
Digital control networks for virtual creatures

Christopher James Bainbridge

Doctor of Philosophy

School of Informatics

University of Edinburgh

2010

Abstract

Robot control systems evolved with genetic algorithms traditionally take the form

of floating-point neural network models. This thesis proposes that digital control sys-

tems, such as quantised neural networks and logical networks, may also be used for

the task of robot control. The inspiration for this is the observation that the dynamics

of discrete networks may contain cyclic attractors which generate rhythmic behaviour,

and that rhythmic behaviour underlies the central pattern generators which drive low-

level motor activity in the biological world.

To investigate this a series of experiments were carried out in a simulated physically

realistic 3D world. The performance of evolved controllers was evaluated on two well

known control tasks — pole balancing, and locomotion of evolved morphologies. The

performance of evolved digital controllers was compared to evolved floating-point neu-

ral networks. The results show that the digital implementations are competitive with

floating-point designs on both of the benchmark problems. In addition, the first re-

ported evolution from scratch of a biped walker is presented, demonstrating that when

all parameters are left open to evolutionary optimisation complex behaviour can result

from simple components.

iii

Acknowledgements
“I know why you’re here... I know what you’ve been doing... why you
hardly sleep, why you live alone, and why night after night, you sit by your
computer.”

I would like to thank my parents and grandmother for all of their support over the

years, and for giving me the freedom to pursue my interests from an early age.

My time at Edinburgh would not have been so enjoyable without my friends and

flatmates; in particular I must thank J.D. for his friendship and kindred humour, Big

C. for the nights of Teviot and snakebite, Ljiljana for her remarkable ability to share

a room with me for three years and not go insane, Javier, Sasha and Jude for the

similar skills of flat sharing, Nicki, Evie and Marian for being there, and everyone in

the university ju-jitsu club for providing years of social interactions, the complexity of

which, when graphed, might put a neural network to shame.

From my life before Edinburgh: Frank, John, Ian and Brian for the crazy nights in

Consett, including the impromptu ju-jitsu demonstration that almost got us arrested.

And from a time long past: the inhabitants of the DnC BBS who gave me the

inspiration and motivation to sit every night playing with code, networks, and Unix.

And to my younger brother, Paul, who as he points out, has had a job for a long

time now...

Without various pieces of software this project would not have been possible. I

would like to thank the authors of the following open source systems which I use

every day: Linux, the Open Dynamics Engine (ODE) and PyODE, Screen, KDE and

KPDF/Okular, R, Python, teTeX, Vim, ZODB/ZEO, Git, Firefox, and MPlayer.

This thesis was greatly improved thanks to valuable feedback from Gillian Hayes

and Susan Stepney.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Christopher James Bainbridge)

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions to knowledge . 7

1.3 Reproducibility . 11

1.4 Summary . 12

1.5 Organisation of the thesis . 14

2 Biological sensing and control 17

2.1 Neural networks . 17

2.2 Biological models . 22

2.3 Connectivity and resilience . 22

2.4 Pattern generation for muscle control 28

2.5 Sensory feedback . 31

2.6 Brain computer interfaces . 32

2.7 Summary . 35

3 Synthetic neural networks 39

3.1 Similarities to biological networks 42

3.2 Connectivity . 43

3.3 State and signal coding . 44

3.3.1 Example codings . 46

3.4 Models of single neuron dynamics 49

3.4.1 Input function . 49

3.4.2 Activation function . 50

3.4.3 Output function . 50

3.4.4 Spiking models . 52

3.4.5 Continuous models . 57

vii

3.4.6 Reduced models . 61

3.5 Computational power . 75

3.6 Robot control . 76

3.7 Training . 76

3.7.1 Backpropagation . 77

3.8 Hardware acceleration . 79

3.9 Summary . 82

4 Other networks 83

4.1 Analog circuits . 84

4.2 Digital circuits . 85

4.3 Asynchronous circuits . 86

4.4 Genetic regulatory networks . 89

4.5 Boolean networks . 94

4.5.1 Random boolean networks 96

4.6 Generalised logical networks . 102

4.7 Cellular automata . 106

4.8 The edge of chaos . 110

4.9 Summary . 111

5 Genetic evolution 115

5.1 Natural selection . 116

5.2 Genetics in nature . 117

5.3 Genetic algorithms . 124

5.4 Modularity of the genome . 126

5.5 Fitness function . 127

5.6 Fitness surface . 128

5.7 Search behaviour . 131

5.8 Genotype encoding . 132

5.8.1 Example encodings . 134

5.9 Population models . 135

5.10 Initial population creation . 136

5.11 Parent selection . 136

5.12 Reproduction . 138

5.13 Summary . 140

viii

6 Evolution of specific genotypes 143
6.1 Problem specific operators . 144

6.2 Evolving flocking . 146

6.3 Ant colonies . 148

6.4 Evolving neural networks for robot control 150

6.4.1 Timeline . 152

6.5 Evolving reduced continuous neural models 157

6.6 Evolving reduced spiking neural models 158

6.7 Evolving modular hierarchical neural networks 158

6.8 Evolving genetic regulatory networks 161

6.9 Evolving cellular automata . 161

6.9.1 Evolving cellular automata neural networks 164

6.10 Evolving analog circuits . 168

6.10.1 Evolving FPAA robot control 168

6.10.2 Evolving FPGA oscillators 169

6.10.3 Evolving FPGA frequency discriminators 169

6.10.4 Evolving on an analog FPTA 170

6.10.5 Evolving fault tolerance . 171

6.11 Evolving digital circuits . 172

6.11.1 Optimising gate count . 173

6.11.2 Optimising power . 174

6.11.3 Evolving digital circuits for robot control 176

6.12 Evolving pattern generators . 176

6.12.1 Timeline . 177

6.13 Evolving morphology . 180

6.13.1 Timeline . 181

6.14 Evolving robot morphology and control 193

6.14.1 Timeline . 194

6.15 Evolving modular robots . 211

6.16 Summary . 212

7 Overview so far 217

8 Software design 219
8.1 Creature morphology . 219

8.2 Morphogenesis . 221

ix

8.3 Evolution of the morphology . 223

8.4 Example morphologies . 224

8.5 Neurogenesis . 225

8.6 Neural network topologies . 233

8.7 Neuron quantisation . 236

8.8 Evolution of the neural networks . 237

8.9 The software . 238

8.10 Simulated physics . 244

8.10.1 Collision detection . 245

8.11 Sensors and actuators . 246

8.12 Motor models . 246

8.12.1 Stimulus-response curves of PD motor controller 247

8.13 Physics simulation problems . 250

8.14 Tasks . 256

8.15 Summary . 256

9 Software testing 257
9.1 Testing neuron models . 259

9.1.1 Explanation of graphs . 260

9.1.2 Sine model . 262

9.1.3 Sigmoid model . 264

9.1.4 Beer model . 267

9.1.5 Taga model . 270

9.1.6 Ekeberg model . 273

9.1.7 Integrate-and-fire model . 283

9.1.8 Spike response model . 286

9.1.9 Logical model . 290

9.2 Cluster performance . 292

9.3 Summary . 295

10 Pole balancing experiments 299
10.1 Introduction . 299

10.2 Task . 302

10.3 Task analysis . 302

10.4 LQR controller design . 303

10.5 Experimental design . 304

x

10.6 Reproducibility . 308

10.7 Results . 308

10.7.1 ANOVA modelling . 308

10.7.2 ANOVA results . 312

10.7.3 About “Least Significance Difference” plots 313

10.7.4 “Least Significant Difference” plots 314

10.7.5 Factor: Model . 315

10.7.6 Factor: Quanta . 316

10.7.7 Factor: Number of generations and population size 317

10.7.8 Factor: Timing . 318

10.7.9 Factor: Interaction of model and timing 319

10.7.10 Factor: Interaction of neuron model and generations / popula-

tion size . 320

10.7.11 Factor: Interaction of neuron model and quantisation 321

10.8 Summary . 331

11 Virtual creature experiments 333

11.1 Introduction . 333

11.2 Task . 335

11.3 Fitness function . 335

11.4 Experimental design . 338

11.5 Reproducibility . 339

11.6 Results . 339

11.6.1 ANOVA modelling . 339

11.6.2 ANOVA results . 342

11.6.3 “Least Significant Difference” plots 342

11.6.4 Factor: Model . 343

11.6.5 Factor: Number of generations and population size 344

11.6.6 Factor: Timing . 345

11.6.7 Factor: Interaction of neuron model and timing 346

11.6.8 Factor: Interaction of neuron model and quantisation 347

11.7 Example evolved control . 355

11.7.1 An explanation of these graphs 355

11.7.2 Example floating-point controller (Beer’s CTRNN model) . . 357

xi

11.7.3 Example quantised controller (Beer’s CTRNN model with 16

quanta states) . 360

11.7.4 Example quantised controller (sigmoid model with 8 quanta

states) . 362

11.7.5 Example quantised controller (Ekeberg model with 4 quanta

states) . 364

11.7.6 Example quantised controller (integrate-and-fire model with 4

quanta states) . 366

11.7.7 Example quantised controller (SRM model with 16 quanta states)368

11.7.8 Example quantised controller (Logical model with 2 quanta

states) . 373

11.7.9 Example quantised controller (Sine model with 16 quanta states)375

11.8 Example of evolution — from biped walking onwards 377

11.8.1 A note on lack of reproducibility 378

11.8.2 The observed evolution . 379

11.8.3 Stage 0 — walking biped . 380

11.8.4 Stage 1 — smaller head, pushing forward on knees 381

11.8.5 Stage 2 — loses a leg . 382

11.8.6 Stage 3 — stronger leg . 383

11.8.7 Stage 4 — better global coordination, longer leg 384

11.9 Summary . 385

12 Conclusions 389
12.1 Summary . 389

12.2 Future work . 391

Bibliography 395

xii

Chapter 1

Introduction

1.1 Motivation

Autonomous robots are increasingly being used for applications which humans find

to be dull, dangerous or economically inefficient. The prime motivation in modern

robotics research is to develop new techniques for building robots that are cheaper,

faster, and more intelligent than today’s robots. Such robots are used in fields as diverse

as manufacturing, space exploration, and entertainment (e.g. figure 1.1).

Since the early days of robotics, research in the field has been split into two sepa-

rate camps; that of hardware design, which has focused on the materials, sensors and

actuators of an embodied robot, and that of controller design, which has focused on the

attainment of goals through the planning and carrying out of actions. In many ways this

division has mirrored the academic differentiation between psychologists, who study

the mind, and biologists, who are more concerned with the practical functionality of

the body.

Manufacturing robots has traditionally been an expensive and time consuming pro-

cess (figure 1.2). A human designer must specify in intricate detail the form and func-

tion of each robot part, and then integrate them into a functioning whole. Each part

must be built, and the robot assembled. Software must then be designed and coded.

Only at the end of this design cycle can the robot be fully tested to see whether it fulfils

its design objectives. Errors can be introduced at any stage, and usually will not be-

come evident until later in the testing stage. For each error the cycle must be iterated,

thus multiplying the development time.

The coming age of nano-manufacturing promises low cost production of even the

most complex mechanical parts [114, 162]. It is already possible to print arbitrary

1

2 Chapter 1. Introduction

Figure 1.1: Semi-autonomous robotic systems are increasingly being used in space.

NASA’s “Spirit” rover has been exploring the surface of Mars since January 2004.

Credit for image: NASA [221]

3D structures containing complex parts such as batteries and actuators [274]. If this

comes to pass we will see robots with complex bodies, displaying physical abilities

that match those of humans. We already have biped robots that are capable of walking,

climbing, dancing and performing somersaults (figure 1.3). An advancement as great

as that of nano-manufacturing would enable the construction of synthetic bodies that

are stronger, faster and more reliable than those from the world of nature. However, the

true challenge would then be to understand and create synthetic intelligence that can

rival that of biological creatures, displaying the same complex behavioural, reasoning

and communication skills.

Biologically inspired robotics draws inspiration from the natural world. By analysing

the bodies and nervous systems of living creatures we hope to gain understanding and

knowledge that can then be applied to the production of synthetic creatures. We of-

ten find that biological creatures have evolved very efficient designs that operate in a

manner alien to that of a human designer. When human designers are faced with an ex-

plosion of complexity they employ abstractions to simplify the design space. Nature,

knowing no such bounds, tends to create designs with many interconnected recurrent

hierarchies, making their operation complex and difficult to analyse.

1.1. Motivation 3

Figure 1.2: A typical design methodology for commercial robotics.

4 Chapter 1. Introduction

Figure 1.3: Honda’s ASIMO represents the pinnacle of current robotic engineering. It

can run, dance, climb stairs, recognise faces, respond to over 200 spoken words, and

locate objects pointed to by a human. Its motions, however, appear unnatural; its “zero-

moment point” controller can not move through dynamically unstable positions.

Credit for image: HONDA [190]

What we seek are new ways to design successful robots. The difficulties faced

by software designers in recent years suggest that we have reached the limit of what

human programmers are capable of — in the words of Winograd:

The symbolic paradigm... has turned out to be a dead end... In order to
build human-like intelligence, researchers will need to base it on a deep
understanding of how real nervous systems are structured and how they
operate. ([425])

We find it difficult to analyse complex, non-linear systems, and find it impossible to

reason about systems that contain millions of interconnected, dependent variables —

as Dijkstra said:

When all is said and done, the only thing computers can do for us is to
manipulate symbols and produce results of such manipulations. From our
previous observations we should recall that this is a discrete world and,
moreover, that both the number of symbols involved and the amount of
manipulation performed are many orders of magnitude larger than we can
envisage: they totally baffle our imagination and we must therefore not try
to imagine them. ([109])

1.1. Motivation 5

The design of complex robot controllers in the future is likely to require the use of

automated design techniques that are able to thrive where humans have failed.

One of the approaches that has been successfully employed to automate robot con-

troller design is that of artificial evolution. The diversity and success of the living

world spring from a process of evolution and survival of the fittest, carried out over

millions of years. By emulating the critical aspects of this process we can create an

environment where “good” solutions can thrive and reproduce, whilst “bad” ones die

off. Evolutionary development occurs as a pseudo-random search through the design

space, driven by a genetic algorithm and a fitness function that separates the good from

the bad.

Unlike hand-crafted controllers, evolved controllers tend to perform well on dy-

namic, real-world physical tasks. The combination of a noisy world, random genotype

mutations and survival of the fittest produce controllers that are more robust to sen-

sor error and component failure. Human designers tend to create highly centralised

designs. In contrast, evolved controllers are highly decentralised, and therefore less

prone to failures in individual components. Evolved controllers also tend to display

more properties attributable to self-organisation; with evolved neural networks in par-

ticular showing a robustness to initial starting conditions that is not present in hand-

crafted software.

In robotics power usage is a great concern. Modern high-performance processors

are notoriously power hungry; the Intel dual-core Xeon processor has a “thermal design

power” (the amount necessary for sustained maximum operation) of 165 Watts [105].

In contrast, the bodies of creatures are incredibly power efficient. The human body has

an average consumption of around 100 Watts, with around 10-20 Watts attributable to

the brain [115,222]. The increased energy efficiency of biological brains is due to their

distributed nature, which enables the carrying out of highly parallel processing at a low

switching frequency in the tens of Hertz.

There is a great amount of interest in attempting to predict when the computational

power and storage capacity of AI systems will approach that of the human brain. Digi-

tal computers and biological brains operate in a completely different way, and hence it

is difficult to compare them. Despite this, it has been estimated that the computational

power of the human brain is between 1013 and 1016 operations per second [291]. This

agrees with other estimates which place the figure around 1011 [306] to 1014 [311].

The total storage capacity is estimated to be 119 megabytes of specific pieces of

information about the world [290]. This figure is based on experimental studies with

6 Chapter 1. Introduction

human subjects being asked to remember and recall information, and ignores how

the data is actually coded and represented at lower levels. Storage capacity, at the

level of individual neurons, or even proteins, is estimated to be around 100 million

megabytes [311]. If these estimates are correct, and computational power continues

to increase according to Moore’s Law, then we should expect it to equal that of the

human brain sometime after 2020 [53, 474]. Of course, this is merely an estimate of

raw power, and if we fail to comprehend how the brain works, then we will be unable

to translate this into a measure of intelligence.

Neural controllers consist of collections of very simple processing elements, which

as a whole display properties that are greater than the mere sum of their parts. This

synergistic property is commonly referred to as emergence, and has been a subject

of interest amongst the artificial intelligence research community for a long time. It

is hoped that evolved controllers will similarly display complex behaviours that are

somehow greater than the mere switching of states orchestrated by individual neurons.

It is highly desirable for robots to be autonomous — that is, to be able to operate

independently of a human operator. The state of the art is currently to be “partially

autonomous”, where a human planner instructs the robot to perform some series of

simple tasks, and the robot controller performs a small amount of decision making in

order to satisfy each task. This kind of system is essential in areas such as space and

planetary exploration, where the latency of the communication medium between the

robot and operator is too great for real-time control.

The ability to learn from past actions and experiences would both enable better

functional performance, and save the human designer from the problems of having to

anticipate all situations which the robot may face over its lifetime. The use of genetic

algorithms can be viewed as a form of static learning, with knowledge of the fitness

evaluation task being embedded within the genomes of the evolved creatures. There

are various algorithms for the online updating of neural networks when faced with

classification style tasks, however, it has proven much more difficult to perform this

kind of online learning with planning and control systems. At a low level, robots like

Sony’s AIBO can utilise genetic algorithms to adapt their signals to compensate for

manufacturing variances, and component degradation through wear and tear, and even

the motor levels necessary to drive walking gaits [199], but more complex control tasks

such as facial recognition and task planning still rely on pre-programmed non-adaptive

algorithms.

1.2. Contributions to knowledge 7

1.2 Contributions to knowledge

This thesis explores the use of quantised neural networks for the task of robot control.

Quantisation is the process of converting a real value into a discrete value drawn from

a finite set, by mapping regions of the domain onto single values. In signal processing,

quantisation is used to convert a continuous value, often gathered by an analog sensor,

into an integer with a specified precision. An example of quantisation would be the use

of the floor function to map a continuous value to an unsigned 8-bit integer: y= b255xc
where x ∈ [0,1], producing the 8-bit output y ∈ {0, . . . ,255}. For a signal consisting

of a sequence of continuous values, the quantisation function will map the signal onto

a sequence of discrete symbols, often an integer series. A computational or electrical

system that uses discrete values is known as a “digital” system. In electronics, the

quantisation function is usually carried out by an analog-to-digital converter.

A related aspect to value continuity is the concept of temporal continuity. In the real

world, sensors can represent a sensed state using a continuous-time signal — that is, a

signal that varies in response to all perceivable permutations in an input signal. This

continuous-time signal can be mapped onto a sequence of discrete values by sampling

at some given frequency (the exact frequency is known as the “sampling rate”). The

vast majority of modern digital processors are synchronous, meaning that the action

of changing state is coordinated between the internal state-holding elements so that it

happens at a single point in time, making state change a global event rather than local.

The number of times this event occurs per second is defined by the frequency of the

synchronous clock. The twin properties of a modern processor being synchronous and

digital imply that a continuous-value continuous-time input signal from a sensor must

be both quantised and sampled before being presented to the processor.

It is well known that continuous connectionist architectures, such as those used

to emulate neural networks, can be used for dynamical robot control [147, 293, 349].

The use of networks of interconnected digital nodes, each with a discrete number of

states, has been less-thoroughly researched. There is no successful methodology for

designing large, complex, digital network robot controllers, and we do not know how

the performance of such controllers would relate to that of continuous neural con-

trollers. Other digital connectionist architectures, such as random boolean networks,

asynchronous circuits, and cellular automata, will also be discussed.

Neural network research has traditionally relied on the simulation of continuous

dynamical systems using digital processors [491]. The von Neumann architecture used

8 Chapter 1. Introduction

in modern computers does not lend itself to high speed simulation of massively par-

allel networks, as all processing must be reduced to a series of sequential operations.

With synchronous updating, the processor must loop over every node in the network,

calculate its next state, and store this state somewhere. Only after all of the next states

have been calculated can the network be updated. This scheme gives the appearance

of nodes being updated simultaneously, and prevents the ordering of individual node

updates from affecting the overall system behaviour, but it also enforces serialisation

of neuron processing. Operations are slowed by a high memory latency between the

CPU and main memory; there are few cache hits due to the need to process the rest of

the network between individual neuron updates, and the memory required for a large

network exceeding the size of the data cache.

These problems suggest that von Neumann processors are not suited for the simula-

tion of large neural networks. There have been attempts to utilise multiple CPUs [218,

314, 323], custom neural network processors [128, 287], DSP arrays [315] and FPGA

arrays [185], but they all share a common problem in that they attempt to preserve

the way that simulation is currently done, with floating-point (or analog) values. Cal-

culating neuron state updates requires either a floating-point unit or dedicated analog

circuits. Both are expensive in terms of area and energy.

High throughput floating-point units consume a large amount of power, and take up

a considerable amount of space on the CPU die. Analog circuits simulating individual

neurons tend to be smaller, since there are usually a small number of neurons, but

still require a far greater number of transistors than individual digital logic gates. This

means that there are fundamental problems in scaling this style of architecture up to

the requirements of simulating the 100 billion (1011) neurons and 100 trillion (1014)

synapses of the human brain.

The simulation of spiking neural networks is unique in that the values transferred

between neurons are digital, with information being coded in either the frequency or

timing of pulses. However, the neuron update function still relies on floating-point or

analog operations.

One potential solution to the scaling problem is to examine whether continuous

simulation is necessary in the first place. The observation that current research is car-

ried out using digital computers implies that it might not be. Modern floating-point

units comply with the requirements of the ANSI/IEEE 754 standard for binary floating-

point arithmetic [159], which specifies that floating-point numbers are encoded as ei-

ther single (32-bit), or double (64-bit) data types. There is some redundancy in the

1.2. Contributions to knowledge 9

encoding, so the true precision of these floating-point data types is actually 24-bit for

single and 53-bit for double. Despite the fact that we use these data types to store real

numbers, they are in fact quantised values and are subject to rounding errors due to the

inability to encode true continuity.

Since we know that these systems are capable of successfully simulating neural net-

works, we have reason to believe that reducing the precision by further quantisation,

ultimately to a two-valued boolean system, may yield some success. Evidence from

biology, where continuous genetic networks are routinely simulated using quantised

abstractions [95], also suggests that continuity is not a pre-requisite for accurate sim-

ulation of dynamical network behaviour, although the opposite position — that binary

systems are unable to reproduce the complex dynamics of continuous gene expression

— has also been argued [371].

There have been attempts to reduce both the continuous and spiking models by re-

moving the requirement for floating-point arithmetic in order to enable more efficient

implementations with digital logic (see section 3.4.6.3). However, these models have

seen little use. Some have only been proposed, and never tested on real world appli-

cations. Only a few have been directly compared to continuous models, using some

static classification or filtering task, and nothing dynamic like robot control. Only one

of the reduced spiking models has been used for 3D robot control. So far, there is no

evidence that these models can carry out more complex robot control tasks, and no

quantitative analysis of how they compare to their continuous counterparts.

If quantised neural networks can be built that successfully function as robotic con-

trollers, as continuous networks can be now, then we will be able to drastically reduce

the requirements of hardware implementations, and thus enable scaling up to the mas-

sively sized networks we see in the human brain.

The results of research in this area are potentially of great interest. Spivey has

claimed that the continuity of the real world, both in terms of continuous state spaces

within neural systems, and of temporal continuity, are necessary prerequisites for in-

telligent life [407, 408]. One possible argument against this is the phenomenon of

temporal induction (or auditory continuity), in which subjects perceive a tone as be-

ing continuous despite the insertion of temporal gaps, which would imply that there

is some mechanism within the brain that constructs the perception of continuity from

discrete sensory input [209].

Penrose argues that the brain is a quantum computer, and hence we cannot hope

to simulate it digitally [330]. Siegelmann argues that recurrent analog systems have

10 Chapter 1. Introduction

a greater computational power than digital systems [396]. Others have claimed the

contrary; that neuronal spiking is actually a digital abstraction discovered by nature

to provide a more reliable and accurate method of long distance signalling [96], and

hence nature itself abstracts above the continuity of the physical world, suggesting the

possibility that intelligence could be simulated with digital computation.

Some have gone even further in these musings; one hypothesis of note being Wol-

fram’s conjecture that the physical fabric of the universe is in fact a discrete cellular

automaton [480], that operates on the “edge of chaos” [254]. If true, this would cer-

tainly assure us that complex behaviours can arise within digital systems.

Recently, Hogan has proposed that the universe may in fact be a two-dimensional

binary system [193]. The hypothesis is based on the concept that information can

not be destroyed, and hence all of the physics that occurs in the universe will have

an equivalent representation that occurs on the boundary of the event horizon of the

cosmos. The event horizon of the cosmos is the two-dimensional manifold beyond

which light has not yet had time to reach us since the beginning of the universe; i.e.

the two-dimensional surface of an approximately spherical object with a radius of 13.7

billion lights years from the centre of the universe. In order for this to be true, the

amount of information available at the surface of the cosmos horizon would have to be

equal to the amount of information contained within the volume. Hogan has proposed

that this could occur if the resolution of the smallest bit of effective information within

the volume were lower than that on the surface. On the surface, the resolution of each

unit would be 10−35 metres long (one Planck length), a unit which is too small to test

for. Within the volume, the resolution of the smallest unit would be around 10−16

metres long, which would make it large enough to be detected by current equipment.

Hogan has proposed that recent experimental results from the GEO600 gravitational

wave detector match his predictions, and hence that the physics of the universe can

be explained as two-dimensional computations, with the three-dimensional world we

perceive being a blurry holographic projection of interactions occurring across the two-

dimensional manifold [69].

Banerjee has claimed that biological neural systems are governed by chaotic at-

tractors [13]. It would be an important step forward to show that digital systems such

as cellular automata, which are known to be capable of displaying chaotic and semi-

chaotic behaviours, are also capable of utilising this behaviour in a productive way to

form a coherent computational system that can drive robot behaviour.

At the moment these claims are lacking in evidence either way. This research shows

1.3. Reproducibility 11

that, for certain robot control tasks, discrete connectionist architectures can display the

same complexity of behaviour as continuous systems, and quantifies the degradation

in performance due to reduced precision. This not only has direct applications in the

field of robotics, but may also provide insights into biological reasoning, signalling

and control. This research will not answer any grand claims about the underlying

nature of the fabric of the universe, however the above arguments do at least suggest

the possibility that intelligent behaviour could be described by a digital computational

system.

1.3 Reproducibility

The research underlying this thesis has relied on computer simulation, using custom

written software combined with common libraries, to carry out experiments and gather

data. The question arises as to how one can be sure that bugs in the developed software

do not affect the validity of the research findings. The unfortunate answer is that there

is no way that one can be certain of this; despite following software engineering best

practices, it is still possible that there are bugs in the developed software. It is also

possible that there are bugs in the libraries that this software relies on, such as the

“Open Dynamics Engine” physics simulator.1

A unit testing regime was followed in the development of the software (see page 240)

and neural network models (see page 257). Unit tests exercised the critical code paths

of the software, and the output was examined visually to see if there were any apparent

problems. This mostly involved looking at 3D visualisations of physics simulations in

order to see if anything was obviously incorrect, and in manually studying output sig-

nal data related to input change events to see if the model reacted in the expected way.

The unit tests did catch several programming errors, both errors in the developed code

and errors in the libraries that were being relied upon. These problems were fixed, and

the final code used for the experiments passes all of the unit tests.

As noted in the relevant sections (p. 240 and p. 257), there is no way to guarantee

that the software is bug free. No amount of testing will exercise every possible code

path and data set that the various programs may execute or interpret. The problem is

not unique to this research — all research that relies on software and simulation to

gather and process experimental data faces the same issues.

1One example of this fragility is that the floating-point neural network controllers evolved in chap-
ter 11 display different behaviour on ODE if it is compiled to use 32-bit arithmetic in its simulations.

12 Chapter 1. Introduction

As software simulation has become more widely used in modern scientific exper-

imentation, this has become an issue of increasing importance. Experiments may be

carried out and findings published, only for software problems to be discovered that

will later invalidate the research. In many cases, the custom software used to carry

out experiments is not published, meaning that there is no way to exactly reproduce

the research. When experiments rely on complex software, such as a structural model

of a microprocessor with timing information back-annotated from layout, it not only

expensive and costly to design and build an alternative microprocessor, but due to un-

known design differences, it is also highly unlikely that any reproduced experiments

would generate exactly the same data anyway. When the original source code and ex-

perimental data is not made available, it is difficult for the traditional scientific process

of independent external auditing and verification to take place.

This problem of reproducing research carried out through the development and use

of complex software has been addressed by some notable scientists [51, 246, 253, 386,

458]. Vandewalle writes:

For a computational algorithm, details such as the exact dataset, initial-
ization or termination procedures and precise parameter values are often
omitted in the publication for various reasons. This makes it difficult, if
not impossible, for someone else to obtain the same results. ([458])

These authors argue that only publication of the complete source code addresses such

concerns — to quote Donaho:

An article about computational science in a scientific publication is not
the scholarship itself, it is merely advertising of the scholarship. The ac-
tual scholarship is the complete software development environment and
the complete set of instructions which generated the figures. ([51])

To this end, the source code written as part of the research for this thesis, and the

data gathered, will be made available together with the thesis. As already pointed out,

this does not guarantee that the software is bug free, but it does at least provide an

assurance that future experimenters can analyse the source and engage in their own

experiments with it.

1.4 Summary

Modern robot control systems often utilise neural network models which are contin-

uous in both neuron state and time. The central hypothesis of this thesis is that such

1.4. Summary 13

detailed models may be unnecessarily complex, and that we may be able to use sim-

pler models that are discrete in both state and time. The thesis will explore how these

simpler models affect the ability of the controller to perform robot control tasks.

Two sets of experiments were devised to test the hypothesis. The experiments pro-

vide a “classic” AI robot control task which can be used to measure the performance

of a controller by measuring some quantitative characteristic. The first task was the

“pole balancing” problem, and the second task was locomotion control of an evolved

robot. Both are common control tasks in AI research, with many papers having been

published on both topics. Pole balancing is a more traditional research area, having

been studied since the early days of AI. The study of robot locomotion has similarly

been studied for a long time, however, controlling evolved creatures is a different chal-

lenge to that of the design of a controller for a fixed robot architecture, and has been

studied for less time. The principal difference is that a human designer will typically

have complete control over the specifications of both hardware and software for a tra-

ditional design, whereas an evolution based solution utilising genetic algorithms will

search through a complex design space automatically.

The first set of experiments test the performance of a neural network with a single

output connected to the angular motor of a simple pole balancing robot. This is the tra-

ditional AI “pole balancing” problem, and the aim is to balance the pole for as long as

possible. The second set of experiments use a combined set of neural networks to con-

trol a virtual creature, with the virtual creature being evolved alongside the networks

in a unified genome.

In both experiments, several neuron models from the literature were implemented

and tested. For each model, two versions were created; one, a continuous model,

relies on high-precision floating-point arithmetic, the other, a digital model, relies on

quantised low-precision integer arithmetic. These models were compared over the

control tasks in order to draw conclusions about the use of continuous models versus

digital models.

The neural models implemented were “continuous time recurrent” neurons as de-

scribed by Beer, lamprey eel neurons as described by Ekeberg, a network of nodes

implementing digital logic functions, the “integrate-and-fire” and “spike response”

spiking models, the sigmoid model, and a timing-synchronised sine wave model.

Since we have no design principles for creating complex neural networks for con-

trol tasks, genetic algorithms were instead used to “evolve” solutions. In the first set

of experiments, the network was evolved whilst the morphology (pole balancer) was

14 Chapter 1. Introduction

fixed. In the second set of experiments, the morphology of the virtual creature was

evolved alongside the controller, resulting in robots that differed in both body and con-

trol.

The results showed that quantised networks could perform as well as continuous

networks on the tested robot control tasks. Synchronous networks tended to perform

better than asynchronous ones. Simple binary oscillators with minimal synchronisa-

tion and no sensory input performed better than complex floating-point neural models

on the given tasks. This surprising success suggests that it is synchronised recurrent

pattern generation, and not input signal processing, that is important for these partic-

ular control tasks. This leaves open the question of the best way to incorporate input

signals into such an architecture, suggesting that at lower levels of control, input sig-

nals are not useful in generating basic activation patterns. For tasks where sensing is

clearly necessary, such as scent-directed motion, it may be better to build, or to focus

evolution towards, hybrid systems of distinct low-level pattern generators and high-

level controllers, in which the low-level pattern generators are perhaps isolated from

sensory input.

The conclusion of this thesis is that simple binary or integer models will suffice

and perform just as well, or even better, than complex floating-point neural models for

some common tasks where the more complex models would normally be deployed.

This has a direct application in mobile robotics, in which controller power consump-

tion is a major concern. The ability to use simpler models directly translates to the

ability to use simpler, low-power processors, which reduce design complexity by elim-

inating floating-point units and reducing arithmetic precision. The experimental robot

control tasks did not require sensory input; an obvious extension to this research would

be to incorporate exteroceptive sensors into the robot morphology and redo the exper-

iments, analysing whether a hybrid network approach joining binary oscillators with

computational elements would be successful.

1.5 Organisation of the thesis

Chapter 2 describes how sensing and control work in real biological creatures. Animals

process large amounts of input sensory data through massive neural networks, and

in turn output signals which control the contraction and relaxation of muscle fibers.

A great deal of work by biologists and neuroscientists has gone into understanding

the mechanisms behind these processes. In particular, it is believed that repetitive

1.5. Organisation of the thesis 15

patterns of muscle activation, such as those necessary for movement based behaviours

(e.g. walking, swimming), are generated by neural networks known as “central pattern

generators”.

Chapter 3 describes how researchers have recreated synthetic neural networks in or-

der to both learn more about the biological ones, and also to utilise them for real world

applications. Various neuron models have been proposed which vary in complexity.

Various network models have been proposed which vary in topology and connectiv-

ity. These networks are often used for pattern recognition tasks, and so it is necessary

to “train” them with an appropriate data set in order to recognise and differentiate

between various input patterns. The actual implementation medium also differs —

synthetic neural networks have been simulated using regular computer systems, dis-

tributed clusters of servers, digital signal processors and other custom semiconductor

designs.

Chapter 4 covers non-neural network designs, such as boolean networks and cel-

lular automata. These network models share many properties of traditional neural

networks and are often capable of carrying out the same tasks, but differ in levels of

node state, quantisation, connectivity, timing, and inter-node signalling.

Chapter 5 provides an overview of the theory of evolution, genetics, and adapt-

ability. The study of “genetic algorithms”, in which theories of genetic evolution are

utilised in order to solve real world problems, is described, along with some cases

where it has been applied successfully.

Chapter 6 covers real world cases where genetic algorithms have been used to

evolve solutions to problems. This includes the evolution of various kinds of neural

networks, cellular automata, electronic circuits, and virtual creatures. In each of these

cases, the defining characteristics of the genetic algorithm are the solution genotype,

morphogenesis, and the mutation operators applied. Each of these are specific to the

problem domain. The use of genetic algorithms on a wide range of problems shows

that the basic theory is both useful and adaptable. The problems discussed are all

related to the topics of this thesis - the evolution of control networks for robots, rhythm

generation with evolved digital circuits, evolution of static morphologies, evolution

of morphology and control for complete robots, and the evolution of transistor-based

analog and digital circuits. This chapter ends the background literature review.

Chapter 7 provides an overview of the thesis so far, including the findings of the

literature review, and the aims, hypotheses, and experiments to be carried out.

Chapter 8 provides an overview of the software written for this project. Rather

16 Chapter 1. Introduction

than just cover the implementation in terms of architecture and features, the description

also provides details of many design parameters, such as the genotype, morphogene-

sis, fitness tasks, and problem domains that the software can be configured to evolve

solutions for. Overviews of the underlying physics and distributed database models are

also included.

Chapter 10 describes the first set of experiments run, which compared the perfor-

mance of evolved floating-point and quantised neuron models on the pole balancing

problem. This is followed by results and analysis.

Chapter 11 describes the second set of experiments run, which compared the per-

formance of evolved floating-point and quantised neuron models in generating loco-

moting behaviour in simulated, physically accurate virtual creatures. This is followed

by results and analysis.

Chapter 12 summarises the thesis, draws conclusions, and suggests potential av-

enues for future research.

Chapter 2

Biological sensing and control

In order to recreate intelligence, we must first study it in nature. Biological creatures

consist of complete, animated bodies, with sensory interpretation and muscle control

being generated by complex neural networks within the spinal cord and brain. This

chapter will describe the structure of the brain and its computational processing, and

how current theories suggest repetitive cyclic motions, such as walking and swimming,

are created by collections of neurons known as “central pattern generators”.

2.1 Neural networks

A neural network is a collection of simple processing units known as neurons. They

are found in the central nervous system and brains of living creatures, and collectively

perform all of the sensing and control behaviour displayed by the creature. Figure 2.1

shows part of a biological neural network.

At the lowest level of control sophistication lie simple creatures which can only

react to their environment through reflex actions. Sensor neurons receive stimulus

from the environment, which is then processed by intermediate neurons before being

turned into actions by motor neurons which are connected to muscle fibers. These

simple static feed-forward networks provide enough processing power to account for

the reflex arc present in animals.

Simple reflex and cyclic actions rely on the dynamics of the network alone to cre-

ate repetitive attractor patterns. More sophisticated creatures have complex neural

networks which utilise feedback and dynamic adaptation of neuron and connection

properties. These networks are capable of storing information, and can adapt their

processing to better control the creature’s body.

17

18 Chapter 2. Biological sensing and control

Figure 2.1: Part of a biological neural network, in this case, the auditory cortex. Each

“blot” is an individual neural cell.

Credit for image: Santiago Ramón Y Cajal [54]

2.1. Neural networks 19

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Figure 2.2: A biological neuron. Dendrites gather incoming connections from other

neurons, some processing occurs inside the cell, and generated spikes travel outward

along the axon. One neuron is connected to another via a synapse between an axon

terminal and a dendrite.

Credit for image: Quasar Jarosz / U.S. National Cancer Institute

There are many different types of neuron which can be differentiated by the com-

putation that they perform, and by the type and synthesis rate of neurotransmitters

which their synapses release. Interestingly, stem cell research has shown that neural

stem cells can morph into any type of neuron found in the nervous system [121, 126].

Understanding how these stem cells organise and structure the formation of the brain

may lead to further insights into its functioning. Although it was thought for a long

time that neuronal neurogenesis (the creation of new neurons) does not occur in adult

mammals, since 1998 we have known that this does indeed occur, and the formation

of new neurons in fact forms a crucial part of the learning process [121, 125, 394]. For

an overview of this paradigm shift in neuroscience see [300].

Neurons operate in parallel and asynchronously; there is no centralised control

mechanism to provide timing information for the network. Individual neurons are

relatively autonomous in that they have no direct knowledge or access to the states of

other neurons — their output depends only on their own state and the signals which

they have received along afferent connections.

Neurons are analog processing units, which is unsurprising as they exist in the real

world. They operate on signals which are continuous in both the activation and tem-

poral dimensions. In neural network research, the “state” of a neuron has traditionally

been interpreted as the voltage difference across its cell membrane.

20 Chapter 2. Biological sensing and control

Figure 2.2 shows the structure of a biological neural cell. The dendrites are the

inputs to the neuron. Signals arrive along them from the outputs of other neurons and

from the central nervous system. The axon carries the output signal from the neuron to

terminal buttons. The dendrites present inhibitory or excitatory signals to the neuron

which have a cumulative effect in stimulating it. If the sum of these input signals

exceeds some threshold the neuron will fire, sending an activity spike along the axon.

This signal will arrive at the terminal buttons, which will release neurotransmitters into

a gap (the synapse) between the button and a dendrite of the target neuron.

The properties of this synaptic gap determine the strength of the signal received

by the target neuron, and whether it will excite or inhibit its activation. Although it is

possible that physical properties of the dendrite and axon connections might perform

some processing of carried signals, it is not believed that this is the case, as they seem

to accurately reproduce the input signal. The fastest neurons have switching speeds of

10−3 seconds, which is relatively slow when compared to the 10−10 switching times

of semiconductor transistors [306].

The classic view of information flow in biological neurons has been that signals

are propagated unidirectionally along the dendrites from synapses to the soma. It is

now known that many neurons also send information backwards, from the axon to the

dendrites, and that this feedback can stimulate plasticity changes in the synapse [6,

page 30].

Cnidarians are a phylum of animal species that share a common and unique form

of nervous system. The nervous system consists of decentralised nerve nets, with no

brain. These nerve nets have no dendrites, axons or synapses, instead neuron cells are

directly stimulated by other neuron cells that they happen to be in physical contact

with. This means that connections are bidirectional and apparently randomly organ-

ised. Some creatures are not capable of locating stimulus points, and will react the

same way to certain types of stimulus regardless of its point of origin. Since all con-

nections are bidirectional, neurons can receive feedback echoes from activity spikes

that they originated or already propagated.

Computational neuroanatomy studies suggest that evolution has optimised the po-

sitioning of macro-structures in the brain, their long distance interconnections, and

the position of the brain within the body, in order to minimise volume and overall

wiring distance [65]. Evolution has discovered structures that are close to optimal — in

some direct comparisons between actual neural structures found in biology and corre-

sponding theoretically optimal structures it was found that the volume of the real-world

2.1. Neural networks 21

structures was less than 2.5% larger than the optimal topologies, and that the real-world

structure was in the top 0.14% of possible configurations [64]. A connection-cost anal-

ysis of the macro-layout of functional areas of the macaque visual cortex showed that

the actual layout was in the top one-millionth of all alternative layouts [66]. This is

impressive given that three-dimensional packing is known to be an NP-complete prob-

lem.

Cherniak suggests that neural optimality may have been achieved through the ex-

ploitation of physical properties of the world, rather than being explicitly encoded in

the genome; the neuroanatomical layout of C. elegans can be exactly reproduced by

a mechanical model in which each connection of the C. elegans nervous system cor-

responds to a micro-spring, and the system is allowed to fall into vector-mechanical

equilibrium [63]. The resulting optimal layout of the model is the best of a total of

fourty million possible configurations.

The precise way in which the topology of a brain is constructed is unknown; the

human genome contains around 24,000 genes, and the human brain consists of 100 bil-

lion (1011) neurons and 100 trillion (1014) synapses [81, page 59]. 96% of the human

genome is shared with chimpanzees [459]; the 4% difference is made up of single-

nucleotide changes, duplications of existing sequences, and newly inserted or deleted

sequences. Since diverging from chimpanzees, humans have gained 689 genes, and

lost 86 genes [102]. Transcription factors, which affect the transcription of other genes,

are four times more likely to have changed than other genes [157]. The difference in

intelligence between chimpanzees and humans must therefore be accounted for by a

mere 689 genes, and the morphology and functionality of the whole human brain and

body must be accounted for by only 24,000 genes. The total amount of brain-specific

DNA in the human genome is estimated to be around 100 megabits (12.5 megabytes)

— too little to encode complete information about the location and connectivity of ev-

ery neuron and synapse [63]. The discrepancy between the large number of neurons

and synapses, and small number of genes, suggests that the precise location and con-

nectivity of each neuron can not be encoded directly in the genome, and must instead

be represented using a largely compressed encoding (this problem has been termed

the “poverty of the genetic code”) [81, page 59], with the genome specifying basic

structure, such as the relative positioning of functional centres and the pathways of

connectivity between them, rather than the precise topology of individual neurons.

22 Chapter 2. Biological sensing and control

2.2 Biological models

Biological neural networks are complicated, and we still do not fully understand how

they function. The Hodgkin-Huxley model, first described in 1952, is the most widely

accepted model of neuron action potentials [192]. The model has been refined over

time, but some problems still exist. In 2005 Heimburg and Jackson proposed a soliton

model, in which computation in neural networks is carried out by waves of sound

propagating through the neural membranes. It is claimed that the observed change in

action potential, which is usually considered the primary mechanism of computation

within a neuron, is actually a secondary effect caused by changes in membrane density

and thickness as soliton waves flow across the network [184].

The simple “network of neurons” model does not account for chemical diffusion in

which molecules, such as nitric oxide, pass through cell walls unhindered [210, 405].

This allows neurons to influence other neurons that are nearby in 3D space, rather

than being directly connected as in traditional models. Although such diffusion has

been observed in neural cells, it is not known whether it plays an important part in the

functionality of biological neural networks.

Models of neural processing that rely on quantum effects have been proposed [330].

Similarly, it has been proposed that sensory perception, such as the ability to differ-

entiate between different smells, actually relies on quantum entanglement between

neighbouring cells, and hence can not be explained or simulated using network mod-

els [46, 452].

2.3 Connectivity and resilience

Biological neural networks typically have a huge number of neurons, which are greatly

interconnected. A human brain has approximately one hundred billion (1011) neurons,

each of which has around ten thousand (104) synaptic inputs on average, making a

grand total of around a quadrillion (1015) synapses [306]. This large number of neu-

rons and connections makes them highly resilient to damage — typically around 1000

neurons die naturally each day of a human’s life, and yet there is no noticeable change

in the day to day behaviour or intellectual capacity of individuals, suggesting that it is

composite networks, and not individual neurons or connections, that are responsible

for reasoning and behavioural computation.

The connectivity of an individual neuron is determined by its type and location

2.3. Connectivity and resilience 23

within the brain. Connections are more likely to exist between neurons that are phys-

ically close, so the distribution of connections is locally dense and remotely sparse.

The brain also shows elements of compartmentalisation and modularity; it is known

that some regions, such as the hippocampus, consist of densely packed, regularly ar-

ranged neurons, and that these regions perform distinct modular functions related to

higher reasoning, long term memory formation, etc.

The nervous system of the microscopic worm C. elegans consists of 302 neurons,

and is the only organism for which a complete connectivity diagram exists. The net-

work topology has been classified as a “small-world network”, in which the clustering

coefficient is high (directly connected nodes are likely to have neighbour nodes in

common), and the “characteristic path length” (the average length of the shortest path

between two nodes) is low [475]. This suggests the effect of evolution under real-world

constraints has been to maximise connections between physically close nodes where

the cost of an edge is low, to minimise connections between distant nodes where the

cost of an edge is high, and to simultaneously minimise the average hop distance; i.e.

optimising the neural network model towards lower propagation delay and increased

computational power. This is a similar hypothesis to the one Sipper proposed when

discussing the “average cellular distance” metric for evolved non-uniform cellular au-

tomata (see section 6.9).

New techniques are being developed which combine fine mechanical slicing of

a brain, high resolution two-dimensional electron microscopy imaging of individual

slices, followed by automated machine learning algorithms, to build a three-dimensional

connectivity map of entire brain sections [399]. Another new technique called “diffu-

sion spectrum imaging” uses MRI scans to detect water molecules along axons and

automatically build three-dimensional connectivity maps of the brains of living crea-

tures (figure 2.3) [169, 170, 400].

There are many cases of people receiving enormous amounts of damage to the brain

and showing no ill effects to either their physical control ability or mental reasoning

capacity. However, there are other cases in which enormous negative effects have

been observed, and yet the brain has shown a remarkable capacity for regeneration.

In 1984 Terry Wallis was in a car crash which resulted in severe brain damage. He

spent 19 years in a “minimally conscious state”, in which he was technically awake,

but unable to speak, move, or communicate in any way. His recovery in 2003 was

attributed to massive regeneration of the neural connections in his brain; magnetic

resonance imaging scans showed levels of metabolic activity that were significantly

24 Chapter 2. Biological sensing and control

Figure 2.3: Left: Diffusion spectrum imaging is used to gather high resolution data

showing connectivity in the brain. Right: Important structural features can be deter-

mined by analysing the number and length of connections between different parts of

the brain. Bundles of connections between clusters of neurons are visualised here as

straight lines, with line thickness weighted by the size of the bundle.

Credit for image: Van J. Wedeen, Patric Hagmann, and Olaf Sporns [169, 170]

higher than other patients with similar brain injuries who had not recovered [470].

He is now able to speak and has some movement ability. Wallis’s recovery surprised

neuroscientists, who generally believed that recovery from such a prolonged state of

damage was unlikely.

Similar observations have been made in other cases where the brain has been im-

paled, struck with a blunt object, shot, or damaged by burst blood vessels, cancer,

or invasive surgery. Long term coma patients have “awoken” and recovered, despite

previous scans showing only trace amounts of brain activity [256]. It is not always

the case, but quite often the brain displays a remarkable and unexpected capacity for

resilience and self-repair [111].

Other studies have shown that the brain when damaged, even though it may not

self-repair, can still function relatively well, suggesting that functionality is modular

and autonomous, and that communication between different modules, although advan-

tageous, is not strictly necessary.

The left and right hemispheres of the brain communicate over a thick bundle of

around 200-250 million nerve fibers known as the corpus callosum. “Split-brain” syn-

drome, in the corpus callosum is severed, is particularly interesting [148]. Patients are

2.3. Connectivity and resilience 25

Figure 2.4: Visual pathways of the human brain. An eye senses portions of both the

left and right visual field, providing some amount of redundancy. Each visual field maps

onto the opposite brain hemisphere. The bipolar field of vision where the visual fields

of the two eyes overlap enables 3D imaging.

able to see, comprehend and act in a localised manner in which their body appears to

be vertically split down the middle. Surgical operations to split the brain are sometimes

carried out to cure epilepsy; it has been hypothesised that severing the link prevents

epileptic seizures from spreading from one brain hemisphere to the other, and perhaps

prevents a seizure in one hemisphere from being amplified by a positive feedback loop.

Due to the process of evolutionary development the left and right sides of the hu-

man brain are wired to sensors and muscle on the opposite side of the body, e.g. the

left brain hemisphere is connected to the right arm, leg, etc. and vice versa [2,70]. The

eye is slightly different; each eye senses portions of both the left and right visual fields,

with the signals from each visual field being combined at a central structure known as

the optic chiasm, and then routed to the opposite brain hemisphere (figure 2.4). The

region where the fields of vision of the two eyes overlap is known as the binocular field

26 Chapter 2. Biological sensing and control

of vision, and it enables the brain to construct a three dimensional view of the world.

At the neural level, people with split brains are effectively two separate individuals,

who together operate a single body. Since there is no direct neural connection between

the two hemispheres (they are connected indirectly via the shared brain stem), each side

is completely unaware of what the other side is sensing or calculating. For example, a

typical right-handed patient, using the right brain hemisphere, will be able to visually

locate a specific object in their left visual field, pick it up with their left hand, and

operate it in the manner of that object’s use, and yet will be unable to name the object,

as language and object-to-name mapping skills are located in the left side of the brain.

Similarly, written words can only be read if they are in the right visual field, which is

connected to the left hemisphere where language processing resides.

The “split-brain” syndrome confirms that the brain is modular. Patients are able

to perform complicated tasks, such as walking and playing ball games, that we would

have otherwise assumed result from some learning of a sequential action sequence that

coordinates muscle signals to both sides of the body from a single position within the

brain.

Another interesting associated phenomenon is that when a normal (non-split brain)

individual is viewed in an instance, say a photo, their facial expressions are not sym-

metrical; although this is difficult to comprehend until compared to a digitally com-

posed image of what such a symmetrical face would look like. It can be seen that,

whilst one half of the brain may be smiling, the other half will appear only slightly

amused, demonstrating the disconnect in functionality and connectivity between the

two brain hemispheres.

The story of Abigail and Brittany Hensel also suggests that complex physical ac-

tions can result from the operation of two completely separate control systems. The

Hensel sisters are conjoined twins, each possessing a head and brain, but with spinal

cords that fuse at the pelvis to form a single lower body (figure 2.5). Each brain re-

ceives sensory information from only half of the body, vertically split, and can control

muscles only on that side of the body. Despite this, the twins can coordinate control

of their body to play basketball, cycle, swim, and, since they turned 16, drive a motor

vehicle.

One example of brain damage causing a modular loss of function is the inability to

form long term memories following the removal or destruction of the hippocampus, as

dramatised in the hit movie “Memento”. The hippocampus is a symmetrical structure

present in both the left and right sides of the brain, which is involved in the process

2.3. Connectivity and resilience 27

Figure 2.5: The Hensel twins have two completely separate nervous systems sharing

a single body, with signals from each brain dividing the body into left and right halves.

Despite this, they can carry out actions like cycling with no more conscious thought than

others, proving that complex behaviours can arise from the composition of independent

control modules at the neural level.

Credit for image: ABC Online

of converting short term memories into long term ones. Damage to either side, where

the other is undamaged, leads to minor loss in the ability to remember particular types

of sensory information. However, damage to both results in total loss of the ability

to remember anything over a period of time. Ability to form short term memories is

unaffected.

The loss of long term memory effect was first discovered in 1953 following surgery

on the anonymous patient “H.M.” [387]; research on the same subject persisted un-

til his death in 2008, upon which his identity was revealed as Henry Gustav Molai-

son [56, 75]. The effect suggests that memory function is resilient and distributed

across brain structures, it seems likely, given the catastrophic results of a double fail-

ure, that when one side of the hippocampus fails the other somehow compensates. In

recent years work has begun on a prosthetic neural interface that could be used to re-

place the hippocampus and restore memory function [25]. Researchers have been able

to model the signal transformation function performed by the hippocampus with 95%

accuracy, despite not understanding how it actually works.

The flip side of this is that human behaviour is produced by extremely complex

interactions between large numbers of neurons. A small amount of damage spread

across a large area of the brain will often result in no noticeable changes in the person,

28 Chapter 2. Biological sensing and control

but localised damage of an important area can result in loss of functionality and change

in personality. This is well illustrated in the classic case of Phineas Gage, a 25 year old

railroad foreman, who in 1848 had a 91.5cm long, 3.2cm diameter, 6.4kg iron tamping

rod blown through his head in a freak accident [176, 318].

Gage was busy packing explosives with the tamping rod when they detonated, pro-

pelling the rod upwards through his head. The rod entered just below the left cheek-

bone, passed vertically through the brain, and exited via the top of the skull, landing

30 metres away. Surprisingly, Gage survived, and regained conciousness only min-

utes later. After some time of recuperation, Gage recovered physically. Unlike many

victims of such severe brain damage, his powers of movement and comprehension ap-

peared to be unaffected. However, Gage’s doctor and friends noted that his personality

had changed radically.

Before the accident, Gage was known as a decent, stable person, a smart busi-

nessman, who was adept at methodically formulating and carrying out plans. After

the accident, he became abusive and impatient towards others, and would constantly

swear. He developed an impulsiveness and lack of attention that left him unable to

plan and act on those plans as he once did. With his new personality Gage’s employer

was unwilling to return him to a position of responsibility; in subsequent years Gage

held down a series of manual labour positions, but was never again employed in any

profession that required planning or managerial skills. Eleven years after the accident,

Gage developed epilepsy, and he died several months later.

Gage’s skull is on display at Harvard’s Countway Library of Medicine. Examina-

tion shows a large exit hole sized 5cm×9cm; the probable path through the brain has

been computed with the help of computer aided tomography (CAT) scans (figure 2.6).

A further analysis concluded that, despite the severity of the accident, damage had

been restricted to the left frontal lobe [347], an area associated with impulse control,

problem solving, and the carrying out of behaviour.

2.4 Pattern generation for muscle control

The control of movement in animals and humans has been studied by physiologists

and neuroscientists throughout the 20th century. Their experiments have shown that

most cyclic motions of the body are generated by parts of the nervous system known

as “central pattern generators” [195, 270, 279, 307]. These consist of collections of

neurons which generate rhythmically recurring patterns of output signals. It is these

2.4. Pattern generation for muscle control 29

Figure 2.6: The brain injury to Phineas Gage, reconstructed from CAT scans (left), and

the actual skull (right). The computer generated image includes the tamping rod which

was projected through his skull. Brain damage was localised to the left frontal lobe,

resulting in a complete personality change. Other brain functions were unaffected.

Credit for image: Peter Ratiu and Ion-Florin Talos [347]

signals which are presented, via motor neurons, to the muscle actuators to drive bodies

through movement, such as walking, swimming and jumping.

The dynamics of a central pattern generator act as a limit cycle attractor, causing

its neurons to produce activity patterns which oscillate, propelling the network along

its attractor path, and eventually returning it to its original state from which the cycle

begins anew. If the neurons of a pattern generator lose synchronisation the dynamics of

the network ensure that they will fall back into a similar, but not necessarily identical,

rhythmic pattern.

It has been theorised that every body part that makes cyclic movements is con-

trolled by an individual central pattern generator [97]. Experimental evidence has

shown this to be the case for certain creatures; in particular, due to the unique bi-

ology of the lamprey eel, neurophysiologists have been able to map the neurons re-

sponsible for pattern generation and synthesise their behaviour, showing that central

pattern generators can reproduce natural movements of the creature [166, 171]. Cen-

tral pattern generators have been shown to produce more stable gaits when compared

to reflex based controllers on a robot walking task [127]. A central pattern generator

has been used to synchronise the motion of two independent neural networks to drive

30 Chapter 2. Biological sensing and control

biped robot walking [461]; a staged genetic algorithm was later used to add modulat-

ing sensory input that enabled the neural networks to adapt at runtime to variation in

morphology.

Ascribing simple cyclic movements of an individual muscle or muscle group to a

neural pattern generator sounds reasonable, but are these pattern generators intercon-

nected, and if so, does the connectivity form a top-down control hierarchy, or a loosely

connected distributed control system? It is likely that the truth is a mixture of both;

human behaviours such as walking are initiated and modulated by higher level control

centres, but individual actions and patterns of muscle activation are most likely learnt

by adaptable individual pattern generators.

It has been proposed that a hierarchical control system is built by linking genera-

tors that perform coordinated behaviours, or by introducing a “parent” central pattern

generator which activates and modulates those behaviours [228, 270]. For example,

generators for different muscles in the same limb may be connected to a limb-wide

central pattern generator which orchestrates the lower level ones into producing coor-

dinated limb movements. This limb-wide generator may in turn be connected to other

pattern generators in other body parts, so that the movement of multiple limbs may in

turn be coordinated.

Mackay and Lyons suggest that a variety of central pattern generators may exist for

each joint or muscle group, and that these generators are parameterised by electrical

and chemical stimulus. The interactions between generators coordinate movements

which are somewhat hard-coded within the creatures morphology; thus higher level

motor learning is reduced to the task of combining and switching between different

central pattern generators, rather than learning patterns from scratch [270]. Patterns

generators do have some degree of plasticity, as cats with transected spinal cords have

displayed progress in stepping and standing with different training regimes (the cats

were trained to step or stand, but not both). Progress was only observed for the spe-

cific trained action (step or stand), and not the untrained action, indicating that the

function of the central pattern generator had changed in response to the spinal injury

and training [270].

In order to study central pattern generators in more depth, biological neural net-

works have been created in-vitro. Syed reconstructed the central pattern generator of

respiratory rhythm in the mollusk Lymnaea [426]. An analysis of its structure showed

that respiratory rhythm in Lymnaea is generated by a network consisting of only three

neurons. Later research has identified multi-function controlling neurons which mod-

2.5. Sensory feedback 31

ulate rhythm generation, and coordinate sensory input and motor control [175].

2.5 Sensory feedback

Proprioception is the sensing of the internal state of the body, which is communi-

cated to the brain, forming an internal action-sensation feedback loop. This enables

the nervous system to detect the current position of limbs, and forces being exerted by

muscles, and is important in providing timing information to central pattern generators.

Exteroception is the sensing of the external world. Such feedback could provide valu-

able information about position and orientation of the body within the world, contacts

between the body and other objects, and visual information on more distant objects.

Sensory feedback has been observed to activate and inhibit, though not generate,

patterns of activity. Experiments on deafferented animals, where the spine or nerves

have been severed to prevent sensory feedback, have shown that similar activation

patterns will still be generated, but the timing of body motion and patterns becomes

desynchronised, and coordinated movements become erratic [165]. Transection stud-

ies, in which the forebrain is removed but lower levels left intact, have shown that

low-level behavioural mechanisms can operate independently of higher level control

systems, although they lack inhibition and will activate in inappropriate contexts [344].

Feedback can drive certain generators into switching, with smooth and stable tran-

sitions, between the production of alternate patterns. One example of this is in gait

generation for walking. Not only must pattern generators produce coordinated cyclic

activation of muscle groups in each leg, they must also adapt this activation to cope

with transitioning between dynamically unstable gaits whilst keeping the creature sta-

ble and upright.

One way in which this could be done is to connect the pattern generators from each

leg to a series of gait pattern generators. As the speed changes the current gait gradually

becomes unstable, its gait pattern generator is driven out of its attractor cycle and

becomes inactive, switching smoothly to activate an adjacent gait pattern generator.

The output activity patterns of adjacent gait generators would be similar enough that

the body could switch between them without causing the creature to fall.

There is still some dispute over the exact role of sensory feedback, reflexes, and

central pattern generators in living creatures. In the animal world, moving the tail of

a paralysed dogfish from side to side will stimulate its motor neurons into producing

activity at the frequency of the imposed oscillation. This means that feedback is di-

32 Chapter 2. Biological sensing and control

rectly responsible for generating activity patterns, possibly through reflexes and not

pattern generators. A reflex based controller has been used to successfully control a

walking biped [327], showing that central pattern generators are not strictly necessary

for complex control tasks.

2.6 Brain computer interfaces

Interfacing biological neural systems to silicon chips allows both for real-time analysis

and reverse engineering of biological models, and the actual use of biological networks

in control and computation tasks. The electronic circuitry connected to the brain is

known as a “brain-computer interface” (BCI).

Biological pattern generators are adaptable and can be trained to perform specific

behaviours. In 2000 Reger et al. carried out a set of experiments in which the brain

and central nervous system of a lamprey sea eel were removed and connected via a

neural-silicon interface to a two wheeled robot body (figure 2.7) [245, 351].

The lamprey brain could successfully sense light and control the motorised wheels

of the robot body. The response of the cyborg to varying light stimulus was analysed

and reduced to a set of differential equations, showing that the lamprey displayed light

following behaviour. This could be changed to light avoidance behaviour by relocating

the electrodes in the neural tissue. The test system enabled neural spike trains to be

sent directly from a computer interface to the lamprey brain. This was used to validate

the model by inputting precise data points and observing the output motor electrode

activation. It was then shown that the brain could adapt to an increase in light sensor

sensitivity.

Since these behaviours can be trained into the neural network of the lamprey, and

we know that the lamprey neural system can be synthesised by artificial central pattern

generators, we have reason to believe that a robot control system utilising central pat-

tern generators will be capable of displaying both movement, learning and adaptation,

and other more complex behaviours.

In 2003 Fromherz reported growing biological neurons on silicon chips (figure 2.8) [140].

The neuron cells are encouraged to attach directly to transistors to form a neuron-

silicon junction so that signals can pass between biological neural networks and on-

chip silicon transistor based networks. This enabled researchers to perform non-invasive

monitoring of signals passing through biological networks, by encouraging their growth

over, and attachment to, silicon probes. Signals could be input to the biological net-

2.6. Brain computer interfaces 33

Figure 2.7: The sea lamprey (left) is a common subject of neurological research due to

its easy to manipulate nervous system. The brain has been used to control a Khepera

mobile robot (right)

Credit for image: Center of Marine Biotechnology, University of Maryland and Insti-

tute for Theoretical Computer Science, Graz University of Technology [245]

work by stimulating the neural cells directly with electrical charges [211, 226].

In 2004 Xu et al. directly interfaced silicon chips to the brains of living rats (fig-

ure 2.9). The system consists of a rat backpack containing a radio transceiver, mi-

croprocessor, brain interface circuitry, and a battery. The backpack is completely self

contained, allowing unrestricted movement of the rat in 3D space. The radio inter-

face links the microprocessor to a PC, and the signal is digitally encoded to preserve

integrity.

The brain interface circuitry allows multi-channel stimulus of several brain regions

associated with sensory perception from the whiskers and pleasure. An operator can

remotely control the rat using a standard laptop from a distance of up to 300 metres.

Controls consist of “move left”, which stimulates neurons usually activated by contact

with the right whiskers, “move right”, which performs the same operation on the left

whisker neurons, and “reward”, which stimulates the pleasure centres to reward the

rat for an action it just carried out, or to encourage the rat to continue whatever it is

currently doing (i.e. turning, or moving in some specific direction).

Real-time remote control of animals has some interesting applications, the most

significant being military based, such as espionage (e.g. a rat equipped with a miniature

microphone, or bird with video camera), weaponry (animals used to deploy bombs),

and surveillance (dolphins deployed to guard sea ports from enemy divers). Other

more peaceful operations are also envisaged, such as search and rescue within burning

34 Chapter 2. Biological sensing and control

Figure 2.8: Snail neurons interfaced directly to a silicon chip. Neurons are encouraged

to grow within a silicon junction consisting of six contact points.

Credit for image: Peter Fromherz, Max Planck Institute of Biochemistry [490]

buildings, cities devastated by earthquakes, and other disaster zones.

In 2005 DeMarse cultured rat neurons to control a PC based 3D flight simula-

tor [100]. 25,000 embryonic rat neurons were cultured across a grid of 60 electrodes

which can both sense and stimulate neuron activity (figure 2.10). Although 60 elec-

trodes were present, only 2 were actually used in the control experiment. These 2

electrodes were fed with the pitch/roll feedback from the flight simulator, and their

response measured. High or low frequency stimulus was then used to adapt the neu-

ral cells around the electrodes into either producing a greater or lesser response. In

essence, the network was trained to calculate error functions for the pitch and roll

variables.

Once trained, a process which took only minutes, the network could successfully

control plane flight with only minor (less than 10% degrees) deviation from the perfect

response. Previous research by the same team includes the interfacing of rat neurons

to a simulated virtual creature with both sensory and control pathways; however, the

creature was not trained to perform any specific task [101].

The sensing and decoding of motor control neurons is an active research area which

has huge implications for people suffering from paralysis. Recent developments in

this area include the 2006 human implantation of a “BrainGate” chip, designed to

monitor and decode hundreds of neurons simultaneously and communicate activity

back to a wearable computer [191]. The prototype chip has 100 electrodes, and has

been successfully used by the implanted subject to control the movements of both a

2.7. Summary 35

Figure 2.9: A silicon chip directly interfaced with the brain of a living rat. The chip is

driven by a PC connected to a radio base station into providing multi-channel stimulus

of neurons associated with left and right whisker sensation, and the pleasure centre of

the brain.

Credit for image: S. Talwar, State University of New York [484]

robotic arm and the cursor of a computer user interface.

2.7 Summary

This chapter explored biological neural networks. Biological neural networks are

found in the brains and nervous systems of living creatures, and consist of neuron

cells and connections between those cells. Biological networks are modular, com-

plex and adaptable, and resistant to damage and degradation. Mathematical models of

these networks have been developed. The function of an individual neuron has been

modelled, and the model has been verified to be reasonably accurate. Despite this,

the mechanism of how individual neurons form larger computational networks is un-

known. Some creatures with very small neural networks have been modelled, but there

are no successful models of larger networks such as complete mammal brains.

This thesis explores the effect of quantisation on the performance of evolved neu-

ral networks that control simulated systems and virtual creatures. Evolved controllers

must generate cyclic patterns of activity in order to drive behaviours such as locomo-

tion. The “central pattern generators” of real nervous systems provide a biological

36 Chapter 2. Biological sensing and control

Figure 2.10: Rat embryonic neurons are interfaced to a microelectrode array (MEA),

which allows simultaneous sensing and stimulus of neuron activity at multiple points

within the biological network. The electrode array is connected to a virtual world simu-

lation via a PC.

Credit for image: T. DeMarse, University of Florida [100]

2.7. Summary 37

basis for artificial neural behaviour. The role of sensory feedback is also important

in stimulating and modulating cycles of neural behaviour. It would greatly help the

implementation of virtual and artificial creatures and their controllers if we understood

how biological creatures functioned.

This chapter has also looked at the topic of Brain computer interfaces. This is

an interesting research area as it brings together two topics that are relevant to this

thesis — biological neural networks and VLSI analog/digital hardware. It is likely

that further research in this area will produce advances in the understanding of neural

coding in biological creatures, which is a topic of great interest to implementers of

virtual creatures.

Chapter 3

Synthetic neural networks

In the last chapter we looked at biological neural networks. This chapter will describe

the theory and operation behind synthetic neural networks, which attempt to recreate

and simulate the networks that we see in nature. The study of synthetic neural net-

works is an important aspect of this thesis — synthetic neural networks have been

used by other researchers for robotic control, including control of evolved creatures.

The research carried out as part of this work involves using genetic algorithms to cre-

ate synthetic neural networks that can control simulated robots, and then comparing

the performance of neural models with different levels of quantisation on some typical

dynamic robot control tasks.

Synthetic neural networks have been implemented in a variety of technologies,

such as software running on generic processors, analog and digital VLSI, programmable

logic circuits, cellular automata, and custom processors. One of the aims of this the-

sis is to explore whether quantised neural networks, which can be implemented with

fewer hardware resources than continuous networks, can be used for robot control

tasks, and if so, how degraded their performance will be. Prior implementations of

neural network processing systems are interesting from this perspective, as the design-

ers of these systems will have already attempted to optimise their systems to maximise

neurons simulated whilst minimising computational resources. Various neuron mod-

els and network topologies will be introduced, as well as some popular methods for

training a network to perform generic pattern matching and classification of input data

patterns.

The principal motives behind synthetic neural network research are to gain further

insight into the function of biological networks and to create something that is actually

useful. Commercial applications of neural networks were non-existent until the 1990s,

39

40 Chapter 3. Synthetic neural networks

mainly due to lack of affordable computing power. Neural networks have now become

the favoured architecture for pattern recognition, leading to a variety of applications

in machine vision, fraud detection, speech recognition, and many other tasks which

require robust and reliable generalisations to be made from noisy input data.

A neural network is modelled as a directed graph of neurons. Each neuron oper-

ates with some strictly defined mathematical functions which transform its input signal

values into internal activity, and its internal activity into an outgoing signal value. Con-

nections between neurons are often weighted, so that the effect of a signal is amplified

or reduced, and either the connection, or the source neuron, is said to be excitatory

or inhibitory, and so will act to either increase or decrease the activity of the receiv-

ing neuron. The input signals to an individual neuron are often collected together by

summing the weighted signal values. A neuron produces a single output signal which

fans out to many receiving neurons, each of which will receive an identical copy of

the signal, though some models may introduce a small phase shift to simulate synaptic

delay.

Synthetic neural networks were first studied by McCulloch and Pitts in 1943 [286].

They described a network structure, where input nodes reproduce externally sensed

signals, feed-forward edges connect internal nodes, which perform computation, the

results of which are ultimately presented on output nodes. They argued from biological

principles that a simple summing model with a binary threshold was realistic, and

showed that, under this model, there would always be some network to implement any

given logical expression.

Their neuron model had binary inputs and outputs, the activation function was

the Heaviside step function (see section 3.5), and inputs were not weighted but could

be excitatory or inhibitory. The threshold level could be varied to change the logic

function (e.g. with two inputs, a threshold of 1 produces an OR gate, because 1+

x ≥ 1, or a threshold of 2 makes an AND gate, because 1+ 1 ≥ 2). The inhibitory

connections allow the reproduction of signal inversion necessary for the NOT, NAND,

and NOR functions. A single active inhibition signal forces the output of the neuron to

0, regardless of the other inputs; this is known as “absolute inhibition” [365].

In 1958 Rosenblatt introduced the “perceptron” model [366]. The classical percep-

tron, as defined by Rosenblatt, differs from the McCulloch-Pitts neuron only in that

it has edges weighted with signed real-values, and uses “relative inhibition”, where

a neuron’s activity is reduced by an amount proportional to the weighted sum of its

active inhibition inputs. Rosenblatt defined a precise feed-forward network topology

41

consisting of binary sensors projecting signals to an input layer through determinis-

tic connections. The input layer is in turn randomly connected to a perceptron layer,

which is itself randomly connected to an output layer. The input and output layers

merely reproduce signals and do not perform any computation, so this is actually a

single layer topology.

The first gradient descent training algorithm, “least mean squares”, was published

by Widrow and Hoff in 1960 [478]. At the time, many ambitious predictions were

being made regarding connectionist computing. In 1957 Simon claimed that within 10

years a computer would become world chess champion, and a major new mathemat-

ical function would be proved by an automated system [369]. It was widely believed

amongst the AI community that within 50 years computer intelligence would exceed

that of humans, and one of the great dreams of science fiction would be realised.

Fifty years on, and our most optimistic commentators still claim that human levels

of artificial intelligence will be achieved within the next 50 years [312]. It has been re-

alised that the problems being posed were much harder than we first thought. Even the

challenge of beating a world chess champion, a task seemingly ideal for repetitive com-

putation, has proven to be a formidable one, that has only recently been achieved [208].

In sensing and control tasks the synthetic neural networks of today are comparable to

the most basic insects in their complexity and observable behaviour.

It was not until 1997 that Kistler directly compared the threshold logic of McCul-

loch and Pitts to the widely accepted Hodgkin-Huxley model of a biological neural

network, showing that the single variable threshold gate could correctly predict 90%

of the spikes generated by the more complex Hodgkin-Huxley model [233].

In 2005 the Hodgkin-Huxley model, used as the biological justification of the Mc-

Culloch and Pitts action potential model, was disputed by Heimburg and Jackson, who

proposed that computation in biological neural networks is carried out by solitons —

propagating waves of sound and pressure — and that changes in action potential are

only a secondary effect of changes in membrane density and thickness [184]. If this

is the case, then it would undermine the biological basis of synthetic neural networks,

and therefore much of the work done to-date on them. Research on the soliton model

is ongoing.

42 Chapter 3. Synthetic neural networks

3.1 Similarities to biological networks

In many ways synthetic neural networks are similar to the biological ones which in-

spired them. Neurons act in a way which models their biological counterparts, provid-

ing a function with an arbitrary number of inputs and a single output. They operate

in parallel and asynchronously, and higher order ones are capable of the complex be-

haviours demonstrated by biological neurons.

The synaptic potential which alters the strength of a signal passing between a ter-

minal button and a dendrite is emulated by multiplying transmitted signals by a con-

nection weight. Synapses can be excitatory or inhibitory, which is analogous to multi-

plication by a positive or negative weight. In networks where edges can carry signed

(positive or negative) values, the polarity of a signal can be inverted by multiplying by

−1.

In synthetic networks the connection weights are usually constant at runtime but

varied using some offline training algorithm, however, most online learning models

will dynamically alter the weights. Individual neurons and synapses may have different

time constants, thresholds and delays, although in many algorithms these are constant

and only the weights and connectivity are varied. In biological networks, the strength

of synapses is varied, obviously while the creature is living, though it could be said

that offline training was performed in the case of the neurons interfaced to silicon

transistors presented in section 2.6.

Biological networks tend to be on a much larger scale than synthetic ones, con-

taining more neurons and more interconnections between them. This can be seen as a

limitation more of our design skills than of technology, as modern vector processors are

quite capable of simulating networks with many millions of neurons and connections

in real-time.

Simulations on digital computers are inherently digital, whilst biological networks

are continuous, but it is not clear that this makes any difference. The quantisation

of temporal and electrical continuity approximates reality in that a continuous system

allows states to become so similar they can not be separated. Since neurons (and all

other computing elements) categorise input signals into different states as part of their

function, continuity is perhaps not a necessary prerequisite for complex behaviours.

3.2. Connectivity 43

Figure 3.1: Various topologies of a multiple input, single output, network — feed-forward

(top left), recurrent (top right), and fully connected (bottom).

3.2 Connectivity

The connectivity of synthetic neural networks can be represented by a directed graph.

Traditional models use a feed-forward topology, in which signals always travel from

input nodes towards output nodes, and there are no cycles. This model became popular

as it is easy to analyse mathematically, and yet is still able to approximate any contin-

uous function. Gradient based training methods, like backpropagation, can be used to

adjust connection weights to better approximate the evaluation function.

Recurrent neural networks allow the graph topology to contain cycles [329]. These

networks are difficult to train with gradient descent algorithms since there is no obvi-

ous way to determine how much each node contributes to the final output value. The

usual technique of training such a network involves “unrolling” the network to cre-

ate an almost equivalent feed-forward topology, training that, and back-annotating the

weights to the recurrent network [329].

Many recurrent network graphs have arbitrary connectivity. It is possible to shape

this connectivity into regular topologies such as one-dimensional rings, two-dimensional

tori, or three-dimensional grids. Geometrically regular topologies are unusual in neural

network research, but common in the related area of cellular automata.

A network in which the output of every node is connected to every other node is

44 Chapter 3. Synthetic neural networks

known as “fully connected”. Again, these type of networks are hard to train with tradi-

tional techniques, but are commonly used with techniques, such as genetic algorithms,

which treat the network as a black box rather than attempt to analyse its internal dy-

namics. Connection weights are allowed to vary within some range that passes from

positive to negative. Values that tend towards zero will effectively prevent communica-

tion between two nodes, which is functionally equivalent to removing the connection,

so fully connected networks with varying weights can simulate any other topology.

Experiments have shown that the number of fully connected neurons required to

successfully control a dynamic task, like robot walking, can be as low as 10 [355],

or as high as 100 [349, 350]. The number of nodes required depends on the neuron

model, the connectivity, and the task at hand. Connectivity affects computational abil-

ity, since each connection represents another opportunity to carry out a multiplication

and communicate data, and so less well connected networks may require more neurons

to perform the same task.

3.3 State and signal coding

In biological neural networks signalling is characterised by the temporal “spike train”

of a neuron firing. Each spike is a discrete event; no information is conveyed by its

amplitude or duration. After firing, a neuron goes through a refractory period in which

the generation of subsequent spikes is repressed. Figure 3.2 shows biological spike

trains recorded from 30 neurons in a monkey visual cortex over a 4 second period.

As can be seen, spikes are not as numerous as may be expected, with a switching

frequency several orders of magnitude slower than modern transistors’.

Although we do not understand exactly how information is encoded within the

spikes, several mechanisms have been proposed, along with biological justifications

for each [155]:

Rate Information is encoded by the mean firing rate (frequency) of a neuron, or group

of neurons. This has been discredited by experiments that show computation

occurs faster than rate coding would allow. Accurately determining the firing

rate requires monitoring and averaging the signal over some period of time. Ex-

periments have shown that a fly can react to external stimulus and change flight

direction within 30ms, which is only enough time to generate a single spike. Ex-

periments on monkeys have demonstrated cortical computations that can com-

3.3. State and signal coding 45

Figure 3.2: Spike trains from 30 neurons in the monkey visual cortex recorded over a

4 second period. Spikes are not as frequent or numerous as might be expected; there

are fewer than ten spikes in parallel over 100ms, and the distance between subsequent

spikes is usually over 10ms, in this case stretching to hundreds of ms. Each spike takes

1ms, and is followed by a 10ms refractory period.

Credit for image: Krüger and Aiple [249]

plete in 20ms, despite neuron firing rates being less than 100Hz [269].

Time-to-first-spike Information is encoded in the temporal distance between the first

and subsequent spikes.

Phase Information is encoded in the time between a spike and some periodic signal,

such as a reference oscillator.

Correlation and synchronicity Information is encoded by groups of neurons firing

together, or firing in specific orders, or in the temporal distance between these

events.

In the physical world input and output signals must be temporally continuous and

real-valued. Synthetic neural networks can use spikes, floating-point, or multi-value

representations internally. Signals from the real world must be translated before being

46 Chapter 3. Synthetic neural networks

presented to the network as inputs, and outputs must be translated to real-values before

being sent to motors.

If spikes are used, then input signals must be translated into spike trains. If the

network uses floating-point values then inputs need only be scaled and translated. For

discrete multi-value networks, input signals must be quantised.

Analog neural network implementations, such as custom ASICs, can reliably re-

produce biological neural behaviour, and hence, depending on the way in which the

system is designed, the information coding of the spikes may have the same interpre-

tation. Synthetic digital spiking neurons may also code information the same way.

The way in which information is represented and encoded in a signal affects how

the signal is interpreted. In simulation of continuous networks floating-point values are

used for signalling between neurons. The floating-point value can be either interpreted

as encoding the frequency of a biological spike train (“rate coding”), or encoding the

intended real-value which the equivalent biological spike train would produce if we

knew how to decode it precisely (this assumes that biological neurons are actually

attempting to communicate real-values, and that spiking is just a low-level way of

doing so).

The widespread use of rate coding is partly historical, and comes from a time when

it was believed that frequency was the only information carrying component in biologi-

cal spike trains. The use of floating-point values was also more convenient for gradient

descent based weight training. In multi-value networks quantised values represent non-

overlapping regions of the signal space, and otherwise are assumed to represent some

real-value within that space.

It has been shown that the presence and coding of input signals can have a severe

effect on the dynamics of a network. Studies on asynchronous cellular automata have

shown that perturbations caused by temporally continuous input signals from the en-

vironment cause the formation of large scale regular spatial structures which display

long range correlation between cell states, and that these structures are stable despite

being continuously perturbed [489].

3.3.1 Example codings

In 1994 Salapura used a delta signal encoding to create space efficient neural networks

with bit-stream arithmetic [374]. The “delta encoded binary sequence” signal modula-

tion encodes a real-value number in the range [−1,1] as the proportional of zeroes and

3.3. State and signal coding 47

Figure 3.3: Delta encoded binary sequences of various real-values, where the number

of zeroes and ones is proportional to the value being encoded

Credit for image: Valentina Salapura [373]

ones to output (figure 3.3). No successful use of this coding was reported.

In 1998 Korkin presented the “spike interval information coding” (SIIC) convo-

lution function, which converts a binary sequence into a time dependent real-value

output [244]. It is derived from an neuroscience algorithm published by Rieke in

1997 [362]. The convolution function computes the dot product of the last bits seen

in the binary stream along with the convolution filter, which is a vector of integers of

some pre-determined length. In 1999 the filter values were evolved using a genetic

algorithm, and the result was shown to improve accuracy over Rieke’s algorithm by

almost 100%, whilst reducing the bitstream look-ahead from 48 to 20 bits [87].

The inverse operation, that of converting a time dependent integer value into a bit-

stream, is carried out with the “Hough spiker algorithm” (HSA) [207]. This deconvo-

lution algorithm relies on keeping a running total of the bit changes seen, and inferring

how the original input bitstream must have varied in order for the convolution filter to

produce the observed output bitstream. See figure 3.4 for a example of how reliably

a continuous analog signal is reproduced after being encoded with SIIC and decoded

with HSA.

In 2001 Floreano used spiking neural networks to control a two wheeled robot [135].

Inputs to the network came from a 16 pixel video camera. The intensity of each pixel

was convolved with a Laplace filter to extract contrast from the vertically lined en-

vironment and then scaled to [0,1] and used as a probability of the input neuron fir-

ing. Hence information was coded in the frequency and across neighbouring neurons,

which would have values that are somewhat dependent on each other, as they face an

almost identical direction. The output value to the motors was not rate coded, but was

the difference in the spike count between two motor neurons, so that increased firing

on either would move the vehicle forwards or backwards respectively.

48 Chapter 3. Synthetic neural networks

Figure 3.4: A simple test for a coding scheme is to encode and then decode an analog

signal, and see how the resulting signal varies from the original. Here, the original

signal is a dashed line, and the decoded-encoded signal continuous. The line at the

bottom shows the absolute error. SIIC/HSA can reliably reproduce large waveforms

which change slowly with respect to the time period of the convolution function (left),

but large errors can occur otherwise (right).

Credit for image: Hugo de Garis [93, 207]

In 2002 Floreano extended the above research to a mobile robot running on an 8-

bit microprocessor with three infra-red (IR) sensors [134]. Each IR sensor reported

a continuous value which was then linearly scaled to one of eight possible discrete

states. These eight states were then reduced to a 3-bit value which was coded so

as to preserve the property that the number of ones always increases as the sensed

value increases. The use of this coding is quite interesting, as most research involving

spiking networks uses rate coding of input values, which increases the firing frequency

of a single neuron, whereas here higher values directly correspond to more neurons

spiking in parallel. The sensors provided new input values every 28ms. This allowed

the network, with a cycle period of 2ms, to be updated many times between input

activity in order to process internal spikes, so it was not possible for inputs to generate

many spikes and saturate the network. The coding of the outputs was the same as the

above work in 2001.

In 2003 Schrauwen released a new spike train encoding scheme, “Bens [sic] spiker

algorithm” (BSA) [383]. Reconstruction of the signal is carried out by a “finite impulse

response” (FIR) filter. BSA was shown to have a higher signal to noise ratio than HSA,

and more accurately reproduced the input signal.

In 2003 Mandik used the “Framsticks” 3D simulation and evolution environment

to evolve and compare a variety of structures of different neural systems [275]. As

3.4. Models of single neuron dynamics 49

a neuroethologist, Mandik was interested in the representation of information within

the evolved nervous systems, essentially arguing that information must be encoded

in some internal representation, otherwise there would be no way to perform useful

computation on it. Mandik argues that delayed copies of both sensory signals and

efferent outputs positively contribute to the success of evolved control systems, and

that in systems where there is a causal relationship between events and the internal

neural representation of an event, and where the representation carries the same form

as the original event (in a similar way to a boot print in mud sharing the form of the

boot), then these signals encode a representations of the world. Mandik argues that

this is in contrast to anti-representationalists such as Beer, who reject that such simple

neural networks contain any internal representation of the world [17]. Beer argues

that not only is there no representation stored in the state of any given individual node

within a simple network, but also that there is no distributed internal representation —

that appropriate behaviour and actions are simply the result of current circumstance.

3.4 Models of single neuron dynamics

The chemical reactions that underlie biological neural networks are complicated. At

the most accurate level of analysis simulation could be carried out at the level of in-

dividual molecules, but this would be computationally prohibitive for simulations of

actual networks. In order to simulate large networks mathematical models of the dy-

namical behaviour of single neurons have been created, at varying levels of abstraction,

to allow simulations at different levels of detail, and with different levels of computa-

tional power [189].

The Hodgkin-Huxley model of neuron action potential from biology is usually

reduced to a single variable differential equation [233]. This equation can be split into

separate components computing an input function to gather together incoming signals,

an activation function to compute a internal state, and an output function to compute a

signal to be sent to other neurons.

3.4.1 Input function

The input function amalgamates the values received on each of a neuron’s input con-

nections. Most neural models associate a weight value with each incoming connection,

and compute the weighted sum input function ∑
n
j=1WjI j. In effect, this function cal-

50 Chapter 3. Synthetic neural networks

culates the dot product W · I between the vector of weights and inputs.

Threshold neurons often have an internal bias value, which shifts the threshold left

or right (without a bias the switching threshold would be x = 0). For convenience, and

faster processing on vector hardware, this bias is often incorporated into the weight

vector, with the corresponding input being set to 1 or -1.

3.4.2 Activation function

The activation function defines how the stimulus value calculated by the input func-

tion affects the neuron state, or in biological terms, its action potential. Some neural

models, such as the sigmoid neuron, have no internal state, in which case the activ-

ity function is the identity function. Other common models, such as those from Beer,

Taga and Ekeberg (see section 3.4.5), have an internal state, and the activation func-

tion specifies how it changes using first, second or third order differential equations

respectively.

3.4.3 Output function

The output function (also known as the transfer function) transforms the current neuron

state into an output value which is sent to other neurons. The output function is usu-

ally restricted to being non-linear — if it were linear, the effects of multiple weighted

layers could be reduced to a single layer by multiplying out the weights, and hence

the network as a whole would be no more powerful than a single neuron, which is

incapable of solving linearly inseparable problems.

For spiking neurons, the output function compares the neuron state to some thresh-

old, and if the threshold is exceeded it generates an outgoing spike event.

3.4.3.1 Binary thresholding

In the simplest case the neuron will compare the activity value to a threshold and output

a binary value, using either the sign function, or the Heaviside step function:

Sign function:

sgn(x) =

−1 if x < 0

0 if x = 0

1 if x > 0

3.4. Models of single neuron dynamics 51

−6 −4 −2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

x

H
(x

)

Figure 3.5: A plot of the Heaviside function, showing the threshold at x= 0 which results

in a discontinuous output transition between y = 0 and y = 1.

Heaviside step function (figure 3.5):

H(x) =

0 if x < 0

1 if x≥ 0

Thresholding the input to produce a binary “all or nothing” output was common

until training techniques that rely on computing the gradient of the activation level

were discovered. The sign function (also known as signum, or sgn) is a function that

switches from -1 to 1 at x = 0 (at precisely x = 0 the output value is defined as 0).

The Heaviside step function is similar, with the output switching from 0 to 1 at x = 0,

however, at that point the output is defined as 1.

3.4.3.2 Sigmoid function

The sigmoid function produces an output between 0 and 1 with an “S” shaped curve

the gradient of which can be calculated at any point. This function produces a simple

behaviour from the neuron; its output will increase in response to increased activity.

Sigmoid function (figure 3.6):

s(x) =
1

1+ e−cx

52 Chapter 3. Synthetic neural networks

−6 −4 −2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

x

si
gm

oi
d(

x)

Figure 3.6: A plot of the sigmoid function showing the distinctive “S” shape. The gradient

of the curve can be calculated at any point.

where c is a parameter used to control steepness of the curve. In the graph below c is

equal to 1.

3.4.3.3 Hyperbolic tangent

The hyperbolic tangent function is often used for neural models which constrain neuron

outputs to be between -1 and 1 (though the same effect could be achieved with the

threshold or sigmoid functions by translating the output by -0.5 and multiplying by

2). In particular it is used for motor neurons since output forces need a polarity. The

parameter c can be used to alter the steepness of the curve.

Hyperbolic tangent:

y = tanh(cx)

3.4.4 Spiking models

Spiking neurons (figure 3.8) model the action potential spikes observed in biologi-

cal neurons. The principal difference between these models and others is that in the

spiking models all communication between any two neurons is carried out on a single

connection that can only transfer spike events, as opposed to floating-point values, or

3.4. Models of single neuron dynamics 53

−6 −4 −2 0 2 4 6
−1.0

−0.5

0.0

0.5

1.0

x

ta
nh

(x
)

Figure 3.7: A plot of the tanh function. Like the sigmoid function the plot shows a

distinctive “S” shaped curve, and the gradient can be calculated at any point. The

dependent variable y is in the range [−1,1] and symmetric around 0 with reversed

polarity.

even binary zeroes and ones. Each spike is a discrete event, and does not have a polar-

ity, level, or any other metadata, meaning that the only information associated with a

spike is the time it was generated.

In order to ensure that each spike is discrete, following the firing of an outgoing

spike the neuron goes through a refractory period in which its action potential is sup-

pressed, and hence subsequent spikes during this period are either impossible (absolute

refraction), or just less likely (relative refraction).

The Hodgkin-Huxley model is widely accepted as a realistic model of action po-

tentials in a biological neuron. It is complex, in that it uses four variables and their re-

spective differential equations. Due to this it is not directly used in synthetic networks;

rather, the equations are reduced to simpler single variable approximations which can

be more quickly computed on standard hardware. The integrate-and-fire model and

the spike response model are the two most common single variable models used for

synthetic spiking neural networks [155].

3.4.4.1 Integrate-and-fire model

The leaky integrate-and-fire neuron is excited and inhibited by weighted input connec-

tions. If the activation exceeds a threshold it fires an action event. Some proportion of

54 Chapter 3. Synthetic neural networks

Figure 3.8: An example spiking neuron. Excitatory connections have black circles,

inhibitory have white. Connections are weighted. Incoming spikes contribute to an

internal activity value which is thresholded using the Dirac delta function to produce

outgoing spikes.

Credit for image: A. N. Burkitt [52]

action potential is constantly lost to leakage. In the absence of incoming spikes, activ-

ity will fall to the resting potential. In this model, spikes only have an effect when they

are generated, so the model does not need to store information about spikes that oc-

curred in the past. This model is defined by a differential equation and some associated

functions [52, 471].

Input function:

x =
n

∑
j=1

w jz j

n number of incoming connections

w j weight of the connection from neuron j

z j value of the output function of neuron j
Activity function: the activity variable y is set to zero if the neuron is in the refrac-

tory period (absolute refraction), or if the activity threshold θ is exceeded:

yt =

0 if t− t f < tr

0 if yt−1 > θ

3.4. Models of single neuron dynamics 55

If this is not the case, the change in activity is determined by the differential equa-

tion:

τ
dy
dt

= −y+ x

t current time

t f time at which neuron last fired

τ time constant

tr refractory period

θ firing threshold
Output function: the output is instantaneously 1 if the neuron activity exceeds the

threshold, causing it to fire (this is often represented using a Dirac delta, or unit im-

pulse, function). Following a single value of 1, the activity function will immediately

reset y to 0, and refraction will prevent other spikes from being immediately generated.

z =

0 if y≤ θ

1 otherwise

3.4.4.2 Spike response model

The spike response model (SRM) uses a function to calculate the momentary value of

neuron activation, rather than differential equations [155]. To do this, the contribution

of each incoming spike in the past is calculated using a function ε(s). This function will

decay over time, representing the fact that the effect of an individual spike diminishes

over time. A typical ε function (figure 3.9) would be [135]:

ε(s) =

0 if s < ∆

exp

 − (s−∆)

τm

1− exp

 − (s−∆)

τs

 if s≥ ∆

s time since spike

∆ synapse delay (˜2 ms)

τm membrane time constant (˜4 ms)

τs synapse time constant (˜10 ms)
After firing, a neuron is subject to a refractory period during which its action poten-

tial is suppressed in order to inhibit generation of a subsequent spike for some period

of time. This is modelled with an η function (figure 3.10), such as:

56 Chapter 3. Synthetic neural networks

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

∆∆ ms

εε

Figure 3.9: The ε function models how an incoming spike, after a period of synaptic

delay, has a large effect on the activity of the receiving neuron, but then decays expo-

nentially over time.

η(s) =−exp

 − s

τm

s time since spike fired

τm membrane time constant (˜4 ms)
The ε and η functions are combined to give a single function which calculates the

activity of a neuron at a point in time:

y =
n

∑
j=1

w j ∑
f∈Fj

ε(t f)+ ∑
f∈F

η(t f)

n number of neurons

F spikes of this neuron

Fj spikes of neuron j

w j weight of connection from neuron j

t f time since spike f
If the activity y exceeds a threshold θ then the neuron fires a spike, and η is set to

−1 to prevent another spike being immediately generated.

3.4. Models of single neuron dynamics 57

0 5 10 15 20
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

∆∆ ms

ηη

Figure 3.10: The η function models the refractory period where a neuron’s activity is

repressed immediately after it fires. The strength of repression decays exponentially.

3.4.5 Continuous models

3.4.5.1 Sigmoid model

The sigmoid neuron is one of the simplest models, and its dynamics are easy to analyse.

The weighted inputs are summed, and then this value is entered into a sigmoid function

to compute the output.

Input function:

x =
n

∑
j=1

w jz j

n number of incoming connections

w j weight of the connection from neuron j

z j value of the output function of neuron j
Output function:

z =
1

1+ eb−x

where b is an optional bias value that translates the weighted sum some distance along

the activity dimension.

The output of this function relies purely on the current inputs, hence it has no

internal dynamics, and the output signal may be discontinuous.

58 Chapter 3. Synthetic neural networks

3.4.5.2 Continuous time recurrent model

The “continuous time recurrent neural network” (CTRNN) is a first order derivative

model first used for robot control by Beer [18, 19]. It is based on the “leaky integrate-

and-fire” continuous model of a spiking neuron [155], the main difference being that in

Beer’s model there are no spikes, and hence no threshold, no resetting, and communi-

cation between neurons is a continuous activity level instead of discrete events. There

is also no refractory period (though that is also optional in the spike integrate-and-fire

model).

The activation function produces the gradient of the change in activity between the

previous activation of the neuron and the current inputs, biased by an adaption rate (or

“time constant”). Integration of the gradient and the previous activity can then be used

to calculate the current activity, which is summed with a bias value and placed into the

sigmoid output function to calculate the new output value of the neuron.

Input function:

x =
n

∑
j=1

w jy j

Activation function:

τ
dy
dt

=−y+ x

where τ is an adaption rate that alters how quickly the state follows changes in its

derivative.

The −y term makes activation “leaky” and tend towards 0. As with bias values, it

can be calculated as part of the vector dot product in the input function by considering

y as an input with weight −1, in order to accelerate the operation on vector hardware.

Output function:

z =
1

1+ eb−y

This is the sigmoid function with b as a bias value.

This model produces continuous dynamical behaviour based on the first order dif-

ferential equation. Other than that it is functionally equivalent to the sigmoid neuron.

3.4.5.3 Taga’s model

Taga’s model uses two coupled first order differential equations to produce the be-

haviour of a second order derivative model [307, 427, 428]. The original neural model

dates back to a 1914 model of the flexor and extensor muscles of a walking cat, in

which a neuron pair provides opposing torques to control each joint [48]. The neuron

3.4. Models of single neuron dynamics 59

pair is modelled as a unit oscillator with the two differential equations. Networks of

these paired unit oscillators were used by Taga to model neural rhythm generation in

walking bipeds. The differential equations are:

Input function:

x =
n

∑
j=1

w jz j

Activation functions:

τ
du
dt

= −u−βmax(0,v)+ x+b

τ́
dv
dt

= −v+ z

β bias term

τ and τ́ time constants of inner state and adaptation

b global bias constant

v variable representing degree of adaptation or self inhibition
Output function:

z = max(0,u)

The values of τ and τ́ change the frequency of oscillation, and b changes the am-

plitude.

This model is parameterised; some constant values obtained from experiments on

human biped walking are suggested for its use:
τ τ́ β b

1 1 2.5 1

3.4.5.4 Ekeberg’s model

Ekeberg used a third order differential model [122,350] to simulate the central pattern

generators of the lamprey eel. Individual neurons are capable of more complex be-

haviour than second order models. It is claimed that these third order models are more

biologically plausible as they were designed to recreate the dynamics observed in ex-

periments with biological neurons. The model is defined by the differential equations:

Input functions:

xe = ∑
j∈Ie

w jz j

xi = ∑
j∈Ii

w jz j

60 Chapter 3. Synthetic neural networks

Activation functions:

τD
dye

dt
= −ye + xe

τD
dyi

dt
= −yi + xi

τA
dyθ

dt
= −yθ + z

Output function:

z = max(0,1− eΓ(Θ−ye)− yi−µyθ)

Ie and Ii the set of excitatory and inhibitory inputs

Θ firing threshold

Γ gain

τD dendritic time constant

µ level of adaptation

τA adaptation time constant
This model is parameterised; constant values corresponding to four different types

of biological neuron, taken from experiment data, are suggested for its use:
Neuron type Θ Γ τD (ms) µ τA (ms)

excitatory -0.2 1.8 30 0.3 400

contralateral inhibitory 0.5 1 20 0.3 200

lateral inhibitory 8 0.5 50 0 -

motor 0.1 0.3 20 0 -

3.4.5.5 Wave generator models (sine, sawtooth, square)

Wave generator neurons simply generate common waveforms on their outputs, and

ignore all signals on their inputs. The waveforms most commonly used are the sine

wave, sawtooth wave, and square wave (see figure 3.11). These models are sometimes

used as parts of larger neural networks, for example Sims used them along with com-

parators and other arithmetic logic in his evolved virtual creatures [397, 398]. Hornby

used sine waves connected directly to motors in his evolved creatures [200,204,205] or

neurons with a triangular output function [206] and van Breugel compared sine wave

with Bezier curve generators for his evolved ornithopter controller [457]. In Sims’s

work the outputs of the generators were processed by other elements, forming part of

a larger network. In Hornby and van Breugel’s works the wave generators essentially

were the network — each motor in the morphology took a direct input from a generator

3.4. Models of single neuron dynamics 61

Figure 3.11: Sine, square and sawtooth waveforms. While the general shape is prede-

termined, the amplitude and phase can be parameterised.

node with no intermediate processing. The exception to this was Hornby’s “oscillator

neuron” with its default triangle wave output function, but also having the ability to

sum input signals and use them to affect the output [206, p.63].

A wave generator model will typically be parameterised with the amplitude and

frequency of the wave. For a more complex waveform, such as Bezier curves, the

parameters will be the sequence of control points that describe the curve.

3.4.6 Reduced models

The models described above are complex and their implementation requires a large

amount of computational resources. There are many ways of implementing such mod-

els; either directly through continuous analog circuits, with replicated cells for each

neuron, or through circuits in which resources are shared and accessed across a com-

mon bus, or through simulation on a digital computer or other programmable logic

system.

In all of these cases, if it were possible to reduce the complexity of the neuron

model, then the resulting implementation would be simpler and smaller. Several re-

duced models have been proposed and implemented, although few have been directly

62 Chapter 3. Synthetic neural networks

compared to the more complex continuous models. These include boolean networks,

multi-value logic networks, and digital logic implementations. Most of these designs

have been targeted at hardware implementations [308, 309, 492].

3.4.6.1 Reduced spiking models

Spiking networks transmit discrete events between neurons, and so naturally provide

an opportunity to reduce the requirements for computation and communication over

continuous models. Models of spiking neurons have been studied for a long time [155,

269], and there have been many implementations in different technologies, in particular

VLSI and FPGAs (see section 3.8), where designers have sought to reduce hardware

cost by minimising circuit area.

Although the traditional leaky integrate-and-fire model uses single event spikes to

communicate between neurons, the computation carried out within synapses, and at the

neuron itself, is real-valued. Synapses can be either excitatory or inhibitory, and the

strength of a synapse varies. This corresponds to multiplication of the signal by either

a positive or negative weight. The post-synaptic potentials are summed, integrated, and

the result compared to some threshold. If the threshold is exceeded a spike will be fired

along the outgoing axon and the neuron’s state (activation potential) will be reset. This

is somewhat similar to a continuous network with a thresholded step output function,

the only difference being that here a discrete spike is used rather than a continuous

maximal value.

In terms of computational requirements, modelling an integrate-and-fire network

is as complicated as modelling a continuous time recurrent network; they require the

same multipliers, adders, and threshold output logic, so the change from a continuous

signal to an event based signal makes little difference. Some attempts have been made

to reduce the model complexity in order to reduce the computational requirements for

implementation in digital technology.

3.4.6.2 Examples of reduced spiking models

From 1993 to 2001 de Garis attempted to evolve neural networks formed from 3D

cellular automata inside custom hardware, eventually settling on machines built from

FPGAs (see section 6.9.1). In this model each cell can be in one of two states, which

can be interpreted as being the presence or absence of a spike in that time period,

effectively making this a spiking model with discrete time. Models with discrete time

3.4. Models of single neuron dynamics 63

Figure 3.12: Reduced post-synaptic responses: a) activity increases by a constant for

a fixed time period b) a piecewise linear approximation is used for excitation and decay.

Contrast this with the more realistic response of the SRM model in figure 3.9.

Credit for image: Wolfgang Maass [269]

steps have been criticised as not being biologically plausible — they would only be

good models of biological networks where, for every neuron, the firing times of those

neurons that output to it are closely synchronised [269].

Each cell in a 3D cellular automaton has six neighbours; it will receive an incoming

connection from 5 of them, and send its output signal to the other. The cell can either

be a neuron, axon, or dendrite. Neurons perform a sum-and-fire function. Axons split

a single input signal into five outputs. Dendrites XOR together five inputs and put the

result onto a single output. Each connection between cells transfers 1-bit of data.

Neuron inputs are weighted±1 [152]. In each neuron a 4-bit accumulator sums the

inputs. The neuron activity range was [−8,+7]. If the activity fell below −8 the neu-

ron was reset without firing. If the activity exceeded some threshold the neuron would

fire and reset to 0. This model was evolved to reproduce some simple digital functions

like generation of a pre-defined 00. . . 11. . . 00. . . sequence, a 3-bit comparator, and the

generation of a 2-bit output that, when used as input to an accumulator, very roughly

approximates a single phase of a sine wave (in fact, due to the way the accumulator in-

crements or decrements the counter on each cycle, and the use of only a single cycle for

fitness evaluations, the output may have been as simple as a 11. . . 00. . . 11. . . sequence,

which is a far cry from true approximation of a sine wave) [152]. Later research

evolved a SIIC coded sine wave generator, and a SIIC coded phase shift module [316].

In 1996 Maass presented some simplified models which he termed type A and

type B [269]. In these models the post-synaptic response of activity increase followed

by exponential decay is replaced by piecewise approximations; a piecewise constant

function providing a constant increase for a fixed time period (type A), and a piecewise

linear function providing a linear increase and decay (type B) (see figure 3.12). Maass

showed that type B spiking models are as computationally powerful as continuous

models; they can approximate any continuous function with a single hidden layer.

64 Chapter 3. Synthetic neural networks

In 2002 Floreano and Zufferey evolved integer spiking neural networks for robot

control [133,134,495] . This implementation used an 8-bit PIC microcontroller with an

onboard steady-state genetic algorithm and fitness evaluation function. It was used to

generate exploration and wall avoidance behaviours, in Floreano’s case for a wheeled

robot, and in Zufferey’s case for a flying blimp, both moving in a rectangular arena.

This was a follow on from Floreano’s earlier research in 2001, in which he had suc-

cessfully evolved continuous (non-reduced) SRM neural controllers for a wheeled

robot [135] (see page 154).

The neuron model was substantially simplified to be implementable on the limited

processor using only 8-bit arithmetic and logic operations. There were eight neurons,

and only connectivity and neuron polarity (inhibit or excite) were evolved (actually,

to simplify the programming, the network was fully connected but the only allowed

weights were 0 and 1, so in effect the topology was evolved rather than some specific

weights).

The number of neurons (8) was chosen to maximise performance; the 8-bit mi-

crocontroller allowed spikes, neuron signs, and connectivity to each be stored in a

single byte, and processed in a single arithmetic operation. The network was updated

synchronously, thus doubling the storage required for neuron activity values. Three

infra-red sensors were coded onto 8 input signals, which were in turn connected to all

of the neurons.

The refractory period, instead of being some non-linear function that inhibits neu-

ron activity, now used absolute refraction in which the neuron’s activity was prevented

from being updated for some set period of time after firing.

The input function calculated the sum of the inputs, as usual, but here this only

required limited-precision signed integer arithmetic; each neuron excited or inhibited

(sign -1 or 1), each weight was 0 or 1, and each input value was 0 or 1, to represent a

spike being fired in that time-slice.

Once the input function was calculated it was added to the neuron activity value,

which again used a limited-precision signed integer operation, with a minimum activity

value of 0 being enforced. Exceeding a threshold value of 5 plus some random value

in [−2,2] resulted in the neuron firing and its activity being reset. The addition of a

random value was done to prevent the network from converging to a global fixed point

attractor state, in which each neuron would be deadlocked waiting for a change in its

inputs, and hence the network would cease to generate any useful output signal.

Leakage was simulated by subtracting a constant value of 1 from the activity of

3.4. Models of single neuron dynamics 65

each neuron during each cycle. This constant decrement was much simpler than the

exponential decay used in more realistic models.

For details of the signal coding of the infra-red inputs and motor outputs see sec-

tion 3.3.

In 2003 Xicotencatl implemented spiking neurons on an FPGA by replacing the

floating-point multiplier required by each synapse with an integer accumulator which

increments or decrements a register by a constant amount for each spike it receives [483].

Whether the value is incremented or decremented depends on the polarity of the send-

ing neuron. If the accumulator reaches some threshold it overflows, and generates an

outgoing spike into a post-synaptic comparator, which compares the number of positive

and negative post-synaptic spikes, and generates an outgoing spike if it has received

more positive pulses than negative. It also acts as a synchronisation element, as the

neuron will not fire until the last synapse has fired (although it is unclear whether all

synapses must fire, or what happens if the last synapse does not fire).

Xicotencatl showed experimentally that the output-rate of this digital neural net-

work could vary non-linearly depending on the input weight. Although he calls this a

transfer function it seems that, since the weights would be fixed, and the distribution of

the response to varying frequencies was not characterised, that in fact it acts as a sim-

ple stochastic multiplier of the input rate, which would be a linear transfer function. If

this is the case, then this design would be limited as a multi-layer network with linear

transfer function has no more power than a single layer network. No way of training

this network, and no practical applications, were presented.

In 2003 Upegui presented a spiking neuron model optimised for hardware imple-

mentation [455]. He noted that hardware implementations of integrate-and-fire and

spike response models wasted resources in implementing kernels and numeric integra-

tion. This model used integer multiplication, with weights in the range [−255,256]

with 7-bit resolution, so not all values within the range were allowed (e.g. allowed

weights would be -4, 0, 4, 8, etc.). Other significant values are the neuron resting

potential, threshold potential, and post-synaptic slope.

The neuron behaviour is split into two distinct states — operational or refractory. In

the operational state, incoming spikes cause the activity to be increased or decreased by

a constant value, otherwise the activity decays linearly. In the refractory state incoming

spikes are ignored, and the activity is increased linearly towards the resting potential.

Figure 3.13 shows the effect of several input spikes on the activity level, the firing of

an outgoing spike resetting the activity, followed by the refractory period.

66 Chapter 3. Synthetic neural networks

Figure 3.13: Activity of a reduced digital neuron model. Each spike on a given input

causes a constant integer value to be added or subtracted from the activity. The decay

and refractory responses are both linear. Networks of this type were evolved to carry

out optical pattern recognition.

Credit for image: Andres Upegui [456]

The model was evaluated on a pattern recognition task, first recognising a 5×5 bi-

nary grid, which was presented to a 5-input network one row at a time, with ones being

coded as 3 spikes back-to-back, and zeroes being coded as no activity over the same

time period. The network was to discriminate between three different input patterns

(a cross, X and square), producing a single spike on one of 3 outputs. A similar task

involved recognition of the numerical digits from 0 to 9 plotted on a 4×5 grid.

A staged genetic algorithm was used to evolve the integer weights for each connec-

tion, and the resting potential, threshold potential, and decay slope gradient for each

neuron. Networks were evolved to solve the pattern recognition task perfectly, but they

were unable to evolve perfect numerical digit classifiers; the best either had ambiguous

firings (more than one output fired), or did not fire at all for some input pattern.

In 2005 Upegui implemented this network model in an FPGA [456]. He imple-

mented a 30 neuron network divided into 3 layers of 10 neurons each, with each neuron

being fully connected to the other neurons in its layer, and fully connected to the neu-

rons in the subsequent layer, creating a modular feed-forward topology of internally

fully connected layers. Unsupervised Hebbian learning was used to learn a function

that discriminates between two input sine waves of different frequencies.

In 2006 Schrauwen implemented a reduced spiking neural network on an FPGA [384]

(see section 3.8 for details of the implementation). Lookup tables were used to store a

digital approximation of the output function for fast recall. Spikes trigger playback of

3.4. Models of single neuron dynamics 67

constant weight bitstreams, which removes the need for multiplication. In the current

implementation changing the weights is difficult (it requires resynthesising the design,

or using a larger design that can load weights through a debugging scan chain), so

computation is limited to the kind of fixed weight networks evolved by Floreano in

2002 (although they envisage implementing systems based on liquid state machines,

which do not require weight training).

Although the model is implemented using bitstreams and serial arithmetic, it is ac-

tually very similar to other integer spiking neural networks which are implemented in

more traditional ways; the implementation does not change the fact that this is essen-

tially a leaky integrate-and-fire model, although more complex neurons can be con-

structed by combining various filters. No practical applications were demonstrated.

3.4.6.3 Reduced continuous models

One way of simplifying the model is to reduce the persistent state stored at each node.

Some neural models, such as the sigmoid and perceptron, have no persistent node state,

so the output of each node is purely a function of its current inputs. However, these

models are usually globally synchronous and recurrent, which means that memory is

required to store the node output value between clock cycles. The models with node

state specify how the state variables change using derivative equations. For the Beer,

Taga and Ekeberg models, node state consists of one or more real-valued numbers.

If the state is reduced then the complexity of the activation function can proba-

bly also be reduced. Simple binary activation functions can be easily implemented

in hardware with a comparator, and discrete step-like functions can be implemented

using lookup tables. Many of these approximations attempt to reproduce the sigmoid

function. Ultimately the sigmoid curve can be reduced to a binary switch, but more ac-

curate approximations can be obtained by dividing the input into regions, each with a

corresponding output from a lookup table, or by using piece-wise linear approximation

to transform the sigmoid curve into a series of lines of the form y = ax+ b, possibly

using power-of-two values for a so that the output function can be implemented with

shift operations.

Another way to simplify the model is to reduce the complexity of data transfer

between communicating nodes. We know from biological neural networks, in which

only a single spike event can be communicated at a time between two nodes, that a

complex coding can reduce the need for high bandwidth communication. Perceptrons,

two state cellular automata, and other neuron models utilising a binary output function

68 Chapter 3. Synthetic neural networks

communicate this to receiving nodes as a binary valued signal. Most continuous neuron

models use a sigmoid output function that reduces the unrestricted range to a value

between 0 and 1. However, within this range the signal is still continuous, and so will

require 32 or 64 bits for floating-point values when emulated on a digital system.

The input function computes the weighted sum of incoming values. A digital sys-

tem simulating a network with real-values requires a floating-point arithmetic unit,

which is expensive. There have been attempts to quantise floating-point precision so

that these operations can be replaced with integer operations. A further optimisation

is to replace integer weights with power-of-two weights, so that multiplication can be

implemented with a binary shift operation.

3.4.6.4 Examples of reduced continuous models

In 1988 Chiueh presented a backpropagation based training method for discrete ternary

networks [68]. The algorithm requires off-line training of a floating-point version of

the network with full floating-point arithmetic. The floating-point network is trained

using backpropagation until convergence, then the weights are divided up into discrete

thresholded regions to obtain a discrete network. This training method was termed

the “multiple-thresholding method”. He also used a genetic algorithm to successfully

train these networks, and to perform post-training mixing of (possibly local-optima)

solutions.

In 1990 Fiesler presented an extension to Chiueh’s multiple-thresholding method

that allowed training to continue using the discrete network, termed the “continuous-

discrete learning method” [129]. After following Chiueh’s method a discrete network

is obtained. Training patterns are then forward-propagated through this network to cal-

culate the classification error, and the error values are then backpropagated through the

floating-point network to obtain new floating-point weights. The cycle then repeats,

with the new floating-point weights being transformed into discrete network weights.

This process is continued until the network converges, at which point the trained dis-

crete network can be utilised for recall.

Fiesler also presented a modified backpropagation method termed the “direct dis-

cretisation method”, in which the network has only discrete weights from the begin-

ning, and the weights are only updated if the delta update value is large enough to

move the weight closer to another of the allowed discrete values, thus maintaining

a fully discrete network at all times. Fiesler found that on a pattern recall task the

continuous-discrete learning method outperformed the multiple-thresholding method,

3.4. Models of single neuron dynamics 69

Figure 3.14: A discrete transfer function approximating the continuous sigmoid curve

with equidistant regions symmetrical around 0.

Credit for image: H. K. Kwan and C. Z. Tang [251]

and the direct discretisation method failed to work. Increasing the number of discrete

states from 2 to 9 reduced the number of training cycles, increased convergence, and

improved recall accuracy.

In 1990 Marchesi trained networks with power-of-two integer weights of various

precision [278]. This relied on having a continuous version of the network which

could be trained using full floating-point arithmetic, and then converting this contin-

uous network into an equivalent discrete network. Marchesi carried out experiments

with weight precisions of 0, 1, 4, and 8 (1 to 4 bits respectively), showing that classifi-

cation error falls as precision increases.

In 1992 Tang and Kwan presented a feed-forward neuron model with power-of-two

weights and a discretised sigmoid output function [251]. The output function divided

the activation level into non-uniformly sized regions which could be translated into a

discrete output in [−1,1] with only comparison and lookup operations (figure 3.14).

Using power-of-two weights meant that multiplication could be implemented using

shift operations.

A backpropagation based training method was used, with the error gradient being

estimated and constant within each region. The method was similar to that of Chiueh,

with a floating-point version of the network being trained, and the weights in each

layer being normalised, and then quantised to the nearest power-of-two value. The

sum-of-squares error is then calculated, and if it is greater than some threshold, the

training loop repeats.

70 Chapter 3. Synthetic neural networks

The quantised network model was compared to the floating-point one on an optical

number recognition task classifying the integers from 0 to 9. On this task the quantised

model was found to perform similarly to the floating-point model, but with a much

shorter convergence time when training.

Tang and Kwan presented schematics for this quantised model in 1997, demonstrat-

ing that the implementation was both simple and would lead to a reduction in circuit

size [432]. In 2002 they showed that their quantised model performed as well as the

floating-point one on an optical character recognition task classifying the 26 letters of

the English alphabet [252].

In 1992 Kendall described how a quantised network could be trained to perform

edge detection in larger images [229]. Kendall’s quantised networks used integer

weights, thresholds, and boolean inputs and outputs, and hence all operations required

for the input function could be carried out by integer arithmetic units. The non-linear

output function was the threshold step function, which can be easily implemented with

a comparator.

Kendall introduced a training function that optimises a single bit at a time in a

manner similar to a “1+1 evolution strategy”. Since this research was using a non-

differentiable output function, it was not possible to use a gradient descent algorithm

like backpropagation, so instead each bit is flipped in turn, and the performance of the

changed network evaluated, and if it performs better the change is kept.

In 1992 Gruau used genetic algorithms to evolve boolean neural networks with bi-

nary ±1 weights and integer thresholds [167]. He managed to evolve networks that

reproduced the parity function with 50 inputs, and the symmetry function with 40 in-

puts. He used a developmental encoding that allows the topology, number of neurons,

connections and weights to be evolved together. Gruau claimed the successful evolu-

tion of functions with such a large number of inputs demonstrated the superiority of

genetic algorithms over backpropagation, as backpropagation does not scale well with

the size of the problem. He used the same system to evolve boolean neural networks

for robot control in 1994 (see section 6.4)

In 1994 Khan presented a learning procedure for integer weighted and thresholded

networks [231]. Khan said that with a binary input network, the first neuron layer could

be implemented using an integer multiplier and adder, which suggests that subsequent

layers used floating-point arithmetic. The learning procedure added a “distance to

closest integer” metric to the error function, and then used backpropagation to train the

network. Tests training a few simple benchmark logic functions (e.g. XOR) showed

3.4. Models of single neuron dynamics 71

the integer weighted networks to be as good as continuous for these tasks.

In 1994 Salapura presented parallel and serial implementations of integer neural

networks running on FPGAs [373, 374]. In the serial version a single bit is transferred

between neurons on each time step. The “delta encoded binary sequence” signal mod-

ulation encodes a real-value number in the range [−1,1] as the proportional of zeroes

and ones to output (see section 3.3 figure 3.3). Adding two streams together requires

only a 1-bit adder. Multiplication is carried out by a series of 1-bit adders, with the

number required being equal to the number of significant bits in the weight value.

In the parallel version the values transferred between neurons were restricted to un-

signed 8-bit integers. Weights were 8-bit signed values, resulting in a 16-bit product,

which was then added to other inputs to create a 20-bit activation value. The activa-

tion was put through an output function to reduce it down to an unsigned 8-bit value.

Although training tools were developed, the published papers do not report on any

investigations or successful applications of these two network types.

In 1995 Battiti presented a discrete neural network along with training algorithm [16].

The network used continuous weight values from a discrete set, and hence still required

floating-point arithmetic. The trained weights were integers with a fixed precision of

2, 4 or 8 bits. The integers were Gray coded, so that a single bit change resulted in only

a small movement along one-dimension. These Gray coded integers were converted to

floating-point values for use in the actual network.

Battiti’s search algorithm started from a random binary string, and flipped each

bit in turn, measured the error of the resulting network, and if it was lower than the

current one the search continued from the new network (i.e. it used a 1+1 evolution

strategy). A cycle detector prevented the search from exploring areas it had already

visited. The training algorithm was compared to backpropagation on the XOR task,

and a high energy physics classification task. The training was found to produce net-

works consisting of only 2 weights, that were substantially better than networks with

4 or 8 weights, and also better than backpropagation on continuous networks. It was

also shown that the method could learn a dynamic control task (truck reversal).

In 1995 Ventrella created robots where each joint was controlled by a sine wave

oscillator, with the phase offset, amplitude and frequency being evolved by a genetic

algorithm [341]. Although not a network, and not possessing any inputs, this could

be said to be a very simple reduced form of continuous network, in which the whole

network is reduced to a single layer of coordinated sine wave output nodes. Hornby

and Pollack did the same for their “genobots” in 2001 [341]. See section 6.14 for more

72 Chapter 3. Synthetic neural networks

details.

In 1996 Lundin compared seven different quantisation functions on a variety of

benchmarks [267]. He showed that, whilst none were as good as the continuous net-

works, the performance degradation for many cases was minimal. He tried using vari-

ous levels of discretisation (2, 3, 5, 7, 15 and 31) and found that increasing the number

of levels led to longer training times but lowered the classification error. The symmet-

rical function performed very well with only binary or ternary states, and both using

equidistant levels symmetrical around 0, and scaled power-of-two weighs, gave results

approaching the performance of the floating-point network with only 15 discrete levels.

Lundin noted that only quantisation functions that result in weight levels that are

equidistant and symmetric around zero are suitable for hardware implementation. These

weights can be normalised to [−1,1] by dividing by the maximum weight value, and

the normalised values can then be encoded as binary numbers. The scaling down of the

weights can be compensated for by scaling up the gain of the activation function. This

allows the network to be implemented using integer arithmetic, and if only power-of-

two weights are used, then multipliers can be replaced with binary shifters.

In 2000 Plagianakos presented the use of genetic algorithms to evolve the weights

and biases of an integer neural network [336]. He experimented with 3, 4, and 5-bit

weights, and noted that previous algorithms that relied on backpropagation could not

be used with the simpler binary step activation function, and relied on offline pre-

training using processors with floating-point units, restricting their use to static prob-

lems. This technique used a modified genetic algorithm rather than gradient descent,

and hence did not require a differentiable activation function. This was not the first use

of a genetic algorithm for discrete networks as Chiueh had successfully used them for

training in 1988, and Gruau in 1992, though Plagianakos was perhaps unaware of this

work as he did not cite it.

The network was initially evolved offline, and it was found that using sigmoid

neurons lowered the evolution time, so a staged evolutionary process was used where

the steepness of the sigmoid curve was increased over time until it approximated the

step function. The network could then be transferred to an on-chip system, where it

could be further evolved to adapt to changes in the problem over time. The evolutionary

system was tested, and managed to create some simple networks reproducing the XOR

and 3-bit parity problems.

Plagianakos hypothesised that using integer weights helps to prevent over-fitting to

the training data. He later compared backpropagation to the evolved integer networks

3.4. Models of single neuron dynamics 73

on some benchmark tests, one of which contained deliberate misclassifications for 5%

of the training data [337]. On this single task backpropagation did overfit, whilst the

integer networks did not. However, there are techniques for preventing overfitting in

backpropagation, by monitoring the classification performance on a test set of data, and

by altering the network topology, so a better hypothesis would be to say that an integer

network is less capable than a floating-point network with equivalent topology, so in

the specific case where the floating-point network would overfit, the integer one may

not. A subsequent publication showed that the network topology had been different

between the floating-point and integer networks [335].

In 2002 Draghici presented a theoretical result that enabled a lower bound (worst

case) for the required precision of integer networks to be calculated [113]. The pre-

cision was measured as the absolute integer range required to guarantee the network

would be able to converge to a solution as good as a real-valued network; a precision

of n corresponds to an integer range of [−n,n].

Experimental results showed that, on all of the three tasks studied, equivalent per-

formance could be obtained with a precision significantly lower than the worst case

(figure 3.15). The difference between the theoretical bound and the experimental re-

sult could be quite large — in one case, the theoretical worst case precision was 37.2,

and the experimentally determined precision was only 5. In the experiments the net-

work topology was arbitrarily constructed using an algorithm which adds neurons to

the network as needed. Each neuron used a sign output function with threshold, pro-

ducing a binary output.

In 2005 Zufferey developed an integer neural network model, known as “PIC-NN”,

and used a genetic algorithm to evolve controllers for a flying blimp [493, 494]. The

model was implemented on a PIC microcontroller, which, like his 2002 work on re-

duced spiking models (see page 64), constrained the implementation to a mixture of

8-bit and 16-bit data types and arithmetic operations. Neuron activation values were 8-

bit [−127,+127] and weights 4-bit [−7,+7] (the weight is effectively one tenth of this

so that no single connection can saturate a neuron). Arithmetic operations were carried

out using 16-bit signed arithmetic. The neuron activation function was tanh, not the

spiking model used in 2002. Rather than calculate it, values were precomputed for

all 256 activation values and stored in a lookup table. Exploration and wall avoidance

behaviours were successfully evolved with this model.

In 2006 Plagianakos compared genetic algorithm based learning for integer net-

works to other learning methods that rely on either backpropagation with estimates

74 Chapter 3. Synthetic neural networks

Figure 3.15: Theoretical results have shown that neural networks with an infinite number

of weights of infinite precision can calculate any function. However, traditional imple-

mentations (solid bounded box) use a finite number of weights with rational precision.

The capability of integers with limited precision (dashed box) has been shown to be as

good as those with rational number precision on several tasks.

Credit for image: Sorin Draghici [113]

3.5. Computational power 75

of the error gradient obtained from a continuous version of the network, or training a

continuous version of the network, and slowly steepening the sigmoid curve until it

approximated a discrete transition [335]. He used the same benchmarks as in 2002

(XOR, parity, and MONK), and introduced a new dynamic control benchmark for a

controller that specifies the force to be applied by an industrial cutting machine. On all

benchmarks the genetic algorithm learnt the classification function better than the other

algorithms, although sometimes requiring significantly higher computational effort.

3.5 Computational power

Neural networks are computationally universal. Although it was famously shown by

Minsky that single perceptrons can not calculate the exclusive OR function [301], a two

layer perceptron network can implement any logical function. The same is true of more

complex neural models with sigmoid output functions. From networks implementing

digital logical functions a universal Turing machine can be constructed [395].

It has been shown that any bounded continuous function can be approximated by a

sigmoid feed-forward network with only two hidden layers, and any arbitrary function

can be approximated with only three hidden layers [80]. The accuracy of the approx-

imation depends on the number of nodes in each layer, the connectivity and the con-

nection weights. Continuous time recurrent networks with first order neuron activity

functions have been shown to be of equivalent power to any higher order model [396].

It has been shown that an individual spiking neuron is more powerful than a sigmoid

neuron, and that any function that can be computed by a sigmoid network can also be

computed by a spiking network [269].

The equivalence of the simple sigmoid network model with arbitrary functions,

higher order network models, and spiking models means that, for the purpose of cre-

ating synthetic neural networks, no increase in computational power is gained by the

use of higher order or spiking models. With respect to the use of genetic algorithms

to evolve dynamic robotic motion, the increased success reported by some researchers

in using higher order neuron models [349], or in using spiking models [135], does

not derive from a greater computational ability inherent in these models, but instead

must derive from an increased probability of forming neural structures that act as cen-

tral pattern generators producing dynamic cyclic waveforms. Thus, it would not be

necessary to choose one model over another if the genotype encoding, representation,

and evolutionary algorithm structured the search in a way which enabled analogous

76 Chapter 3. Synthetic neural networks

network structures to be discovered regardless of the specific neuron model in use.

This would likely involve a high degree of modularisation of the evolving network

genotype, and the ability of the genetic search to exploit discovered structures with pa-

rameterised variables, essentially allowing a search with sigmoid neurons to construct

complex parameterised blocks from several interconnected neurons, and to easily reuse

these blocks. If the more complex neuron structures are indeed fundamental building

blocks, then an appropriate genetic algorithm would re-create them from scratch.

3.6 Robot control

All of the continuous neuron models presented here have been used to successfully

control locomotion in three-dimensional articulated robots; for Beer’s continuous time

recurrent model see [18,355], for Taga’s 2nd order model [307,427] and for Ekeberg’s

3rd order model [41, 349, 350].

Despite the widespread use of neural network controllers in robotics such a uni-

versal computational framework is not strictly necessary, and for many control tasks

pattern generators with no inputs, and with outputs connected directly to motors, have

been shown to be sufficient. Examples include generators of sine waves [200,204,205]

and parameterised Bezier curves [457].

Low-level motor control, carried out by neural networks, can be supplemented

with higher level behavioural control [344]. In evolution research this is usually done

by using a staged genetic algorithm, in which the lower level network is frozen, with

secondary networks being allowed to only modulate, but not alter, the pattern gener-

ation networks connected to the motors [238, 349]. Traditional robot control archi-

tectures would implement action selection mechanisms to arbitrate between multiple,

competing, mutually-exclusive behaviours. Non-traditional control architectures, such

as those from the field of behaviour-based robotics, have also been used to success-

fully control walking robots [47, 181]. It has been shown that action selection can be

carried out in dynamical systems, like neural networks, as a result of non-linear phase

transitions [415].

3.7 Training

For the neural network to perform some useful function the values of various param-

eters have to be set. Spiking neurons have activity thresholds. More complex models

3.7. Training 77

have coefficients that determine the rate of state adaptation, excitation and leakage.

Each connection usually has an adjustable weight, though some systems use fixed

weights and modify other parameters, such as connectivity, instead. In traditional neu-

ral networks the sigmoid neuron is used with no parameters, so network behaviour is

completely determined by the connection weights. Data sets of corresponding input

and output values are used to “train” the network by adjusting the weights until the

network produces the same output on a given set of inputs as the training data.

The most successful systems employ progressive evaluations and adjustments to

the network, eventually stopping when the network performs above some threshold of

accuracy on the given task. The main problem with network training is credit assign-

ment — when an incorrect aggregate output is observed from the whole network, how

do we determine the contribution of, and adjust, individual neurons to correct it, with-

out over-generalising or incorrectly changing the classification of other inputs? The

first, and most successful, system to solve the neuron credit assignment problem was

“backpropagation”, which was introduced in 1986.

3.7.1 Backpropagation

Backpropagation [368] has been the most successful training method for generic clas-

sification and pattern matching tasks. It requires a training set of input patterns and

corresponding outputs. The input patterns are presented to the network and the output

observed. If the output is incorrect the weights are tuned until the correct output pat-

tern is observed. This process is repeated for every input and output data pair in the

training set.

When an incorrect output is observed each neuron’s contribution to the output is

estimated. This depends on three things: the value the neuron is currently outputting,

the depth of the neuron in the network, and the weights on its outgoing connections

to other neurons. If a neuron’s output is 0 then it is neutral and will not be affecting

the incorrect network output. If the neuron’s output is above 0 then it will be effecting

the output, with the effect becoming greater as the output value rises to 1, then it will

be strongly affecting the overall network output. The closer the neuron is to the final

output node, and the stronger its connections to subsequent neurons, then the higher

its contribution to the final classification will be.

The gradient of the neuron’s activation function is then used to calculate how much

the outgoing connection weight should be adjusted by, weighted by the neuron’s esti-

78 Chapter 3. Synthetic neural networks

mated significance and a global learning rate. Sigmoid neurons are used as they have

an easily computable gradient. This weight adjustment is performed for every connec-

tion of every neuron, moving the network output closer to the correct output. Training

then continues on the other input output data pairs.

The whole process is repeated until the weights convergence. At this point the

network may or may not correctly classify all of the training data — it may be that

it is not possible for the network to classify all the network data, or the network may

have become over-trained, classifying the training set perfectly, but not generalising

well on other data. The network’s performance should be evaluated on a different

(non-training) dataset.

There are a few problems with backpropagation that motivate the search for better

algorithms. It is not clear how to create the network topology. Choices such as the

number of neurons, and the degree of interconnectedness, are made by intuition, trial

and error. Backpropagation is difficult on networks which contain loops and feedback.

How can the significance of a neuron’s contribution to the network’s output be esti-

mated when it can excite and inhibit its predecessor neurons, which in turn stimulate

it, in a continuous loop?

Transforming the cyclic network into a feed-forward one by unrolling cycles, train-

ing it, and then back-annotating the weights to the cyclic network is one possible

approach, but there are problems with state explosion — how many times should a

neuron within a cycle be replicated before its contribution to the network dynamics is

accurately accounted for? There is a more fundamental problem that the dynamics of

recurrent networks are capable of forming not just point attractors but also oscillatory

behaviour caused by limit cycles, and there is no way for a feed-forward network to

model this.

Feedback is an essential element of control theory, and is likely to play a large part

in any neural network of significant worth. Fully interconnected networks, where every

neuron is connected to every other neuron, are the most expressive, since every other

topology is a subset of full connection, yet backpropagation is unsuitable for training

these networks. Another problem with backpropagation is that it limits the activity and

output functions by requiring them to be differentiable.

3.8. Hardware acceleration 79

3.8 Hardware acceleration

Synthetic neural networks, or a computational framework to support them, can be im-

plemented directly in silicon. Neural network hardware has been implemented in either

full custom analog VLSI [381], mixed-mode digital and analog [379], digital “appli-

cation specific integrated circuit” (ASIC) [434], a combination of digital CPU with

programmable analog array [128], a “field programmable gate array” (FPGA) [185,

384, 447], or reprogrammable transistor logic such as a “field programmable transis-

tor array” (FPTA) [417, 449] or “field programmable analog array” (FPAA) [24, 212].

Lately, the programmable “graphic processing unit” (GPU) pipelines of 3D graphics

cards have also been utilised [27, 353]. In mobile robotics the neural network is of-

ten simulated using an embedded microcontroller to reduce power consumption (see

section 6.4).

Due to the wide amount of research done on this topic over the last few decades,

only a few notable designs will be presented here. They may be notable because they

are recent, historically important, or were combined with some other topic of this the-

sis, such as genetic algorithms, or all-digital non-floating-point implementations (typ-

ically, using spiking neurons).

The implementation of neural networks designed at the analog circuit level is

known as “neuromorphic engineering”. This kind of design is expensive and time

consuming, as circuits must be designed and routed at the level of analog transis-

tors, and simulated using slow ”simulation program with integrated circuits emphasis”

(SPICE) [334,346] based simulators. This was a popular research topic in the 80s and

early 90s, but recent research has focussed more on programmable logic and generic

CPUs, as designs based on these technologies are much cheaper to create and man-

ufacture. The most famous examples of this design style are those produced by the

Carver Mead group at Caltech, who have implemented vision processing systems and

neural models from hand-designed components that model the neural structures found

in biological brains [287].

In 2002 Schäfer presented a platform for the simulation of large networks of spik-

ing neurons [378]. The system was built primarily from DRAM, FPGAs, and ALUs,

although a later parallel implementation replaced the main processor with a DSP. A

single neural processing board, interfaced to a workstation, could simulate 130,000

neurons with 16 million synapses, and 8 of these boards could be combined to simulate

over 1 million neurons. The simulation was event-based, aiming to minimise unnec-

80 Chapter 3. Synthetic neural networks

Figure 3.16: Top: The HAGEN neural network ASIC

Bottom: A spiking neuron ASIC with synaptic plasticity

Credit for image: Johannes Schemmel, Kirchhoff-Institut für Physik [379, 380]

essary computation. The DSP based implementation supported 64 processor boards,

with each neuron being updated every 5ms.

The “Heidelberg analog evolvable neural” (HAGEN) ASIC (figure 3.16) is a mixed-

mode analog neural network architecture developed between 2004 and 2006 [379,380].

It consists of analog circuits that emulate neural network dynamics, connected to a tra-

ditional von Neumann architecture with a combined FPGA and PowerPC CPU. It is

capable of on-chip evolution of neural connection weights, allowing the system to com-

pensate for voltage, temperature, and manufacturing variations at runtime [381]. The

designers note that analog VLSI presents a difficult environment for the implementa-

tion of neural networks, as traditional training algorithms such as backpropagation rely

on knowledge of the first derivative of the neuron transfer function, which will vary on

an analog ASIC due to manufacturing tolerances, voltage deviations, and temperature.

In 2005 Schürmann announced a mixed mode neural network ASIC based on liquid

3.8. Hardware acceleration 81

state machine concepts [385]. It had 256 McCulloch-Pitts neurons with 33,000 analog

synapses and programmable connectivity. He confirmed that optimal computational

activity occurs at the “edge of chaos“ (see section 4.8).

In 2006 Schrauwen presented details of a spiking neural network implemented on

an FPGA [384] (also see section 3.4.6.1). This was a wholly digital design that used

pre-computed lookup tables (LUTs) to calculate the output function, rather than real-

time floating-point arithmetic, and a serial arithmetic unit for other operations, rather

than a larger parallel unit. The use of spikes reduced the requirements of inter-neuron

signalling, and provided an opportunity to use serial adders, since only single-bit events

are transferred at a time.

Each connection has a constant weight associated with it, stored in a serial shift

register. An incoming spike triggers replay of the weight as a serial bitstream. These

serial bitstreams are added using serial bit adders to calculate the input function. In-

tegration is then carried out using a shift register, with the weight generated by each

spike being added to the currently stored value, and the result fed back into the shift

register.

The architecture is pipelined to increase throughput. When implemented in a com-

mercial off-the-shelf FPGA it can simulate 1400 neurons almost 6000 times faster than

their biological counterparts, meaning that it would be a cheap and practical platform

for real-time neural modelling. The design has not been used in any practical applica-

tions, presumably due to its lack of adaptive connection weights.

Recent advances in graphics card technology have led to the development of the

“graphics processing unit” (GPU). This is a processing unit that is custom designed for

pipelined high speed parallel floating-point operations. If a computational algorithm

can be translated into a set of video operations, such as the application of a convolution

function to a framebuffer image, then it can be implemented on a GPU.

The development of high speed GPU libraries is now a research field in its own

right. There have been several successful attempts to utilise GPUs for neural network

simulation [27, 352, 353], each reporting an approximate 10 to 20 times speedup over

conventional CPUs. One of these included a cluster based implementation which sig-

nificantly outperformed a CPU-only implementation [27, 353].

82 Chapter 3. Synthetic neural networks

3.9 Summary

This section has discussed synthetic neural networks. Synthetic neural networks are

mathematical models of the real world networks observed in the brains and nervous

systems of biological creatures. There are two primary motivations for researching

and creating them — firstly, to model real biological networks, and secondly, to cre-

ate computational systems that can classify and process noisy input data and hence

perform useful tasks like pattern recognition.

A variety of mathematical models have been created by previous researchers, mod-

elling individual neurons and their connections at different levels of abstraction. Most

of these models are claimed to have a biological basis. The abstract mathematical mod-

els utilise continuous valued variables, but are simulated on digital computers using

floating-point arithmetic, which is inherently discrete. Biological networks and math-

ematical models of biological networks are temporally continuous, whereas networks

are simulated on digital computers in discrete time steps. More complex models, with

more variables and smaller time steps, can simulate biological networks with greater

accuracy, but this simulation requires greater computational resources. The question

arises as to whether simpler networks with smaller computational resource require-

ments are able to carry out the same functions as the more complex models, and if so,

how degraded their performance will be. Some simpler versions of common neuron

models have already been developed, using limited precision arithmetic operations in

place of floating point arithmetic, but there have been few attempts to test their perfor-

mance on real world problems.

This thesis explores whether simpler quantised neural models can be used in place

of more complex ones for some standard robot control tasks, and attempts to quan-

tify the performance difference between these models. This chapter has provided

an overview of complex and reduced neuron models that have been used in previous

robotics research.

Chapter 4

Other networks

In the previous two chapters we have covered both biological and synthetic neural

networks. This chapter will describe other types of network which also perform various

types of distributed parallel computation.

The defining characteristic of a neural network, as opposed to these other networks,

is that each neuron has a state defined by some number of continuous equations, and

an output value defined by the output equation. Having said that, even this primary

characteristic does not completely differentiate neural networks from the various other

network types, as analog circuits and continuous cellular automata could also be said

to have node states based upon continuous values and update equations.

The various parameters that differentiate these networks from each other are:

topology Although in theory the nodes of a network can be connected in any topology,

a defining characteristic of some of these networks is a specific type of topology.

Even though this is the case, researchers often mix topologies in order to conduct

new experiments. For example, cellular automata as originally defined have

a fixed topology, with all nodes having identical connectivity. However, non-

uniform cellular automata were later devised, in which each node has a unique

connectivity.

node state The node state can be represented by one or more variables, which are

either floating-point or discrete. Integer based states are a subset of discrete,

where the number of states is equal to the number of possible integers. Again

there is crossover in this area, for example cellular automata researchers have

used both continuous and discrete state systems.

node update function Closely related to the node state, is the node update function.

83

84 Chapter 4. Other networks

It can be uniform for all nodes (as in classical cellular automata), or can vary

between nodes. It can be based on one or more ordinary differential equations

simulated using integration, as in neural networks, or can be a logical function,

as in digital circuits and cellular automata.

update order This varies from truly parallel (e.g. with specialised circuitry such as

analog circuits), to synchronous (such as traditional cellular automata and boolean

networks), or asynchronous (also used in cellular automata and boolean net-

works). With synchronous updating the state of every node is (or appears to be)

updated simultaneously. New output values derived from the new state are not

visible to other nodes until the next synchronous update. With asynchronous

updating nodes are updated in sequence, with the node updated in any given

time step being randomly chosen according to some probability distribution. In

a parallel system data values are read, and new states updated, without reference

to any timing information; this is in contrast to asynchronous systems, which

may use control signals between individual nodes to coordinate data transfer. In

truly parallel networks, like analog circuits, data is often temporally and spatially

continuous.

signal delay The timing model affects when changes in a node’s output become vis-

ible to other nodes. Time delays in connections between nodes are particularly

important for accurate simulation of biological networks and electronic circuits,

as these are models of real systems with physically constrained propagation de-

lays, such as dendritic and synaptic delay, or wire capacitance and length.

4.1 Analog circuits

Analog circuits are created by connecting various components, including transistors,

resistors and capacitors, with conducting wires. Electrical current is then applied to

the component network, producing an activity pattern modulated by the components.

Designing analog circuits by hand is difficult and time consuming, hence designers

use a process of abstraction to create libraries of modular components. One example

of this is the construction of the pre-laid out logic gates, such as XOR, NAND, etc.

used in “application specific integrated circuit” (ASIC) design.

Analog electronic circuits have some similarities to neural networks. They gener-

ally consist of a large number of nodes arranged into a modular hierarchy. The state

4.2. Digital circuits 85

of analog circuits is precisely defined by the voltage present on all of the wires and ca-

pacitors. In ASIC design the wires are used to join transistors together. Each transistor

acts as a non-linear amplifier. This creates a large scale network consisting of small,

simple units. The basic transfer curve of a transistor as it switches is also similar to the

transfer function of a biological neuron.

As analog circuits have a complex, non-linear dynamics, they are difficult to design

and analyse. Despite the complexities of designing dedicated analog circuits, they have

been successfully used for robot control, including complex tasks like the control of

three-dimensional flight in miniature robots [138]. Tilden’s BEAM robotics method-

ology proposes that robust and complex robot behaviours can be built from networks

of analog components [181], although the use of TTL logic does make the networks

somewhat digital. It has been successfully used to construct walking robots [416].

4.2 Digital circuits

Digital design consists of creating electronic circuits from components that represent

the basic boolean operators AND, OR, NOT, XOR, and state holding elements such as

flip-flops and latches. Digital circuits have been used to successfully control walking

robot [47].

Human designers form an abstraction layer by creating components which strictly

obey external models of behaviour, and whose interactions with other components

are similarly strictly defined. For example, in a digital system the continuous voltage

domain is turned into an abstraction consisting of only two states, corresponding to

the boolean values of false and true (or 0 and 1). This is done by setting a threshold

value which splits the continuous voltage domain [0,1] into two regions. Around the

threshold there may be an unstable area where the output is undefined.

The difficulty of dealing with the continuity of time is dealt with by dividing time

into discrete periods. A central clock generator provides a synchronised timing sig-

nal to each state holding unit of the system. Upon receiving a particular timing event

(traditionally, a rising edge of the clock signal) these units will update their state si-

multaneously .

Asynchronous circuits are a form of digital circuit that do not require time to be

broken up into discrete steps. Instead they introduce new primitives that are used to

manage the continuity of time and break it down into an event based model. It is

generally accepted that asynchronous circuits are harder to design and analyse than

86 Chapter 4. Other networks

synchronous ones due to the lack of a globally unique state.

4.3 Asynchronous circuits

Currently, almost all digital circuit designs are synchronous, meaning that they divide

time into discrete periods, and utilise a single, global clock signal to mark the divi-

sion between these periods, allowing state holding components to synchronise their

data transfer. Asynchronous design [84] is the art of creating circuits which operate

without a clock signal. There are many ways in which this can be done, including

generating local clocks for sub-circuits, such as in the “globally asynchronous locally

synchronous” approach, or by using hazard-free logic. These approaches decentralise

control and eliminate the global clock, whilst preventing logical hazards and maintain-

ing correctness.

Asynchronous design encompasses many different models of delay, from “delay

insensitive” where the circuit behaves the same irrespective of wire and gate delays,

through to “bundled data”, where the latency of combinational circuits in the data path

is pre-calculated and gates inserted into the control path to delay signals by some time

greater than the worst case.

Delay insensitive circuits are attractive because of their consistency; they exhibit

the same behaviour over all technology processes, and over a wide range of operating

voltage and temperatures. Bundled data circuits tend to be smaller, but require precise

control over routing and transistor placement.

Asynchronous circuits are closely related to asynchronous cellular automata and

asynchronous boolean networks. They do not have the uniform topology of cellular

automata (although this is countered by non-uniform cellular automata). The main

difference is that asynchronous circuits possess two new primitives that can not be

represented with a simple combinational function: the C-element and the arbiter, which

are both used to manage time by combining transitions on their inputs into a single

synchronised output event. These elements could be constructed from multiple cells

in a boolean network, or in a non-uniform cellular automata with appropriate rules,

but, as with the digital C-element in figure 4.1, these implementations may require

careful consideration of timing. A method for translating asynchronous circuits to

two-dimensional asynchronous cellular automata was presented in 2003 [331].

A C-element (figure 4.1) is functionally similar to an AND gate. When the inputs

are 11, the output is 1. When the inputs are 00, the output is 0. The difference lies in

4.3. Asynchronous circuits 87

Figure 4.1: The C-element is used to control signal timing in asynchronous circuits. It

has a schematic glyph (left), and can be implemented from digital gates inside an ASIC

or FPGA (right).

Credit for image: Al Davis [84]

the intermediate output, when the inputs are 01 or 10. An AND gate would output 0. A

C-element, however, retains the state of its last state when both inputs were equal. For

example, if the inputs were 11 (causing output of 1) followed by 10, the output would

still be 1. If the inputs are 00 (causing output of 0) followed by 10, the output would

still be 0. Hence the C-element stores a state, and state transitions occur upon a 00 or

11 input pattern.

An arbiter has two inputs and two outputs (figure 4.2). Active (value 1) outputs

are mutually exclusive, or alternatively both outputs can be inactive (value 0), so the

allowed patterns are 00, 01, and 10. Each input corresponds to one output, when the

inputs are 00 and one switches to 1 its corresponding output will become 1. If an input

rises and the other is already active then the rise of its corresponding output will be

delayed until the already active output falls. If both inputs simultaneously switch to 1,

there will be a period of resolution, followed by the system settling in a state where

only one of the outputs is active. During the resolution period the outputs are stable;

a 11 pattern will never occur. This useful feature allows arbiters to be used to control

exclusive access to shared resources by serialising access requests.

It is often claimed that asynchronous designs provide several advantages over syn-

chronous ones [84]. These include improvements in average case performance, lower

energy consumption, improved modularity, scalability and re-usability, and lower elec-

tromagnetic emissions leading to increased resistance to security attacks based on side-

channel information leakage.

Asynchronous designs that use completion detection circuits, or that use sub-circuits

which can generate completion signals, will exhibit average case behaviour. Syn-

chronous circuits always exhibit worst case behaviour since the clock period must be

longer than the time taken for signals to propagate along the critical (slowest) path be-

88 Chapter 4. Other networks

Figure 4.2: Left: A mutual exclusion (ME) circuit only allows one output to be active

(value 1) at a time. Right: An arbiter is used to serialise competing requests for access

to a shared resource; it can be constructed from a mutual-exclusion (ME) circuit and

C-elements.

Credit for image: Al Davis [84]

tween any two state holding elements. Practical experience has shown that it is difficult

to exploit this advantage for two reasons — completion detection modules for delay

insensitive circuits increase circuit size and signal delay, and in bundled data circuits

every path must use the worst case propagation delay anyway.

Asynchronous circuits can be more energy efficient than synchronous ones. Mod-

ern designs use CMOS transistors which draw current when switching but only draw

a very small leakage current when in a stable state. In asynchronous circuits, changes

in input signals propagate, causing power to be drawn, but when the inputs are stable

the circuit is stable, so there is no switching and little power is consumed. In contrast,

synchronous designs allow logical hazards and races to temporarily propagate through

combinational circuits. The clock state ensures these invalid values will be ignored

by state holding components, but their propagation results in unnecessary transistor

switching, and hence wasted power.

Pipelined designs offer further opportunity for power saving. Synchronous pipelines

propagate “bubbles” when no new data is available, causing each stage to consume

power. Asynchronous pipelines have no upper bound on the time taken between data

entering and leaving each stage, their timing is “elastic”, so there is no need for pipeline

bubbles.

All logic and wire paths exhibit slight variations in their delay due to process vari-

ation, operating temperature, and power consumption. As these circuits are combined

to create larger circuits the paths through them become longer, and hence the problem

of additive skew increases as the delay variations are combined. The flow control of

asynchronous circuits eliminates this problem.

Asynchronous circuits can be connected together regardless of fabrication process

4.4. Genetic regulatory networks 89

or any other aspect of the implementation, making it easy to reuse existing designs.

In contrast, synchronous designs must be verified for different processes and clock

speeds. True delay insensitive circuits can even have their layout and wire routing

changed without affecting functionality. Lower electromagnetic interference makes it

easier to mix asynchronous circuits with analog and radio circuits [145].

Routing a global clock signal to every latch in a circuit is a barrier to scaling up

to very large designs. This problem is exacerbated as feature sizes get smaller and

wire delays begin to dominate over transistor delays. It is unlikely that a global clock

will be feasible in deep sub-micron designs such as super-conducting “rapid single

flux quantum” (RSFQ) technology, which enables flip-flop transition speeds of 770

GHz [62]. At this frequency it could take hundreds of cycles for a signal to propagate

the length of the chip, which severely limits the area reachable within a single clock

cycle. More importantly, at such a high frequency, delay variations due to process

and operating temperature can be greater than the clock period. Asynchronous circuits

have no global signal to distribute and have been successfully used for high speed

RSFQ designs [103, 326].

Security can be increased by using asynchronous circuits. Synchronous circuits

can exhibit power fluctuations dependent on the clock and data. Side channel attacks

have been developed which monitor these fluctuations and use them to recover key data

from cryptographic applications. This is a particular problem for smart cards which are

used to store digital cash or control access to pay-TV services. Asynchronous circuits

distribute processing across time more uniformly, reducing electromagnetic emissions

and making timing based attacks more difficult.

4.4 Genetic regulatory networks

A genetic regulatory network is a formalisation that views the activity of a group of

genes that can affect each others transcription as a network (or directed graph). Each

node in the network corresponds to a single gene. The activity of a gene can indirectly

turn the transcription of other genes on and off if its corresponding protein binds to the

upstream regulatory region of a gene. Where a gene influences another in this way,

there will be a directed edge between them in the network. If a gene does not influence

another, then there will be no edge between them. If two genes must be active to in-

fluence a third gene, then this will be represented by the presence of two edges in the

network, one from each independent node to the dependent node. In this way, the ac-

90 Chapter 4. Other networks

tivity of a group of genes in a living cell can be viewed as a network (or directed graph).

Genetic regulatory networks are modelled using several formal structures that differ in

the amount of state they allocate to each node (continuous, multi-value or boolean),

and in the function that is carried out at each node to determine changes in state and

output values. These differences affect simulation speed and accuracy — more accu-

rate simulation models will generally require greater computational resources. It has

been argued that some of the simpler and faster models enable dynamical behaviour

that is biologically impossible [179, 371].

The development of a biological life form relies on the ability of its cells to metabolise

large molecules, and from what is left synthesise the molecules it requires in order to

sustain its life and reproduce. Each non-developmental cell has a specialised “cell

type” which it arrives at through a process of cellular differentiation. These cell types

perform various functions, such as the communication and computation of a neural

cell, or the physical contraction of a muscle cell. The life of a cell, from creation to

death, is guided by genes contained in its DNA.

Each gene is converted into a unique protein by the machinery of the cell. A pro-

tein can catalyse a chemical reaction that sustains the cell’s metabolic pathways (i.e.

breaking down food or constructing new proteins and acids), can perform cell mainte-

nance functions (e.g. maintaining cell structure, signalling, molecule transport) or can

bind to the DNA and either activate or inhibit the production of other proteins. Pro-

teins that affect the transcription of a gene by binding to its upstream regulatory region

are known as “transcription factors”. The function of regulating the transcription of

genes by binding to DNA is analogous to the state changes that an electronic controller

will perform. DNA can be viewed as a state machine, with proteins being its output

signals. In a digital controller, a multi-valued output signal can be in one of several

states, similarly the concentration levels of a protein within a cell can also be grouped

into different levels. During state changes an electronic controller will produce outputs

which determine its next state. In a cell, genes will be converted into proteins, some of

which will in turn bind to the DNA, thus determining the next state. In an electronic

controller the signals which do not affect the state of the controller will instead per-

form functions regulating the datapath, or communicating with external devices. In a

cell, proteins which do not regulate DNA will instead regulate the metabolic pathways,

carry out mechanical functions or communicate with other cells.

Cells and reactions are affected by concentrations of molecules. Although the con-

centrations of molecules are discrete (we never have a fraction of a molecule), they

4.4. Genetic regulatory networks 91

Figure 4.3: An example genetic regulatory network containing three genes which are

transcribed to produce proteins (A,B,C,D) that act as transcription factors by binding

to the upstream promoter region of specific genes, which suppresses transcription of

those genes. The horizontal arrows show the direction of transcription. A and D are

both required (AND relation) to suppress gene b, whereas either B or C (OR relation)

can bind upstream to suppress gene a. A has the dual function of repressing gene c,

or binding to D and repressing gene b.

Credit for image: Hidde de Jong [95]

are typically present in such vast numbers that they produce a continuous behaviour.

The change in molecule concentrations in presence of a catalysing protein can be dra-

matic, producing a fast transition between states where many molecules of a molec-

ular species are present, to ones where practically none are. When proteins bind to

DNA they can in turn affect the production of another protein, thus creating a control

network with genes being turned on and off, and almost discrete transitions between

protein levels.

The suppression and activation of protein synthesis from a gene by other genes can

be viewed as a network, with nodes being individual genes, and edges being present

when a protein produced by the synthesis of some gene either suppresses or activates

the synthesis of other genes. These networks are known as “genetic regulatory net-

works”. Figure 4.3 shows how interactions of DNA and molecules can be viewed as a

network, and 4.4 shows an actual network reverse engineered from bacteria.

There are several methods for computational modelling of genetic regulatory net-

works [95, 149]. The most common are:

92 Chapter 4. Other networks

Figure 4.4: An example genetic regulatory network. Each node represents a gene

which codes for a particular molecular species, with edges defining interactions be-

tween these molecules. Each edge is labelled with the effect the source molecule has

on production of the target; either positive (excitatory), or negative (inhibitory).

Credit for image: BION Institute, Serbia

4.4. Genetic regulatory networks 93

Figure 4.5: A 3D rendering of a molecule level simulation of the satellite tobacco mosaic

virus. Up to 1 million atoms were simulated for over 50 ns. Stochastic simulation allows

the precise location of individual molecules to be plotted.

Credit for image: Anton Arkhipov, University of Illinois [139]

• Stochastic simulation of individual molecules. This is computationally intensive

as it is necessary to simulate millions of molecules within a cell in some level

of detail. This type of simulation tends to be more accurate when the molecu-

lar count and threshold response levels of genes are low. Simulating individual

molecules becomes computationally intractable as the number of molecules in-

creases.

Image 4.5 shows a rendering of the first molecule level simulation of a complete

life form performed in 2006, consisting of up to 1 million atoms over a virtual

time period of 50 ns [139].

• A linked system of ordinary differential equations. These equations represent

how the changes in levels of different molecule types are linked. The simulation

must be run using some differential integrator such as the Runge-Kutta algo-

rithm. This type of simulation tends to be used when there are large numbers of

molecules, and when small variations in the levels of different molecular species

do not cause significant deviations in the simulation results.

• Hybrid simulations consist of both molecular stochastic simulation and differ-

ential equation based simulation. The two types of simulation can be used as

94 Chapter 4. Other networks

necessary to accurately simulate a genetic regulatory network that consists of

both genes that respond to low molecule counts, and genes that react on a much

larger scale, in a computationally tractive way. The open source software E-cell

is a good example of a system that enables distributed hybrid simulation [421].

• By modelling the network using process algebra, a formal technique devel-

oped for modelling synchronising, parallel processes in theoretical computer

science [71]. Process algebra has also been used for modelling delay insensi-

tive asynchronous circuits [84].

• By the abstraction of the network to a boolean network model which can be

easily simulated on a digital computer. See section 4.5.

Creating network models of real world systems requires establishing the topology

and derivative function of each variable through a process of experimentation and anal-

ysis. Often this is carried out by understanding the physical aspects of the system, but

with the increasing size of networks and data collection, particularly in the bioinfor-

matics field, automated techniques have been developed [36, 106], including ones that

evolve models using genetic algorithms [277].

4.5 Boolean networks

Boolean networks were proposed by Kauffman in 1968 as an abstraction for modelling

genetic regulatory networks [223]. Each node computes a boolean function, and hence

accepts a number of true/false inputs, and produces a single true/false output. The

connectivity of the nodes within a network replicates the connectivity in a genetic

regulatory network, and a boolean function is used to update the state of each node

given its corresponding pattern of gene activation. The computed boolean function is

expected to be different for each node, as different genes have different patterns of

activation. Boolean networks are also known as NK networks, where N is the number

of nodes, and K is the number of inputs to each node. Kauffman defined a “random

boolean network” as being an NK network with randomly generated topology and

functions. Figure 4.6 shows an example boolean network.

There are two major objections to the use of boolean networks for modelling ge-

netic systems. The first is that the whole network is updated synchronously, i.e. all of

the cells are updated with new output values at the same time. This produces an artifi-

cial synchronicity that is not present in biological systems [213]. Harvey, Gershenson

4.5. Boolean networks 95

Figure 4.6: An example boolean network. a) shows the connectivity graph, b) the next

state functions, c) the truth table, and d) the attractors; in this case there are two point

attractors, and a single cyclic attractor. Two of the attractors have transit paths, but the

000 state is isolated.

Credit for image: N. Geard [149]

96 Chapter 4. Other networks

and Geard have shown that, for randomly generated boolean networks with both syn-

chronous and asynchronous updating, attractor cycles exist which are relatively stable

to perturbations, though the attractor dynamics vary greatly depending on the update

scheme [150, 154, 179] (see section 4.5.1).

The second objection is that the boolean abstraction may not be appropriate for

many real world genetic systems. Since concentration levels of a molecule can be so

large as to be considered continuous, the control network may also react in a contin-

uous way. It may be the case that the dynamics of the continuous system can not be

accurately modelled by a simple multi-state system [371]. In contrast, Gershenson

argues that the behaviour of many real-world systems is in fact determined by thresh-

olds, such as the neural potentials governing synaptic firing, and chemical potentials

governing metabolic pathway reactions [153].

Thompson has pointed out that it is the interaction of these two idealisations of syn-

chronicity and boolean typing which is particularly deceptive, creating networks that

are capable of simultaneous discontinuous changes of state that would be impossible

in a continuous system [179, from personal communication cited]).

Boolean networks are an interesting target for evolutionary research as they are

widely used in bioinformatics, and are considered to be accurate enough to provide

further insights into the evolution of biological life.

4.5.1 Random boolean networks

A “random” boolean network is one in which both the network topology and the func-

tion of each node is randomly generated — in essence, rejecting specific topology and

function as factors in favour of studying general properties about classes of network

that derive from the global NK values — the number of nodes and number of inputs

to each node [153]. Hence only global meta-information is considered relevant; the

topology and function of nodes is not preserved across different instantiations of a

particular network type. In research involving other network models, such as classi-

cal neural networks, low-level neural structures are considered essential in perform-

ing particular functions and generating particular patterns of activity. The “random

boolean network” model is distinct in not attempting to preserve localised topology

and function — the use of this model to explore global properties of emergence de-

rives from Kauffman’s hypothesis that the self-organisation of biological systems is an

inherent result of large, connected networks, rather than the result of some particular

4.5. Boolean networks 97

micro-structures. There is some evidence from biology that network topologies are not

completely pre-determined; Cherniak estimates the amount of brain-specific DNA in

the human genome at around 100 megabytes — too little to encode complete infor-

mation about every neuron and synapse [63]. It has been proposed that, rather than

specify connectivity between individual neurons, the genome specifies the location of

large scale structures, leaving lower level micro-structures to be formed using some

heuristic process.

Since only global properties are considered relevant, any experimental results will

apply to a particular class of network, rather than to individual networks. In a typi-

cal application, individual networks will be randomly generated from the global NK

properties. Only the process of creating the network is random - once the network is

generated, its topology and function will be fixed and unchanging. The network will

typically be used for a single run of whatever experiment is being carried out and then

discarded. Hence both topology and node function are randomised across runs, and not

considered relevant factors, so any results derived from these experiments will apply

to whole classes of networks, rather than some specific individual networks.

The classic Kauffman model is a network with N nodes, each of which has K in-

puts randomly chosen from the other nodes with uniform probability. Variations on this

model are possible — the probability of an individual node being connected to another

can derive from a desired statistical distribution of connectivity, such as the mean de-

gree of connectivity of individual nodes, or some other distribution which attempts to

model features of real biological networks, such as locally dense and remotely sparse

connectivity — a feature also observed in genetic networks where connected genes are

more likely to appear in short “canalised” sequences of DNA [472]).

Kauffman’s main research interests lay in self-organisation of biological systems.

Aware of the digital abstraction being used to model genetic regulatory systems, he

proposed the hypothesis that self-organisation is an inherent property of large, well

connected networks [224]. He then carried out a series of experiments to determine

exactly how and when digital networks display self-organising behaviours. He created

so called NK networks, with a total of N nodes, each with K inputs, which were ran-

domly connected to the outputs of other nodes. The boolean function of each node

was generated randomly. The operations of these nodes were simulated to determine

whether they displayed properties of self-organisation, such as the repetition of pat-

terns caused by cyclic behaviour.

It was discovered that, at low degrees of connectivity, network activity would

98 Chapter 4. Other networks

quickly die out (i.e. the network would be attracted to a stable state), but around the

threshold of K = 2, networks would spontaneously form into islands of interacting be-

haviour, displaying self-sustaining patterns of activation. With higher values of K, be-

haviour would become chaotic. Kaufman termed the area around the transition thresh-

old the “edge of chaos” — the point at which seemingly ordered behaviour would

become chaotic and unpredictable. Kauffman believed that the “edge of chaos” was an

area where interesting, useful computation could occur. However, the results for high

degrees of K indicate the lack of some level of biological realism, as biological neural

networks have a greater mean degree of connectivity, and yet they still perform useful

computation.

The self-organisation of these networks seemed remarkable given that the underly-

ing topology was completely random. Analysis of the activation patterns showed that

communication between islands was practically non-existent, but within individual is-

lands nodes would form networks which act as dynamic attractors. The islands would

have short transit periods, and then rapidly fall into their attractor cycles. The cycles

were robust, with small perturbations to the state being quickly corrected.

It was found that the length and number of attractor cycles increased in line with
√

N (although this has since been challenged). Kauffman proposed that this was ex-

actly what happens in genetic regulatory networks, with cycles of cell activity increas-

ing linearly as the square root of the number of genes increases. Some examples of

gene counts and estimated complexity of development for different species were given.

However, it is easy to find counter examples of other species that do not obey this rule.

Kauffman’s hypothesis has therefore not been widely accepted, but the self-organising

behaviour of these networks is still a popular topic of research.

Others replicated the work of Kauffman and observed the
√

N scaling, but more

recently this has been challenged (see figure 4.7). It was claimed that the number of

attractors increases according to a power law [29]. This in turn was challenged, with

the claim that cycle growth is in fact linear [30], and again this was challenged with

the claim that cycle growth is in fact super-polynomial, and faster than any power

law [375]. In 2005 this was again challenged, with the claim that growth is sub-linear.

This new claim relied on the argument that biologically unrealistic attractors should be

disregarded and that state space sampling is inherently biased towards reaching stable

attractors, thus producing the
√

N growth previously observed [235]. The attractors

considered unrealistic were those which exist due to synchronous updating, and which

become unstable when the assumption of synchronicity is relaxed.

4.5. Boolean networks 99

Figure 4.7: Kauffman’s claim that the number of limit cycles in a boolean network grows

in proportion to the square root of the number of nodes (top left) was refuted, with

claims that growth follows a power law (top right) , then linear (centre left), then super-

polynomial (centre right), and finally sub-linear (bottom).

Credit for image: A. Bhattacharjya and S. Liang, Sven Bilke and Fredrik Sjunnesson,

Björn Samuelsson and Carl Troein, Konstantin Klemm and Stefan Bornholdt [29, 30,

235, 375]

100 Chapter 4. Other networks

In his second book, Kauffman proposed that life itself arose as randomly connected

sets of chemicals which catalyse reactions within a chemical network, thus producing a

self-sustaining autocatalytic process [225] (this “autocatalytic abiogenesis” hypothesis

has also been proposed by Richard Dawkins [86]). He claimed this property under-

lies the development of all genetic regulatory systems found in nature, and indeed,

accounts for the development of cellular life from a primordial soup of interacting

molecules. There is some supporting evidence for this view; in 2007 it was shown,

through computer simulations, that inorganic matter could self-organise to form cell

like distributions that display properties reminiscent of biological life [451], and in

2009 a series of simple, energy efficient chemical reactions that form RNA from a

primordial soup were identified [422].

The attractor basin of a random boolean network can be computed by enumerating

all of its possible states and state transitions (figure 4.8) [481]. This presents the ob-

vious problem of enumerating large networks — since the number of possible states

increases exponentially, a brute force enumeration becomes impractical for as few as

64 nodes. Techniques have been proposed to alleviate this problem by automatically

pruning unimportant vertices, splitting the network in to sub-networks, analysing the

attractor basins of the sub-networks, and then computing the global attractors by com-

positionally merging the sub-network attractors [116]. The amenability of boolean

networks to being deconstructed in a modular fashion lends credibility to their suit-

ability for the kind of progressive adaptation typical of genetic algorithms.

In 1997 Harvey showed that the attractor spaces of asynchronous networks are,

contrary to popular opinion, radically different to that of their synchronous counter-

parts, with the mean number of attractors in an asynchronous network being 1 [179]

(see section 6.12).

In 1998 Wuensche explored the attractor basins of random boolean networks, by

enumerating all the possible states and transitions, and then visualising them. This

allowed the effect of single bit perturbations to function rules to be interpreted by

looking at the resulting change in attractor basins [481].

In 2000 de Paolo defined rhythmic attractors, which are cyclic attractors that move

through similar, but non-identical, states, in a manner similar to the “strange attractors”

of dynamical systems [107, 108] (see section 6.12).

In 2004 Gershenson compared synchronous and asynchronous update schemes and

their effect on network dynamics [154]. Randomly created networks had their initial

state perturbed by a single bit, and both paths were followed. After some number

4.5. Boolean networks 101

Figure 4.8: The attractor basin of a random boolean network can be computed by

enumerating all of the possible states and state transitions. A graph can then be plotted

with each state as a node, and edges representing possible transitions between states.

In this attractor basin initial random states quickly fall into a short limit cycle.

Credit for image: Andy Wuensche [481]

102 Chapter 4. Other networks

of time steps the Hamming distance (the number of bits in the same position that

are different) between the two networks could be compared, as a measure of how

much they had diverged. It was shown that the choice of synchronous or asynchronous

updating had no effect on the threshold stability values surrounding the “edge of chaos”

(the transition region between stability and chaos, see section 4.8).

As connectivity increases both updating schemes show a change in behaviour be-

tween convergence and divergence, passing through an area where the Hamming dis-

tance stays the same, i.e. perturbations do not lead to convergence or divergence, but

constantly tend towards similarly diverged networks. Both synchronous and asyn-

chronous updating schemes could carry out “complexity reduction” by establishing

attractor dynamics, and both showed a similar boundary between chaotic and stable

states at some degree of connectivity K, where 1 < K < 3.

In 2005 the effect of small perturbations on attractor stability was studied by Geard.

He computed the attractor basins of various NK networks, and then examined the ef-

fect of flipping a single state bit [150]. He found that, as the network connectivity K

was increased, the network response to most minor perturbations would be to remain

in the same basin of attraction. Switching basins was only likely when the network

connectivity was low (see figure 4.9).

From the view of genetic algorithms research these theories of the evolution of self-

organising behaviour are intriguing, and research into the evolvability of NK networks

for physical control tasks may provide some insight into problems of biological self-

organisation. Although random boolean networks are synchronous, their stability to

minor perturbations suggests a robustness in the face of other updating schemes when

generating rhythmic (non-identical) cyclic patterns.

Random boolean networks, like standard boolean networks, have been criticised for

their use of a global clock that can introduce artificial synchronicity. A few papers have

been published on the use of asynchronous updating schemes with random boolean

networks [107, 108, 179]. As there is no methodology for constructing these networks

genetic algorithms were used to evolve solutions that display rhythmic cycling through

similar, but not identical, patterns (see section 6.12).

4.6 Generalised logical networks

Generalised logical networks [439] are claimed to solve the two main problems with

the boolean network abstraction. The first is that the dynamics of a network of boolean

4.6. Generalised logical networks 103

Figure 4.9: Random boolean network attractors are often quite stable in response to

small perturbations. This diagram shows how the probability of falling into a different

attractor due to small perturbations falls as the network connectivity increases.

Credit for image: Nicholas Geard [150]

functions is limited in comparison to a network of continuous functions; there are

regulatory functions whose behaviour can not be reliably modelled by boolean func-

tions [377]. To solve this, generalised logical networks use multi-value logical func-

tions to better approximate continuity.

The second problem is that boolean networks, as proposed by Kauffman, are syn-

chronous, which introduces an artificial source of global timing not present in natural

networks. In contrast, generalised logical networks are asynchronous, with updates

occurring in a random order.

Figure 4.10 shows a simple generalised logical network consisting of three genes

that are mutually repressive and excitatory. There are obvious similarities to integer

neural networks and multi-value cellular automata; logical equations are derived from

a network with weighted edges, edges are either excitatory or inhibitory, and the logic

equations approximate simple summation and segregation of the continuous states into

discrete levels.

Individual variables (nodes) in a boolean network have only two states, and hence

are unable to approximate the rich dynamics seen in continuous real world systems.

Generalised logical systems have a multi-value approximating logic. Each variable

104 Chapter 4. Other networks

Figure 4.10: Generalised logical networks consist of multi-state nodes, representing

protein concentrations, and edges, representing molecular interactions. x̂1, x̂2, x̂3 repre-

sent the current state of nodes 1, 2 and 3 respectively. b̂1, b̂2, b̂3 represent the update

function applied at each node. X̂1, X̂2, X̂3 represent the next state of each node. (a)

shows an example network, with edges labelled as excitatory or inhibitory, and a weight

representing how strongly the source gene influences the target. (b) shows the multi-

value logic system derived from the network.

Credit for image: Hidde de Jong [95]

4.6. Generalised logical networks 105

can be in any one of a number of independent states. There is a one-to-one mapping

between genes in a biological system, and variables in the model. The number of states

for each variable is calculated by dividing the continuous concentration of protein de-

rived from the gene into discrete, non-uniform ranges dependent on the protein’s effect

on other genes.

For example, a gene outputs a bounded protein concentration which can be nor-

malised to the range [0,1]. Other genes will react to different levels of this protein in

different ways. If there are n unique responses, then n− 1 thresholds are identified

which divide the continuum into n regions. The gene is then modelled as an n state

variable.

The multi-value logic function for each node is derived from the genetic regulatory

network, which is itself derived from real world experiments. The proteins transcribed

from each gene either inhibit or excite the others (represented by +/- on graph edges).

A threshold between these two behaviours, taken from the discrete set of states for the

source gene, is identified. These values can then be used to generate logical functions

that model the observed behaviour.

Generalised logical networks have been successfully used to model and analyse bi-

ological genetic regulatory networks. One example is pattern formation in Drosophila [376],

where signals from a distributed set of control points are integrated by the “Eve” gene

to create vertical stripes along the insect’s body. Thomas used generalised logical net-

works to model the infection of E. coli cells by the λ bacteriophage [439].

Mendoza studied the cell development of the flowering plant arabidopsis thaliana [289].

He analysed the dynamics of the model network to find point attractors, and then ex-

perimentally confirmed that they had a one-to-one correspondence with steady states

in floral and non-floral cells. Surprisingly, it was shown that there was a further steady

state, which corresponded to no known cell type, and hence could not be confirmed

experimentally. This state does not occur during cell development as it is not on an

attractor path derived from the initial state, and it has a small attractor basin which is

never reached. It is possible that this anomalous cell state is an evolutionary throwback

that is no longer necessary, or it could simply be a side effect of the underlying network

dynamics.

106 Chapter 4. Other networks

Figure 4.11: A one-dimensional CA plotted over time. Each column tracks the progres-

sion of a single node. Node state is boolean, which maps directly to a white or black

pixel. Each row plots the state of the whole network in a given moment. Topology is

fixed one-dimensional, directly corresponding to the layout of the row. The initial state

is the top row, and final state the bottom.

Credit for image: Andrew Wuensche [482]

4.7 Cellular automata

Cellular automata (CA) are simple connectionist models which are spatially and tem-

porally discrete [480]. Each cell has a small number of states, and interacts only with

its neighbouring cells. A global update rule is defined, and at each time step the rule

is applied to all cells simultaneously. All cells have identical connectivity. Cells on

the edge are wrapped, forming a circular ring in one-dimension, or a torus in two.

Traditional cellular automata are a subset of boolean networks in which nodes have

identical update rules and uniform, geometrically regular, connectivity. Figure 4.11

shows a traditional time-state plot of an example one-dimensional cellular automata.

One way of analysing the dynamics of a cellular automata is to enumerate the state

space and the transitions between different states. The states and transitions between

them can then be plotted (figure 4.12). This shows the “attractor basins” — the tran-

sition dynamics by which the cellular automata moves from a large number of initial

states towards a smaller group of final attractor states.

Visualising the connectivity of a cellular automata with irregular topology can (like

any kind of complex graph) be difficult. One standard way supported by the cellular

automata workshop software is to plot the nodes in a circle and then plot lines between

connected nodes (figure 4.13).

Cellular automata are laid out in a n-dimensional space, which defines the local-

4.7. Cellular automata 107

Figure 4.12: This cellular automaton contains several attractor basins. Since there

are 16 cells, there are only 216 possible global states, so enumeration of the states is

computationally tractable. This allows all states and state transitions to be computed

and plotted to visualise the attractor basins (top). The second image shows a close-up

of the partial basin outlined in the first (bottom).

Credit for image: Andrew Wuensche [481]

108 Chapter 4. Other networks

Figure 4.13: One way of viewing the connectivity of large cellular automata or other

networks is to arrange the nodes into a circle and plot straight lines between connected

nodes.

Credit for image: Andrew Wuensche [482]

ity of a cell to others. One-dimensional systems have been extensively studied, and

are capable of showing a surprisingly rich dynamics — it has been proven by con-

struction that a 1D system, with two states per cell, and a size 3 neighbourhood (i.e.

its own state, and two incoming connections from neighbouring cells), is capable of

universal computation [480, Rule 110]. The space of universal cellular automata has

not been fully explored, and whilst this particular design is complex in its construction

and hence unlikely to occur in the biological world, it is an intriguing possibility that

similar systems could be artificially evolved to perform universal computation.

The first cellular automata to be described were synchronous, uniform in connec-

tivity and update rule, and cells shared a discrete number of states through which they

could transition. Despite these properties being defining characteristics of traditional

cellular automata, it was claimed that they may make them less capable in terms of

information processing. Many other forms of cellular automata have been created:

Non-uniform cellular automata (NUCA) possess irregular neighbourhood structures

and individual update rules for each cell.

Structurally dynamic cellular automata allow the topology to be altered over time,

as well as the cell states, enabling simulation of crystal growth, neural plasticity,

4.7. Cellular automata 109

and other self-modifying systems.

Mobile cellular automata allow state and update rules to propagate between cells,

and are often used to study artificial life systems.

Continuous cellular automata (also known as coupled map lattices) possess cells

which move through continuous rather than discrete states.

Threshold cellular automata have a weighted sum-and-threshold cell update func-

tion. Essentially these are discrete, or integer, neural networks with regular uni-

form connectivity,

Asynchronous cellular automata update each cell independently and in a random or-

der, and the new state becomes visible immediately to neighbouring cells [382].

Synchronous cellular automata have been criticised as being unrealistic ; in

the physical world there is no global clock signal linking atoms, molecules, or

cells [179, 213, 371]. Synchronous cellular automata can be constructed within

asynchronous, preserving the theoretical work on phenomena like self-reproducing

patterns [55], particle computation [196] and liquid computing [385], which is

important as these mechanisms may underlie biological neural networks.

Partitioning cellular automata consist of synchronous sets of cells, with sets being

asynchronous with respect to each other (what would be called “globally asyn-

chronous locally synchronous” in asynchronous circuit terminology).

Non-deterministic probabilistic cellular automata cells have multiple rules that can

be applied at any time step. Which one is used is determined according to some

stochastic frequency distribution.

There is little difference between many of these cellular automata variants and other

systems such as random boolean networks or integer neural networks, and there is a

great deal of crossover between multi-state cellular automata, the systems used to sim-

ulate genetic regulatory networks, asynchronous cellular automata and asynchronous

boolean networks. The defining characteristics of such systems are topology of con-

nectivity, degree of connectivity (sometimes implied by topology), asynchronous or

synchronous updating, and the number of states per cell.

110 Chapter 4. Other networks

4.8 The edge of chaos

The term “edge of chaos” is used to represent an area of state change in the dynamics of

the observed system. Wolfram proposed that useful computation in cellular automata

can only occur in the dynamical region between chaotic and stable behaviours. The

reasoning is simple — a stable system has no movement of data between regions,

whilst in a chaotic system data moves too quickly, and with too many unpredictable

interactions between every part of the system.

A real world analogy might be to the temperature of water; when water is frozen

the molecules are static, and no useful computation can occur. When water is boiling,

the molecules are chaotic and move too quickly, so no useful computation can occur.

In between these two phases lies the liquid state, where ripples may move through the

water, or across its surface, with patterns forming as ripples flow, collide, and interact

with each other, resulting in a continuous computational process.

Wolfram divided cellular automata into four different patterns of behaviour (fig-

ure 4.14) ranging from static to chaotic [480]. This system of simple classification has

been criticised by Crutchfield and Hanson, who noted that the same cellular automata

may display different behaviours in different regions [303].

In both cellular automata and random boolean networks it has been observed that

the distribution of zeroes and ones in output rules affect the ability of the network

to fall into an “edge of chaos” state and perform useful computation. Langton hy-

pothesised that cellular automata with this property are clustered around a point in

the “distribution of zeroes versus ones” space, and symmetrically around the opposite

point for “ones versus zeroes” [254], although the evidence supporting this hypothesis

was later discredited by Mitchell [304, 305]. Figure 4.14 shows how cellular automata

classification changes as the distribution of initial rules varies.

Similar global parameters that cause computation to move through the edge of

chaos have been found in neural circuits [258] and liquid state machines such as

Schürmann’s mixed-mode VLSI neural networks [385].

There have been several attempts to explain how coherent systems of computation

can be formed by cellular automata operating on the edge of chaos. Section 6.12 de-

scribes the evolution of particle computation systems and figure 6.14 shows an evolved

cellular automaton that solves the synchronisation task [83].

The boundaries of homogeneous regions can be viewed as particles, with colliding

particles producing computation forming new particles. There have been attempts to

4.9. Summary 111

Figure 4.14: Cellular automata can be divided into four types according to their be-

haviour. These are fixed, cyclic, complex and chaotic (or Wolfram’s class 1, 2, 4 and 3

respectively). Global generative parameters, such as the degree of randomness in rule

sets, can form thresholds that divide the solution space between these types. The 3D

plot on the right shows mean entropy of cell state changes over time against the stan-

dard deviation of the entropy for a random sampling of rules from size 5 neighbourhood

automata.

Credit for image: Chris G. Langton (left) and Andrew Wuensche (right) [254, 481]

reduce these complex cellular automata to an abstract fast particle computation system

based on particle classification, the probabilities of collisions between these classes

producing particles of a new class, and simulation based on movement and velocity

rather than numerous interacting cells [196].

Some cellular automata relying on particle computation have also been manually

designed; Steiglitz implemented a ripple-carry adder [414]. “Parity rule filter” cellular

automata are similar systems, using a priority based updating scheme, and are closely

related to the concept of “soliton computing” in continuous systems [217].

It has been shown that similar parameter boundaries occur in recurrent neural net-

works, and conjectured that complex computational tasks in such networks also occur

around the “edge of chaos” [28].

4.9 Summary

This thesis compares the use of complex and simpler quantised network models for

some common robot control tasks. The models compared vary not just by quantisa-

tion, but also by timing and by connectivity. This chapter has provided an explanation

112 Chapter 4. Other networks

of the different network types used in several different fields of research, and how these

network types are related by variations on common factors that will be explored by this

thesis. More complex models require greater computational resources, and hence there

is an interest in simpler models with non-continuous dynamics. The prospect of using

digital networks for robot control is of interest, as digital systems are well understood

and easier to implement. Systems like cellular automata show that interesting com-

putation can be performed by networks with regular structure, limited communication

between nodes, and simple digital update functions.

There are various different types of network, which share many commonalities.

It is difficult to isolate the factors of each that exemplify their defining characteristics

since there has been so much crossover in the various research areas, but broadly speak-

ing the properties are as in table 4.1. The table shows the terms as generally under-

stood, not what is theoretically possible, or as extended beyond the usual descriptions.

For example, there are asynchronous digital circuits, and asynchronous non-uniform

continuous cellular automata, but in everyday use the term “digital circuit” usually

refers to a circuit with a synchronous clock, and the term “cellular automata” usually

refers to a network of binary state cells with uniform connectivity and a synchronous

update function.

4.9.
S

um
m

ary
113

Network Topology State Update function Update order Signal delay

biological neural non-uniform continuous sum-and-spike parallel dendrite and synapse dep.

synthetic neural full,feed-forward continuous weighted-sum-and-sigmoid synchronous none

cellular automata uniform,local binary uniform, boolean equation synchronous none

analog circuit non-uniform continuous node-type dependent parallel geometric distance

digital circuit non-uniform binary node-type-dependent synchronous none or geometric distance

boolean non-uniform binary boolean equations synchronous none

random boolean random K input binary boolean equations synchronous none

genetic regulatory non-uniform continuous differential equations synchronous none

generalised logical non-uniform discrete boolean equations asynchronous none

Table 4.1: Defining features of the various network types

114 Chapter 4. Other networks

Some of the concepts explored from other research areas should be of interest to

practitioners attempting to model neural networks. For example, digital silicon models

of neural networks to date have been implemented with synchronous circuits due to

the absolute dominance of synchronous design over asynchronous within the electron-

ics design industry. Asynchronous circuits should be considered for accurate digital

modelling of biological neural systems, as biological networks have no global clock

signal, hence making an asynchronous model more faithful. There are problems imple-

menting silicon systems where individual logic components have a large fanout (where

large is hundreds or thousands). Reliably propagating a single global clock signal to

components that number on the scale of a modern processor is already problematic; in-

creasing the number of clocked components up to the scale of the human brain whilst

maintaining model accuracy may prove to be impossible. Therefore it is unlikely that

a model of a large biological network on the scale of the human brain could be com-

pletely synchronous. Scaling up digital silicon designs to the size of such biological

networks will require dropping the global clock signal, so other fields of digital design

that have already explored this concept should be of increasing interest to hardware

neural network implementers.

Chapter 5

Genetic evolution

So far we have examined various different types of computational network. These net-

works often form complex dynamical systems, making it difficult for a human designer

to fashion them into performing useful activity. In order to create large networks of

interacting components we abstract above the low-level details of the network by cre-

ating structured hierarchies of parts. Unfortunately the cost of this abstraction is a

reduction in the computational power of individual components, turning, for example,

a complex recurrent dynamical system into a simple boolean logic gate.

What we lack are methodologies for designing and reasoning about large scale

dynamical systems while maintaining and exploiting their intrinsic power. However,

nature, through the process of genetic evolution, has already solved this problem, re-

sulting in a diversity of complex lifeforms displaying a range of computational and

reasoning abilities.

In the design of digital circuits we do not allow arbitrary connections between

nodes — every connection must be explicitly stated by the designer. We also abstract

above the continuous timing model by enforcing discrete timing regimes which explic-

itly signal a change in time step to state holding elements. There is also an enforced

uniformity in the design of nodes; each node uses a pre-determined cell design which

either implements one of the logical functions AND, OR, NOT, etc. or is state holding,

like a flip-flop.

In the design of neural networks we enforce that the networks are feed-forward and

acyclic, and that the update function is mathematically differentiable, so that backprop-

agation can be used to train the network with input data sets.

In both of these cases the abstractions employed detract from the power of the

underlying network. It would be desirable to employ a more advanced methodology in

115

116 Chapter 5. Genetic evolution

order to better exploit the power of the underlying network, but unfortunately cyclic,

non-uniform networks are difficult to analyse and understand. One approach that has

been successful is the use of automated design techniques that do not require human

analysis of the created designs. This chapter describes one such technique, “genetic

algorithms”, that relies on the theories of evolution and survival of the fittest.

Genetic algorithms are used to “evolve” populations containing solutions to prob-

lems. According to the theory of natural selection, this should result in a gradual

increase in the fitness of individuals within the population. This chapter will both de-

scribe those theories, and also describe how various problems can be mapped into a

form which is amenable to optimisation by a genetic algorithm.

5.1 Natural selection

Evolution is the process by which superior individuals in a species survive and re-

produce, whilst less successful individuals die. Although it had long been observed

that children tend to inherit features from their parents, it was the English naturalist

Charles Darwin who first proposed, in 1859, that species evolve over time, and that

this evolution is driven by natural selection [82].

During his travels Darwin had spent 5 years aboard the HMS Beagle, tasked with

studying the creatures and plant life of South America. He observed that creatures

living on each of the Galápagos Islands were uniquely adapted to local environmental

conditions. This led him to propose that these traits increased the probability of surviv-

ing and producing offspring on each island, and that those offspring would be likely to

inherit the same traits, producing a lineage of inheritance. Initial development of these

traits would be driven by random mutations that occur in the reproductive process.

The reproduction of successful individuals, to the detriment of unfit individuals, would

cause good traits to be passed through the generations and to be eventually distributed

throughout the population.

Genetic evolution is credited with producing the diversity and complexity of all

life on this planet. Over a time span of roughly 3.5 billion years life has evolved from

single cell organisms to modern day plants and animals [214]. Although it has taken a

long time, evolution has proved to be an incredibly powerful technique — the existence

of beings as intelligent as humans is testament to this.

Humans have been using evolution to grow plants and animals with desirable char-

acteristics for a long time; in fact, it has been known for thousands of years that individ-

5.2. Genetics in nature 117

ual characteristics can be passed from parents to their children. Amongst other things,

selective breeding has been used to enhance characteristics such as speed (in horses),

disease resistance (in wheat), amount of fruit borne (in trees), colour (of flowers) and

appearance (of canine breeds and other show animals). Even the bible mentions selec-

tive breeding; Genesis 30:25 — 43 tells the story of how Jacob convinced Laban to give

him all of the sheep, cattle and goats with brown streaks on their fur, and how he then

arranged the watering troughs so that Laban’s pure white female livestock would be

impregnated by his brown streaked ones, and how he purposefully chose the stronger

and healthier livestock, in order to produce strong, healthy, streaked offspring that he

would also own.

In the majority of selective breeding cases it is unlikely that the human directed

evolution would have occurred naturally, since development is targeted at creating hu-

man appealable characteristics which do not promote survival, such as the accentuation

of visual features. This can provide an unnatural evolutionary path leading to a pop-

ulation which would be unable to survive in the wild. One example of this is modern

wheat, which is no longer capable of seed dispersal, instead relying on human farmers

to carry out this task [403].

Another example is the selection for large heads among British mastiff bulldogs,

which is considered a desirable characteristic amongst show goers [370]. The evolu-

tionary pressure towards larger heads has led to the situation where the heads of unborn

pedigree pups are now too large for natural birth, and hence they must be delivered by

Cesarean section. This may seem foolish, but it is an impressive display of the power

of evolution; the species has been able to adapt and survive in a much changed en-

vironment, where the evolutionary pressure has changed from the ability to hunt and

procreate, to simply being formed in an aesthetically pleasing way to humans (i.e. with

a large head), and future generations will inherit the properties which help them survive

on this unnatural evolutionary path.

5.2 Genetics in nature

In 1866 an Augustinian abbot named Gregor Johann Mendel discovered that indepen-

dent characteristics such as height and smoothness of seed would be reliably inherited

by the offspring of pea plants [288]. He hypothesised that certain “atoms of inheri-

tance” were dominant, and his experimental evidence with pea plants supported this.

For example, Mendel found that a tall pea plant and a short pea plant would always

118 Chapter 5. Genetic evolution

produce tall offspring, suggesting that tallness was a dominant “atom of inheritance”.

Although the science of genetics had yet to be discovered, Mendel was the first to

propose the existence of what we now know as genes.

The cells of all animal and plant life contain a genetic sequence of deoxyribonu-

cleic acid (DNA) [4]. This sequence contains the genetic code from which every cell

in the body is constructed. DNA is a string of nucleotides; these are simple structures

containing a base, a sugar, and a phosphate molecule that is shared between adjacent

nucleotides in the DNA. There are four bases in DNA — adenine, cytosine, guanine,

and thymine, abbreviated as A, C, G, and T respectively. A and T are complementary

and will bond together, as will C and G. When two strands of DNA contain comple-

mentary bases they will bond together, and molecular forces will cause them to twist

into the familiar double helix (figure 5.1).

Figure 5.1 shows several features. The major groove and minor groove are the

names given to the alternating unequal gaps between the two twisted strands. The di-

ameter of the strands is around 20 Ångströms (2 nanometres). The pair of strands twist

through one 360◦ turn every 20 base pairs. A chromosome is a large strand of DNA;

humans normally have 23 pairs of chromosomes. Figure 5.2 shows the 3D structure

of a folded DNA molecule. The structure preserves the property that sequences of nu-

cleotides which are close on a strand of DNA will also be close in three-dimensional

space once the DNA has folded. This means that canalisation — the process by which

related genes come to be close together in the DNA sequence — is preserved when the

sequence folds, making it easier for related genes to be active and transcribed at the

same time.

A sequence of three consecutive bases in a chromosome is known as a codon (fig-

ure 5.1). When the chromosome is decoded each codon produces either nothing, or

one of 20 amino acids. Since there are four bases, there are 43 = 64 possible codons,

which map onto the 20 amino acids. There is therefore some redundancy, which acts as

a defence against mutation. Two of the codon sequences act as start and stop signals for

the production of a protein. The codons between these are transcribed and translated to

make a string of amino acids, which are bound together in the same sequence as in the

DNA to make a protein. The string of codons between the start and stop codon, which

contains the instructions for the sequence of amino acids needed to make a protein, is

known as a gene.

Ultimately genes are responsible for the physical structure of our bodies. They

regulate a complex process of chemical interactions that produce a stable, self sus-

5.2. Genetics in nature 119

Figure 5.1: Left: The familiar DNA double helix. Each strand consists of a backbone

linking a sequence of nucleotides. The markings are labelled: 1. minor groove 2. major

groove 3. Diameter = 20 Ångströms 4. One turn = 20 base pairs = 34 Ångströms.

See text for explanation.

Right: A strand of RNA contains a sequence of codons, each of which translates to a

specific amino acid. The sequence can then be assembled into a protein, which will

fold to form an arbitrary three-dimensional structure.

Credit for image: Zygote Media Group and the National Human Genome Research

Institute

120 Chapter 5. Genetic evolution

Figure 5.2: This image shows the large scale 3D structure of a DNA molecule. On a

small, localised scale, a particular fragment of DNA has a double helix structure. On a

larger scale, the DNA molecule twists into a structure known as a “fractal globule”, which

has the property that locations that are close together on a linear DNA strand are also

close together in the three dimensional structure. In this plot sequences of nucleotides

are coloured similarly to show how the linear DNA strand preserves continuity and

closeness when folded.

Credit for image: Erez Lieberman-Aiden et al. [259]

5.2. Genetics in nature 121

taining bioecology. It is this success, the complex behaviour built from small evolved

components, which we hope to emulate. It is important to remember that biological

evolution is an undirected process which works because of survival and reproduction

of the fittest. There was no initial design plan to produce morphologies or controllers,

and yet the chaotic nature of the world produces a process that is self-organising and

might appear, to an external observer, to be directed by intelligent behaviour.

There are two distinct processes at work in biological evolution. When two individ-

uals reproduce their chromosomes are combined in a process known as “chromosomal

crossover” (or “genetic recombination”) (figure 5.3). To produce a child chromosome

the two parent chromosomes both split into two strings. Two of these substrings (one

from each parent) then join to create the child chromosome. Due to the way that the

chromosomes split and the genes bond the child genome will be of similar length to

the parents. This process of crossover allows children to inherit genes from both par-

ents. Asexual reproduction, where there is only one parent, does exist in nature and

is the primary form of reproduction for single celled organisms. The vast majority of

multicellular species produce their offspring through sexual reproduction of two par-

ents. This seems to be the optimal number as there are no species whose reproduction

requires three or more parents.

The crossover process destroys epistasis between genes [160]. Epistasis means

that genes interact; this can be clearly seen in the many interactions plotted by genetic

regulatory networks. Genes that are linearly separated on a DNA molecule by a large

distance are more likely to be disrupted by crossover. Hence there is an evolution-

ary pressure to keep highly epistatic genes close together to minimise the disruption;

dependent genes which appear in such short sequences are said to be “canalised” [472].

The second process at work in biological evolution is mutation. The physical pro-

cess of copying DNA is imperfect and subject to errors. As previously mentioned,

the coding of codons has some redundancy which reduces the impact of mutations.

Despite this, many mutations will result in codons that manufacture different amino

acids and thus change the shape of the protein which the gene codes for. In this way

mutation introduces new genetic material into the chromosome.

Figure 5.5 shows an example of the phenotype changes that can be caused by ge-

netic mutation that damages the “fibroblast growth factor receptor 2” (FGFR2) gene,

causing Crouzon syndrome. In half of all cases, the mutated gene occurs in one of the

parents and is inherited. In the other half, neither parent has the mutated gene, meaning

the syndrome was caused by a new genetic mutation. This mutation is correlated with

122 Chapter 5. Genetic evolution

Figure 5.3: Chromosomal crossover as illustrated in 1916. Morgan had first proposed

the existence of chromosomes a year earlier in his book “The mechanism of Mendelian

inheritance”. The left diagram is labelled “Scheme to illustrate a method of crossing

over of the chromosomes” and the right is labelled “Scheme to illustrate double crossing

over”.

Credit for image: Thomas Hunt Morgan [313]

older fathers, suggesting that it is due to damaged sperm cells, as older men have a

higher percentage of abnormalities in their sperm.

Figure 5.4 shows an example of a problem during embryogenesis that has affected

the phenotype — in this case, the development of conjoined twins. This may have

occurred due to environmental factors in the womb, which may in turn be genetically

influenced, or may be due to genetic factors being expressed in the developing phe-

notype. It is believed that the simultaneous release of ovaries leading to dizygotic

(non-identical) twins has both a maternal hereditary component, and an environmental

component, such as presence of hormones caused by diet or medication [454]. The de-

velopment of monozygotic (identical) twins is not believed to have a hereditary genetic

component.

The changes may result in a chromosome that performs better, worse, or the same.

It may no longer perform as well when catalysing the molecular reaction that it previ-

ously operated on, but its altered shape may be able to catalyse new reactions between

different sets of molecules. The evolutionary process ensures that changes for the bet-

ter will survive and be propagated through the generations. In asexual reproduction

mutation is the only evolutionary force introducing new genetic material; it has been

shown that this is sufficient to account for the diversification of species necessary for

evolution [136].

5.2. Genetics in nature 123

Figure 5.4: A four legged duck; this is almost certainly an example of conjoined twins,

caused by problems during early phenotype development, which may be due to genetic

or environmental factors.

Credit for image: BBC News [317]

Figure 5.5: An example of genetic mutation — Petero Byakotonda, who suffers from

Crouzon syndrome, caused by a faulty “fibroblast growth factor receptor 2” (FGFR2)

gene.

Credit for image: Extraordinary Children [131]

124 Chapter 5. Genetic evolution

Mutation is an important reproductive operator; a species cannot evolve without

new genetic material being introduced by mutation. There are cases where mutation

brings both benefits and problems; the environment, and survival of the fittest, are the

ultimate arbiter of which mutations are propagated to the next generation. One example

of this compromise is the medical condition “sickle cell anemia”, in which a mutation

in both parent copies of a single gene causes red blood cells to change shape [142].

It is common in sub-Saharan Africa, where it was discovered that the gene provides

its carriers with greatly improved resistance to malaria. Thus evolution has shaped the

human species, with geographically dispersed populations evolving different genetic

traits in a delicate balance for survival.

Biological evolution is an incredibly powerful process. It is easy to see how over a

long period of time it could produce species that are very advanced. What is not so ob-

vious is that evolution works not only on the physical bodies of the creatures, but also

on the way that they evolve — in a way evolution itself is an evolved process. The way

in which gene sequences are converted into physical actions, and the way that chromo-

somes split and recombine in reproduction, are both products of evolution [324].

Speciation (in the animal kingdom) is the process by which different species are

formed over time by the divergence of a single species into multiple separate species

which no longer interbreed. Speciation occurs when the genomes of individuals within

the species diversify in order to adapt to ecological niches. The genomes may reach

the point where they are no longer compatible (for example, there may be gaps in the

morphological description), or they may result in offspring which are unlikely to sur-

vive. The transfer of genetic material occurs within species, and also between species

through hybridisation [273]. It has been argued that, rather than being a rare event,

the landscape of ecological niches is large, that speciation is easy and likely to occur,

and that distinct species, varieties of a species, and ecological races within species all

represent an evolving continuum rather than a clean and discrete division of life [273]

5.3 Genetic algorithms

The study of genetic algorithms is an attempt to transfer the success of biological

evolution into the domain of computer based algorithms and software [161]. Al-

though computer simulations of evolutionary processes had been carried out since the

1950s [14], the modern genetic algorithm with multi-generational crossover and muta-

tion was introduced and popularised by Holland in 1975 [194]. The form of the genetic

5.3. Genetic algorithms 125

Figure 5.6: Cycle of a typical genetic algorithm run

algorithm has remained unchanged since then, with most of the following research fo-

cused on applying the genetic algorithm as an optimisation technique for different

problems.

The genetic algorithm approach is simple — define a mapping between bit strings

(the chromosomes) and potential solutions, and then, starting from an initial population

of chromosomes, evaluate each one and combine the best probabilistically to produce

the next generation (figure 5.6). Hopefully, combining good solutions will lead to

better solutions, which will in turn be propagated through the population as happens

in biological evolution. Eventually all of the members of a population will converge

to a point where they have much genetic material in common and the solutions they

produce are very close to each other in the solution space.

The genetic algorithm technique borrows the ideas of incremental search and build-

126 Chapter 5. Genetic evolution

ing towards a good solution from biological evolution. The problem description will

include an explicit function that has to be optimised, known as the fitness function.

This is different from the real world, and artificial life research, where there is an im-

plicit fitness function of survival and reproduction. Genetic algorithms are good for

finding or fine tuning parameters which interact in complex and nonlinear ways.

To simulate biological evolution completely would be an impossible challenge.

Nothing could be assumed about the operation of the system; random search must dis-

cover auto-catalytic sets of molecules, then discover how to combine them into a form

of data that can be both copied and interpreted, thus producing a self-sustaining, self-

replicating system of chemicals surrounded by an isolating wall of linked molecules

which separate the internal and external environment. The computational resources re-

quired would be immense; consider a simulation of the parallel interactions between all

of the molecules in an ocean. Any artificial system of evolution must be computation-

ally tractable, and hence must abstract the true process of evolution. Recognition must

also be made of the timescale of biological evolution, which occurred over billions of

years. Our limited life span and research grants do not allow us this luxury.

Typically the problem that is to be solved will have a large search space, as prob-

lems within a small space can usually be solved by enumerating and testing every

possible solution. The size of a tractable enumerable search space is dependent on the

complexity of the fitness evaluation process. For an average process, solution spaces

are tractable up to around 64 bits; in recent years it has become common for groups

of individuals with access to large amounts of computer power around the globe to

combine their efforts via the Internet to “brute-force” the solutions to cryptographic

challenges, and 64-bit keys for symmetric encryption represent the boundary of what

is possible today [453].

5.4 Modularity of the genome

Evolution is successful because smaller parts of a chromosome can be combined to

produce bigger parts which preserve the functionality of their components. As popu-

lations evolve useful genes become widespread, whilst bad ones tend to die out. It has

been argued that sets of genes evolve together to create functional modules, in which

the behaviour of individual molecules will make little sense in isolation, but must be

considered as part of a larger function [178]. Over time, evolutionary pressure on such

a tight coupling between genes due to the destructive effects of crossover will result in

5.5. Fitness function 127

their relocation into short canalised DNA segments.

The reproduction process of crossover destroys relationships between distant in-

teracting genes as the crossover point is more likely to be between them. Offspring

will not contain all of the good interacting genes, so they will perform poorly and will

not be selected for reproduction. Chromosomes which have the interacting genes to-

gether in a close sequence are less likely to have them broken up by crossover, and

so their children are more likely to perform well and be themselves chosen for repro-

duction. This causes the propagation of short sequences of good genes throughout the

population.

These segments can be seen as building blocks, containing sets of high performance

genes, which can in turn be used as larger building blocks. Goldberg’s building block

hypothesis states that the success of genetic algorithms can indeed be attributed to

the creation of high fitness individuals through the composition of short, high fitness

schemata [137, 161]. These short, high fitness schemata, are said to quickly sample

large parts of the search space, so solutions rapidly converge about them.

The building block hypothesis also helps to illustrate the type of problems that

evolution is good at solving. Problems which can be broken down into a hierarchy of

smaller components, which can then be incrementally solved and combined to create

solutions for the larger problems, are particularly appropriate for a genetic algorithm.

Neural networks are a good example, as they enable a global function of arbitrary

complexity and accuracy to be modelled as the aggregate of many simpler non-linear

functions.

5.5 Fitness function

The fitness function can be any evaluation of the solution which judges how good it is

at any given task. The function is independent of the actual search function — it does

not rely on any variables of the search process, or on knowledge of the search space

around the evaluated point, which differentiates it from techniques such as gradient

directed search. The fitness function does not have to be able to determine anything

about the solution space surrounding a given point. This “black box” treatment of the

fitness function makes genetic algorithms suitable for many problems where traditional

search techniques would be inappropriate. It also introduces new problems, however,

as problem specific information which could accelerate the search is ignored.

Genetic algorithms are only suitable for problems which have a number of poten-

128 Chapter 5. Genetic evolution

tial solutions with a wide range of possible fitness values. A problem like searching for

a cryptographic key for a secure algorithm would be unsuitable as the fitness surface

would be completely flat apart from the single point solution which is correct.1 Ge-

netic algorithms have been successfully used to evolve neural networks. Similar neural

networks tend to have similar dynamics, and hence display a similar behaviour. Neural

networks also tend to be distributed and decentralised, and robust to noise and error.

These factors may make neural networks more amenable to being evolved than some

other computational systems that are more rigid and less robust, such as microproces-

sor code.

The choice of fitness function will have a great effect on the performance of the ge-

netic algorithm. Several strategies have been devised that attempt to balance depth

of search with exploration of new areas in the solution space. These include co-

evolution, shared sampling, competitive fitness functions, and resource-sharing fitness

functions [476]. Co-evolution evolves the population of fitness functions along with

the population of solutions. Shared sampling chooses fitness functions that are un-

solvable by as many individuals in the population as possible. Competitive fitness

functions determine that a solution is better if it solves more fitness tasks than its com-

petitors fail on than vice versa. Resource-sharing weights the credit from solving a

task by the number of solutions that fail it, in order to better reward the solving of

more difficult tasks.

5.6 Fitness surface

The fitness surface is defined as the dimension of fitness values of individual genotypes

plotted against the dimensions of solution variables. Typically this is only useful for

a small number of variables, as requires enumerating the solution space through the

fitness function, and because it is difficult to plot and visualise in more than three

dimensions. Figure 5.7 shows an example genetic algorithm fitness surface from a two

variable genotype.

In some cases it may be possible to use principal components analysis and other

dimensionality reduction techniques to enable the creation of a visualisation that cap-

1Although genetic algorithms have been successfully used to analyse toy or weak encryption func-
tions [26, 57], by devising a fitness function that can produce a gradiated result from the available
ciphertext, it should be emphasised that this will only work with very weak encryption (with strong
encryption, ciphertext is statistically indistinguishable from random data) and that there are already
numerous non-genetic approaches to decrypting weakly encrypted ciphertext.

5.6. Fitness surface 129

Figure 5.7: An example fitness surface. In this real world application a genetic algorithm

is used to optimise fault detection in transmission systems. The population explores this

fitness surface as a function of its search.

Credit for image: S. Luo [268]

tures the essence of the multi-dimensional solution (figure 5.8), but this technique does

not seem to be widely used within the genetic algorithm research community, perhaps

because it is difficult to extract meaningful plots when so much information has been

removed. Note that creating such a visualisation would, as in lower dimensionality

cases, still require enumerating parts of the solution space through the fitness function.

This is part of the standard evaluation phase of a genetic algorithm, so the fitness data

could simply be gathered at this stage. With a large solution space enumerating all pos-

sible solutions becomes computationally intractable, but it is still possible to sample

the space using data gathered from fitness tests of the evolved individuals — principal

component analysis does not require a complete enumeration of the search space.

The evolution process can be viewed as a movement of clustered points over the

fitness surface. Initially the points are randomly distributed over the surface. The shape

of the surface is unknown — it may be flat, undulating, have sharp peaks, or not. For

the purposes of this description we will assume that the surface is one that will probably

be explorable by a genetic algorithm — generally relatively flat and of low fitness, with

a few hills where the fitness rises. As new generations are produced, clusters of points

130 Chapter 5. Genetic evolution

Figure 5.8: This fitness surface was produced from a “principal components analysis”

(PCA) of the search space to reduce the genome to 2D points, with fitness being the

third dimension. Labels indicate fitness peaks.

Credit for image: Laurent Bonnasse-Gahot [41]

will develop around hills on the surface, and they will begin to ascend them. The

individuals on the flat, low fitness planes will die off. We desire the clusters to be

tightly focused so that they can climb the hills, and yet at the same time widespread

enough that they do not get stuck in local maxima. The evolution should be able to

leap over lower fitness areas of the surface to migrate between nearby peaks. When a

flat plane is encountered the population should spread out over it searching for paths

to higher fitness areas.

High fitness solutions that do not converge are desirable as it indicates that the

population has discovered a large plateau in the fitness surface. Children can be ge-

netically diverse and still perform well. Within any population there is a variance in

ability between individuals, and this includes the human species — although human

beings are usually regarded as possessing a high evolutionary fitness relative to other

large animals, there is still a wide range of ability and skill between individual humans

that only mildly affects their ability to reproduce. This “fitness plateau” means that

human beings still have the capacity to evolve; scientists studying the human genome

have traced significant genetic changes to events that occurred within the last 5,000 to

15,000 years [467], and it has been shown that, rather than slowing down as many peo-

ple believe, human evolution has actually accelerated over the last 40,000 years [183].

5.7. Search behaviour 131

5.7 Search behaviour

A genetic algorithm holds a store of several points in the solution space that make

up the population. The search proceeds from all of these points, rather than just a

single point, with new individuals being created that are likely to be close to their par-

ent points. This produces a “beam search” type behaviour (so named because of the

searching around parallel solution points at each step of the search) [342]. Initially

solutions are randomly distributed throughout the solution space. Many of these so-

lutions will perform very poorly and be quickly removed from the population. The

others will continue the search from many parallel points. As the search progresses,

the fitness represented by the search space that the current population samples will

tend to increase. When viewed as motion across a fitness surface, it appears that sub-

sequent solutions are scaling the surface, ascending peaks and ridges, working towards

maximal areas of the solution space. This may lead to local maxima, with one or more

solutions ascending and converging at the same points, and their children failing to

move away from these points. In the absence of local optima, solutions will tend to

converge towards the global maxima.

Any solutions that appear to be similar are likely to be close in the search space. For

example, humans share an estimated 96% of their genes with chimpanzees, and a great

number of similarities are evident, both in terms of physical appearance, and internally,

in the distribution and function of organs and cells [459]. The search proceeds in

clusters around these points, and in new points created by combining them. As new

generations are created the search can be visualised as a beam moving temporally

through the search space.

The search is terminated either when the members of a population have converged

around an optimal point in the solution space, or when all the individuals become

trapped in local optima, or trapped on flat fitness plateaus, and hence the mean fitness

fails to increase over a number of generations. The individual with the highest fitness

is then chosen as the solution.

The dynamics of the genetic algorithm search behaviour can cause problems; if

the population converges too quickly the solution space may not have been searched

thoroughly enough and areas of high fitness may have been missed. Likewise, if the

population fails to converge, or fails to expand and fully explore the solution space,

then solutions may be missed. This is a classic instance of the “exploration versus

exploitation” trade-off in AI search algorithms.

132 Chapter 5. Genetic evolution

The population may not converge at all if this problem is inappropriate for a ge-

netic algorithm, the search space is too big, or a bad genotype representation has been

chosen. If the fitness surface contains multiple peaks the population may become split

between them; different groups within the population will have converged to different

solution clusters around local optima.

There is always a trade-off between exploration and exploitation of knowledge

about the fitness surface. Whilst it is desirable for an evolutionary run to converge

quickly, speed has to be sacrificed in order to be thorough and evaluate a diverse

enough group of solutions.

5.8 Genotype encoding

Genetic algorithms operate on chromosomes, which are abstract representations of the

data structure being evolved, such as the structure and parameters of a neural network.

An encoding scheme is defined between the genotype, which is the potential solu-

tion represented as a chromosome, and the phenotype, which is the solution itself. The

encoding scheme defines how the individual parameters that define a solution to the fit-

ness problem are represented within the chromosome string. With a genetic algorithm,

all of the parameters are encoded into a single chromosome and evolved together in

parallel; this is in contrast to other approaches, such as “evolution strategies” that fix

most parameters, and then vary only a small number simultaneously [10].

Different encoding schemes are necessary when we are evolving solutions to dif-

ferent problems. For example, in a neural network we may wish to evolve only the

connection weights, or we may wish to evolve other parameters such as the topology,

neuron types, etc. In co-evolutionary experiments it is common to group related aspects

of the final individual into a single chromosome; one example of this is the combina-

tion of body morphology and neural network controller descriptions in the evolution

of virtual creatures.

A good encoding scheme has certain desirable properties. Small changes to the

chromosome should produce small changes in the final solution. This allows the pro-

cess of crossover to work, as the reproduction operators disrupt the genotype, and yet

the child phenotype is still similar to its parents. It is also desirable for mutation to pro-

duce small changes to the genotype, as drastic changes are more likely to destroy the

good genetic data from the parents than produce the localised search around them that

we desire. The encoding should encourage compactness and reuse of modular com-

5.8. Genotype encoding 133

ponents, allowing a complex and detailed phenotype to arise from a simple genotype,

as this has been shown to improve symmetry and fitness [37, 200, 242]. One way of

doing this is to allow repeated sequences of phenotype to be compressed in the geno-

type using a sort of run-length encoding. This technique has been used successfully by

several researchers to evolve creatures with neural controllers and 3D morphology (see

section 6.14).

It is helpful for solutions that occupy similar areas within the phenotype space to

have genetic similarities, as it is this property of the coding which guides the search.

Manipulation of the chromosome by either crossover or mutation creates new chro-

mosomes which inherit genetic similarities from their parents. The encoding must

preserve these genotype similarities when they are mapped to phenotypes.

The encoding scheme can be direct and implicit, like directly placing the pa-

rameters to the fitness function in a binary string, or it can be made more complex

through the addition of layers of indirection and further computation, such as treating

the evolved binary string as sequences of instructions to “grow” the phenotype. The

process of converting the genotype specification into an instance of a phenotype is

known as “morphogenesis”. The selection of an appropriate genotype encoding and

morphogenesis process is essential to the success of the genetic algorithm.

An indirect encoding will typically contain instructions which are processed to

create the phenotype. These instructions are often bundled into sequences, which are

executed sequentially, with each bundle (corresponding to a gene) being executed in

parallel, which is somewhat biologically plausible. In the case of neural networks,

indirect encodings define the presence, connectivity, and parameters of neurons, and

since the encoding is indirect there will often be a one-to-many relationship between

the gene representing a model neuron in the genome and groups of actual neurons in

the phenotype.

In some encodings, such as Kodjabachian’s “simple geometry oriented cellular en-

coding” [238], genes are directly interpreted as sequences of instructions to be ex-

ecuted by a virtual machine that will build a network within certain geometric con-

straints. These indirect encodings usually rely on the definition of strict grammars that

describe the language of the chromosome string. It is also possible to exploit compres-

sion as a means to allow the development of modular reusable genes; Hornby used a

Lindenmayer system to describe the co-evolved morphology and controller of virtual

creatures [204], and Sims utilised recurrent graphs to describe the body parts that made

up his “Blockies” [397].

134 Chapter 5. Genetic evolution

Hornby and Komosinski have independently compared direct and indirect encod-

ing schemes for co-evolved morphology and controllers of 3D virtual creatures [204,

242]. Both concluded that the evolution of developmental encodings resulted in crea-

tures that were significantly fitter than those evolved with direct encodings. Similar

conclusions were drawn as to the reason for this; that the developmental encoding al-

lows duplication of identical parts and massively increases morphological symmetry,

which both contribute positively to evaluated fitness.

5.8.1 Example encodings

This section will present some example genotype encodings for the main approaches.

Direct : W1W2W3W4W5

In a direct encoding the genotype and phenotype contain the same data. In this

example the chromosome contains weights for the connections in a neural network.

The network topology and connections must be fixed.

Direct : W1W2...Wn2 T1...Tn B1...Bn

This example chromosome from [355] also describes a neural network. Like the

above example, each connection has an associated weight, but in this case the network

topology is fully connected so there are n2 connection weights. The rest of the chro-

mosome defines, for each neuron, two parameters specifying a time constant and bias.

This simple encoding is powerful enough to produce recurrent networks capable of

controlling 3D biped walking.

Indirect : M(1) C(3,1) D(5)

In an indirect encoding some processing is performed on the genotype to produce

the phenotype; i.e. the genotype forms a layer of indirection. In this example the chro-

mosome consists of a short sequence of instructions and arguments : Make neuron 1,

Connect neuron 3 to neuron 1, Divide neuron 5. These operations could be carried out

on an abstract graph, or on developmental cells placed on a two-dimensional substrate.

This type of encoding was used in [238].

Developmental : Z(1,3,1)

• Z(a,b,c)→ X(a)Y (b,c)

• X(a)→M(a)

• Y (b,c)→C(b,c)

5.9. Population models 135

In a developmental encoding some processing is done on the genotype before it is

interpreted to produce the phenotype. Typically, this would be to take a small, com-

pressed genotype, and expand it into a larger genotype which can then be interpreted

to create the phenotype. In effect, this creates two layers of indirection. This example

shows a rule set for a parametric Lindenmayer system. Starting from the seed Z(1,3,1)

we use the rewrite rules to expand the string recursively, ending with M(1)C(3,1). In-

terpretation of this final string depends on the phenotype; in this case the instructions

defined for the indirect encoding above could be used to produce a graph based phe-

notype. This type of encoding was used in [198].

5.9 Population models

A population model is a way of representing a group of individuals and their relation-

ships. The model can affect parent selection, lifetime of individuals, and the mutation

operators. There are many variations of the generic population.

In the aging population model the age of individuals is recorded [156]. The age

can be used to remove old individuals from the population, or to favour or discriminate

against longer living solutions in the parent selection process.

Another common model is to split the population into sub-groups, and use these

sub-groups to affect the mating process, usually by favouring parents from the same

group, e.g. the island model [1]. It is hoped that this will allow parallel paths of evolu-

tion to occur, with only occasional cross-pollination taking place. Another technique

is to use different fitness evaluation tasks for different sub-groups, in the hope that al-

though the groups will share common traits they will specialise in whatever task they

are faced with.

In a similar vein to sub-groups, family relationships can be established by tracking

the heritage of individuals. This information can then be used to affect the selection

process by either preventing or promoting inter-family breeding. Whilst it is generally

believed that there are mechanisms in nature to discourage inbreeding (mating between

first-degree relatives) due to the restrictions it places on genetic diversity, linebreeding

(breeding distantly related individuals) is often used by those practicing artificial se-

lection in an attempt to preserve the genetic traits of specific ancestors.

With sub-group or family based population models co-evolutionary genetic algo-

rithms can be used. These allow a number of individual populations, or identified

groups within the same population, to compete against each other. This causes the

136 Chapter 5. Genetic evolution

evolutionary pressure on a group to be directly related to the performance of the ge-

netic algorithm in optimising opposing groups. This is a powerful technique for pro-

ducing an “arms race” between opposing groups; in effect each is faced with a fitness

evaluation task, the difficulty of which increases in proportion to the ability of the in-

dividuals [320]. This property of gradually ramping up the difficulty as individuals

become more adept is in stark contrast to the usual static fitness evaluation tasks, and

it has been claimed that it allows the ideal evaluation function to be approximated [94]

(the “ideal evaluation function” is one which can compare any pair of solutions on all

the underlying objectives of a problem — not just the explicitly stated problems, but

the underlying implicit objectives that they represent).

The population size is another parameter that is commonly varied. Increasing the

population size usually increases the time required to run fitness evaluations, but it also

enables the genetic algorithm to explore a wider search space. Although most research

uses a static population size, some have investigated allowing it to vary dynamically,

dependent on parameters such as the similarity of individuals in the population. It is

claimed that this kind of variation allows the best of both worlds — fast, focused evo-

lution when the population is small, and a widening of the population when necessary;

e.g. to fully explore fitness plateaus [429].

5.10 Initial population creation

The initial population will usually consist of random bit strings. It may be seeded with

potential solutions that have already been developed in an attempt to optimise them,

or to cross-pollinate the evolutionary run with genetic information from other popula-

tions. Sometimes problem specific knowledge can be applied to create an initial pop-

ulation of reasonable fitness. The chromosomes in the population are then evaluated

using the fitness function. Chromosomes with a high fitness are reproduced by either

combining genetic information from two parents to produce a single chromosome, or

by mutating a single parent.

5.11 Parent selection

Parents with a high fitness are chosen to reproduce in the hope that their children will

perform as well, or better, than they did. There is a trade-off between exploring the

solution space and exploiting the knowledge already gained. In a typical population

5.11. Parent selection 137

we want to choose parents that are likely to produce children that are well performing

but also genetically diverse.

There are many methods for selecting parents [31]. Some of the more popular ones

are roulette-wheel selection, tournament selection, rank based selection, and elitism.

In roulette-wheel selection chromosomes are chosen with a probability propor-

tional to their fitness. This is useful when the relationship between fitness values and

performance is approximately linear. For a chromosome of fitness f the probability of

being selected in a population of size n is:

f

∑
n
i=1 fi

In rank based selection the chromosomes are ranked according to their fitness. The

probability of being chosen is proportional to the rank rather than the fitness value.

Rank based selection is useful where there is a dramatic difference between the fitness

values for similar chromosomes. For a population of size n and chromosome of rank i

the probability of being chosen is:

n+1− i

∑
n
j=1 j

=
2(n+1− i)

n(n+1)

In tournament selection a group of a certain size is chosen randomly from the

population. The individuals within the group compete against each other, and the fittest

of the group is chosen to reproduce. Tournament based selection is useful for slowing

the rate of convergence. The probability of selection for a chromosome of rank i from

a population of size n with size q tournaments is [12, page 173]:

1
nq ((n− i+1)q− (n− i)q)

In an elitist selection process only the top individuals from a population are chosen

to reproduce. The exact number will usually be some static percentage of the total

population. In the case of sexual reproduction through crossover, pairs of elites will

be randomly chosen to produce offspring. In the case of mutation based reproduction,

each elite will be copied and mutated to produce offspring. This will be repeated until

a full generation is created.

The elites themselves may or may not survive to the next generation. One potential

problem with always allowing the elites to survive is that they can come to dominate

the population by being better than their immediate children. This produces a cycle

138 Chapter 5. Genetic evolution

Figure 5.9: Two parent crossover is a commonly used reproduction technique that em-

ulates natural DNA recombination. The genotypes are represented by one-dimensional

sequences of symbols. Crossover points are randomly chosen along the sequence,

and the child is created by copying short sequences between the crossover points from

alternating parents.

in the genetic algorithm activity where, since the children close to the elites are not

sufficiently fit enough to displace them, the same elites will be selected to reproduce in

each generation. Although there may be fitter individuals on a global scale, the search

becomes trapped in a cycle of local maxima.

5.12 Reproduction

The method most commonly used to combine genetic information is crossover (fig-

ure 5.9). A point in the chromosome is randomly chosen as the crossover point. In-

formation preceding this point is taken from one parent, and the information following

it from the other. These two semi-chromosomes are then concatenated to create the

new child chromosome. It is suggested that, for optimal search, the probability of

performing crossover when creating a child should be between 0.6 and 0.95 [11].

Mutation (figure 5.10) is used to introduce new genetic material into the popula-

tion. The mutation operator is a stochastic function that somehow changes the child

genotype. When using binary strings, mutation may be carried out by selecting and in-

verting random bits. Similarly, if the genotype consists of a sequence of symbols, the

5.12. Reproduction 139

Figure 5.10: Mutation of a genotype string of symbols. The mutation operator can

be used as the primary means of reproduction, or as a secondary operation after

crossover. In both cases mutation introduces new genetic information into the geno-

type.

mutation operator can randomly select symbols to replace with other random symbols.

When the genotype is more complex, and must conform to some kind of struc-

tured data type, such as a graph, then the reproduction operators must be designed to

preserve this structure. For a graph, crossover may take subgraphs from both of the

parents, and randomly combine them, or it may copy both parents, and add edges be-

tween them. Mutation must perform meaningful random replacements or disruptions

to the genotype. For a graph, this may mean adding randomly generated nodes and

edges, swapping connections between randomly chosen nodes, swapping parameters

of nodes, duplicating nodes and connections, or deleting nodes. Goldberg has sug-

gested that using such higher level operators is unnecessary and suboptimal, and that

instead all genotypes should be represented as bit strings, using standard crossover

and mutation, regardless of the structure of the eventual phenotype [161]. In this case,

crossover may occur in the middle of some parameter, corresponding to a crossover

operation on either side of the encoded parameter’s boundaries followed by a mutation

operation on the parameter itself.

As mutations are often disastrous, and they can destroy inherited characteristics, a

low mutation rate is usually chosen. Goldberg suggests a rate of 1 mutation per 1000

bits [161]. Back has suggested that the optimal mutation rate should initially be slightly

140 Chapter 5. Genetic evolution

higher, but fall towards 1
n (where n is the genome length) as time progresses [11].

Thierens has suggested that the optimal mutation rate should dynamically adapt to

evolutionary pressures and progress of the genetic algorithm itself [437].

5.13 Summary

This chapter has introduced genetic evolution — the biological process which is re-

sponsible for creating the various forms of life in the world, and uniquely adapting

species to their environments. This process works in living cells through the act of

reproduction, which is subject to genetic crossover and mutation. Crossover allows

genomes from different individuals to be combined to produce a child genome, whilst

mutation acts to introduce random changes to the genome. Genes are inherited, so

changes which increase the ability of an individual to survive and reproduce will go

on to be passed to the next generation, whilst genes that are detrimental will produce

a less fit individual, who is less likely to reproduce. Over time this iterative process

leads to an increase in the fitness of the population.

Certain problems, such as those containing numerous dependent variables and a

large problem space, have defied classic engineering approaches. It is desirable to

solve these problems using an automated approach that can treat solutions as a “black

box”, where the internals of the problem solution are not subject to direct engineering,

so that the need to analyse and decompose the problem in an engineering manner is

eliminated. The field of genetic algorithms applies what we know about the algorithmic

process of biological development to problems that can be specified as a computational

process.

In order to apply a computerised genetic algorithm to a problem domain there must

be some way to quickly evaluate solutions to the problem. This will usually take the

form of a simulation of the real problem environment. The space of possible solutions

must be encoded as a genotype that evolutionary operators can act upon. This is done in

a problem specific way, and with regards to the evolutionary functions, since the coding

and functions that act on it are intrinsically linked. Encoding schemes can directly

specify solution parameter values, or can use developmental embryogenic schemes to

“grow” the solution, in effect providing a layer of indirection that enables reuse of

parameters and segments of the genome.

There are various population models used in genetic algorithms that attempt to

artificially simulate geographical division, speciation, familial relationships, and con-

5.13. Summary 141

flict between opposing groups. There are various schemes for evaluating and selecting

parents that trade-off explorative search of the solution space for exploitation of knowl-

edge already gained about promising solutions.

Chapter 6

Evolution of specific genotypes

The last chapter described the basic processes of evolution, and how genetic algorithms

utilise these processes in order to create and optimise solutions to difficult problems.

This chapter will expand on the previous one by describing how the solutions to spe-

cific problems, such as the design of neural networks, cellular automata, and other

network types introduced in chapter 4, can be mapped into a form usable by a genetic

algorithm. Past research in the use of genetic algorithms to discover solutions to these

specific problems will also be discussed.

In many cases of genetic algorithm usage we are looking to create systems that

display properties of “emergence”; that is, a global behaviour becomes evident that

is greater than the sum of the parts. For a behaviour to be emergent there has to

be a synergistic relationship between the individual units. Some of the fields where

emergent behaviour can be found include creature behaviour, such as flocking, and

neural networks, where composite network behaviour is a function of many individual

neurons.

One example that typifies the use of genetic algorithms to evolve emergent be-

haviour is in the evolution of networks of nodes which, through strictly localised inter-

actions, produce globally recognisable patterns when run. This is a recurring research

topic, and there are examples of evolved cellular automata, boolean networks, genetic

regulatory networks, and neural networks, which all act as pattern generators.

Pattern generation will therefore be covered as a separate topic distinct from the

generic evolution of these network types for other problems. The evolution of pat-

tern generators is also directly relevant to this research, as it is suggested that pattern

generators in biological networks are responsible for locomotion in a wide variety of

invertebrates and vertebrates, including humans [117, 270].

143

144 Chapter 6. Evolution of specific genotypes

As the problems to be solved by genetic algorithms are diverse and cover a wide

range of fields some have argued that they can be more successful when utilised in a

problem specific way. There are also arguments against this, so we will begin with this

topic.

6.1 Problem specific operators

It is possible to introduce genetic operators that manipulate data structures inside the

genotype using problem specific knowledge. The traditional crossover and mutation

operators are called “genetic” because they are based on the processes that occur with

DNA in biological cells. Deviating from this risks turning the genetic algorithm into

a generalised search that may not display the same behaviour and properties as the

desired evolutionary search. In a similar vein, the solutions do not have to be rep-

resented as binary strings, they could be graphs or use some other problem specific

representation or data structure.

Biasing the search in this way requires careful consideration; eliminating large

parts of the search space, or favouring particular data structures, will only shorten

the search process when it is known beforehand that the optimal solutions lie here.

In many problem cases, use of a genetic algorithm is considered precisely because

the structure of the best solutions is not known beforehand, and in some cases what

humans thought was the best structure may actually be radically different from that

discovered by evolutionary search (e.g. see the antenna designs in figure 6.30).

Holland argues that, in order to achieve the benefits of genetic algorithm search,

all solutions should be coded as binary strings [194], which simplifies the genetic op-

erators, and reduces the potential for biasing the search process. However, it is clear

that other codings along with corresponding operators can be equivalent to the manip-

ulation of binary strings. The argument is somewhat irrelevant since problem specific

knowledge is being used to devise a genotype to phenotype mapping that preserves

similarities between both, and this mapping can itself bias the search, even when using

binary strings as the underlying genotype representation.

Using problem specific operators avoids the problem of redundancy and errors

when interpreting the genotype. For example, a 4-bit parameter (0x0→ 0xF) may

be encoded in a standard int data type, which is 32-bits (0x0000→ 0xFFFF), by us-

ing the least significant four bits and disregarding the other 28 most significant bits. If

the 28 most significant bits are simply disregarded, then every sequence of 16 values

6.1. Problem specific operators 145

within the 32-bit space will be mapped onto the 16 values of the 4-bit space, and this

will be repeated for all of the possible 32 bit values. The 32-bit space will be uniformly

divided and mapped onto the 4-bit space. However, if a ceiling function were used to

map all numbers above or equal to 0xF in the 32-bit space to the actual value 0xF in

the 4-bit space, then the value 0xF will become disproportionately represented in the

resulting 4-bit space. Mutation works by enabling small changes in the genotype to

effect non-destructive changes, which are usually also small, in the phenotype. So,

even with binary strings, the genotype to phenotype mapping can still heavily bias the

search, and thus requires some consideration.

It should be noted that much of the research in the field of genetic algorithms uses

problem specific operators. This is often due to the use of graphs to represent a genome

(e.g. network structure, morphologies) and the difficulty of finding a morphogenesis

process that maps binary strings into graphs whilst preserving the property that mu-

tations should produce phenotypes similar to the parent one. Graph specific mutation

operators, such as node and edge removal or addition, or node attribute modifications,

are often considered easier to implement.

Using the same strong typing for parameters stored in both the phenotype and geno-

type avoids problems with coding and mutating unusual data structures. In particular,

the common use of floating-point variables makes mapping to and from binary strings

difficult. Various integer coding schemes, such as Gray coding, have been devised to

ensure that mutations in the genotype produce effects of a similar scale in the phe-

notype, but no such coding scheme exists for floating-point values. Using the direct

binary representation is undesirable since the IEEE-754 standard for representation of

floating-point numbers does not preserve the desired mutation property, and does not

provide a catch-all way of converting random bit strings into valid numbers [159].

Early researchers who tried to use random bit strings found that not all sequences

were valid floating-point numbers, and that the floating-point units of various pro-

cessors would either throw exceptions, or generate unpredictable results. Hence it is

common for floating-point values to be stored as their primitive types, with mutation

either consisting of replacement with a randomly chosen value, which does not pre-

serve the genotype mutation scale property, or replacement with a value chosen from

some Gaussian distribution centred on the old value, which does.

146 Chapter 6. Evolution of specific genotypes

Figure 6.1: Three simple steering behaviours can generate biologically realistic flocking

behaviour. “Separation” forces agents apart (left), “alignment” forces agents to become

oriented towards the same direction (centre), and “cohesion” forces agents to move

together (right).

Credit for image: Craig Reynolds [358]

6.2 Evolving flocking

In 1987 Reynolds proposed algorithms to model the flocking behaviour observed in the

group movement of biological species such as birds [358]. When viewed as a global

behaviour, bird flocking appears to be incredibly complicated. Each bird can only

sense a small area around it, and can only control its own movement. There is no direct

communication between birds; the only form of data transfer is by movement and

visual sensing. Despite these local constraints bird flocks demonstrate a remarkable

form of global synchronicity. A flock will tend towards the formation of a single

“V” shape, with individual flocks merging to create larger ones. When faced with an

obstacle, a flock will cleanly bifurcate into smaller groups, each spontaneously forming

its own flock, ready to merge again once the obstacle is passed.

Reynolds was intrigued by the emergence of this global behaviour from the simple

interactions between actors. He proposed that three simple local rules, when applied

to each bird, could account for the global behaviour (figure 6.1). Computer simulation

of the birds, which Reynolds termed “boids”, showed that the rules created a global

emergent behaviour very similar to that of real birds.

Reynolds’s work utilised simple point mass simulations. In 1997 Brogan and Hod-

gins showed that similar algorithms would generate flocking behaviour in systems with

complex 3D dynamics, such as realistic simulations of humans riding bicycles at speed

(figure 6.2), in which all of the joints and body parts making up the human body are

accurately modelled [45].

Several researchers have used genetic algorithms to evolve individual rules for

agents to display a global flocking or swarming behaviour. In 2003 Trianni evolved

6.2. Evolving flocking 147

Figure 6.2: Emergent flocking behaviours, such as object avoidance, were shown to be

possible for composite 3D bodies with complex dynamics, such as one legged robots

(left) and bicyclists (right).

Credit for image: Brogan and Hodgins [45]

neural controllers for circular two wheeled robots [450]. The fitness function is de-

signed to judge distance of a set of several individuals from the centre of mass, in

order to reward clustering behaviour.

In 2005 Spector used the open source package Breve to create a virtual life system

with flying agents (figure 6.3) [406]. Rules for flight control were encoded in the

genome. Being an artificial life system rather than a generational algorithm meant

that agents were subject to a continuous battle for survival. Agent actions, such as

movement and reproduction, carried an energy penalty, whilst the consumption of food

allowed agents to gain energy.

Spector observed an interesting evolved emergent group altruism; a few individ-

uals would feed on the energy and live a long time, while their children, who were

genetically identical, would form a swarm around the energy and quickly die. Analy-

sis showed that the swarming children were blocking creatures from different genetic

groups from approaching the energy sources. The behaviour of the short lived children

swarming around the periphery of the energy region was self-sacrificing, in order to

ensure survival of the group genome. This kind of behaviour is common in insects,

such as bees and ants, where siblings share a greater proportion of DNA than parents

and their children.

A further refinement to the system gave agents a genetically encoded colour and the

sensory perception to differentiate between differently coloured agents. Agents were

also given the ability to transfer energy from themselves to other specific agents. When

this simulation was run, agents evolved who would use their perception to identify

agents of the same race (i.e. having a similar genotype, leading to the same colour) and

altruistically beam energy to them if their energy stocks were low.

148 Chapter 6. Evolution of specific genotypes

Figure 6.3: Emergent, global flocking behaviour results from the many interactions of

evolved agents.

Credit for image: Lee Spector [406]

In 2005 Stanley presented a real-time version of his “neuro-evolution of augment-

ing topologies” (NEAT) algorithm (see section 6.4), and demonstrated in-game evolu-

tion of swarming and fighting behaviour for multiple agents (figure 6.4) [412]. In this

system neural networks are progressively evolved and used to control armed agents in

a 3D environment. Fitness tasks which promote cooperation and global, as opposed to

localised, strategies are used to evaluate the group performance of evolved genomes.

6.3 Ant colonies

In 1991 Dorigo published the “ant colony” optimisation algorithm [74, 112]. Again,

inspiration from biology was a primary motivating factor in this research. From the

perspective of an outside observer it appears that ant colonies, when viewed as a whole,

display a coordinated, globally synchronised behaviour, and that individual ants are

aware of overall goals and aims and select their actions accordingly. However, this is

not the case, as we know that the sensory perception of ants is limited to their local

neighbourhood.

Dorigo found that simple rules, when applied to interacting mobile agents, could

account for the global ant behaviour. Interactions are mediated by communication

between ants based on the release of scent signals, which form pathways as ants move

around. Other ants are attracted to these pathways, release their own scent as they

6.3. Ant colonies 149

Figure 6.4: Real-time evolution of neural networks for swarming and fighting behaviour

in the Nero video game.

Credit for image: Kenneth O. Stanley [412]

move along them, and thus reinforce then, increasing the attraction of well travelled

paths. If the pathway is advantageous to the individual ants, for example leading to

food, then many ants will traverse it, creating a very strong attractor. If the pathway is

not advantageous, ants will be less likely to follow it, and the scent will dissipate over

time, or be disrupted by the criss-crossing of other scent pathways (figure 6.5).

It was shown that rules that promote random search along with scent release and

following will create a globally emergent behaviour. The observed behaviour of the

simulations closely matches that of the real world when tested, e.g. wiping away part

of a strong scent trail will result in random searching by the ants at the head of the

trail, followed by rapid re-establishment of the broken link. This and other types of

emergent behaviour appear in both the real world and Dorigo’s simulations.

Buttazzo has suggested that the emergent behaviour of an ant colony is similar to

the functioning of the brain, in that they both consist of large numbers of cooperating

units with tightly coupled interactions, and that consciousness of the mind emerges

due to the same properties that bring order to the ant colony [53]. This is in line with

hypotheses that the brain consists of distinct, autonomous modules controlled through

hierarchical inhibition, and the “society of mind” hypotheses from philosophy.

150 Chapter 6. Evolution of specific genotypes

Figure 6.5: One advantage of ant colony optimisation over similar methods, such as

simulated annealing or genetic algorithms, is that it is adaptive over time. This diagram

illustrates how ants establish a new pheromone path when an object is placed to block

the old one. The dynamics of the attractor reinforce the shortest path.

Credit for image: Mauricio Perretto and Heitor Silvério Lopes [266]

6.4 Evolving neural networks for robot control

Neural networks contain many parameters and variables which can be altered by a

genetic algorithm. Not only can individual neurons be parameterised, but the con-

nection weights, and connectivity of the network itself, can also be created and op-

timised. For surveys of genetic algorithm use to evolve neural network controllers

see [236, 293, 486, 487].

It has traditionally been accepted that although genetic material is often directly

transferred between the genomes of different species of plant, producing hybrids, the

same is unlikely to occur between the genomes of different animal species, as by defini-

tion they are unable to reproduce together. Hence it has been widely accepted that this

kind of “crossover” operator would have had little effect on animal evolution. In recent

years this dogma has been challenged, and it has been recognised that hybridisation be-

tween different species does occur in nature, and has been a driver of evolution [273].

It is estimated that at least 25% of plant species and 10% of animal species, have been

involved in hybridisation with other species [272].

In neural network reproduction the crossover operator is usually abandoned and

mutation used as the sole operator. This is often done as there is no clear way of com-

bining data from separate chromosomes to produce offspring that are likely to survive.

In the case of neural networks, creating a child by splicing two different binary strings

6.4. Evolving neural networks for robot control 151

together is unlikely to succeed; unless the parent networks have a similar structure the

changes introduced by combining them will be the equivalent of massive mutation,

which is almost certainly undesirable. Crossover works when there are identifiable

functional units within both the genotype and phenotype structures, and this must be

carefully considered when applied to neural networks.

Parameter values, such as connection weights, neuron time constants and biases,

are represented as floating-point values which are mutated by replacing them with ei-

ther a randomly generated value, or one drawn from a Gaussian distribution centred

on the current value. Replacement with randomly generated values produces a wider

search through the solution space, which will usually slow the search, since improve-

ment usually occurs as individuals ascend ridges along the fitness surface, but larger

steps are likely to fall beyond these ridges in low fitness regions. On the other hand,

replacement with a value from the Gaussian distribution centered around the current

value means children will be closer to their parents in the solution space, and there-

fore more likely to be close on the fitness surface, producing a narrower, more focused

search.

It has been observed that as the size of a network topology increases its evolution

becomes more difficult. This is due to the increasing number of weights that have

to be substantially correct in order to provide any basic functionality. For evolution

to succeed, it is necessary to provide a clear evolutionary path from small, simple

networks, that perform reasonably well, up to larger, more complex ones, that perform

better.

One approach to this is to use staged evolution, in which evolution is carried out

on small networks, which are then either frozen (allowing the network to be used as a

module but with no internal changes), or new neurons are added but their connection

weights are deliberately very low so that they will not disrupt the current network.

In these schemes network size is slowly increased over time in order to encourage

the development of simple networks early on, which become more specialised and

optimised over time.

Analysis of evolved neural networks is difficult since they display non-linear high-

dimension dynamics. Many researchers perform no such analysis, treating the internals

of evolved networks as a black box. Others manually conduct lesioning experiments, in

which one neuron is selectively removed, and the effects observed [3]. This is similar

to experiments carried out in biology to discover how the nervous systems of creatures

control the body. The “functional contribution analysis” (FCA) [388] and “multi-lesion

152 Chapter 6. Evolution of specific genotypes

Shapley value analysis” (MSA) [227] algorithms both perform automatic lesioning of

multiple neurons at a time, and use these experiments to infer probabilistic estimates

of the contribution of individual neurons to overall network behaviour.

6.4.1 Timeline

In 1991 Jefferson first evolved synthetic neural networks for a robot control task [219].

The robot agent occupied a 2D grid world, through which it had to navigate along

a pre-specified trail. Fitness was assessed by awarding points for visiting landmarks

along the trail. The neural network received two inputs specifying whether the cell

directly ahead of the robot was on the trail or not. Four outputs allowed the agent to

move forward and turn. The network topology was fixed, so only connection weights

were evolved.

Later in 1991 Collins evolved neural networks for a virtual life ant colony [73]. He

compared several different genotype representations, including ones in which the net-

work topology was fixed to ones where it was evolved. The performance of networks

with evolved connectivity was only slightly behind that of networks which had a man-

ually specified task specific topology. This was the first time that the connectivity of a

neural network had been evolved for robot control.

In 1994 Gruau used a cellular based developmental encoding to construct neural

networks for six legged robot walking [168]. Tree-like developmental programs were

evolved to create neural networks from a single precursor cell. The programs obeyed

a strict grammar, with each node corresponding to a single developmental instruction,

which could instruct the cell to perform parallel and sequential division, change a

parameter, or become a neuron. When dividing, two child cells, which inherit all

parameters of the parent, are created in either sequence or parallel. Either both will

inherit the parent’s connections, or one will inherit the incoming connections, and

the other the outgoing. Instruction trees were evolved using the standard “genetic

programming” operators of sub-tree crossover and mutation [247]. The neural model

was restricted to boolean neurons with integer thresholds and ±1 weights.

In 1998 Kodjabachian presented the “simple geometry oriented cellular encod-

ing” [237, 238]. This is very similar to Gruau’s cellular encoded, except that devel-

opment is carried out on a two-dimensional substrate rather than an abstract network.

Commands instruct cells to divide, move across the surface, and grow connections in

different directions. Like Gruau, Kodjabachian also successfully evolved control for a

6.4. Evolving neural networks for robot control 153

Figure 6.6: Virtual creatures with fixed morphology and evolved neural control in the

Framsticks world.

Credit for image: Maciej Komosinski [239, 240, 243]

six legged robot.

In 1998 Husbands proposed the “gasnet” model of neural network [210]. The

diffusion of nitric oxide molecules had been shown to have a modulatory effect on bio-

logical neurons. This challenged the traditional model of a neural network; it was now

recognised that neurons could communicate via diffusion of molecules in a 3D space

in addition to the direct connections of axons and dendrites. Husbands simulated this

diffusion, but simplified to 2D space; each neuron had a 2D coordinate, and generated

a signal which diffused in a circle about that point. Control for robot walking was

successfully evolved. It was reported that these networks were evolved in 10% of the

time required for traditional neural networks.

In 1999 Komosinski released the “Framsticks” evolutionary system, which enables

the evolution of neural networks for predefined morphologies (figure 6.6), and the

evolution of morphology and control at the same time (see section 6.14).

In 1999 Gallagher used staged evolution to evolve controllers for light following,

object discrimination and locomotion in a robot that moves along a one-dimensional

line inside a 2D grid world [147]. Pattern generators were evolved first, and then

higher level controllers which modulate the activity of the lower levels. The internal

structure of modules was maintained by isolating them from the mutation process and

only allowing the creation and optimisation of new modules and connections.

In 1999 Reeve investigated the evolution of networks for biped and quadruped

walking in a simulated 3D environment (figure 6.7) [349]. A fully connected network,

where only connection weights were evolved, was compared to a variable network,

where both the existence and weight of connections was evolved. The fitness task was

to travel the furthest distance. The fully connected network succeeded in producing

154 Chapter 6. Evolution of specific genotypes

Figure 6.7: Quadruped and biped walking robots with evolved third order neural con-

trollers.

Credit for image: Richard Reeve [349]

the greatest rate of motion. The number of neurons necessary for each robot’s con-

troller was estimated by analysing the morphological structure of the robot; typical

controllers had 50 to 100 neurons. One of the controllers under test exploited mor-

phological symmetry; a single network was evolved and then replicated for each limb,

with connectivity between these modules also being evolved. This symmetry had a

dramatic effect on performance; all limbs were utilised, and were better coordinated

than non-symmetric controllers.

In 2000 Hornby evolved a gait controller for Sony’s quadruped AIBO robot [197].

Parameters of a traditional walking controller, such as leg angles, step size, and inter-

leg synchronisation timings, were optimised by a genetic algorithm. Fitness evaluation

was carried out on a real robot walking over carpets, rubble, and low friction tiles.

In 2001 Floreano compared the performance of evolved “spike response model”

(SRM) networks to continuous sigmoid networks controlling a two wheeled Khepera

robot [135]. The SRM model uses floating-point arithmetic to calculate the contribu-

tion of each spike that has occurred in the last 20ms to the current activation potential

of each neuron (see section 3.4.4.2). Although an actual robot was used, control was

via a USB connected PC with software simulation of a neural network. The control

task was to move the robot around an arena which had walls painted with randomly

spaced vertical black and white bars.

The Khepera robot was equipped with a 16-pixel camera, with each sequence of

three pixels being filtered with a Laplace transform to extract edge features, and then

presented as an input to the neural network. Two other inputs reported the measured

speed of each wheel. The neural network consisted of ten neurons, with four of them

being used as output signals to drive the motors of each wheel. For details of the

6.4. Evolving neural networks for robot control 155

signal coding for inputs and outputs see section 3.3. The fitness function was the

sum of wheel velocity over time, which implicitly rewards forward motion and wall

avoidance.

Only the connectivity and polarity (inhibition or excitation) of each neuron was

evolved. Connection weights and other neuron attributes were fixed and constant.

Spiking neural network controllers were successfully evolved to control the robot.

However, continuous networks failed to evolve. It was hypothesised that this was

due to the restricted parameter set, and that possibly a stateful version of the contin-

uous model (e.g. continuous time recurrent neurons), or the evolution of connection

weights, would have been successful.

Analysis of the evolved spiking networks showed that they were well connected,

with neurons having a mean of 5 inputs. Redundant neurons and connections were

identified, and whilst lesioning some of these neurons caused no significant degrada-

tion in fitness, lesioning all of them did, showing that together they made a significant

contribution to network behaviour. Many of the neurons were in a constant state of

activity, spiking hundreds of times a second, some acting as free oscillators through

self-connections. The networks seemed to be using rate coding; two reasons were hy-

pothesised — that the fixed parameters biased the neurons into firing after receiving

a single spike, and that the way the input and output neurons signals were interpreted

naturally led to a rate coded solution.

In 2002 Reil evolved neural networks for biped walking [355]. The networks

consisted of 10 fully connected sigmoid neurons with no sensory input. Connection

weights, neuron time constants and biases were evolved. Biped walking is considered

a difficult control task, and the evolutionary algorithm had to search a large space since

the networks were fully connected. The fitness function measured distance travelled

from the starting point, and early termination was performed on solutions that lowered

the centre of gravity below some threshold. After successfully evolving biped walking

a staged genetic algorithm was used to add a fully connected sensor that enabled the

robot to orient itself towards a target point.

In 2002 Frutiger evolved neural control for a swinging monkey [141]. Control was

successfully transferred to a physical robot.

In 2002 Stanley proposed the “neuro-evolution of augmenting topologies” (NEAT)

algorithm [409, 413]. This algorithm builds topologies of increasing complexity over

time, utilising a direct encoding. NEAT solves a few problems with the traditional

evolution of neural networks; networks are only complexified if it adds to the fitness,

156 Chapter 6. Evolution of specific genotypes

so there is no unjustified increase in network size, and, unlike most evolutionary neu-

ral systems, crossover can be used to combine networks. Every gene is tagged as it

is introduced to a network, allowing the phylogenetic lineage of each to be tracked.

Crossover can then be carried out on networks which share similar genes by lining

up those genes with common ancestry in the same order, and taking excess or dis-

joint genes from the fitter parent. NEAT also attempts to encourage the evolution of

speciation in an attempt to protect diversity and widen the search space.

In 2002 Floreano extended his 2001 research, evolving integer neural networks to

control a smaller “Alice” robot, which had infra-red sensors rather than a camera [134].

The vertically striped environment was replaced with a uniformly coloured arena with

a cuboid object at its centre, so the robot now had to avoid this object as well as

the outer walls. The robot used a PIC microcontroller for both simulating the neural

networks and running the genetic algorithm. The neural networks were constrained to

only use integer arithmetic so as to be implementable on the 8-bit PIC (see page 64 for

details of the neural model).

Later in 2002, Zufferey used the same spiking neural network PIC implementation

to evolve controllers for a 3D blimp [495]. Again, evolution was embodied (although

by 2005 he had accurately recreated the test arena in computer simulation, figure 6.8).

The blimp had sensors for airspeed and range, and three motors to move and rotate.

In 2003 Mahdavi evolved a neural controller for a snake robot using embodied evo-

lution [271]. The snake robot was controlled with muscles made from Nitinol which

is a “shape memory alloy”. Shape memory alloys can be trained to store morphology

patterns, and will transition between these shapes when a current is applied to them.

In 2004 Tanev evolved neural networks to control a segmented robotic snake inside

a 3D simulator (figure 6.9) [430, 431]. Each network was structured as a sequence of

“genetic programming” like operations. Two functions were generated, one each for

the vertical and horizontal actuators. The same programs were used on every segment

of the robot. The evolved controllers demonstrated robustness to physical damage and

obstacles.

In 2005 van Breugel evolved controllers for a simulated ornithopter (figure 6.9) and

compared evolved sine wave generators with evolved Bézier curve generators [457].

Simple sine wave generators were created for each wing, with the frequency, phase

offset, and amplitude being evolved. More complex Bézier waves were then evolved.

Bézier control was shown to be more aerodynamically stable, and easier to evolve.

In 2005 Zufferey evolved integer neural network controllers for a flying blimp in-

6.5. Evolving reduced continuous neural models 157

Figure 6.8: Crossing the reality gap. For this blimp the environment (left) was precisely

recreated in simulation (right)

Credit for image: Jean-Christophe Zufferey [494]

side a simulator and transferred the successful neural networks to reality [493, 494].

This was the same blimp flight task that he had solved with spiking neural networks in

2002. The walls of the environment were patterned with random width vertical stripes.

The fitness function penalised collisions with the wall. The simulator recreated the

exact environment as well as the blimp dynamics (figure 6.8).

As the blimp was intended to be autonomous the neural network was simulated on

a PIC microcontroller using an integer neural network model known as “PIC-NN” (for

details see page 73).

In 2006 Der evolved neural control for a spherical robot inside a 3D simulator [104].

The sphere contained gyroscopic sensors which were used as input to a feed-forward

network. The output controlled motors which affect the movement of ballast inside the

sphere, which in turn generates rolling motion (figure 6.9).

6.5 Evolving reduced continuous neural models

In 1992 Gruau evolved boolean neural networks with binary ±1 weights and integer

thresholds to reproduce 40-input and 50-input logic functions [167]. In 1998 Chiueh

evolved discrete ternary networks to carry out classification based on an input/output

training set [68]. In 2000 Plagianakos evolved integer neural networks to reproduce

2-input logic functions [337], and in 2006 a controller for a dynamic control task [335].

See section 3.4.6.3 for more information on these models.

158 Chapter 6. Evolution of specific genotypes

Figure 6.9: Neural networks have been evolved to control sphere, snake, and or-

nithopter robots.

Credit for image: Ralf Der, Ivan Tanev, Floris van Breugel [104, 430, 431, 457]

6.6 Evolving reduced spiking neural models

In 1999 de Garis evolved cellular automata to reproduce several simple logic func-

tions [91]. Although the systems evolved were cellular automata, a cell being in the 1

state for a single cycle is analogous to a discrete spike occurring over that time period,

effectively making this a spiking model. See page 62 for details on the model, and

section 6.9.1 for details on the project.

In 2002 Floreano evolved spiking neural networks with integer arithmetic to suc-

cessfully control a mobile robot [134]. In 2003 Upegui evolved integer arithmetic

spiking networks for pattern recognition [455].

See section 3.4.6.1 for more information on these models.

6.7 Evolving modular hierarchical neural networks

It has been argued that the human brain utilises hierarchical networks of modules,

each responsible for unique aspects of behavioural and functional ability, and that it is

important to emulate this structure in order to create artificial neural networks which

control complex behaviour [344]. Modularity may also re-shape the search space to

make genetic algorithm based search more efficient. Genomes which allow the expres-

6.7. Evolving modular hierarchical neural networks 159

sion of modular repetition can also be smaller.

In 1993 Boers used a developmental Lindenmayer system encoding to evolve mod-

ular neural networks [32]. One problem task was discrimination between the characters

T and C, each drawn on a 3×3 grid, when translated and rotated inside a larger 4×4

grid. Performance was better than backpropagation on a network with a fixed single

hidden layer topology, and the evolved network was smaller. Another problem task

was to learn a 10×10 grid in which each cell contains one of four possible values. The

two inputs to the network specify the coordinates of a cell, and one of four outputs will

become active to indicate which of the four values that cell stores. A topology was

evolved which could then be trained with backpropagation. The evolved topology was

both smaller and faster to train than a feed-forward with each layer fully connected to

the next.

The subsumption architecture and design methodology was proposed by Brooks in

1991 [47]. Although at the time it was not used for neural networks, it subsequently

inspired some layered neural architectures [344,446,461]. Brooks proposed that robot

control could be separated into a hierarchy of modules, where each module would

be responsible for performing some distinct action or behaviours. In Brooks’s origi-

nal subsumption architecture each module was implemented with a small finite state

machine, having only a handful of states and a few registers to store data. Communi-

cation between the modules was asynchronous and unidirectional. Brooks proposed a

“bottom-up” methodology for constructing a layered architecture, where lower layers

would be implemented and tested first. Once the behaviour of the lower layer was

satisfactory, the layer would be fixed and no further changes made to it. Higher level

modules would progressively build upon the behaviour of lower layers by inhibiting

or overriding specific modules in the lower layer. Brook’s subsumption architecture

was used successfully to build walking robots that could perform simple tasks like for-

aging for food, light following, object avoidance etc.. The failure of the architecture

to produce robots with more advanced behaviours was attributed to design complexity

— the number of unforeseen interactions between different modules increases rapidly

as the number of modules is increased — and the lack of a goal conflict resolution or

action selection mechanism, which meant that as more behaviours were added, there

was increasing conflict between simultaneously active modules.

In 1994 Happel evolved modular networks to discriminate between handwritten

digits [174]. The internal connectivity between neurons in the same module was al-

lowed to be dense, whereas connections between modules were sparse. The perfor-

160 Chapter 6. Evolution of specific genotypes

mance of evolved networks with modularity showed a significant, though small, im-

provement over those without.

In 1999 Prescott described similarities between Brooks’s subsumption architecture

for robotic control and the layered hierarchies of vertebrate brains and behaviour [344].

He argued that the vertebrate brain had evolved in a similar way to the creation of a

subsumption architecture robot, with low-level motor control being used as a base,

upon which higher level behaviours were successively built, with conflict resolution

between competing behaviours being carried out by a centralised mechanism. Accord-

ing to fossil records, the basic layout of the vertebrate brain has been in place for over

400 million years, and may date back to a mere 50 million years after the Cambrian

explosion. Many components of the vertebrate brain have homologous components in

non-vertebrates, and the major morphological divisions are found are found as far back

as the earliest fossil records of jawless fish, demonstrating that the basic modularity,

functionality, and layout of the brain were discovered very early on in the evolutionary

process.

In 2003 Dinerstein showed that the task of evolving neural networks that replicate

an unknown non-linear multiple input single output function could be automatically

broken down by grouping similar training examples together, evolving smaller net-

works that learn the function of a single group, and then evolving a multiplexing clas-

sifier which selects the correct network output by observation and classifying the input

signals [110].

In 2004 Reisinger produced a modular version of NEAT [356]. He co-evolved

two populations, one of traditional NEAT networks, and the other of genotypes which

combine the NEAT networks into a larger composite network. Performance on the

evaluated task (a board game) was shown to be better with the modular approach.

In 2004 Togelius evolved “subsumption architecture” style layered neural networks

to control a simulated robot [446]. Togelius implemented the ideas of Brooks’s sub-

sumption architecture, but used a neural network to implement each module instead of

a finite state machine. Controllers were evolved for light-following and object avoid-

ance, and the evolution of modular controllers was compared to monolithic controllers,

showing that the use of modular controllers drastically improving evolvability.

There are other examples of evolved modular neural networks for robot control

(section 6.4), and co-evolved with robot morphology (section 6.14). In fact, any devel-

opmental genotype coding is likely to encourage modularity.

6.8. Evolving genetic regulatory networks 161

6.8 Evolving genetic regulatory networks

Genetic algorithms have been successfully used to evolve genetic regulatory networks

that match the observations of laboratory experiments; this is done in an attempt to

reverse engineer an unknown network after a large amount of experimental data has

been collected. Usually it is necessary to evolve both a topology and a model of inhibi-

tion/excitation with appropriate weights [5,357,372]. In other cases the connectivity of

the genes may be known, but the exact relationship between them (degree of excitation

or inhibition) is not [250].

Genetic algorithms have also been used to evolve genetic regulatory networks

which utilise variation of gene expression to create visually recognisable patterns, such

as the distinctive striping of some insects, or to automate the tedious process of manu-

ally writing cell developmental programs [132].

6.9 Evolving cellular automata

Cellular automata are systems with simple state, update rules and interactions only

between spatially neighbouring nodes in a fixed topology. Given these constraints,

any synchronised complex global behaviour observed must be an emergent property

of the local behaviour of individual cells. For a review of evolving cellular automata

see [302]

Researchers have designed one-dimensional cellular automata which display emer-

gent behaviour. The firing squad synchronisation problem (see figure 6.10) requires

coordinating all of the cells to perform a state change at a single point in time [310].

Many solutions have been proposed, aiming to both achieve the minimal firing time

of 2N− 2, and to minimise the number of states needed [283]. Once the cells have

become synchronised they can display arbitrary behaviours, such as simultaneous os-

cillation, that creates a global pattern. Cellular automata that solve this problem were

evolved by Das in 1995 (see section 6.12 and figure 6.14).

Another global challenge is the so called 1
p problem (also known as the pc =

1
2

task), where all of the cells must change to the state which the majority of them have

initially. In a two state 0,1 system, a majority of zeroes in the initial state means

the system must converge to every cell being zero, whilst a majority of ones means

convergence must be to all ones. To complete this task perfectly requires knowledge of

the initial global state; since cells only perceive the state of their immediate neighbours,

162 Chapter 6. Evolution of specific genotypes

Figure 6.10: A manually designed solution to the firing squad synchronisation problem.

Two signals are propagated at different speeds from the same cell. The faster signal

reflects off the remote edge, and the speed ratio is calculated so the signals intersect

in the centre. A divide and conquer approach is then used to split the regions until

a globally alternating, locally recognisable, pattern is reached, thus synchronising all

cells.

Credit for image: Melanie Mitchell and P. C. Fischer [302]

and perfect knowledge of the initial state is destroyed as soon as the first transitions

occur, there can be no perfect solution that works under all initial conditions.

In 1993, Mitchell successfully used genetic algorithms to evolve cellular automata

rules that can be used on this problem (figure 6.11) [79, 305]. The cellular automata

contained 149 cells, producing a search space with size 2149. This was too large to

exhaustively evaluate with a fitness function, so instead the fitness function only sam-

pled 100 possible initial conditions, which were randomly chosen for each generation.

The 100 possible initial conditions were biased to have a majority of either 0s or 1s

by drawing samples from a distribution where p was the fixed probability of a cell be-

ing 0 or 1, and p ∈ [0,1] was uniformly distributed, rather than having samples being

randomly drawn from all of the possible configurations in the 2149 space. The reason

given for this was that a random selection of 149 initial states with p = 1
2 for each

would form a binomial distribution with all configurations having p ∼ 1
2 , biasing the

test cases around a difficult area of the search space to classify — in fact, due to the

central limit theorem and n and p being relatively large, the resulting distribution will

be approximately normal: N(np,np(1− p)) = N(74.5,37.25) so about 95% of the test

cases would have the number of cells initially set to 1 lying in [68.4,80.6]. This meant

that it was possible for a solution to get a perfect fitness score by successfully classi-

6.9. Evolving cellular automata 163

Figure 6.11: A cellular automaton evolved to solve the 1
p classification task, in which

the final state of all cells should be the one in which the majority of them are initially.

Credit for image: Crutchfield and Mitchell [78]

fying the small, biased sample — it is reported that the evolved rules did manage this

stage after only 20 or so generations. No details were given of how well the best rules

would perform on the general population of random initial conditions.

In 1997 Sipper evolved synchronous non-uniform cellular automata (NUCA) to

solve the 1
p task, and the synchronisation task [401]. He also devised an “average cel-

lular distance” metric to quantify connectivity, and showed that this linearly correlated

with performance. This was explained by the hypothesis that on global tasks cellu-

lar automata will perform better when information can travel faster between nodes.

It was then shown that high performance and low connectivity architectures could be

evolved, and that populations would cluster around points of low average cellular dis-

tance, thus taking advantage of better connectivity without being forced to explicitly

specify network topology.

In 1998 Sipper evolved “globally asynchronous locally synchronous” NUCAs to

solve the density and synchronisation tasks , and found their performance comparable

to synchronous cellular automata [402]. Due to their non-deterministic nature an exact

solution to the synchronisation task is not possible, but with certain updating schemes

a logically equivalent progression can be defined.

Cellular automata have been evolved for a variety of pattern generation tasks, see

section 6.12.

164 Chapter 6. Evolution of specific genotypes

Figure 6.12: The CAM-Brain project aimed to create functioning brains by constructing

neural pathways from 3D cellular automata.

Credit for image: Genobyte, Inc.

6.9.1 Evolving cellular automata neural networks

In 1993 de Garis, working at Japan’s “Advanced Telecommunications Research Insti-

tute” (ATR), started the “cellular automata machine brain” (CAM-Brain) project [88].

He aimed to carry out artificial evolution of cellular automata, the cells of which would

implement the functionality of a neural network, and be implemented using networks

of programmable hardware (image 6.12) [87, 91]. He claimed that this would allow

the evolution of artificially intelligent systems to occur “at electronic speeds”, because

electronic circuits can switch faster than biological neurons, and the entire genetic al-

gorithm process would be carried out intrinsically in hardware without any need for

slow external inputs.

By 1994 a two-dimensional cellular automata simulator had been developed, and

a genetic algorithm was used to evolve integer neural networks that output a constant

value (point attractor), and that produced an oscillating output (cyclic attractor). By

1996 a simulator of 3D cellular automata was developed. The creation of these simu-

lators took a long time as, according to de Garis, it was necessary to hand-craft 11,000

rules for the 2D version, and 150,000 rules for the 3D one. Precisely why so many

rules were needed, why this could not be automated, and how they were checked for

correctness, was not discussed. A binary state 2D CA, where each cell communicates

with four neighbours, requires only 32 rules. These cellular automata, however, re-

quired many states as they had to contain integer neural networks, with a unique cell

state for each discrete integer. It does not seem as though this should have caused any

6.9. Evolving cellular automata 165

greater difficulty though, since these extra states only affect functioning of the neuron,

which uses a standard sum-and-threshold model which should not require the manual

definition of thousands of rules.

The fact that the system was 3D and stored orientations for each cell also should

not have added substantially to the complexity, as the cell rules would be symmetrical

about the six possible orientations. In later papers de Garis hints that these early sys-

tems were not “gridded”, by which he means the developmental substrate space was

continuous and non-synchronous, so signals could arise out of phase, but this is odd, as

a regular geometry and synchronous timing are two of the defining features of cellular

automata.

Despite a decade of research, over $1.4 million of grant funding, and the lofty

claims of creating an artificial brain by 2001, this project failed to produce any work-

ing AI system. No papers were published reporting the successful evolution of any

intelligent control systems, and none of the current owners of the hardware developed,

which include ATR, the creditors of both Starlab and “Lernout and Hauspie” (which

both went bankrupt in 2001), and the designer of the CBM itself, Michael Korkin

(former owner of the now defunct company Genobyte Inc.), have published any infor-

mation regarding successful or working intelligent systems [92].

Nevertheless, the basic concept of utilising genetic algorithms to evolve cellular

automata with custom hardware is an interesting one. The main problem faced is that

of choosing a workable fitness function, and performing the fitness evaluations. It

was claimed that complete brain systems could be evolved in seconds, with billions of

fitness evaluations occurring, and yet it is clear that any evaluation of fitness on a real

world task is going to require either a robotic body, or a simulator, both of which will

take a significant time to run a single fitness evaluation. de Garis suggested that an

on-chip intrinsic evaluation function that computed the sum of squares error between

the output of the cellular automata and a reference waveform would be sufficient [91].

Whilst it may be possible to replicate simple non-linear analog functions this way, it

implies that the function is already known, or that there is a way to generate the output

of the function within the same timescale of the evolving FPGA. This is unlikely to

be the case for most tasks of interest, particularly the simulation of artificial brains to

control complex robotic systems.

Initially experiments were carried out using either simulation software running on a

standard workstation, or a much simplified model running on MIT’s CAM-8 “cellular

automata machine” [445]. The CAM-8 was a PCI card developed in 1989 which could

166 Chapter 6. Evolution of specific genotypes

quickly process cellular automata held in 16-bit memory. Each 16-bit word could be

divided into sections which would be independently shifted to construct a new address

used to access the memory on the next cycle. For a 2D CA with a neighbourhood of 5

cells this meant each cell could have a 3-bit state. However, at this stage de Garis said

that it was not possible to implement CAM-Brain with only 3 bits per cell [89].

In 1996 it was realised that the complex integer networks initially envisaged, de-

vised from hand-crafted cellular automata rules, were too complicated to be imple-

mented in hardware. A new “collect and distribute“ (CoDi) neural network model was

presented, which used a 4-bit accumulator to sum inputs, and then fired if the result

exceeded some constant threshold [151]. They decided to build a custom cellular au-

tomata machine using FPGAs, and technology constraints led to the neural model be-

ing further simplified with 1-bit signalling, resulting in the “CoDi-1Bit” model [152].

The new design was now a binary state cellular automaton, with 6 neighbours per

cell. The initial development phase had been modified so that each cell now had an

orientation; previously, the cellular automata had been like a blank canvas, with all

growth instructions being sent out along developmental axons and dendrites. The new

model could be accurately described as a spiking neural network with uniform 3D

topology, as it was built from digital logic adders, threshold comparators, etc., and not

automata cells. It was shown, in software simulation, that the system could evolve

cellular automata that generate an oscillating output bit, change the distribution of

output ones and zeroes in response to an input bit being flipped, and discriminate and

classify simple input patterns [91, 152].

The actual hardware implementation, termed “CAM-Brain Machine” (CBM), was

to be built by one of the researchers involved in the project, Michael Korkin, who estab-

lished the US company Genobyte to market the machines commercially [93]. It would

potentially be capable of simulating 37 million neurons, each of would be created from

hundreds to thousands of cellular automata cells stored in a 1.2 GB distributed mem-

ory, with each neuron being updated hundreds of times a second. This would be an

estimated 750 times faster than the CAM-8.

Like the CAM-8, it was implemented as a PCI card, so that it could be accessed

over a fast bus by the host PC. It would use 72 Xilinx XC6264 FPGAs, each on a

daughter card with 16MB of local memory, connected via a backplane, to implement

a single 24×24×24 cell module in hardware. A robot control system would consist

of many of these modules, connected via some network, with each individual module

having up to 180 inputs and 3 outputs. For each output a 96-bit spike train would be

6.9. Evolving cellular automata 167

recorded in a central shared memory, so that other modules could use it as an input.

The system would use time-sharing to carry out the processing of each module; each

FPGA would swap-in cell states from the local memory, together they would simulate

a cube for 96 cycles, and then write back the cell states to local memory, and the 96

bits generated by each output to the shared memory.

Once it was accepted that a single-bit binary protocol was necessary due to hard-

ware requirements, further research work focused on signal coding [87, 244]. The

traditional interpretation of biological spiking is to interpret the frequency of the spik-

ing as the value that is being conveyed; so called rate coding. This was rejected as

being “too slow”, as it requires a short time period in which to count the spikes before

a value is available. Unary coding, in which the coded value is simply the number

of cells from some group that are simultaneously active, was rejected as being “too

jerky”, since many bits may switch at the same time producing large discontinuities.

It is possible that other codings of the multiple bits, such as a “one-hot” or “m-of-n

scheme”, would not exhibit this problem, but this was not considered.

Ultimately the “spike interval information coding” (SIIC) was chosen, which uses

a convolution filter over binary bitstreams to generate a continuous floating-point out-

put. The “Hough spiker algorithm” (HSA) performs the inverse function of converting

integers into a binary bitstream. For more details of these functions see page 47. To

demonstrate that a genetic algorithm could evolve cellular automata that successfully

utilise this coding a “CoDi” module was evolved which generated an oscillating SIIC

coded output that roughly resembled a sine wave, and another module was evolved that

phase shifted its SIIC encoded input signal by π

4 [316].

In 1998 the contradiction of being able to compute appropriate fitness functions

that were both realistic and intrinsic was recognised [87]. The use of a physics sim-

ulator was described as a “necessary evil”, but it was stated that only the low-level

modules directly involved in motor control would need to be evolved in simulation.

Higher levels, which would greatly outnumber the lower levels, would just reproduce

activation patterns and behaviours specified by a human designer, and hence could be

evolved intrinsically. This does not seem practical, as the human designer would need

to anticipate all of the potential conflicts and interactions between the many active

components, thus removing the advantages of using a genetic algorithm in the first

place. It should also be noted that the generation of low-level motor patterns is not a

problem for researchers — it is precisely the issue of combining them together into

coherent behaviours, arbitrated and moderated by some task based planning system

168 Chapter 6. Evolution of specific genotypes

with its own world model, that has been the dominant problem for AI research.

Some of the published papers may give the impression that the FPGA based “CAM-

Brain Machine” worked, and had been successfully used to evolve functional neural

networks. However, other papers state that the research was done through simula-

tion. On his web page de Garis states that the CBM was only functional for about one

month [90]. The scheduled delivery of a CBM to ATR had been delayed several years,

and arrived only a few months before de Garis moved to Starlab. A CBM was deliv-

ered to Starlab in summer 2000, but hardware problems (attributable to either the CBM

itself, or to inadequate cooling and an unstable power supply) had prevented it from

working correctly, and then Korkin, who had designed the hardware and was work-

ing on the firmware, remotely disabled the CBM in an attempt to extract payment for

money he was owed. Starlab, the Belgian research organisation which was now em-

ploying them both, went bankrupt shortly later, and thus a fully working “CAM-Brain

Machine” was never completed [130].

6.10 Evolving analog circuits

Genetic algorithms have been used to successfully evolve analog circuits, both in

simulation, and on FPGAs. In 1995 Thompson evolved a (partly digital) robot con-

troller [441]. In 1996 he evolved digital filters and frequency discriminators [440,

442, 443]. In 1997 Koza evolved analog circuits using genetic programming [248]. In

1999 Mazumder used genetic algorithms to optimise the layout of analog and digital

circuits [284]. Gallagher evolved analog circuits that implemented pulse-coded contin-

uous time recurrent neural networks to control locomotion in a six legged robot [146].

6.10.1 Evolving FPAA robot control

In 2005 Berenson used a “field programmable analog array” (FPAA) to evolve artifi-

cial neural networks to control biped walking and fault recovery in a real robot created

by 3D thermoplastic printing (for details of this process see page 203) [24]. Hardware

resources were severely constrained, with networks having a maximum of four neu-

rons, each having three inputs. The quadruped model was the same used in Bongard’s

research on evolving neural control and morphology [35].

6.10. Evolving analog circuits 169

6.10.2 Evolving FPGA oscillators

Boolean oscillators generate a single binary output which toggles between 0 and 1

at some desired frequency. They are commonly used in electronics to produce clock

signals which synchronise the flow of data through circuits. The usual way of doing

this is to utilise a crystal oscillator, which is a circuit based around a piece of crystal

which has a mechanical resonance at which it will vibrate when a voltage is passed

through it, thus producing a varying output voltage at some specific frequency which

is further processed through amplification and filtering to produce a clean and stable

square wave.

It has long been known that it is possible to create free running clock signals by

constructing an inverter chain, i.e. a loop of gates which contain an odd number of

NOT operators so that the loop can not become stable and values will be propagated

around it forever. Thompson showed that it was possible to intrinsically evolve such

a system inside an FPGA using genetic algorithms [443]. The fitness function was a

measurement of how closely the signal on some output pin of the FPGA matched the

desired frequency of oscillation.

6.10.3 Evolving FPGA frequency discriminators

Thompson evolved circuits inside a digital FPGA [440]. Despite the FPGA being de-

signed for digital, synchronous use, the representation of the FPGA’s internal circuits

and the format of its programming bitstream do not enforce these restrictions. This al-

lowed the genetic algorithm to explore a wider solution space that potentially included

asynchronous and analog effects. The FPGA programming bitstream was 1800 bits

long; too great for an exhaustive search.

The input to the FPGA was a single bit that varied between two regular frequencies.

The output was a single bit that was supposed to discriminate and classify the input

signal into the two known frequency bands. In order to encourage the evolution process

towards a novel design no clock signal was provided to the FPGA. This meant the

FPGA would have to somehow derive an internal model of timing with which it could

reference the input signal. It also meant that the evolved design would be completely

asynchronous.

It was found that a solution to this problem could be successfully evolved on the

FPGA. Analysis of the evolved programming bitstream showed that it worked in a

unexpected way. Thompson hypothesised that it was deriving timing information from

170 Chapter 6. Evolution of specific genotypes

an unexpected source such as the power supply (UK mains is 50Hz), either through

some internal mechanism of the FPGA, or through signal crosstalk. The analog non-

linear properties of the solution were evident when it was shown that the discrimination

frequency varied with temperature.

Strangely, it was found that the bitstream contained programming that was redun-

dant and could theoretically be removed, and yet when this was attempted experimen-

tally, the “clean” programming failed the frequency discrimination task. Thus, the

genetic algorithm had discovered a working solution very different from that which

a human designer would have created. The evolved design was closely coupled to

the underlying hardware, and utilised properties unique to the particular FPGA upon

which it was evaluated, with its performance degrading when run on another, suppos-

edly identical, FPGA of the same family.

Later analysis showed that a typical evolved frequency discriminator circuit derives

timing information from groups of gates with recurrent connections, similar to the

inverter chain used for delay matching in asynchronous circuits (figure 6.13) [444]. It

is interesting to note that analysis of evolved asynchronous random boolean networks

also revealed that inverter chains were the principal method of timing when generating

rhythmic patterns of activity [364].

6.10.4 Evolving on an analog FPTA

Keymeulen and his fellow researchers built a hardware evolutionary system based on

a custom “field programmable transistor array” (FPTA) fabricated in 50nm technol-

ogy [230]. The system was designed to evolve analog transistor networks with the aim

of replicating analog functions. The fitness evaluations were performed on-chip.

The performance of the system was compared to the same fitness evaluations using

a SPICE [346] software model of the chip, running on a 256 CPU supercomputer. It

was discovered that the performance of the on-chip fitness evaluation was equivalent

to 128 of the supercomputer processors working in parallel running SPICE software

simulations. The system was used to successfully evolve both a Gaussian filter and

AM bandpass filter in less than 4 minutes; evolution in software on a single CPU took

over 4 hours. In general, it was found that on-chip fitness evaluations were 20 to 50

times faster than their software equivalents running on a single CPU.

6.10. Evolving analog circuits 171

Figure 6.13: One of Thompson’s evolved frequency discriminators. Despite the circuit

being digital, and being implemented on a digital FPGA, its behaviour is asynchronous

and utilises non-linear analog effects. Performance was found to degrade when this

circuit was implemented on a supposedly identical FPGA from the same family as that

used for evolutionary fitness evaluations, showing that the evolved circuit was intrinsi-

cally linked to the underlying hardware.

Credit for image: Adrian Thompson [444]

6.10.5 Evolving fault tolerance

Fault tolerance is a desirable property for circuits to have. As designs move towards

smaller feature sizes and larger gate counts, the probability of manufacturing errors

increases. One approach being employed by traditional designers is to incorporate

redundant circuits which can be disabled if they fail post-manufacture testing. The

success of this approach relies on the yield tending towards producing single mod-

ule failure, as the recovery from failure of more components than were designated as

redundant is not possible. It also is not possible to recover from failures in modules

which are not redundant. Hence the human designer has to anticipate which modules

are suitable for redundancy; the ones which are tend to be used in highly parallel,

repetitive arrangements, such as the arrays of a DRAM or FLASH memory array, or

the processing elements (PEs) of IBM’s Cell processor.

There has been much work done on using genetic algorithms to evolve and optimise

fault tolerant circuits. Hartmann showed that two bit adder and multiplier circuits could

be evolved to be resistant to signal fluctuations [177]. Although the evolved circuit

designs were digital, the

172 Chapter 6. Evolution of specific genotypes

simulation environment modelled analog components.

6.11 Evolving digital circuits

It is difficult to create evolved versions of traditional synchronous digital circuit de-

signs. This is due to the fact that the desired functionality of digital circuits tends

to be very precise; it is difficult to see how multi-stage stateful logic circuits, such

as pipelined CPUs or encryption engines, could evolve from simpler basic blocks.

Therefore most of the research activity has focused on evolving circuits that act asyn-

chronously. Despite this, these circuits are quite different from those which would be

manually designed by the asynchronous circuit research community using automated

state machine synthesis tools and C-element and arbiter design primitives.

Evolving digital circuits is appealing since simulation of digital circuits on generic

processors is fast, and they can be easily transplanted into hardware FPGAs. In con-

trast, simulation of analog circuits is very slow, and hardware instantiation requires

the design of full-custom “application specific integrated circuits” (ASICs), which is a

slow and expensive process.

Evolved digital circuits have not managed to reproduce the complexity of manu-

ally created designs. In 2002 the most complex circuits evolved were simple binary

adders [164]. The most complex design evolved since then was in 2005, when Stomeo

evolved 4-bit multipliers, with 8 inputs and 8 outputs, typically containing less than

30 logic gates [418]. In contrast, a 2003 Intel Pentium-M CPU had around 77 million

gates, and a 2006 Xilinx Virtex-4 FPGA supported up to 24 million programmable

gates.

There is a body of work that crosses over between the evolution of analog and

digital circuits. In particular, Thompson’s work on evolving circuits within FPGAs is

difficult to classify [440, 442, 443]. FPGAs are traditionally used to implement syn-

chronous, digital circuits, and the evolved circuits obviously rely heavily on the digital

look up tables contained within the FPGAs. However, further analysis of the evolved

circuits shows dependencies on analog and non-linear behaviour, and as no external

clock signal was provided the evolved circuits are best classified as asynchronous ana-

log, and are therefore covered in section 6.10. Thomson focuses on “intrinsic evo-

lution”, in which the evolutionary process is carried out on the actual target FPGA

device, as opposed to some family of devices, or a logic simulator.

There has been almost no published work on the use of genetic algorithms to evolve

6.11. Evolving digital circuits 173

the kind of digital circuits that would be created by asynchronous circuit designers, that

is, those that use hazard free logic, C-elements and arbiters to manage synchronisation.

This is possibly due to a lack of envisaged utility, lack of interest, the niche nature of

the intersecting research areas, or to the difficulty of the task (asynchronous circuits

can easily deadlock) leading to experimental failure which has gone unreported. In

2005 Shanthi used a two stage evolutionary process to evolve a modulo-6 counter and

a 4-state benchmark circuit with minimal hazards [389].

6.11.1 Optimising gate count

Vassilev described a genetic algorithm that could be used to create and optimise com-

binational digital circuits [460]. By defining “neutral networks” as flat areas of the

fitness landscape, only allowing evolution to proceed around these areas, and starting

with fully working manually designed solutions, the genetic algorithm was constrained

to only produce correct results.

The fitness function penalised large circuits, so the genetic algorithm would tend

towards minimising the circuit size. A cellular substrate was defined for the actual evo-

lution, which allowed potential subcircuits to evolve alongside the main circuit, with

mutation allowing these subcircuits to replace sections of the genome. This had the

desired effect of always maintaining or decreasing the size of the functionally neces-

sary parts of the circuit, whilst giving the genetic algorithm room to experiment with

new subcircuits. It had previously been shown that having such a “scratch pad” space

was necessary for successful evolution in this domain.

The genetic algorithm reduced the gate count of the manually designed 3-bit mul-

tiplier by 23.3%, and the 4-bit multiplier by 10.9%. Unfortunately, there is a large cost

associated with verifying the correctness of the mutated solutions — every possible

input pattern must be presented to the new circuit, and the output computed and com-

pared to the fully functional reference circuit. This is practical for small circuits with

a low number of inputs, but quickly becomes impractical for larger circuits.

The other problem with this type of optimisation is that it is only possible for

feed-forward combinational circuits; optimising a circuit that contains state, such as

feedback loops, or components such as flip-flops and C-elements, across the state

boundaries, is not possible. It would, however, be possible to automatically extract

the combinational circuit elements from a larger design, individually optimise them,

and them replace the original subcircuits with the new optimised designs.

174 Chapter 6. Evolution of specific genotypes

6.11.2 Optimising power

Several researchers have experimented with the use of genetic algorithms for producing

lower power circuits [7, 58, 59, 76, 464]. This is generally useful for mobile devices,

but also has applications in test control.

6.11.2.1 Optimising power for normal operation

There are various techniques for lowering the power consumption of a circuit. One

approach is to increase the efficiency of the circuit by optimising the original design

in order to shorten the critical path. In general, a shorter critical path enables a shorter

clock period to be used, which increases a circuit is speed, and hence increases its

power consumption. However, when optimising for low power, it is better to decrease

the operating frequency, which reduces transistor switching and lowers power con-

sumption. Lowering the supply voltage decreases the current drawn when transistors

switch, making their transition slower. The net effect of this is that by optimising the

critical path of a circuit, the potential clock frequency will increase, and by reducing

the supply voltage, the potential clock frequency will decrease. These two effects can

be made to cancel each other out, in order to maintain the same performance as the

previously unoptimised design, but with lower power consumption.

Typical optimisations to reduce the length of the critical path are to reduce the size

of state machines and carry out new pipelining, timing, and synthesis procedures. This

is the approach taken by Arslan, who used genetic algorithms to optimise a digital

signal processor [7]. Test results showed a greater than 50% power saving whilst

running a common DSP filter with evolved optimisations.

A more unconventional approach was taken by Venkataraman [464]. State machine

partitioning is a mechanism for splitting a state machine into separate state machines

which collectively implement the original desired behaviour. The aim of this is to allow

the circuits controlled by individual state machines (and indeed, the state machines

themselves) to be turned off, hence saving power. This will not work for every circuit

— the original state machine must be amenable to partitioning. Typically this means

that the states can be divided into two or more sets, where transitions normally occur

within these sets, and rarely between them. In this research the genetic algorithm was

applied to discover good partitions.

The genetic algorithm based approach was able to reduce power consumption over

standard synthesis by an average of 57% at the cost of increasing the area by 77%.

6.11. Evolving digital circuits 175

It also compared favourably to a conventional synthesis tool targeting low power; on

this test set the genetic algorithm approach was found to reduce power consumption

by 36%, while the conventional tool only managed an average of 16%.

6.11.2.2 Optimising power for test control

Modern processors and other complex ASICs are designed with complex “built in self

test” (BIST) circuits that are used after manufacturing to verify that the circuit works.

In the case of processors, this testing is used to grade the quality of the chip by finding

the highest clock frequency or lowest voltage that can be presented to it without causing

internal operating errors to occur. This grading is then used to differentiate pricing in

the market to increase the value of low voltage (i.e. low power) and high speed parts.

For most devices, post-manufacture testing is used to simply establish that the device

works correctly at the limits of its approved operating environment.

Testing is performed by downloading test bitstreams to the device under test via its

“Joint Test Action Group” (JTAG) port. The test bitstreams define activation patterns

for the self-test circuits, and alter the logical structure of the chip, e.g. by tri-stating bus

buffers. The patterns are typically auto-generated by some high-level electronic design

tool, and are designed to stress test all the circuits of the chip in parallel. These tests

produce an artificially high level of activity within the chip, leading to an excess of

heat being generated. This heat dissipation can actually be a problem in chip testing,

as portable chips are typically designed to conserve power, and have lower thermal

design ratings and poor heat dissipation.

Genetic algorithms were used to evolve test patterns which minimise energy con-

sumption [58, 76]. The test patterns were modified by introducing redundant bits, and

then broken down into sequences which test for different faults. The problem was then

to choose which sequences to gather together into sets in order to cover the same num-

ber of faults as the original test pattern, whilst minimising the power requirements.

The addition of redundant bits is performed using a genetic algorithm based tool. The

fitness of sequences is assessed by running a power estimator tool, and the selection of

sets of sequences is then carried out by another genetic algorithm.

It was found that power consumption of the evolved designs was 45% to 85% less

than the original test patterns, with the same fault coverage.

176 Chapter 6. Evolution of specific genotypes

6.11.3 Evolving digital circuits for robot control

Evolved robot control systems tend to utilise analog or real-valued components. How-

ever, there has been some work done on the evolution of complete digital controllers.

Thompson evolved a robot controller to perform the familiar wall avoidance task [441].

The robot controller consisted of sonar sensors, a DRAM array, some asynchronous

registers, and outputs to a pulse-width modulation motor driver. The DRAM array was

used as a lookup table, with the input address being the sonar sensor values and some

bits fed back from the DRAM output.

The hardware design appears to have been deliberately chosen as one which would

be rejected by a human designer. The unpredictable nature of the asynchronous reg-

isters, the use of a clock signal selected by the genetic algorithm, and the rapid cy-

cling through states that would occur as the system “jumps” through different memory

instructions due to input signal changes, all conspire to make the task of manually

defining a bitstream unlikely to succeed.

The lookup table contents were then subjected to the evolutionary pressures of the

genetic algorithm. Within a few thousand generations the genetic algorithm found

solutions that could correctly solve the task and navigate to the centre of the arena,

even when initially placed facing a corner. The transition tables of the successfully

evolved circuits were found to be complex and closely coupled to the actual hardware

(e.g. the motor for one wheel was physically faster than the other, and the circuit had

correctly compensated for this).

6.12 Evolving pattern generators

Nature surrounds us with recognisable patterns that occur both geometrically and tem-

porally. As we have little understanding of how to orchestrate small scale localised

interactions into producing the kind of emergent global behaviour that describes these

patterns, researchers have utilised genetic algorithms to create various types of net-

works which converge to produce either single patterned states, or cyclic patterns of

activity. The creation of globally recognisable patterns from the localised interactions

of large numbers of simple computational devices is an instance of emergent behaviour,

and we may be able to learn how to build similar systems by analysing the evolved

rules. The generation of non-uniform cellular automata and boolean networks that

converge from a random state towards specific patterns is known to be an NP complete

6.12. Evolving pattern generators 177

problem [232].

Generation of cyclic patterns underlies low-level biological motor control (see sec-

tion 2.4). As section 3.6 points out, for many tasks cyclic activity can be driven by

changing input patterns, rather than by the purely internal activity of a pattern genera-

tor. In fact, it has been shown that enforced patterns of input activity can have a severe

impact on the global activity of what would otherwise be a closed system; studies on

asynchronous cellular automata have shown that continuous perturbations, apart from

obviously preventing the system from being in a single point attractor state, make these

cellular automata develop large scale regular spatial structures, with long range corre-

lation between cell states, and that these structures are stable despite the continuous

perturbations caused by the environment [489].

6.12.1 Timeline

In 1995 Das evolved solutions to the cellular automata synchronisation problem, in

which all the cells must simultaneously perform a state transition, and, in this case,

oscillate afterwards to create a cyclic pattern (figure 6.14) [83]. Analysis of the evolved

solutions showed that they rely on the boundaries of areas of uniform state colliding

and interacting to perform computation, resulting in the destruction and formation of

these areas. These boundaries can be viewed as “particles”, travelling across a two-

dimensional time and space substrate, which collide and interact with each other to

form a system of soliton computation.

In 1997 Harvey showed that asynchronous random boolean networks possess point

attractors, but far fewer than their synchronous counterparts [179]. This showed that

it was possible for the distributed unsynchronised updates of an asynchronous boolean

network to produce the same kind of stable attractor dynamics that were known to be

possible with synchronous or continuous networks. Attractors were far rarer though;

the expected number in any network is 1, and the distribution is heavily skewed towards

a small number of attractors, although for 2 < K < 3, corresponding to Kauffman’s

“edge of chaos” transition, there are a small number of networks which possess a large

number of attractors.

In 1997 Sipper evolved semi-asynchronous non-uniform cellular automata to solve

the synchronisation and density classification tasks [401, 402]. Due to their non-

deterministic nature, asynchronous cellular automata can not reproduce exact patterns.

Sipper used cellular automata that were synchronous within small neighbourhoods,

178 Chapter 6. Evolution of specific genotypes

Figure 6.14: Space-time diagram of a CA evolved to solve the synchronisation task.

The initial state is random. In the left image it appears that there are triangular shaped

blocks containing the same pattern overlaid on top of one another. The boundaries

of these blocks can be viewed as “particles” which move across the CA in a filtered

diagram (right), with collisions either wiping out the colliding particles, or performing

computation producing new particles.

Credit for image: Das, Crutchfield, Mitchell and Hanson [83]

but globally asynchronous (this would be known as “globally asynchronous locally

synchronous” in asynchronous circuit terminology).

In 2000 Di Paolo defined rhythmic attractors as being similar, but not necessarily

identical, repetitive cycles of activity, and used a genetic algorithm to evolve asyn-

chronous random boolean networks displaying this behaviour [107, 108]. The fitness

function initialised networks into a random state, and then observed each state as transi-

tion rules were applied, scoring networks highly if they appeared to be looping through

similar states with a long limit cycle. Rhythmic networks were successfully evolved

(see figure 6.15).

A later analysis of the networks showed that most evolved rhythmic activity re-

lied on rings of signal propagating cells, similar to the well known inverter chains

from asynchronous circuit design (figure 6.16). These networks were not resilient;

disruption to the chains severely impacted the network’s ability to generate rhythmic

behaviour [364]. Biological neural networks display a high level of resilience, which

suggests that the evolved networks are not biologically plausible, however, resilience

to damage was not assessed by the fitness function. If it was, networks may have been

encouraged to develop robustness.

6.12. Evolving pattern generators 179

Figure 6.15: An evolved asynchronous random boolean network that displays rhythmic

behaviour. This network has 32 nodes, each with 3 inputs. The network state is plot-

ted as a series of vertical lines, with time progressing from left to right over 1000 cell

updates. Although the network is oscillating between two states, at any particular time

(i.e. if a vertical line were to be drawn at any point) the network would be in a mixed

state. Note that the repeating patterns are clearly not identical.

Credit for image: Ezequiel A. Di Paolo [107]

Figure 6.16: This is a plot of a random boolean network that was evolved to exhibit

rhythmic behaviour. Analysis of such networks showed that most relied on evolved

cyclic structures which propagated and inverted a signal in order to produce timing

information. Here this cyclic timing structure has been highlighted; it can be seen that

it constitutes rather a large part of the whole circuit. This method of generating a timing

signal is similar to the inverter chains, or free running clocks, of asynchronous circuits.

Credit for image: Ezequiel A. Di Paolo [364]

180 Chapter 6. Evolution of specific genotypes

In 2003 Basanta used genetic algorithms to evolve cellular automata that develop

globally recognisable crystalline microstructure patterns when run [15]. Differing mi-

crostructural arrangements can change the way that materials behave, even though they

are composed of the same molecules. For example, metallurgic heat treatment is used

to strengthen the alloys used to manufacture swords and jet engines, to make them

stronger and increase their resistance to high temperatures.

In the metals used to build jet engines one of the primary factors that determines

strength and heat resistance is the dispersion and size of small spherical alumina crys-

tals embedded in larger nickel-aluminium crystals. This can be modelled using a cel-

lular automaton, and physical properties can be evaluated using computer simulation.

When incorporated as a fitness function inside a genetic algorithm this enables the

evolution of new microstructures which are stronger and lighter than existing ones.

Basanta evolved two-dimensional effector automata to optimise the closeness of parti-

cle distribution to some target pattern.

In 2004 Hallinan used a genetic algorithm to create update rules for Reil’s artifi-

cial genome model, which is a genetic representation that is more detailed than, but

functionally the same, as random boolean networks [172, 354]. The update rules are

optimised by applying a fitness evaluation function that maximises both the number

and length of different limit cycles in order to generate repeating patterns.

In 2004 Suzudo used a genetic algorithm to evolve rules for a two-dimensional

asynchronous cellular automaton that, when initialised in a random initial state, will

converge into recognisable patterns of columns, a chequered board, and zebra-like

stripes (figure 6.17) [423]. The statistical distribution of the cell update rules that lead

to successful formation of similar patterns was later examined , and it was found that

whilst certain transitions are dominant and appear in many rule sets, the interaction be-

tween different transition rules is unpredictable and does not result simply from group-

ing individual rules together, i.e. the global pattern forming behaviour is an emergent

property of the individual rules [423].

6.13 Evolving morphology

The evolution of static morphologies (without control systems) has been an active area

of research. Early systems were inspired by the developmental pattern generation prop-

erties of biological embryogeny. Later systems have utilised developmental encodings

to create functional and aesthetic 3D structures in simulation, and successfully transfer

6.13. Evolving morphology 181

Figure 6.17: Evolved asynchronous cellular automata that, from a random initial state,

generate three different globally recognisable patterns: checkered, zebra-like stripes,

and columns.

Credit for image: Tomoaki Suzudo [423, 424]

these designs to reality. The focus of morphological evolution has often been to create

novel designs that humans would be unlikely to consider. This can be seen in its use

for architectural modelling in which interestingly shaped buildings are created, and in

the development of everyday objects such as tables and chairs.

The closely related field of “evolutionary art” involves the creation of images, an-

imations, music, and physical objects with genetic algorithms [220]. Manipulation of

the genomes of real animals has also opened up the field of “living” genetic art [448].

These fields emphasise visual and auditory stimulation, and human aesthetic appraisal,

rather than practicality. There is some intersection with the field of evolving mor-

phology when geometries and objects are created. Due to the focus on creation of

aesthetically pleasing designs, and the difficulty of creating fitness functions for this

task, evolutionary art often uses interactive evolution, in which a human participant

manually selects parents for every generation.

6.13.1 Timeline

Lindenmayer systems were first proposed by the Hungarian biologist Aristid Linden-

mayer in 1968 as a model for the development of plant cells [260]. Lindenmayer was

attempting to create a mathematical abstraction of the developmental process of cell

mitosis and differentiation he observed in algae and flowering plants. With the ad-

vancement of technology and the development of computer systems he was eventually

able to simulate and visualise advanced plant developmental processes in 3D twenty

years later (figure 6.18) [345]. Lindenmayer systems are often used in evolutionary

182 Chapter 6. Evolution of specific genotypes

Figure 6.18: Three-dimensional plant structures created using manually designed Lin-

denmayer systems.

Credit for image: Przemyslaw Prusinkiewicz [345]

Figure 6.19: Biomorphs, the first creature morphologies to be evolved.

Credit for image: Richard Dawkins [85]

morphology, in which the production rules that form the expansion grammar are en-

coded into a genotype. For an overview of the field of evolutionary Lindenmayer based

morphologies see [285].

A Lindenmayer system consists of functions that repetitively rewrite a string based

on various rules of grammar. For example, a rewriting rule may be (A→ AA), in

which the single character A is replaced with AA. When applied to a seed string “A”

it will result in the string “AA”. When applied again, the string becomes “AAAA”,

and so forth. There are variations on this system that change minor features, such as

using parametric rewriting rules, but all retain the basic idea of an iterative process

of symbolic expansion leading to a final string consisting of some sequence of final

symbols. The set of rewriting rules creates a formal grammar of the sort familiar to

computer scientists.

In 1985 Dawkins released the first software program to carry out interactive evo-

lution [85]. He termed the evolved creatures “biomorphs” (figure 6.19). Parents were

chosen by interactive selection, and reproduction was by process of mutation only.

In 1995 Bentley presented the evolution of complete tables from scratch v [22]. He

6.13. Evolving morphology 183

Figure 6.20: Evolved geometries: table, optical prism, and sports car. All are assembled

from simple geometric primitives directly encoded in a genome.

Credit for image: Peter J. Bentley [22]

used a genotype that encoded variable sized spatial partitions and their locations in 3D

space. Since this genotype allowed overlapping geometric primitives to occur, which

was forbidden in the phenotype, the morphogenesis function had to prevent or remove

overlapping segments. The fitness function aimed to maximise tables that were human

sized, of low mass, possessing high stability, and with a flat surface. Many designs

were successfully evolved (figure 6.20), although the semi-optimal human design with

four legs and a flat cuboid surface did not appear, suggesting that either the search

space was too large, the fitness function was deficient, or the genotype representation

was inadequate.

In 1996 Bentley presented further work evolving heat sinks, optical prisms, stream-

lined boat hulls, and cars [20]. All of these designs aimed to optimise some function-

ality, such as minimising air resistance, or multiple factors like maximising surface

area whilst minimising volume. All of the composite geometries were assembled from

simple geometric primitives directly encoded in the genome.

In 1997 Eggenberger produced the first morphologies to be developed using a bi-

ologically realistic cell based embryogeny (figure 6.21). He simulated genes, cell mi-

tosis and death, and gradiated environmental marker molecules. The fitness function

selected for morphologies with bilateral symmetry and distance from some arbitrarily

chosen desired number of post-development cells.

In 1997 Funes developed the first physics based morphological evolution system,

184 Chapter 6. Evolution of specific genotypes

Figure 6.21: Morphologies evolved from a single cell using a complex biologically real-

istic developmental embryogeny.

Credit for image: Peter Eggenberger [120]

and showed that the evolved morphologies could be successfully transferred to reality

by construction from Lego blocks [143]. The genotype encoded a tree structure, where

each node represents a single Lego block, with four possible child nodes representing

the four corners (viewed sideways) of the block. The physics simulator was two-

dimensional, so the encoded genotypes were 2D, and the Lego blocks used were of

unit width but arbitrary length and height. Each parent-child joint encoded the amount

of overlap, which affects both the strength of the joint and the distance the child extends

beyond the parent.

Funes successfully evolved two-dimensional weight carrying structures; a bridge

with maximised length, a scaffold, and a crane with maximised weight lifting capac-

ity. In 1999 Funes reported successfully evolving a three-dimensional structure (a

weight bearing table) which was also transferred to reality by construction in Lego

(figure 6.22) [144].

In 1998 Ochoa evolved Lindenmayer systems with a genetic algorithm to create

two-dimensional tree like structures (figure 6.23) [322]. Parent selection is either in-

teractive, allowing for the selection of individuals and features that are aesthetically

interesting, or can be based on a fitness function that attempts to evaluate an individ-

ual’s ability to collect light based on important factors, such as the ability to grow

vertically and maintain stability whilst having a high degree of branching in order to

maximise exposed surface area.

In 1999 Rosenman presented an approach to evolving modular designs for two-

dimensional morphologies [367]. He was concerned with generating architectural floor

plans. The fitness function optimised for properties such as minimising overall wall

length, having some desired number of rooms, and maximising room size. The geno-

type was a control program for a “turtle” operating on a 2D substrate, with individual

genes specifying operations such as turning and moving.

Also in 1999 Taura released details of a system for creating 3D layouts for satellite

6.13. Evolving morphology 185

Figure 6.22: This bridge and crane were built with Lego bricks according to a two-

dimensional structure evolved in a genome. The three-dimensional table was later

evolved. The fitness functions evaluated length, in the case of the bridge, and weight

bearing capacity, in the cases of the crane and table.

Credit for image: Pablo Funes [143, 144]

Figure 6.23: Two-dimensional plant structures evolved using Lindenmayer systems.

Credit for image: Gabriela Ochoa [322]

186 Chapter 6. Evolution of specific genotypes

Figure 6.24: Cells divide and form shapes to pack the internals of a satellite.

Credit for image: Toshiharu Taura [433]

design [433]. Satellites are very space constrained, so designers must invest a lot of

time in packing modules into the available space. This is complicated by the fact

that many modules do not have preformed shapes; although their rough dimensions or

volume may be inferred from their function, the actual shape can be designed around

the shape of other components within the satellite. Taura designed a 3D biologically

based developmental encoding that simulated cell division, migration and expansion

into arbitrary morphologies (figure 6.24). The fitness function measured how well all

the components fit the known constraints, and minimised overlaps.

The evolutionary process attempted to create high fitness modular blocks of genes

and then utilise them as genetic building blocks. This was done by looking for se-

quences of genes that occur in individuals with an above average fitness, and then

adding or removing these sequences in samples, and re-testing to confirm the hypoth-

esis that the sequence increases fitness. If true, the sequence is frozen and made ac-

cessible to the evolutionary operators as a single block (just like an individual gene).

Rosenman observed that genome length increased linearly with phenotype complexity

when evolving hierarchy, versus exponentially with no hierarchy.

In 1999 Bentley evolved tessellating two-dimensional grid based morphologies [23].

He compared the performance of three different functions for morphogenesis, which

he termed external, explicit and implicit. The external genotype encoded a sequence

of 2D primitives which had been manually designed. The explicit encoding used a

genetic program tree which, starting with a seed cell, could be used to develop the phe-

notype. The implicit encoding used a cellular automaton with evolved rules; Bentley

actually claims that this is not a cellular automaton since there are no updates for white

cells, but clearly the updates are deterministic and based on neighbouring cell states,

so this is equivalent to a cellular automaton with a fixed transition rule for white cells.

Bentley showed that only the implicit embryogeny could evolve perfectly tessellating

6.13. Evolving morphology 187

Figure 6.25: Two-dimensional patterns are used to build larger tessellating morpholo-

gies to compare systems of developmental embryogeny. Each tile is shown along with

its larger pattern. Embryogenies from left: none, external, explicit, and implicit.

Credit for image: Peter Bentley [23]

tiles for all of the grid sizes under test. Figure 6.25 shows the evolved tiles and their

use in a larger tessellating pattern for each embryogeny type.

In 2000 Bentley demonstrated the first evolution of gliding morphologies [21]. The

evolved shapes might be more accurately described as “falling” morphologies, as, like

a sycamore seed, the fitness function is proportional to the length of time between an

object’s release from a fixed height, and it coming into contact with the floor. The

genotype encoded the shape of an arbitrarily sized polygon, which was printed, cut

out, and tested in the real world.

In 2001 Hemberg produced the first evolutionary system for 3D map Lindenmayer

systems [186]. Map Lindenmayer systems specify a graph based grammar that oper-

ates on a two-dimensional surface. This was extended to 3D to allow the production

of 3D surfaces, and the production rules encoded in a genotype. The fitness function

measured distance of the individual from a variety of user specified ideal values, for

a variety of properties, such as size, smoothness, respect of boundaries, amount of

surface division, and symmetry. Various surfaces were evolved. In 2004 Hemberg re-

ported that several designs had been physically manufactured, including a pneumatic

strawberry bar [188]. In 2006 the results of several architectural projects using Hem-

berg’s system were presented (figure 6.26) [187].

In 2001 Hornby also produced a Lindenmayer based evolutionary system for 3D

designs [198, 205]. He used it to evolve a variety of tables, and directly compared a

Lindenmayer encoding with a direct encoding, showing that the generative Linden-

mayer system produced populations with significantly higher fitness. Visually, there

was an obvious difference between the two encodings, with the Lindenmayer based

designs being highly regular and symmetrical (figure 6.27). The designs were trans-

ferred to reality using a 3D thermoplastic printer (as described on page 203). In 2005

Hornby compared different genotype representations for the table task and showed that

188 Chapter 6. Evolution of specific genotypes

Figure 6.26: An evolved architectural three-dimensional surface design (left), and an-

other with 90 nodes and 1000 joints that has been fabricated in reality (right).

Credit for image: Martin Hemberg [187]

the best encoding utilised and exploited modularity, regularity, and hierarchy [203].

In 2002 Ebner evolved 3D Lindenmayer system based plants [119]. Plants were

grown from an initial seed following the evolved production rules. The fitness func-

tion judged plants according to their light capturing qualities in order to encourage

development of a natural morphological form.

Also in 2002 Thomas used an interactive developmental evolutionary system to

evolve arbitrary 3D meshes which are texture mapped and rendered with genetically

determined features [438]. Each morphology is developed from an initial seed to which

various transformations are applied (figure 6.28). Interactive parent selection was used

since the evaluation of visually appealing characteristics is a subjective task.

In 2003 Ebner evolved the morphology of wind turbine blades [118]. A full 3D

simulation of a three blade wind turbine was implemented using the “Open Dynamics

Engine” physics simulator. The effect of wind was simulated using many particles

to which a force due to wind was applied at every time step, and collisions of these

particles with the surface of a turbine blade generated a small contact force which

helped drove the turbine around. The fitness function was proportional to the rotational

velocity of the turbine blades. A variety of blade designs were successfully evolved

(figure 6.29), the appearance of which is reminiscent of human designs.

In 2004 Miller evolved Cartesian genetic programs that develop in a two-dimensional

grid to form a French flag pattern [299]. The program is a digital circuit that maps in-

put chemical and cell signals to output chemical and growth signals. A “(1+4)-ES”

evolutionary strategy was used, in which one parent is chosen from a population of

five, four children are generated by mutation, and both parent and children are placed

into the next generation. Fitness is assessed by how closely the developed phenotype

6.13. Evolving morphology 189

Figure 6.27: Evolved table designs. Typical example of a direct encoding (top left), Lin-

denmayer encoding (top right), and a table with its thermoplastic counterpart (bottom).

Credit for image: Greg Hornby [198, 205]

Figure 6.28: A variety of transformations and visual effects are interactively evolved and

iteratively applied, beginning with a unit cube seed, to create smooth, textured, colourful

3D objects.

Credit for image: Dale Thomas [438]

190 Chapter 6. Evolution of specific genotypes

Figure 6.29: Turbine designs with blade morphologies evolved inside a physically real-

istic particle simulator.

Credit for image: Marc Ebner [118]

Figure 6.30: A human designed QHF antenna (left), and an evolved antenna (right).

The evolved design is not only radically different, but also performs better under a range

of criteria.

Credit for image: Jason D. Lohn [264, 265]

represents the French flag; the size is specific, so the cells must discover some method

of modulating growth once the correct size is reached.

In 2004 Lohn used a genetic algorithm to evolve the morphology of a radio antenna,

which was manufactured and used in a real space mission [264, 265]. The evolved an-

tenna has an unusual shape, which is radically different to a human designed antenna

(see figure 6.30 for a comparison). It was reported that the evolved antenna was supe-

rior to the human design in several ways; it had a higher gain, did not require matching

electrical circuitry, produced a more uniform signal across a wider range of elevation

angles (the angle of the satellite relative to the surface of the Earth), and required less

effort to design.

6.13. Evolving morphology 191

In 2005 Rieffel evolved “buildable” designs [360, 361]. He was concerned that

the manufacturability of designs in the real world was not usually considered when

designing genomes and developmental systems. Previous works had evolved recur-

sive, modular encodings capable of representing designs consisting of many different

components. However, the output of the developmental process was a complex design

with many interacting parts, and no assembly instructions. Considerable human time

was expended during the construction phase figuring out how to interlock the various

complicated 3D geometries of different parts in order to build the final design.

Rieffel emphasised two things that were necessary for ease of construction in the

real world. The first was to use a genotype encoding an “assembly plan”, which speci-

fies exactly how the object is to be built and assembled from its sub-components, rather

than just encoding the object itself. The second was to use “situated development”,

in which developmental morphogenesis occurs in the same area in which fitness is

evaluated. For example, in the previous work on evolving Lego based morphologies,

rather than have a Lindenmayer system manipulating the position and orientation of

Lego blocks in an abstract space, it would instead manipulate sequences of building

instructions, and the building phase should be carried out inside the same 3D physics

simulator used for fitness evaluation, with a small element of noise. These constraints

would ensure that there was a clear assembly path which could be followed in a 3D

world, constrained with real physics, and which would be robust to minor deviations.

Rieffel’s target application was automated 3D manufacturing machines. The de-

sign was carried out in a simulated 3D world (using Open Dynamics Engine), with

a “turtle” type developmental program that could move in the X and Z planes and

deposit scaffold or permanent bricks (scaffold bricks are automatically removed after

the building phase, before any fitness evaluation). A multiple-objection optimisation

function was used, which analysed the cross-section of the three-dimensional building

along the XZ plane inhabited by the turtle, and rewarded structures for providing a

large overall area, a large open area beneath or within the structure, a small assembly

plan, and for using fewer bricks. The evolutionary algorithm ended up creating arch-

type structures joined by a connecting roof, with a similar appearance to the temples

of classical Greek architecture.

In 2005 Preble evolved morphologies for two-dimensional photonic crystals [343].

Photonic crystals use nano-tunnels that act as filters to remove or amplify light at spe-

cific frequencies. This mechanism is used in the wings of butterflies to create a stun-

ning visual effect. Synthetic crystals can be grown by humans into any desired shape.

192 Chapter 6. Evolution of specific genotypes

However, calculating the necessary factors to end up with a final arrangement is a

difficult task, as the equations are complex with many interacting variables.

Preble used a genetic algorithm to evolve both bitmaps and tree structured geno-

types that can be used to created a phenotype lattice. The tree based genotype produced

higher fitness individuals, and in both cases performance was significantly better than

individuals created by random search. The best evolved individuals exceeded the best

human design by 12.5%. Analysis showed that the evolved individuals used a honey-

comb shape similar to that found in the photonic crystals of living creatures. Nature has

already optimised this arrangement through biological evolution, so it is unsurprising

that an attempt to replicate this process would end with a similar design.

In 2006 Stanley observed that, to date, the encoding of morphological genotypes

had failed to capture the essence of living lifeforms [410]. This was attributed to

several failings; the lack of limits to recursion producing overly fractal-like designs,

the existence of perfect regularity and symmetry which never occurs in nature, and the

inappropriate coding of modularity which allows bizarre mutations that would never

occur naturally. Stanley argued that systems of encoding should aim to capture, and be

indistinguishable from, natural biological characteristics.

In 2007 Stanley evolved “compositional pattern producing networks” (CPPN), which

are neural networks that can be used to construct two-dimensional grid based mor-

phologies [411]. An interactive genetic algorithm was used to evolve feed-forward

neural networks with the “neuro-evolution of augmenting topologies” (NEAT) algo-

rithm [409, 413]. Two-dimensional grayscale images can then be assembled a pixel at

a time by using the x,y coordinates of the pixel as inputs to the neural network, and

interpreting the single output as an intensity level. The function evaluated by the neural

network hence implicitly encodes the whole output image. A similar scheme was used

by Hastings to evolve neural networks which in turn produce 3D particle effects for

video games [182]. Figure 6.31 shows some of the evolved images.

CPPNs are markedly different from other methods of morphological construction.

No other system uses evolved neural networks to generate morphologies. Other sys-

tems tend to use developmental encodings that grow solutions starting from a single

seed, so no individual part of the final morphology can be constructed without con-

structing the whole individual. CPPNs instead allow the state of final cells to be eval-

uated individually.

The use of a grid based system is also unique; other systems utilise geometries

with cells, or other primitives, occupying points in 2D or 3D space. Instead, the CPPN

6.14. Evolving robot morphology and control 193

Figure 6.31: Despite being generated from a neural network in a pixel by pixel scan

these evolved images show features of regularity and modularity typical of develop-

mental encodings.

Credit for image: Kenneth O. Stanley [411]

system uses a fixed width grid, which has the disadvantages of being quite rigid, with a

fixed resolution, and quite difficult to simulate, since complex structures consisting of

many cubic primitives can form. The use of pixels or voxels means the computational

and storage requirements for the phenotype may be significantly increased over other

representations, even though the genotype is relatively compact.

An advantage of the CPPN system is that its use of neural networks expands the

range of evolutionary techniques available, allowing the large body of existing research

on neural network evolution to be utilised. The NEAT algorithm is one of the best

performing evolutionary algorithms for neural networks. It works by evolving both

weights and topology, and reproduction operators are designed to preserve the func-

tion of the parent network whilst allowing minor variations, i.e. to allow mutations to

augment the existing functionality, rather than disrupt it, providing a clear evolution-

ary path from small, unspecific networks, towards larger, more complex ones. It has

been proposed that it may be possible to evolve any kind of phenotype using NEAT,

although for many problems it is difficult to see how the continuous function calculated

by the neural network could be transformed into a valid phenotype.

6.14 Evolving robot morphology and control

The argument has been made by several authors that the combined evolution of body

and brain allows the genetic algorithm more flexibility in the selection of working

solutions, and allows good solutions to exploit the synergy between control and mor-

phology [50, 67, 257, 321]. This synergy is more likely to arise if both the brain and

194 Chapter 6. Evolution of specific genotypes

morphology can adapt simultaneously, utilising an evolutionary path that allows many

small adaptations to be taken in concert. An analysis of exactly how this synergy oc-

curs concludes that co-evolution constructs extra-dimensional bypasses in the solution

fitness space that allows the search to move through regions between fitness peaks that

would not have previously been accessible [39].

The DNA of living creatures contains genes that code for the construction of both

the body and brain. Thus from nature we have a proof by existence that it is possible

for body and brain to be evolved together to reach human levels of intelligence. It

is unlikely that the evolution of a brain for a pre-existing fully formed human body

would succeed; the space of input sensory data and output actuators is enormous, and it

would be a computationally intractable task to randomly search the space of controller

mappings between input and output to find a successful match. In contrast, evolution

starting from simple models allows both control and morphology to adapt to each other,

and enables the hierarchical and modular composition of building blocks which narrow

the search space.

Living creatures display a tight coupling between morphology and control. Many

specific behavioural traits controlled by the brain are only made possible when the

morphology has specific corresponding features. The morphology of living creatures

can perform a variety of computational functions [332], which suggests that it would

be inappropriate to evolve morphology in isolation from the control system, or vice

versa. The adaptation of morphology through evolution can also work to reshape the

search space and fitness landscape, making the evolutionary process more efficient and

likely to succeed [363].

There are two approaches to the evolution of virtual creatures [261]. One is to

provide some kind of existing solution, or partial solution, and allow the genetic algo-

rithm to adjust morphological parameters and evolve a control system. This tends to be

viewed as optimisation. The alternative is “open-ended synthesis”, where solutions are

evolved from scratch, and the user has no particular solution in mind when the genetic

algorithm is deployed.

6.14.1 Timeline

Several researchers have co-evolved robot control systems and morphologies to create

simulated, and in some cases real, robotic systems. Note that this timeline is not in

a precise order; some attempt has been made to keep threads of research by the same

6.14. Evolving robot morphology and control 195

Figure 6.32: An agent in a grid world created by development of an initial seed with a

boolean network genome, with different nodes coding for cellular and neural develop-

ment. This agent was manually designed and then optimised with a genetic algorithm.

Credit for image: Frank Dellaert and Randall Beer [98]

authors sequential in order to increase readability.

In 1994 Dellaert and Beer released a technical report detailing their work on the

co-evolution of body and brain for autonomous agents in a 2D world [98]. They im-

plemented a developmental environment based on the simulation of gene regulatory

networks by evolved boolean networks. Starting from an initial seed, the develop-

ment of a cell was determined by the functioning of the boolean network. Nodes in

the boolean network represent the synthesis of different molecules. Threshold lev-

els of molecules determine when the cell undergoes mitosis, differentiation, inter-cell

signalling, and the growth of neural connections.

Dellaert and Beer showed that their system could express complex morphologies

by hand crafting a robot and neural network design (figure 6.32), and then showing

that a genetic algorithm could successfully optimise it. At this time their attempts to

evolve complete agents from scratch were unsuccessful, although they succeeded two

years later [99].

Later in 1994 Sims presented his work on the evolution of morphology and control

for creatures inside a simulated 3D world (figure 6.33) [397, 398]. Sims used a single

genome for both the brain and body, and managed to successfully evolve creatures

from scratch that performed a variety of tasks. This was the first work to combine

evolution of morphology and control in three dimensions.

Sims used a developmental coding for the genotype. The body was represented as a

cyclic graph, with each node specifying the construction of a body part. One body part

was randomly chosen as the root node, which was used as the initial seed for growing

the rest of the body. During morphogenesis the graph was unrolled, starting from the

196 Chapter 6. Evolution of specific genotypes

Figure 6.33: Sims’ original work produced creatures with evolved control networks and

bodies that could swim (top left), jump (right), and walk (bottom).

Credit for image: Karl Sims [397]

root node, and following all paths, in order to remove cycles and convert the graph to a

tree. This tree was then be converted into a sequence of geometrical primitives (in this

case, cuboids) linked with joints, which imposed movement constraints on the pairs of

bodies they connected (figure 6.34).

The evolved control system consisted of a neural network for each body part, with

a limited amount of connectivity between the networks of neighbouring body parts.

The formation of a central “brain” was encouraged by creating a single network which

could link to any of the localised body part networks. The neural network model was

not the classic sum-and-fire used by other works, instead each node could perform one

of several mathematical functions, or could generate periodic waveforms of various

shapes at different frequencies. This gave the evolutionary process the ability to easily

generate networks with oscillating outputs, which underlie cyclic joint movements,

and therefore could be expected to hasten the development of successful agents.

Sims used his own physics simulator based on a Runge-Kutta integrator. The fit-

ness of creatures was evaluated based on their performance on several tasks, including

movement across land (maximising distance travelled), swimming (where the bodies

are subject to reduced gravity and viscous drag), jumping (maximising instantaneous

height), light following (with appropriate sensor), and a game of “block grabbing”,

where two creatures were placed into an arena, opposing each other with a block be-

tween them. The creatures gained points for touching the block, and were penalised

when their opponent touched the block.

Creatures were successfully evolved for all of the tasks. The creatures, affec-

tionately termed Blockies, could move, swim, jump, sense light, and fight. The co-

6.14. Evolving robot morphology and control 197

Figure 6.34: A morphogenesis process for body part graphs. Each edge is followed,

starting from the root, in order to build the phenotype. Nodes map to individual body

parts. The genotype combined features of modularity, reuse and symmetry that were

later shown to be advantageous to evolutionary success.

Credit for image: Karl Sims [397]

evolutionary block grabbers evolved strategies to simultaneously gain possession of

the block and shield it from the other agent, much like a rugby player.

Sims’s novel work had an inspirational effect on the field of co-evolutionary robotics,

which has been recognised in the subsequent work of others [60, 276, 295, 348, 393,

436]. In particular, his use of 3D, and the publishing of short rendered movies of the

evolved creatures was unique at the time, and gave a powerful visual emphasis to his

achievements.

In 1995 Ventrella presented his system for evolving “funny animated figures” (fig-

ure 6.35) [465]. These figures, which were initially evolved in 2D and then 3D, have

stick like bodies connected by multiple degree of freedom joints. There are two control

systems, one for bodies with fixed numbers of joints, and one for bodies with variable

numbers. The former use sine wave generators connected to each joint, with the fre-

quency, amplitude and phase offset being evolved. Since Ventrella wanted to use a

fixed size genome the latter control system, having varying number of joints, uses a

parametric sine wave series generator, with the parameters for this generator being

evolved.

In 1996 Lee co-evolved parameters of the morphology of a wheeled robot (body

size, wheel radius, and wheel base), along with a genetic programming based control

198 Chapter 6. Evolution of specific genotypes

Figure 6.35: Examples of several virtual creatures evolved for locomotion. Each body

is evolved from a tree topology genotype, and joints are directly controlled by sine wave

generators.

Credit for image: Jeffrey Ventrella [465]

system [257]. The robot was simulated in a 2D world. The robot was equipped with

infra-red sensors, and was evaluated on an object avoidance task. He demonstrated

successful co-evolution of the genetic program and morphological parameters. The

morphological parameters were then varied, showing that the genetic algorithm had

found an optimal body for the control system, and that they had been intrinsically

linked by the evolutionary process.

Also in 1996 Cliff evolved sensory-motor morphologies and neural control for 2D

circular robots in simulation [72]. Two populations were co-evolved in a pursuit and

evasion game. It was shown that the evolution of each species acted as a powerful force

on the other, and that the evolution of innovative strategies within one species would

be quickly counteracted by the other.

In 1999 Komosinski first presented the beginnings of his “Framsticks” evolutionary

system [239,243]. Like Sims’s work, it allowed the user to evolve both the morphology

and neural network based control system of virtual creatures (figure 6.36). The system

also provides a morphology editor, which a human designer can use to handcraft a

robot morphology, with sensors and muscle actuators. A neural network control system

can be evolved following the development of the morphology.

“Framsticks” morphology is based on straight sticks connected with elastic joints.

The simulated physics bodies and the joints occupy the same points in space, at the

spherical ends of each stick. The elasticity of the joints provides some element of mor-

phological computation by stretching and dampening movements due to instantaneous

6.14. Evolving robot morphology and control 199

Figure 6.36: Virtual creatures with evolved morphology and neural control in the Fram-

sticks world.

Credit for image: Maciej Komosinski [239, 240, 243]

forces. There are various models of sensor and motor neuron which interact with the

morphology. Visualisation of the various sensors is possible as they are rendered as a

differently patterned or shaped spherical stick-end.

The physics simulator, “Mechastick”, was written specifically for Framsticks, and

had the usual movement, gravity, and friction models for land, and fluid drag and re-

sistance models for water. Unusually for 3D physics based simulations, the simulator

allowed closed loops to be made in the morphology, as opposed to the usual tree struc-

tures.

The neural networks were not traditional models; the nodes could perform the stan-

dard sigmoid of the weighted sum of inputs function, but could also generate sine

waves, random noise, compute series difference, and pass through signals with arbi-

trary delays.

Sensory perception was via gyroscopic receptors, distance sensors focused on spe-

cific objects, smell, and energy source (or food) sensors. The energy source sensors

are necessary to enable virtual world simulations, where many different agents com-

pete against each other to obtain energy, with physical activities having a cost in terms

of energy expenditure [240]. Smell sensors allow agents to discriminate between other

agents, and between different classes (families, or ecological niches) of agent. It is

possible to set up an environment in which robots can fight and kill each other, with

the bodies of dead robots releasing energy, thus providing an evolutionary incentive

towards survival of the fittest.

Three basic genotype encodings were implemented [240]. The basic direct encod-

ing, known as “simul”, is simply a list of body parts and their attributes. There is a

one-to-one mapping between genotype body parts and phenotype body parts, so it can

200 Chapter 6. Evolution of specific genotypes

Figure 6.37: Passive Framsticks agents evolved to maximise static height, and an

automatically generated phylogenetic tree, showing the common ancestry of different

agents.

Credit for image: Maciej Komosinski [241, 242]

represent any possible phenotype in the world. The recurrent direct encoding “recur”

is the same, except that body part attributes can be reused by different body parts.

Finally, the indirect developmental encoding “devel” supports the reuse of body part

modules, which necessitates a recursive developmental process.

These encodings were directly compared on three fitness tasks (passive height,

active height, and velocity) in 2001 [242]. It was shown that the best individuals for the

passive and active height tasks were those with the developmental encoding, although

the direct recurrent encoding beat it on the velocity task.

In 2003 Komosinski presented a method for the development of fuzzy controllers

for the simulated agents, and a method for automatically clustering similar genotypes

into phylogenetic trees (figure 6.37) [241].

In 2000 Bongard developed a system of 3D morphological and neural evolution

(figure 6.38) [34]. This system was unique in using large numbers of small spheres,

connected with both moving and static joints, in order to construct larger morphologi-

cal features. Many morphological evolutionary systems are limited to relatively small

numbers of physics bodies, as the computational requirements of simulating intercon-

nected bodies increase non-linearly, but apparently this was not a problem for this

simulator.

6.14. Evolving robot morphology and control 201

Figure 6.38: From top left: a transparent agent with embedded neural network, a block

pusher, and an agent with biologically plausible morphogenesis.

Credit for image: Josh Bongard and Daniel Bisig [34, 38]

Bongard’s system was used to compare the importance of enforced symmetry in the

development of morphologies and neural connections by evaluating path following and

metabolic activity for a locomotive task. He showed that symmetry was an important

factor in these activities; asymmetric agents were slower, less efficient, and less capable

of following a straight path. In 2002 he used the same system to show that agents

from successful evolutionary runs were more likely to have modular genetic regulatory

networks than agents from unsuccessful runs, suggesting that genetic modularity is a

beneficial trait for evolutionary development [37].

In 2003 Bongard used a more biologically realistic morphogenesis process to evolve

agents for a block pushing task (figure 6.38) [40]. He also showed (perhaps unsurpris-

ingly) that similar, but not identical, genotypes that diverge early in the developmental

process have larger behavioural and phenotypic differences than those that diverge

later, suggesting that earlier mutations are more significant. The same year, Bongard

showed that his biologically based system could evolve genotypes that rely on environ-

mental factors in order to differentiate and self-organise cells during development [38].

Analysis of gene distribution in the evolved creatures showed separation between genes

responsible for morphology and neural network control, suggesting development of

body brain separation and a degree of canalisation.

202 Chapter 6. Evolution of specific genotypes

Figure 6.39: Crossing the reality gap with evolved control and morphology (left) was

heavily constrained by manufacturability (right) in 1999.

Credit for image: Jordan Pollack [338]

In 1999 Pollack et al. briefly mentioned, in a paper on general 3D simulation and

evolutionary techniques, that they were working on simulation of buildable robots and

coevolution of dynamic controllers, with transfer to reality being one of the stated

goals [338]. This would be a significant advance - although people had constructed

evolved static morphologies in the real world, no-one had successfully transferred an

agent with both evolved morphology and control. The main reason for this was the

difficulty in building arbitrary robot designs in the real world, although Pollack noted

that even Sims’s 1994 work on coevolution had yet to be reproduced due to the lack of

a versatile and widely available 3D physics simulator. Pollack’s proposed designs of

both the simulated and real robots were incredibly simple, being highly constrained by

manufacturability (figure 6.39).

In 2000 Ray and Taylor both reported that they had independently reimplemented

Sims’s work on evolving virtual creatures [348, 435]. Ray had approached the prob-

lem from the position of creating artificial art, and had therefore made the selection of

parents interactive so that human artists could select for behavioural or morphological

features that they found interesting. Directly linking the outputs of neural networks

to control morphological features like colour made the simulated creatures more vi-

sually stimulating (figure 6.40). Taylor and Massey made only insignificant changes

to Sims’s design, such as using cylindrical rather than cuboid primitives to construct

the morphology. They claimed that the differences between their work and Sims’s

was “more technical than scientific”, but Miconi would later claim that this was an

incomplete implementation of Sims’s work [295]).

In 2000 Lipson and Pollack presented their “genetically organized lifelike electro-

mechanics” (GOLEM) system that enabled evolved designs to be transferred to real-

6.14. Evolving robot morphology and control 203

Figure 6.40: Aesthetically evolved virtual pets. Both morphology and control were sub-

ject to human preferential selection via an interactive evolutionary process.

Credit for image: Thomas S. Ray [348]

ity [262, 340]. Creatures were evolved in simulation with standard genetic algorithms.

Neural networks were small, sigmoid, feed-forward designs. Morphologies were con-

structed from a set of parts including linear actuators and straight cylindrical bars.

Joints could be fixed for creating composite structures, or ball-and-socket allowing ro-

tation. The innovation here was in designing a set of phenotype building blocks that

could be easily manufactured in the real world using a thermoplastic 3D printer.

Thermoplastic 3D printers are used for rapid prototyping in various fields of design.

Thermoplastic is a special material that becomes liquid and deformable when heated,

and brittle and hard when cooled. The printers work by melting the thermoplastic,

and then depositing it layer by layer through a precision controlled nozzle in a manner

similar to an inkjet printer. 3D objects can be directly printed, and even complex

structures, such as ball and socket joints, can be easily manufactured.

The printer used in this project was manufactured by Stratasys Inc. and can print

any 3D shape within a 8× 8× 12 inch volume [339]. Research in the area of 3D

printing has great promise; the “Fab@Home” project provides open source designs for

hardware, software, and objects, and researchers have reported successful automated

manufacture of complex parts, including batteries and actuators [274].

In the GOLEM project, whole robot morphologies were printed as a single plas-

tic object. Linear actuator insertion points were printed as thin struts which could be

pushed out by hand and replaced with snap-in motorised actuators. The transfer of

these robots to reality was successful. The real robots had the appearance and be-

haviour of the simulated ones (see figure 6.41 for a comparison). The only concession

made was to add noise to the simulator in order to evolve robustness to variation. The

neural network controller was simulated on a standard PIC micro-controller attached

to the robot.

204 Chapter 6. Evolution of specific genotypes

Figure 6.41: Various GOLEM simulated phenotypes and their real world thermoplastic

counterparts.

Credit for image: Hod Lipson and Jordon Pollack [262]

Successful transfer to reality in this case may be surprising to some given the lim-

itations of the physics simulation engine, which only simulated quasi-static motion.

This means that all objects in the simulator must be statically stable, and must always

be in contact with the ground. This model is quite restrictive, although it is used in

studies of robotic motion due to the ability to mathematically analyse the equations of

motion.

Statically stable movements appear unnatural to a human observer. For example, in

biped robots statically stable controllers always keep a foot on the ground, and ensure

that the other foot is precisely placed in order to balance the robot at all times. At any

point the motion of the robot could be frozen and it would not fall over. The robot is

unable to fall through periods of instability as humans do when they walk naturally.

The successful transfer to reality in this case shows that statically stable simulation

was a sufficient minimalist abstraction as defined by Jakobi [215, 216]. On the other

hand, the simulator constraint may well have biased the search towards creatures that

are statically stable at all times, which may have had the beneficial effect of eliminating

a huge area of the search space where locomotion is more difficult.

In 2001 Hornby and Pollack presented their results from co-evolution experiments

on creatures constructed from interconnected straight lines with simple non-networked

joint oscillators [204, 205]. Like Pollack’s work in 2000, the simulator only simulated

statically stable movements, but unlike most physics simulators it was capable of simu-

lating massive numbers of bodies in complex interconnected hierarchies (figure 6.42).

They used the simulator to compare a direct genotype encoding of the morphology

and neural networks with one based on Lindenmayer systems. Previously, Linden-

6.14. Evolving robot morphology and control 205

Figure 6.42: Various creatures known as “Genobots” created by a Lindenmayer based

development system. Note the symmetry and feature repetition reminiscent of biology.

Credit for image: Greg Hornby and Jordon Pollack [200, 204, 205]

mayer developmental encoding systems had been used to evolve morphological struc-

ture (section 6.13), but this was the first time they had been used for development of

both morphology and control.

The dynamical control system consisted of individual oscillators connected to each

joint. The oscillation frequency and phase offset were evolved, and there was no cen-

tralised control or communication between oscillators, and no sensory feedback.

Hornby and Pollack’s work showed that Lindenmayer systems could successfully

be used to evolve control and morphology of virtual creatures. The set of rewriting

rules (the grammar) was artificially evolved. Construction of the morphology and con-

trol system was by interpreting the final string as a sequence of instructions to be car-

ried out by a 3D “turtle”. The instruction set incorporated a set of registers representing

various morphological features, and an operating stack that allowed the current context

of the turtle to be pushed and popped, so that branches could form in the developmental

process.

The same year (2001) Hornby reported that they had successfully evolved a crea-

ture with a Lindenmayer based genotype and transferred it to reality [201]. The parts

that the creature was constructed from constrain the movement to be two-dimensional,

so that the path of the creature is a straight line (figure 6.43). The details of the geno-

type representation and dimensionality preserving mutation operators are contained in

a later research summary [261].

A more detailed description of the instruction set and development process, along

with some analysis of the benefits of the Lindenmayer encoding versus a direct en-

coding were published in 2002 [202]. Hornby showed that mutations in Lindenmayer

encoded genotypes generally had a larger effect on the phenotype then mutations in di-

rectly encoded genotypes, and that these effects were more likely to be beneficial. The

206 Chapter 6. Evolution of specific genotypes

Figure 6.43: Two-dimensional creatures, known as “Tinkerbots”, move along a straight

line in a virtual environment. The optimised designs are transferred to the real world by

construction from modular motorised blocks.

Credit for image: Greg Hornby, Hod Lipson and Jordon Pollack [204, 341]

Figure 6.44: Neural controllers and weight distributions were evolved for these biped

walkers. Note how the evolved weight distribution changes the appearance of the mor-

phology.

Credit for image: Chandana Paul and Josh Bongard [328]

conclusion was that the developmental encoding reshapes and structures the search

space, biasing the search to areas that contain features reminiscent of good solutions.

The co-evolution of morphology and control can be used to optimise attributes of a

morphology within some constraints, e.g. whilst maintaining a desired shape. In 2001

Paul and Bongard showed that the mass distribution of a set of biped legs, including

hips and a body connecting them, could be simultaneously evolved along with the

neural control system [328]. Biped walking is still considered a difficult task, and

this was the first time that co-evolution had been used in solving it, even though the

morphology was not evolved from scratch. The genotype directly encoded the neural

weights and mass of each body part. It was shown that an evolutionary process in

which small changes were made at mutation time produced fitter individuals than one

with larger changes. Figure 6.44 shows some of the evolved walkers.

In 2002 Endo published very similar work, also optimising characteristics of a pre-

defined biped morphology whilst simultaneously evolving a walking controller from

scratch [123, 124]. In this case, limb lengths, hip lengths, and servo geometries were

6.14. Evolving robot morphology and control 207

optimised. The parameters for the initial design were taken from a real humanoid robot

which the same team had previously built and released as an open source design [485].

Distance travelled and energy efficiency were both used as fitness functions. Simu-

lated biped walking was successfully evolved using networks of sigmoid neurons, and

networks of oscillating functions.

In 2003 Shim presented his work on evolving flying creatures (figure 6.45) [390] .

The morphology consisted of a tree structure with the main body being the root, and

wing segments as children. Body length, wing position, angular range of movement,

and wing lengths were evolved. Each wing segment was rigid, with simulation be-

ing carried out by the Open Dynamics Engine physics engine. The forces generated

by wing flapping were approximated by a function based on wing velocity and area.

Proprioceptory sensors provided feedback of joint angles and gyroscope levels to the

neural network. Control networks, responsible for generating flapping wing motion,

consisted of nodes that generated sine, cosine, and saw-tooth waveforms, and others

that performed general arithmetic.

In 2004 Shim demonstrated evolution of underwater creatures and path-following

behaviour (figure 6.45) [392, 393]. The creatures were constructed from capped cylin-

ders, and fluid dynamics equations for resistance and drag of capped cylinder geome-

tries were used to generate forces which were applied directly to the simulated dynam-

ics bodies. To generate path following behaviour a fitness function was used which

calculated the squared sum of deviations of body position from a pre-determined path

in 3D space. Hence, unlike many previous neural networks in research, which only

generated simple motor oscillations repeated on a scale of seconds, Shim’s controllers

were forced to evolve dynamics that not only controlled oscillating movements over a

scale of seconds, but also had to orchestrate precise changes in these movements over

several minutes in order to effect shifts in trajectory.

In 2006 Shim extended his earlier work on flying creatures, using a parameterised

genetic algorithm to evolve various species differentiated by range of allowable mass,

and then analysed the evolved morphologies and stability of the neural control sys-

tems [391]. The evolved creatures of different mass displayed different strategies for

flight, whilst creatures with similar mass had similar strategies. The evolved crea-

tures displayed similarities in appearance and motion with biological species of simi-

lar mass, suggesting that the evolutionary process had managed to capture the essential

trade-offs between mass, size, and maneuverability.

In 2003 Vaughan evolved passive biped walking (figure 6.46) [463]. Similar to Paul

208 Chapter 6. Evolution of specific genotypes

Figure 6.45: Creatures evolved for flying, swimming, and 3D path following.

Credit for image: Yoon-Sik Shim [390]

and Bongard’s work in 2001, the basic structure of a biped was fixed, whilst morpho-

logical parameters such as limb lengths and weight distribution were evolved alongside

a neural network controller. The initial evolution of a downhill passive walker was con-

sidered to be a more viable strategy than evolution of powered walking. Staged evo-

lution could then be used to later add power. An analogy was drawn with the Wright

brothers and initial developments in human understanding of flight, where designers

first used unpowered gliders projected from a height in order to analyse and adapt the

dynamics of aircraft as a prerequisite towards powered flight.

The neural network topology was fixed, weights and time constants were evolved.

The initial task of the neural network was simply to initiate passive downhill walking.

After evolving this, powered downhill walking was evolved with the neural network

driving ankle motors. At this point sensory input was added to the network, beginning

with low weight values in order to minimise disruption. The surface of the ground was

slowly raised through many generations until it was level. This resulted in successful

powered walking across a flat surface. They also managed to evolve dynamic mecha-

nisms for adapting to the constant noise typically experienced by a semi-disabled body.

In 2004 Vaughan showed that proprioceptive feedback of only hip, knee, and ankle

velocities into a feed forward network with a single hidden layer, could generate accel-

erations and rotations of hips, knees, and ankles sufficient for walking [461]. This was

significant, as it showed that central pattern generators formed by recurrent networks

are not necessary for the complex biped walking task. It was also shown that robust-

6.14. Evolving robot morphology and control 209

Figure 6.46: Staged evolution was used to evolve passive downhill, and then powered,

biped walking. The image on the right shows a walker with distinct head and body parts;

the volume of the boxes illustrates the distribution of body mass.

Credit for image: Eric D. Vaughan [462, 463]

ness to external forces and internal phenotype developmental errors could be evolved

by varying those factors during fitness evaluations, proving that an otherwise identi-

cal control system could adapt to different bodies based only on the altered sensory

feedback.

The body was extended by adding a torso and head, and then evolving for the ability

to carry increasing weights [462]. A different method was used to power walking,

in which a constant force is applied to the robot during simulation, pushing it either

forwards or backwards. The leg dynamics and control system evolved to turn this force

into stable walking motion. The evolutionary pressure of increasing the weight to be

carried demonstrated the efficiency of the evolved walker; for a 200% increase in total

body weight, walking required only 51% more energy. A summary of the work was

published later [180].

In 2004 Giuly reimplemented the work of Sims, and added a Lindenmayer system

genotype encoding [158]. The software is available as an open source tool chain,

making this the first freely available system for evolution of morphology and control.

In 2004 Bongard evolved a robot that itself contained an internal model of its body

which it could use to predict the outcome of its actions. To do this he co-evolved both a

morphology estimate of the real morphology, and a neural control system (figure 6.47)

in what he termed an “inverse evolutionary algorithm” [33, 35, 263]. Unlike the other

research presented in this section, the actual morphology here was fixed, what was

evolved was an estimate of the weight distribution of the actual morphology. This

estimated morphology was then used in fitness evaluations of the neural control system,

210 Chapter 6. Evolution of specific genotypes

Figure 6.47: This robot evolved an internal model of its own body which was then used

to evolve an adaptive controller. Both models are updated in real-time to compensate

for damage.

Credit for image: Josh Bongard [35, 263]

which directly compared actual sensory readings to expected ones generated by the

internal model, and selected for the most accurate models.

Thus there was a disconnect between the evolution of the neural control, performed

on an estimate of the morphology, and the actual morphology. It was shown that the

estimate correctly converged towards the actual physical characteristics of the robot.

Using an estimated model of the real morphology has the advantage of allowing the

evolutionary process to adapt to variability in the morphology. It was shown that the

control system could adapt to various types and severity of physical damage.

In 2005 Miconi and Channon reimplemented Sims’s work, but using a standard

neural model rather than wave generators, and with some other minor differences [295,

297, 298]. They claimed that this was the first complete reimplementation of Sims’s

work, discounting the Taylor and Massey reimplementation in 2000 as being “incom-

plete”, and discounting Ray’s reimplementation because evolution was driven by aes-

thetics rather than locomotion fitness tasks [295]. The major difference between this

implementation and Sims’s was the use of sigmoid neurons rather than waveform gen-

erators to control the virtual creatures. The system was used to evolve creatures that

displayed locomoting and box grabbing behaviours. The source code for this imple-

mentation was released as open source.

In 2005 Ventrella evolved 2D agents known as “Swimbots” [466]. Unlike most of

the research in this section, this work used a virtual life system, with agents living in the

same world, gaining energy from consuming food, and mating to produce offspring.

6.15. Evolving modular robots 211

Ventrella showed that there was a delicate balance between morphological function

and sexual attractiveness. Agent attraction was evolved for various parameters such

as colour and size, but agent morphologies were constrained by the requirements of

gathering food and reproducing.

In 2006 Chaumont reported a reimplementation of Sims’s work and used it to

evolve virtual catapults [60, 61]. The genotype was constrained to have a small block

initially fixed to the evolved creature. Some time after the start of the simulation this

joint was destroyed, leaving the block free to travel away from the creature. The fitness

function measured the distance between the creature and the block after a few seconds

had elapsed. Thus evolutionary pressure was to evolve an agent that produced some

rapid motion to accelerate the block to a high velocity coinciding with the destruction

of the connecting joint.

In 2007 Lassabe et al. reimplemented Sims’s work, but using evolved waveform

generators with a classifier system to select some waveform given a pattern of input

stimulus [255]. A randomly generated global table of 1000 patterns was initialised.

The genome consisted of the morphology of a creature and a set of mappings from

specific input stimulus to sequences of indices into the pattern table. When a particular

stimulus was classified the corresponding pattern sequence would be composed into a

single waveform and set to a joint motor. This is an interesting approach since it allows

composition of novel waveforms, and sensory inputs can be used to drive different

behaviours. The evolved behaviours were locomotion across uneven surfaces and up

steps, and cooperative block pushing.

In 2008 Miconi evolved virtual creatures in an artificial life world [296]. The crea-

tures used the same physics morphologies and controllers as his previous 2005 work

(which had reimplemented Sims’s “Blockies”). Creatures were able to gather energy,

injure each other, and reproduce by cloning. Running out of energy resulted in death.

The virtual world was a large sphere known as the “Evosphere” (figure 6.48).

6.15 Evolving modular robots

Modular robotics follows the concept that complete agent morphologies can be as-

sembled from generic modules that are capable of performing a variety of actions, but

will be specialised when placed into specific positions in the morphology. The first

co-evolution of a modular robotic based morphology and control system was carried

out by Marbach in 2004 (figure 6.49) [276]. Each module is a cube, and has a stan-

212 Chapter 6. Evolution of specific genotypes

Figure 6.48: 3D virtual creatures evolved in an artificial life world. Each creature has

an energy level which can be increased by gathering food, and which is decreased

through activities such as moving, reproducing and fighting, which have associated

energy costs.

Credit for image: Thomas Miconi [296]

dardised joint and flat connection surface, enabling any number of identical modules

to be connected together to form a complex composite robot.

In 2005 von Haller presented his work on evolved underwater modular robotics

derived from Marbach’s system, known as “Neubots” (figure 6.49) [468, 469]. Each

module is a cube, with a magnetic connector and hinge joint on each face, producing 6

degrees of joint freedom per module. Movement of each module is produced by eight

water jets, resulting in 4 degree of freedom movement. Neural oscillators were evolved

first, with the frequency being controlled by an input signal. Then morphology and

control of single composite robots built from many interacting modules was evolved

for the locomotion task. It was shown that composite underwater robots could be

successfully evolved, and that the input signal to the oscillator did indeed cause the

creature to speed up or slow down as hypothesised.

6.16 Summary

This chapter has described past research where solution genotypes have been evolved

using genetic algorithms. There are two basic approaches to mapping a problem and

6.16. Summary 213

Figure 6.49: These modular robots are assembled from homogeneous blocks. To-

gether, they act as a composite unit displaying emergent locomotion. The bottom right

image is of a “Neubot” underwater swimmer.

Credit for image: Daniel Marbach and Bartelemy von Haller [276, 468, 469]

its solutions onto a genome. One is to use a binary string genome, map the parameters

of the problem onto bit strings, and concatenate them to produce the full genome.

Generic binary string reproduction operators can be used to crossover and mutate the

genome without requiring knowledge of the problem domain. The other approach

is to use a problem specific genome, usually some form of directed graph, and to

devise reproduction operators that are applied directly to this abstract structure. It has

been argued that the binary string approach is a more faithful analogy to biological

reproduction, and that it avoids inadvertently biasing the search, but it has also been

argued that higher level abstractions enable more powerful operators to be used, which

can positively bias the search and hence accelerate evolution.

Many different types of artificial evolution have been presented. The field of ar-

tificial evolution is huge, so the examples given have focussed on specific sub-fields

that are relevant to this thesis. The idea that evolved individuals should show some

emergent properties is important to many of the areas surveyed; it is not enough that

individual nodes of a neural network can individually sense and control specific bits

of a body, they must communicate and work with other nodes in order to display an

orchestrated and coordinated global behaviour.

214 Chapter 6. Evolution of specific genotypes

Methods and results of evolving different types of neural networks (continuous,

spiking, reduced) and other types of continuous and discrete network (e.g. electronic

circuits) have been presented, including some targeted at robot control applications.

This thesis will compare the performance of some continuous and discrete network

controllers in robot control applications, and previous research suggests that problem

specific encodings may accelerate evolution, and that use of a developmental encoding

will result in individuals that display more reuse of components, more symmetry and

higher fitness.

Developmental encodings have been highly successful in nature, enabling, for ex-

ample, mammal embryos to grow from a single cell to an advanced multicellular or-

ganism with over 10 trillion cells, whilst at the same time the developmental process

is robust in the face of a varied environment. Each embryo experiences a unique en-

vironment in the womb, with slightly different levels of various molecular species,

and individual cells must be robust to both intra-cell and inter-cell variances. Despite

this, the process is robust within a regular environment, with major developmental er-

rors occurring infrequently. It has even been shown that the process is robust to some

major changes in environment, such a lack of gravity resulting in weightlessness; ex-

periments on weightless embryogenic development have resulted in viable offspring

for several species, including one mammal (mice) [473].

Both continuous and spiking neural networks have been evolved to control 3D

robots. Some previous works are particularly relevant to this thesis. One is that of

Floreano, who evolved neural networks with 8-bit integer node dynamics and spiking

communications to control a wheeled robot carrying out a wall avoidance task. This

was the equivalent of a 256-state quantised model. Continuous versions of the same

controller failed to evolve, although this was almost certainly due to the limited genome

that did not allow varying connection weights, regardless no comparison was possible.

Sims’s work on evolving 3D creatures and network controllers has been influential

in the field, and is directly relevant to this thesis, as is the work of all who followed

him in evolving both the morphology and network controllers of whole creatures. The

evolution of pattern generators has a direct application to the evolution of locomoting

creatures, as pattern generators are necessary to drive cyclic motions that in turn drive

muscle and motor actuators. The successful evolution of modular robots, and the suc-

cess of modular composition in biological life, particularly when viewed at the cellular

level, suggest that modular robots, and a genome that allows reuse of components, is

beneficial to evolutionary success.

6.16. Summary 215

One notable point is that the bulk of work done so far on evolutionary robotics has

assumed that continuous neural models are necessary. Given that many target appli-

cations of these controllers involve mobile robotics platforms, running from battery

power, it is perhaps surprising that little research has been done to evolve simpler

models, or to compare and contrast the performance of models which vary in their

computational requirements.

The common use of PCs for neural network modelling provides a platform capable

of simulating loosely connected networks of thousands of neurons in real-time with

floating-point arithmetic. This will consume a large amount of power (typically over

150 Watts for sustained operation), which in turn will dissipate a large amount of heat.

The computational resources available on the latest 64-bit multi-core PC processors,

which possess integrated 128-bit SSE vector processing units, are also much greater

than those in typical embedded robotics platforms, which often rely on low-power

CPUs capable only of integer arithmetic.

The availability of relatively powerful PCs, connected to mains power supplies,

and their ease of use, has perhaps led many researchers to overlook the idea of evolv-

ing alternative neural control systems that are based on digital logic and optimised for

low power and low computational resource environments. Similarly, the use of mains

powered PCs based on the von Neumann architecture, with large DRAM based memo-

ries for storing neural networks, has provided little incentive to experiment with neural

control systems that use non-synchronous timing models, since they would only sub-

stantially reduce power consumption or enable greater scalability when deployed on

alternative, perhaps custom built, architectures.

Chapter 7

Overview so far

This thesis investigates whether digital, quantised neural models utilising reduced pre-

cision arithmetic can be used for tasks where evolved floating-point neural networks

are currently dominant. The experiments that will be described in the following chap-

ters are the evolution of a neural network to control a pole balancing robot (which is a

traditional AI control problem), and the combined evolution of a complete robot mor-

phology and control system. These tasks have been chosen as they represent common

tasks pursued by previous researchers. The evolution of a combined morphology and

control system was desired as it has been claimed previously by other researchers that

this allows a synergistic evolution to take place, not only by making the evolution itself

more likely to be successful, but also by making the evolved controllers more likely to

be of a higher fitness. It also represents a more complex and interesting problem than

pole balancing.

The aim of these experiments is to see if it is possible for reduced neural networks

to control a robot, and if so, to quantify the change in performance between models

with varying levels of complexity. In order to do this, the type of neural network to be

evolved in different experiment replicates will be varied between different implemen-

tations of some biological models (sigmoid, spike response model, integrate-and-fire,

Beer’s continuous time recurrent neuron, models from Taga and Ekeberg). Quantised

versions of each model will be implemented, so that the effect of changing the quanti-

sation (and arithmetic precision) of each model can be tested experimentally.

In order to carry out the experiments, custom software is required. The software

must define some schema to represent neural networks, and include a simulator to

simulate the operation of a given network. Both of the experimental setups will be

performed within a simulated 3D world, and this will require use of a physics simu-

217

218 Chapter 7. Overview so far

lator to calculate the location and motion of objects within the world, and also a 3D

visualisation program to enable the user to observe the simulations. Software will be

required to perform the process of a genetic algorithm, which represents the genome

being evolved using some schema, creatures various populations, calls an evaluation

function to test the fitness of the genotypes, and performs reproduction to generate the

subsequent populations based on the fitness values assigned to the current one.

Chapter 8

Software design

The previous chapters have introduced genetic algorithms, and their use in the evolu-

tion of various types of neural networks and 3D morphologies. Successfully carrying

out such experiments requires the development of a large amount of custom software.

This chapter describes the functionality of the software developed for this thesis, in-

cluding genotype codings and phenotype simulators, and justifies various design deci-

sions made along the way.

8.1 Creature morphology

The robot morphologies were to be evolved using a genetic algorithm. This meant

that a robot phenotype had to be designed, in which the morphology and control sys-

tem would be constructed from a suitable set of building blocks. These blocks had

to be connectable, tractably simulatable, and versatile enough to offer the chance of

evolving sophisticated morphologies. Hypothetically, any kind of geometric primitive

which allows size to be varied should be able to meet these requirements. Sims used

a cuboid geometric primitive to construct his Blockies and produced a range of diverse

creatures [397]. Komosinski used spheres connected by springy lines for the crea-

tures in his Framsticks world [243]. Taylor and Massey used cylindrical primitives to

reproduce Sims’s work [436].

After some consideration it was decided to use capped cylinders (figure 8.1) as

the basic geometric building block. These geometry objects consist of a cylinder with

hemisphere caps on both ends. This has several advantages. A joint joining two con-

nected cylinders is placed in the centre of the two connected end caps, so if desired

it would be possible to implement collision detection between the two body parts by

219

220 Chapter 8. Software design

Figure 8.1: A “capped cylinder” is the basic geometric primitive from which morpholo-

gies are constructed. It is a three-dimensional cylinder geometry with hemisphere caps

at the end. Cylinders are connected together to construct multi-cylinder morphologies.

The centre point for these joints is the centre of the hypothetical sphere that would be

described were the hemisphere caps to be rotated. To eliminate flicker when animated,

these hemisphere caps are simply rendered as a single sphere. Top from left: 2D side

view of the capped cylinder primitive, two capped cylinders jointed together, and a solid

3D render (with perspective and shading) of a capped cylinder. Bottom: A wireframe

3D render of a complete four cylinder morphology.

8.2. Morphogenesis 221

calculating collisions between the cylinders and ignoring the permanently interpene-

trating hemispheres (this idea, whilst more biologically faithful, was later abandoned

after it was discovered that it too heavily constrained the morphology and trial evolu-

tionary runs failed to produce any working creatures). The end caps are hemispheres

which means that their rotation through and around the same point describes a sphere.

This sphere can be rendered instead of rendering the, possibly many, hemisphere end

caps. A single sphere has the advantage of always providing smooth and consistent an-

imation at the joint. The use of hemisphere end caps provides for more realistic curved

contacts with the ground plane, as most animals have smooth, curved digits rather than

the sharp angles reminiscent of cuboids and some other geometric primitives.

Each capped cylinder has parameters and attributes which define its location in 3D

space, its rotation, its length, and details of the joint connecting it to the rest of the

robot. These parameters are configured from data in the genotype during morphogen-

esis.

8.2 Morphogenesis

Morphogenesis is the process of converting the genotype into a system of geometric

bodies, joints, and constraints that can be simulated using the Open Dynamics En-

gine physics simulator. Figure 8.2 shows some example mappings from genotype to

phenotype. The genome is a directed graph, which possibly contains cycles, and the

phenotype is a tree of capped cylinders. The cylinders in the phenotype are connected

by joints with either 1, 2 or 3 degrees of freedom.

The simulator does not allow geometry cycles to occur, as the constraints are un-

solvable, so the genotype graph has to be unrolled and converted into a tree structure

before it can be simulated. The unrolling process is simple, and was inspired by that

used by Sims [397,398]. Starting at a root node (which is an evolvable parameter), the

process will conduct a “depth-first search” to find paths through the graph. Each vis-

ited node is used as a genotype template to create a capped cylinder in the phenotype,

with the edges of the genotype graph directing how the phenotype cylinders are to be

connected. In order to prevent infinite loops when faced with cycles in the genotype

graph, each genotype node specifies a recursion limit, which is the maximum number

of times that the node can be visited in any particular walk of the graph. The recursion

limit is an upper bound on the number of times that a node can be visited during a

single walk, not on the total number of instantiations of a particular node in the phe-

222 Chapter 8. Software design

Figure 8.2: Example genotype to phenotype mappings. A directed graph is unrolled

by conducting a walk of the graph, starting from the root node, and using every visited

node as a template to create a hierarchical tree of capped cylinders. A recursion limit

(specified as rl = 3 for the second example, unspecified for the others) restricts the

number of times that a particular node can be mapped onto a cylinder in any particular

walk of the graph.

8.3. Evolution of the morphology 223

notype, so varying paths that visit the same genotype node will cause the node to be

instantiated more than once in the phenotype. A depth-first walk is terminated when it

either reaches a node with no outgoing edges, or where the edges only go to previously

visited nodes which have already reached their recursion limit. At this point, the node

will be considered a leaf node and the search process will back-track to the parent and

carry on just like a normal depth-first search.

8.3 Evolution of the morphology

Each cylindrical body part has some evolvable parameters which affect where it is

placed, how it is connected to its parent cylinder, and the way in which it is simulated.

These parameters are part of the genome — each node of the directed graph genotype

has its own copy of these parameters. The default mutation rate was set to 5% based on

pilot runs; this means that the probability of any given node, edge, or parameter being

mutated during genotype reproduction was 5%. The parameters and their valid value

domains are:
Parameter Valid values Description

scale (0.2, 5.0] Cylinder length relative to parent

recursion limit {0, 1, 2} Upper limit on node use when unrolling

joint {hinge, universal, ball} 1, 2, or 3 DOF joint

axis1 (x,y,0) Axis of joint — unit vector on the x,y plane

rotation Quaternion Rotation relative to parent

lostop {−∞, (−π,0]} Lower limit of first axis on joint

lostop2 (−π/2, 0] Lower limit of second axis on joint

lostop3 {−∞, (−π, 0]} Lower limit of third axis on joint

histop {∞, [0, π)} Upper limit angle of first axis on joint

histop2 [0, π/2) Upper limit angle of second axis on joint

histop3 {∞, [0, π)} Upper limit angle of third axis on joint
A more detailed explanation of these parameters follows:

scale Figure 8.3. The scale is a specification of the length of the cylinder relative to

the length of its parent cylinder. Only the root cylinder specifies an absolute

length. Note that it is possible for the same genotype node to serve as a template

for phenotype cylinders with different absolute lengths if the genotype node has

incoming edges from two or more other nodes.

224 Chapter 8. Software design

recursion limit Figure 8.4. The recursion limit specifies an upper limit on the num-

ber of times a genotype node can be instantiated as a cylinder in the phenotype

during any given path of the “depth first search” through the graph.

joint Figure 8.6. Specifies the joint type. ODE has three joint types — hinge, univer-

sal, and ball, with 1, 2, and 3 degrees of freedom respectively.

axis1 Figures 8.6 and 8.7. Specifies the base axis of rotation for the joint and motor

of this cylinder. This parameter is ignored for hinge joints (a hinge joint has

only one valid axis because the positions of the two cylinders and the hinge

itself are fixed). For a universal joint, this parameter describes the first axis

that the joint will rotate around. The second axis is calculated automatically —

it must be perpendicular to the first axis, so we calculate axis1×(0,0,1). Axes

are not required to be specified for a ball joint as it has 3 degrees of freedom.

However, the motor model allows the user to set desired velocities around the

axes independently, and so this does require specifying the axes. Again, this

only requires a single vector parameter to be specified in the genotype, as the

other two axes can be calculated given the position and rotation of the cylinders.

rotation Figure 8.5. Rotation is specified relative to the parent cylinder.

histop and lostop Figure 8.8. Upper and lower limits on the joint’s angular motion.

There are three pairs of stop limits — one for each potential axis. Hinge joints

will only use one pair of stops, universal joints will use two pairs, and ball joints

will use all three pairs of stop limits.

The actual topology of the genotype morphology graph is subject to mutation by

the genetic algorithm, with mutation operators randomly adding and removing edges

and nodes. The connections between the morphology and the neural networks are also

subject to evolution by the genetic algorithm, with both connections from sensors to

neural network nodes and from neural network nodes to motors being randomly added,

removed and changed.

8.4 Example morphologies

Figure 8.9 shows some example phenotype morphologies evolved using the genetic

algorithm.

8.5. Neurogenesis 225

Figure 8.3: The “scale” parameter determines length of the cylinder. In this example

the scale is 2 making the child twice the length of the parent.

8.5 Neurogenesis

Each capped cylinder has an associated neural network (see figure 8.10) which can re-

ceive inputs from sensors indicating contact and joint angles. Each capped cylinder is

only directly associated with the joint that connects it to its parent cylinder, where “par-

ent” means the cylinder that is the direct and unique parent in the phenotype tree. The

neural network of a cylinder can generate output signals that drive an angular motor

on the joint between the cylinder and its parent. The joint may have 1, 2, or 3 degrees

of freedom, and the motor will drive angular motion around these axes independently.

The motor associated with a cylinder can only drive the joint with the parent cylinder,

meaning that every cylinder apart from the root will have only one motor associated

with it (the root will have no motor associated with it, as it has no parent node).

226 Chapter 8. Software design

Figure 8.4: The “recursion limit” parameter specifies how many times a genotype node

can be instantiated as a phenotype cylinder in a single depth first walk of the graph. It

also prevents infinite loops. It can interact with the scale parameter to alter the length

of child cylinders relative to the parent cylinder.

8.5. Neurogenesis 227

Figure 8.5: The “rotation” parameter specifies rotation of the cylinder relative to the

parent cylinder. It can interact with cycles in the genotype graph (if allowed by the

“recursion limits”) to create repeated sequences of similar cylinders, each rotated and

scaled with respect to each their immediate parent cylinder.

228 Chapter 8. Software design

Figure 8.6: Joint types available in the Open Dynamics Engine physics simulator. From

top: hinge, universal and ball. The hinge joint allows rotation about 1 degree of freedom

and requires the axis of rotation to be specified. The universal joint allows rotation about

2 degrees of freedom. It has two axis that must be perpendicular. The ball joint has no

axes as it has 3 degrees of freedom and so should be able to rotate freely. However,

the motor model drives rotation around axes independently and so still requires that 3

axes be specified when driving a ball joint.

Credit for image: Russell Smith [404]

8.5. Neurogenesis 229

Figure 8.7: The “axis1” parameter specifies the base axis of rotation about the joint.

The motor attached to the joint drives the axes independently. Only one parameter

needs to be specified as any other axes must be perpendicular to this one and can be

computed automatically.

230 Chapter 8. Software design

Figure 8.8: Stop limits constrain the joint angle to be within some specific range. Each

joint has one, two or three pairs of stop limits corresponding to its degrees of freedom.

This example shows two cylinders joined by a hinge, which enables them to rotate with

respect to one another through one degree of freedom.

8.5. Neurogenesis 231

Figure 8.9: These example phenotype morphologies are intended to give the reader a

flavour of the type of robot morphologies that are likely to evolve. They show repetition

and symmetry reminiscent of biological creatures, indicating that the morphogenesis

process is quite adaptable.

232
C

hapter8.
S

oftw
are

design

Figure 8.10: A robot phenotype showing morphology and neural control. Each capped cylinder has its own neural network, which in this

example is fully connected. Each cylinder has a 1, 2 or 3 DOF joint with its parent, with a corresponding motor driven by one neural output

node for each axis (green edges from neural networks to morphology). Sensors for contact or joint angle can send values to the neural network

(green edges from morphology to neural networks). There may be direct connections between the neural networks of connected cylinders.

The root cylinder (red, top right) has no parent, and so no motor joint or angle sensors (its neural network does exist however and could be

connected to the networks of its child cylinders).

8.6. Neural network topologies 233

It is possible for the neural networks of neighbouring cylinders (where one is the

parent or child of the other) to have a direct connection from a node of the neural

network of one cylinder to a node of the neural network of the other cylinder. It is

also possible for sensory and motor connections to exist between neighbouring cylin-

ders. It was hoped that allowed communication between neighbours in this way would

encourage greater global synchronisation to emerge.

Data to generate the sensory connections must be stored in the genotype. The

possibility of just randomly creating connections after the graph had been unrolled

was considered, but this would likely lead to unreproducible controllers. The unrolling

process converts a graph into a tree, which significantly changes the topology, so it

is not possible to directly store phenotype connections in the genotype. In order to

generate evolvable reproducible connections in the phenotype, the unrolling process

follows an iterative method of generating an unrolled tree from the current working

graph, then creating one connection in this tree, and back-annotating the results to the

genotype. This is done as we have no way to figure out what the eventual connections

may be without constructing the phenotype, so we construct the phenotype, figure

out the connections, and then back-annotate them to the genotype. Note that this is not

Lamarckism; the phenotype generated during this process is never used in a simulation,

and is immediately destroyed once the reproduction process is complete. Once a valid

list of connections has been generated in the genotype, it is subject to evolution by the

genetic algorithm, with new connections being added, and existing connections being

removed or mutated.

8.6 Neural network topologies

All of the neural networks of a particular robot will have the same topology and neuron

type. The terms used here to describe network geometry and connectivity are as used

by Wolfram to describe the architectures of cellular automata in [480]. Each network

has a possible geometrical configuration (1D, 2D, 3D, or none) which defines how

nodes within a size n neighbourhood will be connected together. A neighbourhood is

the set of nodes that influence the update of a given node. For example, if a network

has a size 5 neighbourhood, this means that each node has 4 inputs, so its update is

influenced by 5 nodes including itself. The degree of connectivity of a network is

synonymous with the neighbourhood size.

In a 2D geometry the nodes are placed into a fixed 2D grid. The neighbourhood

234 Chapter 8. Software design

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

Von NeumannMoore

Figure 8.11: Moore topology versus von Neumann topology. The neighbourhood size

is 9 for the Moore topology, and 5 for the von Neumann topology. The centre cell is pat-

terned, the neighbour cells that receive connections from the centre cell are black, and

the non-neighbour cells (those that are not connected to the centre cell) are white. The

Moore neighbourhood has a characteristic square shape. The von Neumann neigh-

bourhood has a characteristic cross shape. Both of these topologies can be easily

extended to 3D.

topology can be “Moore” or “von Neumann” (terms from in [480]). Moore neighbour-

hoods are square whilst von Neumann neighbourhoods are cross shaped (figure 8.11).

The concepts of von Neumann and Moore neighbourhoods can be extended to 3D by

simply repeated the pattern of connectivity in the third dimension.

Figure 8.12 shows some example neighbourhoods for given network geometries.

Note that this figure only shows the incoming connectivity for the single neuron marked

with X — this connectivity would be repeated for every neuron, but plotting this on

the graph would make the example unreadable.

The network does not have to use a geometric layout. In the absence of a geomet-

ric configuration, the nodes can be fully connected or randomly connected. A fully

connected topology can be used to effectively simulate any other topology by setting

the connection weights to zero. Fully connected networks do not tend to scale well, as

the number of edges and their parameters increases factorially. A randomly connected

network allows any pair of nodes to be connected together and hence has no underlying

geometry.

8.6. Neural network topologies 235

Figure 8.12: The neighbourhood of a neural node is the set of nodes that directly influ-

ence its update, including the node itself. Here the node that will be updated is marked

with an X , the neighbourhood nodes are green, and other non-neighbourhood nodes

are white. Edges are plotted only from neighbouring nodes to the node that would be

updated — in reality, this pattern of connectivity would be repeated for every node in

the graph, but plotting this here would make the diagram unreadable.

236 Chapter 8. Software design

8.7 Neuron quantisation

In order to conduct experiments using neural network models it was necessary to im-

plement those models in a programming language. The neuron models described in

section 3.4 — the sigmoid, Beer, Taga, and Ekeberg continuous models, the spiking

integrate-and-fire and spike response models, and a simple sine wave generator —

were all implemented in the Python programming language. For each of these mod-

els, a quantised version of the model was devised, in which any floating-point (i.e.

continuous) registers or arithmetic were replaced with equivalents taking or operating

upon values with discrete levels. The quantised models were parameterised to allow

the number of quantisation levels to be specified, rather than being fixed.

The implementation provided an abstract framework for constructing and simulat-

ing neural networks, where a neural network could, if necessary, arbitrarily combine

different neuron types. At this stage, specific neural networks for creating specific

robot morphologies were not created. Specific neural network instances would later be

created by evolution using the genetic algorithm framework, which could manipulate

neurons, neuron parameters, connections between neurons, and connection weights.

In the case of a controller for a fixed robot, the neural network would be evolved as a

single genome (see experiments in chapter 10). In the case of a co-evolution experi-

ment, evolving both the controller and robot morphology together, the specific network

would be evolved together with a morphology as part of a combined genome (see ex-

periments in chapter 11).

An important point to note here is that any simulation carried out on a digital com-

puter is inherently digital, and 64-bit floating point registers are actually digital (the

values stored are rational), and not continuous. Hence, when we talk in this chapter

and others about “continuous” models, this is a reference to the mathematical model,

which is an idealisation. The implemented model that simulates this “continuous”

model actually specifies a minimum of 64-bit floating-point registers (IEEE standard

double), and in practice x86 processors were used, which possess 80-bit floating-point

arithmetic units internally (the 80-bit data type is an extended precision defined in

IEEE 754) [159]. In neural network research the use of standard x86 floating-point

units to simulate so-called “continuous” models is commonplace.

8.8. Evolution of the neural networks 237

8.8 Evolution of the neural networks

Neural networks are subject to evolution and optimisation by the genetic algorithm.

Mutation was the only implemented genetic operator. The default mutation proba-

bility was set to 5% based on pilot runs; this means that, during reproduction of a

genotype, the probability of a particular node, edge, or parameter being mutated was

5%. An elitist genetic algorithm was implemented, which preserves the top ranked (re-

producing) individuals in each generation. For an elitist genetic algorithm it makes no

sense to have children that are exact copies of their parents, since the parent genotype

will already be present in the next generation. To avoid this situation the reproduction

function enforced a minimum of one mutation in each child genotype.

Individual neurons had their parameter values mutated by replacement with either

a completely random value, or with one drawn from a Gaussian distribution centered

around the current value (for a description of the available neuron models and their pa-

rameters see section 3.4). The parameters subject to mutation by the genetic algorithm

for each neuron type were:

Sine generator Period, phase offset, amplitude. The period determines the frequency

of the sine wave. The amplitude determines the signal strength. The phase offset

determines how the signal generated by this particular node is offset relative to

0 radians, in effect providing a global synchronisation scheme for all of the sine

wave generating nodes in a robot’s nervous system.

Beer’s CTRNN Adaptation rate, bias. The adaptation rate determines how quickly

the neuron state changes, the bias determines an input threshold for the neu-

ron (this is the same as having an extra connection coming from a hypothetical

neuron with constant 1 output).

Integrate-and-fire Adaptation rate, bias, firing threshold. Adaptation rate and bias

are as in Beer’s CTRNN model. The firing threshold is the value that the neuron’s

internal state must exceed before the neuron fires.

Spike response model Firing threshold. The other parameters (synaptic delay, mem-

brane time constant and synapse time constant) were fixed to the recommended

values for this model (see p.55).

Taga None. The Taga model has a published set of parameter values associated with

it, and these were used as specified (see p.58).

238 Chapter 8. Software design

Ekeberg Neuron type, and whether the neuron is inhibitory or excitatory. The neuron

type is an integer which identifies a set of parameters associated with the Ekeberg

model (see p.59). The actual value of the integer corresponds to the row in the

published parameter table. The Ekeberg model is unique in having inhibition or

excitation associated with a neuron rather than with individual connections, so

this property is evolved.

Multi-value logical This neuron model relies on a lookup table to retrieve output val-

ues, so mutation consists of just randomly replacing entries in the lookup table.

The network structure is also subject to evolution and optimisation by the genetic

algorithm, although to what degree depends on the type of network:

• The edges between nodes are weighted in every network type apart from those

using logical nodes (because it does not make sense to “weight” a bit-string). The

weights on these connections are mutated by random replacement with either a

completely random value or one drawn from a Gaussian distribution centered on

the current value.

• The connections themselves are fixed in all of the connectivity schemes apart

from “random networks” (see p.233 for connectivity schemes). A random net-

work will have a constant k value that specifies the number of incoming edges

that each node has. In the initial population, k incoming edges are created for

each node and randomly connected to source nodes. During mutation the ge-

netic algorithm can add, remove and swap edge connections between neurons,

but it must maintain the property that every neuron has k inputs. The parameter

k is non-evolvable (it can be specified as part of the initial configuration of an

evolutionary run, but is not subject to change by the genetic algorithm itself).

8.9 The software

The software developed for this project consists of thousands of lines of code. The

main functionality is split between the genetic algorithm based evolutionary system,

3D physics simulator, an OpenGL based simulation renderer, and neural network simu-

lator. Python was chosen as the primary development language as it has a good reputa-

tion for rapid prototyping, and wrappers for the underlying C/C++ libraries used were

8.9. The software 239

already available. Despite its relative slowness as an interpreted language, early profil-

ing showed that simulations spent the vast majority of their time inside the C physics

simulator calls, and hence the alternative, to use a compiled language less amenable to

rapid prototyping, was unlikely to pay off.

Genetic algorithms are known to be computationally intensive. This is due to the

many thousands of fitness evaluations necessary for each evolutionary run; in a typical

experiment a population of 100 individuals may be evaluated over 1000 generations

of evolution, resulting in 100,000 fitness evaluations. To produce statistically valid

results, it may be necessary to repeat this experiment 10 times, in turn producing a

million fitness evaluations. Using a steady-state genetic algorithm may reduce the

required number of evaluations by narrowing the search space, although almost all

previous evolutionary systems for morphology and control have used a generational

algorithm, with the exception of [298]. With a steady-state genetic algorithm there is

no “next generation”; instead, a new individual is created from the existing population

through crossover or mutation, this individual is tested, and if it is better than any of

the existing members of the population one will be randomly chosen to be replaced.

This has lower memory requirements, since only one working copy of a new individual

needs to be stored, and produces a narrower search, since the new individual will only

be kept in the population if it performs better than any of the existing population. With

a generational generic algorithm each generation is replaced with the next regardless

of the fitness of the individuals in the new generation — it is simply assumed that the

fitness will improve over time — the exception to this being an elitist genetic algorithm,

in which some defined top percentage of the population will be copied unaltered into

the next generation.

The evaluation task is itself often computationally intensive. In this case, each fit-

ness evaluation consists of a fully realistic 3D physics based simulation of many bodies

interconnected with various joint constraints, and consideration of multiple collision

points along their connected geometries.

Each simulation needs to be run over an extended period of time for accurate es-

timation of the controller or individual under test; 30 virtual seconds is typical for

evolutionary robotics research. Using the above estimate of 1 million fitness evalu-

ations produces a total requirement to simulate 30 million virtual seconds. If (as a

very rough estimate) each virtual second corresponds on average to a single CPU time

second (which is not unreasonable given several year old hardware), this single exper-

iment would take 347.2 days of CPU time to complete. This is clearly unworkable

240 Chapter 8. Software design

within realistic time constraints, and therefore a distributed system must be utilised to

exploit the parallelism inherent within the evolutionary algorithm.

The systems architecture (what each PC connected to the network does) is shown

in figure 8.13. The object database ZEO is used to store populations, genomes, and

the fitness results from the evaluation function. The diagram shows the ZEO database

running on a single server. Numerous client PCs from a computational cluster can con-

nect to and access the ZEO server via the network. The user can start new evolutionary

runs with specific parameters by using control software running on their own PC. The

control software constructs a new population and pushes it and the associated genetic

algorithm parameters into the ZEO database. The computational cluster clients are

notified that there is new data, and will begin to run the distributed genetic algorithm,

fetching genomes, evaluating them, and committing the results back to the database.

The software (figure 8.14) actually deployed on each PC is a mixture of C, C++ and

Python, with appropriate wrappings for the C and C++ objects to make them accessible

from the Python core. Note that this diagram shows the software architecture of the

deployed software, whereas the previous diagram showed the systems architecture.

The software architecture consists of a logical abstraction of the complete software

suite which is distributed and installed on all of the computational cluster PCs and on

the user’s PC.

The front-end ev application has various command-line arguments that enable it to

be used to carry out many tasks, such as the creation of populations, specification of

genetic algorithm parameters, starting of the distributed genetic algorithm as a daemon

process (for running on the computational cluster PCs), running the evaluation func-

tion on specific chromosomes, plotting graphs of evolutionary statistics, and running

simulations and visualising the results in a 3D renderer. Individual simulations can

be carried out using any genotype from the database, and these can be viewed using

a custom OpenGL based renderer which allows the user to move about inside the 3D

world, and change various rendering parameters interactively (such as plotting axes of

rotation, endpoints, wire frame geometries, contact points etc.). The renderer can also

record JPEG images, and produce MPEG-4 encoded movies depicting the simulation

over time. The simulation engine allows various values to be recorded, such as the

values of individual neural states, sensory inputs, and motor outputs, and these can be

later plotted onto graphs.

It is important to ensure that the software functions correctly. It is well known that

seemingly trivial bugs in software can cause significant errors in the output, and hence

8.9. The software 241

Figure 8.13: Network architecture of the evolutionary system. A distributed cluster of

Linux based PCs is used to carry out the computationally intensive physics simulations.

The centralised object database stores genotype populations and fitness values from

evolutionary runs. A custom control application allows the user to configure and start

experiments.

242 Chapter 8. Software design

Figure 8.14: The software architecture of the evolutionary system. This shows the logi-

cal abstraction of the software suite into different modules with different functionalities.

The whole software suite is distributed and installed on every PC in the computational

cluster, and on any PCs that the user will use to control the evolutionary process.

8.9. The software 243

software must be well tested. In projects like this, that rely completely on the results

of simulation, there is no guarantee that the results are transferable to the real world,

although the success of similar evolutionary robotics projects shows that transference

is certainly possible. For more on the limits of testing see section 1.3 for a discussion

of reproducibility and other general testing problems, and section 9 for information on

the testing of neuron models.

In order to test the software over 200 units tests were developed; these test every-

thing from the instantiation and operation of a single neuron, to complete evolutionary

runs consisting of a number of individuals over several generations. Unit testing is a

standard software engineering methodology, and it is well recognised that units tests,

whilst useful, can only exercise a small number of paths through the software under

test — they do not (and can not) guarantee that a function is correct for all inputs.

They are devised by manual inspection of the source code, and attempting to devise

functions that will exercise blocks of code and functionality independently. These tests

were used for regression testing of the code under test — in practice, the code and the

test must function together, which implicitly exercises the tests. The test suite was run

after the source code was modified and before being checked in to a revision control

system in order to ensure that no bug regressions had been introduced by the recent

changes. It is widely recognised in the software industry that integrating a unit testing

regime with the development process generally leads to improved code reliability.

Although simulations and evolutionary runs have an element of randomness, this

randomness derives completely from an initial random seed, so that any particular

experimental result should be completely reproducible. With the current code, simu-

lations are 100% reproducible — the same seed and individual will always result in

the same fitness score, but due to the use of non-deterministic Python operators in

the evolutionary functions (such as iterating over dictionaries), complete evolutionary

runs will not be reproduced exactly. This small issue is fixable with some effort if

desired in future, and is highly unlikely to significantly affect the experimental results

presented here, since the results represent the aggregate data of many individual runs

— the non-deterministic operators will affect individual runs, but will just be another

randomised parameter that is essentially meaningless in the context of the entirety of

the experimental results.

244 Chapter 8. Software design

8.10 Simulated physics

There are two components to a physically accurate simulation — the dynamics simu-

lator and the collision detector. The “Open Dynamics Engine” (ODE) [404] physics

library was used to run simulations and perform collision detection. ODE simu-

lates rigid 3D physics with physically realistic movement, contact, and friction mod-

els. It was developed with fast simulation for real time video games in mind, which

means that there are a few known problems with accuracy (the manual warns that

simulations are not “industrial quality”). Despite this, it is widely used in evolution-

ary robotics research, for evolving morphologies [118, 359], evolving controllers for

fixed morphologies [9, 41, 44, 104, 163, 173, 281, 282, 363, 430, 431, 457, 493, 494],

evolving parametric morphologies with control [180, 461–463, 496], evolving mod-

ular robots [42, 276, 468, 469], evolving multi-agent emergent behaviour [280, 450],

evolving control and morphology [40, 60, 61, 295, 297, 390–393], and also for non-

evolutionary robotics [419, 420, 488]. It is also used as the physics back-end behind

the robot simulation package “Webots” [294], and the artificial life simulation envi-

ronment “Breve” [234].

Visual rendering was performed using a custom written OpenGL application. Al-

though a generic geometry rendering engine could have been used, the custom ap-

plication is specialised towards the task of displaying evolved creatures, and can plot

contacts and the axes of individual body parts, which was a great help while fixing

bugs and analysing simulation accuracy.

The dynamics simulator allows the user to create particles with mass in 3D space,

and apply forces to them. It uses a first order integrator to generate physically realistic

motions of the particles. Particles can be connected via joints to create articulated

bodies. The joints, which themselves occupy a point in 3D space, impose constraints

on the degrees of freedom of particles they connect. The joints available include ball

and socket, hinge, and universal, providing a range of possible behaviour.

The dynamics simulator is called with a step size parameter, which specifies the

time that will elapse during this step. A large step size produces unrealistic behaviour,

as the vector gradient for each body is constant over this time, and also inter-penetrations

will occur as it is not possible to perform collision detection until after the dynamics

step. Too small a step size is computationally intensive and will also produce unre-

alistic behaviour since the changes in particle positions will be small or non-existent,

which prevents the integrator from accurately calculating motion gradients. For con-

8.10. Simulated physics 245

venience, the step size used is usually the same as the rendering frequency, which for

high-end flicker-free animation is usually 50Hz or 60Hz; these exact numbers are a

legacy of the PAL and NTSC TV standards, which were in turn the result of research

on motion perception of the human visual system which found that a sequence of still

images displayed at these frequencies will be interpreted as continuous movement, so

the resulting animation appears to be realistic. An update frequency of 50Hz (20ms

step) has been commonly used for research carried out with the ODE physics engine,

and so it was decided to use the same frequency in this research.

The collision detector allows the programmer to associate geometric primitives,

such as cuboids and spheres, with particles. After the dynamics step the new positions

of the particles are known. The geometry of these particles can then be checked for in-

tersections, which indicate that a collision has taken place. To prevent the bodies from

passing through each other a contact constraint needs to be created for each collision,

applying an instant restitution velocity to both particles, so that after the next dynamics

step their geometric primitives will no longer intersect.

Geometric bodies are fashioned from different materials with different properties

(such as coefficients of friction and restitution). When a contact occurs the material

properties of the two colliding bodies are used to calculate appropriate friction and

restitution forces along some two-dimensional vector on the contact surface.

8.10.1 Collision detection

The robot was subject to standard gravity, so collision detection between the robot

and the ground plane was necessary to prevent the robot falling through the ground.

Collision detection was not performed between the cylinders that made up a creature’s

body. Since the capped ends of connected cylinders are centred on the same point

and the hemisphere caps rotate through the same spherical space there is no point in

performing collision detection between the actual caps of two connected cylinders be-

cause they would always be in contact. A system where the connected cylinders could

collide but the end caps could not was implemented, but pilot runs failed to evolve

any locomoting creatures — presumably not allowing body parts to interpenetrate too

heavily constrains the morphology for such a simple evolutionary system, although it

is possibly that with more work a morphology schema that disallows inter-penetrations

would be viable. This is not the only work evolving control and morphology that has

faced this issue — Sims’s work allowed connected parts to interpenetrate but not com-

246 Chapter 8. Software design

pletely rotate through each other [398]. Ray noted that he had experimented with two

different forms of collision detection, but that neither had produced satisfactory results,

and so he ran his experiments with the collision detection turned off [348]. Vaughan

also reported that in his evolved biped walker there was no collision detection between

the two legs [462].

8.11 Sensors and actuators

The simulated robot has motors on joints which enable it to move. These motors are

connected to outputs from the neural controller. The robot is capable of perceiving a

small amount of information about its environment. It has proprioception (information

about the body’s internal state) from sensing the angles of its limbs, and exteroception

(information about the world) from its spherical feet which can sense whether or not

they are in contact with the ground.

8.12 Motor models

Three different models were used for joint motors, two based on the Open Dynamics

Engine (ODE) internal motor model, and one based on directly applying a torque. The

ODE motor internally works by adding additional constraints to the physics simulation,

and allowing its “linear complementarity problem” (LCP) solver to work out a solution

minimising global constraint error (joints are also modelled as constraints).

For all motor models, the output of a neuron had to be converted into some value

to be input to the motor model. For continuous neuron models this simply involves

normalising the value. For spiking neuron models the issue is a bit more complex, as

the discrete spikes must be converted into a real value. Section 3.3 described several

explanations that have been put forward to explain how signals are coded in biological

networks, and how signals have been coded in previous research into synthetic neural

networks. The approach taken in this work was to normalise the internal state of the

output neuron. This avoids the question of how to decode the outgoing spike train. The

internal state is almost a continuous representation of the spikes anyway; if we assume

that the function of a spike train decoding process is to regenerate the internal state

of the transmitting neuron, then this would in effect be the perfect decoding function.

Such an assumption is not terribly unrealistic, and given that we have no explanation

8.12. Motor models 247

for how biological spikes trains are actually coded, this seems a reasonable approach

to take for the research in this thesis.

The first controller interpreted neural network output signals as the desired velocity

of the motor in the range 0 (reverse), 0.5 (off), and 1 (forward), i.e. the desired velocity

was scaled from [0,1] to [−V Max,+V max]. The actual rotational velocity of the joint

was constrained by the attached masses. A maximum force Fmax was specified, which

limited how quickly the motor could react to changes in the desired velocity. During

pilot runs it proved quite hard to evolve creatures using this model, presumably because

an oscillating velocity does not directly translate into oscillating movements.

The second motor model was a proportional derivative (PD) controller. Again the

signal was in the range [0,1], which is the output range of the simulated neurons. This

signal is scaled to the range [−π

4 ,
π

4] and used as the desired limb angle. The actual

desired velocity input to the internal motor is calculated as:

T = Kp(θd−θa)+Kd
d(θd−θa)

dt

where Kp is the proportional constant, θd is the desired angle, θa is the current an-

gle, and Kd is the derivative constant. The proportional and derivative constants were

experimented with by trial and error until values that generated realistic motion were

found.

The third controller was identical to the second, except that instead of specifying

a desired angle for the internal motor, an instantaneous torque was directly applied to

the joint at each time step. The proportional and derivative coefficients were again

chosen by trial and error. This controller worked successfully when unit tested against

pairs of bodies attached by hinge, universal, and ball joints, but when used in actual

evolutionary runs simulations quickly became unstable. The ODE manual warns that

this might happen when directly applying forces to joints, and recommends using the

internal motor model specifically for this reason.

8.12.1 Stimulus-response curves of PD motor controller

Motor controller stimulus-response curves show how the motor controller changes the

current angle of a joint to move it towards some desired angle, or in the terminology

of control theory, how the error is reduced (where error is defined as the difference

between the desired angle and the current angle). The joint can have either 1, 2, or 3

degrees of freedom, corresponding to the “hinge”, “universal” and “ball” joints of the

248 Chapter 8. Software design

Open Dynamics Engine simulator. The aim of these plots is to examine how quickly

the joint moves, whether or not the joint approaches the desired angle, and whether or

not the joint stabilises at the desired angle (as opposed to overshooting it, or oscillating

around it).

We are plotting the velocity based proportional derivative controller because pilot

runs showed it to be the most successful motor model in evolving creatures. The shape

of the response curve indicates the process the controller uses to approach the desired

joint angle — in this case, the curves should indicate aspects of proportional derivative

control, i.e. velocity will be higher when further away from the desired angle, and will

decrease rapidly upon approach, producing an initially quick correction of the error

that slows over time. Each simulation started from a static position. Standard gravity

was not simulated for this test.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3

−
2

−
1

0
1

2
3

Angular response of motorised hinge joint

Time (seconds)

A
ng

le
 (

ra
di

an
s)

desired
actual

The error (difference between desired angle and actual angle) of the hinge joint is

quickly corrected. The curve shows that the initial velocity is higher than later velocity.

No overshoot occurs.

8.12. Motor models 249

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3

−
2

−
1

0
1

2
3

Angular response of motorised universal joint

Time (seconds)

A
ng

le
 (

ra
di

an
s)

desired
actual

The error is quickly corrected in both axes of the universal joint. The curves are

almost identical to that of the hinge joint.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3

−
2

−
1

0
1

2
3

Angular response of motorised ball joint

Time (seconds)

A
ng

le
 (

ra
di

an
s)

desired
actual

The motor must correct the error along all three axes simultaneously when driving

a ball joint. The shape of the curves indicate that the motor controller is working as

expected. The response curve indicates that it is somewhat slower to correct the error

along the second axis of the ball joint (plotted as a green line). Attempting to increase

250 Chapter 8. Software design

the speed of the motor along this axis led to instability problems with the motor model,

which resulted in failure to correctly converge on the desired angles of all three axes,

so the model was left as is.

8.13 Physics simulation problems

There can be problems with both the accuracy and stability when modelling multi-

body dynamic agents with a physics simulator. The “open dynamics engine” converts

the user specified model into a series of constraints, and uses a “linear complementar-

ity problem” (LCP) solver to calculate updated positions for bodies with mass whilst

minimising constraint error.

The simulation of evolved agents can cause particular problems; unlike manually

designed robots, joints with conflicting constraints are more likely to occur, and de-

signs are more likely to be non-symmetric, and have unusual combinations of materials

with different mass, shape, size, and friction coefficients. All of this non-homogeneity

increases the probability of numerical error and instability.

Two values, in particular, trade off accuracy and stability. The “error reduction

parameter” (ERP) specifies the proportion of constraint error that is corrected in each

time step. The default is 0.1, meaning that one tenth of the error of each constraint will

be corrected. The “constraint force mixing” (CFM) parameter specifies the degree to

which a constraint can be violated (or the “hardness” of a constraint). The default is

0.1, which means the constraint can be violated by one tenth of the force necessary to

perfectly correct it. Allowing constraints to be soft like this increases the probability

of being able to find a state that simultaneously satisfies all of the given constraints and

reduces the chance of the simulation “blowing up” due to a singularity.

The physical simulation of evolved dynamic morphologies is subject to numeri-

cal instability which can cause the simulation to behave in an unrealistic way. One

symptom of this is the “explosion” effect originally noted by Sims [397,398], in which

numerical instability causes the simulation to “blow up”; this can be caused by a singu-

larity, opposing constraints, very high velocities, and constraints between bodies with

large differences in mass. Sometimes the solver adds force to bodies, but this results

in a greater violation of the constraints, so the solver attempts to use more force, and

a feedback loop is created which will eventually force the simulated bodies to explode

away from their composite centre of mass.

Another effect noted by Sims was that evolution tended to exploit inaccuracies in

8.13. Physics simulation problems 251

the simulation in order to create higher fitness populations. For example, unrestrained

rotation of two bodies about their connecting joint, in the absence of joint friction, will

cause the bodies to gain rotational velocity relative to each other. There are no upper

limits on this velocity, and due to simulation inaccuracy this rotation can cause the

composite centre of mass of the inter-connected bodies to move in 3D space. Hence

rotation without friction can be utilised to directly transfer energy from motor activity

to body velocity. This can be exploited by evolution; Sims observed the development

of agents which would jump, spin in the air where they are subject to no friction, gather

velocity, and be projected flying through the air.

Different solutions have been used to control the “explosion” effect. Many fitness

evaluation frameworks are programmed to report that simulations in which the bodies

achieve velocities above some threshold are invalid, such as [60, 61, 457, 468]. This

was the approach originally taken in this research. However, it proved ineffective at

controlling the exploitation of the instability. When a threshold value was used the

evolutionary algorithm would tend towards creatures that lie just below the threshold,

allowing it to exploit the instabilities to generate physical movements, and yet not

display the physical explosion effect. When the threshold was slightly higher, this

tendency could be observed visually; agents would explode, but not attain significantly

high velocities, and then the bodies would almost instantly re-converge. This behaviour

would repeat in a never ending cycle.

This behaviour was also observed by Ray, who described it as it as generating mo-

tion “greater than any creature in the series up to this point” . He selected an exploding

creature for reproduction, and then evolved it through successive generations to temper

the explosion. It was “perfectly balanced on the edge between exploding and pulling

back together. Soon after birth, the flat panels begin shaking. . . the whole collection of

parts scatter and begin spinning as if in a whirlwind. When the scattered parts have be-

come completely disordered, the flat panels may begin shaking again, and the shaking

somehow pulls the parts back into their original positions” [348].

In this research it proved impossible to find a threshold that worked in all cases.

Even when the system was restricted only to velocities that could realistically be gener-

ated by the motors, evolution would still exploit violated constraints between the many

bodies, joints, and geometric primitives that make up a creature. This was proven by

using a simulation model in which the motors were inactive. The creatures, previously

evolved with active motors, still displayed the same locomotion behaviour, thus show-

ing that the motors were not responsible for the creature’s movements. This left only

252 Chapter 8. Software design

the violated constraints as a source of energy in the system.

In order to minimise this effect a “relax” phase was added to the beginning of each

simulation. For some number of seconds the motors are inactive. During this time the

agent will fall due to gravity and impact the ground. Since it has no motor activity, it

should fall and come to a complete rest on the flat surface. If it does not come to rest,

then movement is being generated by violated constraints, and the simulator returns an

invalid genotype value to the evolutionary algorithm, which in turn heavily penalises

the genotype responsible. With this system, it is still possible for a valid genotype to

result in constraint violations, but the evolutionary search is now biased and will avoid

these areas of the solution space.

It is interesting that other researchers have not noted and corrected for this effect.

Either their morphologies are tightly constrained and their physics simulators do not

have violated constraints, which seems unlikely when evolving arbitrary morpholo-

gies, or the effect has been present but has gone unnoticed, which may be more likely

— unless the motor models are completely deactivated this effect is relatively indistin-

guishable from movement generated by the neural control system at velocities below

the explosion threshold.

One of the factors contributing to the explosion problem was that air resistance

to moving geometries, and dry friction in joints, were not simulated. Force could be

added to rotating bodies until their velocities became too high and the robot would spin

itself apart. This was due to the lack of restraints on the angles of joints — they could

freely rotate about 360◦. To try and counteract this evolvable stop limits were added to

each joint axis, preventing the joint angle from exceeding an upper and lower limit. It

was still possible for the evolved limit to be infinite, which effectively removed it, so

the problem was not totally fixed.

In the end the evolvable limits were removed, and angular stop limits became

mandatory for all joints. This revealed another problem; the stop limits are treated

as an ordinary constraint by the solver, so they can be violated in order to reduce the

global error. Once a stop limit had been sufficiently violated the body would pass the

limiting point, and that limit would no longer apply. Again, as there was an evolution-

ary pressure towards movement, this would result in the evolution of individuals with

joints rotating through 360◦.

According to the ODE manual (and comments in the source code), motor force

acting against a stop limit within the same joint should be detected and nullified. How-

ever, this does not appear to be the case when an angular motor is attached to a joint,

8.13. Physics simulation problems 253

even when the limit is applied to the motor and not joint. To fix this the software had to

be changed to ensure that the desired velocity given to the motor model falls to zero as

the limit is approached, thus preventing the motor model from applying force against

the limit. Despite this, the system could still evolve creatures which violated the stop

constraints. Shifting the stop limits to ±π radians, so that they were at the same point,

rather than symmetrical about this point, seemed to bring more stability (symmetrical

stops about π radians seemed to introduce some unstable singularity). A minimum

number of body parts was enforced, as too few body parts contributed to energy gain

and violation of stop limits. Despite all these measures, a few evolved creatures still

manage to violate the stop limits and rotate their joints through 360◦.

Initially, the axes for a ball joint were evolved. It was hoped that this would allow

the evolutionary algorithm more freedom in exploring the solution space, and enable

the development of unique joints in which the axes of rotation did not correspond

with the angular rotation of either of the connected geometries, allowing manipulation

of a single axis to produce arbitrary rotations. Simulations with this property were

often unstable, and investigation led to the discovery that rotational momentum about

the second axis of a motorised ball and socket joint does not seem to be conserved,

whereas it is around the other axes. To solve this the axes were fixed with respect to

the parent body, and the controller for the second axis of rotation was given a different

(much smaller) proportional coefficient.

Chaumont noted that the motor models of ODE are vulnerable to undesired oscil-

lations [60]. He corrected for this by connecting the outputs of the neural network to

Fmax of the motor model, Fmax being the upper limit of force that will be applied by the

motor to the joint in any given time-step to control the velocity. This effect was not

noted in this research, however the motor models would have had different parameters,

and possibly been in a different operating mode.

The CPU time required to run a regular ODE simulation has order O(N3), where

N is the number of constraints in the simulation. This can severely slow running time

when a large number of connected bodies are present in the simulation (i.e. when a

robot has many body parts). This was a problem with unconstrained evolution where

there was no penalty (and perhaps some kind of implicit reward) for increasing the

number of body parts — figure 8.15 shows an example unconstrained morphology that

causes the OpenGL driver for a particular brand of graphics cards to crash. To counter

this, a constant upper bound on the number of body parts was set; a practical value of

20 was used on a pentium-M laptop, but the value will vary depending on the use of the

254 Chapter 8. Software design

simulation (e.g. slow simulations may be more acceptable when real-time interaction

is not required) and computational power available.

Alternatively, ODE provides a “quickStep” algorithm which is of order O(N). Sim-

ulations using this function trade-off physical accuracy for simulation speed. Some pi-

lot runs were carried out where evaluations were alternately carried out using the two

functions, with the aim of increasing the speed of simulations. However, the fitness

functions used in this research, which aim to maximise robot velocity to encourage the

development of locomotion, generally implicitly penalise the development of useless

extraneous body parts as they increase the overall mass, but do not contribute to in-

creased velocity. Hence, the number of body parts tends to remain low, and no great

gains were seen in simulation running time with the “quickStep” algorithm.

A similar problem was discovered with the growth of memory usage; again, unre-

stricted evolution can produce a variety of morphologies which when simulated have

an unknown number of constraints. The regular “step” algorithm has memory require-

ments which grow with order O(N2). The “quickStep” algorithm has order O(N). The

ODE library uses its own memory handling routines which are optimised for speed —

they allocate from a pool of memory located in the executable stack rather than call the

generic C/C++ operators which would dynamically allocate memory on the heap.

This means that simulations are limited by the stack size available to processes on

the operating system; it may be possible to increase this up to some maximum, but

this depends on the policies and current state of the OS. Unfortunately, when the stack

size is exceeded ODE will crash the running process, rather than detect the problem

and return an error to the calling function. This is an extremely irritating behaviour,

as it initially appears to indicate some programming error, but is actually just poor

handling of an out-of-memory condition. Figure 8.15 shows an example unconstrained

morphology that can not be simulated using a standard size stack, as the large number

of ODE primitives causes a stack overflow.

A patch to use the regular memory allocation routines is available, but it applies to

an older version of ODE and does not seem to be widely used. Limiting the maximum

number of body parts and increasing the maximum stack size to 64MB (the largest

possible on x86 Linux) seemed to prevent the problem in this case. In Linux the stack

size of a process is not fixed, it can dynamically grow towards this maximum, but can

not exceed it. This means that it is still not possible to compute simulations with the

standard ODE library that require more than 64MB, although simulations larger than

this may be prohibitively slow anyway. When using a cluster with other users some

8.13. Physics simulation problems 255

Figure 8.15: Unconstrained evolution creates morphologies that stress computational

abilities. This design with 700 body parts can not be physically simulated with the regu-

lar ODE library as it overflows the 64MB stack (the maximum on x86 Linux). Visualising

this design was also a problem; the irregular geometry and high number of primitives

produces a segmentation fault from the proprietary ATI video card driver (this screen-

shot was captured under a debugger).

of the client hosts may not allow the user to increase the maximum stack size, and

these processes will subsequently crash when faced with a large simulation. This is

inconvenient as these processes must be restarted, but in general, as long as at least

one process has a large maximum stack size, the genetic algorithm will eventually be

able to proceed.

Some researchers have hypothesised that one way to make evolved robot designs

more robust is to evaluate their fitness functions using two (or more) physics simu-

lators, and then use either the mean or minimum fitness value. This strategy aims

to prevent the evolved robots from exploiting inaccuracies, or bugs, in any particular

physics simulator, and hence make the evolved robot designs more robust to variations

in the physics environment, and more likely to transfer to reality successfully. Some

pilot runs were carried out utilising this strategy, by using the “quickStep” algorithms

for two-thirds of the evaluations, and the regular “step” algorithm for the other third.

However, this seemed to actually inhibit the evolution of successful designs; this is

probably due to the variance in simulation accuracy between the two algorithms being

256 Chapter 8. Software design

too large for this particular type of simulation. The “quickStep” algorithm has poor ac-

curacy for near-singular systems, which includes those using motors and having many

bodies with “looping” style connectivities, which is precisely the kind of multiple-

legged robots, with each foot being simultaneously in contact with the ground, that we

are likely to evolve.

8.14 Tasks

A number of fitness functions define the type of tasks the robots can be evolved to

carry out. These include measuring the mean height of the robot over time, the mean

distance over time, the sum of motion between frames (to encourage movement), and a

combination of the movement and the mean distance functions (to encourage walking).

Reeve compared fitness functions for evolving walking behaviour and concluded

that a simple distance measurement was one of the best. Combining simple penalties

with a decaying weight function that values earlier motion higher than later motion

resulted in a slight improvement [349]. This suggests that the mean distance over time

function may be as successful as the more complex movement and walking functions.

8.15 Summary

Custom software has been developed to carry out the experiments described in this

thesis. The software primarily relies on the Open Dynamics Engine physics simulator

which has been widely used in previous robotics research. An OpenGL application

enables evolved creatures to be visualised in a 3D simulation, with features such as

rotation, zooming, pausing, logging of neural activity for later analysis, and capture of

JPEG still images and MPEG video. The evolution software itself was custom written

for this thesis, and makes use of a distributed implementation enabling hundreds of PCs

to be used simultaneously. Various neural network models have been implemented,

along with quantised versions of those models that use discrete states and integer arith-

metic. This will allow a comparison of these neuron types and quantisation models to

be made. The software allows various other features of the experimental setup to be

varied, such as the neural network configuration, neural timing model (synchronous

or asynchronous), population size, and number of generations to evolve, enabling ex-

periments to be carried out that will determine whether these factors contribute to the

overall performance of the evolved control networks.

Chapter 9

Software testing

Software testing is performed to ensure that the software is stable (does not crash), and

to attempt to ensure that it functions correctly. It is difficult to comprehensively test

any piece of software (for a wider discussion, see section 1.3). In order to test that the

software itself could be used as part of a larger program without crashing, or causing

memory leaks or other problems, a large unit test suite was created (see page 240 for

a description of unit testing). Unit testing is a standard software engineering process

that is recognised as generally improving code quality, but of course, it can not test for

all possible errors. Unit tests exercise particular code paths and data sets, they do not,

and can not, test all of the possible combinations of ways in which the software may be

used, and so can not guarantee that the software will function correctly under all given

use cases. Despite this, unit testing is useful in finding bugs and bug regressions, and

in ensuring that the basic functionality of the code does not exhibit any obvious errors

under the tested use cases.

One common method of testing is to present a predetermined input sequence to the

device (or code) under test and observe its response. If the actual response matches

the expected response the test is passed. This method is problematic when the element

under test has some internal state holding logic, where the current output depends on

an internal state which has in turn been determined by previous inputs. In digital logic,

functional testing is sometimes done by comparing the output sequence to a published

sequence. This is only possible when the algorithm has several implementations which

can be used to verify the published sequence is correct, or when the published sequence

has been manually verified by independent analysis. This kind of testing is not possible

here, as there are no published input/output data sets for these neuron models. The

best that can be done is to generate some input data, use the model to generate output

257

258 Chapter 9. Software testing

data, and then manually verify by inspection that certain events cause the response

that we would expect. For example, we would generally expect that a large amount of

input activity would lead to a neuron eventually exceeding its internal threshold and

firing. After firing, we would expect to see the neuron entering its refractory period,

preventing the internal activity from increasing for some time. Another simple test

might be to strongly suppress neuron activity via an inhibitory input, and to verify

that the internal state is lowered and no output spikes are generated during the time of

suppression.

Another possible set of tests enables comparison of neuron behaviour between

models utilising arithmetic with floating-point precision, or quantised arithmetic with

various levels of discretisation. To test this, a particular neuron model using a particu-

lar type of arithmetic will be instantiated, and the instance will then be presented with

some predetermined input signals that vary over time. The neuron’s internal state and

output signal will be recorded as the input signals vary. The recorded output data can

then be plotted and manually observed to check that the signals are more or less con-

sistent across the different quantisation levels of a particular model. What we would

expect to see with a regular neuron model is the floating-point implementation provid-

ing the highest level of resolution and detailed activity, and the level of detail decreas-

ing as the number of quantisation levels (and thus the arithmetic precision) decrease.

It is possible that decreasing the arithmetic precision could change the behaviour of

the neuron, which is undesirable — this thesis aims to show that quantised models

can approximate the behaviour of floating-point models for robot control tasks — so

if radical changes in behaviour are observed between the floating-point and quantised

models of a single neuron, then similar radical changes in behaviour are likely to be

observed when simulating full networks.

These tests are obviously quite limited, they do not and can not test all responses

of the various implementations to all possible input signals. What they can do is verify

that the software does not contain any obvious programming errors, verify that the

implementations respond in some expected way to a change in input signals, and verify

that there is some similarity in the behaviour of the implementations with different

quantisation levels, and with the floating point implementation. Ensuring functional

correctness of software is a notoriously difficult problem. All research that relies on

software faces the problem that a single bug in the software could render the research

useless. There is no way around this — the data presented in this thesis does rely on

software — as does the data presented in the vast majority of evolutionary robotics

9.1. Testing neuron models 259

research by past experimenters. A discovery of a bug, such as a hypothetical bug in the

Open Dynamics Engine physics simulator, could render invalid a large amount of the

research that has relied on the integrity of such software.

9.1 Testing neuron models

To test the models a varying stimulus was applied to each, and the response recorded.

The quantised models were tested with 1 to 6 bits of precision (i.e. 2, 4, 8, 16, 32,

and 64 quanta states). The continuous version was also subjected to the same stimulus

and its response plotted. For the first 0.5 seconds the stimulus signal was zero. From

0.5 seconds to 1.5 seconds a positive stimulus signal was applied via an inhibiting

connection (or, in the case of the Ekeberg model, an inhibiting neuron). After 1.5

seconds the connection was switched to excitation, but the stimulus was still positive.

Therefore, we would expect to see activity of the neuron under test declining for 1.5

seconds, and then subsequently increasing. Between 4 and 5 seconds there was no

stimulus, so the neuron under test would either be devoid of activity in the case of

the sigmoid model, or, in the case of the leaky models with internal state, would tend

towards zero.

The following graphs show this stimulus/response behaviour; it is apparent that as

the precision of the discrete levels was increased, the response waveform more closely

approximated that of the continuous model.

The test regime here is one of manual verification that the waveforms are “some-

what similar”. This is a loose definition, as it is not required that the waveforms be

identical, or even that they actually are similar. As the quantisation level is reduced,

it is entirely possible that the behaviour of the neuron could change, generating a sub-

stantially different output. This would not indicate a failure of the test, but would

indicate that larger networks of neurons at or beyond this level of quantisation may

not behave in the same way as a similar network of floating-point neurons would. The

fact that a neuron may display similar behaviour across a range of quantisation levels

does not prove that the behaviour is actually the same, or that similar behaviour would

occur if the input stimulus waveforms were different.

As previously recognised, the test regime here is limited. It is possible that lowering

the arithmetic precision from floating-point to some limited integer range will produce

a set of neuron models with completely altered behaviour. The question that may

be answered here is: “Is it possible that reducing the arithmetic precision will not

260 Chapter 9. Software testing

Figure 9.1: Testing is done on a single neuron. A predetermined waveform is input to

the neuron and the output waveform from the neuron is recorded.

result in radical changes to behaviour?” A sequence of plots that illustrate that similar

behaviour can occur with lowered precision would indeed affirm that it may be possible

to lower the arithmetic precision without completely destroying the validity of the

model.

Note that the plots here show input values to the neurons that are not quantised.

In the software code used here, the quantisation occurs at the point where the neuron

receives the value. For example, the “sine 2 state (1-bit)” plot uses two quanta states

but the complete five levels of stimulus are visible; this is an artifact of using the same

stimulus waveform for each test, and does not affect the simulation — the interpretation

of this input value by the neuron will indeed be binary.

9.1.1 Explanation of graphs

Figure 9.1 shows the test setup and rendering: the input waveform (blue) is presented

to the neuron under test, which might have some internal state (green), and which

produces a single output (red).

Blue line Stimulus is the blue line. This is a predetermined waveform connected di-

rectly to a neuron input.

Green line The internal state of a neuron is represented (where practical) by a green

line.

9.1. Testing neuron models 261

Red line Neuron output is the red line. This depends on the neuron’s response to the

input waveform. The red line will be continuous or spiking depending on the

neuron model.

off|inh|exc|off State of stimulus. The stimulus transitions through states (off, in-

hibitory, excitatory, off) at times (0.5s, 1.5s, 4s).

Gray vertical lines Transition times (0.5s, 1.5s, 4s) between the above stimulus states.

x-axis Time from 0s to 5s

y-axis Normalised signal strength. The only exception to this is for spiking neurons

— spikes do not have a “strength”, so we only plot a short spike on the red line

(neuron output) to indicate that one occurred.

262 Chapter 9. Software testing

9.1.2 Sine model

The sine model is described on page 60. These neurons generate a constant sine wave,

regardless of the input stimulus. (It could be argued that this is not really a “neural”

model, since all the node does is generate a sine wave, although Sims for example does

refer to this kind of simple wave generator as a “neural node” [398].) This model has

parameters amplitude and period. For these tests the amplitude was 1.0 and period was

one second.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sine 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sine 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sine 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sine 16 state (4−bit)

off inh exc off

9.1. Testing neuron models 263

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sine 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Sine 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sine floating−point (64−bit)

off inh exc off

An oscillating output can clearly be seen in all of the plots. Note that the input signal

is ignored as this model merely generates a plain sinewave. The floating-point imple-

mentation shows a smooth waveform, and it can be seen that this waveform becomes

less smooth as the precision is reduced, to the point of being a binary oscillator at 1-bit

precision.

264 Chapter 9. Software testing

9.1.3 Sigmoid model

The sigmoid model is described on page 57. The sigmoid output is a square waves,

since the input stimulus is a square wave and sigmoid neurons have no internal state.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sigmoid 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sigmoid 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sigmoid 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sigmoid 16 state (4−bit)

off inh exc off

9.1. Testing neuron models 265

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sigmoid 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Sigmoid 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Sigmoid floating−point (64−bit)

off inh exc off

The sigmoid neuron has no internal state. Faced with the initial stimulus of 0 at 0s,

the neuron generates an output of 0.5. As the input stimulus is increased at 0.5s, the

output falls, since the connection is inhibitory. When the connection is changed to be

excitatory at 1.5s, the output goes high, and then follows the input signal. When the

input signal returns to 0 at 4s, the output returns to the initial value of 0.5 immediately,

as there is no internal state.

The quantised models show a great degree of similarity to the floating-point model.

Down to 8 state (3-bit) the response is the same shape, and almost same magnitude.

266 Chapter 9. Software testing

The 4 state (2-bit) model loses resolution and the output signal only takes 3 different

values (as opposed to 5 values for the 3-bit model). Despite this, it can be seen that the

waveform is similar to those of models with greater precision. The binary state model

does preserve the fall in signal between 1s and 1.5s, but otherwise fails to accurately

approximate the detailed shape of the higher precision models.

9.1. Testing neuron models 267

9.1.4 Beer model

Beer’s “continuous time recurrent neural network” model is described on page 58. The

Beer model exponentially rises or decays towards some equilibrium level depending

on the stimulus. The neuron’s bias was 0 and the adaptation rate was 0.05.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Beer 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Beer 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Beer 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Beer 16 state (4−bit)

off inh exc off

268 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Beer 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Beer 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Beer floating−point (64−bit)

off inh exc off

The floating-point model starts with an initial output of 0.5 at 0s where the input signal

is 0. The input signal is initially inhibitory, so when it rises at 0.5s the output goes

down. Note that the output signal shows signs of being affected by an internal state —

the fall is not immediate, which would generate a square wave, but curved, showing a

rapid initial decrease and levelling off. The same occurs at 1s. At 1.5s the input signal

is switched to excitatory, and the output signal rapidly rises, and again at 2s. At 4s the

“leaky” behaviour of the neuron can be seen, when the input drops to 0 and the output

quickly falls to 0.5 as a result of the fall in internal state.

9.1. Testing neuron models 269

The effects of reducing the arithmetic precision is already observable going from

floating-point to 6-bit, where the smooth curves of the floating-point signal are replaced

by a linear approximation. The basic shape of the waveform, with 6 distinct output

levels, is preserved down to the 4-bit model. The 3-bit waveform loses only one stable

output level, but beyond that the waveform is essentially lost.

270 Chapter 9. Software testing

9.1.5 Taga model

Taga’s neuron model is described on page 58. Two linked differential equations should

generate more complex behaviour than the sigmoid model or Beer’s CTRNN model.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Taga 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Taga 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Taga 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Taga 16 state (4−bit)

off inh exc off

9.1. Testing neuron models 271

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Taga 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Taga 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Taga floating−point (64−bit)

off inh exc off

The floating-point model here shows a complex output waveform. The output initially

falls in the absence of input at 0s. The fall is accelerated at 0.5s by the increasing

inhibitory input. When the input connection switches to excitatory at 1.5s the output

rapidly rises. It can be seen that the output “overshoots” its stable value, and then falls

towards it — the same thing happens when the input signal changes at 2s, 3s, and 4s.

For example, just after 3s the signal falls, climbs, and falls again to reach a level output.

This process takes almost one second.

272 Chapter 9. Software testing

The floating-point model shows the greatest resolution. The output of the 6-bit

model already shows signs of linearisation, but the waveform is mostly the same. The

“overshooting” of the stable values is observable, but it only occurs once for each input

change — the small secondary overshoot that is visible with the floating-point model

(e.g. from 3.5s to 3.8s), is not visible anymore. The 5-bit model retains most of the

peaks and troughs. The basic shape of the waveform is recognisable down to 4-bit

precision. At 3-bit the waveform is not the same, and the output with 2-bit and 1-bit

models is constant and not responding to the varying input stimulus at all.

9.1. Testing neuron models 273

9.1.6 Ekeberg model

Ekeberg’s neuron model is described on page 59. There are four versions of the Eke-

berg model, corresponding to the four parameter sets provided by analysis of biological

neurons.

In this model, connections between neurons have no polarity. Individual neurons

are either wholly excitatory or inhibitory, so after 1.5 seconds the stimulus neuron

is switched from inhibition to excitation, generating the same effect as inverting the

connection weight does for the other tests.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg0 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg0 4 state (2−bit)

off inh exc off

274 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg0 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg0 16 state (4−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg0 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg0 64 state (6−bit)

off inh exc off

9.1. Testing neuron models 275

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg0 floating−point (64−bit)

off inh exc off

For each change in the input signal there is a corresponding change in the output signal.

The initial inhibition causes the output to fall to 0 at 0.5s. After the stimulus changes

from inhibition to excitation the output rapidly increases. The response output after

this follows the input signal in either rising or falling, although there are some signs of

overshooting followed by correction, e.g. at 4s. Despite the claims of more advanced

behaviours being possible, the neuron displays no signs of oscillation or other complex

movements.

The waveforms of the floating-point model, 5-bit model and 4-bit model are all

similar. At 4-bits some of the small variances disappear, but a new spike is introduced

at 2s. The 3-bit output waveform has a similar overall shape. Beyond that, at 2-bit and

1-bit, the output waveforms are not recognisable as the originals.

276 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg1 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg1 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg1 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg1 16 state (4−bit)

off inh exc off

9.1. Testing neuron models 277

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg1 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg1 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg1 floating−point (64−bit)

off inh exc off

The output here has sharp edge transitions. There are few levels (only 4) even in the

floating-point model. The output waveform is preserved down to 4-bit precision, but

beyond that is clearly different to the original. For 1-bit and 2-bit the output is constant.

The lack of curves or any other sign of complex behaviour suggest that this model is

not making use of the complex internal state.

278 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg2 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg2 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg2 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg2 16 state (4−bit)

off inh exc off

9.1. Testing neuron models 279

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg2 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg2 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg2 floating−point (64−bit)

off inh exc off

The output here remains constant 0 in the face of an inhibitory input signal. At 1.5s

the signal becomes excitatory, and the output responds by rising. The output adjusts

in response to changes in the input signal, it does “overshoot” the value it is tending

towards but quickly stabilises. There are no signs of oscillation or any other complex

behaviour.

The shape of the waveform is preserved down to a precision of 4-bit. At 3-bit the

basic shape is there, but several stable levels have been lost. The 2-bit and 1-bit model

both have a constant output of 0.

280 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg3 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg3 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg3 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg3 16 state (4−bit)

off inh exc off

9.1. Testing neuron models 281

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg3 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Ekeberg3 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Ekeberg3 floating−point (64−bit)

off inh exc off

While the input is inhibitory the output is completely suppressed (forced to 0). At 1.5s

the input changes to excitatory, and the output rises in response. The output follows

the input signal, and at 3s falls back to 0. There are very few stable levels of output,

and the response appears quite simple. There are no signs of oscillation or any other

complex behaviour.

The floating-point output waveform appears simple to preserve as it has only 3

stable levels. However, the 6-bit model is the only one that accurately reproduces the

floating-point output. At 5-bit precision a new “lump” is visible from 3s to 4s. As the

282 Chapter 9. Software testing

precision is reduced to 4-bit and 3-bit this value at 3s to 4s grows, making the waveform

different from the original. At 2-bit precision the waveform is unrecognisable as the

original, and at 1-bit the output is just constant 0.

9.1. Testing neuron models 283

9.1.7 Integrate-and-fire model

The integrate-and-fire neuron model is described on page 53. In the graphs following,

the internal state is plotted as a green line. The red line along the bottom shows outgo-

ing spikes, which are generated when the internal state exceeds some threshold. After

each spike the internal activity falls. In these tests the neuron’s bias was set to 3 and

the adaptation rate to 0.15.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

If 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

If 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

If 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

If 16 state (4−bit)

off inh exc off

284 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

If 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

If 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

If floating−point (64−bit)

off inh exc off

The floating-point version here shows the internal state falling in response to activity

on the inhibitory input. After 1.5s the inhibition turns to excitation, and the internal

state rapidly rises, triggering an output spike. The internal state is reset to 0 and the

neuron enters a refractory period. Once this times out, the internal activity rises again,

generating another output spike. During the subsequent refractory period the input

signal falls to 0.5 at 3s. Now the neuron again leaves its refractory period and internal

activity rises, but slower than previously due to the lower input stimulus. The internal

state stabilises just below the threshold for firing, so there is no spike this time. At 4s

9.1. Testing neuron models 285

the input signal drops to 0 and the internal state falls back to its resting potential.

The interesting thing to analyse about this spiking model versus the previous con-

tinuous models is whether the outgoing spikes are preserved as the arithmetic precision

is reduced, as these are the only events visible externally. The floating-point model

generates two spikes. The models with 6-bit, 5-bit and 4-bit precision preserve the

internal state waveform well, and the two outgoing spikes are preserved. At lower

precision the approximation breaks down, with a completely different internal state

waveform, and no spikes for the 3-bit and 2-bit models. The 1-bit model generates two

spikes immediately, which is presumably an artifact of the binary quantisation of the

input signal, and shows no activity at all after 1s.

286 Chapter 9. Software testing

9.1.8 Spike response model

The spike response model is described on page 55. The stimulus applied to the SRM

model consists of spikes randomly drawn from a Poisson distribution with probability

proportional to stimulus level. SRM, as described in section 3.4.4.2, has a spike effect

over 20ms. Since the physics simulator’s integration time step is only 20ms, the imple-

mentation of this neuron model here uses ε and η functions stretched to cover 200ms

instead. The neuron’s firing threshold parameter was set to 2.0 here (as previously

stated, the values of all variables are normalised in these plots).

9.1. Testing neuron models 287

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Srm 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Srm 4 state (2−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Srm 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Srm 16 state (4−bit)

off inh exc off

288 Chapter 9. Software testing

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Srm 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Srm 64 state (6−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Srm floating−point (64−bit)

off inh exc off

The internal state appears to have some complex behaviour, and shows some oscillation

even while the input stimulus is held constant. While the input is inhibitory and active

from 0.5s to 1.5s the state shows some tendency downwards away from the resting

potential of 0.5. After 1.5s the input becomes excitatory and the internal state rises

above the resting potential. It is not until 2s that the input activity becomes large

enough to cause the neuron to fire and generate an output spike. The floating-point

model generates 10 output spikes in total. There is a lone spike after 3s when the input

activity has fallen. The effect of the fall in input activity can be seen - the activity of

9.1. Testing neuron models 289

the internal state from 2s to 3s is clearly greater than from 3s to 4s. At 4s the stimulus

falls to 0 and the neuron state quickly falls to its resting potential.

Reducing the precision from floating-point to 6-bit causes one less spike to be

generated (9 spikes total), although the internal state waveform is substantially similar.

The 5-bit model also generates 9 spikes, with a similar activity. At 4-bit precision,

again the internal state waveform appears similar, but now only 4 spikes are generated.

Most of the fine waveform details have disappeared at 3-bit precision, but there are 5

output spikes. At 2-bit precision there are no output spikes. The 1-bit output spikes

repeatedly due to the internal state oscillating.

290 Chapter 9. Software testing

9.1.9 Logical model

The logical model uses a lookup table with random valued entries. Due to this, and

unlike the other models, we should not expect some obvious similarity between the

different precisions. There is no continuous version of the logical model, since by

definition it can only be discrete valued.

Note that the switch from inhibition to excitation makes no difference here. The

input value is merely transformed into an address that is used to index into a lookup

table to find the output value.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Logical 2 state (1−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Logical 4 state (2−bit)

off inh exc off

9.1. Testing neuron models 291

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Logical 8 state (3−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time
s
tr

e
n

g
th

Logical 16 state (4−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Logical 32 state (5−bit)

off inh exc off

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

time

s
tr

e
n

g
th

Logical 64 state (6−bit)

off inh exc off

There is not much to say about these results for the logical model, and they are in-

cluded only for completeness. As expected, there is not necessarily any correlation

between different precision models — there is no correlation between the values held

in the lookup table, because it was randomly initialised. There would only be some

correlation if the same lookup table was used, initialised in the same way, using the

same random seed.

292 Chapter 9. Software testing

9.2 Cluster performance

In order to quantify how many simulations for the purpose of fitness evaluation could

be carried out testing was done on a 64-client Linux cluster. Each host had a 1.8GHz

Pentium 4 processor. The client software is small and not bounded by memory or disk

space. There is little network activity — the representation of a complete genotype

requires around 15KB of storage, and the time required to transfer such a small amount

of data across a modern high-speed network is negligible compared to the time required

to carry out a single fitness evaluation. In theory high loads on the central database

server would affect results; in this case, the server was checked to make sure there

were no other CPU intensive tasks running.

Population size and number of clients are linked in the context being discussed

(run speed), because all individuals must be evaluated before progressing to the next

generation. If there are n hosts, and fewer than n individuals, then we can complete

all evaluations in parallel (assuming that evaluations take a similar time) in one cycle.

With n hosts, we can only process n simulations at a time, so obviously it will take

(roughly) twice as long for 2n simulations, three times as long for 3n simulations,

and so on. Having a small population relative to the number of hosts will mean that

some hosts are doing nothing a lot of the time - e.g. if we have 50 hosts, but only 5

individuals, then we will only run 5 simulations in parallel, so 45 of the hosts will be

doing nothing. The aim is to maximise usage of the available computational power.

Two simple parallel scheduling algorithms were implemented, one that assigns

tasks linearly to hosts in order to avoid unnecessary repetition, and another that al-

lowed tasks to be assigned randomly. If a host was already highly loaded, completion

of the task would be delayed. With the first scheduler this would delay progress of the

genetic algorithm, but with the second another host could be assigned the same task,

allowing hosts to compete against each other.

Each evaluation actually carries out three separate simulations with an identical

configuration but different random seed, which means the initial state of the neural

networks will be different. The lowest fitness score is returned as the final result. This

is done to prevent freak high scoring simulation runs from producing individuals which

will dominate the population, as we seek consistent performance from an individual,

not a single instance of greatness or some fluke numerical inaccuracy in the physics

simulation. The precise evaluations being done were simulations of evolved locomot-

ing creatures.

9.2. Cluster performance 293

The next generation will not be created until all of the individuals in the present

generation have been evaluated. This means that any single evaluation that takes a long

time to complete could hold up the evaluation of the population as a whole. Evaluations

would take a long time if the simulation was particularly complex, or if it had been

assigned to a slow PC (due to either the hardware being slow, or the system running

other processes).

If the number of individuals in the population exceeds the number of PCs available,

some PCs will be required to evaluate more than one individual. These simulations

will be carried out in sequence, which necessarily lengthens the time to completion. A

similar problem occurs when a simulation is assigned to a slow PC — quite often the

dataset of the individual can be duplicated and dispatched to another free PC (which

has already completed processing of its first individual evaluation), and this new PC

will return an evaluated fitness faster than the slow PC that the dataset was originally

assigned to.

Results are shown in figure 9.2. As can be seen, linear scheduling performed better

initially due to lack of duplication. As the number of hosts was increased above about

45 performance began to decline, and at around 56 hosts the random scheduler became

the better performer. This suggested that, on this particular cluster, and for popula-

tions of between 30 and 50 (a number often used in evolutionary experiments), linear

scheduling would enable the experimental runs to be performed more quickly, as the

whole population could usually be evaluated simultaneously in a single cycle.

Upon investigation it turned out that a small number of the PCs in the cluster would

already have an existing workload from other users (the cluster is shared, but the pro-

cesses of any user are supposed to have exclusive access to a PC when run) that for

some reason had not been killed when the user terminated (daemon processes with-

out a controlling tty were one class of process that was confirmed to not be termi-

nated). Hence limiting the assignment of each dataset to a single PC caused perfor-

mance degradation when any of the PCs happened to already be running another user’s

processes, a situation that was not supposed to happen. Although eliminating this

particular problem would fix the issue here, a more robust algorithm also has advan-

tages in other use cases where individual PCs may, for reasons unknown, run slowly

(e.g. research on hard disk drive performance in computational clusters has shown that

some drives exhibit performance far below that of supposedly identical drives from the

same manufacturer, but that this poor performance is unpredictable as the drives do not

generate any error or failure signals [333]).

294 Chapter 9. Software testing

●

●

●

●

●

●

10 20 30 40 50 60

400

600

800

1000

1200

1400

Comparison of cluster workload distribution methods

Number of client PCs

E
va

lu
at

io
ns

 /
ho

ur

●

●

●

●

●
●

●

●

●

●

●

●

random
linear

Figure 9.2: Performance of fitness evaluations on cluster.

9.3. Summary 295

9.3 Summary

This chapter has reported on testing of the software. The response of a neuron to a

particular pattern of input behaviour was examined to ensure that the neuron models

work and that the quantised models were not completely useless. Each of the imple-

mented neuron models has been tested, with varying levels of arithmetic precision for

calculating outputs and internal state. The input stimulus was varied in strength, and

switched from being initially inhibitory to excitatory.

The base of reference for a neuron implementation is to use floating-point arith-

metic — this is the standard for research, and the type of arithmetic used by the major-

ity of previously published literature.

The first aim of this testing was to verify that the software models were coded cor-

rectly, firstly by not crashing, and secondly by producing some output that responded

in an expected way to the varying input signal. This was achieved; all of the mod-

els appeared to be bug free, and there were obvious changes in output signal given

corresponding prior changes in input signal.

The second aim was to see whether reducing the precision from floating-point

would dramatically alter the neuron’s behaviour. This test was invalid for the logical

neuron, because there is no reason to expect the values within near cells of a randomly

initialised lookup table to have any similarities. For all the other models, it was ob-

served that decreasing the precision from floating-point to 6-bit did preserve the overall

neuron behaviour and output signal waveform quite well.

The sine “neuron” preserved the shape and period of the output waveform partic-

ularly well, since it is just an oscillating function. If behaviour were driven by oscil-

lations rather than by the “shape” of the wave it is entirely possible that a complex

sine wave function could be replaced by a simple binary oscillator in some applica-

tions. For other models, we see that reduction to a precision of 6-bit preserves the

neuron behaviour well, generating very similar internal state and output values. Spik-

ing behaviour is almost identical, with spikes being generated at the same time as with

floating-point precision, although the SRM model did display some different spiking

behaviour, with one more spike being generated with 6-bit precision.

For most models, 4-bit and 5-bit precision also offered good approximations of the

floating-point behaviour, but below that the approximation was poor.

This chapter has shown that reducing the arithmetic precision of a neuron model

from floating-point to, say, 6-bit, can result in a model that substantially approximates

296 Chapter 9. Software testing

the behaviour of the floating-point model but with far fewer states and lower compu-

tational requirements. A 6-bit model has 64 states for each variable, whilst a floating-

point model has 264 states for each variable, so this is a huge saving in computational

resources. Integer or quantised arithmetic units are also simpler to implement.

The amount of verification carried out in this chapter is limited. The models were

only tested with a single input pattern set. We have not shown that, for all possible

input patterns, or all possible neuron configurations, the approximating behaviour will

be preserved. The nature of the neuron input function means that at each time step

the neuron is presented with a single value that represents the weighted sum of the

current inputs. Using a single input neuron as done here is perfectly valid — this

single input is capable of generating the same input patterns post input function as

multiple neurons with varying weights. This means the testing done here will extend

to some larger set of possible input configurations and input patterns. However, it is

still apparent that this testing is limited. It is impossible to test all input patterns and

all possible neuron configurations. What has been done here is to show that reducing

the arithmetic precision massively, from 264 states to 26 states, does not completely

disrupt the behaviour of a neuron model.

The performance of the distributed genetic algorithm was quantified. With around

55 hosts, 1400 fitness evaluations could be carried out per hour. This is obviously

a very rough figure, as the exact number will vary depending on the complexity of

the physics simulations being carried out, and on other factors (e.g. availability of

computational resources on the shared PC cluster, performance of the database server,

etc.). Nevertheless, it was a useful baseline estimate that could be used to judge the

computational feasibility of different proposed experimental setups.

Two different algorithms for scheduling fitness evaluations across the cluster were

implemented and compared. One algorithm assigned evaluation datasets to clients

randomly and made no attempt to avoid repetition of workload. The other algorithm

attempted to assign an evaluation dataset only once to avoid repetition of work. It

was found, contrary to expectations, that linear assignment performed better when 55

hosts or less were used for client evaluations, but that random assignment scaled better

above that. Investigation of the cause established that certain classes of process were

not being killed as should have happened when the genetic algorithm client software

was given (supposedly) exclusive access to a PC. The computationally intensive pro-

cesses of other users were occasionally left running in the background. Although this

occurred only on a small minority of the PCs, the effect was to delay completion of

9.3. Summary 297

the fitness evaluation of a full population, since by design no other host was assigned

that particular dataset. In contrast, the “random” scheduling algorithm avoided this

problem by making no attempt to avoid duplicating individual datasets; a particularly

slow PC would not hold up all the rest, since a faster PC would inevitably be assigned

a duplicate of the dataset and complete it earlier.

Chapter 10

Pole balancing experiments

This chapter will describe a set of experiments designed to evolve and quantify the

performance of neural networks to control a fixed “cart and pole” morphology carrying

out the traditional AI pole balancing control task. The aim of these experiments was to

establish whether or not quantised neuron models could be used for this task, and if so,

how the performance of quantised models compared to that of floating-point models.

The robot morphology consisted of a cart with freedom of linear movement along the

x-axis joined to a pole with freedom of angular rotation about the hinge joint. The

morphology was fixed and did not need to be created or optimised by evolution.

The previous chapters have described how various control networks operate, and

how genetic algorithms can be used to evolve these networks. When connected to a

fixed robot morphology within a 3D physics simulator, a fitness task can be devised

which evaluates the network’s ability to perform some robot control task. This fitness

function can then be used by a genetic algorithm to drive the evolutionary process.

This chapter will introduce the first set of experiments that are designed to investigate

the qualitative differences between the control abilities of floating-point and quantised

neural networks. A linear quadratic regulator (LQR) controller was also implemented

as it is a typical engineering solution to the pole balancing problem, and provides a

baseline of comparison for the performance of evolved controllers.

10.1 Introduction

The pole balancing task (also known as the “inverted pendulum problem”) is a standard

problem in the field of AI control systems [49]. The problem layout is quite simple

(see figure 10.1):

299

300 Chapter 10. Pole balancing experiments

Figure 10.1: The pole balancing task is a typical AI control problem. A cart and pole

are joined by a hinge. The cart can move left and right, but is prohibited from travelling

too far. The force of gravity pulls the pole down. The controller must apply a continuous

sequence of forces in order to balance the pole and prevent it from falling.

A cart is allowed to move backwards and forwards along a 1D line. The cart is

attached to a pole via a hinge joint on the cart, thus allowing the pole to rotate about

the cart. Both the cart and the pole possess mass, and a force due to gravity acts

downwards . The angle between the vertical line extending up from the centre of the

cart and the pole is initialised to some value close to 0. A neural network controller

is attached to the sensors and motor of the cart (figure 10.2). The task of the control

system is then to prevent the pole angle from exceeding some threshold by applying a

series of negative and positive corrective forces to the cart in order to return the pole to

an upright vertical position.

In order to prevent the controller from achieving balance by merely accelerating

the cart to a high velocity, stop limits are placed at either side of the cart along the 1D

line.

The inputs to the controller can be varied; the following four inputs are typical and

were used in the experiments here:
θ pole angle

θ̇ pole angular velocity

x cart displacement along the 1D line

ẋ linear velocity of the cart
Allowing the control network to use different inputs affects the difficulty of solving

10.1. Introduction 301

Figure 10.2: The cart is connected to a neural network. Sensors from the cart (e.g.

pole angle and velocity, cart location and velocity) can be connected as inputs to the

neural network (input neuron labelled “i”). An output neuron (labelled “o”) drives the

one degree of freedom motor which pushes the cart backwards or forwards along its

line of motion. The neural network size, connectivity and neuron models can be drawn

from any of the configurations described in section 8.5 (the configuration given here —

internally fully connected — is only one option). The exact parameters of the neural

network will be evolved using the genetic algorithm.

302 Chapter 10. Pole balancing experiments

the task. For example, a controller that only has the single input θ must attempt to

estimate the displacement x in order to avoid the stop limits. Although possible, this

makes the task harder. Similarly, knowledge of the angular and linear velocities of the

cart and pole allow the controller to apply a more accurate correctional force. Lack of

these inputs also makes the task harder.

The task itself can be changed in order to add variation and alter difficulty. The

pole can be periodically struck with a random increasing force. The time for which the

controller balances the pole can then be used as a performance metric. The pole can be

attached to a second pole with a hinge. The task is now to balance both poles, which

is substantially harder. Another variation adds a desired x cart displacement which the

controller attempts to move towards whilst keeping the pole balanced. A similar task

is to keep the pole pointing towards a randomly moving point.

With each of these variations there are several parameters that can also be varied,

such as the masses of the cart and pole, the length of the pole, and the coefficients of

friction for both linear and angular movement.

10.2 Task

Discrete network controllers were evolved to solve the pole balancing task. Their

performance was compared to that of evolved floating-point network controllers, and

also to the optimal linear quadratic regulator (LQR) controller. This pole balancing

task used a single vertical pole, with stop limits placed to either side of the cart. The

pole was periodically hit with a randomly generated force acting on its centre of mass;

the maximum amplitude of the force increased linearly over time. Performance was

evaluated by recording the number of seconds that the pole remained above ±π

2 . The

simulation would end either when the pole fell, or after 30 simulated seconds if the

pole did not fall.

10.3 Task analysis

Several people have evolved continuous networks to solve the pole balancing prob-

lem. In 1991 Wieland evolved neural networks to successfully balance not only poles,

but also double poles and jointed poles [479]. In 1997 Pasemann solved the pole bal-

ancing problem with evolved neural networks using a biologically based co-evolution

algorithm to evolve both the number of neurons and the connectivity in a continuous

10.4. LQR controller design 303

sigmoid network [325]. In 2000 Pollack used staged evolution to first evolve a pole

balancing neural network. A hard spring was then introduced in the centre of the pole,

and slowly relaxed as evolution proceeded. This evolved neural networks which could

solve the double pole balancing problem [340]. In 2004 Stanley used the NEAT algo-

rithm to evolve solutions to the double pole balancing problem [409]. In 2005 Gomez

extended the pole balancing problem to three dimensions, and successfully evolved

neural network controllers [163].

10.4 LQR controller design

The linear quadratic regulator (LQR) was constructed following the method in [292].

The equations of motion for the pole balancing task are [49] :

θ̈t =

gsinθt + cosθt

 −Ft−mplθ̇2
t sinθt

mc +mp

l

4

3
−

mp cos2 θt

mc +mp

ẍt =

Ft +mpl
[
θ̇t

2 sinθt− θ̈t cosθt

]
mc +mp

θt θ̇t θ̈t pole angle, angular velocity, acceleration

x ẋ ẍ pole position, linear velocity, acceleration

g gravitational acceleration (9.8ms−2)

mc mp mass of cart and pole

l length of pole

t time

Ft horizontal force applied to cart at time t
These equations can be linearised about 0◦ and represented in state space format

(as in [292], but disregarding pole inertia and cart friction):

304 Chapter 10. Pole balancing experiments

ẋ

ẍ

θ̇

θ̈

 =

0 1 0 0

0
−mpl2

mc +mp +mcmpl2

m2
pgl2

mc +mp +mcmpl2 0

0 0 0 1

0
−mpl

mc +mp +mcmpl2

mpgl(mc +mp)

mc +mp +mcmpl2 0

x

ẋ

θ

θ̇

+

0

mpl2

mc +mp +mcmpl2

0

mpl

mc +mp +mcmpl2

Ft

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

θ

θ̇

+

[
0

0

]
Ft

This was implemented as a continuous state space system in the GNU Octave pro-

gramming language, and converted to a discrete system using zero-order hold sam-

pling. The sample frequency was 1
50 second, which corresponds to the frequency of

physics simulation with a step size of 20ms. A discrete LQR controller was then cre-

ated using a state cost matrix that heavily weights the cart position (to keep it in the

centre) and puts a lesser weight on the pole angle (to keep it up). This returned a

control matrix which was translated into the equivalent Python matrix operations and

incorporated into the physics simulator.

10.5 Experimental design

The experiments aimed to test whether there was any observable difference between

the different models of neuron when used in the pole balance control task, whether

there was any difference between the floating-point neuron models and quantised mod-

els, and how other factors, such as the neural network topology, timing model, and

genetic algorithm parameters might influence the results. The null hypothesis for each

factor (or interaction of factors) is that all levels of the factor are equal, so mean values

for the levels will all be the same. The alternative hypothesis is that the levels of a

particular factor are not equal — that one or more have mean values that are different

from the rest.

It was decided to carry out a “factorial experiment design”, in which all of the fac-

tors are varied simultaneously. This has several advantages. The number of experiment

replicates is minimised, which is desirable here since evolution is computationally in-

tensive and there were constraints on the computational resources available. Varying

10.5. Experimental design 305

multiple factors simultaneously enables potential identification of potential interac-

tions between different factors. Another advantage of a factorial design is that, from

the perspective of a single factor, the other factors are effectively randomised. This re-

moves bias of the results due to other factors, and allows the effect of individual factors

to be more accurately estimated. In a “full factorial design”, all possible combinations

of all levels of all factors will be sampled. This was not possible here since running

a number of simulation replicates equal to the total number of possible combinations

would be intractable. A “fractional factorial design” would instead be used, where the

space of possible replicates from a “full factorial design” design is sampled to create a

smaller design with fewer replicates.

A fractional factorial experimental design was created using the AlgDesign pack-

age for R [43,477]. A full factorial design was first created, sampling every point in the

factor space. This design was then fractioned using the Federov optimiser to reduce

the number of replicates whilst preserving optimal sampling. The total number of tri-

als was chosen to sample two-factor interactions at least 10 times. Once finalised, the

experimental design was dumped to a file, and then processed by a script to generate

a sequence of calls to create evolutionary populations with the necessary parameters.

Each run was then despatched to the computational cluster for processing.

Some parts of the search space were removed; the topology does not affect net-

works using the sine neuron model. Networks with four neurons and a 2D geometry

with size four neighbourhood are equivalent to fully connected, and so were removed.

Logical networks with more than 8 states, or with full connectivity between more than

four neurons, were removed as the size of the lookup table required for each neuron

increases exponentially (i.e. 48 = 64,000 entries for an 8 input neuron with four quanta

states), making large numbers computationally intractable. To counter this reduction,

the valid points in the “logical” model search space were replicated twice.

The final fractional factorial design consisted of 533 replicates. The table shows

the factor levels evaluated in the design:

306 Chapter 10. Pole balancing experiments

FACTORS NO. LEVELS LEVELS

model 7 sigmoid, logical, beer, if, ekeberg, sine, srm, taga

quanta 7 2, 4, 8, 16, 32, 64, fp

num neurons 3 4, 9, 16

sync 2 sync, async

mutate type 2 gauss, uniform

mutate prob 2 0.01, 0.05

gen/pop size 2 50, 100

topology 6 full, 1d-r1, 2d-r1, nk1, nk2, nk3
The factors are:

model The neuron model being used.

quanta The type of neuron arithmetic modelled. Either the number of quanta states

for a quantised model, or “fp” for a floating-point model.

num neurons The number of neurons in each network.

sync Timing model of the network. With synchronous timing the output signal value

of every neuron is updated simultaneously, and changes do not become visible

until all neurons have been updated. With asynchronous timing the output sig-

nal value of each neuron is updated one at a time, and changes become visible

immediately.

mutate type The type of mutation performed on parameters, either Gaussian or re-

placement from some range with uniform probability.

mutate prob The probability of mutation occurring for any given parameter.

gen/pop size A combined metric of population size and number of generations to run

the evolutionary algorithm for. This parameter effectively measures computa-

tional power, as it directly relates to the number of fitness evaluations.

topology How the neurons in the networks are connected:

full Fully connected.

1d-r1 One dimensional geometry with a Moore neighbourhood of size 3.

2d-r1 Two dimensional geometry with a Moore neighbourhood of size 9.

10.5. Experimental design 307

nk1 Random network with k = 1 (k being the number of inputs to each neuron

from other neurons (connections from sensors and to motors are not fixed,

so this is not a strict k input topology).

nk2 Random network with k = 2.

nk3 Random network with k = 3.

For more information on these factors and their levels, see chapter 8.

Note that the generation size and population size were considered together as a

single factor. The reasoning for this was that both are actually directly related to the

larger concept of “computational capacity”. The number of fitness evaluations carried

out is a product of both the generation size and population size; hence both are ulti-

mately just a factor of the real metric that we are interested in. There was also the major

consideration of computational resources available for these experiments — producing

statistically valid experimental runs that vary the population size and number of gen-

erations independently across multiple levels would have required considerably more

computational capacity than was available.

Choosing the number of generations and population size is a bit of a black art;

researchers generally use numbers that are as large as computational constraints al-

low. Some typical examples of (population size, number of generations) from evolv-

able creature research include Bongard (200, 200) [35], Chaumont (300, 100) [60,61],

Hornby (100, 100-500) [200, 204, 205], and Sims (300, 100) [397, 398]. In the case

of this design, the population size and number of generations were varied between the

two levels (50,50) and (100,100). These numbers were on the limit of what was possi-

ble given that the experiments were to last no more than a couple of weeks, and would

provide an answer to the question as to whether going higher than (50,50) would result

in measurably better controllers.

The neural network configuration was varied between different geometric layouts

and connectivity neighbourhoods — combinations of fully connected, one-dimensional

and two-dimensional with different size neighbourhoods, and random networks with 1,

2, and 3 inputs per node. See section 8.6 for an explanation of the difference between

the neural network geometry and connectivity neighbourhood. Each topology had dif-

ferent parameters subject to evolution and optimisation by the genetic algorithm, see

section 8.8 for details.

The genetic algorithm was fixed to use a generational algorithm as opposed to

steady-state. The only factor varied for the LQR controller was the number of quanta

308 Chapter 10. Pole balancing experiments

states. For the LQR controller, ten replicates were run for each quanta level.

10.6 Reproducibility

The complete experimental setup described here consists of thousands of lines of

source code. It is not possible to give a rigorous definition in the English language

or in pseudo-code that would allow this to be reproduced exactly — not only would

such a description be lengthy, but the nature of software simulation means that devia-

tions in even small detail from the original experimental setup may cause some changes

in the observed results. To aid increased openness and experimental reproducibility,

the exact source code and scripts used to run this experiment will be published along

with this thesis. Section 1.3 contains some more commentary on the reproducibility of

computer simulations and the importance of this to the scientific process.

10.7 Results

At the end of each experimental replicate the “score” (the number of seconds that the

pole had remained balanced) of the highest performing individual was recorded. Only

the highest scoring individual from the final generation of each replicate was analysed

— the particular distribution of the other individuals in the final generation was not

considered important, as we are interested in obtaining the best controllers — it may be

the case that some evolutionary algorithm leads to populations having a small number

of high fitness individuals and a large number of low fitness individuals, but the fact

that the population is mostly composed of low fitness individuals is irrelevant, since for

practical purposes (like actually selecting a controller for a physical robot) the selected

controller will be the one that ranks highest on the tasks that it must carry out. This

is not to suggest that the other controllers in the population are useless, merely that,

under the fitness criteria being considered, they were not as good as the highest scoring

controller.

10.7.1 ANOVA modelling

The resulting dataset was loaded into the R statistics software and processed. An

“Analysis of Variance” (ANOVA) model was created. The ANOVA model assumes that

replicates are truly independent. In the pole balancing experiment carried out here,

10.7. Results 309

each replicate was digitally simulated using a new simulation environment, and hence

the replicates were truly independent. The ANOVA model also assumes that scores

around the mean values of different sub-populations in the data (the residual error)

are normally distributed and of equal variance. However, ANOVA is robust to minor

variations in its assumptions of normality and constancy of variance, and it is usually

recommended to merely plot the data to confirm that the data has a distribution which

is close to normal, rather than to carry out one of the stricter formal tests of normality,

which would classify many real world data with trivial departures from normality as

being non-normal even though the robustness of ANOVA means it would be suitable

for modelling such data [8, 77]. It is also recommended to plot ANOVA fitted mean

values against variance and to judge visually whether there are major violations of the

assumption of constant variance. If there are any deviations from these assumptions, it

is sometimes possible to transform the data so that it better satisfies the assumptions.

The residuals of the ANOVA model were plotted as a histogram (to check distri-

bution shape), against fitted values (to check whether variance changes with mean

fitted values), and as a Normal Quantile-Quantile (Q-Q) plot (to check normality) (fig-

ure 10.3). The initial plots showed that there was some small non-normality, and some

heteroscedasticity, where the variance increased with the mean of fitted values. The

Normal Q-Q plot appeared linear in the centre of the data, but departed from the fitted

line at both high and low values. The histogram suggests that this distinctive shape is

caused by “long tails” in the distribution (there are significant values at the extremes

of the x-axis, the values below -6 stand out visually).

The dataset was transformed using a log function to attempt to correct the small de-

viations from non-normality and heteroscedasticity. An ANOVA model was generated

from the transformed data. The residual distribution showed better fit with normality,

more uniform variance, and the Normal Q-Q plot was more linear (figure 10.3). Al-

though there are visible outliers, the vast majority of values are linear — of the 533

replicates plotted there are only a few visible outliers, meaning that most are part of

the superimposed dots forming a thick line in the centre of the plot. In the end, the

only significant effect of the transform was to lower the probability of accepting the

timing factor as being statistically significant. Before the transform, timing was highly

significant with p = 0.0004, afterwards the p value was 0.044. A Kruskal-Wallis rank

sum test, which is resistant to non-normality, gave a p value of 0.023, a Welch Two

Sample t-test, which can be used to compare samples with heterogeneous variances,

gave a p value of 0.045, and a Wilcoxon rank sum test with continuity correction gave

310 Chapter 10. Pole balancing experiments

a p value of 0.023. Thus it was decided that timing should be accepted as a significant

factor, as the p value was below the 5% level by all measures.

10.7.
R

esults
311

Distribution of ANOVA residuals

Residuals

Fr
eq

ue
nc

y

−6 −4 −2 0 2 4

0
50

10
0

15
0

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●
●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

● ●

●

●
●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−6
−4

−2
0

2
4

Normal Q−Q

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●
●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●
● ●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−6
−4

−2
0

2
4

Residuals vs Fitted

Fitted values

R
es

id
ua

l v
al

ue

Distribution of ANOVA residuals

Residuals

Fr
eq

ue
nc

y

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

Normal Q−Q

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.5 1.0 1.5 2.0

−1
.0

−0
.5

0.
0

0.
5

Residuals vs Fitted

Fitted values

R
es

id
ua

l v
al

ue

Figure 10.3: ANOVA residuals initially showed some non-normality and heteroscedasticity (top) which was improved with a log transform

(bottom), producing smoother tails, a more linear Normal Q-Q plot, and more slightly widely varying residuals for low fitted values.

312 Chapter 10. Pole balancing experiments

The non-normality and heteroscedasticity was contributed to greatly by small score

values, produced by controllers that failed to react to the changing pole and simply

allowed it to fall. The score of poles that immediately fell had less variance than those

that participated in a longer simulation. If scores less than 2.5 seconds were removed

from the dataset, the resulting data would have been much more normal. However,

this would have meant removing a significant number of replicates (120), which would

have negatively affected the statistical analysis.

One of the aims of a multi-factorial experimental design is to randomise all levels of

factors that may be significant. It then becomes possible to compare the different levels

of a single factor to determine whether they differ significantly. The randomisation of

the other factors with respect to the factor under study means any biasing of the results

due to those other factors will be minimised. A linear regression model can be used

to determine whether changes in the levels of a single factor produce significantly

changed results. The linear regression model in R works by calculating a coefficient

for each term in the linear equation which corresponds to the first level of a factor (the

intercept), and then using Student’s t-test to compare the population at this level to

those of each of the other levels in turn [77]. The model will show which levels are

statistically different from the base intercept for a particular factor, however, it does not

immediately show differences between other levels, as it is up to the human operator

to examine further by generating a more complete regression model and comparing it

to the original.

10.7.2 ANOVA results

The null hypothesis for each factor was that there was no difference between the mean

scores of controllers where that factor was set to different levels. The alternative hy-

pothesis was that there was a difference. The significance level used in this work was

5%. The ANOVA model showed that all of the below factors were statistically signif-

icant at the 5% level. The p value was very low for all factors apart from timing —

they would also have been significant at the 1% level. As already noted, the p value for

the transformed timing dataset was 4.4%. The significant factors and corresponding p

values were:

10.7. Results 313

Factor Significance (p)

model ≤ 2.2e-16

q 2.2e-16

genpop 3.696e-11

timing 0.044174

model:genpop 2.635e-08

model:timing 1.667e-06

model:q 1.619e-15
(the colon character denotes an interaction between two factors)

All of the other factors and possible combinations of factors were found to be not

significant at the 5% level.

10.7.3 About “Least Significance Difference” plots

Visual comparisons of the different levels of a single factor can be carried out by plot-

ting the data. This is traditionally done with either a box and whisker plot, or with

a bar plot with error bars. Box and whisker plots show the quartiles and extremes of

the data, but do not visualise any statistically significant difference between the means.

Bar plots can be used to plot the mean values, but do not give as much information

about the overall shape of each distribution. Error bars can be added to each bar in the

bar plot, and the length of the error bars can be used to indicate information to help

compare means visually. The question arises as to which data when used as the error

bar length best conveys statistically significant differences (or not) between the mean

values of different levels? Crawley notes that using ±1 standard error as the length

of the error bars means that overlapping bars imply that the means are not statistically

different at the 5% level, but the reverse is not true — not overlapping does not imply

statistical difference [77, page 169]. Using 95% confidence intervals indicates that the

means are significantly different when the bars do not overlap, but the reverse is not

true — overlapping bars does not imply no statistical difference. Crawley suggests

using Least Significant Difference error bars [77].

With Least Significant Difference error bars, non-overlapping bars indicate a signif-

icant difference at the 5% level, and overlapping bars indicate no significant difference.

The Least Significant Difference is calculated as LSD = qt(0.975,df)× s.e.difference ≈
2s.e.difference (where qt is the quantile function of Student’s t-distribution, df is the de-

grees of freedom, and s.e.difference is the standard error of the difference between two

314 Chapter 10. Pole balancing experiments

means). The Least Significant Difference is then plotted for each mean as ±LSD
2 , so

that the point where the top and bottom (or vice versa) of the error bars of two means

are level represents the position where the means are the Least Significant Difference

apart — if the means were closer, the error bars would overlap, indicating no difference

between the means at the 5% level, and conversely, if the means were further apart, the

error bars would not overlap, indicating a statistically significant difference between

the means at the 5% level.

10.7.4 “Least Significant Difference” plots

The following pages show Least Significant Difference graphs comparing the different

levels of each significant factor. The values being compared are the mean scores (num-

ber of seconds pole was balanced) averaged across all results where the factor was set

to that particular level (this is the standard comparison for a factorial experiment [43]).

The Least Significant Difference error bars denote whether or not the difference be-

tween two means is significant at 5% — overlapping error bars imply no significant

difference, non-overlapping error bars imply a significant difference.

The Least Significant Difference plot is a quick way of visualising and comparing

all of the levels of a factor. The metric being compared is the “score” — the number

of seconds that the pole was balanced before falling. In all of these comparisons,

the null hypothesis is that there is no difference in the sample means of the “score”

for experiments with different levels of a particular factor. The alternative hypothesis

is that there is a difference between the means of some of the levels of the factor.

The significance level used for comparison is 5%. This level is commonly used in

genetic algorithms research. The high computational requirements of carrying out

many simulation replicates and the inherent variance in the task mean that it is not

feasible to carry out the required number of experiment replicates for a 1% significance

test. Rather than merely reject the null hypothesis, it is better to state the probability

of the observed data occurring if the means were actually the same [77, p.78]. The

probability value will therefore be stated for comparisons of levels where the presence

of significance may be hard to establish visually, i.e. when the mean values differ with

a p value near to 0.05.

10.7. Results 315

10.7.5 Factor: Model

si
gm

oi
d

be
er

ek
eb

er
g

ta
ga

if

sr
m

lo
gi

ca
l

si
ne lq

r

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0

1

2

3

4

5

6

7

Model

There are statistically significant deviations at the 5% level between the different

sets of integrate-and-fire, (beer, ekeberg, taga, logical, sine), lqr, and (sigmoid, srm).

The SRM and sigmoid models perform the best, and both outperform the LQR con-

troller. There was no significant difference between the performance of the sine neuron

controller and any of Beer’s CTRNN model, the Ekeberg model, the Taga model or the

logical model. This suggests that for this task, pure oscillating behaviour which ig-

nores inputs can be a reasonable strategy for balancing a pole. However, it is also clear

that the evolved sigmoid and SRM models and the LQR model outperform the sine

neuron, showing that there is an advantage in reacting to the input signal.

The poor performance of the integrate-and-fire neuron indicates that in its present

configuration it is not able to adequately control the pole. This could be down to the

neuron model itself failing to produce any useful internal behaviour, or the space of

useful behaviour being so small as to be missed by the genetic algorithm. The idea

that the problem may lie in the mapping function that converts output neuron spikes

to motor control is contradicted by the good performance of the SRM model, which is

also spiking and uses the same function. Having said that, it is still possible that there

is some undesirable interaction between the integrate-and-fire model and the spike to

316 Chapter 10. Pole balancing experiments

motor control mapping function, and there may be some alternative function which

would perform better. It is standard in evolutionary robotics for the functions that

handle the mapping of sensory input and motor output between the physics simulator

and the neural network to be fixed. One obvious avenue for future research would be

to co-evolve such functions along with the morphology and control.

10.7.6 Factor: Quanta

02 04 08 16 32 64 fp

quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

Two quanta (binary) controllers are significantly worse at the 5% level than most of

the rest (p = 0.02). There is no statistically significant difference between the others.

This is an interesting result, as it shows that, in general, the performance of evolved

controllers does not decrease when a quantised model is introduced, and even when

that model is reduced to using only 4 quanta states. This suggests that, for the pole

balancing task, floating-point arithmetic is not a necessary prerequisite for creating

high performance evolved controllers, and that quantised neural controllers, with their

lower complexity and power requirements, should be considered.

10.7. Results 317

10.7.7 Factor: Number of generations and population size

050 100

genpop

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

Using a population size and generations of 100 is significantly better than one of

50 at the 5% level. Population size and generations are representative factors of the

underlying concept of computational capacity, as they directly relate to the number of

fitness evaluations that have to be carried out by the genetic algorithm.

In evolutionary robotics research the population size and generations are usually

chosen based upon the computational capacity available and the estimated time to

complete to complete the experiments. Beyond that, little justification is usually given

for choosing particular values, and often values are chosen simply because they were

used in some previously published work on a similar topic. It was desired here to test

whether there was any point in using more computational resources than required by a

size 50 population run for 50 generations.

If there were no advantage to be gained by an increase to a size 100 population run

for 100 generations (an increase of four times the computational requirements) then

we would have establish a rough upper bound on this type of evolution. The results

show that this is not the case — increasing the computational capacity did result in

evolved controllers with a higher fitness. Since there is no comparison point beyond

a size 100 population evolved for 100 generations, we can not say whether or not this

318 Chapter 10. Pole balancing experiments

level might represent some upper bound. Going higher than the 100× 100 case, or

exploring many alternative levels, was not practical for the experiments described here

due to the increased computational resources it would require.

10.7.8 Factor: Timing

async sync

timing

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

Synchronous controllers are better at the 5% level (p = 0.16). This is an interesting

result as it shows that, even with such a seemingly simple task. where networks have

only four inputs and one output, a synchronous neuron update scheme outperforms an

asynchronous one. This strongly suggests that some degree of synchronisation is desir-

able for neural control networks. In the real world, problems with power consumption

and signal distribution mean that a global timing signal is undesirable. It may be better

to use a hybrid approach where only localised synchronisation is used. These results

show that completely abandoning synchronisation negatively impacts performance on

this control task.

More research is required to identify optimal synchronisation schemes. It is thought

that biological neural networks combine values and synchronisation into a continu-

ous real-value signal (see section 3.3). The research field of asynchronous circuits

has introduced different encoding schemes which combine value and synchronisation

10.7. Results 319

into one or more digital signals, along with explicit synchronisation primitives (see

section 4.3. It would be interesting to find out whether these encoding schemes and

primitives could be exploited by a genetic algorithm to produce hybrid synchronisation

schemes, where the scope of synchronisation is penalised by the genetic algorithm to

encourage minimal optimal timing schemes to emerge. It would also be interesting to

attempt to co-evolve a timing function along with the rest of the genome rather than

using preset schemes.

10.7.9 Factor: Interaction of model and timing

si
gm

oi
d:

as
yn

c

si
gm

oi
d:

sy
nc

be
er

:a
sy

nc

be
er

:s
yn

c

ek
eb

er
g:

as
yn

c

ek
eb

er
g:

sy
nc

ta
ga

:a
sy

nc

ta
ga

:s
yn

c

if:
as

yn
c

if:
sy

nc

sr
m

:a
sy

nc

sr
m

:s
yn

c

lo
gi

ca
l:a

sy
nc

lo
gi

ca
l:s

yn
c

si
ne

:a
sy

nc

si
ne

:s
yn

c

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0

2

4

6

8

Interaction of model and timing

async
sync

This factor represents the interaction between the neuron model and whether the

timing is synchronous or asynchronous. We already know that the timing factor is sig-

nificant, and that on average (across all models) synchronous controllers outperformed

asynchronous ones. What this interaction factor shows is whether synchronous con-

trollers outperformed asynchronous controllers for individual neuron models. There

is a clear trend that synchronous is better than asynchronous for all models except

integrate-and-fire (if), although the difference is only statistically significant at a 5%

320 Chapter 10. Pole balancing experiments

level for the Taga (p = 0.035) and SRM (p = 0.004) models. The difference for Eke-

berg is not significant at the 5% level (p = 0.057), but it seems likely that more repli-

cates would have established significance. The difference for the logical model is also

not significant at 5% (p = 0.082).

This result shows that the neuron model and the timing model are not independent,

but should be considered together. For some neuron models, the lack of global syn-

chronisation has no effect on this pole balancing control task. It is doubtful that the

same result — that synchronisation has no significant observable effect — would be

found for all other tasks and possible configurations; it would be certainly be unex-

pected if synchronisation had no effect even on the scale of millions of neurons.

10.7.10 Factor: Interaction of neuron model and generations / pop-

ulation size

be
er

:0
50

be
er

:1
00

ek
eb

er
g:

05
0

ek
eb

er
g:

10
0

if:
05

0

if:
10

0

lo
gi

ca
l:0

50

lo
gi

ca
l:1

00

si
gm

oi
d:

05
0

si
gm

oi
d:

10
0

si
ne

:0
50

si
ne

:1
00

sr
m

:0
50

sr
m

:1
00

ta
ga

:0
50

ta
ga

:1
00

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0

2

4

6

8

Interaction of model and generation/population size

050
100

The results have already shown that a combined generation and population size of

100 results in higher scoring controllers than a generation and population size of 50.

This factor — the interaction of model and generations/population size — indicates

10.7. Results 321

that using a combined size of 100 does not always result in increased fitness over a

sizes, and that the neuron model being used has to be taken into account. The results

here show that, for most models there is indeed an observable improvement at the 5%

level when going from a size of 50 to 100. This would already be accounted for by the

existing factor representing the “generation/population size”. However, this interaction

factor is significant because for two neuron models — integrate-and-fire and sine —

there is no difference between having a size 50 generation/population and a size 100

one.

It appears that integrate-and-fire neurons always perform badly on this task regard-

less of making extra computational power available to the genetic algorithm. For the

sine model, performance is decent, but there is no observable difference when increas-

ing computational effort above the 50/50 level. This is because the parameter space of

the sine model is much smaller than the space of the other models, making it easier for

the genetic algorithm to locate and optimize a good solution. A population size of 50

evolved for 50 generations is already sufficient to find the best controllers for this task,

and no extra effort will result in better performing controllers.

10.7.11 Factor: Interaction of neuron model and quantisation

The performance of each quantised neuron model is individually plotted against the

number of quanta states (corresponding to the arithmetic precision of the model). The

null hypothesis is that there is no difference between the different quanta levels. The

alternative hypothesis is that the means of two or more levels are different. The signif-

icance level used for comparison is 5%.

322 Chapter 10. Pole balancing experiments

10.7.11.1 Sigmoid model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
2

4
6

8

Two state (binary) controllers are significantly worse than all the rest at the 5%

level. There is no significant difference between any of the others, including the

floating-point controller. The performance of the sigmoid controllers is high, suggest-

ing that the sigmoid neuron model should be used on this task (in fact, sigmoid and

SRM were the two top performing models). The fact that no significant difference was

observed in going from floating-point to a quantised 2-bit (4 quanta) model, and the

general good performance of this model, means that a low-precision quantised sigmoid

neural network should be seriously considered for this control task.

The sigmoid model is widely used in evolutionary robotics research. Implemen-

tations always use floating-point arithmetic. These results suggest that the quantised

sigmoid model should be considered for other evolved control tasks. Further exper-

imentation is needed to establish whether the success of quantised sigmoid neurons

is specific to the pole balancing task, or whether it will generalise to other dynamic

control tasks.

10.7. Results 323

10.7.11.2 Beer’s CTRNN model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

6

Two quanta controllers are worse than the all the rest apart from four quanta. The

difference between 4 and 8 has a p value of 0.062, and so is not significant at the 5%

level. All of the levels with 8 quanta states and above are significantly better than those

with 4 quanta states or less.

This result shows that for Beer’s CTRNN neuron model a floating-point pole bal-

ancing controller could potentially be replaced with one using only 3-bit (8 quanta)

arithmetic without loss of performance. This would result in significantly lowered

complexity and power consumption.

324 Chapter 10. Pole balancing experiments

10.7.11.3 Ekeberg’s model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

There is no statistically significant difference between any of the controllers at

the 5% level. This means that for the pole balancing task, an evolved floating-point

controller using Ekeberg model neurons could be replaced with a quantised 1-bit (2

quanta) Ekeberg model controller without loss of performance. This is very interesting,

as the 1-bit Ekeberg model actually performs reasonably well.

10.7. Results 325

10.7.11.4 Taga’s model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

6

There is no significant difference at the 5% level between controllers with quanta

levels 16, 32 and 64, although interestingly these all perform better than the floating-

point controller. With lower precision, 4 and 8 quanta controllers perform equally

well, with the 2 quanta controller performing the worst. It is somewhat unusual that

there is an interaction between the neuron model and quantisation that enables three

of the quantised controllers to perform better than the floating-point controller. This

implies that a floating-point neuron controller carrying out the pole balancing task

could be replaced with an evolved quantised controller and performance would actually

increase.

Further research is needed to understand exactly why the floating-point controller

performs less well than some of the quantised controllers. There is a significant dif-

ference once the number of quanta states drops below 16, with performance degrading

substantially. These results indicate that it may be best to use a 4-bit (16 quanta) Taga

model, resulting in improved performance over the floating-point model, and lowered

complexity and power consumption.

326 Chapter 10. Pole balancing experiments

10.7.11.5 Integrate-and-fire model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

There is no statistically significant difference at the 5% level between any of the

controllers. However, the performance of all of the controllers is very poor, and it

seems the integrate-and-fire model is not a good fit to this robot control task. Analysis

of the “model” factor has already shown that the integrate-and-fire neuron model was

the worst performing of them all, so it would not be recommended to use this model

anyway. Further research is necessary to determine why the integrate-and-fire model

performs poorly on this task — it is a standard accepted model of a biological neuron,

so hypothetically it should be capable of generating dynamic behaviour. The SRM

spiking model did perform well, so the fact that this is a spiking model does not in

itself explain the results.

10.7. Results 327

10.7.11.6 Spike Response Model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
2

4
6

8
10

There was no significant difference between any of the controllers, including floating-

point, at the 5% level. The performance of this model is actually quite good. It is a

spiking neuron model, unlike the other successful evolved controllers, which have con-

tinuous dynamics. The success of this model shows that the fixed function that converts

spikes to motor signals (see section 8.12) — or rather, cheats and examines the inter-

nal activity state of the neuron, actually works. It would be an interesting extension

of this research to attempt to co-evolve spike train encoding and decoding functions

from scratch (the research closest to this idea so far was probably the optimisation of

coefficients for a decode function in [87], however this is quite a different concept

from evolving the whole decode function from scratch).

328 Chapter 10. Pole balancing experiments

10.7.11.7 Logical model

02 04 08

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

There is no significant difference at the 5% level between controllers with different

quantisation levels (multi-value logic). The p value of two quanta versus four quanta

is 0.056. The larger quanta cases are missing, as the complexity of the required simu-

lations is computationally intractable (the implementation used lookup tables to store

each logic function, but an alternative implementation could do things differently to

enable more quanta states, so this is not some fundamental limit).

Controllers based on multi-value logic are very rare in the robotics world, and the

author is not aware of any examples in the field of evolutionary robotics other than the

digital circuits evolved by Thompson [441]. The main problem with arbitrarily evolved

circuits is that they tend to become stuck in a point attractor rather than oscillate or gen-

erate useful computational behaviours. In biology, the multi-value generalised logical

network model (see section 4.6 is sometimes used to model genetic regulatory net-

works. Since genetic regulatory networks display complex behaviour (construction of

the morphology of living creatures), there is reason to suspect that multi-value logic

networks may also be capable of similar complex behaviour.

The results here show that, for this evolved control task, there was no difference

between the performance of evolved logical circuits with different quanta levels. The

10.7. Results 329

performance was also quite reasonable, suggesting that a binary logical network could

be used to successfully balance a pole.

10.7.11.8 Sine model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

Two state (binary) controllers are significantly worse than all the rest. There is no

difference between any of the others, including the floating-point controller.

The surprising success of the sine wave model (it was ranked joint fourth) indicates

something about the nature of the evaluated fitness task. The sine neuron disregards

all of its inputs and produces a sine wave output signal, with evolved phase offset,

frequency and amplitude. The fact that the pole balancing task can be effectively solved

by a strategy of oscillating backwards and forwards suggests that other neuron models

of similar performance may similarly be disregarding the input signal and producing

only a regular oscillating output. However, it also shows that oscillation is not the best

strategy for the pole balancing task, as there were other evolved models (sigmoid and

SRM) and the non-evolved LQR controller, which all performed better.

330 Chapter 10. Pole balancing experiments

10.7.11.9 Linear Quadratic Regulator model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

se
co

nd
s

ba
la

nc
ed

)

0
1

2
3

4
5

6
7

There is no significant difference at the 5% level between any of the controllers,

including floating-point. These controllers all perform well, and the equivalence of the

floating-point implementation to all the others means that, on this task, floating-point

arithmetic based controllers can be replaced with evolved binary controllers with no

resulting degradation in controller performance. This is an interesting result, as lin-

ear quadratic regulators with floating-point arithmetic are well understood and widely

used. This result shows that, for applications where it matters, reduced precision arith-

metic and controllers should be considered, as performance may be comparable, and

the implementation will be simpler and consume less power.

10.8. Summary 331

10.8 Summary

This chapter has explored whether evolved quantised neural networks can be used

for the pole balancing task, and if so, how degraded their performance will be when

compared to floating-point networks. Several published works have shown that neural

networks can be evolved to solve the pole balancing problem [163,325,340,409,479].

Without exception, these works have all used neural network models with floating-

point arithmetic. The motivation for exploring whether quantised neural networks can

be used instead is that quantised networks do not require floating-point arithmetic units,

and hence are simpler to implement and consume less power.

A fractional factorial experiment was devised to test the hypothesis that quantised

neural network controllers could be evolved to solve the pole balancing problem. The

experimental design varied many parameters to determine if these parameters were sig-

nificant, and if so, to see how the different levels of these parameters would affect the

performance of the evolved neural controllers. ANOVA modelling showed that there

were several significant factors: neuron model, number of quanta states, a combined

factor representing the size of the population and number of generations to evolve, and

the type of neural synchronisation. Additionally, there were several interaction factors

that were significant: an interaction of neuron model and the population size/number

of generations factor, an interaction of the neuron model and the type of neural syn-

chronisation, and an interaction of the neuron model and number of quanta states.

The result of the experiment was that successful quantised pole balancing con-

trollers were evolved. The most successful models were the sigmoid model and the

spike response model. Both achieved high mean scores that were significantly better

then all of the other models. The quantised versions of these models were compared

to the floating-point implementations.

There was no significant difference between the mean performance of sigmoid neu-

ral networks using full floating-point arithmetic and those using quantised arithmetic

with a precision of 2-bits or greater. This is a significant finding, as sigmoid controllers

have been widely used in evolutionary robotics for control tasks like pole balancing.

The results show that, on this particular task, a floating-point sigmoid controller can

be replaced with a 2-bit quantised controller without loss of performance. This sug-

gests that other control tasks utilising floating-point sigmoid controllers may similarly

benefit.

There was no significant difference between the floating-point version of the spike

332 Chapter 10. Pole balancing experiments

response model and any of the quantised models at any level of arithmetic precision.

Again, this was an interesting finding, meaning that the highest performing spiking

neural network on this task could also have its precision reduced without loss of per-

formance.

The results showed that increasing the population size and number of generations

did result in neural network controllers with significantly higher performance on this

task. No upper limit on the gains available given additional computational capacity

was established — it is possible that increasing the population size and number of

generations above 100 would result in controllers with even higher performance.

In general, synchronous neural networks had higher performance than asynchronous

ones. This is likely due to the nature of the task. Synchronous controllers are more

likely to generate oscillating patterns due to the fact that a single global signal can drive

global patterns. However, since the performance of the sine model controllers was not

the best, we know that oscillation alone, whilst a good strategy for pole balancing, is

not the best strategy. Sensed input signals are important.

To sum up: Evolutionary solutions to the pole balancing problem have in the past

always relied on floating-point neural models. This chapter has described research in

which quantised neural networks were successfully evolved to solve the pole balancing

task. For the two best performing models, there was no discernible difference between

the floating-point implementation and the quantised implementation. This means that

the pole balancing task can be solved with evolved quantised models without loss of

performance, which is an important finding as quantised models are simpler to imple-

ment and consume less power.

Chapter 11

Virtual creature experiments

The previous chapter compared floating-point and quantised neural controllers evolved

to carry out the pole balancing task in a fixed robot morphology. This chapter will

compare the performance of floating-point and quantised neural controllers on the task

of generating locomoting behaviour in evolved virtual creatures.

It has been claimed that the co-evolution of morphology and control allows a more

natural evolutionary path to be followed, with a greater chance of successfully evolv-

ing high fitness individuals (see section 6.14) [50, 67, 257, 321]. It has also been

claimed that decentralised digital networks are capable of rhythmic pattern generation

behaviour (see section 6.12) [107,108,364], and it has been suggested that “central pat-

tern generators” based on continuous dynamics are responsible for motion behaviour

in living creatures (see section 2.4) [195, 270, 279, 307]. This chapter will therefore

extend the experiments of the previous chapter, evolving both control and morphology

of virtual creatures, and again comparing the performance of continuous and quantised

neural networks. The experiments in this chapter involve the evolution of genotypes

with combined morphology and neural network control systems as already described

in chapter 8.

11.1 Introduction

The hypothesis investigated in this chapter is that quantised neural networks can be

evolved to generate rhythmic patterns which can be used to drive robot locomotion,

and that the performance of these networks on the locomotion task may be compa-

rable to that of floating-point networks, which are more widely used in evolutionary

robotics. Most evolutionary robotics research relies on complex neural models for con-

333

334 Chapter 11. Virtual creature experiments

trol. There is often a basic, unchallenged assumption that a floating-point implementa-

tion should be used, and little consideration is given to using simpler neural networks.

This is partly due to the fact that evolutionary robotics experiments often make use of

software based physics simulations carried out on PCs, which have a mains power sup-

ply and CPU with integrated high-performance floating-point vector arithmetic units.

However, for real autonomous robots energy usage is a major concern, and simpler

neural control models would lead to substantial savings in power consumption.

Since we have no concept of how to manually design dynamic neural networks for

complex control task, genetic algorithms will be used to evolve all of the functional

parameters of the digital neural networks. The networks will be linked to a 3D physics

simulation system for the purposes of determining evolutionary fitness (the complete

architecture is described in chapter 8). The genotype will encode both morphology

and control, in order to increase the probability of successfully evolving working con-

trollers, and to explore whether evolved quantised neural networks can successfully

generate locomoting behaviour in co-evolved morphologies.

We wish to show that simple, quantised neural controllers are suitable for the robot

control task. The performance of various kinds of digital control network will be com-

pared to that of floating-point neuron models. It is already known that floating-point

models can be successfully evolved to generate locomoting behaviour in co-evolved

morphologies (see section 6.14). The hypothesis of this chapter is that quantised mod-

els can also be used to generate locomoting behaviour.

Using genetic algorithms to evolve robot morphologies and neural network con-

trollers presents some problems. Quite often in previously published research various

parameters of the genetic algorithm will be set to particular constant values without

any explanation as to why these values were chosen. Parameters such as the popu-

lation size, number of generations, and number of neurons in a neural network, are

often stated as fixed, but no justification is given as to why or how the fixed value was

chosen. This chapter will therefore attempt to establish whether some of these fac-

tors are significant in determining the performance of the evolved robots. However, it

is not feasible to investigate all possible factors and their many interactions, and for

this reason many of the parameters will remain fixed (such as using an elitist genetic

algorithm, and a generational genetic algorithm).

11.2. Task 335

11.2 Task

The creature morphology, morphogenesis, neurogenesis, and neuron models were all

as documented in chapter 8. An elitist genetic algorithm was used, with the top 5%

of the population surviving intact to the next generation and being used as parents

to generate children. Simulations were fixed to last exactly 30 simulated seconds.

Mutation was the sole genotype reproduction operator. The mutation probability for

parameters of the genome was set at 0.1, meaning that every individual parameter

had a 10% chance of being mutated during genotype reproduction. Each cylinder of

a morphology had a neural network that was evolved using the same parameters as

in the pole balancing experiment. The robot architecture, evolvable parameters and

evolutionary process have already been documented in chapter 8.

There are many factors which affect the evolutionary process. Some of these are:

the neuron model, whether the neuron model is continuous, or if discrete the num-

ber of quanta states, the topology of control networks, the number of neurons, the

type of genetic algorithm used (generational or steady state), the mutation probability

(usually a fixed constant, though sometimes varied dynamically), the type of mutation

(uniform or Gaussian), number of generations, size of population, the fitness function

(including simulation time), the updating scheme of the neural networks (synchronous,

asynchronous, or other). These factors will be explored to see if varying them signif-

icantly affects the performance of the resulting evolved controllers on the locomoting

fitness task.

11.3 Fitness function

Locomotion is a common task for evolved robots and their controllers. Typically the

fitness function used will reward motion in one particular direction, rather than overall

motion, as it is usually assumed that the aim of directed locomotion is to get to some

particular place quickly and reliably rather than just randomly wandering. Sometimes

other behaviours, like turning, are evolved once forwards locomotion is working.

The fitness function used here measured locomotion along the x-axis. The bod-

ies of the evolved robots consisted of several cylindrical parts, each of which had its

own weight and centre of mass. This complicates the fitness function; do we want

to measure the displacement of the composite robot by averaging some metric of each

individual cylinder, thus giving a simple global measure of overall distance moved? Or

336 Chapter 11. Virtual creature experiments

should the fitness function treat each cylinder individually, attempting to ensure that all

cylinders are moved some minimum distance? The fitness function shapes the evolu-

tionary search, so attempting to optimise simple parameters can often have unintended

consequences.

Pilot runs were carried out to explore how the evolutionary algorithm optimised

evolved morphologies and controllers in the presence of different fitness functions.

All functions aimed to measure some metric of x-axis locomotion. One function sim-

ply calculated the mean displacement of all cylinders along the x-axis. The result of

this was that the genetic algorithm evolved increasingly taller robots that would be

standing at 0 seconds, but would then immediately fall along the x-axis, producing a

high fitness score (see figure 11.1). This was effectively an evolutionary dead end,

with subsequent generations producing taller individuals, and increasing the number

of “high” cylinders, as these would attain the greatest displacement once the robot had

fallen.

A proposed fix for this behaviour was to use a fitness function that measured the

displacement of the cylinder closest to x= 0 after 30 seconds. Again, pilot runs showed

this could be exploited by the evolutionary system, with the early population becoming

dominated by a simple 2-cylinder hinged robot with a constant value signal wired to its

motor. Once the simulation began, the robot would push against the ground, producing

a leap along the x-axis, but once it had landed there would be no further movement (see

figure 11.2.

After some testing, a simple fitness function was devised that measured locomo-

tion along the x-axis but did not appear to be as exploitable. The function was minx/t

where minx was the displacement of the cylinder closest to x = 0, and t was the current

simulation time. This function measures the velocity of the slowest cylinder. It encour-

ages movement along the x-axis, but also ensures that all body parts must move. Pilot

runs showed that this fitness function was more likely to lead to continuous locomo-

tion than the others, and there did not appear to be an obvious way for the evolutionary

algorithm to exploit it towards dead end non-locomoting solutions. One advantage

of using the overall velocity as a measure of locomotion is that it is a time invariant

metric; the results from simulations with different timescales are directly comparable.

Each simulation would last exactly 30 seconds.

11.3. Fitness function 337

Figure 11.1: A fitness function attempts to reward locomoting behaviour along the x-

axis. Using a simple measure such as the mean displacement of cylinders between

t = 0 and t = 30 can lead to robots that exploit this function by growing increasingly

taller, and during simulation just fall to one side. No real locomotion occurs, but the

robot gains a high fitness score.

Figure 11.2: A fitness function attempts to reward locomoting behaviour along the x-

axis. Using a simple measure such as the final displacement of the robot at t = 30

can lead to simple robots that exploit this function by constantly activating a motor on a

single joint to drive the two cylinders into the ground, producing an upward motion. The

robot will only leap once, but gains a high fitness, effectively creating an evolutionary

dead end with no real locomotion.

338 Chapter 11. Virtual creature experiments

Figure 11.3: The final fitness function effectively measures the mean x-axis velocity of

the slowest cylinder. It encourages movement of all cylinders along the x-axis, and is a

time invariant measure.

11.4 Experimental design

The experimental design was the same as in the pole balancing experiment (see sec-

tion 10.5). There were no extra factors to vary in the evolution of virtual creatures. The

existing factors and levels were also sufficient for the purpose of qualitative evaluation

of the different neural models and quantisation combinations. In total 533 replicates

were evaluated, requiring 6.6 million individual fitness evaluations, a total run time of

approximately two weeks on a cluster of 24 3GHz dual-core PCs.

Pilot runs of the genetic algorithm showed that the computational requirements

could be reduced without any significant change in the evolvability or final results.

The genetic algorithm ran three separate simulations as part of the fitness evaluation

of an individual. This policy had been introduced following stability problems simu-

lating the physics of arbitrary evolved morphologies; unstable points in the simulation

tended to gain huge amounts of energy, resulting in unrealistic movement leading to

undesirable high fitness scores. After substantial work on fixing the physics, a pilot run

showed no difference between results from a fitness function using a single simulation

versus one using a triple simulation. Removing the two extraneous simulations re-

duced the required computational time to roughly one third, although other overheads,

11.5. Reproducibility 339

such as database latency and network bandwidth, meant that the final saving was not

as large.

Pilot runs also showed that the choice of mutation operator (Gaussian or uniform)

and mutation rate could substantially affect evolutionary behaviour. Search can be

characterised as two phases: an initial phase across a massive space looking for a

basic concept, in which large leaps are necessary, and a subsequent optimisation phase

in which that basic concept is refined, requiring short steps. If the mutation rate is

low, or Gaussian mutation is used (in which values are chosen probabilistically from

a Gaussian distribution centered around the current value), and if there is no workable

solution in the initial generation, then the genetic algorithm is unlikely to find one,

and final results will be low scoring. In contrast, if mutation is uniform and with high

probability, then the genetic algorithm can lose good solutions, since they are highly

likely to be mutated. Using a more adaptive genetic algorithm, which can dynamically

vary mutator and mutation rate, may produce more optimal behaviour.

11.5 Reproducibility

As noted in the previous chapter, the complete experimental setup described here con-

sists of thousands of lines of source code. Small changes in the experimental setup may

cause changes in the observed data, so the experimental setup must be documented at

a very low level. It is not practical to include an English language or pseudo-code

description at this level within the thesis itself, so to aid in openness and experimen-

tal reproducibility the exact source code and scripts used to run this experiment will

be published along with this thesis. Section 1.3 contains some more commentary on

the reproducibility of scientific simulations and the importance of this to the scientific

process.

11.6 Results

11.6.1 ANOVA modelling

The process of ANOVA modelling was the same as described for the previous set of

experiments in section 10.7.1. The null hypothesis was that varying the levels of each

factor, or combination of factors, would not significantly affect locomoting perfor-

mance of the best individual in the final evolved generation. The significance level

340 Chapter 11. Virtual creature experiments

used was 5%.

The residuals of the ANOVA model were tested for normality as described for the

previous set of experiments. Again, the residuals showed some small signs of non-

normality. Minor deviations from normality are to be expected for real experimental

data, and the statistical analysis is robust to deviations (see section 10.7.1 for more

details). Figure 11.4 shows the plotted residuals for the generated ANOVA model. The

residuals were initially approximately normal distributed. Using a log transform made

the residuals more normal, but made no difference to the ANOVA model — the same

set of factors were deemed significant (or not) at the 5% level.

11.6.
R

esults
341

Distribution of ANOVA residuals

Residuals

Fr
eq

ue
nc

y

−2 −1 0 1 2

0
50

10
0

15
0

20
0

25
0

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

−3 −2 −1 0 1 2 3

−1
0

1
2

Normal Q−Q

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

0 1 2 3 4

−1
0

1
2

Residuals vs Fitted

Fitted values

R
es

id
ua

l v
al

ue

Distribution of ANOVA residuals

Residuals

Fr
eq

ue
nc

y

−0.5 0.0 0.5

0
20

40
60

80
12

0

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−3 −2 −1 0 1 2 3

−0
.5

0.
0

0.
5

Normal Q−Q

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.5 1.0 1.5

−0
.5

0.
0

0.
5

Residuals vs Fitted

Fitted values

R
es

id
ua

l v
al

ue

Figure 11.4: ANOVA residuals plots of the original data (top) and log transformed data (bottom). The original distribution is reasonably normal

to start with. The log transformed data is more normal (bottom left), displays straighter Normal Q-Q plot (bottom centre) and shows less

clustering against fitted values (bottom right). However, the fact that these differences are small, combined with the reasonable normal-ness

of the original data and robustness to non-normality of the statistical tests meant that the set of significant factors remained the same.

342 Chapter 11. Virtual creature experiments

11.6.2 ANOVA results

The method of analysis of the results was the same as described for the previous set

of experiments in section 10.7.2. The significance level was 5%. The ANOVA model

showed that several factors were statistically significant at the 5% level:
Factor Significance (p)

model ≤ 2.2e-16

genpop 2.130e-08

timing 1.384e-08

model:timing 7.265e-07

model:q 0.02072
(the colon character denotes an interaction between two factors)

All of the other factors and possible combinations of factors were found to be not

significant at the 5% level.

The following sections show various plots comparing the performance of different

levels of these factors. All results are based on the overall velocity along the x-axis

achieved by the best individual in a population at the end of an evolutionary run. The

particular makeup of the rest of the population is not considered, as the purpose of

evolving a solution is usually to find and use the best and disregard the rest.

11.6.3 “Least Significant Difference” plots

The process and explanation of the “Least Significant Difference” plots is the same as

described for the previous set of experiments in section 10.7.3.

11.6. Results 343

11.6.4 Factor: Model

be
er

ek
eb

er
g if

lo
gi

ca
l

si
gm

oi
d

si
ne

sr
m

ta
ga

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.0

0.5

1.0

1.5

2.0

2.5

Model

There are statistically significant deviations at the 5% level between several differ-

ent models. All of the neuron models successfully generated locomoting behaviour.

The sine wave model was clearly superior to all others. The logical model was next;

at the 5% level there was no significant difference between it and the sigmoid model

(p = 0.068) or the Taga model (p = 0.079), but there was a significant difference when

compared to the SRM model (p = 0.036). There was no significant difference at the

5% level between Beer’s model, the Ekeberg model, or the integrate-and-fire model,

which were collectively the worst.

The sine wave neuron ignores all of its inputs and just generates a sine wave output

signal. It has evolvable parameters of amplitude, phase offset and frequency. Given

this simplicity, it may be surprising that it scores so much more highly than other more

complex and more adaptable neuron models, especially since these neuron models are

more widely used in evolutionary robotics for tasks like locomotion control. The suc-

cess of the sine wave model shows that sensory input is not so important for the basic

locomotion task, but the ability to easily generate cyclic repeating activity patterns is.

The other neuron models can generate oscillating patterns, but the parameter space

of the neuron in which it will oscillate is smaller, and some models require multiple

344 Chapter 11. Virtual creature experiments

neurons to be linked together in specific configurations before oscillation will occur.

Oscillating motion in sine neurons is guaranteed, whilst oscillating motion for other

neurons must be discovered, and is hence less likely to occur.

11.6.5 Factor: Number of generations and population size

050 100

genpop

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

There is a statistically significant deviation at the 5% level between evolutionary

runs with a population size of 50 evolved for 50 generations versus those with a pop-

ulation of 100 evolved for 100 generations. Note that we are using a combined factor

here as the real underlying issue is one of computational power — the effect of varying

either the population size or the number of generations is actually to vary the number

of fitness evaluations carried out. These results suggest that greater computational re-

sources may be utilised to evolve controllers with better performance. There is an open

question as to what the best population size and number of generations is in evolution-

ary robotics, and whether there are any general principles that apply to the genome

encoding of creatures, or to the phenotype model or fitness task, that would enable the

best values to be estimated before the evolutionary process is carried out.

11.6. Results 345

11.6.6 Factor: Timing

async sync

timing

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Controllers with synchronous timing perform significantly better than those with

asynchronous timing. Synchronous timing is completely predictable, whereas asyn-

chronous timing is not, and this may aid controllers in producing stable and repeatable

patterns of activity. It is known that synchronous nk networks and cellular automata

are more likely to display rhythmic patterns of activity than their asynchronous coun-

terparts [107, 108], and so solutions are easier for the genetic algorithm to discover.

The result also suggest that synchronicity provides a global timing which can be used

to coordinate the movement of different joints.

This result leaves open the question as to whether or not there may be other kinds of

timing model that would work better. Global synchronicity is undesirable and it is com-

putationally more intensive (consuming more power), and requires complex wiring to

route the single timing signal to every neuron in the network (which may not even be

possible if we require fast neuron response but have a large, high latency network). It

would be useful to investigate and compare the many different hybrid timing models,

which provide synchronisation between individual cells or set of cells, but not globally.

346 Chapter 11. Virtual creature experiments

11.6.7 Factor: Interaction of neuron model and timing

si
gm

oi
d:

as
yn

c

si
gm

oi
d:

sy
nc

be
er

:a
sy

nc

be
er

:s
yn

c

ek
eb

er
g:

as
yn

c

ek
eb

er
g:

sy
nc

ta
ga

:a
sy

nc

ta
ga

:s
yn

c

if:
as

yn
c

if:
sy

nc

sr
m

:a
sy

nc

sr
m

:s
yn

c

lo
gi

ca
l:a

sy
nc

lo
gi

ca
l:s

yn
c

si
ne

:a
sy

nc

si
ne

:s
yn

c

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Interaction of model and timing

This factor represents the interaction between the neuron model and whether the

timing is synchronous or asynchronous. We already know that the timing factor is sig-

nificant, and that on average (across all models) synchronous controllers outperformed

asynchronous ones. What this interaction factor shows is whether synchronous con-

trollers outperformed asynchronous controllers for individual neuron models. There is

a visible trend that synchronous is better than asynchronous for all models, although

the difference is only statistically significant at the 5% level for the Beer, sine, and

Taga models.

The large difference between the two models of sine neuron may seem surprising

given that the sine neuron ignores all inputs and hence synchronisation does not seem

so important. The asynchronous updating scheme carries out a number of updates

equal to the number of neurons in the network, so has the same “computational cost”

as the synchronous one, but the neuron to update is selecting randomly. This is a

purely asynchronous approach, where there is no timing at all, and hence it is possible

for a single neuron to be updated more than once, whilst another may not be updated

11.6. Results 347

at all. This results in desynchronisation of the signals driving different joints, which

negatively affects the ability to generate coordinated locomoting behaviour.

The fact that there are significant differences between the asynchronous and syn-

chronous versions of some neuron models but not others is interesting, as it suggests

that the dynamical behaviour of some models is more robust than others to completely

desynchronisation operation.

11.6.8 Factor: Interaction of neuron model and quantisation

The performance of each quantised neuron model is individually plotted against the

number of quanta states (corresponding to the arithmetic precision of the model). The

null hypothesis is that there is no difference between the different quanta levels. The

alternative hypothesis is that the means of two or more levels are different. The signif-

icance level used for comparison is 5%.

11.6.8.1 Sigmoid model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
5

1.
0

1.
5

The eight quanta case is significantly different from the floating-point case at the

5% level. This is either a result of some synergy of the 8 quanta sigmoid model, or a

348 Chapter 11. Virtual creature experiments

statistical anomaly. Apart from that unusual result, there is no difference between any

of the different quanta controllers at the 5% level.

11.6.8.2 Beer’s CTRNN model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

There is no statistically significant deviation at the 5% level between the mean val-

ues for different quanta. This is an interesting result for Beer’s model, as the floating-

point implementation has been widely used in evolutionary robotics research. The fact

that it is equal in performance on the locomotion task to a simple 1-bit model suggests

that the floating-point model is more complex than required for many of the applica-

tions to which it has been put.

11.6. Results 349

11.6.8.3 Ekeberg model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

The four quanta case is significantly higher at the 5% level than the other quanta

levels, but not higher than the floating-point case. This unusual result suggests that

there is some interaction between the quantisation and the Ekeberg model when the

number of quanta is four. Perhaps it makes the model more likely to oscillate. There is

no significant difference between the other levels, suggesting that simple binary Eke-

berg models perform as well as floating-point models on the evolutionary locomotion

task.

350 Chapter 11. Virtual creature experiments

11.6.8.4 Taga model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
5

1.
0

1.
5

2.
0

The 32 quanta model is significantly better at the 5% level than the 2 and 4 quanta

models. The difference between the other models is not significant. In particular,

there is no difference between the floating-point model and any of the others, which

suggests that the floating point-model may be replaced with quantised models without

degradation in performance on the locomotion task.

11.6. Results 351

11.6.8.5 Integrate-and-fire model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The floating-point case here is statistically superior at the 5% level to four of the

quantised cases. There was no statistical difference between the four and sixty four

quanta cases, and the floating-point case.

There is no difference between the floating-point model and the 4 quanta and 64

quanta models. The high mean for the four quanta controllers may be an anomaly, or

there may be something peculiar about this model that encourages pattern generating

behaviour. There is no statistical difference at the 5% level between the 64 quanta and

floating-point model, suggesting that quantisation in itself has not negatively affected

performance.

352 Chapter 11. Virtual creature experiments

11.6.8.6 Spike response model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Interestingly, these results show a trend towards declining performance as the model

becomes more complex. The two quanta binary model is the highest performing, and

is significantly better than the floating-point model at the 5% level (p = 0.043).

Again, it is possibly the case here that a two quanta neuron is more likely to oscil-

late, and that this results in better performance on the locomotion task.

11.6. Results 353

11.6.8.7 Logical model

02 04 08

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0.
0

0.
5

1.
0

1.
5

The two quanta case is statistically superior at the 5% level to the four or eight

quanta cases. The larger quanta cases are missing, as the complexity of the required

simulations is computationally intractable. The superior performance of the two quanta

case is interesting, and probably a result of the fact that with only two quanta states

oscillation between them is going to result in high amplitude signal oscillation.

354 Chapter 11. Virtual creature experiments

11.6.8.8 Sine model

02 04 08 16 32 64 fp

Quanta

S
co

re
 (

ve
lo

ci
ty

 m
/s

)

0
1

2
3

4

There is no statistically significant difference between any of the quantisation lev-

els, or even the floating-point model, suggesting that a simple binary oscillator (2

quanta) neuron is equivalent to the most complex floating-point model. Several evo-

lutionary robotics research projects have used floating-point sine waves to generate

locomoting behaviour. For this kind of project, the sine wave can be optimised by

pre-computing the signal values and storing them in a lookup table. The results here

suggest that an even simpler and just as effective optimisation would be to replace the

sine wave neuron with a binary oscillator.

11.7. Example evolved control 355

11.7 Example evolved control

The hypothesis is that quantised neural networks can be evolved to generate rhythmic

patterns which can be used to drive robot locomotion. Successful locomotion con-

trol consists of a discrete or continuous dynamical system that can generate internal

oscillations and present these as outputs to drive motors. The neural network and sig-

nal dynamics of quantised controllers of each neuron model are presented here. The

controllers chosen to be presented here were not necessarily the best performing, but

had networks and signal traces that were relatively clean and with obvious rhythmic

dynamics. The aim of this section of the thesis is to demonstrate some quantised rhyth-

mic dynamics that generate successful locomotion for each neuron model, and to give

the reader an idea of how these signals and networks look. One interesting observa-

tion is that many of the controllers work by generating oscillating outputs connected

to joint motors, and that the most successful model, the sine neuron, does only this,

suggesting that sensory input is not so important for the locomotion task.

11.7.1 An explanation of these graphs

For each example robot two graphs will be presented. One shows part of the nervous

system of the complete robot taken from a single cylinder. The other graph shows some

of the neural signals recorded from this section of the nervous system. The complete

robot nervous system will not be shown, as it is lengthy and not so informative. For

the same reason, the neural signals graph for each example will be limited to a single

page and may not show the output of all neurons. The aim of this section of the thesis

is to show some of the evolved dynamics of the quantised neuron models, and to show

that they generate regular rhythmic patterns. This thesis is not intended to convey an

in-depth examination of the dynamical systems that these nervous systems form.

11.7.1.1 Nervous system plot

The nervous system plot shows the nervous system, or part of the nervous system, of

the robot. Each cylinder of the robot’s morphology is plotted as a box, with edges

between these boxes showing the tree structure of the morphology. These edges are

rendered as dashed lines, but are often so short that only the arrow-head is visible. The

section of the nervous system associated with each cylinder is plotted inside a box as a

graph of neurons, sensors, and motors. Inter-cylinder connections may exist between

356 Chapter 11. Virtual creature experiments

these graphs.

Edges between the nodes represent neural connections. The edges are coloured

green for excitatory connections and red for inhibitory connections. For neural network

models with weighted connections, the brightness of an edge represents how strong the

connection weight is — bright green represents a high positive weight, light green a

low positive weight, bright red a high inhibitory weight, and light red a low inhibitory

weight. The colour is a linear scaling of the value domain of connection weights onto

red or green pixel intensity. Note that one effect of this colour coding scheme is that

as the weight of an edge approaches 0 the edge becomes lighter to the point of not

being visible. This is probably undesirable, as the viewer of the graph is interested

in seeing the complete topology, so to prevent this happening a minimum intensity

level is enforced for all edges (the exact value is 20% of full brightness). Unweighted

connections, such as those used by logical networks, are rendered as black edges.

Each box is labelled with a string in the format “bpX ([root or joint type], neu-

ron type)”. “bp” stands for “body part”. The digit X is a number that is unique for

each cylinder. This is followed by some text in brackets. The text “root” indicates that

this cylinder is the root cylinder, which has no joint and hence no motors (joint sensors

are still present but always return 0). If the cylinder is not the root cylinder, then the

text states the joint type (hinge, universal or ball) that connects it to its parent. The

“neuron type” is the neuron type used in the neural network for this cylinder (Beer,

Sigmoid, Ekeberg, Taga, If, Srm, Logical or Sine).

The nodes within the box are labelled to indicate a unique identifying number, the

type if the node represents a sensor, and whether or not the node can be used as an input

or output to connect to the networks of other cylinders. If the label begins with a digit,

then it is a standard neuron (the type is already stated in the box label). Otherwise “J”

indicates a joint, “M” indicates a motor, and “C” indicates a contact sensor. Joint and

motor nodes have a suffix digit that indicates which axis of the joint or motor this node

represents (0, 1, or 2). The suffixes “i” and “o” for standard neurons indicate that this

neuron may (but does not have to) be connected as an input or output to the networks

of other cylinders.

11.7.1.2 Neural signals plot

The neural signals plot shows the output signals of each neuron during simulation.

There are usually many neurons, and quite often a few of them output constant values.

These constant signals impart little knowledge to the reader, and so are not plotted.

11.7. Example evolved control 357

The output of a single neuron is normalised and plotted as an individual graph. The

output of joint sensors is plotted in the range −π..+π. The x-axis shows the simulation

time in seconds. Note that the x-axis is placed below the 0 point on the y-axis, which

means that the signal plot is not obscured by the actual x-axis when the signal value is

0. The y-axis label shows which cylinder this network belongs to. The label is in the

format “bpX-T[io]”. “X” is the number of the cylinder — each cylinder is assigned a

unique number to identify it. “T” is the type of neuron: “m” for a motor, “j” for a joint

angle, “c” for a ground contact sensor, or a sequence of digits for a regular neuron. The

sequence of digits uniquely identifies the neuron within its network. The number can

be suffixed by “i” or “o” to identify that the neuron may be used as an input or output

to connect this network to the networks of neighbouring cylinders.

11.7.2 Example floating-point controller (Beer’s CTRNN model)

This is a network of Beer’s CTRNN neurons using floating-point arithmetic and syn-

chronous updating. The robot morphology consists of four cylinders. The full network

plot is large, so only one of the cylinders will be plotted along with its signals.

358 Chapter 11. Virtual creature experiments

bp3 (universal, BeerNode)

0

2i

1

3

4io

5o

7o

12

13

15

6

14

8i

9

11M0

10

M1

C

J0

J1

J2

This plot shows the neural architecture of one cylinder. It consists of a network

of Beer’s CTRNN neurons, with input signals from the two joint axes (J0,J1) and out-

puts to the two axes of the joint motor (M0,M1). The neural network has 16 neurons

arranged in a 2D geometric structure with size 3 neighbourhood. Updating was syn-

chronous. This particular network achieved a score of 1.529 in the final population.

11.7. Example evolved control 359

 0

 1

 0 5 10 15 20 25 30

bp3-6

 0

 1

 0 5 10 15 20 25 30

bp3-7o

 0

 1

 0 5 10 15 20 25 30

bp3-8i

 0

 1

 0 5 10 15 20 25 30

bp3-9

 0

 1

 0 5 10 15 20 25 30

bp3-11

 0

 1

 0 5 10 15 20 25 30

bp3-12

 0

 1

 0 5 10 15 20 25 30

bp3-13

-π

+π

 0 5 10 15 20 25 30

bp3-m0

-π

+π

 0 5 10 15 20 25 30

bp3-m1

 0

 1

 0 5 10 15 20 25 30

bp3-j0

The neuron model is floating-point (not quantised), so there is a fine resolution

with detailed waveforms. The two motors (labels bp3-m0 and bp3-m1) show clear

repetition of a non-identical waveform. The network is initialised into a random state.

In the first second the waveform is noticeably slightly different for several neurons.

The important thing here is that the dynamics of the network itself attract some of the

360 Chapter 11. Virtual creature experiments

neurons towards a limit cycle, which is manifested as a rhythmic pattern. The lowest

row shows the effect of this pattern on the joint angle, which oscillates in a regular

pattern after about three seconds. The joint angle has an initial transitory period before

it falls into a regular rhythmic pattern.

11.7.3 Example quantised controller (Beer’s CTRNN model with 16

quanta states)

The neuron model is now quantised, with 16 different quanta states. The network

topology is a “random” network with 2 inputs per node. As described in section 8.6

it is not actually random; the topology has no geometric layout and so is initially

randomly connected, but these connections are subject to evolution and are inherited

by children. The number of inputs per node is also misleading — although the k value

is enforced within the neural network, it is not enforced for connections to sensors and

motors, or for inter-cylinder connections, so there may well be neurons with more than

2 inputs. There are 4 neurons per network and they are updated synchronously. This

particular network achieved a score of 0.728 in the final population.
bp1 (ball, BeerNode)

bp2 (universal, BeerNode)

0io

1io

2o 0io

3i M1

3i

M1

C J0J1J2 M0M2

M0

1o

2io

C

J0J1J2

This graph shows the networks of two connected cylinders. The cylinder on the left

has a ball joint connecting it to some other (unplotted) cylinder. On two of the axes the

motor for this ball joint receives a constant value. This is not so interesting, as these

signals show only that a point attractor exists. The network on the right is from a child

cylinder of the network on the left, they are connected with a universal joint, but the

motor on both axes only shows constant values, which again is not so interesting. The

11.7. Example evolved control 361

only motor in this network which is driven with an oscillating waveform is “bp1-m0”,

which is the node to the top-right of the left cylinder. The neuron driving this motor

is bp2-1, plotted to the bottom of the right cylinder. This neuron has no inputs, so its

internal dynamics must be wholly responsible for the oscillating motor signal.

 0

 1

 0 5 10 15 20 25 30

bp0-1o

 0

 1

 0 5 10 15 20 25 30

bp0-c

 0

 1

 0 5 10 15 20 25 30

bp1-1o

-π

+π

 0 5 10 15 20 25 30

bp1-m0

 0

 1

 0 5 10 15 20 25 30

bp1-c

 0

 1

 0 5 10 15 20 25 30

bp2-1o

 0

 1

 0 5 10 15 20 25 30

bp3-1o

 0

 1

 0 5 10 15 20 25 30

bp3-c

This signal plot shows all the output of all the neurons in the robot’s four cylin-

362 Chapter 11. Virtual creature experiments

der nervous system that had non-constant signals. There is only one motor which is

driven with a non-constant value — “bp1-m0”, which is driven by a Beer model neuron

labelled “bp2-1o” (the “o” suffix means it can be used as an output to drive a neigh-

bouring cylinder, as in this case). This neuron had no input connections so its dynamics

were wholly internally generated. The signal plot shows that the output of this neuron

is oscillating very quickly within a small amplitude range — so quick, in fact, that the

output appears at this resolution to be a thick black line.

11.7.4 Example quantised controller (sigmoid model with 8 quanta

states)

This controller has 9 sigmoid neurons per cylinder, with random topology and two in-

puts per neuron (excluding sensors and inter-cylinder edges), using a quantised model

with 8 quanta states and synchronous updating. This particular network achieved a

score of 2.975 in the final population.

bp1 (ball, SigmoidNode)

0io

8i

3i

4o

1o

M1

2

7

56

M2

CJ0J1J2M0

11.7. Example evolved control 363

This network plot shows the network of a single cylinder. It has a ball joint with

its parent driven by two motors (the third is not connected, so will be unused). Both

motors (M1 and M2) are driven by standard neurons (4 and 6 respectively).

 0

 1

 0 5 10 15 20 25 30

bp1-1o

 0

 1

 0 5 10 15 20 25 30

bp1-2

 0

 1

 0 5 10 15 20 25 30

bp1-4o

 0

 1

 0 5 10 15 20 25 30

bp1-5

 0

 1

 0 5 10 15 20 25 30

bp1-6

 0

 1

 0 5 10 15 20 25 30

bp1-7

 0

 1

 0 5 10 15 20 25 30

bp1-8i

-π

+π

 0 5 10 15 20 25 30

bp1-m0

-π

+π

 0 5 10 15 20 25 30

bp1-m1

-π

+π

 0 5 10 15 20 25 30

bp1-m2

In this signal plot several neurons are oscillating very rapidly. At this resolution the

rapid oscillation appears as a thick black line. The oscillations are repeated throughout

364 Chapter 11. Virtual creature experiments

the whole 30 seconds, and so are stable attractors. The two oscillating motor outputs

can be seen at the bottom of the plot.

11.7.5 Example quantised controller (Ekeberg model with 4 quanta

states)

The neuron model is Ekeberg and is quantised with four quanta states. The topol-

ogy within each cylinder network is fully connected and updated synchronously. This

particular network achieved a score of 1.939 in the final population.
bp0 (root , EkebergNode)

bp1 (hinge, EkebergNode)bp2 (universal , EkebergNode)

0io

1io

2i

3 o

0 o M2

CJ0J1

2i

J2

1io

3io

0i

M1 CJ0J1J2

1 o

2io

3io

M0

C J0

J1

J2

As this robot consists of only three cylinders with a few neurons it has been prac-

tical to plot the whole nervous system here. Visually there are a large number of green

connections, due to only positive connections weights being used in Ekeberg networks.

The centre cylinder has a hinge joint with the root cylinder (to the right). The hinge

axis motor (M2) is driven by an output neuron from the root cylinder.

11.7. Example evolved control 365

 0

 1

 0 5 10 15 20 25 30

bp0-0o

 0

 1

 0 5 10 15 20 25 30

bp0-1o

 0

 1

 0 5 10 15 20 25 30

bp0-2i

 0

 1

 0 5 10 15 20 25 30

bp0-3o

 0

 1

 0 5 10 15 20 25 30

bp0-c

 0

 1

 0 5 10 15 20 25 30

bp1-0o

 0

 1

 0 5 10 15 20 25 30

bp1-1o

 0

 1

 0 5 10 15 20 25 30

bp1-2i

 0

 1

 0 5 10 15 20 25 30

bp1-3o

-π

+π

 0 5 10 15 20 25 30

bp1-m2

This signal plot shows activity from neural networks of the first and second cylin-

ders. As can be seen, the network dynamics generate regular, cyclic patterns. The

signal trace from the hinge joint pointed out in the previous paragraph is plotted on the

bottom row (“bp1-m2”), showing a stable oscillating (but not identical) waveform cre-

ated by the dynamics of the network. This motor signal is driven by the neuron bp0-1,

366 Chapter 11. Virtual creature experiments

which is an output neuron from the root cylinder. The other neurons in the root cylin-

der network are oscillating at a similar frequency, suggesting a dynamic attractor has

been formed. The suggestion that the contact sensor may be oscillating and driving the

dynamics can be ruled out, as the contact sensor in the root cylinder is disconnected.

11.7.6 Example quantised controller (integrate-and-fire model with

4 quanta states)

This is a three-cylinder robot with a 9 neuron network per cylinder. The neuron type

is a 4-quanta version of the integrate-and-fire-model with synchronous updating. This

particular network achieved a score of 1.093 in the final population.

bp0 (root, IfNode)

bp1 (universal, IfNode)

bp2 (ball, IfNode)

0

1

8

02 o

3i 1io

4io

5

4i6

7io

CJ0

J1

J2

8

0i

2

3i

5

6 o

7 o

C J0

J1

J2

4i

M0 M1

1

8io

2 o

3 o M0

M2

5

6

7

M1

C

J0J1J2

Since this is a relatively compact robot the whole nervous system has been plotted.

The network topology was initially one dimensional with neighbourhood size 3, and

the cyclic, bidirectional nature of this topology is apparent in the plot. The mutation

11.7. Example evolved control 367

operators have altered the initial topology slightly by deleting some nodes. The cylin-

der that will be examined here is the central one. It has a universal joint with the root

cylinder.

 0

 1

 0 5 10 15 20 25 30

bp1-c

 0

 1

 0 5 10 15 20 25 30

bp2-0i

 0

 1

 0 5 10 15 20 25 30

bp2-1

 0

 1

 0 5 10 15 20 25 30

bp2-2o

 0

 1

 0 5 10 15 20 25 30

bp2-3o

 0

 1

 0 5 10 15 20 25 30

bp2-4i

 0

 1

 0 5 10 15 20 25 30

bp2-5

 0

 1

 0 5 10 15 20 25 30

bp2-6

 0

 1

 0 5 10 15 20 25 30

bp2-7

 0

 1

 0 5 10 15 20 25 30

bp2-8o

This is a signal plot of a spiking network. Unlike the previous graphs, the recorded

signals here will be 0 unless the neuron happens to be generating a spike at that time.

368 Chapter 11. Virtual creature experiments

The initial state is still random, which accounts for the unusual appearance of so many

signals that are quiescent — the initially random internal state is high enough to cause

the neuron to fire in the first time step of the simulator, but they never fire beyond

that. Here we have two neurons that are exhibiting stable, oscillating dynamics (bp2-2,

bp2-3) which together drive the two axes of the motor for this cylinder.

11.7.7 Example quantised controller (SRM model with 16 quanta

states)

This three-cylinder robot has SRM spiking neural networks. Each network consists of

16 neurons which are fully connected and are updated asynchronously. This is complex

and large, so for brevity only one cylinder will be presented. This cylinder is the root

cylinder. It has two child cylinders. It has a node (number 3) which acts as an output

connection to directly drive a motor in both of the child cylinders (motor identifiers

bp1-m0 and bp2-m0). This particular network achieved a score of 2.818 in the final

population.

11.7.
E

xam
ple

evolved
control

369

bp0 (root, SrmNode)

bp1 (universal, SrmN ode)

bp2 (universal, SrmNode)

0o

1

2

3o

4

5

6i

7

8o

9i

10

11

12

13

14

15i

M1 M0

M0

CJ0J1J2

J1J2

J1 J2

370 Chapter 11. Virtual creature experiments

This is a complex plot because of the large and well-connected structure of the

nervous system. Connections are a mixture of inhibitory and excitatory, and there is no

overall discernible structure. The plot shows the root cylinder connected to two child

cylinders. The internal nervous systems of the two child cylinders are not plotted here

in order to save space and enhance readability. Only the internal motors that are driven

by the neural network of the root cylinder are plotted. The root cylinder has no joint,

and so no motors, but it directly drives several of the motors in its child cylinders. The

root cylinder nervous system plot shows that the joint angle sensors are connected, but

they are not since there is no joint (they just return a constant 0 signal). The network

has some internal dynamics which generate repeated, rhythmic behaviour. The neuron

labelled “3o” (number 3 and an output to neighbouring cylinders) is connected to a

motor in each of the child cylinders, and the neuron labelled “0o” is connected to a

single motor in bp1.

11.7. Example evolved control 371

 0

 1

 0 5 10 15 20 25 30

bp0-0o

 0

 1

 0 5 10 15 20 25 30

bp0-1

 0

 1

 0 5 10 15 20 25 30

bp0-2

 0

 1

 0 5 10 15 20 25 30

bp0-3o

 0

 1

 0 5 10 15 20 25 30

bp0-5

 0

 1

 0 5 10 15 20 25 30

bp0-6i

 0

 1

 0 5 10 15 20 25 30

bp0-7

 0

 1

 0 5 10 15 20 25 30

bp0-9i

 0

 1

 0 5 10 15 20 25 30

bp0-10

 0

 1

 0 5 10 15 20 25 30

bp0-11

372 Chapter 11. Virtual creature experiments

-π

+π

 0 5 10 15 20 25 30

bp1-m0

-π

+π

 0 5 10 15 20 25 30

bp1-m1

-π

+π

 0 5 10 15 20 25 30

bp2-m0

-π

+π

 0 5 10 15 20 25 30

bp2-m1

The network generates regular repeating patterns of activity. There is something

unusual about this activity graph, which is that the activity is sometimes plotted as

what appears to be a constant 1 value, despite the neuron model being a spiking one.

This effect can clearly be seen for the plotted “bp0-1” signal. This is caused by the

neuron firing repeatedly, on every cycle. This is possible because the refractory period

11.7. Example evolved control 373

of the neuron is very small - the SRM neuron specifies refraction as being relative

rather than absolute (see the η function, p.55). The specified period of 20ms is the

same as our simulated step size, so for the refractory function to have any effect it had

to be increased. In the implemented model this was done by stretching it to 200ms.

This was an arbitrary number, representing 10 time steps. Even so, it appears that it

is easy for a genetic algorithm to construct a network where this relative refraction is

overwhelmed by input spikes, generating a persistently spiking signal. The fact that

the signal appears as a constant value of 1 is an artifact of the neuron spiking on every

simulated time step — the output value from the neuron is always 1, but of course in

real life or with a smaller resolution it would reset to 0, and then increase again.

It can easily be seen from the “bp1-m0” and “bp2-m0” signals sent to the motors

that the neuron generating these signals is displaying a rhythmic, repeated and stable

attractor pattern. Interestingly, the repeated wave pattern does not consist of identi-

cal peaks and dips, suggesting some kind of chaotic attractor may be governing the

neuron’s behaviour.

11.7.8 Example quantised controller (Logical model with 2 quanta

states)

This robot is made up of three cylinders, each having an associated neural network

of four logical neurons quantised with 2 quanta states, connected into a “random”

topology with k = 1, and updated asynchronously. This particular network achieved a

score of 1.906 in the final population.

bp0 (root, LogicalNode)bp1 (universal, LogicalNode)

bp2 (universal, LogicalNode)

0io

1i 2io 3o0o

M1 CJ0J1J2

0o

1io

3io

M0

2iM0

C

1i

J0

3io

J1J2

2ioM1

CJ0 J1J2

This is a relatively small nervous system, with few neurons and low connectivity.

Most neurons have two inputs (note that sensors and motors are not neurons). The

neural network we will examine is that of the root cylinder (to the right), which has no

motor (since it is the root cylinder) but does output a signal to the M1 motor of one

of its child cylinders (“bp1-m1”). This connection is coloured green as it happens to

374 Chapter 11. Virtual creature experiments

be excitatory. Neural connections between logical nodes are unweighted, but to help

the evolutionary process we allow edges to motors to be weighted (this is true for all

neuron models).

 0

 1

 0 5 10 15 20 25 30

bp0-0o

 0

 1

 0 5 10 15 20 25 30

bp0-2o

 0

 1

 0 5 10 15 20 25 30

bp0-3o

 0

 1

 0 5 10 15 20 25 30

bp0-c

 0

 1

 0 5 10 15 20 25 30

bp1-0o

 0

 1

 0 5 10 15 20 25 30

bp1-1o

 0

 1

 0 5 10 15 20 25 30

bp1-2i

 0

 1

 0 5 10 15 20 25 30

bp1-3o

-π

+π

 0 5 10 15 20 25 30

bp1-m0

-π

+π

 0 5 10 15 20 25 30

bp1-m1

It is clear that the dynamics of the network are generating regular, repeated oscil-

lating waveforms from many nodes. The motor “bp1-m1” is oscillating. This motor is

11.7. Example evolved control 375

driven directly by neuron “bp0-2”, which is also obviously oscillating.

11.7.9 Example quantised controller (Sine model with 16 quanta

states)

This is a three cylinder robot with four sine neurons per cylinder network. The neuron

model is quantised with 16 quanta states. Networks are updating synchronously. This

particular network achieved a score of 4.474 in the final population.
bp0 (root , SineNode)

bp1 (universal , SineNode)

bp2 (universal , SineNode)

0 o

1io

2i

3 io 0io

M1

CJ0J1J2

1 o

2i

3io

M0

0i

1io

CJ0J1J2

2 o

3io

M0

M1

CJ0J1J2

This is the complete nervous system of the robot. It three cylinders. Note that there

are very few connections. Each motor has precisely one sine neuron to drive each axis

of the joint. In this case, we have two children of the root node, with universal joints,

and so four motor axes to drive.

376 Chapter 11. Virtual creature experiments

 0

 1

 0 5 10 15 20 25 30

bp0-0o

 0

 1

 0 5 10 15 20 25 30

bp0-1o

 0

 1

 0 5 10 15 20 25 30

bp0-2i

 0

 1

 0 5 10 15 20 25 30

bp0-3o

 0

 1

 0 5 10 15 20 25 30

bp0-c

 0

 1

 0 5 10 15 20 25 30

bp1-0o

 0

 1

 0 5 10 15 20 25 30

bp1-1o

 0

 1

 0 5 10 15 20 25 30

bp1-2i

 0

 1

 0 5 10 15 20 25 30

bp1-3o

-π

+π

 0 5 10 15 20 25 30

bp1-m0

The signal plot shows repeated since wave patterns on every neuron (the square

wave is from a ground contact sensor). The quantisation into 16 quanta states is evi-

dent, but does not greatly affect the overall shape of the waveforms. The output signal

from one of the motors (“bp1-m0”) is plotted on the bottom row. It is a quite reason-

able approximation of a sine wave. The signal driving the motor is from the “bp0-0”

11.8. Example of evolution — from biped walking onwards 377

neuron which is rendered on the top row. There is not much to say about the dynamics

of sine neurons — by definition they generate repeating cyclic patterns of a predictable

waveform (in fact, the waveforms will be identical for each cycle, which distinguishes

them from those waveforms generated by the previously presented neural networks,

where cycles are driven by dynamic attractors and are often visibly non-identical).

One of the reasons that this particular set of signals was chosen is that using 16

quanta states gives a good visual indication as to the effects of quantisation on the sine

wave neuron. It should be noted that 2 quanta state sine neurons (i.e. binary oscillators)

also worked well to drive locomotion, and are even smaller and simpler to implement.

11.8 Example of evolution — from biped walking on-

wards

As far as the author is aware, this is the first reported evolution from scratch of a

complete morphology and control system for a stable walking biped. This evolution

was manually observed and tracked during the experiments described earlier in this

chapter. The controller was a sine wave generator network. Surprisingly, the fitness

function was, as in all of the experiments described here, the mean velocity along

the x-axis, meaning that there was no explicit evolutionary incentive towards stable

biped walking. As will be shown, this led the robot along an evolutionary path which

eventually threw away biped motion in favour of a snake-like creature which drove its

motion by springing forward.

The evolutionary progression described here shows creatures from different gen-

erations of the same evolving population. Each creature had the highest fitness score

of its generation. The creatures are related — by the time this interesting evolutionary

path was noticed the biped walker design was already dominant, taking up all of the

“elite” slots that are preserved unaltered and used as parents to seed the next genera-

tion. The genotypes of the subsequent generations presented here are descended from

the biped walker design. The only reproduction operator in use was mutation.

The evolutionary progression of the walker design is presented here in stages. One

or more generations of evolution occurred between each stage. Each stage was manu-

ally defined by visual inspection of the best creature from each subsequent generation

of the evolving population. If the creature displayed a markedly different morphology

or means of locomotion then a video of it was created as a permanent record. Unfor-

378 Chapter 11. Virtual creature experiments

tunately there was no facility within the software to permanently store a genotype, so

the exact genetic makeup of each creature was not recorded.

11.8.1 A note on lack of reproducibility

Videos were recorded of a creature at each stage of this evolutionary process, provid-

ing some visual evidence that this really did occur. Unfortunately, the genotype details

of the evolution leading to this biped motion were not recorded, as there were a great

number of experimental runs and storing them required disk space. This run was ob-

served purely by chance. It was not intended to manually check all evolutionary runs

for interesting creatures as it would have been prohibitively time consuming and was

not required by the experimental design. It is not known whether similar creatures

evolved during other evolutionary replicates. It is standard practice in genetic algo-

rithm research to not permanently store the individual genotypes that make up every

generation of every population, partly for reasons of conserving disk space, and partly

because the experimental design does not call for it. Nevertheless, the evolution of a

successful walking bipedal design was very surprising given that this was not an aim

of the research, and is important enough to document in this thesis.

The software written for this thesis was originally designed to store every single

genotype of every generation permanently. Unfortunately this required a lot of disk

space: around 1GB for each replicate of the experimental setup described in sec-

tion 11.4. With 533 replicates this would amount to approximately 533GB, which

is actually quite feasible – if it were desired to conduct experiments that required post-

analysis of whole evolutionary runs it could be done with current technology. However,

permanent storage of generations was disabled during these experiments as the quota

allocated on the computational cluster was only 1GB (as a comparison point, with

permanent storage of generations disabled, the dataset for each experimental replicate

takes just under 10MB on average, allowing a batch of 100 replicates to be processed

in parallel). More importantly, there was not thought to be a reason to request an in-

crease in quota to store all data for post-analysis, as the experimental design did not

call for it.

It should be noted that the experimental replicates might be exactly repeatable

given the initial random seed and setup conditions. Unfortunately, as already men-

tioned earlier in the thesis, the program code makes use of some non-deterministic

operators, an issue that could be fixed with some effort to identify and replace them

11.8. Example of evolution — from biped walking onwards 379

all. There are other parameters which would require consideration for complete repro-

ducibility: the possibility of (very) small rounding errors on floating-point arithmetic

from CPUs of different models or manufacturers, and obviously the versions of all li-

braries that affect the results of both evolution and simulation (the “Open Dynamics

Engine” being the prime example) would need to remain constant, or be checked very

carefully to ensure that updates did not change experimental results. Maintaining exact

and complete reproducibility of full evolutionary runs is a desirable, but difficult task.

11.8.2 The observed evolution

The evolution has been divided into five distinct stages as described in the previous

section:

Stage 0 The creature displays full stable biped walking. It has distinct identifiable

body parts, consisting of feet, legs, a trunk or neck, and a head. The long head

weights the body, causing it to turn in whichever direction the head moves to-

wards.

Stage 1 Biped walking has been abandoned, and the head is much smaller and in

almost constant contact with the ground. Motion is no longer driven by the feet,

but by the knees, allowing the creature to deliver alternating force in the required

direction, with the head coming into contact with the ground to prevent the robot

from falling over.

Stage 2 The creature loses a leg, however it can still drive itself forward, and there

seems to be less contact with the ground, and hence less friction, as the head is

no longer being driven into it due to instabilities of the alternating leg motion.

Stage 3 The lower leg has become slightly longer, and is used to deliver more force,

thumping into the ground behind the creature to drive it forward.

Stage 4 The creature displays better global coordination, with a distinct periodic rip-

pling motion along its body creating forward momentum. Its rear body parts

that were formerly parts of an identifiable leg have become longer, giving it bet-

ter balance and the ability to raise and flatten its centre without falling over.

The locomoting behaviour of each stage is presented here as a sequence of still

images, reading from left to right.

380 Chapter 11. Virtual creature experiments

11.8.3 Stage 0 — walking biped

11.8. Example of evolution — from biped walking onwards 381

11.8.4 Stage 1 — smaller head, pushing forward on knees

382 Chapter 11. Virtual creature experiments

11.8.5 Stage 2 — loses a leg

11.8. Example of evolution — from biped walking onwards 383

11.8.6 Stage 3 — stronger leg

384 Chapter 11. Virtual creature experiments

11.8.7 Stage 4 — better global coordination, longer leg

11.9. Summary 385

11.9 Summary

The co-evolution of genomes which combine creature morphology and neural control

systems is an active field of research. In the last 15 years, increases in computational

power have made the prospect of simulating and evolving three-dimensional virtual

creatures a reality. Unconstrained evolution from scratch has been used many times to

evolve both the bodies and neural network based nervous systems of creatures that dis-

play locomoting behaviour [34,38,204–206,240,242,243,262,295,296,340,348,390–

393, 397, 398, 435, 465]. Without exception, these works have all used neural network

models with floating-point arithmetic. Various neuron models have been implemented,

with the most popular being parameterised waveform generators (sine, sawtooth, or

square wave) and sigmoid neurons. None of these works has questioned whether it

is necessary to use neural models which rely on floating-point arithmetic, or whether

models with reduced precision may suffice. There is a big motivation to explore this

question, as quantised models do not require floating-point arithmetic units, and so

are simpler to implement and consume less power — a property which is particularly

important for mobile robotics applications.

This chapter has explored whether quantised neural networks can be co-evolved

with morphology to generate complete locomoting virtual creatures, and if so, how

performance degrades when quantised models are used and arithmetic precision is

reduced. It was unknown whether quantised networks would work at all — it was

possible that lower precision arithmetic would alter the dynamics of a neuron model,

making it unlikely to generate the kind of behaviours that underlie locomotion control.

A fractional factorial experimental design was created to test the hypothesis that

quantised neural models could be evolved to drive locomoting behaviour, and to quan-

tify how the performance of evolved neural controllers would change in response to

lower arithmetic precision. The performance metric used was the velocity along a sin-

gle axis measured over the complete simulation time. The experimental design varied

other parameters that might affect the performance of evolved controllers. Experi-

ments were carried out on a PC-based computational cluster, with 6.6 million physics

simulations being carried out in total. ANOVA modelling of the results showed that

there were several significant factors: neuron model, a combined factor representing

the size of the population and number of generations to evolve, and the type of neural

synchronisation. Additionally, there were two interaction factors that were significant:

an interaction of the neuron model and the type of neural synchronisation, and an in-

386 Chapter 11. Virtual creature experiments

teraction of the neuron model and number of quanta states.

The result of the experiment was that creatures displaying locomoting behaviour

driven by quantised neural networks were successfully evolved. The sine model was

far superior to all of the rest, with a mean velocity more than 2.75 times greater than

the second best performing model. The success of the sine model was surprising given

that it ignores sensory input and only drives motors with parametrised sine waves. This

indicates that, for the locomoting task, the ability to easily generate cyclic patterns

is more important than reacting to sensory data. All of the neural models displayed

the ability to generate locomoting behaviour to some degree, with the logical model,

sigmoid model, spike response model, and Taga’s model all performing reasonably.

The quantised models of the different neuron types were compared to the floating-

point models. The results showed that there was no significant difference in locomoting

performance between those implementations using floating-point arithmetic and those

using reduced precision arithmetic for at least some of the quanta levels. In the case

of the best model — the sine model — there was no significant difference in reducing

precision to 1-bit (2 quanta). This is an important result, as it shows that simple bi-

nary oscillators perform equivalently to floating-point sine wave neurons on this task.

Results for the sigmoid model also showed no difference between the performance of

floating-point controllers and those using reduced precision, even down to a 2 quanta

model.

This pair of results for the sine and sigmoid models are important, as these models

are the most widely used in evolutionary robotics research to generate locomoting be-

haviours. The implication is that, for locomoting applications, evolved floating-point

neural controllers can potentially be replaced with evolved quantised neural controllers

without any observable degradation in performance. This is particularly important for

evolutionary robotics, since quantised networks do not require floating-point arithmetic

units, and hence are simpler to implement and consume less power, meaning that au-

tonomous mobile robots with limited energy stores will be able to conserve energy.

The combined factor representing the population size and number of generations

was found to be significant, with a population/generations value of 100/100 producing

much better controllers than a value of 50/50. This shows that there is a reason to

use more computational power beyond that provided by the 50/50 case. The 100/100

case required significant computational resources, representing the upper limit of what

was feasible for this research. It is likely that greater computational resources would

yield increased performance, though this will obviously produce diminishing returns

11.9. Summary 387

at some point.

Timing was found to be a significant factor, and one that interacted with the neu-

ron model. Beer’s CTRNN neuron model, the sine model, and Taga’s model were all

found to have increased performance with a globally synchronous timing scheme. This

shows that it is important to have some degree of synchronisation between certain neu-

ron models. However, even with a completely desynchronised timing scheme, loco-

moting behaviour was achieved with a performance level comparable to synchronous

timing for many neuron models. More research is needed to establish the optimal tim-

ing regime — it seems likely that some hybrid approach, synchronising pairs or small

groups of neurons, may work best. Biological neural networks appear to encode tim-

ing and data into a single continuous real-valued signal. More research is needed to

establish how neural coding works in living creatures, and whether this would transfer

to virtual creatures.

Chapter 12

Conclusions

12.1 Summary

This research has shown that quantised networks can perform equally as well, or even

better, than floating-point networks in generating realistic and practical robot con-

trollers for two well known control problems. Quantised networks are simpler, and

can be implemented in circuits that are smaller and consume orders of magnitude less

power than complex floating-point units.

The pole balancing problem has previously been solved several times by using

genetic algorithms to evolve neural network controllers. Without exception, these net-

works were implemented using floating-point arithmetic. The research presented in

this thesis has shown that quantised neural networks, using reduced precision, can suc-

cessfully be evolved to solve the pole balancing task, and that the performance of these

evolved controllers is comparable to that of evolved floating-point controllers.

Likewise, the locomotion problem for evolved virtual creatures has previously been

solved several times by using a genetic algorithm to evolve neural network controllers.

Again, without exception these neural networks were implemented using floating-point

arithmetic. The research presented in this thesis has shown that quantised neural net-

works can successfully be evolved to control locomoting behaviour in virtual creatures

with co-evolved morphology, and that the performance of these evolved controllers is

comparable to that of evolved floating-point controllers.

It seems to have been assumed that complexity is necessary in order to achieve

many of the features of stable locomotion in evolved creatures with arbitrary mor-

phologies. This research has suggested that complexity is not necessary, and that loco-

motion in evolved morphologies can be achieved with very simple control systems. In

389

390 Chapter 12. Conclusions

particular, this research has presented a walking biped that was evolved from scratch

by the genetic algorithm. Bipedal walking is recognised as a difficult control task, and

has been heavily researched. Controllers for bipedal walking tend to be complex, with

large amounts of sensory input being gathered and processed by powerful CPUs in or-

der to calculate the motor forces required to achieve stability. This thesis has presented

an evolved bipedal morphology that displayed stable locomoting behaviour using only

synchronised sine wave oscillators. This shows that complex locomoting behaviour

can be generated by non-complex parts when a genetic algorithm has the freedom to

create and optimise both together.

The best locomoting controllers used sine neurons to drive motor control. The sine

neuron model generates patterns but completely ignores sensory inputs. It has previ-

ously been shown that central pattern generators produce more stable locomotion gaits

than reflex based generators [127], so although the ability to produce stable locomo-

tion from only pattern generation was not unexpected, it was surprising that controllers

which did so vastly outperformed those that had the potential to use sensory input in

a useful way. This suggests that more research is needed to establish optimal sensory

schemes for evolved virtual creatures.

The success of the sine neuron model in comparison to others in solving the loco-

motion problem in evolved creatures has shown that, for this particular task, pattern

generation is more important than either reflex based control or modulatory sensory

perception. The importance of oscillation is demonstrated by the success of some 2

quanta controllers, which are only capable of producing an oscillating binary output

(although it was obviously possible for the neuron to control the timing of transitions

in its output signal, which was not possible with the sine model). For many models

(sigmoid, Beer’s CTRNN, Ekerberg’s model, Taga’s model, and the sine model) there

was no significant difference between the performance of the two quanta controller and

the floating-point controller. For two other models (logical and spike response model)

the two quanta controller actually outperformed the floating-point model.

The poor performance of the more biologically valid neural models in comparison

to the sine neuron can be attributed to their difficulty in generating oscillating patterns.

With the sine model, the genetic algorithm must specify frequency, phase offset and

amplitude, but it is guaranteed that the output signal will oscillate. With other neuron

models a parameter space must be explored to discover subsets of the space where

the output will oscillate, and for some models, oscillation can only be achieved by

connecting multiple neurons together and specifying certain parameters. This makes

12.2. Future work 391

it harder for the genetic algorithm to discover oscillation. The problem of locomotion

is even harder still, as locomotion is driven not by a single joint oscillating, but by

multiple joints oscillating in synchronisation. This makes the required parameter space

even smaller with respect to the total parameter space, and hence the genetic algorithm

is less likely to discover good solutions.

12.2 Future work

This work raises many interesting questions:

• For spiking neurons, this works effectively bypasses the problem of spike cod-

ing by accessing the internals of a neuron to effectively communicate a continu-

ous value. Would it be possible to use the genetic algorithm to co-evolve spike

encoding and decoding functions for motor and sensory signals? Would it be

possible to co-evolve the motor model instead of using a proportional derivative

controller? Would it be possible to evolve the location of sensors within the ge-

ometry, and could sensors be parameterised so that the sensor functionality itself

could be evolved?

• Wave generating functions are obviously very successful in driving low level mo-

tor behaviour for the locomotion task. What is the best scheme to integrate sen-

sory data with these functions? Hornby presented one scheme which he termed

“oscillator neurons”, where the model ensures that by default it will produce

an oscillating output, but also enables input signals to somehow affect this out-

put [206, p.63]. Lassabe used a stimulus-response action selection mechanism

to classify inputs and select an output signal [255]. The table of mappings from

stimulus to response was encoded in the genome and evolved, and successfully

used to generate locomotion behaviour. Ngo used controllers that maintain me-

chanical equilibrium to move between different stances of a creature, but evolved

both the parameters of the controllers and the stances together with a stimulus-

response selection mechanism [319]. Hybrid schemes like this should be inves-

tigated, with performance being evaluated on some standardised benchmark, in

order to determine which factors of the various hybridisation schemes are actu-

ally important.

• In this work the neuron functions were fixed and predetermined according to

specified models (sigmoid, Taga, etc.). This presents the question as to which

392 Chapter 12. Conclusions

neuron model to use for a particular evolutionary problem. Another option

would be to encode the neuron function, or a set of functions, within the genome

and make it subject to optimisation by the genetic algorithm. If successful, this

would result in a description of a neuron model optimised along with specific

neural networks and morphologies.

• The two levels of synchronisation between neurons in this work were globally

synchronised or asynchronous. These represent the two extremes of timing —

either every operation is synchronised, or none are. Possible hybrid schemes

should be explored, and experiments carried out to find whether hybrid syn-

chronisation affects the performance of evolved creatures on control tasks. One

obvious avenue of research is to investigate whether the timing scheme can be

encoded in the genome and co-evolved along with the rest of the creature.

• The two benchmark problems used in this work — pole balancing and crea-

ture locomotion — are well known and studied within the field of evolutionary

robotics. This work has shown that, as benchmarks, these two problems are quite

limited. Reasonably good solutions can be found for both through dumb oscilla-

tion. More standardised, open and rigorous benchmarks are required within the

field to enable independent researchers to compare their controllers on the same

tasks. It is not possible at the moment to compare different control systems

from different published works as source code is not available, and researchers

typically implement their own evolutionary robotics systems from scratch. This

work has been guilty of the same, although it did at least use an open physics

library rather than reimplementing it. It should not be necessary for researchers

in the field to have to reimplement Sims’s work again and again. The arrival of

a standardised benchmark suite for evolutionary robotics would help to greatly

advance the field.

• How can neuron output patterns be generated and stored within the genome? Pa-

rameterised sine waves and Bezier curves have been used [457], and so have saw-

tooth and square waves [397, 398]. Lassabe proposed a scheme whereby a large

set of global waveforms were randomly generated initially, and then composed

within the genome into unique sequences [255]. This approach is obviously not

as adaptable as evolving the actual raw waveforms, but it was successfully used

to generate locomotion behaviour.

12.2. Future work 393

• One avenue for possible future research in the co-evolution of morphologies and

neural control would be to evolve the population size and number of genera-

tions over many more levels, and to establish how they affect performance of the

evolved controllers, and whether there is a “sweet spot” in terms of particular

fitness tasks and the amount of computational effort required, beyond which ad-

ditional computational effort produces smaller gains on a level not proportionate

to the computational resources invested. Another interesting possibility would

be to examine the effect of using termination functions which end the genetic al-

gorithm based upon criteria related to evolutionary progress rather than using a

fixed number of generations. Dynamic population sizes have been studied by re-

searchers in other fields, but the author is not aware of any research on dynamic

populations across the space of evolved neural controllers (and morphologies)

for simulated three-dimensional robots.

• It would be interesting to compare the performance of genetic algorithms and

particle swarm optimisation on the combined evolution of morphology and con-

trol. Particle swarm optimisation extends the traditional genetic algorithm into

a physics based space, where individual genes occupy one dimension, making

a whole genotype multi-dimensional, and giving each genotype a mass. The al-

gorithm accelerates individual genotypes in dimensions in which improvements

are seen. This gives genotypes a velocity, with which they travel towards opti-

mal solutions, overshoot, and then converge upon in a multi-dimensional spiral.

The “swarm” comes from visualising many particles moving simultaneously —

the group appears to rapidly converge and swarm about areas of high fitness in a

manner similar to that of insects. It has previously been reported that on a neu-

ral network based robot control task particle swarm optimisation significantly

outperformed genetic algorithms [42].

• There are a few ideas for further development of the software suite. The initial

development phase is over, and the software is stable, but in order to roll it out to

a wider audience some amount of further work may be desirable, such as writing

a user’s guide. Some aspects of the software could be done better if it were

being developed into a professional tool suite. Neural network activity is, at

the moment, visualised by converting traces into PDF files. This is a very good

solution for the purpose of writing a thesis, but sub-optimal for general research,

as the resolution and user interface of PDF rendering software is limited. A

394 Chapter 12. Conclusions

better solution would be to record the log in a standard format (e.g. LXT), where

it can be visualised and analysed using standard software tools such as GtkWave.

• It would be useful to integrate the developed software with generic libraries for

genetic algorithms, neural networks, and dynamical systems simulation. At the

moment these kinds of functions are hard-coded into the source code. Whilst

writing a simple genetic algorithm, or Euler integrator with neural differential

equations, is not hard, any kind of software development is time consuming and

prone to errors, and it would reduce the amount of duplication currently car-

ried out by authors of similar systems. It would allow additional research to be

carried out on search dynamics, as generic genetic algorithm libraries often im-

plement a much more diverse collection of evolution strategies. A standard file

representation, possibly based on XML, would allow creature models to be seri-

alised and transferred between databases. Separating the evolutionary functions

for neural network and morphology would allow plugging in new and promising

algorithms such as the “neuro-evolution of augmenting topologies” [409].

Bibliography

[1] Panagiotis Adamidis. Review of parallel genetic algorithms bibliography. Tech-
nical report, Aristotle University of Thessaloniki, Department of Electrical and
Computer Engineering, 1994.

[2] Anne M.R. Agur and Arthur F. Dalley. Grant’s Atlas of Anatomy. Lippincott
Williams & Wilkins, 2008.

[3] R. Aharonov, L. Segev, I. Meilijson, and E. Ruppin. Localization of function
via lesion analysis. Neural Computation, 15(4), 2003.

[4] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts,
and Peter Walter. Molecular biology of the cell. Garland, fourth edition, 2002.

[5] S. Ando and H. Iba. Quantitative modeling of gene regulatory network-
identifying the network by means of genetic algorithms. Poster Session of
Genome Informatics Workshop, 2000.

[6] Michael A. Arbib. The Handbook of Brain Theory and Neural Networks. The
MIT Press, July 2003.

[7] T. Arslan, E. Ozdemir, M. S. Bright, and D. H. Horrocks. Genetic synthesis
techniques for low-power Digital Signal Processing circuits. In Proceedings Of
The IEE Colloquium On Digital Synthesis, pages 7/1–7/5, London, UK, 1996.
IEE.

[8] STatistical Awareness and Teaching Support group. Testing the normality as-
sumption of ANOVA models. 2009.

[9] Yariv Bachar. Developing controllers for biped humanoid locomotion. Master’s
thesis, University of Edinburgh, 2004.

[10] T. Bäck, F. Hoffmeister, and H. Schwefel. A survey of evolution strategies. In
Proceedings of the 4th International Conference on Genetic Algorithms. Mor-
gan Kauffman, July 1991.

[11] Thomas Bäck. Optimal mutation rates in genetic search. In Stephanie Forrest,
editor, Proceedings of the 5th International Conference on Genetic Algorithms,
pages 2–8, San Mateo, CA, USA, 1993. Morgan Kaufmann.

395

396 Bibliography

[12] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press, 1996.

[13] Arunava Banerjee. On the phase-space dynamics of systems of spiking neurons.
I: Model and experiments. Neural Computation, 13(1):161–193, 2001.

[14] Nils Aall Barricelli. Symbiogenetic evolution processes realized by artificial
methods. Methodos, 9:35–36, 1957.

[15] David Basanta, Peter J. Bentley, Mark A. Miodownik, and Elizabeth A. Holm.
Evolving cellular automata to grow microstructures. In C. Ryan, T. Soule,
M. Keijzer, E. Tsang, R. Poli, and E. Costa, editors, Proceedings of the Sixth
European Conference on Genetic Programming (EuroGP-2003), volume 2610
of LNCS, pages 1–10, Essex, UK, April 2003. Springer Verlag.

[16] Roberto Battiti and Giampietro Tecchiolli. Training neural nets with the re-
active tabu search. IEEE Transactions on Neural Networks, 6(5):1185–1200,
September 1995.

[17] Randall D. Beer. Intelligence as adaptive behavior: an experiment in computa-
tional neuroethology. Academic Press Professional, Inc., San Diego, CA, USA,
1990.

[18] Randall D. Beer. On the dynamics of small continuous-time recurrent neural
networks. Adaptive Behavior, 3(4):469–509, 1995.

[19] Randall D. Beer and John C. Gallagher. Evolving dynamical neural networks
for adaptive behaviour. Adaptive Behavior, 1(1):91–122, 1992.

[20] P. J. Bentley. Generic evolutionary design of solid objects using a genetic al-
gorithm. PhD thesis, Division of Computing and Control Systems, School of
Engineering, The University of Huddersfield, 1996.

[21] P. J. Bentley. Exploring component-based representations- the secret of cre-
ativity by evolution? In I. C. Parmee, editor, Proceedings of the of the Fourth
International Conference on Adaptive Computing in Design and Manufacture
(ACDM 2000), pages 161–172, April 2000.

[22] P. J. Bentley and J. P. Wakefield. The evolution of solid object designs us-
ing genetic algorithms. In Proceedings of the Conference on Applied Decision
Technologies (ADT ’95). Volume 2: Modern Heuristic Search Methods, pages
391–402, Uxbridge, UK, April 1995. Unicom Seminars.

[23] Peter Bentley and Sanjeev Kumar. Three ways to grow designs: A com-
parison of embryogenies for an evolutionary design problem. In Wolfgang
Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-1999), pages 35–43, Orlando,
Florida, USA, 13-17 July 1999. Morgan Kaufmann.

Bibliography 397

[24] Dmitry Berenson, Nicolas Estevez, and Hod Lipson. Hardware evolution of
analog circuits for in-situ robotic fault-recovery. In 2005 NASA / DoD Confer-
ence on Evolvable Hardware (EH 2005), 29 June - 1 July 2005, Washington,
DC, USA, pages 12–19. IEEE Computer Society, 2005.

[25] Theodore W Berger, Ashish Ahuja, Spiros H Courellis, Samuel A Deadwyler,
Gopal Erinjippurath, Gregory A Gerhardt, Ghassan Gholmieh, John J Granacki,
Robert Hampson, Min Chi Hsaio, Jeffrey LaCoss, Vasilis Z Marmarelis, Patrick
Nasiatka, Vijay Srinivasan, Dong Song, Armand R Tanguay, and Jack Wills.
Restoring lost cognitive function. Engineering in Medicine and Biology Maga-
zine, IEEE, 24(5):30–44, September 2005.

[26] Karel P. Bergmann, Renate Scheidler, and Christian Jacob. Cryptanalysis using
genetic algorithms. In GECCO ’08: Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pages 1099–1100, New York, NY,
USA, 2008. ACM.

[27] Fabrice Bernhard and Renaud Keriven. Spiking neurons on GPUs. Techni-
cal Report 05-15, Centre d’Enseignement et de Recherche en Technologies
de l’information et Systémes, Ecole Nationale des Ponts et Chaussées, 77455
Marne, Paris, France, November 2005.

[28] N. Bertschinger and T. Natschläger. Real-time computation at the edge of chaos
in recurrent neural networks. Neural Comput, 16(7):1413–1436, July 2004.

[29] A. Bhattacharjya and S. Liang. Power-law distributions in some random boolean
networks. Physical Review Letters, 77(8), August 1996.

[30] Sven Bilke and Fredrik Sjunnesson. Stability of the Kauffman model. Physical
Review E, 65, December 2001.

[31] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used
in genetic algorithms. Technical Report 11, Computer Engineering and Com-
munication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland, 1995.

[32] E.J.W. Boers, H. Kuiper, B.L.M. Happel, and I.G. Sprinkhuizen-Kuyper. De-
signing modular artificial neural networks. In H.A. Wijshoff, editor, Proceed-
ings of Computing Science in The Netherlands, pages 87–96, SION, Stichting
Mathematisch Centrum, 1993.

[33] J. Bongard and H. Lipson. Integrated design, deployment and inference for
robot ecologies. In Proceedings of Robosphere, NASA Ames Research Center,
CA USA, November 2004.

[34] J. Bongard and C. Paul. Investigating morphological symmetry and locomotive
efficiency using virtual embodied evolution. In J.-A. Meyer et al., editor, From
Animals to Animats: Proceedings of the the Sixth International Conference on
the Simulation of Adaptive Behaviour, 2000.

398 Bibliography

[35] J. C. Bongard and H. Lipson. Once more unto the breach: Automated tun-
ing of robot simulation using an inverse evolutionary algorithm. In J. Pollack,
M. Bedau, P. Husbands, T. Ikegami, and R.A Watson, editors, Artificial Life IX:
Proceedings of the Ninth International Conference on the Simulation and Syn-
thesis of Living Systems (ALIFE9). International Society for Artificial Life, The
MIT Press, 2004.

[36] Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear
dynamical systems. Proceedings of the National Academy of Sciences (PNAS),
104(24):9943–9948, June 2007.

[37] Josh C. Bongard. Evolving modular genetic regulatory networks. Proceedings
of the IEEE 2002 Congress on Evolutionary Computation (CEC2002), 2:1872–
1877, 2002.

[38] Josh C. Bongard. Incremental approaches to the combined evolution of a robot’s
body and brain. PhD thesis, Universität Zürich, 2003.

[39] Josh C. Bongard and Chandana Paul. Making evolution an offer it can’t refuse:
Morphology and the extradimensional bypass. In ECAL ’01: Proceedings of
the 6th European Conference on Advances in Artificial Life, pages 401–412,
London, UK, 2001. Springer-Verlag.

[40] Josh C. Bongard and Rolf Pfeifer. Evolving complete agents using artificial on-
togeny. Morpho-functional Machines: The New Species (Designing Embodied
Intelligence), pages 237–258, 2003.

[41] Laurent Bonnasse-Gahot. Using genetic algorithms to evolve locomotion in ar-
tificial creatures. Technical Report D005, Départment Informatique et Réseaux,
Ecole Nationale Supérieure des Télécommunications, Paris, 2005.

[42] Yvan Bourquin. Self organization of locomotion in modular robots. Master’s
thesis, University of Sussex, 2004.

[43] George E. P. Box, William G. Hunter, and Stuart J. Hunter. Statistics for Ex-
perimenters: An Introduction to Design, Data Analysis, and Model Building.
Wiley-Interscience, June 1978.

[44] Jérôme Braure. Participation to the construction of a salamander robot: ex-
ploration of the morphological configuration and the locomotion controller.
Master’s thesis, Biologically inspired robotics group, Swiss Federal Institute
of Technology (EPFL), Lausanne, 2004.

[45] D. Brogan and J. Hodgins. Group behaviors for systems with significant dy-
namics. Autonomous Robots, 4:137–153, 1997.

[46] Jennifer C. Brookes, Filio Hartoutsiou, A. P. Horsfield, and A. M. Stoneham.
Could humans recognize odor by phonon assisted tunneling? Physical Review
Letters, 98(3):038101, 2007.

Bibliography 399

[47] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,
47(1-3):139–159, January 1991.

[48] T. G. Brown. On the nature of the fundamental activity of the nervous centres;
together with an analysis of the conditioning of rhythmic activity in progression,
and a theory of the evolution of function in the nervous system. Journal of
Physiology (London), 48:18–46, March 1914.

[49] Jason Brownlee. The pole balancing problem. Technical Report 7-01, Centre for
Intelligent Systems and Complex Processes, Faculty of Information and Com-
munication Technologies, Swinburne University of Technology, Melbourne,
Victoria, Australia, 2005.

[50] Gunnar Buason, Nicklas Bergfeldt, and Tom Ziemke. Brains, bodies, and be-
yond: Competitive co-evolution of robot controllers, morphologies and environ-
ments. Genetic Programming and Evolvable Machines, 6(1):25–51, 2005.

[51] Jonathan B. Buckheit, Jonathan B. Buckheit, David L. Donoho, and David L.
Donoho. Wavelab and reproducible research. pages 55–81. Springer-Verlag,
1995.

[52] Anthony N. Burkitt. A review of the integrate-and-fire neuron model: I. Homo-
geneous synaptic input. Biological Cybernetics, 95(1):1–19, 2006.

[53] G. Buttazzo. Artificial consciousness: Utopia or real possibility? Computer,
34(7):24–30, July 2001.

[54] Santiago Ramón Y Cajal. Textura del sistema nervioso del hombre y de los ver-
tebrados. Translation: texture of the nervous system of man and the vertebrates.
Springer, 1999, 1899.

[55] M. Capcarrere. Evolution of asynchronous cellular automata. In J.J.Merelo
et al, editor, The seventh Conference on Parallel Problem Solving From Nature,
PPSN 2002, pages 903–912. Springer-Verlag, September 2002.

[56] Benedict Carey. H. m., an unforgettable amnesiac, dies at 82. The New York
Times, January 2008.

[57] Julio César Hernández Castro and Pedro Isasi Vi nuela. New results on the
genetic cryptanalysis of TEA and reduced-round versions of XTEA. New Gen-
eration Computing, 23(3):233–243, 2005.

[58] S. Chattopadhyay and N. Choudhary. Genetic algorithm based approach for low
power combinational circuit testing. In Proceedings of the 16th International
Conference on VLSI Design, pages 552–557, January 2003.

[59] Saurabh Chaudhury, Krishna Teja Sistla, and Santanu Chattopadhyay. Genetic
algorithm-based FSM synthesis with area-power trade-offs. Integration, the
VLSI Journal, 42(3):376–384, 2009.

400 Bibliography

[60] Nicolas Chaumont, Richard Egli, and Christoph Adami. Evolution of virtual
catapults. In Luis Mateus Rocha, Larry S. Yaeger, Mark A. Bedau, Dario Flo-
reano, Robert L. Goldstone, and Alessandro Vespignani, editors, Artificial Life
X: Proceedings of the Tenth International Conference on the Simulation and
Synthesis of Living Systems, pages 262–268. International Society for Artificial
Life, The MIT Press, 2006.

[61] Nicolas Chaumont, Richard Egli, and Christoph Adami. Evolving virtual crea-
tures and catapults. Artificial Life, 13(2):139–57, 2007.

[62] W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, and K.K. Likharev. Rapid single
flux quantum t-flip flop operating up to 770 GHz. Applied Superconductivity,
IEEE Transactions on, 9(2):3212–3214, 1999.

[63] C. Cherniak. Innateness and brain-wiring optimization: Non-genomic nativism.
In A. Zilhao, editor, Evolution, Rationality and Cognition, volume 1. Routledge,
November 2005.

[64] C. Cherniak, M. Changizi, and D. Kang. Large-scale optimization of neuron
arbors. Physical Review E, 59:6001–6009, May 1999.

[65] C. Cherniak, Z. Mokhtarzada, and R. Rodriguez-Esteban. Neural wiring opti-
mization. In Kaas et al., editor, Evolution of Nervous Systems: A Comprehensive
Reference, volume 1. Academic Press Inc., November 2006.

[66] C. Cherniak, Z. Mokhtarzada, R. Rodriguez-Esteban, and K. Changizi. Global
optimization of cerebral cortex layout. Proceedings of the National Academy
Science U.S.A., 101:1081–1086, January 2004.

[67] H. J. Chiel and R. D. Beer. The brain has a body: adaptive behavior emerges
from interactions of nervous system, body and environment. Trends Neuro-
science, 20(12):553–557, December 1997.

[68] T. Chiueh and R.M. Goodman. Learning algorithms for neural networks with
ternary weights. In Proceedings of the First Annual Meeting of the International
Neural Networks Society, page 166, Boston, Massachusetts, USA, 1988.

[69] Marcus Chown. Our world may be a giant hologram. New Scientist, 2691:24–
27, January 2009.

[70] Eric H. Chudler. Neuroscience For Kids. National Center for Research Re-
sources and University of Washington, 2008.

[71] Federica Ciocchetta and Jane Hillston. Process algebras in systems biology. In
Formal Methods for Computational Systems Biology, volume 5016 of Lecture
Notes in Computer Science, pages 265–312. Springer-Verlag, 2008.

[72] Dave Cliff and Geoffrey F. Miller. Co-evolution of pursuit and evasion II: Simu-
lation methods and results. In Pattie Maes, Maja J. Mataric, Jean-Arcady Meyer,
Jordan B. Pollack, and Stewart W. Wilson, editors, From animals to animats 4,
pages 506–515, Cambridge, MA, 1996. MIT Press.

Bibliography 401

[73] Robert J. Collins and David R. Jefferson. An artificial neural network repre-
sentation for artificial organisms. In H.-P. Schwefel and R. Männer, editors,
Parallel problem solving from nature: 1st Workshop, PPSN I, pages 259–263,
Berlin, 1991. Springer.

[74] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant
colonies. In F. Varela and P. Bourgine, editors, Proceedings of the First Eu-
ropean Conference on Artificial Life (ECAL), pages 134–142. MIT Press, Cam-
bridge, Massachusetts, 1991.

[75] Suzanne Corkin. What’s new with the amnesic patient H.M.? Nature Reviews
Neuroscience, 3(2):153–160, February 2002.

[76] F. Corno, P. Prinetto, M. Rebaudengo, and M. Reorda. A test pattern generation
methodology for low power consumption. 16th IEEE VLSI Test Symposium,
pages 453–457, 1998.

[77] Michael J. Crawley. Statistics: an introduction using R. Wiley, 2005.

[78] J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. In
Proceedings of the National Academy of Sciences, volume 92, pages 10742–
10746, November 1995.

[79] James P. Crutchfield, Melanie Mitchell, and et al. The evolutionary design of
collective computation in cellular automata. Evolutionary Dynamics, 2003.

[80] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems, 2(4):303–314, 1989.

[81] Ewa Dabrowska. Language, mind and brain. Edinburgh University Press, 2004.

[82] Charles Darwin. On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life. John Murray, 1859.

[83] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson.
Evolving globally synchronized cellular automata. In Larry Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms, pages
336–343, San Francisco, CA, 1995. Morgan Kaufmann.

[84] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit de-
sign. In A. Kent and J. G. Williams, editors, The Encyclopedia of Computer
Science and Technology, volume 38. Marcel Dekker, New York, February 1998.

[85] Richard Dawkins. The blind watchmaker. Norton, 1985.

[86] Richard Dawkins. The ancestor’s tale : a pilgrimage to the dawn of evolution.
Houghton Muffin, New York, 2004.

[87] H. de Garis, F. A. Gers, M. Korkin, N. E. Nawa, and M. Hough. Evolving
an optimal de/convolution function for the neural net modules of ATR’s CAM-
Brain Machine (CBM). In Proceedings of the International Joint Conference of
Neural Networks, 1999.

402 Bibliography

[88] Hugo de Garis. The genetic programming of an artificial brain which
grows/evolves at electronic speeds in a cellular automata machine. In Inter-
national Conference on Evolutionary Computation, pages 337–339, 1994.

[89] Hugo de Garis. CAM-Brain: The evolutionary engineering of a billion neuron
artificial brain by 2001 which grows/evolves at electronic speeds inside a Cellu-
lar Automata Machine (CAM). In Eduardo Sanchez and Marco Tomassini, ed-
itors, Towards Evolvable Hardware; The Evolutionary Engineering Approach,
pages 76–98, Berlin, 1996. Springer.

[90] Hugo de Garis. What happened to the ”CAM-Brain Machines” (CBMs)? May
2006.

[91] Hugo de Garis, Andrzej Buller, Michael Korkin, Felix Gers, Norberto Eija
Nawa, and Michael Hough. ATR’s artificial brain (“CAM-Brain”) project: A
sample of what individual “CoDi-1Bit” model evolved neural net modules can
do with digital and analog I/O. In Wolfgang Banzhaf, Jason Daida, Agoston E.
Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith,
editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-1999), pages 13–17, Orlando, Florida, USA, 13-17 July 1999. Mor-
gan Kaufmann.

[92] Hugo de Garis, Michael Korkin, and Gary Fehr. The CAM-Brain Machine
(CBM): An FPGA based tool for evolving a 75 million neuron artificial brain to
control a lifesized kitten robot. Autonomous Robots, 10(3):235–249, 2001.

[93] Hugo de Garis, Michael Korkin, Felix Gers, Norberto Eiji Nawa, and Michael
Hough. ”CAM-Brain” ATR’s artificial brain project — an overview. In Wolf-
gang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-1999), Orlando, Florida, USA, 13-
17 July 1999. Morgan Kaufmann.

[94] Edwin D. de Jong and Jordan B. Pollack. Learning the ideal evaluation function.
In Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Ra-
jkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Standish, Gra-
ham Kendall, Stewart W. Wilson, Mark Harman, Joachim Wegener, Dipankar
Dasgupta, Mitchell A. Potter, Alan C. Schultz, Kathryn A. Dowsland, Natasa
Jonoska, and Julian F. Miller, editors, Genetic and Evolutionary Computation
- GECCO 2003, Genetic and Evolutionary Computation Conference, Chicago,
IL, USA, July 12-16, 2003. Proceedings, Part II, volume 2724 of Lecture Notes
in Computer Science, pages 277–288. Springer, 2003.

[95] H. de Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of Computational Biology, 9(1):67–103, 2002.

[96] Gonzalo G. de Polavieja. Errors drive the evolution of biological signalling to
costly codes. Journal of Theoretical Biology, 214:657–664, February 2002.

Bibliography 403

[97] F. Delcomyn. Neural basis of rhythmic behavior in animals. Science, 210:492–
498, 1980.

[98] F. Dellaert and R.D. Beer. Co-evolving body and brain in autonomous agents
using a developmental model. Technical Report Technical Report CES-94-16,
Department of computer engineering and science, Case Western Reserve Uni-
versity, Cleveland, OH 44106, 1994.

[99] Frank Dellaert and R.D. Beer. A developmental model for the evolution of
complete autonomous agents. In Pattie Maes et al., editor, From Animals to
Animats 4: Proceedings of the Fourth International Conference on Simulation
of Adaptive Behavior, 1996.

[100] T. B. DeMarse and K. P. Dockendorf. Adaptive flight control with living neu-
ronal networks on microelectrode arrays. In Proceedings of the International
Journal of Computation and Neural Networks 3, pages 1548–1551, 2005.

[101] Thomas B. Demarse, Daniel A. Wagenaar, Axel W. Blau, and Steve M. Potter.
The neurally controlled animat: Biological brains acting with simulated bodies.
Auton. Robots, 11(3):305–310, November 2001.

[102] J.P. Demuth, T.D. Bie, J.E. Stajich, N. Cristianini, and M.W. Hahn. The evo-
lution of mammalian gene families. Public Library of Science (PLoS) Biology,
1(e85), December 2006.

[103] Z. J. Deng, N. Yoshikawa, J. A. Tiemo, S. R. Whiteley, and T. Van Duzer.
Asynchronous circuits and systems in superconducting RSFQ technology. In
Proceedings of the International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 274–285, 1998.

[104] R. Der, G. Mar, and F. Hesse. Let it roll - emerging sensorimotor coordination in
a spherical robot. In Luis Mateus Rocha, Larry S. Yaeger, Mark A. Bedau, Dario
Floreano, Robert L. Goldstone, and Alessandro Vespignani, editors, Artificial
Life X: Proceedings of the Tenth International Conference on the Simulation and
Synthesis of Living Systems, pages 192–198. International Society for Artificial
Life, The MIT Press, 2006.

[105] Advanced Micro Devices. AMD server/workstation solution provider roadmap
Q3. 2006.

[106] P. D’haeseleer, S. Liang, and R. Somogyi. Genetic network inference: from co-
expression clustering to reverse engineering. Bioinformatics, 16(8):707–726,
August 2000.

[107] E. Di Paolo. Rhythmic and non-rhythmic attractors in asynchronous random
boolean networks. BioSystems, 59(3):185–195, 2001.

[108] Ezequiel A. Di Paolo. Searching for rhythms in asynchronous random boolean
networks. In C. C. Maley and E. Boudreau, editors, Proceedings of the Seventh
International Conference on the Simulation and Synthesis of Living Systems
(ALIFE7). International Society for Artificial Life, The MIT Press, 2000.

404 Bibliography

[109] Edsger W. Dijkstra. On the cruelty of really teaching computing science. circu-
lated privately, December 1988.

[110] Jonathan Dinerstein, Nelson Dinerstein, and Hugo de Garis. Automatic multi-
module neural network evolution in an artificial brain. In Evolvable Hardware,
pages 283–286, 2003.

[111] Norman Doidge. The Brain That Changes Itself: Stories of Personal Triumph
from the Frontiers of Brain Science. Penguin, 2008.

[112] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: Op-
timization by a colony of cooperating agents. IEEE Transactions on Systems,
Man, and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[113] Sorin Draghici. On the capabilities of neural networks using limited precision
weights. Neural Networks, 15(3):395–414, 2002.

[114] Eric Drexler. Engines of creation : the coming era of nanotechnology. Anchor
Books, 1986.

[115] Daniel Drubach. The Brain Explained. Prentice Hall, 1999.

[116] E Dubrova and M Teslenko. Compositional properties of random boolean net-
works. Physical Review E, 71, May 2005.

[117] J. Duysens and H.W. Van de Crommert. Neural control of locomotion; the
central pattern generator from cats to humans. Gait & Posture, 7(2):131–141,
1998.

[118] Marc Ebner. Evolutionary design of objects using scene graphs. In Conor Ryan,
Terence Soule, Maarten Keijzer, Edward P. K. Tsang, Riccardo Poli, and Ernesto
Costa, editors, Genetic Programming, 6th European Conference, EuroGP 2003,
Essex, UK, April 14-16, 2003. Proceedings, volume 2610 of Lecture Notes in
Computer Science, pages 47–58. Springer, 2003.

[119] Marc Ebner, Adrian Grigore, Alexander Heffner, and Jürgen Albert. Coevo-
lution produces an arms race among virtual plants. In James A. Foster, Eve-
lyne Lutton, Julian Miller, Conor Ryan, and Andrea G. B. Tettamanzi, editors,
Genetic Programming, Proceedings of the 5th European Conference, EuroGP
2002, volume 2278 of LNCS, pages 316–325, Kinsale, Ireland, 3-5 April 2002.
Springer-Verlag.

[120] Peter Eggenberger. Evolving morphologies of simulated 3D organisms based
on differential gene expression. In P. Husbands and I. Harvey, editors, Proceed-
ings of the 4th European Conference on Artificial Life (ECAL97). MIT Press,
Cambridge, MA, 1997.

[121] D. Ehninger and G. Kempermann. Neurogenesis in the adult hippocampus. Cell
and Tissue Research, 331:243–250, January 2008.

Bibliography 405

[122] Ö. Ekeberg. A combined neuronal and mechanical model of fish swimming.
Biological Cybernetics, 69:363–374, 1993.

[123] Ken Endo, Fuminori Yamasaki, Takashi Maeno, and Hiroaki Kitano. A method
for co-evolving morphology and walking pattern of biped humanoid robot. In
Proceedings of the 2002 IEEE International Conference on Robotics and Au-
tomation, ICRA 2002, May 11-15, 2002, Washington, DC, USA, pages 2775–
2780. IEEE, 2002.

[124] Ken Endo, Funinori Yamasaki, Takashi Maeno, and Hiroaki Kitano. Co-
evolution of morphology and controller for biped humanoid robot. In Gal A.
Kaminka, Pedro U. Lima, and Raúl Rojas, editors, RoboCup 2002: Robot Soc-
cer World Cup VI, volume 2752 of Lecture Notes in Computer Science, pages
327–341. Springer, 2002.

[125] P.S. Eriksson, E. Perfilieva, T. Björk-Eriksson, A.M. Alborn, C. Nordborg, D.A.
Peterson, and F.H. Gage. Neurogenesis in the adult human hippocampus. Nature
Medicine, 4:1313–1317, November 1998.

[126] J. Fallon, S. Reid, R. Kinyamu, I. Opole, R. Opole, J. Baratta, M. Korc, T.L.
Endo, A. Duong, G. Nguyen, M. Karkehabadhi, D. Twardzik, S. Patel, and
S. Loughlin. In vivo induction of massive proliferation, directed migration, and
differentiation of neural cells in the adult mammalian brain. Proceedings of the
National Academy of Science U.S.A., 97:14686–14691, December 2000.

[127] Cynthia Ferrell. A comparison of three insect-inspired locomotion controllers.
Robotics and Autonomous Systems, 16:135–159, 1995.

[128] J. Fieres, A. Grübl, S. Philipp, K. Meier, J. Schemmel, and F. Schürmann. A
platform for parallel operation of VLSI neural networks. In L.S. Smith, A. Hus-
sain, and I. Aleksander, editors, Proceedings of the Brain Inspired Cognitive
Systems (BICS2004), 2004.

[129] E. Fiesler, A. Choudry, and H. J. Caulfield. A weight discretization paradigm for
optical neural networks. In Proceedings of the International Congress on Opti-
cal Science and Engineering, volume 1281, pages 164–173, Bellingham, Wash-
ington, 1990. The Society of Photo-Optical Instrumentation Engineers (SPIE).

[130] Oxford Film and Television. Battle of the robots: The hunt for AI. October
2001.

[131] Five.TV. The boy with a new head. January 2008.

[132] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and Alan H. Barr. Cellular
texture generation. Computer Graphics, 29(Annual Conference Series):239–
248, 1995.

[133] D. Floreano, Y. Epars, J.C. Zufferey, and C. Mattiussi. Evolution of Spiking
Neural Circuits in Autonomous Mobile Robots. International Journal of Intel-
ligent Systems, 21(9):1005–1024, 2006.

406 Bibliography

[134] D. Floreano, N. Schoeni, G. Caprari, and J. Blynel. Evolutionary Bits’n’Spikes.
In R. K. Standish, M. A. Beadau, and H. A. Abbass, editors, Proceedings of the
8th International Conference on the Simulation and Synthesis of Living Systems
(Alife 8). International Society for Artificial Life, The MIT Press, 2002.

[135] Dario Floreano and Claudio Mattiussi. Evolution of spiking neural controllers
for autonomous vision-based robots. In ER ’01: Proceedings of the Interna-
tional Symposium on Evolutionary Robotics From Intelligent Robotics to Artifi-
cial Life, pages 38–61, London, UK, 2001. Springer-Verlag.

[136] D. Fontaneto, E. A. Herniou, C. Boschetti, M. Caprioli, G. Melone, C. Ricci, and
T. G. Barraclough. Independently evolving species in asexual bdelloid rotifers.
Public Library of Science (PLoS) Biology, 5(4):e87, March 2007.

[137] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the
building-block hypothesis. In L. Darrell Whitley, editor, Foundations of Genetic
Algorithms 2, pages 109–126. Morgan Kaufmann, San Mateo, CA, 1993.

[138] N. Franceschini, J. M. Pichon, and C. Blanes. From insect vision to robot vi-
sion. Philosophical Transactions of the Royal Society: Biological Sciences,
337(1281):283–294, September 1992.

[139] Peter L. Freddolino, Anton S. Arkhipov, Steven B. Larson, Alexander Mcpher-
son, and Klaus Schulten. Molecular dynamics simulations of the complete satel-
lite tobacco mosaic virus. Structure, 14(3):437–449, March 2006.

[140] Peter Fromherz. Neuroelectronic interfacing: Semiconductor chips with ion
channels, nerve cells, and brain. In Rainer Waser, editor, Nanoelectronics and
Information Technology, pages 781–810. Wiley, 2003.

[141] D. Frutiger, Josh C. Bongard, and Fumiya Iida. Iterative Product Engineering:
Evolutionary Robot Design. Proceedings of the Fifth International Conference
on Climbing and Walking Robots, pages 619–629, 2002.

[142] A. E. Fry. Battle of the genomes: The struggle for survival in a microbial world.
International Journal Epidemiology, April 2007.

[143] Pablo Funes and Jordan B. Pollack. Computer evolution of buildable objects.
In P. Husbands and I. Harvey, editors, Fourth European Conference on Artificial
Life, pages 358–367, Cambridge, MA, 1997. MIT Press.

[144] Pablo Funes and Jordan B. Pollack. Computer evolution of buildable objects
for evolutionary design by computers. In Peter J. Bentley, editor, Evolutionary
Design by Computers, pages 387–403. Morgan Kaufmann, San Francisco, CA,
1999.

[145] Hans van Gageldonk, Daniel Baumann, Kees van Berkel, Daniel Gloor,
Ad Peeters, and Gerhard Stegmann. An asynchronous low-power 80C51 mi-
crocontroller. In Proceedings of the International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 96–107, 1998.

Bibliography 407

[146] John C. Gallagher. A neuromorphic paradigm for extrinsically evolved hybrid
analog/digital device controllers: Initial explorations. In Evolvable Hardware,
pages 48–58. IEEE Computer Society, 2001.

[147] John C. Gallagher and Randall D. Beer. Evolution and analysis of dynamical
neural networks for agents integrating vision, locomotion, and short-term mem-
ory. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-1999), pages
1273–1280, Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[148] M. S. Gazzaniga. The split brain revisited. Scientific American, 279(1):50–55,
July 1998.

[149] N. Geard. Modelling gene regulatory networks: Systems biology to complex
systems. ACCS technical report (draft), Australian Centre for Complex Sys-
tems, The University of Queensland., 2004.

[150] N. Geard, K. Willadsen, and J. Wiles. Perturbation analysis: A complex systems
pattern. In The Second Australian Conference on Artificial Life (ACAL 2005).
World Scientific in the Advances in Natural Computation series, 2005.

[151] Felix A. Gers and Hugo de Garis. CAM-Brain: A new model for ATR’s cellu-
lar automata based artificial brain project. In Tetsuya Higuchi, Masaya Iwata,
and Weixin Liu, editors, Evolvable Systems: From Biology to Hardware, First
International Conference, ICES 96, Tsukuba, Japan, October 7-8, 1996, Pro-
ceedings, volume 1259 of Lecture Notes in Computer Science, pages 437–452.
Springer, 1996.

[152] Felix A. Gers, Hugo de Garis, and Michael Korkin. CoDi-1Bit: A simplified
cellular automata based neuron model. In Jin-Kao Hao, Evelyne Lutton, Ed-
mund M. A. Ronald, Marc Schoenauer, and Dominique Snyers, editors, Artifi-
cial Evolution, Third European Conference, AE’97, Nı̂mes, France, 22-24 Octo-
ber 1997, Selected Papers, volume 1363 of Lecture Notes in Computer Science,
pages 315–334. Springer, 1998.

[153] Carlos Gershenson. Introduction to random boolean networks. In M. Bedau,
P. Husbands, T. Hutton, S. Kumar, and H. Suzuki, editors, Workshop and Tu-
torial Proceedings, Ninth International Conference on the Simulation and Syn-
thesis of Living Systems (ALife IX)., September 2004.

[154] Carlos Gershenson. Updating schemes in random boolean networks: Do they
really matter? page 238, 2004.

[155] W. Gerstner and W. K. Kistler. Spiking neuron models. Cambridge University
Press, 2002.

[156] A. Ghosh, S. Tstutsui, and H. Tanaka. Function optimization in nonstationary
environment using steady state genetic algorithms with aging of individuals. In
IEEE World Congress on Computational Intelligence, pages 666–671, 1998.

408 Bibliography

[157] Yoav Gilad, Alicia Oshlack, Gordon K. Smyth, Terence P. Speed, and Kevin P.
White. Expression profiling in primates reveals a rapid evolution of human
transcription factors. Nature, 440(7081):242–245, March 2006.

[158] R. Giuly. Jungleboogie: A system for studying brain-body evolution of virtual
creatures. In R. Poli, S. Cagnoni, M. Keijzer, E. Costa, F. Pereira, G. Raidl,
S. C. Upton, D. Goldberg, H. Lipson, E. de Jong, J. Koza, H. Suzuki, H. Sawai,
I. Parmee, M. Pelikan, K. Sastry, D. Thierens, W. Stolzmann, P. L. Lanzi, S. W.
Wilson, M. O’Neill, C. Ryan, T. Yu, J. F. Miller, I. Garibay, G. Holifield, A. S.
Wu, T. Riopka, M. M. Meysenburg, A. W. Wright, N. Richter, J. H. Moore,
M. D. Ritchie, L. Davis, R. Roy, and M. Jakiela, editors, GECCO 2004 Work-
shop Proceedings, Seattle, Washington, USA, 26-30June 2004.

[159] David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[160] David Goldberg. The race, the hurdle, and the sweet spot. In Peter J. Bentley,
editor, Evolutionary Design by Computers, pages 105–118. Morgan Kaufmann,
San Francisco, CA, 1999.

[161] David E. Goldberg. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Professional, January 1989.

[162] Seth Copen Goldstein and Mihai Budiu. NanoFabrics: Spatial computing using
molecular electronics. In Proceedings of the 28th International Symposium on
Computer Architecture 2001, 2001.

[163] F. Gomez and J. Schmidhuber. Evolving modular fast-weight networks for con-
trol. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, 15th Inter-
national Conference on Artificial Neural Networks: Biological Inspirations -
ICANN 2005, LNCS 3697, volume 3697 of Lecture Notes in Computer Science,
pages 383–389. Springer-Verlag Berlin Heidelberg, 2005.

[164] T.G.W. Gordon and P.J. Bentley. On evolvable hardware. In S. Ovaska and
L. Sytandera, editors, Soft Computing in Industrial Electronics, pages 279–323.
Physica-Verlag, Heidelberg, Germany, 2002.

[165] S. Grillner. Neurobiological bases of rhythmic motor acts in vertebrates. Sci-
ence, 228(4696):143–149, 1985.

[166] S. Grillner, P. Wallen, and L. Brodin. Neuronal network generating locomotor
behavior in lamprey: Circuitry, transmitters, membrane properties, and simula-
tion. Annual Review of Neuroscience, 14:169–199, 1991.

[167] Frederic Gruau. Genetic synthesis of boolean neural networks with a cell rewrit-
ing developmental process. In J. D. Schaffer and D. Whitley, editors, Proceed-
ings of the Workshop on Combinations of Genetic Algorithms and Neural Net-
works (COGANN92), pages 55–74. The IEEE Computer Society Press, 1992.

Bibliography 409

[168] Frederic Gruau. Neural network synthesis using cellular encoding and the ge-
netic algorithm. PhD thesis, Ecole Normale Superieure de Lyon, 1994.

[169] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and
J. P. Thiran. Mapping human whole-brain structural networks with Diffusion
mri. Public Library of Science (PLoS) ONE, 2(7), 2007.

[170] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J.
Honey, Van J. Wedeen, and Olaf Sporns. Mapping the structural core of human
cerebral cortex. Public Library of Science (PLoS) Biology, 6(7):e159+, July
2008.

[171] J. Hallam and A.J. Ijspeert. Using evolutionary methods to parameterize neural
models: a study of the lamprey central pattern generator. In R.J. Duro, J. Santos,
and M. Grana, editors, Biologically inspired robot behavior engineering, pages
119–142. Springer Verlag, Berlin, 2003.

[172] Jennifer Hallinan and Janet Wiles. Evolving genetic regulatory networks using
an artificial genome. In APBC ’04: Proceedings of the second conference on
Asia-Pacific bioinformatics, pages 291–296, Darlinghurst, Australia, Australia,
2004. Australian Computer Society, Inc.

[173] Verena Hamburger. Locomotion control of a quadruped robot based on engine
primitive. Master’s thesis, The Robotics Research Lab, Technische Universitat
Kaiserlautern, April 2005.

[174] B. L. M. Happel and J. M. J. Murre. Design and evolution of modular neural
network architectures. Neural Networks, pages 985–1004, 1994.

[175] Z Haque, T.K. Lee, T Inoue, C Luk, S.U. Hasan, K Lukowiak, and N.I. Syed. An
identified central pattern-generating neuron co-ordinates sensory-motor com-
ponents of respiratory behavior in lymnaea. European Journal Neuroscience,
pages 94–104, January 2006.

[176] John M. Harlow. Passage of an iron rod through the head. Neuropsychiatry and
Clinincal Neuroscience, 11:281–283, 1999.

[177] Morten Hartmann and Pauline Catriona Haddow. Evolution of fault tolerant
and noise robust designs. IEE Proceedings-Computers and Digital Techniques,
151(04):287–294, July 2004. Special issue on Evolvable Hardware.

[178] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to
modular cell biology. Nature, 402(6761 Suppl), December 1999.

[179] I. Harvey and T. Bossomaier. Time out of joint: Attractors in asynchronous
random boolean networks. In Proceedings of the Fourth European Conference
on Articial Life, pages 67–75. MIT Press., 1997.

[180] I. Harvey, E. Vaughan, and E Di Paolo. Time and motion studies: The dynamics
of cognition, computation and humanoid walking. In Fourth Intl. Symp. on
Human and Artificial Intelligence Systems: From Control to Autonomy., 2004.

410 Bibliography

[181] B. Hasslacher and M. W. Tilden. Living machines. Robotics and autonomous
systems, 15(1):143–169, July 1995.

[182] Erin Hastings, Ratan Guha, , and Kenneth O. Stanley. NEAT particles: Design,
representation, and animation of particle system effects. In IEEE Symposium on
Computational Intelligence and Games (CIG’07), 2007.

[183] J. Hawks, E. T. Wang, G. M. Cochran, H. C. Harpending, and R. K. Moyzis.
Recent acceleration of human adaptive evolution. Proceedings of the National
Academy of Science U.S.A., 104:20753–20758, December 2007.

[184] Thomas Heimburg and Andrew D Jackson. On soliton propagation in biomem-
branes and nerves. Proceedings of the National Academy of Sciences of the
United States of America, 102(28):9790–9795, July 2005.

[185] H. Hellmich and H. Klar. An FPGA based simulation acceleration platform for
spiking neural networks. In Proceedings of the 2004 47th Midwest Symposium
on Circuits and Systems, volume 2, pages 389–392. IEEE Computer Society,
July 2004.

[186] Martin Hemberg. GENR8 - a design tool for surface generation. Master’s thesis,
Department of Physical Resource Theory, Chalmers University, Sweden, June
29 2001.

[187] Martin Hemberg, U. M. O’Reilly, A. Menges, K. Jonas, M. Goncalves, and
S. Fuchs. Exploring generative growth and evolutionary computation for ar-
chitectural design. In P. Machado and J.J. Morelo, editors, Art of Artificial
Evolution. Springer, 2006.

[188] Martin Hemberg and Una-May O’Reilly. Extending grammatical evolution to
evolve digital surfaces with genr8. In Maarten Keijzer, Una-May O’Reilly, Si-
mon M. Lucas, Ernesto Costa, and Terence Soule, editors, Genetic Program-
ming 7th European Conference, EuroGP 2004, Proceedings, volume 3003 of
LNCS, pages 299–308, Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

[189] Andreas V. M. Herz, Tim Gollisch, Christian K. Machens, and Dieter Jaeger.
Modeling single-neuron dynamics and computations: A balance of detail and
abstraction. Science, 314(5796):80–85, 2006.

[190] Kazuo Hirai, Masato Hirose, Yuji Haikawa, and Toru Takenaka. The devel-
opment of honda humanoid robot. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-98), pages 1321–1326, 1998.

[191] Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand,
Maryam Saleh, Abraham H. Caplan, Almut Branner, David Chen, Richard D.
Penn, and John P. Donoghue. Neuronal ensemble control of prosthetic devices
by a human with tetraplegia. Nature, 442(7099):164–171, July 2006.

[192] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. Journal of Physiology,
117(4):500–544, August 1952.

Bibliography 411

[193] Craig J. Hogan. Measurement of quantum fluctuations in geometry. Physi-
cal Review D (Particles, Fields, Gravitation, and Cosmology), 77(10):104031,
2008.

[194] J. H. Holland. Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor, MI, USA, 1975.

[195] SL Hooper. Central pattern generators. Current Biology, 10(5):176–192, March
2000.

[196] W. Hordijk, J. Crutchfield, and M. Mitchell. Embedded-particle computation in
evolved cellular automata. Proceedings of Physics and Computation ’96., 1996.

[197] G. Hornby, S. Takamura, J. Yokono, O. Hanagata. T. Yamamoto, , and M. Fu-
jita. Evolving robust gaits with aibo. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 3040–3045, 2000.

[198] G. S. Hornby. Functional scalability through generative representations: the
evolution of table designs. Environment and Planning B: Planning and Design,
31(4):569–587, 2004.

[199] G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. Au-
tonomous evolution of gaits with the sony quadruped robot. In Wolfgang
Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-1999), pages 1297–1304, Or-
lando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[200] Gregory Hornby. Generative representations for evolving families of designs.
In Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Ra-
jkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Standish, Gra-
ham Kendall, Stewart W. Wilson, Mark Harman, Joachim Wegener, Dipankar
Dasgupta, Mitchell A. Potter, Alan C. Schultz, Kathryn A. Dowsland, Natasa
Jonoska, and Julian F. Miller, editors, Genetic and Evolutionary Computation
- GECCO 2003, Genetic and Evolutionary Computation Conference, Chicago,
IL, USA, July 12-16, 2003. Proceedings, Part II, volume 2724 of Lecture Notes
in Computer Science, pages 1678–1689. Springer, 2003.

[201] Gregory Hornby, Hod Lipson, and Jordan B. Pollack. Evolution of generative
design systems for modular physical robots. In Proceedings of the 2001 IEEE
International Conference on Robotics and Automation, ICRA 2001, May 21-26,
2001, Seoul, Korea, pages 4146–4151. IEEE, 2001.

[202] Gregory Hornby and Jordan B. Pollack. Creating high-level components with
a generative representation for body-brain evolution. Artificial Life, 8(3):223–
246, 2002.

[203] Gregory S. Hornby. Measuring, enabling and comparing modularity, regularity
and hierarchy in evolutionary design. In Hans-Georg Beyer, Una-May O’Reilly,
Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau, Erick

412 Bibliography

Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D.
de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan, Guen-
ther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart
Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1729–1736, Washington DC, USA, 25-29
June 2005. ACM Press.

[204] Gregory S. Hornby and Jordan B. Pollack. Body-brain co-evolution using L-
systems as a generative encoding. In Lee Spector, Erik D. Goodman, Annie Wu,
W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,
Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), pages
868–875, San Francisco, California, USA, 2001. Morgan Kaufmann.

[205] Gregory S. Hornby and Jordan B. Pollack. Evolving L-systems to generate
virtual creatures. Computers and Graphics, 25(6):1041–1048, 2001.

[206] Gregory Scott Hornby. Generative representations for evolutionary design au-
tomation. PhD thesis, 2003. Advisor - Jordan B. Pollack.

[207] M. Hough, H. de Garis, M. Korkin, F. A. Gers, and N. E. Nawa. SPIKER : Ana-
log waveform to digital spiketrain conversion in ATR’s artificial brain ”CAM-
Brain” project. In International Conference on Robotics and Artificial Life,
1999.

[208] Feng-Hsiung Hsu. Behind Deep Blue: building the computer that defeated the
world chess champion. Princeton University Press, Princeton, NJ, USA, 2004.

[209] Fatima T. Husain, Thomas P. Lozito, Antonio Ulloa, and Barry Horwitz. Inves-
tigating the neural basis of the auditory continuity illusion. Journal of Cognitive
Neuroscience, 17:1275–1292, 2005.

[210] P. Husbands, T. Smith, N. Jakobi, and M. O’Shea. Better living through chem-
istry: Evolving gasnets for robot control. Connection Science, 10(3–4):185–
210, 1998.

[211] M Hutzler, A Lambacher, B Eversmann, M Jenkner, R Thewes, and P Fromherz.
High-resolution multi-transistor array recording of electrical field potentials in
cultured brain slices. Journal Neurophysiology, May 2006.

[212] V. Ila, J. Batlle, X. Cufi, and R. Garcia. Recent trends in FPAA devices. In Panos
Liatsis, editor, Recent Trends in Multimedia Information Processing, pages 180–
190, Manchester, November 2002. International Workshop on Systems, Signals
and Image Processing, World Scientific.

[213] T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular automata.
Physica D: Nonlinear Phenomena, 10:59–68, January 1984.

[214] F. Jacob. Evolution and tinkering. Science, 196(4295):1161–1166, June 1977.

Bibliography 413

[215] N. Jakobi. The minimal simulation approach to evolutionary robotics. In
T. Gomi, editor, Evolutionary Robotics - From Intelligent Robots to Artificial
Life (ER’98). AAI Books, 1998.

[216] N. Jakobi. Minimal simulations for evolutionary robotics. PhD thesis, Centre
for Research in Cognitive Science, University of Sussex, 1998.

[217] Mariusz H. Jakubowski, Ken Steiglitz, and Richard Squier. Computing with
solitons: a review and prospectus. In Collision-based computing, pages 277–
297. Springer-Verlag, London, UK, 2002.

[218] A. Jarosch and J. F. Leber. Opensim: A flexible distributed neural network
simulator with automatic interactive graphics. Neural Networks, 10(4):693–
703, June 1997.

[219] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf, C. Taylor,
and A. Wang. Evolution as a theme in artificial life: The genesys/tracker system.
In J. Farmer C. Langton, C. Taylor and S. Rasmussen, editors, Artificial Life II,
volume 10, pages 549–578. Addison-Wesley, Reading, MA, 1991.

[220] Colin G. Johnson and Juan Jesus Romero Cardalda. Evolutionary computing in
visual art and music. Leonardo, 35(2):175–184, April 2002.

[221] Jet Propulsion Laboratory JPL. NASA facts: Mars exploration rover. Na-
tional Aeronautics and Space Administration, California Institute of Technol-
ogy, Pasadena, CA 91109, 2004.

[222] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principles of neural
science. McGraw-Hill Medical, January 2000.

[223] Stuart A. Kauffman. Metabolic stability and epigenesis in randomly connected
genetic nets. Journal of Theoretical Biology, 22:437–467, 1968.

[224] Stuart A. Kauffman. The origins of order: self-organization and selection in
evolution. Oxford University Press, May 1993.

[225] Stuart A. Kauffman. At home in the universe. Oxford University Press, New
York; Oxford, 1995.

[226] R.A. Kaul, I.S. Naweed, and P. Fromherz. Neuron-semiconductor chip with
chemical synapse between identified neurons. Physical Review Letters, 92,
2004.

[227] Alon Keinan, Ben Sandbank, Claus C. Hilgetag, Isaac Meilijson, and Eytan
Ruppin. Fair attribution of functional contribution in artificial and biological
networks. Neural Computation, 16(9):1887–1915, 2004.

[228] S. Kelso. Dynamic Patterns: the self-organization of brain and behavior. The
MIT Press, 1995.

414 Bibliography

[229] G.D. Kendall and T.J. Hall. Performing fundamental image processing opera-
tions using quantised neural networks. In International Conference on Image
Processing and its Applications, pages 226–229, April 1992.

[230] Didier Keymeulen, Gerhard Klimeck, Ricardo Zebulum, Yili Jin, Adrian Stoica,
and Carlos Salazar-Lazaro. Ehwpack: A parallel software/hardware environ-
ment for evolvable hardware. In Darrell Whitley, editor, Late Breaking Papers
at the 2000 Genetic and Evolutionary Computation Conference, pages 162–169,
Las Vegas, Nevada, USA, July 2000.

[231] A. H. Khan and E. L. Hines. Integer-weight neural nets. Electronics Letters,
30(15):1237–1238, 1994.

[232] H. Kilic and M. Güler. On the design of minimal topology non-uniform cellu-
lar automata for the binary sequence generation problem. In P. Husbands and
I. Harvey, editors, Proceedings of the 4th European Conference on Artificial Life
(ECAL97). MIT Press, Cambridge, MA, 1997.

[233] Werner M. Kistler, Wulfram Gerstner, and J. Leo van Hemmen. Reduction of
the Hodgkin-Huxley equations to a single-variable threshold model. Neural
Computation, 9(5):1015–1045, 1997.

[234] Jon Klein. Breve: a 3D environment for the simulation of decentralized sys-
tems and artificial life. In ICAL 2003: Proceedings of the eighth international
conference on Artificial life, pages 329–334, Cambridge, MA, USA, 2003. MIT
Press.

[235] Konstantin Klemm and Stefan Bornholdt. Stable and unstable attractors in
boolean networks. Physical Review E, 72, 2005.

[236] Jérôme Kodjabachian and Jean-Arcady Meyer. Evolution and development
of control architectures in animats. Robotics and Autonomous Systems, 16(2-
4):161–182, 1995.

[237] Jérôme Kodjabachian and Jean-Arcady Meyer. Evolution and development of
modular control architectures for 1D locomotion in six-legged animats. Con-
nection Science, 10(3-4):211–237, 1998.

[238] Jerome Kodjabachian and Jean-Arcady Meyer. Evolution and development of
neural controllers for locomotion, gradient-avoidance, and obstacle-avoidance
in artificial insects. IEEE Transactions on Neural Networks, 9(5):796–812,
1998.

[239] Maciej Komosinski. Framsticks manual. Technical Report RA-011/00, Poznan
University of Technology, Institute of Computing Science, 2000.

[240] Maciej Komosinski. The world of Framsticks: Simulation, evolution, interac-
tion. In VW ’00: Proceedings of the Second International Conference on Virtual
Worlds, pages 214–224, London, UK, 2000. Springer-Verlag.

Bibliography 415

[241] Maciej Komosinski. The Framsticks system: versatile simulator of 3D agents
and their evolution. Kybernetes: The International Journal of Systems & Cy-
bernetics, 32:156–173, 2003.

[242] Maciej Komosinski and Adam Rotaru-Varga. Comparison of different genotype
encodings for simulated 3D agents. Artificial Life Journal, 7(4):395–418, Fall
2001.

[243] Maciej Komosinski and Szymon Ulatowski. Framsticks: towards a simulation
of a nature-like world, creatures and evolution. In Dario Floreano, Jean-Daniel
Nicoud, and Francesco Mondada, editors, Advances in Artificial Life, vol-
ume 1674 of Lecture Notes in Artificial Intelligence, pages 261–265. Springer-
Verlag, 1999.

[244] M. Korkin, N. Nawa, and H. de Garis. A ’spike interval information coding’
representation for ATR’s CAM-Brain Machine (CBM). In Proceedings of the
Second International Conference on Evolvable Systems: From Biology to Hard-
ware (ICES’98). Springer-Verlag, September 1998.

[245] Michael Kositsky, Amir Karniel, Simon Alford, Karen M. Fleming, and Ferdi-
nando A. Mussa-Ivaldi. Dynamical dimension of a hybrid neurorobotic sys-
tem. IEEE Transactions on neural systems and rehabilitation engineering,
11(2):155–159, June 2003.

[246] J. Kovačević. How to encourage and publish reproducible research. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, volume IV, pages 1273–1276, April 2007.

[247] John R. Koza. Genetically breeding populations of computer programs to solve
problems in artificial intelligence. In Proceedings of the Second International
Conference on Tools for AI, Herndon, Virginia, USA, pages 819–827. IEEE
Computer Society Press, Los Alamitos, CA, USA, 6-9 1990.

[248] John R. Koza, Forrest H Bennett III, David Andre, Martin A. Keane, and Frank
Dunlap. Automated synthesis of analog electrical circuits by means of genetic
programming. IEEE Transactions on Evolutionary Computation, 1(2):109–128,
1997.

[249] J Kruger and F Aiple. Multimicroelectrode investigation of monkey striate cor-
tex: spike train correlations in the infragranular layers. Journal of Neurophysi-
ology, 60(2):798–828, August 1988.

[250] Hiroyuki Kurata, Takahiro Inoue, Yoshiyuki Sumida, Shin Tanaka, and Takashi
Ohashi. Simulation and system analysis of gene regulatory networks using the
two-phase partition method. Genome Informatics, 12:286–287, 2001.

[251] H.K. Kwan and C.Z. Tang. Designing multilayer feedforward neural networks
using simplified sigmoid activation functions and one-powers-of-two weights.
Electronics Letters, 28(25):2343–2345, 1992.

416 Bibliography

[252] H.K. Kwan and C.Z. Tang. Multiplierless multilayer feedforward neural net-
work design using quantised neurons. Electronics Letters, 38(13):645–646,
2002.

[253] Christine Laine, Steven N Goodman, Michael E Griswold, and Harold C Sox.
Reproducible research: moving toward research the public can really trust. An-
nals of Internal Medicine, 146(6):450–3, 2007.

[254] Chris G. Langton. Computation at the edge of chaos: phase transitions and
emergent computation. In CNLS ’89: Proceedings of the ninth annual interna-
tional conference of the Center for Nonlinear Studies on Self-organizing, Col-
lective, and Cooperative Phenomena in Natural and Artificial Computing Net-
works on Emergent computation, pages 12–37, Amsterdam, The Netherlands,
The Netherlands, 1990. North-Holland Publishing Co.

[255] Nicolas Lassabe, Hervée Luga, and Yves Duthen. A New Step for Evolving
Creatures. In IEEE-ALife’07, Honolulu, Hawaii, 01/04/2007-05/04/2007, pages
243–251, http://www.ieee.org/, April 2007. IEEE.

[256] Steven Laureys, Melanie Boly, and Pierre Maquet. Tracking the recovery of
consciousness from coma. Clinical Investigation, 116(7):1823–1825, July 2006.
Comment.

[257] Wei-Po Lee, John Hallam, and Henrik Hautop Lund. A hybrid GP/GA approach
for co-evolving controllers and robot bodies to achieve fitness-specified tasks. In
International Conference on Evolutionary Computation, pages 384–389, 1996.

[258] Robert Legenstein and Wolfgang Maass. 2007 special issue: Edge of chaos
and prediction of computational performance for neural circuit models. Neural
Networks, 20(3):323–334, 2007.

[259] Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim
Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J.
Sabo, Michael O. Dorschner, Richard Sandstrom, Bradley Bernstein, M. A.
Bender, Mark Groudine, Andreas Gnirke, John Stamatoyannopoulos, Leonid A.
Mirny, Eric S. Lander, and Job Dekker. Comprehensive mapping of long-
range interactions reveals folding principles of the human genome. Science,
326(5950):289–293, October 2009.

[260] Aristid Lindenmayer. Mathematical models for cellular interactions in devel-
opment i. filaments with one-sided inputs. Journal of Theoretical Biology,
18(3):280–299, March 1968.

[261] H. Lipson. Evolutionary robotics and open-ended design automation. In
Yoseph Bar-Cohen, editor, Biomimetics: Biologically Inspired Technologies.
CRC Press, 2006.

[262] H Lipson and J B Pollack. Automatic design and manufacture of robotic life-
forms. Nature, 406(6799):974–8, 2000.

Bibliography 417

[263] Hod Lipson and Josh Bongard. An exploration-estimation algorithm for syn-
thesis and analysis of engineering systems using minimal physical testing. In
Proceedings of the ASME Design Automation Conference (DAC04). ACM Press,
2004.

[264] Jason D. Lohn, Gregory Hornby, and Derek S. Linden. Evolution, re-evolution,
and prototype of an X-band antenna for NASA’s space technology 5 mission. In
Juan Manuel Moreno, Jordi Madrenas, and Jordi Cosp, editors, ICES, volume
3637 of Lecture Notes in Computer Science, pages 205–214. Springer, 2005.

[265] Jason D. Lohn, Gregory S. Hornby, and Derek S. Linden. An evolved an-
tenna for deployment on NASA’s space technology 5 mission. In Kalyanmoy
Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer, Edmund K. Burke,
Paul J. Darwen, Dipankar Dasgupta, Dario Floreano, James A. Foster, Mark
Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk
Thierens, and Andrew M. Tyrrell, editors, Genetic and Evolutionary Computa-
tion - GECCO 2004, Genetic and Evolutionary Computation Conference, Seat-
tle, WA, USA, June 26-30, 2004, Proceedings, Part II, volume 3103 of Lecture
Notes in Computer Science, pages 26–30. Springer, June 2004.

[266] Heitor S. Lopes and Mauricio Perretto. Reconstruction of phylogenetic trees
using the ant colony optimization paradigm. In Natália F. Martins, Maria
Emilia Telles Walter, Guilherme P. Telles, and Marcelo M. Brigido, editors, III
Brazilian Workshop on Bioinformatics, October 20-22, 2004, Brası́lia, Distrito
Federal, Brazil, pages 49–56, 2004.

[267] T. Lundin, E. Fiesler, and P. Moerland. Connectionist quantization functions.
In Proceedings of the ’96 SIPAR-Workshop on Parallel and Distributed Com-
puting, pages 33–36. Scientific and Parallel Computing Group, University of
Geneva, 1996.

[268] S. Luo, M. Kezunovic, and D.R. Sevcik. Locating faults in the transmission net-
work using sparse field measurements, simulation data and genetic algorithms.
Electric Power Systems Research, 71(2), October 2004.

[269] Wolfgang Maass. Networks of spiking neurons: The third generation of neural
network models. Electronic Colloqium on Computational Complexity (ECCC),
3(31), 1996.

[270] M MacKay-Lyons. Central pattern generation of locomotion: a review of the
evidence. Physical Therapy, 82(1):69–83, 2002.

[271] Siavash Haroun Mahdavi and Peter J. Bentley. An evolutionary approach to
damage recovery of robot motion with muscles. In Wolfgang Banzhaf, Thomas
Christaller, Peter Dittrich, Jan T. Kim, and Jens Ziegler, editors, Advances in
Artificial Life, 7th European Conference, ECAL 2003, Dortmund, Germany,
September 14-17, 2003, Proceedings, volume 2801 of Lecture Notes in Com-
puter Science, pages 248–255. Springer, 2003.

418 Bibliography

[272] James Mallet. Trends in Ecology and Evolution, 20(5):229–237, 2005.

[273] James Mallet. Hybridization, ecological races, and the nature of species: empir-
ical evidence for the ease of speciation. Philosophical Transactions of the Royal
Society B — Biological Sciences, 363:2971–2986, 2008.

[274] E. Malone and H. Lipson. Fab@home: The personal desktop fabricator kit.
In Proceedings of the 17th Solid Freeform Fabrication Symposium, Austin TX,
August 2006.

[275] P. Mandik. Varieties of representation in evolved and embodied neural networks.
Biology and Philosophy, 18:95–130(36), January 2003.

[276] D. Marbach and A.J. Ijspeert. Co-evolution of configuration and control for
homogenous modular robots. In F. Groen et al., editor, Proceedings of the
Eighth Conference on Intelligent Autonomous Systems (IAS8), pages 712–719.
IOS Press, 2004.

[277] Daniel Marbach, Claudio Mattiussi, and Dario Floreano. Bio-mimetic evolu-
tionary reverse engineering of genetic regulatory networks. In 5th European
Conference on Evolutionary Computation, Machine Learning and Data Mining
in Bioinformatics (EvoBIO 2007), pages 155–165, 2007. Editors: E. Marchiori
J. H. Moore J. C. Rajapakse (Eds.) Publisher: Springer-Verlag Berlin Heidel-
berg.

[278] M. Marchesi, G. Orlandi, F. Piazza, L. Pollonara, and A. Uncini. Multilayer
perceptrons with discrete weights. In Proceedings of International Joint Con-
ference on Neural Networks, volume 2, pages 623–630, San Diego, 1990.

[279] Eve Marder, Dirk Bucher, David J. Schulz, and Adam L. Taylor. Invertebrate
central pattern generation moves along. Current Biology, 15:685–699, Septem-
ber 2005.

[280] Davide Marocco, Angelo Cangelosi, and Stefano Nolfi. The emergence of com-
munication in evolutionary robots. Philosophical Transactions: Mathematical,
Physical and Engineering Sciences, 361(1811):2397–2421, 2003.

[281] G. Massera, S. Nolfi, and A. Cangelosi. Evolving a simulated robotic arm able
to grasp objects. In A. Cangelosi et al., editor, Modeling Languange, Cogni-
tion and Action: Proceeding of the Ninth Neural Computation and Psychology
Workshop Progress in Neural Processing 16, pages 203–207, 2005.

[282] Gianluca Massera, Angelo Cangelosi, and Stefano Nolfi. Developing a reaching
behaviour in an simulated anthropomorphic robotic arm through an evolutionary
technique. In Luis Mateus Rocha, Larry S. Yaeger, Mark A. Bedau, Dario Flo-
reano, Robert L. Goldstone, and Alessandro Vespignani, editors, Artificial Life
X: Proceedings of the Tenth International Conference on the Simulation and
Synthesis of Living Systems, pages 234–240. International Society for Artificial
Life, The MIT Press, 2006.

Bibliography 419

[283] J. Mazoyer. Computations on cellular automata. In Delorme M. and Mazoyer
J., editors, Cellular Automata: a parallel model, pages 303–319. Kluwer Aca-
demic Publishers, 1998.

[284] P. Mazumder and E.M. Rudniuck. Genetic algorithms for VLSI design layout
and test automation. Prentice-Hall, 1999.

[285] Jon McCormack. Aesthetic evolution of L-systems revisited. In Günther R.
Raidl, Stefano Cagnoni, Jürgen Branke, David Corne, Rolf Drechsler, Yaochu
Jin, Colin G. Johnson, Penousal Machado, Elena Marchiori, Franz Rothlauf,
George D. Smith, and Giovanni Squillero, editors, Applications of Evolutionary
Computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP,
EvoMUSART, and EvoSTOC, Coimbra, Portugal, April 5-7, 2004, Proceedings,
volume 3005 of Lecture Notes in Computer Science, pages 477–488. Springer,
2004.

[286] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[287] Carver Mead. Analog VLSI and neural systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

[288] Gregor Johann Mendel. Versuche über pflanzen-hybriden. Translation: experi-
ments on plant hybridization. In Proceedings of the Natural History Society of
Brunn, 1866.

[289] L. Mendoza, D. Thieffry, and Er Alvarez-Buylla. Genetic control of flower
morphogenesis in arabidopsis thaliana: a logical analysis. Bioinformatics,
15(7):593–606, July 1999.

[290] Ralph C. Merkle. How many bytes in human memory? Foresight Update, 4,
1988.

[291] Ralph C. Merkle. Energy limits to the computational power of the human brain.
Foresight Update, 6, 1989.

[292] William C. Messner and Dawn M. Tilbury. Control tutorials for MATLAB and
Simulink: a web-based approach. Addison-Wesley, 1998.

[293] J.-A. Meyer. Evolutionary approaches to walking and higher-level behaviors in
6-legged animats. In Gomi, editor, Evolutionary Robotics II: From Intelligent
Robots to Artificial Life (ER’98). AAAI Books, 1998.

[294] Olivier Michel. Webots: Symbiosis between virtual and real mobile robots. In
VW ’98: Proceedings of the First International Conference on Virtual Worlds,
pages 254–263, London, UK, 1998. Springer-Verlag.

[295] T. Miconi and A. Channon. A virtual creatures model for studies in artificial
evolution. 2005.

420 Bibliography

[296] Thomas Miconi. The road to everywhere: Evolution, complexity and progress
in natural and artificial systems. PhD thesis, University of Birmingham, 2008.

[297] Thomas Miconi and Alastair Channon. Analysing co-evolution among artificial
3D creatures. In El-Ghazali Talbi, Pierre Liardet, Pierre Collet, Evelyne Lut-
ton, and Marc Schoenauer, editors, Artificial Evolution, 7th International Con-
ference, Evolution Artificielle, EA 2005, Lille, France, October 26-28, 2005,
Revised Selected Papers, volume 3871 of Lecture Notes in Computer Science,
pages 167–178. Springer, 2006.

[298] Thomas Miconi and Alastair Channon. An improved system for artificial crea-
tures evolution. In Luis Mateus Rocha, Larry S. Yaeger, Mark A. Bedau, Dario
Floreano, Robert L. Goldstone, and Alessandro Vespignani, editors, Artificial
Life X: Proceedings of the Tenth International Conference on the Simulation
and Synthesis of Living Systems, pages 255–261. International Society for Arti-
ficial Life, The MIT Press, 2006.

[299] Julian Francis Miller. Evolving a self-repairing, self-regulating, French flag or-
ganism. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg
Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario Floreano,
James A. Foster, Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector,
Andrea Tettamanzi, Dirk Thierens, and Andrew M. Tyrrell, editors, Genetic and
Evolutionary Computation - GECCO 2004, Genetic and Evolutionary Compu-
tation Conference, Seattle, WA, USA, June 26-30, 2004, Proceedings, Part II,
volume 3103 of Lecture Notes in Computer Science, pages 129–139. Springer,
June 2004.

[300] G.L. Ming and H. Song. Adult neurogenesis in the mammalian central nervous
system. Annual Review of Neuroscience, 28:223–250, 2005.

[301] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Compu-
tational Geometry. MIT Press, Cambridge, Mass., 1969.

[302] M. Mitchell, J. Crutchfield, and R. Das. Evolving cellular automata with
genetic algorithms: A review of recent work. In Proceedings of the First
International Conference on Evolutionary Computation and its Applications
(EvCA’96), 1996., 1996.

[303] Melanie Mitchell. Computation in cellular automata. In Tino Gramss, Stefan
Bornholdt, Michael Gross, Melanie Mitchell, and Thomas Pellizzari, editors,
Non-Standard Computation: molecular computation, cellular automata, evolu-
tionary algorithms, quantum computers. Wiley-VCH, 1998.

[304] Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Dynamics, com-
putation, and the “edge of chaos”: a re-examination. In Complexity: metaphors,
models, and reality, pages 497–513. Perseus Books, Cambridge, MA, USA,
1999.

Bibliography 421

[305] Melanie Mitchell, Peter T. Hraber, and James P. Crutchfield. Revisiting the
edge of chaos: Evolving cellular automata to perform computations. Complex
Systems, 7:89–130, 1993.

[306] Tom M. Mitchell. Machine learning. McGraw Hill, New York, 1997.

[307] Sechi Miyakoshi, Gentaro Taga, Yasuo Kuniyoshi, and Akihiko Nagakubo.
Three dimensional bipedal stepping motion using neural oscillators — towards
humanoid motion in the real world. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 84–89, Piscataway, NJ,
1998. IEEE Computer Society.

[308] P. Moerland and E. Fiesler. Hardware-friendly learning algorithms for neural
networks: An overview. In Proceedings of the Fifth International Conference
on Microelectronics for Neural Networks and Fuzzy Systems: MicroNeuro’96,
pages 117–124, 10622 Los Vaqueros Circle, Los Alamitos, CA 90720, 1996.
IEEE Computer Society Press.

[309] P. D. Moerland and E. Fiesler. Neural network adaptations to hardware imple-
mentations. In E. Fiesler and R. Beale, editors, Handbook of Neural Compu-
tation, pages E1.2:1–13. Institute of Physics Publishing and Oxford University
Publishing, New York, 1997. IDIAP-RR 97-17.

[310] Edward Moore. Sequential machines. Addison-Wesley, 1964.

[311] Hans Moravec. When will computer hardware match the human brain? Journal
of Evolution and Technology, 1, 1998.

[312] Hans Moravec. Rise of the robots. Scientific American, 281(6):124–135, De-
cember 1999.

[313] Thomas Hunt Morgan. A critique of the theory of evolution. Princeton Univer-
sity Press, 1916.

[314] Anthony Mouraud, Didier Puzenat, and Helene Paugam-Moisy. Damned: A dis-
tributed and multithreaded neural event-driven simulation framework. In Pro-
ceedings of the IASTED International Conference on parallel and distributed
computing and networks, 2006.

[315] U. Muller. Fast neural net simulation with a DSP processor array. IEEE Trans-
actions on Neural Networks, 6(1):203–213, 1995.

[316] Norberto Eiji Nawa, Michael Korkin, and Hugo de Garis. ATR’s CAM-Brain
project: The evolution of large-scale recurrent neural network modules. In
H.R.Arabnia, editor, PDPTA’98 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, volume I, Las Vegas, July
1998. CSREA Press. Four volumes.

[317] H. H. Newman. Twin and triplet chick embryos. Journal of Heredity, 31(9):370–
378, 1940.

422 Bibliography

[318] Thomas C. Neylan. Frontal lobe function: Mr. Phineas Gage’s famous injury.
Neuropsychiatry and Clinincal Neuroscience, 11:280–281, 1999.

[319] J. Thomas Ngo and Joe Marks. Physically realistic motion synthesis in anima-
tion. Evolutionary Computation, 1(3):235–268, 1993.

[320] S. Nolfi and D. Floreano. Co-evolving predator and prey robots: Do ’arm races’
arise in artificial evolution? Artificial Life, 4:311–335, 1998.

[321] Stefano Nolfi and Dario Floreano. Synthesis of autonomous robots through
evolution. Trends in Cognitive Science, 6(1):31–36, 2002.

[322] Gabriela Ochoa. On genetic algorithms and Lindenmayer systems. In PPSN V:
Proceedings of the 5th International Conference on Parallel Problem Solving
from Nature, pages 335–344, London, UK, 1998. Springer-Verlag.

[323] Randall C. O’Reilly and Yuko Munakata. Computational explorations in cogni-
tive neuroscience: understanding the mind by simulating the brain. MIT Press,
2000.

[324] S. Osawa, T. H. Jukes, K. Watanabe, A. Muto, and T. H. Jukes. Recent evidence
for evolution of the genetic code. Microbiology Review, 56:229–264, March
1992.

[325] F. Pasemann and U. Dieckmann. Evolved neurocontrollers for polebalancing. In
Proceedings IWANN’97, Lanzarote, Spain, June 1997. Lecture Notes in Com-
puter Science. Berlin: Springer-Verlag.

[326] Priyadarsan Patra, Donald S. Fussell, and Stanislav Polonsky. Delay insensitive
logic for RSFQ superconductor technology. In Proceedings of the International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
42–53. IEEE Computer Society Press, April 1997.

[327] Chandana Paul. Sensorimotor control of biped locomotion. Adaptive Behavior
- Animals, Animats, Software Agents, Robots, Adaptive Systems, 13(1):67–80,
2005.

[328] Chandana Paul and Josh C. Bongard. The road less travelled: Morphology in
the optimization of biped robot locomotion. In Proceedings of the International
Conference on Intelligent Robots and Systems, Maui, Hawaii, October 2001.
IEEE/RSJ.

[329] B. Pearlmutter. Dynamic recurrent neural networks. Technical report, 1990.

[330] Roger Penrose. The Emperor’s new mind: concerning computers, minds, and
the laws of physics. Oxford University Press, Inc., New York, NY, USA, 1989.

[331] Ferdinand Peper, Jia Lee, Susumu Adachi, and Shinro Mashiko. Laying out cir-
cuits on asynchronous cellular arrays: a step towards feasible nanocomputers?
Nanotechnology, 14(4):469–485, 2003.

Bibliography 423

[332] Rolf Pfeifer. Morphological computation: Connecting brain, body, and envi-
ronment. In Proceedings of the Second International Workshop on Biologically
Inspired Approaches to Advanced Information Technology (BioADIT06), pages
2–3, 2006.

[333] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz A. Barroso. Failure trends in
a large disk drive population. In FAST’07: Proceedings of the 5th conference on
USENIX Conference on File and Storage Technologies, page 2, Berkeley, CA,
USA, 2007. USENIX Association.

[334] Vincenzo Piuri. The use of the electrical simulator SPICE for behavioral simula-
tion of artificial neural networks. In ANSS ’91: Proceedings of the 24th annual
sympos m on Simulation, pages 18–29, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

[335] Vassilis P. Plagianakos, George D. Magoulas, and Michael N. Vrahatis. Evolu-
tionary training of hardware realizable multilayer perceptrons. Neural Comput-
ing and Applications, 15(1):33–40, 2006.

[336] Vassilis P. Plagianakos and Michael N. Vrahatis. Training neural networks with
threshold activation functions and constrained integer weights. In Proceedings
of the 2006 International Joint Conference on Neural Networks (IJCNN 2005),
pages 161–166, 2000.

[337] Vassilis P. Plagianakos and Michael N. Vrahatis. Parallel evolutionary training
algorithms for “hardware-friendly” neural networks. Natural Computing: an
international journal, 1(2-3):307–322, 2002.

[338] Jordan Pollack, Hod Lipson, Pablo Funes, Sevan Ficici, and Greg Hornby. Co-
evolutionary robotics. In EH ’99: Proceedings of the 1st NASA/DOD workshop
on Evolvable Hardware, page 208, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[339] Jordan B. Pollack, Gregory S. Hornby, Hod Lipson, and Pablo Funes. Com-
puter creativity in the automatic design of robots. Leonardo, Journal for the
International Society for Arts Sciences and Technology, 36(2):115–121, 2003.

[340] Jordan B. Pollack, Hod Lipson, Sevan Ficci, Pablo Funes, Greg Hornby, and
Richard A. Watson. Evolutionary techniques in physical robotics. In ICES,
pages 175–186, 2000.

[341] Jordan B. Pollack, Hod Lipson, Gregory Hornby, and Pablo Funes. Three gen-
erations of automatically designed robots. Artificial Life, 7(3):215–223, 2001.

[342] David L. Poole and Alan K. Mackwort. Artificial Intelligence: Foundations
of Computational Agents. Cambridge University Press, 2009. 2009 electronic
preview / hardcover to be published 2010.

[343] Stefan Preble, Michal Lipson, and Hod Lipson. Two-dimensional pho-
tonic crystals designed by evolutionary algorithms. Applied Physics Letters,
86(6):061111, 2005.

424 Bibliography

[344] Tony J. Prescott, Peter Redgrave, and Kevin Gurney. Layered control archi-
tectures in robots and vertebrates. Journal of Adaptive Behavior, 7(1):99–127,
1999.

[345] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan. Devel-
opment models of herbaceous plants for computer imagery purposes. In SIG-
GRAPH ’88: Proceedings of the 15th annual conference on Computer graphics
and interactive techniques, pages 141–150, New York, NY, USA, 1988. ACM
Press.

[346] T. Quarles. SPICE3 version 3C1 users guide. Technical Report UCB/ERL
M89/46, EECS Department, University of California, Berkeley, 1989.

[347] Peter Ratiu and Ion-Florin Talos. Images in clinical medicine. The tale
of Phineas Gage, digitally remastered. New England Journal Medicine,
351(23):e21, December 2004. Historical Article.

[348] T.S. Ray. Aesthetically evolved virtual pets. In C. C. Maley and E. Boudreau,
editors, Proceedings of the Seventh International Conference on the Simulation
and Synthesis of Living Systems (ALIFE7), pages 158–161. International Society
for Artificial Life, The MIT Press, 2000.

[349] Richard Reeve. Generating walking behaviours in legged robots. PhD thesis,
University of Edinburgh, 1999.

[350] Richard Reeve and John Halam. An analysis of neural models for walking
control. IEEE Transactions on Neural Networks, 16(3):733–742, May 2005.

[351] Bernard D. Reger, Karen M. Fleming, Vittorio Sanguineti, Simon Alford, and
Ferdinando A. Mussa-Ivaldi. Connecting brains to robots: An artificial body for
studying computational properties of neural tissues. Artificial Life, 6(4):307–
324, 2000.

[352] J. Reggia, M. Tagamets, J. Contreras-Vidal, D. Jacobs, S. Weems, W. Naqvi,
R. Winder, T. Chabuk, J. Jung, and C. Yang. Development of a large-scale
integrated neurocognitive architecture - part 1: Conceptual framework. Tech-
nical Report UMIACS-TR-2006-33, University of Maryland Institute for Ad-
vanced Computer Studies, University of Maryland, College Park, MD 20742,
June 2006.

[353] J. Reggia, M. Tagamets, J. Contreras-Vidal, D. Jacobs, S. Weems, W. Naqvi,
R. Winder, T. Chabuk, J. Jung, and C. Yang. Development of a large-scale inte-
grated neurocognitive architecture - part 2: Design and architecture. Technical
Report UMIACS-TR-2006-43, University of Maryland Institute for Advanced
Computer Studies, University of Maryland, College Park, MD 20742, October
2006.

[354] Torsten Reil. Dynamics of gene expression in an artificial genome - implications
for biological and artificial ontogeny. In European Conference on Artificial Life,
pages 457–466, 1999.

Bibliography 425

[355] Torsten Reil and Phil Husbands. Evolution of central pattern generators for
bipedal walking in a real-time physics environment. IEEE Transactions on Evo-
lutionary Computation, 6(2):159–168, April 2002.

[356] Joseph Reisinger, Kenneth O. Stanley, and Risto Miikkulainen. Evolving
reusable neural modules. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf,
Hans-Georg Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta,
Dario Floreano, James A. Foster, Mark Harman, Owen Holland, Pier Luca
Lanzi, Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andrew M. Tyrrell,
editors, Genetic and Evolutionary Computation - GECCO 2004, Genetic and
Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004,
Proceedings, Part II, volume 3103 of Lecture Notes in Computer Science, pages
69–81. Springer, June 2004.

[357] D Repsilber, H Liljenstrom, and SG Andersson. Reverse engineering of regula-
tory networks: simulation studies on a genetic algorithm approach for ranking
hypotheses. BioSystems, 66:31–41, June 2006.

[358] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.

[359] John Rieffel. Evolutionary fabrication: the co-evolution of form and formation.
PhD thesis, Brandeis University, May 2006.

[360] John Rieffel and Jordan Pollack. Automated assembly as situated develop-
ment: using artificial ontogenies to evolve buildable 3-D objects. In Hans-
Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Chris-
tian Blum, Eric W. Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyan-
moy Deb, James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier Llora,
Spiros Mancoridis, Martin Pelikan, Guenther R. Raidl, Terence Soule, Andy M.
Tyrrell, Jean-Paul Watson, and Eckart Zitzler, editors, GECCO 2005: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation, pages
99–106, Washington DC, USA, 25-29 June 2005. ACM Press.

[361] John Rieffel and Jordan Pollack. Automated assembly as situated develop-
ment: using artificial ontogenies to evolve buildable 3-D objects. In Hans-
Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Chris-
tian Blum, Eric W. Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyan-
moy Deb, James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier Llora,
Spiros Mancoridis, Martin Pelikan, Guenther R. Raidl, Terence Soule, Andy M.
Tyrrell, Jean-Paul Watson, and Eckart Zitzler, editors, GECCO 2005: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation, pages
99–106, Washington DC, USA, 25-29 June 2005. ACM Press.

[362] F. Rieke, D. Warland, R. de R. van Steveninck, and W. Bialek. Spikes: exploring
the neural code. The MIT Press, London, England, 1997.

[363] M. Rohde and E. Di Paolo. t for two: Linear synergy advances the evolution
of directional pointing behaviour. In M. Capcarrere, A.A. Freitas, P.J. Bentley,

426 Bibliography

C.G. Johnson, and J. Timmis, editors, Advances in Artificial Life: 8th European
Conference, ECAL 2005, Canterbury, UK, September 5-9, 2005, Proceedings,
Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence),
pages 262–271, Heidelberg, 2005. Springer.

[364] P. Rohlfshagen and E. Di Paolo. The circular topology of rhythm in asyn-
chronous random boolean networks. BioSystems, 73(2):141–152, 2004.

[365] Raúl Rojas. Neural networks - a systematic introduction. Springer, 1996.

[366] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[367] Mike Rosenman and John Gero. Evolving designs by generating useful complex
gene structures. In Peter J. Bentley, editor, Evolutionary Design by Computers,
pages 345–364. Morgan Kaufmann, San Francisco, CA, 1999.

[368] D. Rumelhart and J. McClelland. Parallel distributed processing. MIT Press,
1986.

[369] Stuart Russell and Peter Norvig. Artificial intelligence A modern approach.
Prentice-Hall, 1995.

[370] A. Ruvinsky and J. Sampson. The genetics of the dog. CABI Publishing, 2001.

[371] G.D. Ruxton and L.A. Saravia. The need for biological realism in the updating
of cellular automata models. Ecological Modelling, 107:105–112, 1998.

[372] E. Sakamoto and H. Iba. Inferring a system of differential equations for a gene
regulatory network by using genetic programming. In Proceedings of Congress
on Evolutionary Computation, pages 720–726. IEEE Press, 2001.

[373] Valentina Salapura. Neural networks using bit stream arithmetic: a space effi-
cient implementation. In ISCAS, pages 475–478, 1994.

[374] Valentina Salapura, Michael Gschwind, and Oliver Maischberger. A fast FPGA
implementation of a general purpose neuron. In Reiner W. Hartenstein and
Michal Servı́t, editors, Field-Programmable Logic, Architectures, Synthesis and
Applications, 4th International Workshop on Field-Programmable Logic and
Applications, FPL ’94, Prague, Czech Republic, September 7-9, 1994, Pro-
ceedings, volume 849 of Lecture Notes in Computer Science, pages 175–182.
Springer, 1994.

[375] B Samuelsson and C Troein. Superpolynomial growth in the number of attrac-
tors in Kauffman networks. Physical Review Letters, 90(9), March 2003.

[376] L. Sanchez and D. Thieffry. A logical analysis of the drosophila gap-gene sys-
tem. Journal Theoretical Biology, 211(2):115–141, July 2001.

[377] M. A. Savageau. Rules for the evolution of gene circuitry. Pacific Symposium
Biocomputing, pages 54–65, 1998.

Bibliography 427

[378] M. Schäfer, T. Schoenauer, C. Wolff, G. Hartmann, H. Klar, and U. Ruck-
ert. Simulation of spiking neural networks - architectures and implementations.
Neurocomputing, 48:647–679, October 2002.

[379] Johannes Schemmel, Andreas Gruebl, Karlheinz Meier, and Eilif Mueller. Im-
plementing synaptic plasticity in a VLSI spiking neural network model. In
Proceedings of the 2006 International Joint Conference on Neural Networks
(IJCNN 2006). IEEE Press, 2006.

[380] Johannes Schemmel, Steffen Hohmann, Karlheinz Meier, and Felix Schürmann.
A mixed-mode analog neural network using current-steering synapses. Analog
Integrated Circuits Signal Processing, 38(2-3):233–244, 2004.

[381] Johannes Schemmel, Karlheinz Meier, and Felix Schürmann. A VLSI imple-
mentation of an analog neural network suited for genetic algorithms. In ICES
’01: Proceedings of the 4th International Conference on Evolvable Systems:
From Biology to Hardware, pages 50–61, London, UK, 2001. Springer-Verlag.

[382] B. Schonfisch and A. de Roos. Synchronous and asynchronous updating in
cellular automata. BioSystems, 51:123–143, September 1999.

[383] B. Schrauwen and J. Van Campenhout. BSA, a fast and accurate spike train
encoding scheme. In J. Van Campenhout, editor, Proceedings of the 2003 Inter-
national Joint Conference on Neural Networks, pages 2825–2830, Portland/OR,
7 2003. IEEE.

[384] Benjamin Schrauwen and Jan M. Van Campenhout. Parallel hardware imple-
mentation of a broad class of spiking neurons using serial arithmetic. In ESANN
2006, 14th European Sympos m on Artificial Neural Networks, Bruges, Belg m,
April 26-28, 2006, Proceedings, pages 623–628, 2006.

[385] Felix Schürmann, Karlheinz Meier, and Johannes Schemmel. Edge of chaos
computation in mixed-mode VLSI - a hard liquid. In Lawrence K. Saul, Yair
Weiss, and Léon Bottou, editors, Advances in Neural Information Processing
Systems 17, pages 1201–1208. MIT Press, Cambridge, MA, 2005.

[386] Matthias Schwab, Martin Karrenbach, and Jon Claerbout. Making scientific
computations reproducible. Computing in Science and Engineering, 2(6):61–
67, 2000.

[387] W B Scoville and B Milner. Loss of recent memory after bilateral hippocampal
lesions. 1957. Neuropsychiatry Clinical Neuroscience, 12(1):103–113, Winter
2000. Biography.

[388] Lior Segev, Ranit Aharonov, Isaac Meilijson, and Eytan Ruppin. High-
dimensional analysis of evolutionary autonomous agents. Artificial Life, 9(1):1–
20, 2003.

[389] A. P. Shanthi, L. Karthik Singaram, and Ranjani Parthasarathi. Evolution of
asynchronous sequential circuits. In 2005 NASA / DoD Conference on Evolvable

428 Bibliography

Hardware (EH 2005), 29 June - 1 July 2005, Washington, DC, USA, pages 93–
96. IEEE Computer Society, 2005.

[390] Yoon-Sik Shim and Chang-Hun Kim. Generating flying creatures using
body-brain co-evolution. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics sympos m on Computer animation, pages 276–285, Aire-
la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[391] Yoon-Sik Shim and Chang-Hun Kim. Evolving physically simulated flying
creatures for efficient cruising. Artificial Life, 12(4):561–591, 2006.

[392] Yoon-Sik Shim, Sun Jeong Kim, and Chang-Hun Kim. Evolving flying crea-
tures with path following behaviors. In J. Pollack, M. Bedau, P. Husbands,
T. Ikegami, and R.A Watson, editors, Artificial Life IX: Proceedings of the Ninth
International Conference on the Simulation and Synthesis of Living Systems
(ALIFE9), page 125. International Society for Artificial Life, The MIT Press,
2004.

[393] Yoon-Sik Shim, Seung Yeong Shin, and Chang-Hun Kim. Two-step evolution
process for path-following virtual creatures. In 17th annual conference on Com-
puter Animation and Social Agents (CASA2004), July 2004.

[394] T.J. Shors. From stem cells to grandmother cells: how neurogenesis relates to
learning and memory. Cell Stem Cell, 3:253–258, September 2008.

[395] Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of
neural nets. In COLT ’92: Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 440–449, New York, NY, USA, 1992. ACM.

[396] Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via neural
networks. Theoretical Compututer Science, 131(2):331–360, 1994.

[397] Karl Sims. Evolving 3D morphology and behavior by competition. Artificial
Life, 1(4):353–372, 1994.

[398] Karl Sims. Evolving virtual creatures. In SIGGRAPH ’94: Proceedings of the
21st annual conference on Computer graphics and interactive techniques, pages
15–22, New York, NY, USA, 1994. ACM Press.

[399] Emily Singer. A wiring diagram of the brain. MIT Technology Review, Novem-
ber 2007.

[400] Emily Singer. The brain unmasked. MIT Technology Review, August 2008.

[401] M. Sipper and E. Ruppin. Co-evolving architectures for cellular machines.
Physica D: Nonlinear Phenomena, 99:428–441(14), January 1997.

[402] M. Sipper, M. Tomassini, and M. Capcarrere. Evolving asynchronous and scal-
able cellular automata. In Smith et al, editor, International Conference on Ar-
tificial Neural Networks and Genetic Algorithms’97, pages 66–69. Springer-
Verlag, June 1998.

Bibliography 429

[403] C. Wayne Smith. Crop production: evolution, history, and technology. Wiley,
1995.

[404] Russell Smith. Open Dynamics Engine v0.5 user guide. 2004.

[405] T. Smith and A. Philippides. Nitric oxide signalling in real and artificial neural
networks. BT Technology Journal, 18(4):140–149, 2000.

[406] Lee Spector, Jon Klein, Chris Perry, and Mark Feinstein. Emergence of collec-
tive behavior in evolving populations of flying agents. Genetic Programming
and Evolvable Machines, 6(1):111–125, 2005.

[407] M. Spivey and R. Dale. On the continuity of mind: Toward a dynamical account
of cognition. In B. Ross, editor, The Psychology of Learning and Motivation,
volume 45. Elsevier, 2004.

[408] Michael Spivey. The continuity of mind. Oxford University Press, 2006.

[409] Kenneth O. Stanley. Efficient evolution of neural networks through complexifi-
cation. PhD thesis, University of Texas, Austin, 2004.

[410] Kenneth O. Stanley. Comparing artificial phenotypes with natural biological
patterns. In Genetic and Evolutionary Computation Conference (GECCO2006)
Workshop Program: Complexity through Development and Self-Organizing
Representations (CODESOAR), Seattle, WA, USA, 8-12 July 2006. ACM Press.

[411] Kenneth O. Stanley. Compositional pattern producing networks: A novel ab-
straction of development. Genetic Programming and Evolvable Machines Spe-
cial Issue on Developmental Systems, 2007.

[412] Kenneth O. Stanley, Ryan Cornelius, and Risto Miikkulainen. Real-time learn-
ing in the NERO video game. In R. Michael Young and John E. Laird, editors,
Proceedings of the First Artificial Intelligence and Interactive Digital Enter-
tainment Conference, June 1-5, 2005, Marina del Rey, California, USA, pages
159–160. AAAI Press, 2005.

[413] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[414] Kenneth Steiglitz, Irfan Kamal, and Arthur Watson. Embedding computation
in one-dimensional automata by phase coding solitons. IEEE Transactions on
Computers, 37(2):138–145, 1988.

[415] A. Steinhage and G. Schoener. Dynamical systems for the behavioral organi-
zation of autonomous robot navigation. In P. S. Schenker and G. T. McKee,
editors, Proceedings of the SPIE — Sensor Fusion and Decentralized Control
in Robotic Systems, volume 3523 of Presented at the Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference, pages 169–180, October 1998.

[416] S. Still and M. W. Tilden. Controller for a four legged walking machine. Neu-
romorphic Systems: Engineering silicon from neurobiology, 1998.

430 Bibliography

[417] Adrian Stoica, Ricardo Zebulum, and Didier Keymeulen. Progress and chal-
lenges in building evolvable devices. In EH ’01: Proceedings of the The 3rd
NASA/DoD Workshop on Evolvable Hardware, page 33, Washington, DC, USA,
2001. IEEE Computer Society.

[418] Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert, N. Lipnitsakya, and
Y. Yatskevich. On evolution of relatively large combinational logic circuits. In
2005 NASA / DoD Conference on Evolvable Hardware (EH 2005), 29 June - 1
July 2005, Washington, DC, USA, pages 59–66. IEEE Computer Society, 2005.

[419] T. Streeter, J. Oliver, and A. Sannier. Verve: A general purpose open source re-
inforcement learning toolkit. In Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, 2006.

[420] Tyler Edward Streeter. Design and implementation of general purpose rein-
forcement learning agents. Master’s thesis, Iowa State University, 2003.

[421] Masahiro Sugimoto, Kouichi Takahashi, Tomoya Kitayama, Daiki Ito, and
Masaru Tomita. Distributed cell biology simulations with e-cell system. pages
20–31. 2005.

[422] John D. Sutherland, Matthew W. Powner, and Beatric Gerland. Synthesis of ac-
tivated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature,
459(7244):239–242, May 2009.

[423] T. Suzudo. Spatial pattern formation in asynchronous cellular automata with
mass conservation. Physica A: Statistical Mechanics and its Applications,
343:185–200, November 2004.

[424] Tomoaki Suzudo. Searching for pattern-forming asynchronous cellular au-
tomata - an evolutionary approach. In Peter M. A. Sloot, Bastien Chopard, and
Alfons G. Hoekstra, editors, Cellular Automata, 6th International Conference
on Cellular Automata for Research and Industry, ACRI 2004, Amsterdam, The
Netherlands, October 25-28, 2004, Proceedings, volume 3305 of Lecture Notes
in Computer Science, pages 151–160. Springer, 2004.

[425] Michael Swaine. AI: It’s OK again! Dr. Dobb’s Journal, September 2007.

[426] N.I. Syed, A.G. Bulloch, and K Lukowiak. In vitro reconstruction of the respira-
tory central pattern generator of the mollusk lymnaea. Science, pages 282–285,
October 1990.

[427] G. Taga. A model of the neuro-musculo-skeletal system for human locomotion.
1. emergence of basic gait. Biological Cybernetics, 73(2):97–111, 1995.

[428] G Taga, Y Yamaguchi, and H Shimizu. Self-organized control of bipedal loco-
motion by neural oscillators in unpredictable environment. Biological Cyber-
netics, 65(3):147–159, 1991.

Bibliography 431

[429] Kay Chen Tan, Tong Heng Lee, and Eik Fun Khor. Evolutionary algorithms with
dynamic population size and local exploration for multiobjective optimization.
IEEE Transactions on Evolutionary Computation, 5(6):565–588, 2001.

[430] Ivan Tanev and Thomas Ray. Evolution of sidewinding locomotion of simulated
limbless, weelless robots. In M. Sugisaka and H. Tanaka, editors, Proceedings
of the 9th International Symposium on Artificial Life and Robotics (AROB-04),
volume 2, pages 472–475, 2004.

[431] Ivan Tanev and Thomas S. Ray. Evolution of sidewinding locomotion of sim-
ulated limbless, wheelless robots. Artificial Life and Robotics, 9(3):117–122,
2005.

[432] C.Z. Tang and H.K. Kwan. Digital implementation of neural networks with
quantized neurons. In Proceedings of 1997 IEEE International Symposium on
Circuits and Systems, volume 1 of ISCAS, pages 649–652, June 1997.

[433] Toshiharu Taura and Ichiro Nagasaka. Adaptive-growth-type 3D representation
for configuration design. Artificial Intelligence for Engineering, Design, Analy-
sis and Manufacturing (AI EDAM), 13(3):171–184, 1999.

[434] R Tawel, N Aranki, G.V. Pusko, K.A. Marko, L.A. Feldkamp, James J.V., G Je-
sion, and T.M. Feldkamp. Custom VLSI ASIC for automotive applications with
recurrent networks. In IEEE Neural Networks Council, editor, Proceedings of
the International Joint Conference on Neural Networks (IJCNN’98), 1998.

[435] Tim Taylor. Artificial life techniques for generating controllers for physically
modelled characters. In Quasim H. Mehdi and Norman E. Gough, editors,
1st International Conference on Intelligent Games and Simulation (GAME-ON
2000), 11-12 November 2000, London, UK, pages 89–95, 2000.

[436] Tim Taylor and Colm Massey. Recent developments in the evolution of mor-
phologies and controllers for physically simulated creatures. Journal of Artifi-
cial Life, 7(1):77–87, 2000.

[437] D. Thierens. Adaptive mutation rate control schemes in genetic algorithms. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC 2002), vol-
ume 1, pages 980–985, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[438] Dale Thomas. Aesthetic selection of morphogenetic art forms. Kybernetes,
32(1-2):144–155, 2002.

[439] Ray S. Thomas, D Thieffry, and M Kaufman. Dynamical behaviour of biolog-
ical regulatory networks. Bulletin of Mathematical Biolog, 57:247–276, March
1995.

[440] A. Thompson. Hardware evolution: automatic design of electronic circuits
in reconfigurable hardware by artificial evolution. Distinguished dissertation
series. Springer-Verlag, 1998.

432 Bibliography

[441] Adrian Thompson. Evolving electronic robot controller that exploit hardware
resources. In European Conference on Artificial Life, pages 640–656, 1995.

[442] Adrian Thompson. An evolved circuit, intrinsic in silicon, entwined with
physics. In Tetsuya Higuchi, Masaya Iwata, and Weixin Liu, editors, Evolv-
able Systems: From Biology to Hardware, First International Conference, ICES
96, Tsukuba, Japan, October 7-8, 1996, Proceedings, volume 1259 of Lecture
Notes in Computer Science, pages 390–405. Springer, 1996.

[443] Adrian Thompson. Silicon evolution. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pages 444–452, Stanford University,
CA, USA, 1996. MIT Press.

[444] Adrian Thompson, Paul J. Layzell, and Ricardo Salem Zebulum. Explorations
in design space: unconventional electronics design through artificial evolution.
IEEE Transactions on Evolutionary Computation, 3(3):167–196, 1999.

[445] Tommaso Toffoli and Norman Margolus. Cellular Automata Machines: a new
environment for modeling. MIT Press, Cambridge, MA, USA, 1987.

[446] Julian Togelius. Evolution of a subsumption architecture neurocontroller. Jour-
nal of Intelligent & Fuzzy Systems: Applications in Engineering and Technol-
ogy, 15(1):15–20, 2004.

[447] Seiji Tokura, Akio Ishiguro, and Shigeru Okuma. Hardware implementation
of neuromodulated neural network for a CPU-less autonomous mobile robot.
Advanced Robotics, 20(12):1341–1358, 2006.

[448] S. Tomasula. Genetic art and the aesthetics of biology. Leonardo, 35(2):137–
144, April 2002.

[449] Martin Trefzer, Jörg Langeheine, Karlheinz Meier, and Johannes Schemmel. A
modular framework for the evolution of circuits on configurable transistor array
architectures. In Adrian Stoica, Tughrul Arslan, Martin Suess, Senay Yalçin,
Didier Keymeulen, Tetsuya Higuchi, Ricardo Salem Zebulum, and Nizamettin
Aydin, editors, First NASA/ESA Conference on Adaptive Hardware and Systems
(AHS 2006), 15-18 June 2006, Istanbul, Turkey, pages 32–42. IEEE Computer
Society, 2006.

[450] Vito Trianni, Roderich Groß, Thomas Halva Labella, Erol Sahin, and Marco
Dorigo. Evolving aggregation behaviors in a swarm of robots. In Wolfgang
Banzhaf, Thomas Christaller, Peter Dittrich, Jan T. Kim, and Jens Ziegler, ed-
itors, Advances in Artificial Life, 7th European Conference, ECAL 2003, Dort-
mund, Germany, September 14-17, 2003, Proceedings, volume 2801 of Lecture
Notes in Computer Science, pages 865–874. Springer, 2003.

[451] V. N. Tsytovich, G. E. Morfill, V. E. Fortov, N. G. Gusein-Zade, B. A. Klu-
mov, and S. V. Vladimirov. From plasma crystals and helical structures towards
inorganic living matter. New Journal of Physics, 9(8):263, 2007.

Bibliography 433

[452] L. Turin. A spectroscopic mechanism for primary olfactory reception. Chemical
Senses, 21(773-791), 1996.

[453] Andrew Twyman. The threats of distributed cracking. Technical report, MIT
6.806/STS085: Ethics and law on the electronic frontier, Massachusetts, 1997.

[454] Obinwanne Ugwonali. The role of white yams in the increased incidence of
multiple births in southwestern nigeria. Master’s thesis, Yale Medicine, 1999.

[455] Andres Upegui, Carlos Andrés Peña-Reyes, and Eduardo Sanchez. A functional
spiking neuron hardware oriented model. In José Mira and José R. Álvarez, ed-
itors, Artificial Neural Nets Problem Solving Methods, 7th International Work-
Conference on Artificial and Natural Neural Networks, IWANN2003, Maó,
Menorca, Spain, June 3-6, 2003 Proceedings, Part I, volume 2686 of Lecture
Notes in Computer Science, pages 136–143. Springer, 2003.

[456] Andres Upegui, Carlos Andrés Peña-Reyes, and Eduardo Sanchez. An FPGA
platform for on-line topology exploration of spiking neural networks. Micro-
processors and Microsystems, 29(5):211–223, 2005.

[457] Floris van Breugel and Hod Lipson. Evolving buildable flapping ornithopters.
In Late Breaking Papers at the GECCO 2005 Genetic and evolutionary compu-
tation conference, Washington DC, USA, 25-29 June 2005. ACM Press.

[458] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. What, why and how
of reproducible research in signal processing. IEEE Signal Processing Maga-
zine, June 2008.

[459] Ajit Varki and Tasha K. Altheide. Comparing the human and chimpanzee
genomes: Searching for needles in a haystack. Genome Research, 15(12):1746–
1758, December 2005.

[460] V. Vassilev, D. Job, and J. Miller. Towards the automatic design of more efficient
digital circuits. In Jason Lohn, Adrian Stoica, and Didier Keymeulen, editors,
The Second NASA/DoD workshop on Evolvable Hardware, pages 151–160, Palo
Alto, California, 2000. IEEE Computer Society.

[461] E. Vaughan, E. A. Di Paolo, and I. Harvey. The evolution of control and adapta-
tion in a 3D powered passive dynamic walker. In J. Pollack, M. Bedau, P. Hus-
bands, T. Ikegami, and R.A Watson, editors, Artificial Life IX: Proceedings of
the Ninth International Conference on the Simulation and Synthesis of Living
Systems (ALIFE9), pages 139–145. International Society for Artificial Life, The
MIT Press, 2004.

[462] E. Vaughan, E. A. Di Paolo, and I. Harvey. The tango of a load balancing
biped. In Proceedings of the Seventh International Conference on Climbing and
Walking Robots (CLAWAR), 2004.

[463] Eric Vaughan. Evolution of 3D bipedal walking with hips and ankles. Master’s
thesis, Evolutionary and adaptive systems group, University of Sussex, 2003.

434 Bibliography

[464] Ganesh Venkataraman, Sudhakar M. Reddy, and Irith Pomeranz. GALLOP:
Genetic algorithm based low power FSM synthesis by simultaneous partition-
ing and state assignment. In Proceedings of the 16th International Conference
on VLSI Design, page 533, Los Alamitos, CA, USA, 2003. IEEE Computer
Society.

[465] J. Ventrella. Disney meets darwin - the evolution of funny animated figures. In
CA ’95: Proceedings of the Computer Animation, page 35, Los Alamitos, CA,
USA, 1995. IEEE Computer Society.

[466] Jeffrey Ventrella. Genepool: Exploring the interaction between natural selection
and sexual selection. In Andrew Adamatzky and Maciej Komosinski, editors,
Artificial Life Models in Software, chapter 4. Springer-Verlag, New York, 2005.

[467] Benjamin F F. Voight, Sridhar Kudaravalli, Xiaoquan Wen, and Jonathan K K.
Pritchard. A map of recent positive selection in the human genome. Public
Library of Science (PLoS) Biology, 4(3), March 2006.

[468] Bartelemy von Haller. Neubot project: framework for simulating modular
robots and self-organisation of locomotion under water. Master’s thesis, Swiss
Federal Institute of Technology (EPFL) Lausanne, Lausanne, 2005.

[469] Bartelemy von Haller, A. Ijspeert, and D. Floreano. Co-evolution of structures
and controllers for Neubot underwater modular robots. In M. Capcarrere, A.A.
Freitas, P.J. Bentley, C.G. Johnson, and J. Timmis, editors, Advances in Artificial
Life: 8th European Conference, ECAL 2005, Canterbury, UK, September 5-
9, 2005, Proceedings, Lecture Notes in Computer Science (Lecture Notes in
Artificial Intelligence), Heidelberg, 2005. Springer.

[470] Henning U Voss, Aziz M Uluc, Jonathan P Dyke, Richard Watts, Erik J Koby-
larz, Bruce D McCandliss, Linda A Heier, Bradley J Beattie, Klaus A Hamacher,
Shankar Vallabhajosula, Stanley J Goldsmith, Douglas Ballon, Joseph T Gia-
cino, and Nicholas D Schiff. Possible axonal regrowth in late recovery from
the minimally conscious state. Clinical Investigation, 116(7):2005–2011, July
2006.

[471] Jilles Vreeken. Spiking neural networks, an introduction. Technical Report
UU-CS-2003-008, Institute of Information and Computing Sciences, Utrecht
University, 2003.

[472] C. H. Waddington. Canalization of development and the inheritance of acquired
characters. In Adaptive individuals in evolving populations: models and algo-
rithms, pages 91–97. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996.

[473] Sayaka Wakayama, Yumi Kawahara, Chong Li, Kazuo Yamagata, Louis Yuge,
and Teruhiko Wakayama. Detrimental effects of microgravity on mouse preim-
plantation development in vitro. PLoS ONE, 4(8):e6753, 08 2009.

Bibliography 435

[474] Kevin Warwick. March of the machines: the breakthrough in artificial intelli-
gence. University of Illinois Press, 2004.

[475] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, June 1998.

[476] Justin Werfel, Melanie Mitchell, and James P. Crutchfield. Resource sharing and
coevolution in evolving cellular automata. IEEE Transactions on Evolutionary
Computation, 4(4):388–393, 2000.

[477] R.E. Wheeler. Algdesign. The R project for statistical computing, 2004.

[478] Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In Neu-
rocomputing: foundations of research, pages 123–134. MIT Press, Cambridge,
MA, USA, 1988.

[479] Alexis P. Wieland. Evolving neural network controllers for unstable sys-
tems. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN’91), volume II, pages 667–673, 1991.

[480] Stephen Wolfram. A new kind of science. Wolfram Media Inc., 2002.

[481] A. Wuensche. Discrete dynamical networks and their attractor basins. In Rus-
sell Standish, Bruce Henry, Simon Watt, Robert Marks, Robert Stocker, David
Green, Steve Keen, and Terry Bossomaier, editors, Proceedings of Complex Sys-
tems ’98, University of New South Wales, Sydney, Australia., 1998.

[482] A. Wuensche. Discrete dynamics lab: Tools for investigating cellular automata
and discrete dynamical networks. In Andrew Adamatzky and Maciej Komosin-
ski, editors, Artificial Life Models in Software, chapter 11, pages 263–297.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[483] Juan M. Xicotencatl and Miguel Arias-Estrada. FPGA based high density spik-
ing neural network array. In Peter Y. K. Cheung, George A. Constantinides,
and José T. de Sousa, editors, Field Programmable Logic and Application, 13th
International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003,
Proceedings, volume 2778 of Lecture Notes in Computer Science, pages 1053–
1056, Berlin, Heidelberg, September 2003. Springer Verlag.

[484] S. Xu, S. K. Talwar, E. S. Hawley, L. Li, and J. K. Chapin. A multi-channel
telemetry system for brain microstimulation in freely roaming animals. Journal
of Neuroscience Methods, 133(1-2):57–63, February 2004.

[485] Fuminori Yamasaki, Tatsuya Matsui, Takahiro Miyashita, and Hiroaki Kitano.
Pino the humanoid: A basic architecture. In RoboCup 2000: Robot Soccer
World Cup IV, pages 269–279, London, UK, 2001. Springer-Verlag.

[486] X. Yao. A review of evolutionary artificial neural networks. International Jour-
nal of Intelligent Systems, 8(4):203–222, 1993.

436 Bibliography

[487] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

[488] Juan Cristóbal Zagal and Javier Ruiz del Solar. Uchilsim: A dynamically and
visually realistic simulator for the robocup four legged league. In Daniele Nardi,
Martin Riedmiller, Claude Sammut, and José Santos-Victor, editors, RoboCup
2004: Robot Soccer World Cup VIII, volume 3276 of Lecture Notes in Computer
Science, pages 34–45. Springer, 2004.

[489] Franco Zambonelli, Marco Mamei, and Andrea Roli. What can cellular au-
tomata tell us about the behavior of large multi-agent systems? In Alessandro F.
Garcia, Carlos José Pereira de Lucena, Franco Zambonelli, Andrea Omicini,
and Jaelson Castro, editors, SELMAS, volume 2603 of Lecture Notes in Com-
puter Science, pages 216–231. Springer, 2002.

[490] G Zeck and P Fromherz. Noninvasive neuroelectronic interfacing with synap-
tically connected snail neurons immobilized on a semiconductor chip. Pro-
ceedings of the National Academy of Sciences of the United States of America,
98(18):10457–10462, August 2001.

[491] Andreas Zell, Niels Mache, Ralf Huebner, Michael Schmalzl, Tilman Sommer,
and Thomas Korb. SNNS: Stuttgart neural network simulator. Technical report,
University of Stuttgart, Stuttgart, 1992.

[492] J. Zhu and P. Sutton. FPGA implementations of neural networks - a survey
of a decade of progress. In Peter Y. K. Cheung, George A. Constantinides,
and José T. de Sousa, editors, Field Programmable Logic and Application, 13th
International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003,
Proceedings, volume 2778 of Lecture Notes in Computer Science, pages 1062–
1066, Berlin, Heidelberg, September 2003. Springer Verlag.

[493] J.C. Zufferey, A. Guanella, A. Beyeler, and D. Floreano. Flying over the reality
gap: from simulated to real indoor airships. Autonomous Robots, 21(3):243–
254, 2006.

[494] Jean-Christophe Zufferey. Bio-inspired vision-based flying robots. PhD thesis,
Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne, 2005. Prix
Asea Brown Boveri Ltd (ABB) (2006).

[495] Jean-Christophe Zufferey, Dario Floreano, Matthijs van Leeuwen, and Tancredi
Merenda. Evolving vision-based flying robots. In Heinrich H. Bülthoff, Seong-
Whan Lee, Tomaso Poggio, and Christian Wallraven, editors, Biologically Moti-
vated Computer Vision Second International Workshop, BMCV 2002, Tübingen,
Germany, November 22-24, 2002, Proceedings, volume 2525 of Lecture Notes
in Computer Science, pages 592–600. Springer, 2002.

[496] Viktor Zykov, Josh Bongard, and Hod Lipson. Evolving dynamic gaits on a
physical robot. In Maarten Keijzer, editor, Late Breaking Papers at the 2004
Genetic and Evolutionary Computation Conference, Seattle, Washington, USA,
26 July 2004. Springer.

	Introduction
	Motivation
	Contributions to knowledge
	Reproducibility
	Summary
	Organisation of the thesis

	Biological sensing and control
	Neural networks
	Biological models
	Connectivity and resilience
	Pattern generation for muscle control
	Sensory feedback
	Brain computer interfaces
	Summary

	Synthetic neural networks
	Similarities to biological networks
	Connectivity
	State and signal coding
	Example codings

	Models of single neuron dynamics
	Input function
	Activation function
	Output function
	Spiking models
	Continuous models
	Reduced models

	Computational power
	Robot control
	Training
	Backpropagation

	Hardware acceleration
	Summary

	Other networks
	Analog circuits
	Digital circuits
	Asynchronous circuits
	Genetic regulatory networks
	Boolean networks
	Random boolean networks

	Generalised logical networks
	Cellular automata
	The edge of chaos
	Summary

	Genetic evolution
	Natural selection
	Genetics in nature
	Genetic algorithms
	Modularity of the genome
	Fitness function
	Fitness surface
	Search behaviour
	Genotype encoding
	Example encodings

	Population models
	Initial population creation
	Parent selection
	Reproduction
	Summary

	Evolution of specific genotypes
	Problem specific operators
	Evolving flocking
	Ant colonies
	Evolving neural networks for robot control
	Timeline

	Evolving reduced continuous neural models
	Evolving reduced spiking neural models
	Evolving modular hierarchical neural networks
	Evolving genetic regulatory networks
	Evolving cellular automata
	Evolving cellular automata neural networks

	Evolving analog circuits
	Evolving FPAA robot control
	Evolving FPGA oscillators
	Evolving FPGA frequency discriminators
	Evolving on an analog FPTA
	Evolving fault tolerance

	Evolving digital circuits
	Optimising gate count
	Optimising power
	Evolving digital circuits for robot control

	Evolving pattern generators
	Timeline

	Evolving morphology
	Timeline

	Evolving robot morphology and control
	Timeline

	Evolving modular robots
	Summary

	Overview so far
	Software design
	Creature morphology
	Morphogenesis
	Evolution of the morphology
	Example morphologies
	Neurogenesis
	Neural network topologies
	Neuron quantisation
	Evolution of the neural networks
	The software
	Simulated physics
	Collision detection

	Sensors and actuators
	Motor models
	Stimulus-response curves of PD motor controller

	Physics simulation problems
	Tasks
	Summary

	Software testing
	Testing neuron models
	Explanation of graphs
	Sine model
	Sigmoid model
	Beer model
	Taga model
	Ekeberg model
	Integrate-and-fire model
	Spike response model
	Logical model

	Cluster performance
	Summary

	Pole balancing experiments
	Introduction
	Task
	Task analysis
	LQR controller design
	Experimental design
	Reproducibility
	Results
	ANOVA modelling
	ANOVA results
	About ``Least Significance Difference'' plots
	``Least Significant Difference'' plots
	Factor: Model
	Factor: Quanta
	Factor: Number of generations and population size
	Factor: Timing
	Factor: Interaction of model and timing
	Factor: Interaction of neuron model and generations / population size
	Factor: Interaction of neuron model and quantisation

	Summary

	Virtual creature experiments
	Introduction
	Task
	Fitness function
	Experimental design
	Reproducibility
	Results
	ANOVA modelling
	ANOVA results
	``Least Significant Difference'' plots
	Factor: Model
	Factor: Number of generations and population size
	Factor: Timing
	Factor: Interaction of neuron model and timing
	Factor: Interaction of neuron model and quantisation

	Example evolved control
	An explanation of these graphs
	Example floating-point controller (Beer's CTRNN model)
	Example quantised controller (Beer's CTRNN model with 16 quanta states)
	Example quantised controller (sigmoid model with 8 quanta states)
	Example quantised controller (Ekeberg model with 4 quanta states)
	Example quantised controller (integrate-and-fire model with 4 quanta states)
	Example quantised controller (SRM model with 16 quanta states)
	Example quantised controller (Logical model with 2 quanta states)
	Example quantised controller (Sine model with 16 quanta states)

	Example of evolution — from biped walking onwards
	A note on lack of reproducibility
	The observed evolution
	Stage 0 — walking biped
	Stage 1 — smaller head, pushing forward on knees
	Stage 2 — loses a leg
	Stage 3 — stronger leg
	Stage 4 — better global coordination, longer leg

	Summary

	Conclusions
	Summary
	Future work

	Bibliography

