basis for the creation of application-specific tuned implementations of linear al-
gebra routines for modern GPU platforms. However, the routines in the early
Magma library have benefitted from sustained work towards optimisation and
efficiency. On higher-end platforms such as the test Xookik cluster, Magma is
now a consistently superior option for larger models.

2. Extra-functional performance measures.
On the Dell Workstation, performance measures such as runtime lead to dif-
ferent variant selection than instantaneous power draw and cumulative energy
usage. Instantaneous Power draw is an important metric in mobile applications,
where batteries exhibit nonlinear efficiency characteristics, and in large data cen-
ters, where cooling costs may constitute a significant proportion of the energy
budget.
In practice, the performance measure is a composite function of other simpler
such metrics that represents a user-weighted or context-specific multi-objective
compromise. Given that these weights are subject to arbitrary variation, it is con-
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ceivable that for many structural variants, a metric can be found for which it
is optimal. Such a reversal raises the possibility of using metrics as a control
mechanism for structural and qualitative behaviours.

3. Application-Specific Demands
The test models and potential functions impose different performance require-
ments. Smaller lattice systems such as Aluminium and Graphite may even ex-
ecute more efficiently without recourse to GPU resources. Large systems with
more atoms in a basis cell become increasingly more efficient on GPUs as the
data parallelism available increases.

While abstraction and the construction of larger functional systems by the com-
position of verified components has historically provided the foundation of software
engineering, here, we have demonstrated that an optimal choice between a set of struc-
tural alternatives does not exist. These results carry the much broader implication that
software is not performance-composable. Restated alternatively, software performance
does not always exhibit optimal substructure [33] and therefore larger applications
cannot be optimised by the ad hoc greedy heuristic that has become common prac-
tice where components are individually optimised in libraries and subsequently integ-
rated into programs after distribution. As functional modules are developed, any early
decisions made without the benefit of complete information regarding all of the relev-
ant runtime factors, component interactions and overall structural context represents
a hidden compromise. Given this dependence, the only way to consistently achieve
absolute optimal performance may be empirical optimisation in a specific runtime
setting. However, this requires that black box components in libraries and modules
expose options to a performance-optimising layer through a consistent interface.

Limitations

Practical considerations of the real application have kept this evaluation necessarily
simple. However, the size of the variant graph can be potentially very large and of-
fer complex options and constraints. In this setting, exhaustive search may not be a
feasible method of identifying the best program variants. Heuristic search techniques,
simulation and approximate performance modelling may eliminate the need for ex-
haustive calibration to achieve near-optimal performance at reasonable computational
cost.

The process of variant selection has been only semi-automated for this limited
search space. However, the full potential of this method requires novel software tool-
ing and language integration to facilitate systematic exploration of program variants.
The new features in existing languages (e.g. Java, C++), that introduce first class func-
tions, create the possibility of high-level integration with existing applications.

The pipeline variants introduce out-of-process memory transfer overhead and con-
tention that constitutes a bottleneck to the individual processes as memory transfers
are serialised. The implications of more efficient queueing may include significant per-
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formnance improvements in the pipeline variants. Nevertheless, the pipeline imple-
mentation consistently delivers better performance on the memory-constrained Dell
Workstation.
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Global Memory
Bandwidth

Coalesced memory access by algorithm reorganisation.
Transposed matrix layout in some subtasks is necessary to

achieve higher memory transfer bandwidth

Overlapped
Execution

Asynchronous transfers between Host and GPU memory over
multiple streams allow concurrent kernel execution and

overlapped I/O.

GPU Occupancy

Improved register memory usage by the elimination (or reuse
when appropriate) of extraneous register variables to improve
GPU occupancy and facilitate latency hiding on the streaming

multiprocessors.

Shared Memory
Use of explicit caching in shared memory to limit costly global

memory accesses.

Grid and Block
Dimensions

Empirical determination of launch configuration by trial and
error. While, the guidelines recommend that thread blocks sizes

should be multiples of a warp to allow latency hiding for
multiple warps, it is necessary to determine actual optimal

block sizes by testing. The different kernels performed
optimally at distinct block dimensions.

Table 5.1: Performance optimisations applied.
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Dell Precision T7500
Workstation

Xookik

Nodes 1 4

Processing Elements per
Node

4 12

Processor Clock 2.0 GHz 3.07 GHz

Architecture Intel x86-64

Memory per Node 4 GB 50 GB

Network FastEthernet 100 Mbps Infiniband 160 Gbit/s

Operating System
Ubuntu Linux 11.04

(kernel 2.6.38-8)
GNU Linux (kernel

2.6.27)

Compiler GCC gfortran 4.4.5 GCC gfortran 4.3.2

MPI Version OpenMPI 1.4.3 OpenMPI 1.3.3

GPUs per Node 1 1

GPU Model NVIDIA Tesla C2050 NVIDIA Tesla M2090

GPU Memory 3 GB 6 GB

CUDA Cores 448 512

CUDA Version 4.0 V0.2.1221

CUDA Driver Version 290.10

Table 5.2: Heterogeneous Test Configurations
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C

s’

? Magma

Eispack_gpu

C?

Lapack

Magma

?

P

P

s

Scatter Variant Description

1 FARM(SEQ(P,EL,C)) Pattern-based implementation with
Lapack zheevr solver

2 FARM(SEQ(P,EM,C)) Pattern-based implementation with
Magma zheevr solver

4 PIPE(P,EM,C) Structured Lyapunov drift-stabilised
pipeline with Magma zheevr

5 PIPE(P,EG,C) Structured Lyapunov drift-stabilised
pipeline with Eispackgpu

Table 5.3: Scatter variants evaluated.
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Model Potential
Matrix
Order

(
|Q|max−|Q|min

δ|Q|

)
×(

2π
δθ

)2
1 Aluminium

Lennard
Jones

3 80000

2 Graphite Brenner 6 80000

3 SWNT C(10,10) Brenner 120 80000

4

C60 Ambient
Temperature

Phase

Brenner
(in-

tramol)
Lennard

Jones
(inter-
mol)

180 80000

5

C60 Low
Temperature

Phase
720 80000

(a) Xookik Test Models

Procs FARM(P,EL,C) FARM(P,EM,C) PIPE(P,EM,C) PIPE(P,EG,C)

3

2 91.6 103.3 88.0 85.6

4 47.1 55.5 48.0 48.1

8 26.0 33.6 30.0 33.6

12 18.6 27.5 26.6 35.1

4

2 177.1 141.8 193.8 195.8

4 89.9 74.8 102.8 104.9

8 48.6 43.4 55.9 57.0

12 33.4 34.1 45.0 45.8

5

2 182.5 89.7 111.3 92.8

4 93.7 48.6 65.5 71.8

8 53.4 30.3 42.8 62.4

12 59.7 33.3 33.7 51.3

(b)

Table 5.4: Runtimes (seconds) of Scatter variants on single node of Xookik cluster.
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Model Potential
Matrix
Order

(
|Q|max−|Q|min

δ|Q|

)
×(

2π
δθ

)2
1 Aluminium Lennard Jones 3 10000

2 Graphite Brenner 6 10000

3 SWNT C(10,10) Brenner 120 100× 502 = 250000

4
C60 Ambient

Temperature Phase

Brenner (intramol)
Lennard Jones

(intermol)
180 20× 602 = 72000

5
C60 Low

Temperature Phase
720 10× 152 = 2250

(a) Dell Server Test Models

Procs FARM(P,EL,C) FARM(P,EM,C) PIPE(P,EM,C) PIPE(P,EG,C)

2

1 573.5 739.3

2 288.3 391.78

4 149.4 263.6

3

1 423.9 391.0 247.7 211.7

2 209.9 198.0 175.3 109.4

4 114.0 107.3 137.8 66.2

4

1 760.0 569.5 612.0 569.2

2 391.0 301.1 329.8 288.7

4 209.7 153.9 232.0 159.0

5

1 562.2 403.3 156.1 94.0

2 339.6 242.8 152.1 74.0

4 220.4 142.8 153.00 72.0

(b)

Table 5.5: Runtimes (seconds) of Scatter variants on Dell Workstation.
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Model Potential
Matrix
Order

(
|Q|max−|Q|min

δ|Q|

)
×(

2π
δθ

)2
1 Aluminium Lennard Jones 3 10000

2 Graphite Brenner 6 10000

3 SWNT C(10,10) Brenner 120 100× 502 = 250000

4
C60 Ambient

Temperature Phase

Brenner (intramol)
Lennard Jones

(intermol)
180 20× 602 = 72000

5
C60 Low

Temperature Phase
720 10× 152 = 2250

(a) Dell Server Test Models

Procs FARM(P,EL,C) FARM(P,EM,C) PIPE(P,EM,C) PIPE(P,EG,C)

2

1 32.61 1.18

2 17.59 30.54

4 10.02 21.73

3

1 25.05 29.48 19.78 17.18

2 12.81 15.69 14.45 9.65

4 7.65 9.12 11.71 6.47

4

1 45.01 42.93 47.5 45.28

2 23.98 23.77 26.97 24.53

4 13.93 13.18 19.86 15.03

5

1 33.2 30.58 13.31 9.13

2 21.59 18.77 13.02 7.75

4 15.07 12.23 13.2 7.59

(b)

Table 5.6: Total energy consumption (Watt-hours) of Scatter variants on Dell Workstation .
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Model Potential
Matrix
Order

(
|Q|max−|Q|min

δ|Q|

)
×(

2π
δθ

)2
1 Aluminium Lennard Jones 3 10000

2 Graphite Brenner 6 10000

3 SWNT C(10,10) Brenner 120 100× 502 = 250000

4
C60 Ambient

Temperature Phase

Brenner (intramol)
Lennard Jones

(intermol)
180 20× 602 = 72000

5
C60 Low

Temperature Phase
720 10× 152 = 2250

(a) Dell Server Test Models

Procs FARM(P,EL,C) FARM(P,EM,C) PIPE(P,EM,C) PIPE(P,EG,C)

3

1 212.8 271.4 287.5 292.1

2 219.7 285.2 296.7 317.4

4 241.5 305.9 305.9 351.9

4

1 213.2 271.4 279.5 286.4

2 220.8 285.2 294.4 305.9

4 239.2 308.2 308.2 340.4

5

1 212.8 237.0 307.1 349.6

2 228.9 278.3 308.2 377.2

4 246.1 308.2 310.5 379.5

(b)

Table 5.7: Instantaneous Power Consumption (Watts) of Scatter variants on Dell Workstation





6
D Y N A M I C A D A P TAT I O N I N T H R O U G H P U T- O R I E N T E D
P I P E L I N E S

Chapter 5 considered a structural representation of program alternatives that allows
static adaptation by an exhaustive exploration of the space of program variants rep-
resented by the ANY operator. The performance measures considered – runtime, total
energy consumption and average power draw – were cumulative. This chapter con-
siders runtime optimisation of instantaneous performance measures in the structured
pipeline variant of the Scatter application and further begins to explore the possibil-
ity of using these metrics as a dynamic control mechanism in an ancillary application.

While the structural forms in the previous chapter demonstrate static adaptation,
this chapter considers the instrumented queues of Section 3.2.1 as mechanisms of
composition and dynamic adaptation. Therefore, one objective is to demonstrate that
the adaptation framework of Chapter 3 presents sufficient flexibility to allow the real-
isation of diverse dynamic adaptation mechanisms. Another objective is to highlight
the importance of the instrumented queues as a source of runtime feedback that is
representative of the extrafunctional program state as well as their role as mechan-
isms for the imposition of dynamic control. Thus, in considering both centralised and
decentralised coordination approaches, heuristics are presented that are inherently
centred around the unifying concept of cost while differing significantly in the man-
ner in which information about state is gathered and, conversely, control decisions are
effected.

6.1 optimising utilisation

Parallel pipelines decompose computational problems into concurrent stages with out-
puts from one stage providing inputs to its immediate successors. The tasks flowing
through the pipeline may correspond to individual loop iterations. The pipeline is a
fundamental compositional unit of more complex streaming heterogeneous applica-
tions that combine CPU and GPU resources [98, 109].

Consider FOR(P,n), a loop within a program with n iterations executing a body
P with no dependencies between iterations as is characteristic of a divisible work-
load [18]. Let us assume that the program is being adapted for execution on a hetero-
geneous accelerator. Whether by profiling or otherwise, a contiguous block of state-
ments B is identified within P as a good candidate for re-implementation that meets
the performance criteria of the device. B is subsequently rewritten for the new plat-
form as a functionally equivalent alternative B

′
. In general, if A and C are statements

89
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Figure 6.1: Farm transformation of a divisible workload with GPU payload.

executed before and after the accelerator kernel B
′
, then dependencies exist that im-

pose a strict ordering on the subroutines.

Ai ≺ Bi ≺ Ci ∀ i = 1...N

where Ai, Bi and Ci represent the ith iteration of A, B and C respectively.
The implementation of a GPU version may be represented as the structural trans-

formation:

P → SEQ(A,B,C)

B → ANY(B,B
′
)

Thus, the transformed program may be represented as

FOR(P,n) → FOR(SEQ(A,B,C),n)

→ FOR(SEQ(A, ANY(B,B
′
),C),n)

Since FOR(P,n) is a divisible workload, a decomposition into a simple FARM based
on the master-worker pattern would be natural.

FOR(P,n) → FOR(SEQ(A,B,C),n)

→ FARM(SEQ(A, ANY(B,B
′
),C))
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Figure 6.2: A, B and C are code sections in a main loop decomposed cyclically over k processes
in an SPMD pattern.

However, this conventional GPU-as-accelerator model leads to a number of limitations
(Figure 6.2 on page 91):

1. The GPU kernels may only perform optimally for batched inputs that are able
to use all available streaming multiprocessors. While the limited host memory
available to the application may only hold k processes, k instances of B will,
in general, not necessarily be sufficient for peak efficiency of the GPU kernels
(Figure 5.6 on page 74).

2. Latency hiding, necessary to offset the cost of expensive host-to-device memory
transfer overhead, is not possible.

3. There is alternate resource idling as the GPU is typically idle during A and C
while the CPUs are idle during B.

The actual, relative performance of A, B and C on the CPUs and GPUs may only
be determined at runtime as they depend on application-specific requirements, cap-
abilities of the hardware and software environment and the choice of performance
measure. Potentially, the presence of multiple GPUs adds further complexity to the
overall problem.

In practice, the large memory requirements of an application may impose additional
limitations on the number of processes that can be held in main memory, even when
the performance penalty of inefficient virtual memory is disregarded. This application
may be unable to generate sufficient GPU workload within the constraints of available
memory to maximise utilisation of the computational resources available.
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6.1.1 Structure and Utilisation

To avoid these limitations, the program may be decoupled into a pipeline to extend
the parallelism. The simple pipeline structural pattern may be regarded as a special
case of the following alternative composed PIPE transformations in which each farm
is restricted to a single worker:
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Figure 6.3: Pipeline-of-farms transformation

1. Pipeline-of-Farms

A nested skeleton representation with the individual stages of a pipeline ex-
ecuted by multiple workers in a farm (Figure 6.3).

FOR(P,n) → FOR(SEQ(A,B,C),n)

→ PIPE(A, ANY(B,B
′
),C)

→ PIPE(FARM(A), FARM(ANY(B,B
′
)), FARM(C))

2. Farm-of-Pipelines

Another nested skeleton representation with a farm comprising multiple work-
ers that are themselves instances of the pipeline pattern (Figure 6.4).

FOR(P,n) → FOR(SEQ(A,B,C),n)

→ FARM(SEQ(A, ANY(B,B
′
),C))

→ FARM(PIPE(A, ANY(B,B
′
),C))

For the pipeline-of-farms pattern, (Figure 6.3 on page 93), the non-blocking semantics
of an asynchronous pipeline avoid the constraints imposed by tight coupling. As
processing at each stage is independent, inputs to an accelerator may be arbitrarily
grouped into batch sizes that match the ideal performance requirements of any ker-
nels. Furthermore, latency hiding, through overlapped computation and communica-
tion, becomes possible.
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Figure 6.4: Farm-of-pipelines transformation

6.1.2 Queues and Utilisation

Following the choice of an alternative structure, an examination of queue levels in a
three-stage heterogeneous pipeline makes the utilisation problem evident. In a simple
simulation of the pipeline of farms structure in Figure 6.3 on page 93, stages I and
III of the pipeline are strictly CPU-only stages as GPU implementations are unavail-
able. As Stage II is the computationally dominant stage of the pipeline and has both
CPU and GPU implementations, only the GPU implementation is in use as it offers
higher performance. For stages I and II, there are two expected scenarios depending
on whether the CPU or GPU constitutes the bottleneck in the pipeline (Figure 6.5 on
page 95).

1. Producer Deficit: Stage I constitutes the bottleneck to the pipeline if and only
if it is unable to provide and process data for the stage II GPU at a sufficient
rate. This may arguably be the result of performance or memory limitations
on the host machine and is illustrated in Figure 6.5 on page 95(a) for a simple
simulation. In this case, it may be necessary to use external resources to increase
output from this stage for better GPU utilisation. Adding external CPUs will
eventually lead to the next scenario.

2. Consumer Deficit: If Stage II constitutes the computational bottleneck in the
application pipeline, the CPUs at stage I will complete their work units early
after filling the output queue and will wait for the GPU to complete the current
batch of work at stage II. As presented in Figure 6.5 on page 95(b), there is
noticeable resource waste at the idle stages of the pipeline caused by a pattern
of intermittent CPU activity.



6.1 optimising utilisation 95

Figure 6.5: Simulation of the queue levels and CPU/GPU usage patterns for (a) Producer defi-
cit and (b) Consumer deficit.

In Figure 6.6 on page 96, the simple heuristic is applied to the same simulation to
achieve improved resource utilisation.

In applying the adaptation framework, a program with n queues is regarded as
representing a discrete n-dimensional extrafunctional state space of queue levels. For
any given operation or stage, the corresponding input and output queues constitute a
queue pair within a two-dimensional subspace where operations result in transitions
to neighbouring states.

As an example, consider only the input and output queues for the GPU stage of
the three-stage pipeline in Figure 6.3 on page 93, the effect of executing any of the
stages A, B and C on this subspace (q1,q2) of the program state are the transition
vectors (1,0), (-1,1) and (0,-1). Throughput vectors may be defined that represent the
expectation throughput of each operation as (TA, 0), (−TB, TB), (0,−TC). These are
analogous to the components of a velocity vector in the state space.

In general, the components of the throughput vectors follow from the topology of
the dataflow graph and are subject to stochastic variation that cause the program to
perform a random walk in the queue state space. However, at runtime, two conflicting
concerns exist:

1. Provision of sufficient instantaneous input workload to the batch-oriented GPU
kernels to maintain utilisation, efficiency and minimise idling due to latency
given their nonlinear performance characteristics (Figure 5.6 on page 74). For a
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Figure 6.6: A basic simulation of the our heuristic strategy, demonstrating that bottlenecks
have been eliminated by queue monitoring and dynamic process reassignment.

GPU input queue level qg and ideal kernel batch size b, this corresponds to the
runtime efficiency requirement of Equation 6.1.

qg > b (6.1)

2. Avoidance of queue overflow for long-running throughput-oriented jobs that
occur when the memory required by the program exceeds available primary
memory. Where ci is the memory required for each entry in queue i, qi is the
corresponding queue level and M is the total memory available to the program,
maintaining memory utilisation within defined bounds to avoid the degraded
performance from paging or outright program failure is the hard constraint of
Equation 6.2. ∑

i

ciqi < M (6.2)

Subject to the additional constraint that the queue levels qi are non-negative, these con-
siderations impose boundaries that describe a triangular feasible region for the GPU
stage input and output queues. With a stochastic controller that alters the probability
of executing any operation, the individual stage throughputs Ti may be adjusted to
maximise expected utilisation or optimisation of some performance measure. In this
circumstance, instrumented queues allow information to be gathered about the cur-
rent queue states in order to select the appropriate action determined by the policy.

6.2 pipeline instances
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FastFlow Market Based Scatter

G Random Hermitian Matrix Dynamical Matrix
for P(Q, θ,φ)

S Eispackgpu

ANY(
magma_zheevr,
lapack_zheevr)

ANY(
magma_zheevr,

Eispackgpu)

V Error Measure Scattering
Contribution

Queue Type
Generalised

Queues
Queue Queue

Queueing
Discipline

FIFO
fuzzy cost as

priority
FIFO

Optimiser Simple Heuristic
Market Based

Control
Lyapunov Drift

Queue size N/A Available Available

Queue
Implementation

non-blocking
internal data

structure

shared internal
data structure,

ZeroMQ, HTTP
Redis

Supporting
Structure

Native Threads Native Processes
SPMD Process

Pool

Implementation
Mechanism

pthreads UNIX Processes MPI Processes

Table 6.1: Three adaptive pipeline instances of FARM(PIPE(FARM(G), FARM(S), FARM(V)))
using generalised queues in FastFlow with a simple heuristic and instrumented
queues for decentralised coordination in a market-based system and centralised co-
ordination in the Scatter application.
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The divisible workload with a GPU payload is a general application pattern that
includes the Scatter program where the parallel implementation has resulted in a
hierarchical composition of two dwarf instances:

1. MapReduce or Monte Carlo for the embarrassingly parallel application.

2. Linear Algebra for the GPU Kernels.

The composition of dwarfs may be realised using queues, allowing the application of
our framework. We consider dynamic adaptation in three instances of this pattern:

1. Kernel Validation Applications

a) A FastFlow implementation used to perform validation of the Eispackgpu

eigensolver kernels.

b) A Market-Based re-implementation of the validation framework with in-
strumented queues used to explore decentralised coordination with the
Magma eigensolvers.

2. The pipeline variant of the Scatter application presented in the previous chapter
used to explore centralised coordination.

These instances of the adaptive pipeline, summarised in Table 6.1 on page 97, are
realisations of the dynamic adaptation framework outlined in Chapter 3. The general
definition of instrumented queues (Section 3.2.1) are specialised into auction mech-
anisms as the basis of a decentralised market with emergent coordination. For the
pipeline variant of Scatter, a centralised heuristic is implemented based on a cost
function that is derived from the extrafunctional state associated with the queues.

6.2.1 Kernel Validation Applications

Establishing the numerical accuracy of the kernel implementation is an ancillary prob-
lem that is approached by performing validation testing on large numbers of test
Hermitian matrices. This testing process involves:

1. Generation of suitable Hermitian test matrices, A.

2. Solution using the test GPU kernels to compute the eigenvectors E and eigen-
values D on the GPU.

3. Verification of the computed eigenvectors and eigenvalues on the CPU. For a
matrix of eigenvectors E and a corresponding diagonal matrix of eigenvalues D,
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Figure 6.7: A three-level hierarchy of skeletons, consisting of a distributed farm of MPI work-
ers at the top-level containing nested pipeline workers with nested farm stages and
a GPU stage.

it is expected that AE = ED. Therefore, a possible error function is the Frobenius
norm of the matrix

ε = ‖AE− ED‖F

where the Frobenius norm of an m×n matrix M is defined as

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

|mij|2

The error function is verified to be less than a tolerance value that accounts for
acceptable floating point truncation error.

This is a generic streaming test application for evaluating the correctness of kernels
for a computational accelerator that are the result of the transformation S → S

′
on

a potentially large number of specimen inputs. Kernels executing on the device take
some input data generated on the host, perform computations on that data on the
accelerator and produce results that require verification on the host. This program
may be represented as

FOR(SEQ(G,S ′,V),n)

where the stages G, S ′ and V correspond to data generation, solution and verification
operations respectively and n is the number of specimen inputs.

6.2.1.1 Testing Kernels in FastFlow

The FastFlow framework [4] is a C++ template library that provides structural con-
structs for the implementation of parallel shared memory programs for cache-coherent
multicore architectures. Parallel programs are implemented as compositions of simple
skeleton primitives, that include farm and pipeline primitives, into complex skel-
eton trees. Despite relying on an efficient implementation of lock-free and fence-free
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Figure 6.8: Pipeline stages inherit from the ff_node class.

queues, FastFlow emphasises profiling of user functions over queues as inputs to in-
ternal schedulers.

FastFlow’s streaming patterns provide coordination to control the flow of work
between multiple concurrent threads. While extensively tested in shared-memory multi-
core environments, GPU integration remains an area of active research where the suit-
ability of FastFlow for workloads that incorporate GPU kernels is yet to be established.

To test the numerical accuracy of the Eispackgpu eigensolvers, an implementation
of the kernel validation test application is implemented using the pipeline constructs
of the FastFlow framework. Generation and verification in the first and final stages of
the pipeline operate on these individual batches of independent test problems. This
presents another level of parallelism that is well suited to the farm skeleton. Employ-
ing skeletal composition allows a nested parallel hierarchy.

The abstract FastFlow pipeline prototype class provides three virtual overridable
member functions:

• svc_init for stage initialisation,

• svc to perform the actual computations at each stage,

• svc_end for finalisation and cleanup.

A class derived from the ff_node prototype, may represent either a generic pipeline
stage or worker in a farm. The ff_node class is subclassed to implement a Gener-
ate_stage, Solve_stage and Verify_stage representing the initial, intermediate and ter-
minal stages of the pipeline (Figure 6.8 on page 100). The Solve_stage invokes the
Eispackgpu driver, as the current version of FastFlow does not provide any direct
mechanisms for managing the execution of CUDA kernels.

The pipeline stages themselves are added to a ff_pipeline container object in the
proper sequence and execution started by an invocation of the run_and_wait_end
method (Figure 6.9 on page 101).

It is difficult to justify the conceptual complexity of nesting the FastFlow farm skel-
eton within the initial and final stages of the pipeline, in order to achieve simple multi-
threaded functionality. Therefore, the nested farms are implemented with OpenMP
work distribution.
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int main(int argc, char * argv[])
{
...
ff_pipeline pipe;
ff_node *generate_stage;
ff_node *solve_stage;
ff_node *verify_stage;

//Instantiate pipeline stages
generate_stage= new Generate_stage();
solve_stage = new Solve_stage();
verify_stage = new Verify_stage();

//Add stages to pipeline
pipe.add_stage(generate_stage);
pipe.add_stage(solve_stage);
pipe.add_stage(verify_stage);

...

//start the pipeline
pipe.run_and_wait_end();

...
} �

Figure 6.9: Pipeline instantiation and execution.

An additional level of nesting, using an MPI farm to handle distribution over mul-
tiple nodes in a cluster, allows a three-level hierarchy, consisting of a distributed farm
of nested pipeline workers with nested farms at each stage (Figure 6.7 on page 99).

Simple Heuristic with Generalised Queues

While FastFlow has been evaluated on small-scale and fine-grained parallel jobs, ap-
plications to large-scale, coarse grained workloads with significant memory demands
are an area of active work. Early testing revealed that the pipeline implementation in
FastFlow leads to steadily increasing buffer levels before bottleneck stages. For long-
running high-throughput pipelines, this very rapidly consumes all available memory
on the machine and leads to a fatal program error.

As the queues in FastFlow, an existing skeleton framework, do not meet the defini-
tion of generalised queues, limited information is available. Therefore, a simple heur-
istic strategy is necessary. The extreme cases that lead to buffer overruns and under-
runs may be avoided by dynamically reallocating the CPU at stage I to other stages
of the pipeline (Stage II) when necessary. This approach can be reduced to two simple
rules local to each process:

1. Keep all queue levels qi above a set lower bound qL to ensure the availability of
work for the inputs to succeeding pipeline stages i.e. qi > qL.
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Figure 6.10: Queue space visualisation. The effect of the heuristic is to keep the system within
the bounding box.

2. Keep all queue levels qi below a set upper bound qU to ensure the availability
of space for the outputs of preceding pipeline stages i.e. qi < qU.

Queue stability occurs when the time-averaged rates of production and consumption
are matched and buffer overruns and underruns are avoided. This is only possible
when the buffer levels have lower variability. Figure 6.10 on page 102 illustrates that
the effect of the heuristic is to keep the system within the bounding box.

6.2.1.2 A Market-Based Validation Pipeline

One approach to solving complex scheduling problems is Market Based Control (MBC)
in which virtual economies of trading agents provide loosely-coupled coordination
of resources [117]. The MBC paradigm attempts to exploit the tendency of economic
systems to exhibit complex self-organising characteristics that arise from the interac-
tions of competing agents seeking to maximise their individual interests with limited
information. In markets, price signals carry implicit information about system dynam-
ics resulting from the interplay of supply and demand. The competitive equilibria
that arise in market systems are typically allocatively efficient [36] and respond to
external influences as if directed by an invisible hand. They are evolving complex sys-
tems [11] which are resilient to shocks, degrade gracefully in the event of failure and
are highly scalable as they avoid the communication overhead of centralised control
in very large systems. Applications of MBC include distributed air conditioning con-
trol in buildings [30], job shop scheduling [136], auction-based manufacturing control
[21] and multi-robot coordination[62]. Particularly relevant to this domain are auction
protocols for decentralised scheduling [131] and resource allocation[81].
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Figure 6.11: Cost-based auctions allow data exchange between agents

This alternative implementation of the test framework of Subsection 6.2.1.1 uses
market-inspired coordination to achieve decentralised coordination with the Lapack

and Magma libraries as CPU and GPU alternatives. A distributed ensemble of agents
perform transformations on data until they reach a terminal collector agent at the sys-
tem boundary.

To impose market-based interactions on these agents, auctions are introduced where
competition is based on minimisation of a user-defined cost-function. The fairness of
these competitions is controlled by a probabilistic temperature parameter.

Reverse Auctions with Instrumented Queues

At intermediate queues, cost-based auctions allow data exchange between agents (Fig-
ure 6.11 on page 103). This approach provides an indirect reverse single-sided auction
where producer agents compete to be chosen by consumer agents seeking the lowest
cost items. The reverse auction is asymmetric and places the competitive pressure on
the producers. With blocking semantics, it is achieved by:

1. Allocating a fixed number of slots per producer agent in the queue. A producer agent
is only allowed to add a new entry to the queue if it has an available unused slot.
Producers enter a wait state until a free slot becomes available. The put_filter
function of the instrumented queue implementation returns true if the current
agent, as determined by the metadata m associated with each entry, has not
exceeded its slot quota.

2. Allowing unrestricted consumer agent access to queues. Each consumer agent request
is granted the lowest cost item available in the queue at that time. A slot is
freed for the winning producer agent. Consumers enter a wait state if the queue
is empty. The get_filter function of the instrumented queue implementation
always returns true.

3. Prioritising queue entries by their total cumulative production cost with a temperature-
dependent valuation error. Producer agents append a resource usage field on each
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item they put in the queue. The overall execution cost, C, is the sum of all indi-
vidual unit costs (Equation 6.3).

C =
∑
j

∥∥vj
∥∥ (6.3)

Where
∥∥vj
∥∥ is the cost of the item with index j. which is a function of its meas-

ured resource usage vector vj associated with its computation. The unit cost is a
norm on the space of resource usage vectors, specifically a weighted Taxicab or
Manhattan norm with user-defined weights wi (Equation 6.4),

∥∥vj
∥∥ =
∑
i

wi|vij| (6.4)

for a resource usage vector vj and a user defined weight vector w. Therefore the
cost function may be expressed as Equation 6.5.

C =
∑
j

∥∥vj
∥∥ =
∑
j

∑
i

wi|vij| (6.5)

In a typical application, relevant measurable parameters that constitute compon-
ents of vj may include CPU time, memory, I/O, network communication, energy
consumption, latency and failure risk. Changing or evolving user preferences
may be reflected by reassigning the components of the weight vector w. In a
suitable dynamic runtime framework, the weight parameters should be capable
of flexibly guiding execution towards or away from certain resources.

In this competitive auction setting, the higher-cost agents may never get an op-
portunity to participate in an exchange until the system approaches termination.
However, given a dynamic execution environment such as a cloud platform with
changing spot pricing or a cost function redefined by deliberate user action, the
cost landscape may be subject to arbitrary variation.

We define the temperature parameter σ2 to introduce controlled randomness by
increasing the valuation error at the auction queues. This allows sub-optimal
producer agents an opportunity to win and re-evaluate their possibly improved
positions. Given an item cost µ =

∥∥vj
∥∥ and temperature σ2, the apparent cost or

valuation, returned by the instrumented queue function hash, becomes a random
variable characterised by the Gaussian probability density function (Equation
6.6) with the actual cost as expectation value.

f(x;µ,σ) =
1

σ
√
2π
e−

1
2 (
x−µ
σ )2 (6.6)

The temperature parameter allows for exploration and facilitates convergence
towards stable equilibria rather than metastable states. It is based on analog-
ous statistical mechanical concepts in condensed matter physics that have been
applied in econophysics and simulated annealing [24, 1].
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6.2.2 Scatter Pipeline Variant

The pipeline variant of Scatter in Chapter 5 integrates alternative GPU kernels using
intermediate queues to decouple the subroutines that require CPU and GPU resources.
The kernel validation applications presented in Subsection 6.2.1 are simplified ver-
sions of this pipeline that are implemented without the practical considerations and
constraints imposed by the existing procedural code structure of Scatter. However,
as is commonly the case with scientific codes, parallel constructs are often added after
the performance of a sequential version has proven to be inadequate and significant
architectural choices have already been made. Although, these parallel adaptations
may be systematically implemented in conformance with established patterns [89], in
general, they do not map neatly to the FARM and PIPE constructs that have so far
been considered.

Therefore, it is necessary to consider alternative methods by which this adaptive
framework may be integrated into the existing application without recourse to a com-
plete re-implementation. To achieve this, a loop-switch transformation (Listing 6.1) is
introduced using surrogate queues for the outer FARM. The stage operations A, B
and C are performed on the data from the actual queues queue1 and queue2. Where
geti and puti represent dequeue and enqueue operations on queue queuei, this al-
ternative form is represented by (Figure 6.12 on page 107):

FOR(P,n) → FOR(SEQ(A,B,C),n)

→ FARM(ANY(SEQ(A,put1), SEQ(get1,B,put2), SEQ(get2,C)))

In the SPMD pattern of Scatter, the FARM is executed by a pool of native MPI
processes and requires an out-of-process shared queue implementation. Although this
loosely-coupled architecture incurs some performance overhead, this penalty may be
justified if the ratio of computation to communication is sufficient to offset the penalty
of interprocess communication. Furthermore, end-to-end tracking of issued and com-
pleted iteration indices at the pipeline endpoints allows fault tolerance through the
isolation of local process or node failures. The application state itself may be “check-
pointed” by persisting enqueued data to secondary storage.

Lyapunov Optimisation with Instrumented Queues

Lyapunov optimisation [92] is an approach to the stochastic optimal control of queueing
systems that is based on the use of Lyapunov functions. Lyapunov functions are im-
portant for establishing stability in control systems and impose a measure by associat-
ing a scalar value with all possible states of the dynamical system.

f : Zn → Q

In the Lyapunov drift method, a Lyapunov function is selected such that less desirable
states correspond to higher values. For an action a applied at time slot t where L(t)
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Listing 6.1: Loop-switch transformation of procedural Fortran loop to decouple queues in
Scatter

!Original Loop
do i = 1, n

!block A...
5

!block B...

!block C...

10 end do

!Transformed loop with intermediate queues
do

15

call getnextaction(action)

if (action .eq. PRODUCE) then

20 !block A...
call put_1

else if (action .eq. SOLVE) then

25 call get_1
!block B...
call put_2

else if (action .eq. CONSUME) then
30

call get_2
!block C...

else if (action .eq. EXIT_) then
35

!exit the loop
exit

else
40

!unknown action
cycle

end if
45

end do �
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Figure 6.12: SPMD realisation of a farm pattern with surrogate queues

and L(t+ 1) are the respective values of the Lyapunov function before and after the
action, the Lyapunov drift is defined as

∆(t)a = L(t+ 1) − L(t)

Decisions between the elements of the set of possible actions at time t are made
to greedily minimise the Lyapunov drift. In queuing networks, this method allows
optimisation of performance measures such as throughput or utilisation subject to
stability and has been extensively applied in multi-hop packet switching networks [45,
118], concurrent databases and parallel processing [119].

The drift-plus-penalty algorithm is an extension of Lyapunov drift that allows min-
imisation of the time average of a penalty function subject to queue stability. Without
a penalty function, drift-plus-penalty reduces to the backpressure algorithm (or max-
weight algorithm) where the Lyapunov function f is defined as a quadratic function
of queue backlogs qi.

f(q) =
∑
i

q2i

For selection of the next action in Listing 6.1, we consider the two-dimensional
subspace of the queue vector space constituted by the input and output queues of the
intermediate GPU stage in the pipeline. As discussed earlier, this triangular region
is bounded by the constraints of available memory and non-negative integer-valued
queue sizes. For each point in the state space, we define a Lyapunov function that is
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a variation of the quadratic function of queue backlogs adopted in the backpressure
algorithm [92].

f(q) = ‖q − q‖ =
∑
i

(qi − qi)
2

With the choice of a drift-minimal state at another point q of the region (e.g. the
centroid), this function takes into account considerations of minimum GPU kernel
batchsize and avoidance of the undesirable boundary states.

6.3 evaluation

These experiments on the 4-node multi-GPU cluster Xookik (hardware specifications
in Table 4.2 on page 44) are intended to demonstrate that:

1. queues provide sufficient information to guide runtime decision making towards
improving performance.

2. queues provide a mechanism for achieving both decentralised and centralised
coordination.

3. desired qualitative system behaviours may be achieved by suitable choice of the
associated functions and parameters that capture extrafunctional user concerns.

6.3.1 Simple Heuristic in the FastFlow Kernel Validation Pipeline

For the FastFlow kernel validation pipeline, a performance evaluation was carried out
on Xookik with 4 MPI processes, and 12 workers at each nested farm in the pipeline
stages. 55,296 pseudorandom double precision floating point Hermitian test matrices
of order 1024 were streamed through the pipeline to establish that the computed error
is within acceptable tolerance.

Table 6.2: Active execution times on individual GPUs and Total Program Runtime on Test
Cluster.

Resource Runtime (seconds)

GPU1 8995.6

GPU2 8930.1

GPU3 8930.7

GPU4 8995.4

Total Cluster Runtime 9227.0

Table 6.2 indicates that while the total application runtime on the cluster was 9227

seconds (or 2.53 hours), all GPUs in the cluster were computationally active for a min-
imum of 8930 seconds (or 2.48 hours). This represents good overlap of execution for
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both the CPU and GPU stages of the pipeline, validating the choice of this architectural
style for maximising resource utilisation.

Figure 6.13a on page 110 presents memory usage over one hour of execution for the
entire cluster. Set at 50% of the total 200 GB of physical memory available, memory us-
age remains within the pre-configured limits with new tasks injected into the pipeline
when free memory rises above 100 GB and throttling enforced below 80 GB. It is
evident that the memory demands of this application are substantial.

As expected, the GPU stage constitutes the primary bottleneck to the pipeline. Fig-
ure 6.13b on page 110 indicates that CPU usage varies between 30% and 60% following
variations in the number of active processes.

6.3.2 Decentralised Coordination in the Market-Based Kernel Validation Pipeline

These experiments are intended to establish that the MBC approach achieves some
degree of cost minimisation in a heterogeneous environment when compared to a na-
ive random process allocation. In addition, they demonstrate behaviour in response
to variations in the control parameters. As we assert that cost functions should be cap-
able of capturing user preferences, we consider a common scenario in which the desire
exists to maximise GPU utilisation in the heterogeneous Xookik cluster by choosing
an appropriate cost function. In this case, the cost function adopted is simply the total
CPU time in CPU-seconds.

In the three-stage pipeline for eigensystem generation, solution and verification with
inter-stage auction queues, a GPU-based alternative to the computational bottleneck
solution stage is available from the Magma library of linear algebra routines [3]. We
compare the cost of processing 2000 input matrices of order 2048 with the test applic-
ation using naive FIFO queues, as in StreamIt [121, 63], against that obtained with the
competitive auction mechanism on Xookik.

Subsequently, to demonstrate the response to variation of the control parameters –
temperature and collection delay – 20,000 input matrices of order 384 are provided as
inputs to the test application. The actual details of interest emerge from a statistical
analysis of unit cost frequency distributions for larger numbers of smaller matrices
with:

1. collection delays of 0.0, 0.001, 0.008, 0.01, 0.015, 0.02, 0.03 and 0.07

2. temperatures σ2 of 1,2,4,8,16,64

Competitive Auctions

Figure 6.14 on page 111 compares the use of FIFO work queues, a classic load balan-
cing approach for parallel pipelines [121, 63], against the MBC auction queues. The
total costs for the entire execution are 110,278 CPU-seconds and 89,730 CPU-seconds
respectively. This represents an 18.6% reduction in execution costs for the selected cost
function when using the MBC framework.
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(a) Overall memory usage over one hour of execution for all four cluster nodes.
STOP_THRESHOLD and START_THRESHOLD are respectively 50% and 40% of the
total 200GB available physical memory. The distinctive saw-tooth waveform follows
form intermittent throttling of the pipeline.

(b) Overall cluster CPU usage percentage over one hour of execution. As the GPU stage
constitutes the bottleneck, throttling adaptively imposes a limit on CPU usage, pre-
venting pipeline queue overflows.

Figure 6.13: Overall cluster CPU and memory usage over one hour of execution for all four
cluster nodes
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Figure 6.14: Total computation cost C for staged auctions and traditional FIFO queues

Clearly, the MBC technique is capable of lowering total costs. However, a natural
question is whether the cost function captures the intended user preferences. In this
case, a cost function has been chosen that penalises CPU usage in order to favour
GPU resources when available. It should therefore be expected that as the GPU is
more efficient at processing large matrices of this size, the overall throughput should
be increased. For this run, the execution time was reduced from 2170 to 1909 seconds.

Control Parameters

Collection Delay

Without restricting the throughput of the pipeline, an opportunistic collector agent
impatiently retrieves results as they become available. This corresponds to a collection
delay of 0 at which a total cost of 9264 CPU-seconds was observed. Introducing the
smallest collection delay of 0.001 causes a dramatic total cost reduction by 10% to
8319 CPU-seconds. Counter-intuitively, this delay increases overall pipeline through-
put from 116 to 118 arrivals per second. Incorporating a deterministic delay between
collections allows the framework sufficient time to generate new low-cost outputs and
maintain the competitive pressure imposed by finite economic demand.
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Figure 6.15: Throughput vs Cost Trade-off. Varying the collection rate at the collector agent.
Starting at a peak throughput of 118 collections per second, there is a nearly steady
decrease in total cost C with decreasing throughput.

Further increases in delay lowers throughput and incur progressively lower costs
(Figure 6.15 on page 112). Therefore, the collection delay parameter allows trade-off
of throughput for lower costs.

By the economic metaphor, this corresponds to a Monopsony, a market in which
there exists a single buyer and multiple sellers. Monopsonies are a form of imperfect
competition that may become exploitative. The monopsonistic collector agent indir-
ectly controls the entire market by artificially controlling demand. Unlike real eco-
nomic systems, exploitation of computational resources is a desirable objective of this
framework
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Figure 6.16: Cost Frequency Distribution by Temperature. The two prominent peaks corres-
pond to GPU and CPU resources. At lower temperatures, the lower-cost GPU
agents are favoured. At σ = 16, 64, distributions overlap as the queues are almost
entirely random
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Figure 6.17: Total Cost C at different temperatures
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Model Potential
Matrix
Order

(
|Q|max−|Q|min

δ|Q|

)
×(

2π
δθ

)2
1

C60 Ambient
Temperature Phase

Brenner (intramol)
Lennard Jones

(intermol)
180

5
C60 Low

Temperature Phase
720

Table 6.3: Xookik Test Models

Temperature

Figure 6.16 on page 113 presents statistics for the second experiment. The unit costs
of each item are accumulated for a given temperature into a histogram showing the
item counts (y-axis) for each cost bin (x-axis).

The two prominent peaks at approx 0.38 and 0.6 correspond to the lower-cost GPU
producer agents and the higher-cost CPU producer agents respectively. The smaller
features likely represent complex interactions between the agents as they contend for
processing resources. The Magma scheduler is a likely contributor to this behaviour.

At lower temperatures, the lower-cost GPU producer agents dominate the compu-
tation. As the temperatures rise, there is noticeable increase in the number of active
CPU-agents. At higher temperatures, σ2 = 16 and 64, there is almost no discernable
change as the process appears to have become completely random and the CPU-agents
dominate the computation.

Figure 6.17 on page 114 shows the total cost for each of these temperatures and
demonstrates an overall trend towards increasing cost with rising temperatures. How-
ever, a slightly decreased cost at σ2 = 4 is very likely the result of escaping premature
convergence at pipeline start-up and allowing better exploration of the cost landscape
during execution. This anomaly may point at the need to balance exploration and
exploitation.

6.3.3 Centralised Coordination in the Scatter Pipeline Variant

With the structured Scatter pipeline variant based on a Redis queue implementa-
tion (section 5.2.2 on page 68), we evaluate models of the ambient and low temperature
phases of C60 with 60 and 240 atom bases presenting dynamical matrices with 180 and
720 modes respectively (Table 6.3 on page 115). Both models are executed with:

1. an ad hoc scheduling policy based on random process pool worker allocation

2. the Lyapunov drift algorithm and target queue levels of (400, 400) and (100, 100)
respectively for the input and output queues of the intermediate pipeline stage.
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Figure 6.18: Queue space visualisations for the 180-mode ambient temperature model of C60
with Lyapunov drift (top) and with random allocation (bottom). The GPU stage is
not the pipeline bottleneck.

These values are selected to represent a reasonable compromise between the re-
quired GPU kernel batch sizes and the limits of available memory on the cluster
nodes.

Over the course of execution on the Xookik cluster, the input and output queue
levels for the intermediate eigensolver stage, with both CPU and GPU implementa-
tions available, are sampled at random intervals. The models themselves are repres-
entative of the producer and consumer deficit scenarios (Subsubsection 6.1.2):

1. Producer Deficit: Figures 6.18 and 6.19 present the queue space visualisations
and queue level histograms over both runs of the ambient temperature phase
model of C60 with 180 modes. For this model, it is evident that the intermediate
stage does not constitute the bottleneck to the pipeline as the matrix sizes are
sufficiently small to make the generation of dynamical matrices on the CPUs the
most computationally expensive operation.
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Figure 6.19: Queue level histograms for the 180-mode ambient temperature model of C60 with
Lyapunov drift (top) and with random allocation (bottom). Lyapunov drift im-
proves the availability of inputs for the input queue (queue1) of the non-bottleneck
GPU stage.
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Figure 6.20: Queue space visualisations for the 720-mode low temperature model of C60 with
Lyapunov drift (top) and with random allocation (bottom). The GPU stage is the
pipeline bottleneck.
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Figure 6.21: Queue level histograms for the 720-mode low temperature model of C60 with Lya-
punov drift (top) and with random allocation (bottom). Lyapunov drift improves
the availability of inputs for the input queue (queue1) of the non-bottleneck GPU
stage.
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and 240 atom bases. Lyapunov drift improves performance for both models.
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2. Consumer Deficit: Figures 6.20 and 6.21 present the queue space visualisations
and queue level histograms over both runs of the low-temperature phase model
of C60 with 720 modes. For this model, the intermediate stage does constitute
the bottleneck to the pipeline as the matrix sizes are sufficiently large to make
the solution of the dynamical matric eigensystems the most computationally
expensive operation.

Both scenarios demonstrate that Lyapunov drift has an effect on the queue levels over
the course of execution. In the random allocation case, the queues exhibit a higher
tendency towards the empty or (0,0) state. For the 180-mode model of the ambient
temperature phase of C60, the GPU input queue has a more even distribution with
the Lyapunov drift algorithm. The algorithm becomes particularly effective for the
model of the low-temperature phase of C60 with 720 modes where the queue state
vector demonstrates a marked tendency to remain within the region of the state space
demarcated by a discernible triangular boundary (Figure 6.20). This triangle, centered
about the designated equilibrium position, is indicative of the relative magnitudes of
the throughput vectors.

However, the intention of maintaining stable queues at the designated levels is to
achieve improved throughput by improving utilisation in the batch-oriented kernels.
Figure 6.22 presents the relative runtimes of each of these models. It may be observed
that, even for the model of the ambient temperature phase of C60 where the algorithm
is less effective as the intermediate stage is not the bottleneck, the application of Lya-
punov drift nevertheless results in an overall performance gain. In the case of the
model of the 720-mode low-temperature phase of C60, the execution time is signific-
antly lower when the Lyapunov drift algorithm is applied.

6.4 discussion

6.4.1 Adaptation

Approaches to centralised and decentralised coordination with Lyapunov drift and
Market Based Control have been presented using information from instrumented
queues to represent the instantaneous state of a structured parallel program. Limited
runtime adaptation has been demonstrated for:

1. Environmental variation given a dynamic execution environment, with com-
peting user and system processes and network throughput that is subject to
stochastic variation.

2. Application-specific demands given the requirements of different models and
matrix sizes. However, the collector interval parameter in the Market Based
Framework may be considered as an application-specific requirement. Maintain-
ing a collector interval value, even orders of magnitude less than the average
inter-arrival time, allows a trade-off between throughput and cost.
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However, greater consideration has been given to the extra-functional performance
measures where the emphasis has been on the potential of controlling program be-
haviour by coupling a cost-minimising runtime with a dynamically re-definable cost
function. A simple cost function captures a common non-functional requirement to
favour a given resource class without modifications to the running program. In these
instances, the expensive resource class (CPUs), defined by that function, remains in-
active until there is sufficient demand to necessitate its use. As the runtime adapts to
assume low cost configurations that minimise the cost function, suitable manipulation
of the function parameters would permit a degree of online control that is unpre-
cedented in loosely coupled distributed applications. Such features are usually only
available when software engineers anticipate deployment environments and likely
user concerns. In the largest applications, e.g. at web-scale, these engineers are often
locked in a perpetual race to tune a single application instance, without downtime,
by continuous integration [52] given a very dynamic set of priorities and costs that
may reflect spikes in traffic, failures, changing energy tariffs, hardware prices and
new architectural or regulatory directives.

Here, the parametric functions of the instrumented queue definition allow the real-
isation of classes of coordination approaches and raise the possibility of introducing co-
ordination skeletons that are analogous to algorithmic skeletons. As algorithmic skeleton
frameworks accept functions defining the parallel application, coordination skeletons
may analogously capture broad classes of coordination approaches and be integrated
into a skeleton framework to achieve behavioural programs.

6.4.2 Qualitative Comparison of Coordination Methods

Despite its efficacy, the simple heuristic applied to FastFlow is limited by the absence
of information from the framework queuing layer. Whereas, both Lyapunov drift and
the MBC heuristic derive feedback from instrumented queues and further use their
features to impose control decisions, this implementation was intended to illustrate
the utility of queuing information and has led to ongoing work towards the extraction
of structured performance metrics from the queues and stages in FastFlow.

The centralised coordination model of Lyapunov drift is better suited to the tradi-
tionally predictable environments of high performance computing, characterised by
high reliability, dedicated resources available to applications managed by batch sched-
ulers, high-speed interconnects and generally consistent cluster-wide hardware spe-
cifications. However, this introduces a central scheduler to which all information must
be gathered and from which control decisions must be relayed. Not only does this
constitute a central point of failure, but the potential communication latency imposes
limitations on feasible scalability over large-scale distributed systems.

In contrast, the loose coupling and absence of a central point of failure facilitates
fault and partition tolerance in the decentralised MBC heuristic, making it better
suited to large scale unpredictable environments such as cloud computing and volun-
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teer computing. These environments are prone to failure and variation in the availab-
ility, capability or cost of processing and communication resources. Furthermore, the
market based metaphor may arguably be extended to handle the inherent complexity
in unstructured environments that cut across multiple domains hosted by different
providers with potentially conflicting concerns and costs that are subject to variation
by location and over time. However, as is evident from the counter-intuitive result
where increased throughput follows the introduction of a collector delay, this is as-
sociated with the limited controllabilty arising from the tendency of market systems
towards emergent behaviour and increased scheduling overhead.





7
C O N C L U S I O N S A N D F U T U R E W O R K

As a case study in the application of heterogeneous CPU/GPU platforms to a large-
scale problem in computational science, this thesis has deployed adaptive structured
parallelism to lattice dynamical simulations of inelastic neutron scattering spectra.
The performance and scalability of implementations using both Mattson’s prescript-
ive pattern-oriented approach and structured parallelism have been considered. A
framework for static and dynamic adaptation has been introduced and applied to
accommodate existing and emerging computational accelerators, execution environ-
ments and extrafunctional user concerns that have been subject to the application
requirements and constraints.

7.1 research findings and limitations

Application of Mattson’s design hierarchy, in conjunction with performance tools has
led to a demonstrably scalable parallel implementation of the Scatter code that is
an improvement over the original ad hoc implementation. In the context of pure mul-
ticore and multinode systems, this application is an instance of the Monte Carlo or
MapReduce dwarf. The scalability of this implementation is consistent with the ex-
pectations of this class of applications.

While abstraction and the construction of larger functional systems by the com-
position of verified components has historically provided the foundation of software
engineering, here, we have demonstrated that an optimal choice between a set of struc-
tural alternatives does not exist. These results carry the much broader implication that
software is not performance-composable. Restated alternatively, software performance
does not always exhibit optimal substructure [33] and therefore larger applications
cannot be optimised by the ad hoc greedy heuristic that has become common prac-
tice where components are individually optimised in libraries and subsequently integ-
rated into programs after distribution. As functional modules are developed, any early
decisions made without the benefit of complete information regarding all of the relev-
ant runtime factors, component interactions and overall structural context represents
a hidden compromise. Given this dependence, the only way to consistently achieve
absolute optimal performance may be empirical optimisation in a specific runtime
setting. However, this requires that black box components in libraries and modules
expose options to a performance-optimising layer through a consistent interface.

Approaches to centralised and decentralised coordination with Lyapunov drift and
Market Based Control have been presented using information from instrumented
queues to represent the instantaneous state of a structured parallel program. Limited
runtime adaptation has been demonstrated for:
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1. Environmental variation given a dynamic execution environment, with com-
peting user and system processes and network throughput that is subject to
stochastic variation.

2. Application-specific demands given the requirements of different models and
matrix sizes. However, the collector interval parameter in the Market Based
Framework may be considered as an application-specific requirement. Maintain-
ing a collector interval value, even orders of magnitude less than the average
inter-arrival time, allows a trade-off between throughput and cost.

However, greater consideration has been given to the extra-functional performance
measures where the emphasis has been on the potential of controlling program be-
haviour by coupling a cost-minimising runtime with a dynamically re-definable cost
function. A simple cost function captures a common non-functional requirement to
favour a given resource class without modifications to the running program. These
implementations introduce overhead into the test application with the implication
that a trade-off is necessary between performance and adaptability.

Real programs are generally not idealised compositions of stateless functions. This
creates significant challenges for integration after the fact. Thus we conclude that static
adaptation may be better suited to traditional high performance computing applica-
tions as there is no overhead, resources are usually predictable and controlled. Dy-
namic adaptation in frameworks imposes overhead that make it better suited to ap-
plications running in unpredictable environments or where the performance objectives
are subject to variation.

Optimised libraries such as Magma are an effective way to exploit heterogeneous
resources. However, their construction and integration with applications may be im-
proved with the use of constructs such as deferred choice to encapsulate the possible
structural program variants and the deployment of structural autotuners for the range
of extrafunctional performance measures that will become important in the future.

7.2 practical applications and implications

The abstractions developed for this application provide simple mechanisms for rep-
resenting alternative program structures and may be extended to other parallel frame-
works and applications. The representation of structural alternatives with deferred
choice also allow the development of high performance libraries that avoid the limita-
tions of premature design choices and are able to adapt to the changing landscape of
computing with new architectures, platforms and increasingly sophisticated extrafunc-
tional user concerns.

From the application perspective, the work outlined in this thesis represents a fun-
damental contribution to the development of a new analysis method for spectroscopic
data from PolyCINS experiments from powder materials. The high performance im-
plementation of Scatter presented makes it possible to model significantly larger



7.3 recommendations for further research 127

systems than was previously practical – a critical contribution to the computational
feasibility of Roach’s new analysis method. With the availability of the simulation
data in conjunction with the visual presentation and analysis of the large datasets
generated in Prefit and Paraview (Appendix C), well understood materials may be
revisited for additional insights into their physical properties and new materials may
be approached with an expanded analysis toolbox.

It is our experience that the size and complexity of these models rapidly outgrows
the computational capabilities available, as the demands for enhanced resolution in
nanomaterial characterisation increases. This reflects the strong demand not only for
computational tools of this kind among materials researchers, but also for interdiscip-
linary collaboration between computer and material scientists to stimulate the devel-
opment of the emerging field of computational materials science.

7.3 recommendations for further research

The wider potential of the cost-function approach for marshaling and orchestrating
large geographically distributed applications cannot be overstated. Autonomic and
self-adaptive computing is based on the realisation that software complexity is rap-
idly reaching the limits of human architects and the engineers responsible for their
deployment, tuning and management. The control and design of emergent behaviour
has been identified as a challenge at the heart of autonomic computing [75].

In particular, the following prospective research directions exist:

1. More Applications to real-world high throughput workloads.

2. Dynamic fitness landscapes that result from changing cost-function parameters at
execution time or environmental factors such as competing processes or failures.

3. State estimation algorithms such as the Kalman filter may provide a better means
of measuring the current program extra-functional state despite stochastic vari-
ation.

4. Further work may include on the market-based metaphor may include:

a) Improving Market Efficiency by introducing speculators that provide a stabil-
ising influence in markets by anticipating fluctuations in price levels and
accelerating convergence towards equilibrium [117].

b) Alternative Auction Mechanisms such as the Continuous Double Auction or
the Vickrey-Clarke Grooves (VCG) mechanism that may exhibit faster con-
vergence to equilibrium and may carry guarantees of allocative efficiency
derived from economic theory[86].

c) Creating Learning Agents that may use techniques such as reinforcement
learning, genetic programming and direct reinforcement [91] to influence
their market strategies and response to price signals. These agents would
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compete as their survival would be contingent on obtaining profit. They
may also attempt to exploit exposed ’black-box’ parameters of the user-
defined transformation functions in order to achieve some competitive ad-
vantage.
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A
D S L I M P L E M E N TAT I O N

import networkx as nx

from itertools import count

4 import matplotlib.pyplot as plt

#counter = count()

farm_size = 4

9 class Pattern(object):

def __init__(self,*entries):

self.entries = [entry if isinstance(entry,Pattern) else Seq(entry) for

entry in entries]

def __repr__(self):

14 return self.__class__.__name__ + ’ ( ’ + ’ , ’.join([str(e) for e in self.

entries]) + ’ ) ’

def render(self,graph=None):

if graph is None:

graph = nx.MultiDiGraph()

19 #graph.graph[’graph’] = {"size":"20,20","rankdir":"LR","splines":"

ortho"}

graph.graph[ ’graph ’] = {" size ":" 5 ,5 ", "rankdir":"LR"}

graph.graph[ ’edge ’] = {"arrowsize":" 0.5 "}
graph.counter = count()

24 graph.branch_counter = count()

#inqueue = str(next(graph.counter))

#outqueue = inqueue + "’"

inqueue = ’ s ’
29 outqueue = ’ s\’ ’

graph.add_node(inqueue,shape= ’ doublecircle ’,width=0.1)
graph.add_node(outqueue,shape= ’ doublecircle ’,width=0.1)

34

self.render_subgraph(graph,inqueue,outqueue)

return graph

def render_subgraph(self, graph, inqueue, outqueue):

39 raise NotImplemented
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class Seq(Pattern):

44

def __init__(self,*entries):

self.entries = entries

def render_subgraph(self, graph, inqueue, outqueue):

49

#if len(self.entries) == 1:

# graph.add_edge(inqueue,outqueue,label=str(self.entries[0]))

#else:

for entry in self.entries[:-1]:

54 curr_out_point = ’seq ’ + str(next(graph.branch_counter))

graph.add_node(curr_out_point,shape= ’point ’)

if isinstance(entry, Pattern):

entry.render_subgraph(graph, inqueue, curr_out_point)

59 else:

graph.add_edge(inqueue, curr_out_point, label=str(entry))

inqueue = curr_out_point

#connect the final stage

64 if isinstance(self.entries[-1], Pattern):

self.entries[-1].render_subgraph(graph, inqueue, outqueue)

else:

graph.add_edge(inqueue, outqueue, label=str(self.entries[-1]))

69 def __repr__(self):

return ’ ’.join([str(e) for e in self.entries])

74

class Any(Pattern):

’ ’ ’ Describes alternatives ’ ’ ’
def render_subgraph(self, graph, inqueue, outqueue):

79 if len(self.entries) == 1:

self.entries[0].render_subgraph(graph, inqueue, outqueue)

else:

branch_out = ’any ’ + str(next(graph.branch_counter))

84 branch_in = ’any ’ + str(next(graph.branch_counter))

graph.add_edge(inqueue,branch_out)

graph.add_edge(branch_in,outqueue)
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89 graph.add_node(branch_out,shape= ’point ’)
graph.add_node(branch_in,shape= ’point ’)

for entry in self.entries:

entry.render_subgraph(graph, branch_out, branch_in)

94

class Farm(Pattern):

’ ’ ’Takes a single argument ’ ’ ’
def __init__(self, entry):

99 Pattern.__init__(self, entry)

def render_subgraph(self, graph, inqueue, outqueue):

for _ in range(farm_size):

104 for entry in self.entries:

entry.render_subgraph(graph, inqueue, outqueue)

109 class Pipe(Pattern):

def __init__(self,*entries):

if len(entries) < 2:

114 raise ValueError( ’A pipeline must have more than one stage ’)

Pattern.__init__(self,*entries)

def render_subgraph(self, graph, inqueue, outqueue):

119

for entry in self.entries[:-1]:

curr_out_queue = str(next(graph.counter))

graph.add_node(curr_out_queue,shape= ’ c ircle ’,width=0.1)

124 entry.render_subgraph(graph, inqueue, curr_out_queue)

inqueue = curr_out_queue

#connect the final stage

129 self.entries[-1].render_subgraph(graph, inqueue, outqueue) �





B
S c at t e r E X E C U T I O N P R O F I L E

1 index % time self children called name

0.00 171.56 1/1 main [2]

3 [1] 99.1 0.00 171.56 1 MAIN__ [1]

0.00 171.56 1/1 gulpmain_ [3]

5 -----------------------------------------------

<spontaneous>

7 [2] 99.1 0.00 171.56 main [2]

0.00 171.56 1/1 MAIN__ [1]

9 -----------------------------------------------

0.00 171.56 1/1 MAIN__ [1]

11 [3] 99.1 0.00 171.56 1 gulpmain_ [3]

0.00 171.49 1/1 options_ [4]

13 -----------------------------------------------

0.00 171.49 1/1 gulpmain_ [3]

15 [4] 99.0 0.00 171.49 1 options_ [4]

0.00 171.49 1/1 optim_ [5]

17 -----------------------------------------------

0.00 171.49 1/1 options_ [4]

19 [5] 99.0 0.00 171.49 1 optim_ [5]

0.07 171.39 1/1 scatter_ [6]

21 -----------------------------------------------

0.07 171.39 1/1 optim_ [5]

23 [6] 99.0 0.07 171.39 1 scatter_ [6]

0.01 130.64 4001/4002 changemaxscat_ [7]

25 1.02 37.58 4000/4001 phonon_ [9]

-----------------------------------------------

27 0.00 0.03 1/4002 initmemory_ [43]

0.01 130.64 4001/4002 scatter_ [6]

29 [7] 75.5 0.01 130.67 4002 changemaxscat_ [7]

130.32 0.00 20010/20016 __reallocate_MOD_realloc_r8_4 [8]

31 -----------------------------------------------

0.01 0.00 1/20016 changemaxcfg_ [91]

33 0.01 0.00 1/20016 changemaxreaxffval3_ [92]

0.03 0.00 4/20016 changemaxreaxffspec_ [62]

35 130.32 0.00 20010/20016 changemaxscat_ [7]

[8] 75.3 130.35 0.00 20016 __reallocate_MOD_realloc_r8_4 [8]

37 -----------------------------------------------

0.00 0.01 1/4001 optim_ [5]

39 1.02 37.58 4000/4001 scatter_ [6]

[9] 22.3 1.02 37.59 4001 phonon_ [9]

41 0.19 29.56 80001/80001 dynamic_ [10]

0.26 7.08 72200/72200 pdiag_ [14]

43 -----------------------------------------------

0.19 29.56 80001/80001 phonon_ [9]

45 [10] 17.2 0.19 29.56 80001 dynamic_ [10]

2.43 27.13 80001/80001 realp_ [11]
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47 -----------------------------------------------

2.43 27.13 80001/80001 dynamic_ [10]

49 [11] 17.1 2.43 27.13 80001 realp_ [11]

0.05 20.30 160002/168006 changemaxdis_ [12]

51 0.06 4.90 800010/840030 rsearch3d_ [17]

-----------------------------------------------

53 0.00 1.02 8004/168006 reale_ [24]

0.05 20.30 160002/168006 realp_ [11]

55 [12] 12.3 0.05 21.32 168006 changemaxdis_ [12]

14.23 0.11 5040180/5040723 __reallocate_MOD_realloc_r8_1 [13]

57 4.91 0.00 168006/180145 __reallocate_MOD_realloc_r8_2 [16]

-----------------------------------------------

59 [13] 8.3 14.23 0.11 5040723 __reallocate_MOD_realloc_r8_1 [13]

-----------------------------------------------

61 0.26 7.08 72200/72200 phonon_ [9]

[14] 4.2 0.26 7.08 72200 pdiag_ [14]

63 0.08 6.99 72200/72200 ch_ [15]

0.01 0.00 144400/527671 cputime_ [73]

65 -----------------------------------------------

0.08 6.99 72200/72200 pdiag_ [14]

67 [15] 4.1 0.08 6.99 72200 ch_ [15]

1.65 2.26 72200/72200 tql2_ [19]

69 1.58 0.00 72200/72200 htribk_ [25]

1.36 0.14 72200/72200 htridi_ [26]

71 -----------------------------------------------

4.91 0.00 168006/180145 changemaxdis_ [12]

73 [16] 3.0 5.26 0.00 180145 __reallocate_MOD_realloc_r8_2 [16]

----------------------------------------------- �
Listing B.1: Scatter execution profile with a simple test model
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T O O L S F O R P O LY C I N S A N A LY S I S

c.1 the Prefit tool

The Prefit tool is a software interface to the novel poly-CINS analysis methodology
that is based on the identification of prominent features, or coherence edges, in both
the theoretical and experimental data that are coincident with highly symmetric crys-
talline orientations. Coherence edges satisfy the coherence criterion

|τ − q(ω) | < Q < |τ + q(ω) |

where τ is the reciprocal lattice vector and q(ω) is the nearest lattice vector and
may be distinguishable in the spectra as sharp peaks followed by abrupt drops in
intensity. Prefit has been instrumental in the rapid development of this technique by
automating tedious and error-prone aspects of the analysis process, interoperating
with existing software through support of multiple data formats originating from
theoretical simulations or instruments and seamless integration as a frontend to the
high performance parallel Scatter implementation.

Figure C.1 on page 138 is the main user interface of the program, illustrating a
comparative analysis of a theoretical Scatter Lennard Jones model for Aluminium
compared with experimental data obtained from the MARI spectrometer.

Both standardised and ad hoc textual and binary files are supported in Prefit (Ta-
ble C.1 on page 139) that may provide simulation output, experimental spectra, instru-
ment geometry descriptions and lattice configurations. Experimental data is typically
provided in ’spe’ or ’nxspe’ (Nexus [34]) formats with energy and intensity values
corresponding to individual detectors. For a detector located at an angle θ, the cor-
responding momentum transfer Q is given by the relationship of (C.1) where Einit
is the incident energy of the neutrons, Efinal is energy after the scattering event,
Etrans is the energy transfered, mn is the neutron mass and h is Planck’s constant.

h2Q2

2mn
= Einit + Efinal − 2cosθ

√
EinitEfinal

Efinal = Einit + Etrans

Q =

√
8 .0655/16 .7 ∗ (2Einit − Etrans − 2 cos θ

√
Einit(Einit − Etrans) (C.1)

A preprocessing step allows data interpolation and the application of filtering and
preprocessing operations that include intensity scaling, thresholding, edge detection,
Gaussian convolution and other digital filter operations.
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Figure C.1: The Prefit Application

Figure C.2: Constant momentum transfer and constant energy transfer plots in S(Q,ω) in
Prefit.
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Figure C.3: Nearest dispersion matches for a given feature and their corresponding distances
(Freq diff).

Extension File type

Theoretical Data sqw textual

Theoretical Data xmf, hdf5 binary

Experimental Data spe textual

Experimental Data nxspe binary (HDF5)

Dispersion Data disp textual

real space lattice vectors lrv textual

Instrument Detector
Geometry

phx textual

Table C.1: File formats supported by PREFIT

As the basis of the polyCINS fitting method, the identification of coherence edges
is possible by inspection of cuts of varying width taken along horizontal (constant-
ω or frequency) and vertical (constant-Q or momentum transfer) directions (Figure
C.2 on page 138). An analyst seeks coherence edges that coincide with the dispersion
curves along high-symmetry directions in the lattice that are also identifiable in the
experimental data. For this purpose, PREFIT lists and overlays the nearest dispersion
curves from a set of provided high-symmetry directions and their distances from the
current feature (Figure C.3 on page 139).

Selected features that are distinguishable in both the theoretical and experimental
data and have been determined, with high probability, to be the contribution of a
high-symmetry direction may be added to a list of observables (Figure C.4 on page
140) that is subsequently used to generate a fitting input file for Gulp based on a user
specified template (Figure C.5 on page 140).

c.2 high performance visualisation in paraview

Athough, data obtained from a polyCINS experiment is a polycrystalline-averaged
representation of the scattering contributions arising from all orientations of a lattice,
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Figure C.4: Selected features or observables and are ready to be passed as fitting parameters
to the Gulp package.

Figure C.5: Gulp fitting input generated from observables.
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the data obtained from simulation of theoretical models in Scatter contains informa-
tion about the predicted separate contributions of all points in RSO-sampled space.
However, as millions of q-points are typically considered, a large dataset is generated
over the course of simulation that, depending on the size of the lattice systems and
RSO grid resolution, may range from multiple gigabytes to terabytes in size.

The data analysis and handling problems that emerge in a distributed parallel envi-
ronment are best approached with high performance visualisation tools such as Par-
aview [25], the VTK frontend from Sandia National Laboratories, that is suited to the
visual presentation of large remote and distributed datasets. Based on a pipeline ar-
chitecture with abstractions for data sources and filter stages, the Visualisation Tookit
(VTK) and Paraview are high performance visualisation tools that have been devel-
oped for demanding scientific applications [46]. Paraview’s multi-tier architecture al-
lows dynamic visualisations on a cluster of machines for real time parallel rendering
alongside simulation.

XDMF [29] and HDF5 [50] provide light and heavy data storage formats for the
simulation output of the parallel Scatter implementation for their performance and
space-efficiency [28], as well as interoperability with scientific packages such as Par-
aview itself. With native support for these formats as inputs to associated analysis
pipelines, integrated visualisation from Prefit is possible using Paraview’s multi-tier
architecture and scripting control interface.

The current applications of the visualisations in the analysis workflow include:

1. Feature Analysis
Paraview allows novel insights into the origin and significance of features in the
polycrystalline-averaged S(Q,ω) spectra by indicating lattice and phonon mode
contributions to features of interest. The following are example visualisations
for an Aluminium model with the Lennard-Jones potential being analysed in
Prefit:

a) Figure C.6 on page 142 presents the scattering contributions in reciprocal
space at a constant momentum transfer (|Q| = 15.8± 0.1).

b) The contributions of the three phonon modes and their frequencies at a
constant momentum transfer (|Q| = 15.8± 0.1) are presented in Figure C.7
on page 143.

c) Figure C.8 on page 144 shows the contributing regions of the individual
modes as complex surfaces for a specific feature corresponding to a single
point in the S(Q,ω) output selected in Prefit. The observed scattering in-
tensity at that point is the sum of surface integrals of scattering intensities
for each mode (Figure C.9 on page 145).

2. Coherence Feature Identification
Paraview’s large-scale data analysis capabilities enables automation of the iden-
tification of coherence features, previously a manual process, by locating lattice
coordinates in reciprocal space that satisfy the coherence criterion as predicted
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Figure C.6: Scattering contributions in reciprocal space, as visualised in Paraview, at a constant
momentun transfer of Q = 15.8± 0.1 for an Aluminium model being analysed in
Prefit.

by simulation output. The following are example visualisations of this informa-
tion:

a) Figure C.10 on page 146, Figure C.11 on page 147 and Figure C.12 on page
148 present predicted locations of features that satisfy the coherence cri-
terion in the reciprocal space lattice based on analysis of the simulation
output.

b) The predicted locations of the corresponding coherence edge in S(Q,ω) are
presented in Figure C.13 on page 149.
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(a) Mode 1

(b) Mode 2

(c) Mode3

Figure C.7: Scattering intensity contributions to C.6 by mode (left) with frequencies (right) for
Aluminium at constant momentum transfer (Q = 15.8)
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Figure C.8: Contributing regions to specific feature in Prefit at Q = 15.8± 0.1 and ω = 183±
1.0 by individual mode.
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Figure C.9: Superimposed contributing regions to scattering intensity at constant momentum
transfer (Q = 15.8± 0.1) and frequency (ω = 183± 1.0). The scattering intensity
at this point of S(Q,ω) is the sum of surface integrals of scattering intensities for
each mode
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Figure C.10: Coherence locations in reciprocal space for the first phonon mode of Aluminium.
Vectors are the directions of steepest change.
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Figure C.11: Coherence locations in reciprocal space for the second phonon mode of Alu-
minium. Vectors are the directions of steepest change.
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Figure C.12: Coherence locations in reciprocal space for the third phonon mode of Aluminium.
Vectors are the directions of steepest change.
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Figure C.13: Predicted coherence locations in S(Q,w) for all phonon modes of Aluminium.
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Figure C.14: Dispersion surfaces for three modes of Aluminium
in QxQy plane. Surfaces are coloured by scattering intensity.
Prepared for [108]
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